Sample records for catchlike-inducing electrical stimulation

  1. Elicitation and abrupt termination of behaviorally significant catchlike tension in a primitive insect.

    PubMed

    Hoyle, G; Field, L H

    1983-07-01

    Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10(-8) M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.

  2. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  3. Cisplatin-induced gastric dysrhythmia and emesis in dogs and possible role of gastric electrical stimulation.

    PubMed

    Yu, Xiaoyun; Yang, Jie; Hou, Xiaohua; Zhang, Kan; Qian, Wei; Chen, J D Z

    2009-05-01

    The aim of this study was to investigate the effect of cisplatin on gastric myoelectrical activity and the role of gastric electrical stimulation in the treatment of cisplatin-induced emesis in dogs. Seven dogs implanted with electrodes on the gastric serosa were used in a two-session study. Cisplatin was infused in both the control session and the gastric electrical stimulation session, and gastric electrical stimulation was applied in the gastric electrical stimulation session. Gastric slow waves and emesis, as well as behaviors suggestive of nausea, were recorded during each session. The results were as follows: (1) cisplatin induced vomiting and other symptoms and induced gastric dysrhythmia. The percentage of normal slow waves decreased significantly during the 2.5 h before vomiting (P=0.01) and the period of vomiting (P<0.001). (2) Gastric electrical stimulation reduced emesis and the symptoms score. The total score in the control session was higher than that in the gastric electrical stimulation session (P=0.02). However, gastric electrical stimulation had no effects on gastric dysrhythmia. It is concluded that cisplatin induces emesis and gastric dysrhythmia. Gastric electrical stimulation may play a role in relieving chemotherapy-induced emetic responses and deserves further investigation.

  4. Electrical Stimulation of the Ventral Tegmental Area Induces Reanimation from General Anesthesia

    PubMed Central

    Solt, Ken; Van Dort, Christa J.; Chemali, Jessica J.; Taylor, Norman E.; Kenny, Jonathan D.; Brown, Emery N.

    2014-01-01

    BACKGROUND Methylphenidate or a D1 dopamine receptor agonist induce reanimation (active emergence) from general anesthesia. We tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (SN, n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120μA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 μg/ml ± 1.1 μg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4–8 Hz). In all rats with SN electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS Electrical stimulation of the VTA, but not the SN, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA, but not SN, neurons induces reanimation from general anesthesia. PMID:24398816

  5. Emotions induced by intracerebral electrical stimulation of the temporal lobe.

    PubMed

    Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo

    2006-01-01

    To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.

  6. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells

    PubMed Central

    Hernández, Damián; Millard, Rodney; Sivakumaran, Priyadharshini; Wong, Raymond C. B.; Crombie, Duncan E.; Hewitt, Alex W.; Liang, Helena; Hung, Sandy S. C.; Pébay, Alice; Shepherd, Robert K.; Dusting, Gregory J.; Lim, Shiang Y.

    2016-01-01

    Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used. PMID:26788064

  7. Ownership of an artificial limb induced by electrical brain stimulation

    PubMed Central

    Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.

    2017-01-01

    Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147

  8. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  10. Comparison of the shock artifacts induced by tripolar and bipolar electrical stimulation techniques.

    PubMed

    Wee, A S; Jiles, K; Brennan, R

    2001-01-01

    Tripolar and bipolar electrical stimulation procedures were performed on the upper limbs of eight subjects. The mid-forearm was stimulated electrically (tripolar or bipolar) by surface electrodes, and the induced stimulus shock artifacts were recorded simultaneously from the wrist and elbow. During tripolar stimulation, two types of stimulating configurations were utilized: with the center electrode designated as the cathode and the two outermost electrodes connected to a common anode, and vice versa. During bipolar stimulation, the center electrode served as one pole of the stimulator, and one of the two outermost electrodes of the tripolar stimulator was disconnected. The stimulus intensity was kept constant in all stimulating procedures. Artifacts were reduced significantly during tripolar compared to bipolar stimulation, if the outermost electrodes of the tripolar stimulator (which were facing the recording electrodes) were also oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity. Artifacts were slightly reduced in amplitude from tripolar stimulation, if the center electrode were oriented toward the recording sites during bipolar stimulation and had the same stimulus polarity as previously used during tripolar stimulation.

  11. Functional electrical stimulation to the abdominal wall muscles synchronized with the expiratory flow does not induce muscle fatigue.

    PubMed

    Okuno, Yukako; Takahashi, Ryoichi; Sewa, Yoko; Ohse, Hirotaka; Imura, Shigeyuki; Tomita, Kazuhide

    2017-03-01

    [Purpose] Continuous electrical stimulation of abdominal wall muscles is known to induce mild muscle fatigue. However, it is not clear whether this is also true for functional electrical stimulation delivered only during the expiratory phase of breathing. This study aimed to examine whether or not intermittent electrical stimulation delivered to abdominal wall muscles induces muscle fatigue. [Subjects and Methods] The subjects were nine healthy adults. Abdominal electrical stimulation was applied for 1.5 seconds from the start of expiration and then turned off during inspiration. The electrodes were attached to both sides of the abdomen at the lower margin of the 12th rib. Abdominal electrical stimulation was delivered for 15 minutes with the subject in a seated position. Expiratory flow was measured during stimulus. Trunk flexor torque and electromyography activity were measured to evaluate abdominal muscle fatigue. [Results] The mean stimulation on/off ratio was 1:2.3. The declining rate of abdominal muscle torque was 61.1 ± 19.1% before stimulus and 56.5 ± 20.9% after stimulus, not significantly different. The declining rate of mean power frequency was 47.8 ± 11.7% before stimulus and 47.9 ± 10.2% after stimulus, not significantly different. [Conclusion] It was found that intermittent electrical stimulation to abdominal muscles synchronized with the expiratory would not induce muscle fatigue.

  12. Tetrodotoxin-insensitive electrical field stimulation-induced contractions on Crotalus durissus terrificus corpus cavernosum.

    PubMed

    Campos, Rafael; Mónica, Fabíola Z; Rodrigues, Renata Lopes; Rojas-Moscoso, Julio Alejandro; Moreno, Ronilson Agnaldo; Cogo, José Carlos; de Oliveira, Marco Antonio; Antunes, Edson; De Nucci, Gilberto

    2017-01-01

    Reptiles are the first amniotes to develop an intromitent penis, however until now the mechanisms involved in the electrical field stimulation-induced contraction on corpora cavernosa isolated from Crotalus durissus terrificus were not investigated. Crotalus and rabbit corpora cavernosa were mounted in 10 mL organ baths for isometric tension recording. Electrical field stimulation (EFS)-induced contractions were performed in presence/absence of phentolamine (10 μM), guanethidine (30 μM), tetrodotoxin (1 μM and 1mM), A-803467 (10 μM), 3-iodo-L-Tyrosine (1 mM), salsolinol (3 μM) and a modified Krebs solution (equimolar substitution of NaCl by N-methyl-D-glucamine). Immuno-histochemistry for tyrosine hydroxylase was also performed. Electrical field stimulation (EFS; 8 Hz and 16 Hz) caused contractions in both Crotalus and rabbit corpora cavernosa. The contractions were abolished by previous incubation with either phentolamine or guanethidine. Tetrodotoxin (1 μM) also abolished the EFS-induced contractions of rabbit CC, but did not affect EFS-induced contractions of Crotalus CC. Addition of A-803467 (10 μM) did not change the EFS-induced contractions of Crotalus CC but abolished rabbit CC contractions. 3-iodo-L-Tyrosine and salsolinol had no effect on EFS-induced contractions of Crotalus CC and Rabbit CC. Replacement of NaCl by N- Methyl-D-glucamine (NMDG) abolished EFS-induced contractions of rabbit CC, but did not affect Crotalus CC. The presence of tyrosine hydroxylase was identified in endothelial cells only of Crotalus CC. Since the EFS-induced contractions of Crotalus CC is dependent on catecholamine release, insensitive to TTX, insensitive to A803467 and to NaCl replacement, it indicates that the source of cathecolamine is unlikely to be from adrenergic terminals. The finding that tyrosine hydroxylase is present in endothelial cells suggests that these cells can modulate Crotalus CC tone.

  13. Neuromuscular transmission in a primitive insect: modulation by octopamine, and catch-like tension.

    PubMed

    Hoyle, G

    1984-01-01

    The third pair of legs of the primitive New Zealand orthopteran insect, the " weta ", has and innervation and muscle cell distribution exactly similar to that of locusts, but wetas do not jump. Neuromuscular transmission to the slow excitatory axon ( SETi ) is potentiated more than 10-fold by the natural modulator octopamine (OCT). A brief burst of SETi impulses following infusion of as little as 10(-8) M OCT is followed by a very long-lasting plateau of catch-like tension (CT). The plateau is abruptly relaxed by a single inhibitory impulse, or even by a single SETi impulse if this arrives no sooner than about 30 sec following excitation. CT is used by wetas in a defense posture. Locusts and grasshoppers have a different type of modulation by OCT.

  14. Neuronal excitability level transition induced by electrical stimulation

    NASA Astrophysics Data System (ADS)

    Florence, G.; Kurths, J.; Machado, B. S.; Fonoff, E. T.; Cerdeira, H. A.; Teixeira, M. J.; Sameshima, K.

    2014-12-01

    In experimental studies, electrical stimulation (ES) has been applied to induce neuronal activity or to disrupt pathological patterns. Nevertheless, the underlying mechanisms of these activity pattern transitions are not clear. To study these phenomena, we simulated a model of the hippocampal region CA1. The computational simulations using different amplitude levels and duration of ES revealed three states of neuronal excitability: burst-firing mode, depolarization block and spreading depression wave. We used the bifurcation theory to analyse the interference of ES in the cellular excitability and the neuronal dynamics. Understanding this process would help to improve the ES techniques to control some neurological disorders.

  15. Short pulse gastric electrical stimulation for cisplatin-induced emesis in dogs.

    PubMed

    Song, J; Zhong, D-X; Qian, W; Hou, X-H; Chen, J D Z

    2011-05-01

    In a previous study, we investigated the ameliorating effect of gastric electrical stimulation (GES) with a single set of parameters on emesis and behaviors suggestive of nausea induced by cisplatin in dogs. The aim of this study was to investigate the effects of GES with different parameters on cisplatin-induced emesis in dogs. Seven dogs implanted with gastric serosal electrodes were studied in six randomized sessions: one control session with cisplatin (2 mg kg(-1)) and five sessions with cisplatin plus GES of different parameters: GES-A: 14 Hz, 5 mA, 0.3 ms, 0.1 s on and 5 s off; GES-B: increased frequency and on-time; GES-C: increased frequency; GES-D: increased frequency and pulse width; and GES-E: increased frequency and amplitude. Gastric slow waves and emetic responses were recorded in each session. (i) Cisplatin induced emetic responses and gastric dysrhythmia. The peak time of the emetic response was during the fourth hour after cisplatin. (ii) GES with appropriate parameters reduced cisplatin-induced emesis. The number of vomiting times during the 6 h after cisplatin was 7.0 ± 1.4 in the control, 4.7 ± 1.2 with GES-A (P = 0.179), 4.2 ± 1.2 with GES-B (P = 0.109), 7.0 ± 0.8 with GES-C (P = 0.928), 2.1 ± 0.3 with GES-D (P = 0.005) and 4.7 ± 1.5 with GES-E (P = 0.129). However, none of the GES parameters could improve gastric dysrhythmia. Gastric electrical stimulation with appropriate parameters reduces cisplatin-induced emetic responses and behaviors suggestive of nausea in dogs. Among the tested parameters, GES with increased pulse width seems to produce better relief of cisplatin-induced emesis. © 2011 Blackwell Publishing Ltd.

  16. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  17. Electrical Stimulation Modulates High γ Activity and Human Memory Performance

    PubMed Central

    Berry, Brent M.; Miller, Laura R.; Khadjevand, Fatemeh; Ezzyat, Youssef; Wanda, Paul; Sperling, Michael R.; Lega, Bradley; Stead, S. Matt

    2018-01-01

    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62–118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor” memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation. PMID:29404403

  18. Evoked Electromyographically Controlled Electrical Stimulation

    PubMed Central

    Hayashibe, Mitsuhiro

    2016-01-01

    Time-variant muscle responses under electrical stimulation (ES) are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications. Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES) are also well known source of time-varying characteristics coming from muscle response under ES. Therefore, it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favor of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG) signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm. PMID:27471448

  19. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP

    NASA Astrophysics Data System (ADS)

    Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong

    2017-04-01

    Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.

  20. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    PubMed

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  1. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  2. Charge-balanced biphasic electrical stimulation inhibits neurite extension of spiral ganglion neurons.

    PubMed

    Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng

    2016-06-15

    Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation

    PubMed Central

    Hughes, J.; Vane, J. R.

    1970-01-01

    1. A pharmacological analysis of the inhibitory innervation of the isolated portal vein of the rabbit has been made. 2. In untreated preparations, transmural stimulation elicited a long-lasting relaxation at low frequencies (0·2-1 Hz); at higher frequencies a contraction followed by a prolonged after-relaxation occurred. Tetrodotoxin abolished the contractions but a higher dose was required to abolish the relaxations. Veratrine lowered the threshold of stimulation for producing relaxations in the untreated vein. The relaxations were unaffected by hyoscine or hexamethonium. They were reduced or altered by antagonists of α-adrenoceptors for catecholamines and by adrenergic neurone blockade. They were sometimes slightly reduced by antagonists of β-adrenoceptors. 3. In the presence of antagonists of α-adrenoceptors, electrical stimulation elicited relaxations which increased with frequency of stimulation and became maximal at 20-30 Hz. These relaxations were partially reduced by antagonists of β-adrenoceptors, or by adrenergic neurone block; the antagonisms were more pronounced at the higher frequencies of stimulation. Noradrenaline also caused relaxations which were abolished by β-adrenoceptor blocking drugs. Cocaine increased the sensitivity to noradrenaline by 7-8 fold after α-adrenoceptor blockade but had little or no effect on the relaxations induced by electrical stimulation at high frequencies. 4. In the presence of antagonists of α- and β-adrenoceptors, or adrenergic neurone blocking agents, or in veins taken from rabbits pretreated with reserpine, electrical stimulation elicited rapid relaxations which were greatest at 20-30 Hz. These relaxations were increased by veratrine and abolished by tetrodotoxin or by storing the vein for 9 days at 4° C. They were unaffected by antagonists of acetylcholine, or by dipyridamole. 5. Prostaglandins E1, E2 and F2α inhibited contractions elicited by electrical stimulation and noradrenaline, but in higher doses

  4. Intestinal electrical stimulation improves delayed gastric emptying and vomiting induced by duodenal distension in dogs.

    PubMed

    Xu, J; Chen, J D Z

    2008-03-01

    The aim of this study was to investigate the effects of short-pulse intestinal electrical stimulation (IES) on duodenal distention-induced delayed gastric emptying and vomiting in dogs and its possible mechanisms. The study was performed in 12 dogs with jejunal electrodes and a duodenal cannula in three separate experiments to investigate the effects of IES on duodenal distension (DD)-induced delayed gastric emptying and discomfort signs, vagal efferent activity, and jejunal tone. We found that: (i) IES significantly accelerated gastric emptying of liquid delayed by distension (18.05 +/- 4.06%vs. 7.18 +/- 1.99%, P = 0.036 at 60 min). (ii) IES significantly reduced vomiting and discomfort/pain induced by distension. The average signs score was 15.33 +/- 1.37 during distension which decreased to 6.50 +/- 0.91 (P = 0.0002) with IES. (iii) IES did not change vagal afferent activity, which was assessed by the spectral analysis of the heart rate variability. (iv) IES decreased jejunal tone. In conclusion, IES with parameters commonly used in gastric electrical stimulation for nausea and vomiting associated with gastroparesis improves DD-induced delayed gastric emptying and prevents DD-induced vomiting and discomfort signs. Further studies are warranted to investigate the therapeutic potential of IES for gastrointestinal symptoms associated with disturbances in motility and sensory function in small intestine.

  5. Substance P enhances electrical field stimulation-induced mast cell degranulation in rat trachea.

    PubMed

    Hua, X Y; Back, S M; Tam, E K

    1996-06-01

    We previously demonstrated in an ex vivo rat tracheal model that chymotryptic activity is an index of mast cell degranulation and that substance P (SP) and electrical field stimulation (EFS) synergistically degranulate mucosal and connective tissue mast cells. In the current study, we found that the facilitatory effect of SP was apparent at concentrations as low as 10(-9) M. This effect was mimicked by 10(-7) M neurokinin A or by 10(-6) M capsaicin and was blocked by the NK1 receptor antagonist CP-96,345. SP + EFS-induced mast cell secretion was significantly attenuated by 10(-6) M tetrodotoxin. The response was also attenuated in tracheas from rats in which sensory nerves had been depleted by systemic pretreatment with capsaicin or in which sympathetic nerves had been depleted by systemic pretreatment with 6-hydroxy-dopamine. Atropine (10(-6) M) or indomethacin (10(-5) M) also attenuated SP + EFS-induced mast cell secretion. Our findings suggest the importance of a sensitizing rather than a direct stimulating effect of SP on mast cell degranulation. SP may increase the sensitivity of mast cells to EFS-discharged mediators or facilitate the release of mast cell-stimulating mediators from autonomic nerves.

  6. [Anesthetic effect of preemptive analgesia of frequency acupoint electrical stimulation on painless-induced abortion].

    PubMed

    Wang, Li-Hong; Zhu, Hong-Xia; Su, Xin-Jing; Hao, Wen-Bin

    2014-07-01

    To explore the anesthetic effect of preemptive analgesia of frequency acupoint electrical stimulation on painless-induced abortion as well as its effect on anesthetics dosage. Ninety cases of early pregnancy who selected painless-induced abortion were randomly divided into two groups, 45 cases in each group. Frequency acupoint electrical stimulation at Ciliao (BL 32) and Shenshu (BL 23), disperse-densewave, 2 Hz/100 Hz in frequency for 15 to 20 min, was applied in the group A, which was followed by intravenous anesthesia of propofol. The intravenous anesthesia of propofol was applied in the group B. The blood pressure (BP), heart rate (HR) and SpO2 before, during and after surgery, anesthetic effect and dosage, waking time and adverse events were observed in the two groups. The BP and HR during and after the surgery in the group A were not statistically different from those before the surgery (all P > 0.05). The BP was reduced and HR was slowed down during the surgery in the group B, which was significantly different from those before the surgery as well as those in the group A (all P < 0.05). The dosage of propofol was (114. 3-+6. 1) mg in the group A. obviously less than (193.2 +/- 8.9) mg in the group B (P < 0.05). The waking time was (5.6 +/- 1.2) min in the group A, obviously less than (10.1 +/- 3.9) min in the group B (P < 0.05). As for anesthetic effect, the incidence of Grade I in the group A was more than the group B (P < 0.05). The adverse events, including nausea, vomiting and contractions pain in the group A were evidently less than those in the group B (all P < 0.05). The preemptive analgesia of frequency acupoint electrical stimulation could significantly improve anesthetic effect of painless-induced abortion, reduce dosage of anesthetics, shorten waking time of surgery and guarantee the safety of surgery.

  7. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

    PubMed

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-07-16

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  8. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    PubMed Central

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  9. Movement Along the Spine Induced by Transcranial Electrical Stimulation Related Electrode Positioning.

    PubMed

    Hoebink, Eric A; Journée, Henricus L; de Kleuver, Marinus; Berends, Hanneke; Racz, Ilona; van Hal, Chantal

    2016-07-15

    A prospective, nonrandomized cohort study. To describe a technique quantifying movement induced by transcranial electrical stimulation (TES) induced movement in relation to the positioning of electrodes during spinal deformity surgery. TES induced movement may cause injuries and delay surgical procedures. When TES movements are evoked, muscles other than those being monitored any adjustments in stimulation protocols and electrode positioning may be expected to minimize movement whereas preserving quality of monitoring. In this study, seismic evoked responses (SER) induced through TES were studied at different electrode positions. Intraoperative TES-motor evoked potentials were carried out in 12 patients undergoing corrective spine surgery. Accelerometer transducers recorded SER in two directions at four different locations of the spine for TES-electrode montage groups Cz-Fz and C3-C4. A paired t test was used to compare the means of SER and the relationship between movement and TES electrode positioning. SERs were strongest in the upper body. All mean SERs values for the Cz-Fz group were up to five times larger when compared with the C3-C4 group. However, there were no differences between the C3-C4 and Cz-Fz groups in the lower body locations. Both electrode montage groups showed a gradual stepwise reduction in all mean SER values along the spine from the cranial to caudal region. For the upper body locations, there were no significant associations between SER and both montages; in contrast, a significant association SER was demonstrated in the lumbar region. At supramaximum levels, movements resulting from multipulse TES are likely caused by relatively strong contractions from muscles in the neck resulting from direct extracranial stimulation. When interchanging electrode montages in individual cases, the movement in the neck may become reduced. At lumbar levels transcranial evoked muscle contractions dominate movement in the surgically exposed areas. 4.

  10. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.

    PubMed

    Chipchase, Lucy S; Schabrun, Siobhan M; Hodges, Paul W

    2011-09-01

    To evaluate the effect of 6 electric stimulation paradigms on corticospinal excitability. Using a same subject pre-post test design, transcranial magnetic stimulation (TMS) was used to measure the responsiveness of corticomotor pathway to biceps and triceps brachii muscles before and after 30 minutes of electric stimulation over the biceps brachii. Six different electric stimulation paradigms were applied in random order, at least 3 days apart. Motor control research laboratory. Healthy subjects (N=10; 5 women, 5 men; mean age ± SD, 26 ± 3.6y). Six different electric stimulation paradigms with varied stimulus amplitude, frequency, and ramp settings. Amplitudes of TMS-induced motor evoked potentials at biceps and triceps brachii normalized to maximal M-wave amplitudes. Electric stimulation delivered at stimulus amplitude sufficient to evoke a sensory response at both 10 Hz and 100 Hz, and stimulus amplitude to create a noxious response at 10 Hz decreased corticomotor responsiveness (all P<0.01). Stimulation sufficient to induce a motor contraction (30 Hz) applied in a ramped pattern to mimic a voluntary activation increased corticomotor responsiveness (P=0.002), whereas constant low- and high-intensity motor stimulation at 10 Hz did not. Corticomotor excitability changes were similar for both the stimulated muscle and its antagonist. Stimulus amplitude (intensity) and the nature (muscle flicker vs contraction) of motor stimulation have a significant impact on changes in corticospinal excitability induced by electric stimulation. Here, we demonstrate that peripheral electric stimulation at stimulus amplitude to create a sensory response reduces corticomotor responsiveness. Conversely, stimulus amplitude to create a motor response increases corticomotor responsiveness, but only the parameters that create a motor response that mimics a voluntary muscle contraction. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights

  11. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  12. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  13. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue

    NASA Astrophysics Data System (ADS)

    Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  14. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    PubMed

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  15. Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray

    PubMed Central

    Ballesteros, Carolina Irurita; de Oliveira Galvão, Bruno; Maisonette, Silvia; Landeira-Fernandez, J.

    2014-01-01

    The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed. PMID:24404134

  16. A functional magnetic resonance imaging study of human brain in pain-related areas induced by electrical stimulation with different intensities.

    PubMed

    Yuan, Wang; Ming, Zhang; Rana, Netra; Hai, Liu; Chen-wang, Jin; Shao-hui, Ma

    2010-01-01

    Pain-related studies have mainly been performed through traditional methods, which lack the rigorous analysis of anatomical locations. Functional magnetic resonance imaging (fMRI) is a noninvasive method detecting neural activity, and has the ability to precisely locate related activations in vivo. Moreover, few studies have used painful stimulation of changed intensity to investigate relevant functioning nuclei in the human brain. This study mainly focused on the pain-related activations induced by electrical stimulation with different intensities using fMRI. Furthermore, the electrophysiological characteristics of different pain-susceptible-neurons were analyzed to construct the pain modulatory network, which was corresponding to painful stimulus of changed intensity. Twelve volunteers underwent functional scanning receiving different electrical stimulation. The data were collected and analyzed to generate the corresponding functional activation maps and response time curves related to pain. The common activations were mainly located in several specific regions, including the secondary somatosensory cortex (SII), insula, anterior cingulate cortex (ACC), thalamus, and other cerebral regions. Moreover, innocuous electrical stimulation primarily activated the lateral portions of SII and thalamus, as well as the posterior insula, anterior ACC, whereas noxious electrical stimulation primarily activated the medial portions of SII and thalamus, as well as the anterior insula, the posterior ACC, with larger extensions and greater intensities. Several specified cerebral regions displayed different response patterns during electrical stimulation by means of fMRI, which implied that the corresponding pain-susceptible-neurons might process specific aspects of pain. Elucidation of functions on pain-related regions will help to understand the delicate pain modulation of human brain.

  17. Gastric electrical stimulation with short pulses reduces vomiting but not dysrhythmias in dogs.

    PubMed

    Chen, Jiande D Z; Qian, Liwei; Ouyang, Hui; Yin, Jieyun

    2003-02-01

    The aim of this study was to investigate the acute effects of 3 different methods of electrical stimulation in the prevention of vasopressin-induced emetic response and gastric dysrhythmias. Seven female hound dogs chronically implanted with 4 pairs of electrodes on gastric serosa were used in a 5-session study. Saline and vasopressin were infused in sessions 1 and 2, respectively. In the other 3 sessions with vasopressin infusion, 3 different methods of electrical stimulation (short-pulse stimulation, long-pulse stimulation, and electroacupuncture) were applied. Gastric slow waves and vomiting and behaviors suggestive of nausea were recorded in each session. In a separate study, additional experiments were performed in 5 vagotomized dogs to investigate vagally mediated mechanisms. Vasopressin induced gastric dysrhythmias, uncoupling of slow waves, and vomiting and behaviors suggestive of nausea (P < 0.02, analysis of variance). Long-pulse stimulation, but not short-pulse stimulation or electroacupuncture, was capable of preventing vasopressin-induced gastric dysrhythmias and gastric slow wave uncoupling. Short-pulse stimulation and electroacupuncture, but not long-pulse stimulation, prevented vomiting and significantly reduced the symptom scores, which was not noted in the dogs with truncal vagotomy. Long-pulse stimulation normalizes vasopressin-induced slow wave abnormalities with no improvement in vomiting and behaviors suggestive of nausea. Short-pulse stimulation and electroacupuncture prevent vomiting and behaviors suggestive of nausea induced by vasopressin but have no effects on slow waves, and their effects are vagally mediated.

  18. Déjà-rêvé: Prior dreams induced by direct electrical brain stimulation.

    PubMed

    Curot, Jonathan; Valton, Luc; Denuelle, Marie; Vignal, Jean-Pierre; Maillard, Louis; Pariente, Jérémie; Trébuchon, Agnès; Bartolomei, Fabrice; Barbeau, Emmanuel J

    2018-02-24

    Epileptic patients sometimes report experiential phenomena related to a previous dream they had during seizures or electrical brain stimulation (EBS). This has been alluded to in the literature as "déjà-rêvé" ("already dreamed"). However, there is no neuroscientific evidence to support its existence and this concept is commonly mixed up with déjà-vu. We hypothesized that déjà-rêvé would be a specific entity, i.e., different from other experiential phenomena reported in epileptic patients, induced by EBS of specific brain areas. We collected all experiential phenomena related to dreams induced by electrical brain stimulations (EBS) in our epileptic patients (2003-2015) and in a review of the literature. The content of these déjà-rêvé and the location of EBS were analyzed. We collected 7 déjà-rêvé in our database and 35 from the literature, which corresponds to an estimated prevalence of 0.3‰ of all EBS-inducing déjà-rêvé. Déjà-rêvé is a generic term for three distinct entities: it can be the recollection of a specific dream ("episodic-like"), reminiscence of a vague dream ("familiarity-like") or experiences in which the subject feels like they are dreaming (literally "a dreamy state"). EBS-inducing "episodic-like" and "familiarity-like" déjà-rêvé were mostly located in the medial temporal lobes. "Dreamy states" were induced by less specific EBS areas although still related to the temporal lobes. This study demonstrates that déjà-rêvé is a heterogeneous entity that is different from déjà-vu, the historical "dreamy state" definition and other experiential phenomena. This may be relevant for clinical practice as it points to temporal lobe dysfunction and could be valuable for studying the neural substrates of dreams. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Mimosa pudica: Electrical and mechanical stimulation of plant movements.

    PubMed

    Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S

    2010-02-01

    Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.

  20. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time

  1. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    PubMed

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  2. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    PubMed Central

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  3. A Systematic Review of Electric-Acoustic Stimulation

    PubMed Central

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  4. Central and peripheral cardiovascular responses to electrically induced and voluntary leg exercise

    NASA Technical Reports Server (NTRS)

    Saltin, B.; Strange, S.; Bangsbo, J.; Kim, C. K.; Duvoisin, M.; Hargens, A.; Gollnick, P. D.

    1990-01-01

    With long missions in space countermeasures have to be used to secure safe operations in space and a safe return to Earth. Exercises of various forms have been used, but the question has arisen whether electrically induced contractions of muscle especially sensitive to weightlessness and crucial for man's performance would aid in maintaining their optimal function. The physiological responses both to short term and prolonged dynamic exercise performed either voluntarily or induced by electrical stimulation were considered. The local and systemic circulatory responses were similar for the voluntary and electrically induced contractions. The metabolic response was slightly more pronounced with electrical stimulation. This could be a reflection of not only slow twitch (type 1) but also fast twitch (type 2) fibers being recruited when the contractions were induced electrically. Intramuscular pressure recordings indicated that the dominant fraction of the muscle group was engaged regardless of mode of activation. Some 70 percent of the short term peak voluntary exercise capacity could be attained with electrical stimulation. Thus, electrically induced contractions of specific muscle groups should indeed be considered as an efficient countermeasure.

  5. Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.

    PubMed

    Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo

    2003-02-13

    Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.

  6. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed tomore » differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-{gamma} co-activator-1 (PGC-1{alpha}) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.« less

  7. One-shot percutaneous electrical nerve stimulation vs. transcutaneous electrical nerve stimulation for low back pain: comparison of therapeutic effects.

    PubMed

    Hsieh, Ru-Lan; Lee, Wen-Chung

    2002-11-01

    To investigate the therapeutic effects of one shot of low-frequency percutaneous electrical nerve stimulation one shot of transcutaneous electrical nerve stimulation in patients with low back pain. In total, 133 low back pain patients were recruited for this randomized, control study. Group 1 patients received medication only. Group 2 patients received medication plus one shot of percutaneous electrical nerve stimulation. Group 3 patients received medication plus one shot of transcutaneous electrical nerve stimulation. Therapeutic effects were measured using a visual analog scale, body surface score, pain pressure threshold, and the Quebec Back Pain Disability Scale. Immediately after one-shot treatment, the visual analog scale improved 1.53 units and the body surface score improved 3.06 units in the percutaneous electrical nerve stimulation group. In the transcutaneous electrical nerve stimulation group, the visual analog scale improved 1.50 units and the body surface score improved 3.98 units. The improvements did not differ between the two groups. There were no differences in improvement at 3 days or 1 wk after the treatment among the three groups. Simple one-shot treatment with percutaneous electrical nerve stimulation or transcutaneous electrical nerve stimulation provided immediate pain relief for low back pain patients. One-shot transcutaneous electrical nerve stimulation treatment is recommended due to the rarity of side effects and its convenient application.

  8. Acetylation mediates Cx43 reduction caused by electrical stimulation

    PubMed Central

    Meraviglia, Viviana; Azzimato, Valerio; Colussi, Claudia; Florio, Maria Cristina; Binda, Anna; Panariti, Alice; Qanud, Khaled; Suffredini, Silvia; Gennaccaro, Laura; Miragoli, Michele; Barbuti, Andrea; Lampe, Paul D.; Gaetano, Carlo; Pramstaller, Peter P.; Capogrossi, Maurizio C.; Recchia, Fabio A.; Pompilio, Giulio; Rivolta, Ilaria; Rossini, Alessandra

    2015-01-01

    Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5 Hz for 24 hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. PMID:26264759

  9. Apparent isotropic electrical property for electrical brain stimulation (EBS) using magnetic resonance diffusion weighted imaging (MR-DWI)

    NASA Astrophysics Data System (ADS)

    Lee, Mun Bae; Kwon, Oh-In

    2018-04-01

    Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.

  10. Biophysical Stimuli: A Review of Electrical and Mechanical Stimulation in Hyaline Cartilage.

    PubMed

    Vaca-González, Juan J; Guevara, Johana M; Moncayo, Miguel A; Castro-Abril, Hector; Hata, Yoshie; Garzón-Alvarado, Diego A

    2017-09-01

    Objective Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. Design Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. Results It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. Conclusion The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.

  11. Changes of Excitability in M1 Induced by Neuromuscular Electrical Stimulation Differ Between Presence and Absence of Voluntary Drive

    ERIC Educational Resources Information Center

    Sugawara, Kenichi; Tanabe, Shigeo; Higashi, Toshio; Tsurumi, Takamasa; Kasai, Tatsuya

    2011-01-01

    The aim of this study is to investigate excitability changes in the human motor cortex induced by variable therapeutic electrical stimulations (TESs) with or without voluntary drive. We recorded motor-evoked potentials (MEPs) from extensor and flexor carpi radialis (FCR) muscles at rest and during FCR muscle contraction after the application of…

  12. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    PubMed

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Auditory Responses to Electric and Infrared Neural Stimulation of the Rat Cochlear Nucleus

    PubMed Central

    Verma, Rohit; Guex, Amelie A.; Hancock, Kenneth E.; Durakovic, Nedim; McKay, Colette M.; Slama, Michaël C. C.; Brown, M. Christian; Lee, Daniel J.

    2014-01-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported “optophonic” effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. PMID:24508368

  14. Characteristics of retinal reflectance changes induced by transcorneal electrical stimulation in cat eyes.

    PubMed

    Morimoto, Takeshi; Kanda, Hiroyuki; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Kitaguchi, Yoshiyuki; Nishida, Kohji; Fujikado, Takashi

    2014-01-01

    Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.

  15. Topographic Quantification of the Transcorneal Electrical Stimulation (TES)-Induced Protective Effects on N-Methyl-N-Nitrosourea-Treated Retinas.

    PubMed

    Tao, Ye; Chen, Tao; Liu, Zhong-Yu; Wang, Li-Qiang; Xu, Wei-Wei; Qin, Li-Min; Peng, Guang-Hua; Yi-Fei, Huang

    2016-09-01

    To quantify the transcorneal electrical stimulation (TES)-induced effects on regional photoreceptors and visual signal pathway of N-methyl-N-nitrosourea (MNU)-treated retinas via topographic measurements. N-methyl-N-nitrosourea-administered mice received TES or sham stimulations and were subsequently subjected to electroretinography (ERG), multielectrode array (MEA), and histologic and immunohistochemistry examinations. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were also performed to determine the mRNA levels of Bax, Bcl-2, Calpain-2, Caspase-3, brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Amplitudes of ERG b-wave in the TES-treated mice were significantly larger than those in the sham controls (P < 0.01). Microelectrode array examination revealed that the photoreceptors in TES-treated retina were efficiently preserved (P < 0.01). Morphologic measurements showed that the central retina region was more consolidated than the other areas in the TES-treated mice. Together with the disproportionate distribution of immunostaining in retinal flat mounts, these findings indicated that different rescuing kinetics existed among regional photoreceptors. Compared with the sham controls, a significantly increased signal-to-noise ratio was also found in the TES-treated mice (TES100: 2.02 ± 1.12; TES200: 4.42 ± 1.51; sham: 0.25 ± 0.13; P < 0.01). Moreover, qRT-PCR measurements suggested that the altered expression of several apoptotic factors and neurotrophic cytokines was correlated with TES-induced protection. Regional photoreceptors in the MNU-administered retinas exhibit different sensitivities to TES. Transcorneal electrical stimulation is capable of ameliorating MNU-induced photoreceptor degeneration and rectifying abnormalities in the inner visual signal pathways.

  16. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  17. Can angiogenesis induced by chronic electrical stimulation enhance latissimus dorsi muscle flap survival for application in cardiomyoplasty?

    PubMed

    Overgoor, Max L E; Carroll, Sean M; Papanicolau, George; Carroll, Camilla M A; Ustüner, Tuncay E T; Stremel, Richard W; Anderson, Gary L; Franken, Ralph J P M; Kon, Moshe; Barker, John H

    2003-01-01

    In cardiomyoplasty, the latissimus dorsi muscle is lifted on its primary neurovascular pedicle and wrapped around a failing heart. After 2 weeks, it is trained for 6 weeks using chronic electrical stimulation, which transforms the latissimus dorsi muscle into a fatigue-resistant muscle that can contract in synchrony with the beating heart without tiring. In over 600 cardiomyoplasty procedures performed clinically to date, the outcomes have varied. Given the data obtained in animal experiments, the authors believe these variable outcomes are attributable to distal latissimus dorsi muscle flap necrosis. The aim of the present study was to investigate whether the chronic electrical stimulation training used to transform the latissimus dorsi muscle into fatigue-resistant muscle could also be used to induce angiogenesis, increase perfusion, and thus protect the latissimus dorsi muscle flap from distal necrosis. After 14 days of chronic electrical stimulation (10 Hz, 330 microsec, 4 to 6 V continuous, 8 hours/day) of the right or left latissimus dorsi muscle (randomly selected) in 11 rats, both latissimus dorsi muscles were lifted on their thoracodorsal pedicles and returned to their anatomical beds. Four days later, the resulting amount of distal flap necrosis was measured. Also, at predetermined time intervals throughout the experiment, muscle surface blood perfusion was measured using scanning laser Doppler flowmetry. Finally, latissimus dorsi muscles were excised in four additional stimulated rats, to measure angiogenesis (capillary-to-fiber ratio), fiber type (oxidative or glycolytic), and fiber size using histologic specimens. The authors found that chronic electrical stimulation (1) significantly (p < 0.05) increased angiogenesis (mean capillary-to-fiber ratio) by 82 percent and blood perfusion by 36 percent; (2) did not reduce the amount of distal flap necrosis compared with nonchronic electrical stimulation controls (29 +/- 5.3 percent versus 26.6 +/- 5

  18. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  19. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.

    PubMed

    Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M

    2014-08-01

    Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  20. Electrical Cerebral Stimulation Modifies Inhibitory Systems

    NASA Astrophysics Data System (ADS)

    Cuéllar-Herrera, M.; Rocha, L.

    2003-09-01

    Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.

  1. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    PubMed

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  2. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  3. Coherent anti-Stokes Raman scattering under electric field stimulation

    NASA Astrophysics Data System (ADS)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  4. Design of a symmetry controller for cycling induced by electrical stimulation: preliminary results on post-acute stroke patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2010-08-01

    This study deals with the design of a controller for cycling induced by functional electrical stimulation. The controller will be exploitable in the rehabilitation of hemiparetic patients who need to recover motor symmetry. It uses the pulse width as the control variable in the stimulation of the two legs in order to nullify the unbalance between the torques produced at the two crank arms. It was validated by means of isokinetic trials performed both by healthy subjects and stroke patients. The results showed that the controller was able to reach, and then maintain, a symmetrical pedaling. In the future, the controller will be validated on a larger number of stroke patients.

  5. Prognostic value of programmed electrical stimulation in Brugada syndrome: 20 years experience.

    PubMed

    Sieira, Juan; Conte, Giulio; Ciconte, Giuseppe; de Asmundis, Carlo; Chierchia, Gian-Battista; Baltogiannis, Giannis; Di Giovanni, Giacomo; Saitoh, Yukio; Irfan, Ghazala; Casado-Arroyo, Ruben; Juliá, Justo; La Meir, Mark; Wellens, Francis; Wauters, Kristel; Van Malderen, Sophie; Pappaert, Gudrun; Brugada, Pedro

    2015-08-01

    The prognostic value of electrophysiological investigations in individuals with Brugada syndrome remains controversial. Different groups have published contradictory data. Long-term follow-up is needed to clarify this issue. Patients presenting with spontaneous or drug-induced Brugada type I ECG and in whom programmed electric stimulation was performed at our institution were considered eligible for this study. A total of 403 consecutive patients (235 males, 58.2%; mean age, 43.2±16.2 years) were included. Ventricular arrhythmias during programmed electric stimulation were induced in 73 (18.1%) patients. After a mean follow-up time of 74.3±57.3 months (median 57.3), 25 arrhythmic events occurred (16 in the inducible group and 9 in the noninducible). Ventricular arrhythmias inducibility presented a hazard ratio for events of 8.3 (95% confidence interval, 3.6-19.4), P<0.01. Programmed ventricular stimulation of the heart is a good predictor of outcome in individuals with Brugada syndrome. It might be of special value to guide further management when performed in asymptomatic individuals. The overall accuracy of the test makes it a suitable screening tool to reassure noninducible asymptomatic individuals. © 2015 American Heart Association, Inc.

  6. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  7. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  8. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  9. 21 CFR 882.1870 - Evoked response electrical stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Evoked response electrical stimulator. 882.1870... electrical stimulator. (a) Identification. An evoked response electrical stimulator is a device used to apply an electrical stimulus to a patient by means of skin electrodes for the purpose of measuring the...

  10. Neuromuscular Electrical Stimulation for Mobility Support of Elderly

    PubMed Central

    2015-01-01

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within “MOBIL” we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in “compliance data storage” as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  11. Neuromuscular Electrical Stimulation for Mobility Support of Elderly.

    PubMed

    Mayr, Winfried

    2015-08-24

    The stimulator for neuromuscular electrical stimulation for mobility support of elderly is not very complicated, but for application within "MOBIL" we have some additional demands to fulfill. First we have specific safety issues for this user group. A powerful compliance management system is crucial not only to guide daily application, but for creating hard data for the scientific outcome. We also need to assure easy handling of the stimulator, because the subjects are generally not able to cope with too difficult and complex motor skills. So, we developed five generations of stimulators and optimizing solutions after field tests. We are already planning the sixth generation with wireless control of the stimulation units by the central main handheld control unit. In a prototype, we have implemented a newly available high capacity memory, a breakthrough in "compliance data storage" as they offer the necessary high storage capacity and fast data handling for an affordable prize. The circuit also contains a 3D accelerometer sensor which acts as a further important safety features: if the control unit drops, this event is detected automatically by the sensor and activates an emergency switch-off that disables the stimulation to avoid associated risks. Further, we have implemented a hardware emergence shutdown and other safety measures. Finally, in the last example muscle torque measurements are referenced with compliance data. In the study normalized maximum voluntary contraction (MVC) and maximum stimulation induced contraction (MSC) were assessed in regular check-ups along the training period. With additional consideration of adjusted stimulation intensity for training out of the compliance data records we are able to estimate the induced contraction strength, which turned out to amount in average 11% of MVC. This value may seem on a first sight rather low, and ought to be considered in relation to the results at the end of the training period. Therefore the

  12. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    PubMed

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  13. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation

    PubMed Central

    Janssen, A M; Rampersad, S M; Lucka, F; Lanfer, B; Lew, S; Aydin, Ü; Wolters, C H; Stegeman, D F; Oostendorp, T F

    2013-01-01

    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation (TMS). One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between the CSF and GM (Thielscher et al. 2011; Bijsterbosch et al. 2012), or by resizing the whole brain (Wagner et al. 2008). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images (MRI), was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location. PMID:23787706

  14. Auditory responses to electric and infrared neural stimulation of the rat cochlear nucleus.

    PubMed

    Verma, Rohit U; Guex, Amélie A; Hancock, Kenneth E; Durakovic, Nedim; McKay, Colette M; Slama, Michaël C C; Brown, M Christian; Lee, Daniel J

    2014-04-01

    In an effort to improve the auditory brainstem implant, a prosthesis in which user outcomes are modest, we applied electric and infrared neural stimulation (INS) to the cochlear nucleus in a rat animal model. Electric stimulation evoked regions of neural activation in the inferior colliculus and short-latency, multipeaked auditory brainstem responses (ABRs). Pulsed INS, delivered to the surface of the cochlear nucleus via an optical fiber, evoked broad neural activation in the inferior colliculus. Strongest responses were recorded when the fiber was placed at lateral positions on the cochlear nucleus, close to the temporal bone. INS-evoked ABRs were multipeaked but longer in latency than those for electric stimulation; they resembled the responses to acoustic stimulation. After deafening, responses to electric stimulation persisted, whereas those to INS disappeared, consistent with a reported "optophonic" effect, a laser-induced acoustic artifact. Thus, for deaf individuals who use the auditory brainstem implant, INS alone did not appear promising as a new approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  16. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  17. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve stimulator. (a) Identification. An electrical peripheral nerve stimulator (neuromuscular blockade monitor) is...

  18. Neuromuscular electrical stimulation induced brain patterns to decode motor imagery.

    PubMed

    Vidaurre, C; Pascual, J; Ramos-Murguialday, A; Lorenz, R; Blankertz, B; Birbaumer, N; Müller, K-R

    2013-09-01

    Regardless of the paradigm used to implement a brain-computer interface (BCI), all systems suffer from BCI-inefficiency. In the case of patients the inefficiency can be high. Some solutions have been proposed to overcome this problem, however they have not been completely successful yet. EEG from 10 healthy users was recorded during neuromuscular electrical stimulation (NMES) of hands and feet and during motor imagery (MI) of the same limbs. Features and classifiers were computed using part of these data to decode MI. Offline analyses showed that it was possible to decode MI using a classifier based on afferent patterns induced by NMES and even infer a better model than with MI data. Afferent NMES motor patterns can support the calibration of BCI systems and be used to decode MI. This finding might be a new way to train sensorimotor rhythm (SMR) based BCI systems for healthy users having difficulties to attain BCI control. It might also be an alternative to train MI-based BCIs for users who cannot perform real movements but have remaining afferents (ALS, stroke patients). Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Electrically responsive microstructured polypyrrole-polyurethane composites for stimulated osteogenesis

    NASA Astrophysics Data System (ADS)

    Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra

    2018-03-01

    In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.

  20. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  1. [Electrical acupoint stimulation increases athletes' rapid strength].

    PubMed

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  2. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF

  3. Sonomyography Analysis on Thickness of Skeletal Muscle During Dynamic Contraction Induced by Neuromuscular Electrical Stimulation: A Pilot Study.

    PubMed

    Qiu, Shuang; Feng, Jing; Xu, Jiapeng; Xu, Rui; Zhao, Xin; Zhou, Peng; Qi, Hongzhi; Zhang, Lixin; Ming, Dong

    2017-01-01

    Neuromuscular electrical stimulation (NMES) that stimulates skeletal muscles to induce contractions has been widely applied to restore functions of paralyzed muscles. However, the architectural changes of stimulated muscles induced by NMES are still not well understood. The present study applies sonomyography (SMG) to evaluate muscle architecture under NMES-induced and voluntary movements. The quadriceps muscles of seven healthy subjects were tested for eight cycles during an extension exercise of the knee joint with/without NMES, and SMG and the knee joint angle were recorded during the process of knee extension. A least squares support vector machine (LS-SVM) LS-SVM model was developed and trained using the data sets of six cycles collected under NMES, while the remaining data was used to test. Muscle thickness changes were extracted from ultrasound images and compared between NMES-induced and voluntary contractions, and LS-SVM was used to model a relationship between dynamical knee joint angles and SMG signals. Muscle thickness showed to be significantly correlated with joint angle in NMES-induced contractions, and a significant negative correlation was observed between Vastus intermedius (VI) thickness and rectus femoris (RF) thickness. In addition, there was a significant difference between voluntary and NMES-induced contractions . The LS-SVM model based on RF thickness and knee joint angle provided superior performance compared with the model based on VI thickness and knee joint angle or total thickness and knee joint angle. This suggests that a strong relation exists between the RF thickness and knee joint angle. These results provided direct evidence for the potential application of RF thickness in optimizing NMES system as well as measuring muscle state under NMES.

  4. Fundamentals of Transcranial Electric and Magnetic Stimulation Dose: Definition, Selection, and Reporting Practices

    PubMed Central

    Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom

    2011-01-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345

  5. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.

    PubMed

    Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom

    2012-10-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells.

    PubMed

    Jin, GyuHyun; Yang, Gi-Hoon; Kim, GeunHyung

    2015-05-01

    Bioreactor systems in tissue engineering applications provide various types of stimulation to mimic the tissues in vitro and in vivo. Various bioreactors have been designed to induce high cellular activities, including initial cell attachment, cell growth, and differentiation. Although cell-stimulation processes exert mostly positive effects on cellular responses, in some cases such stimulation can also have a negative effect on cultured cells. In this review, we discuss various types of bioreactor and the positive and negative effects of stimulation (physical, chemical, and electrical) on various cultured cell types. © 2014 Wiley Periodicals, Inc.

  7. SPECT-imaging of activity-dependent changes in regional cerebral blood flow induced by electrical and optogenetic self-stimulation in mice.

    PubMed

    Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen

    2014-12-01

    Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors

  8. A functional electrical stimulation system for human walking inspired by reflexive control principles.

    PubMed

    Meng, Lin; Porr, Bernd; Macleod, Catherine A; Gollee, Henrik

    2017-04-01

    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulation-assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking.

  9. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Janssen, A. M.; Rampersad, S. M.; Lucka, F.; Lanfer, B.; Lew, S.; Aydin, Ü.; Wolters, C. H.; Stegeman, D. F.; Oostendorp, T. F.

    2013-07-01

    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location.

  10. The Effect of Electrical Stimulation in Improving Muscle Tone (Clinical)

    NASA Astrophysics Data System (ADS)

    Azman, M. F.; Azman, A. W.

    2017-11-01

    Electrical stimulation (ES) and also known as neuromuscular electrical stimulation (NMES) and transcutaneous electrical stimulation (TES) involves the use of electrical current to stimulate the nerves or nerve endings that innervate muscle beneath the skin. Electrical stimulation may be applied superficially on the skin (transcutaneously) or directly into a muscle or muscles (intramuscularly) for the primary purpose of enhancing muscle function. The basic theoretical premise is that if the peripheral nerve can be stimulated, the resulting excitation impulse will be transmitted along the nerve to the motor endplates in the muscle, producing a muscle contraction. In this work, the effect of mere electrical stimulation to the muscle bulk and strength are tested. This paper explains how electrical stimulation can affect the muscle bulk, muscle size, muscle tone, muscle atrophy and muscle strength. The experiment and data collection are performed on 5 subjects and the results obtained are analyzed. This research aims to understand the full potential of electrical stimulation and identifying its possible benefits or disadvantages to the muscle properties. The results indicated that electrical stimulation alone able to improve muscle properties but with certain limits and precautions which might be useful in rehabilitation programme.

  11. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.

    PubMed

    Hara, Yukihiro

    2008-02-01

    In recent years, our understanding of motor learning, neuroplasticity, and functional recovery after the occurrence of brain lesion has grown significantly. New findings in basic neuroscience have stimulated research in motor rehabilitation. Repeated motor practice and motor activity in a real-world environment have been identified in several prospective studies as favorable for motor recovery in stroke patients. Electrical stimulation can be applied in a variety of ways to the hemiparetic upper extremity following stroke. In this paper, an overview of current research into clinical and therapeutic applications of functional electrical stimulation (FES) is presented. In particular, electromyography (EMG)-initiated electrical muscle stimulation--but not electrical muscle stimulation alone--improves the motor function of the hemiparetic arm and hand. Triggered electrical stimulation is reported to be more effective than untriggered electrical stimulation in facilitating upper extremity motor recovery following stroke. Power-assisted FES induces greater muscle contraction by electrical stimulation in proportion to the voluntary integrated EMG signal picked up, which is regulated by a closed-loop control system. Power-assisted FES and motor point block for antagonist muscles have been applied with good results as a new hybrid FES therapy in an outpatient rehabilitation clinic for patients with stroke. Furthermore, a daily home program therapy with power-assisted FES using new equipment has been able to effectively improve wrist and finger extension and shoulder flexion. Proprioceptive sensory feedback might play an important role in power-assisted FES therapy. Although many physiotherapeutic modalities have been established, conclusive proof of their benefit and physiological models of their effects on neuronal structures and processes are still missing. A multichannel near-infrared spectroscopy study to noninvasively and dynamically measure hemoglobin levels in the

  12. Muscular Strength Gains and Sensory Perception Changes: A Comparison of Electrical and Combined Electrical/Magnetic Stimulation.

    DTIC Science & Technology

    1992-04-10

    vi LIST OF FIGURES.......................................... Viii CHAPTER 1: INTRODUCTION ................................... 1... INTRODUCTION Physical therapists have used neuromuscular electrical stimulation (NMES) to strengthen muscle (improve muscle performance, ie torque) and prevent...found NMES induced strength gains, though showing a positive trend, to be statistically insignificant.39,52 These results may be due to technological

  13. Transcranial electric and magnetic stimulation: technique and paradigms.

    PubMed

    Paulus, Walter; Peterchev, Angel V; Ridding, Michael

    2013-01-01

    Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.

  14. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment.

    PubMed

    2017-01-01

    Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non-randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Nine randomized controlled trials and two non-randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care.The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5 years.Patients and caregivers

  15. Electrical Stimulation for Pressure Injuries: A Health Technology Assessment

    PubMed Central

    Lambrinos, Anna; Falk, Lindsey; Ali, Arshia; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Pressure injuries (bedsores) are common and reduce quality of life. They are also costly and difficult to treat. This health technology assessment evaluates the effectiveness, cost-effectiveness, budget impact, and lived experience of adding electrical stimulation to standard wound care for pressure injuries. Methods We conducted a systematic search for studies published to December 7, 2016, limited to randomized and non–randomized controlled trials examining the effectiveness of electrical stimulation plus standard wound care versus standard wound care alone for patients with pressure injuries. We assessed the quality of evidence through Grading of Recommendations Assessment, Development, and Evaluation (GRADE). In addition, we conducted an economic literature review and a budget impact analysis to assess the cost-effectiveness and affordability of electrical stimulation for treatment of pressure ulcers in Ontario. Given uncertainties in clinical evidence and resource use, we did not conduct a primary economic evaluation. Finally, we conducted qualitative interviews with patients and caregivers about their experiences with pressure injuries, currently available treatments, and (if applicable) electrical stimulation. Results Nine randomized controlled trials and two non–randomized controlled trials were found from the systematic search. There was no significant difference in complete pressure injury healing between adjunct electrical stimulation and standard wound care. There was a significant difference in wound surface area reduction favouring electrical stimulation compared with standard wound care. The only study on cost-effectiveness of electrical stimulation was partially applicable to the patient population of interest. Therefore, the cost-effectiveness of electrical stimulation cannot be determined. We estimate that the cost of publicly funding electrical stimulation for pressure injuries would be $0.77 to $3.85 million yearly for the next 5

  16. Deep tissue afferents, but not cutaneous afferents, mediate transcutaneous electrical nerve stimulation-Induced antihyperalgesia.

    PubMed

    Radhakrishnan, Rajan; Sluka, Kathleen A

    2005-10-01

    In this study we investigated the involvement of cutaneous versus knee joint afferents in the antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) by differentially blocking primary afferents with local anesthetics. Hyperalgesia was induced in rats by inflaming one knee joint with 3% kaolin-carrageenan and assessed by measuring paw withdrawal latency to heat before and 4 hours after injection. Skin surrounding the inflamed knee joint was anesthetized using an anesthetic cream (EMLA). Low (4 Hz) or high (100 Hz) frequency TENS was then applied to the anesthetized skin. In another group, 2% lidocaine gel was injected into the inflamed knee joint, and low or high frequency TENS was applied. Control experiments were done using vehicles. In control and EMLA groups, both low and high frequency TENS completely reversed hyperalgesia. However, injection of lidocaine into the knee joint prevented antihyperalgesia produced by both low and high frequency TENS. Recordings of cord dorsum potentials showed that both low and high frequency TENS at sensory intensity activates only large diameter afferent fibers. Increasing intensity to twice the motor threshold recruits Adelta afferent fibers. Furthermore, application of EMLA cream to the skin reduces the amplitude of the cord dorsum potential by 40% to 70% for both high and low frequency TENS, confirming a loss of large diameter primary afferent input after EMLA is applied to the skin. Thus, inactivation of joint afferents, but not cutaneous afferents, prevents the antihyperalgesia effects of TENS. We conclude that large diameter primary afferent fibers from deep tissue are required and that activation of cutaneous afferents is not sufficient for TENS-induced antihyperalgesia. Transcutaneous electrical nerve stimulation (TENS) is an accepted clinical modality used for pain relief. It is generally believed that TENS analgesia is caused mainly by cutaneous afferent activation. In this study by

  17. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. I. Characteristics of evoked head movements.

    PubMed

    Quessy, Stephan; Freedman, Edward G

    2004-06-01

    The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.

  18. Determinants of the electric field during transcranial direct current stimulation.

    PubMed

    Opitz, Alexander; Paulus, Walter; Will, Susanne; Antunes, Andre; Thielscher, Axel

    2015-04-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field distribution in the brain during tDCS. We constructed anatomically realistic finite element (FEM) models of two individual heads including conductivity anisotropy and different skull layers. We simulated a widely employed electrode montage to induce motor cortex plasticity and moved the stimulating electrode over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect is counteracted by a larger proportion of higher conducting spongy bone in thicker regions leading to a more homogenous current over the skull. Using a multiple regression model we could identify key factors that determine the field distribution to a significant extent, namely the thicknesses of the cerebrospinal fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant to electrode positioning. Our results give valuable novel insights in the biophysical foundation of tDCS and highlight the importance to account for individual anatomical factors when choosing an electrode montage. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    PubMed

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  20. Gastric Electrical Stimulation Decreases Gastric Distension-Induced Central Nociception Response through Direct Action on Primary Afferents

    PubMed Central

    Ouelaa, Wassila; Ghouzali, Ibtissem; Langlois, Ludovic; Fetissov, Serguei; Déchelotte, Pierre; Ducrotté, Philippe; Leroi, Anne Marie; Gourcerol, Guillaume

    2012-01-01

    Background & Aims Gastric electrical stimulation (GES) is an effective therapy to treat patients with chronic dyspepsia refractory to medical management. However, its mechanisms of action remain poorly understood. Methods Gastric pain was induced by performing gastric distension (GD) in anesthetized rats. Pain response was monitored by measuring the pseudo-affective reflex (e.g., blood pressure variation), while neuronal activation was determined using c-fos immunochemistry in the central nervous system. Involvement of primary afferents was assessed by measuring phosphorylation of ERK1/2 in dorsal root ganglia. Results GES decreased blood pressure variation induced by GD, and prevented GD-induced neuronal activation in the dorsal horn of the spinal cord (T9–T10), the nucleus of the solitary tract and in CRF neurons of the hypothalamic paraventricular nucleus. This effect remained unaltered within the spinal cord when sectioning the medulla at the T5 level. Furthermore, GES prevented GD-induced phosphorylation of ERK1/2 in dorsal root ganglia. Conclusions GES decreases GD-induced pain and/or discomfort likely through a direct modulation of gastric spinal afferents reducing central processing of visceral nociception. PMID:23284611

  1. Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation.

    PubMed

    Ferrante, Simona; Contini, Davide; Spinelli, Lorenzo; Pedrocchi, Alessandra; Torricelli, Alessandro; Molteni, Franco; Ferrigno, Giancarlo; Cubeddu, Rinaldo

    2009-01-01

    A noninvasive methodology, combining functional electrical stimulation and time-domain near-infrared spectroscopy (TD-NIRS), is developed to verify whether stroke-altered muscular metabolism on postacute patients. Seven healthy subjects and nine postacute stroke patients undergo a protocol of knee flex-extension induced by quadricep electrical stimulation. During the protocol, TD-NIRS measurements are performed on both rectus femoris to investigate whether significant differences arise between able-bodied and stroke subjects and between patients' paretic and healthy legs. During baseline, metabolic parameters do not show any significant differences among subjects. During stimulation, paretic limbs produce a knee angle significantly lower than healthy legs. During recovery, patients' healthy limbs show a metabolic behavior correlated to able-bodied subjects. Instead, the correlation between the metabolic behavior of the paretic and able-bodied legs allows the definition of two patients' subgroups: one highly correlated (R>0.87) and the other uncorrelated (R<0.08). This grouping reflects the patient functional condition. The results obtained on the most impaired patients suggest that stroke does not produce any systemic consequences at the muscle, but the metabolic dysfunction seems to be local and unilateral. It is crucial to enlarge the sample size of the two subgroups before making these preliminary results a general finding.

  2. Monitoring muscle metabolic indexes by time-domain near-infrared spectroscopy during knee flex-extension induced by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Ferrante, Simona; Contini, Davide; Spinelli, Lorenzo; Pedrocchi, Alessandra; Torricelli, Alessandro; Molteni, Franco; Ferrigno, Giancarlo; Cubeddu, Rinaldo

    2009-07-01

    A noninvasive methodology, combining functional electrical stimulation and time-domain near-infrared spectroscopy (TD-NIRS), is developed to verify whether stroke-altered muscular metabolism on postacute patients. Seven healthy subjects and nine postacute stroke patients undergo a protocol of knee flex-extension induced by quadricep electrical stimulation. During the protocol, TD-NIRS measurements are performed on both rectus femoris to investigate whether significant differences arise between able-bodied and stroke subjects and between patients' paretic and healthy legs. During baseline, metabolic parameters do not show any significant differences among subjects. During stimulation, paretic limbs produce a knee angle significantly lower than healthy legs. During recovery, patients' healthy limbs show a metabolic behavior correlated to able-bodied subjects. Instead, the correlation between the metabolic behavior of the paretic and able-bodied legs allows the definition of two patients' subgroups: one highly correlated (R>0.87) and the other uncorrelated (R<0.08). This grouping reflects the patient functional condition. The results obtained on the most impaired patients suggest that stroke does not produce any systemic consequences at the muscle, but the metabolic dysfunction seems to be local and unilateral. It is crucial to enlarge the sample size of the two subgroups before making these preliminary results a general finding.

  3. K+-induced alterations in airway muscle responsiveness to electrical field stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murlas, C.; Ehring, G.; Suszkiw, J.

    1986-07-01

    We investigated possible pre- and postsynaptic effects of K+-induced depolarization on ferret tracheal smooth muscle (TSM) responsiveness to cholinergic stimulation. To assess electromechanical activity, cell membrane potential (Em) and tension (Tm) were simultaneously recorded in buffer containing 6, 12, 18, or 24 mM K+ before and after electrical field stimulation (EFS) or exogenous acetylcholine (ACh). In 6 mM K+, Em was -58.1 +/- 1.0 mV (mean +/- SE). In 12 mM K+, Em was depolarized to -52.3 +/- 0.9 mV, basal Tm did not change, and both excitatory junctional potentials and contractile responses to EFS at short stimulus duration weremore » larger than in 6 mM K+. No such potentiation occurred at a higher K+, although resting Em and Tm increased progressively above 12 mM K+. The sensitivity of ferret TSM to exogenous ACh appeared unaffected by K+. To determine whether the hyperresponsiveness in 12 mM K+ was due, in part, to augmented ACh release from intramural airway nerves, experiments were done using TSM preparations incubated with (3H)choline to measure (3H)ACh release at rest and during EFS. Although resting (3H)ACh release increased progressively in higher K+, release evoked by EFS was maximal in 12 mM K+ and declined in higher concentrations. We conclude that small elevations in the extracellular K+ concentration augment responsiveness of the airways, by increasing the release of ACh both at rest and during EFS from intramural cholinergic nerve terminals. Larger increases in K+ appear to be inhibitory, possibly due to voltage-dependent effects that occur both pre- and postsynaptically.« less

  4. Bio-heat transfer model of deep brain stimulation-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Kong, Qingjun; Vazquez, Maribel; Bikson, Marom

    2006-12-01

    There is a growing interest in the use of chronic deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. Fundamental questions remain about the physiologic effects of DBS. Previous basic research studies have focused on the direct polarization of neuronal membranes by electrical stimulation. The goal of this paper is to provide information on the thermal effects of DBS using finite element models to investigate the magnitude and spatial distribution of DBS-induced temperature changes. The parameters investigated include stimulation waveform, lead selection, brain tissue electrical and thermal conductivities, blood perfusion, metabolic heat generation during the stimulation and lead thermal conductivity/heat dissipation through the electrode. Our results show that clinical DBS protocols will increase the temperature of surrounding tissue by up to 0.8 °C depending on stimulation/tissue parameters.

  5. Ipsilateral masking between acoustic and electric stimulations.

    PubMed

    Lin, Payton; Turner, Christopher W; Gantz, Bruce J; Djalilian, Hamid R; Zeng, Fan-Gang

    2011-08-01

    Residual acoustic hearing can be preserved in the same ear following cochlear implantation with minimally traumatic surgical techniques and short-electrode arrays. The combined electric-acoustic stimulation significantly improves cochlear implant performance, particularly speech recognition in noise. The present study measures simultaneous masking by electric pulses on acoustic pure tones, or vice versa, to investigate electric-acoustic interactions and their underlying psychophysical mechanisms. Six subjects, with acoustic hearing preserved at low frequencies in their implanted ear, participated in the study. One subject had a fully inserted 24 mm Nucleus Freedom array and five subjects had Iowa/Nucleus hybrid implants that were only 10 mm in length. Electric masking data of the long-electrode subject showed that stimulation from the most apical electrodes produced threshold elevations over 10 dB for 500, 625, and 750 Hz probe tones, but no elevation for 125 and 250 Hz tones. On the contrary, electric stimulation did not produce any electric masking in the short-electrode subjects. In the acoustic masking experiment, 125-750 Hz pure tones were used to acoustically mask electric stimulation. The acoustic masking results showed that, independent of pure tone frequency, both long- and short-electrode subjects showed threshold elevations at apical and basal electrodes. The present results can be interpreted in terms of underlying physiological mechanisms related to either place-dependent peripheral masking or place-independent central masking.

  6. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds.

    PubMed

    Radisic, Milica; Park, Hyoungshin; Shing, Helen; Consi, Thomas; Schoen, Frederick J; Langer, Robert; Freed, Lisa E; Vunjak-Novakovic, Gordana

    2004-12-28

    The major challenge of tissue engineering is directing the cells to establish the physiological structure and function of the tissue being replaced across different hierarchical scales. To engineer myocardium, biophysical regulation of the cells needs to recapitulate multiple signals present in the native heart. We hypothesized that excitation-contraction coupling, critical for the development and function of a normal heart, determines the development and function of engineered myocardium. To induce synchronous contractions of cultured cardiac constructs, we applied electrical signals designed to mimic those in the native heart. Over only 8 days in vitro, electrical field stimulation induced cell alignment and coupling, increased the amplitude of synchronous construct contractions by a factor of 7, and resulted in a remarkable level of ultrastructural organization. Development of conductive and contractile properties of cardiac constructs was concurrent, with strong dependence on the initiation and duration of electrical stimulation.

  7. P2X and P2Y Receptors Mediate Contraction Induced by Electrical Field Stimulation in Feline Esophageal Smooth Muscle.

    PubMed

    Cho, Young Rae; Jang, Hyeon Soon; Kim, Won; Park, Sun Young; Sohn, Uy Dong

    2010-10-01

    It is well-known that electrical field stimulation (EFS)-induced contraction is mediated by a cholinergic mechanism and other neurotransmitters. NO, ATP, calcitonin gene-related peptide (CGRP), and substance P are released by EFS. To investigate the purinergic mechanism involved in the EFS-induced contraction, purinegic receptors antagonists were used. Suramine, a non-selective P2 receptor antagonist, reduced the contraction induced by EFS. NF023 (10(-7)~10(-4) M), a selective P2X antagonist, inhibited the contraction evoked by EFS. Reactive blue (10(-6)~10(-4) M), selective P2Y antagonist, also blocked the contraction in a dose-dependent manner. In addition, P2X agonist α,β-methylene 5'-adenosine triphosphate (αβMeATP, 10(-7)~10(-5) M) potentiated EFS-induced contraction in a dose-dependent manner. P2Y agonist adenosine 5'-[β-thio]diphosphate trilithium salt (ADPβS, 10(-7)~10(-5) M) also potentiated EFS-induced contractions in a dose-dependent manner. Ecto-ATPase activator apyrase (5 and 10 U/ml) reduced EFS-induced contractions. Inversely, 6-N,N-diethyl-D-β,γ-dibromomethylene 5'-triphosphate triammonium (ARL 67156, 10(-4) M) increased EFS-induced contraction. These data suggest that endogenous ATP plays a role in EFS-induced contractions which are mediated through both P2X-receptors and P2Y-receptors stimulation in cat esophageal smooth muscle.

  8. Immediate effect of laryngeal surface electrical stimulation on swallowing performance.

    PubMed

    Takahashi, Keizo; Hori, Kazuhiro; Hayashi, Hirokazu; Fujiu-Kurachi, Masako; Ono, Takahiro; Tsujimura, Takanori; Magara, Jin; Inoue, Makoto

    2018-01-01

    Surface electrical stimulation of the laryngeal region is used to improve swallowing in dysphagic patients. However, little is known about how electrical stimulation affects tongue movements and related functions. We investigated the effect of electrical stimulation on tongue pressure and hyoid movement, as well as suprahyoid and infrahyoid muscle activity, in 18 healthy young participants. Electrical stimulation (0.2-ms duration, 80 Hz, 80% of each participant's maximal tolerance) of the laryngeal region was applied. Each subject swallowed 5 ml of barium sulfate liquid 36 times at 10-s intervals. During the middle 2 min, electrical stimulation was delivered. Tongue pressure, electromyographic activity of the suprahyoid and infrahyoid muscles, and videofluorographic images were simultaneously recorded. Tongue pressure during stimulation was significantly lower than before or after stimulation and was significantly greater after stimulation than at baseline. Suprahyoid activity after stimulation was larger than at baseline, while infrahyoid muscle activity did not change. During stimulation, the position of the hyoid at rest was descended, the highest hyoid position was significantly inferior, and the vertical movement was greater than before or after stimulation. After stimulation, the positions of the hyoid at rest and at the maximum elevation were more superior than before stimulation. The deviation of the highest positions of the hyoid before and after stimulation corresponded to the differences in tongue pressures at those times. These results suggest that surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. NEW & NOTEWORTHY Surface electrical stimulation applied to the laryngeal region during swallowing may facilitate subsequent hyoid movement and tongue pressure generation after stimulation. Tongue muscles may contribute to overshot recovery

  9. Why intra-epidermal electrical stimulation achieves stimulation of small fibres selectively: a simulation study

    NASA Astrophysics Data System (ADS)

    Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro

    2016-06-01

    The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.

  10. Electrical stimulation in the treatment of pain.

    PubMed

    Rushton, David N

    2002-05-20

    To review the published literature concerning the treatment of painful conditions using devices that deliver electrical stimulation to nervous structures. The review briefly surveys the results obtained using surface electrodes ("TENS") as well as implanted devices. The method used is a critical review of the important published literature up to mid-1999. References were obtained using Medline and the keywords "pain", together with "electrical", "stimulation", "neurostimulation" or "TENS". Electrical stimulation has been found to be of potential benefit in the management of a range of painful conditions. Adequately controlled trials of electrical stimulation are often difficult to achieve. Implanted devices tend to be used in the more severe intractable pain conditions. It is likely that there is more than one mechanism of action. The mechanisms of action are however still often poorly understood, even though historically theoretical and experimental advances in the understanding of pain mechanisms prompted the development of clinical systems and the institution of clinical studies. TENS has proved to be remarkably safe, and provides significant analgesia in about half of patients experiencing moderate predictable pain. Implanted devices can be more effective, but they carry a risk of device failure, implant infection or surgical complication, and are reserved for the more severe intractable chronic pains. The main implanted devices used clinically are the spinal cord stimulator and the deep brain stimulator.

  11. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    PubMed

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  12. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    PubMed

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all p<0.05). The MCF at the 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those at the 1st and 5th stimuli (all p<0.01). The MCF in the frequency dependent fatigue test was significantly higher and the stimulus frequency that induced MCF was significantly lower for taut bands than for non-taut bands (both p<0.01). The present study demonstrates that the muscle taut band itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  13. Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.

    PubMed

    Richards, Dylan J; Tan, Yu; Coyle, Robert; Li, Yang; Xu, Ruoyu; Yeung, Nelson; Parker, Arran; Menick, Donald R; Tian, Bozhi; Mei, Ying

    2016-07-13

    The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.

  14. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  15. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  16. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  17. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  18. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2012-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026

  19. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E

    2006-08-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

  20. Functional Electrical Stimulation in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    van der Linden, Marietta

    2012-01-01

    In this article, the author talks about functional electrical stimulation in children and adolescents with cerebral palsy. Functional electrical stimulation (FES) is defined as the electrical stimulation of muscles that have impaired motor control, in order to produce a contraction to obtain functionally useful movement. It was first proposed in…

  1. The Effect of Variation in Permittivity of Different Tissues on Induced Electric Field in the Brain during Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Porzig, Konstantin; Crowther, Lawrence; Brauer, Hartmut; Toepfer, Hannes; Jiles, David; Department of Electrical and Computer Engineering, Iowa State University Team; Department of Advanced Electromagnetics, Ilmenau University of Technology Team

    2013-03-01

    Estimation of electric field in the brain during Transcranial Magnetic Stimulation (TMS) requires knowledge of the electric property of brain tissue. Grey and white matters have unusually high relative permittivities of ~ 106 at low frequencies. However, relative permittivity of cerebrospinal fluid is ~ 102. With such a variation it is necessary to consider the effect of boundaries. A model consisting of 2 hemispheres was used in the model with the properties of one hemisphere kept constant at σ1 = 0.1Sm-1 and ɛr 1 = 10 while the properties of the second hemisphere were changed kept at σ2 = 0.1Sm-1 to 2Sm-1 and ɛr 2 = 102 to 105. A 70 mm diameter double coil was used as the source of the magnetic field. The amplitude of the current in the coil was 5488 A at a frequency of 2.9 kHz. The results show that the electric field, E induced during magnetic stimulation is independent of the relative permittivity, ɛr and varies with the conductivity. Thus the variation in E, calculated with homogeneous and heterogeneous head models was due to variation in conductivity of the tissues and not due to variation in permittivities.

  2. The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Bujdosó, Erika; Szabó, Gyula; Telegdy, Gyula

    2006-12-01

    The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.

  3. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.

    2015-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  4. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  5. Electromagnetic Field Modeling of Transcranial Electric and Magnetic Stimulation: Targeting, Individualization, and Safety of Convulsive and Subconvulsive Applications

    NASA Astrophysics Data System (ADS)

    Deng, Zhi-De

    The proliferation of noninvasive transcranial electric and magnetic brain stimulation techniques and applications in recent years has led to important insights into brain function and pathophysiology of brain-based disorders. Transcranial electric and magnetic stimulation encompasses a wide spectrum of methods that have developed into therapeutic interventions for a variety of neurological and psychiatric disorders. Although these methods are at different stages of development, the physical principle underlying these techniques is the similar. Namely, an electromagnetic field is induced in the brain either via current injection through scalp electrodes or via electromagnetic induction. The induced electric field modulates the neuronal transmembrane potentials and, thereby, neuronal excitability or activity. Therefore, knowledge of the induced electric field distribution is key in the design and interpretation of basic research and clinical studies. This work aims to delineate the fundamental physical limitations, tradeoffs, and technological feasibility constraints associated with transcranial electric and magnetic stimulation, in order to inform the development of technologies that deliver safer, and more spatially, temporally, and patient specific stimulation. Part I of this dissertation expounds on the issue of spatial targeting of the electric field. Contrasting electroconvulsive therapy (ECT) and magnetic seizure therapy (MST) configurations that differ markedly in efficacy, side effects, and seizure induction efficiency could advance our understanding of the principles linking treatment parameters and therapeutic outcome and could provide a means of testing hypotheses of the mechanisms of therapeutic action. Using the finite element method, we systematically compare the electric field characteristics of existing forms of ECT and MST. We introduce a method of incorporating a modality-specific neural activation threshold in the electric field models that can

  6. Electric field measurement of two commercial active/sham coils for transcranial magnetic stimulation.

    PubMed

    Smith, James Evan; Peterchev, Angel V

    2018-06-22

    Sham TMS coils isolate the ancillary effects of their active counterparts, but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. Approach: E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7-cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. Main results: The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. Significance: Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation. © 2018 IOP Publishing Ltd.

  7. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous electrical nerve stimulator for... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to...

  8. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transcutaneous electrical nerve stimulator for...

  9. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transcutaneous electrical nerve stimulator for...

  10. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transcutaneous electrical nerve stimulator for...

  11. 21 CFR 882.5890 - Transcutaneous electrical nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Devices § 882.5890 Transcutaneous electrical nerve stimulator for pain relief. (a) Identification. A transcutaneous electrical nerve stimulator for pain relief is a device used to apply an electrical current to... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transcutaneous electrical nerve stimulator for...

  12. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Young, D.; Willett, F.; Memberg, W. D.; Murphy, B.; Walter, B.; Sweet, J.; Miller, J.; Hochberg, L. R.; Kirsch, R. F.; Ajiboye, A. B.

    2018-04-01

    Objective. Functional electrical stimulation (FES) is a promising technology for restoring movement to paralyzed limbs. Intracortical brain-computer interfaces (iBCIs) have enabled intuitive control over virtual and robotic movements, and more recently over upper extremity FES neuroprostheses. However, electrical stimulation of muscles creates artifacts in intracortical microelectrode recordings that could degrade iBCI performance. Here, we investigate methods for reducing the cortically recorded artifacts that result from peripheral electrical stimulation. Approach. One participant in the BrainGate2 pilot clinical trial had two intracortical microelectrode arrays placed in the motor cortex, and thirty-six stimulating intramuscular electrodes placed in the muscles of the contralateral limb. We characterized intracortically recorded electrical artifacts during both intramuscular and surface stimulation. We compared the performance of three artifact reduction methods: blanking, common average reference (CAR) and linear regression reference (LRR), which creates channel-specific reference signals, composed of weighted sums of other channels. Main results. Electrical artifacts resulting from surface stimulation were 175  ×  larger than baseline neural recordings (which were 110 µV peak-to-peak), while intramuscular stimulation artifacts were only 4  ×  larger. The artifact waveforms were highly consistent across electrodes within each array. Application of LRR reduced artifact magnitudes to less than 10 µV and largely preserved the original neural feature values used for decoding. Unmitigated stimulation artifacts decreased iBCI decoding performance, but performance was almost completely recovered using LRR, which outperformed CAR and blanking and extracted useful neural information during stimulation artifact periods. Significance. The LRR method was effective at reducing electrical artifacts resulting from both intramuscular and surface FES, and

  13. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges.

    PubMed

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-10-01

    Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.

  14. Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells.

    PubMed

    Hernández-Bule, María Luisa; Paíno, Carlos Luis; Trillo, María Ángeles; Úbeda, Alejandro

    2014-01-01

    Capacitive-resistive electric transfer (CRET) is a non invasive electrothermal therapy that applies electric currents within the 400 kHz - 450 kHz frequency range to the treatment of musculoskeletal lesions. Evidence exists that electric currents and electric or magnetic fields can influence proliferative and/or differentiating processes involved in tissue regeneration. This work investigates proliferative responses potentially underlying CRET effects on tissue repair. XTT assay, flow cytometry, immunofluorescence and Western Blot analyses were conducted to asses viability, proliferation and differentiation of adipose-derived stem cells (ADSC) from healthy donors, after short, repeated (5 m On/4 h Off) in vitro stimulation with a 448-kHz electric signal currently used in CRET therapy, applied at a subthermal dose of 50 μA/mm(2) RESULTS: The treatment induced PCNA and ERK1/2 upregulation, together with significant increases in the fractions of ADSC undergoing cycle phases S, G2 and M, and enhanced cell proliferation rate. This proliferative effect did not compromise the multipotential ability of ADSC for subsequent adipogenic, chondrogenic or osteogenic differentiation. These data identify cellular and molecular phenomena potentially underlying the response to CRET and indicate that CRET-induced lesion repair could be mediated by stimulation of the proliferation of stem cells present in the injured tissues. © 2014 S. Karger AG, Basel.

  15. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  16. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    PubMed

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  17. Transcranial Electrical Stimulation

    PubMed Central

    Fertonani, Anna; Miniussi, Carlo

    2016-01-01

    In recent years, there has been remarkable progress in the understanding and practical use of transcranial electrical stimulation (tES) techniques. Nevertheless, to date, this experimental effort has not been accompanied by substantial reflections on the models and mechanisms that could explain the stimulation effects. Given these premises, the aim of this article is to provide an updated picture of what we know about the theoretical models of tES that have been proposed to date, contextualized in a more specific and unitary framework. We demonstrate that these models can explain the tES behavioral effects as distributed along a continuum from stimulation dependent to network activity dependent. In this framework, we also propose that stochastic resonance is a useful mechanism to explain the general online neuromodulation effects of tES. Moreover, we highlight the aspects that should be considered in future research. We emphasize that tES is not an “easy-to-use” technique; however, it may represent a very fruitful approach if applied within rigorous protocols, with deep knowledge of both the behavioral and cognitive aspects and the more recent advances in the application of stimulation. PMID:26873962

  18. Transient finite element modeling of functional electrical stimulation.

    PubMed

    Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J

    2011-03-01

    Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.

  19. A wireless wearable surface functional electrical stimulator

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  20. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  2. Tinnitus Treatment with Precise and Optimal Electric Stimulation: Opportunities and Challenges

    PubMed Central

    Zeng, Fan-Gang; Djalilian, Hamid; Lin, Harrison

    2015-01-01

    Purpose of review Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. Recent findings Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, non-invasive, direct-current stimulation uses an active electrode in the ear canal, tympanic membrane or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. Summary Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms. PMID:26208122

  3. Vomiting Center reanalyzed: An electrical stimulation study

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Wilson, V. J.

    1982-01-01

    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained.

  4. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    PubMed Central

    2013-01-01

    Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142

  5. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    PubMed

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  6. Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom

    2013-06-01

    Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.

  7. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  8. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  9. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation

    PubMed Central

    Ueno, Shoogo

    2017-01-01

    Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality. PMID:28586349

  10. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    PubMed

    Lu, Mai; Ueno, Shoogo

    2017-01-01

    Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  11. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  12. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects.

    PubMed

    Fertonani, Anna; Ferrari, Clarissa; Miniussi, Carlo

    2015-11-01

    The goals of this work are to report data regarding a large number of stimulation sessions and to use model analyses to explain the similarities or differences in the sensations induced by different parameters of tES application. We analysed sensation data relative to 693 different tES sessions. In particular, we studied the effects on sensations induced by different types of current, categories of polarity and frequency, different timing, levels of current density and intensity, different electrode sizes and different electrode locations (areas). The application of random or fixed alternating current stimulation (i.e., tRNS and tACS) over the scalp induced less sensation compared with transcranial direct current stimulation (tDCS), regardless of the application parameters. Moreover, anodal tDCS induced more annoyance in comparison to other tES. Additionally, larger electrodes induced stronger sensations compared with smaller electrodes, and higher intensities were more strongly perceived. Timing of stimulation, montage and current density did not influence sensations perception. The analyses demonstrated that the induced sensations could be clustered on the basis of the type of somatosensory system activated. Finally and most important no adverse events were reported. Induced sensations are modulated by electrode size and intensity and mainly pertain to the cutaneous receptor activity of the somatosensory system. Moreover, the procedure currently used to perform placebo stimulation may not be totally effective when compared with anodal tDCS. The reported observations enrich the literature regarding the safety aspects of tES, confirming that it is a painless and safe technique. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.

    PubMed

    Hong, Il Ki; Choi, Jong Bae; Lee, Jong Ha

    2012-09-01

    Paresis of the upper extremity after stroke is not effectively solved by existing therapies. We investigated whether mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic upper extremity in patients with chronic stroke and induced cortical changes. Fourteen subjects with chronic stroke (≥12 months) were randomly allocated to receive mental imagery training combined with electromyogram-triggered electric stimulation (n=7) or generalized functional electric stimulation (n=7) on the forearm extensor muscles of the paretic extremity in 2 20-minute daily sessions 5 days a week for 4 weeks. The upper extremity component of the Fugl-Meyer Motor Assessment, the Motor Activity Log, the modified Barthel Index, and (18)F-fluorodeoxyglucose brain positron emission tomography were measured before and after the intervention. The group receiving mental imagery training combined with electromyogram-triggered electric stimulation exhibited significant improvements in the upper extremity component of the Fugl-Meyer Motor Assessment after intervention (median, 7; interquartile range, 5-8; P<0.05), but the group receiving functional electric stimulation did not (median, 0; interquartile range, 0-3). Differences in score changes between the 2 groups were significant. The mental imagery training combined with electromyogram-triggered electric stimulation group showed significantly increased metabolism in the contralesional supplementary motor, precentral, and postcentral gyri (P(uncorrected)<0.001) after the intervention, but the functional electric stimulation group showed no significant differences. Mental imagery training combined with electromyogram-triggered electric stimulation improved motor function of the paretic extremity in patients with chronic stroke. The intervention increased metabolism in the contralesional motor-sensory cortex. Clinical Trial Registration- URL: https

  14. Electrical stimulation of the insular region attenuates nicotine-taking and nicotine-seeking behaviors.

    PubMed

    Pushparaj, Abhiram; Hamani, Clement; Yu, Wilson; Shin, Damian S; Kang, Bin; Nobrega, José N; Le Foll, Bernard

    2013-03-01

    Pharmacological inactivation of the granular insular cortex is able to block nicotine-taking and -seeking behaviors in rats. In this study, we explored the potential of modulating activity in the insular region using electrical stimulation. Animals were trained to self-administer nicotine (0.03 mg/kg per infusion) under a fixed ratio-5 (FR-5) schedule of reinforcement followed by a progressive ratio (PR) schedule. Evaluation of the effect of stimulation in the insular region was performed on nicotine self-administration under FR-5 and PR schedules, as well on reinstatement of nicotine-seeking behavior induced by nicotine-associated cues or nicotine-priming injections. The effect of stimulation was also examined in brain slices containing insular neurons. Stimulation significantly attenuated nicotine-taking, under both schedules of reinforcement, as well as nicotine-seeking behavior induced by cues and priming. These effects appear to be specific to nicotine-associated behaviors, as stimulation did not have any effect on food-taking behavior. They appear to be anatomically specific, as stimulation surrounding the insular region had no effect on behavior. Stimulation of brain slices containing the insular region was found to inactivate insular neurons. Our results suggest that deep brain stimulation to modulate insular activity should be further explored.

  15. No Influence of Transcutaneous Electrical Nerve Stimulation on Exercise-Induced Pain and 5-Km Cycling Time-Trial Performance

    PubMed Central

    Hibbert, Andrew W.; Billaut, François; Varley, Matthew C.; Polman, Remco C. J.

    2017-01-01

    Introduction: Afferent information from exercising muscle contributes to the sensation of exercise-induced muscle pain. Transcutaneous electrical nerve stimulation (TENS) delivers low–voltage electrical currents to the skin, inhibiting nociceptive afferent information. The use of TENS in reducing perceptions of exercise-induced pain has not yet been fully explored. This study aimed to investigate the effect of TENS on exercise-induced muscle pain, pacing strategy, and performance during a 5-km cycling time trial (TT). Methods: On three separate occasions, in a single-blind, randomized, and cross-over design, 13 recreationally active participants underwent a 30-min TENS protocol, before performing a 5-km cycling TT. TENS was applied to the quadriceps prior to exercise under the following conditions; control (CONT), placebo with sham TENS application (PLAC), and an experimental condition with TENS application (TENS). Quadriceps fatigue was assessed with magnetic femoral nerve stimulation assessing changes in potentiated quadriceps twitch force at baseline, pre and post exercise. Subjective scores of exertion, affect and pain were taken every 1-km. Results: During TTs, application of TENS did not influence pain perceptions (P = 0.68, ηp2 = 0.03). There was no significant change in mean power (P = 0.16, ηp2 = 0.16) or TT duration (P = 0.17, ηp2 = 0.14), although effect sizes were large for these two variables. Changes in power output were not significant but showed moderate effect sizes at 500-m (ηp2 = 0.10) and 750-m (ηp2 = 0.10). Muscle recruitment as inferred by electromyography data was not significant, but showed large effect sizes at 250-m (ηp2 = 0.16), 500-m (ηp2 = 0.15), and 750-m (ηp2 = 0.14). This indicates a possible effect for TENS influencing performance up to 1-km. Discussion: These findings do not support the use of TENS to improve 5-km TT performance. PMID:28223939

  16. Designing electrical stimulated bioreactors for nerve tissue engineering

    NASA Astrophysics Data System (ADS)

    Sagita, Ignasius Dwi; Whulanza, Yudan; Dhelika, Radon; Nurhadi, Ibrahim

    2018-02-01

    Bioreactor provides a biomimetic ecosystem that is able to culture cells in a physically controlled system. In general, the controlled-parameters are temperature, pH, fluid flow, nutrition flow, etc. In this study, we develop a bioreactor that specifically targeted to culture neural stem cells. This bioreactor could overcome some limitations of conventional culture technology, such as petri dish, by providing specific range of observation area and a uniform treatment. Moreover, the microfluidic bioreactor, which is a small-controlled environment, is able to observe as small number of cells as possible. A perfusion flow is applied to mimic the physiological environment in human body. Additionally, this bioreactor also provides an electrical stimulation which is needed by neural stem cells. In conclusion, we found the correlation between the induced shear stress with geometric parameters of the bioreactor. Ultimately, this system shall be used to observe the interaction between stimulation and cell growth.

  17. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  18. K/sup +/-induced alterations in airway muscle responsiveness to electrical field stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murlas, C.; Ehring, G.; Suszkiw, J.

    1986-07-01

    The authors investigated possible pre- and postsynaptic effects of K/sup +/-induced depolarization on ferret tracheal smooth muscle (TSM) responsiveness to cholinergic stimulation. To assess electromechanical activity, cell membrane potential (E/sub m/) and tension (T/sub m/) were simultaneously recorded in buffer containing 6, 12, 18, or 24 mM K/sup +/ before and after electrical field stimulation (EFS) or exogenous acetylcholine (ACh). In 6 mM K/sup +/ E/sub m/ was -58.1 +/- 1.0 m V (mean +/- SE). In 12 mM K/sup +/, E/sub m/ was depolarized to -52.3 +/- 0.9 mV, basal T/sub m/ did not change, and both excitatory junctionalmore » potentials and contractile responses to EFS at short stimulus duration were larger than in 6 mM K/sup +/. No such potentiation occurred at a higher K/sup +/, although resting E/sub m/ and T/sub m/ increased progressively above 12 mM K/sup +/. The sensitivity of ferret TSM to exogenous ACh appeared unaffected by K/sup +/. To determine whether the hyperresponsiveness in 12 mM K/sup +/ was due, in part, to augmented ACh release from intramural airway nerves, experiments were done using TSM preparations incubated with (/sup 3/H)choline to measure (/sup 3/H)ACh release at rest and during EFS. Although resting (/sup 3/H)ACh release increased progressively in higher K/sup +/, release evoked by EFS was maximal in 12 mM K/sup +/ and declined in higher concentrations. They conclude that small elevations in the extracellular K/sup +/ concentration augment responsiveness of the airways, by increasing the release of ACh both at rest and during EFS from intramural cholinergic nerve terminals. Larger increases in K/sup +/ appear to be inhibitory, possibly due to voltage-dependent effects that occur both pre- and postsynaptically.« less

  19. Contralaterally Controlled Functional Electrical Stimulation for Stroke Rehabilitation

    PubMed Central

    Knutson, Jayme S.; Harley, Mary Y.; Hisel, Terri Z.; Makowski, Nathaniel S.; Fu, Michael J.; Chae, John

    2012-01-01

    Contralaterally controlled functional electrical stimulation (CCFES) is an innovative method of delivering neuromuscular electrical stimulation for rehabilitation of paretic limbs after stroke. It is being studied to evaluate its efficacy in improving recovery of arm and hand function and ankle dorsiflexion in chronic and subacute stroke patients. The initial studies provide preliminary evidence supporting the efficacy of CCFES. PMID:23365893

  20. Metallic taste from electrical and chemical stimulation.

    PubMed

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors.

  1. Improving effect of mild foot electrical stimulation on pentylenetetrazole-induced impairment of learning and memory.

    PubMed

    Abasi-Moghadam, Monir; Ghasemi-Dehno, Arefe; Sadegh, Mehdi; Palizvan, Mohammad Reza

    2018-05-10

    Epilepsy is a common neurological disorder that affects learning and memory. Recently it has been shown that mild foot electrical stimulation (MFES) can increase learning and memory in normal rats. Pentylenetetrazole (PTZ) kindling is a model of human epilepsy. As with human epilepsy, PTZ kindling impairs learning and memory in rats. The purpose of this study was to investigate the effect MFES on kindling-induced learning and memory deficits in rats. Forty-nine male Wistar rats weighting 200 to 250 g were divided into the following seven groups: PTZ only, phenytoin only, MFES only, PTZ plus phenytoin, PTZ plus MFES, phenytoin plus MFES, and saline (control), with the treatments administered for 26 days. Forty-eight hours after the last injection, the animals performed the Morris water maze (MWM) task, and spatial learning and memory were measured. The results indicated that although chronic administration of phenytoin inhibited the development of PTZ kindling, it did not exert a protective effect against kindling-induced spatial learning and memory impairment in rats. On the other hand, pretreatment of PTZ-kindled animals with MFES significantly improved spatial working and reference memory. The results point to potential novel beneficial effects of MFES on learning and memory impairment induced by PTZ kindling in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study.

    PubMed

    Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco

    2016-11-01

    Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.

  3. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NASA Astrophysics Data System (ADS)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  4. Matching native electrical stimulation by graded chemical stimulation in isolated mouse adrenal chromaffin cells.

    PubMed

    Fulop, Tiberiu; Smith, Corey

    2007-11-30

    Adrenal chromaffin cells release multiple transmitters in response to sympathetic stimulation. Modest cell firing, matching sympathetic tone, releases small freely soluble catecholamines. Elevated electrical firing rates matching input under sympathetic stress results in release of catecholamines as well as semi-soluble vaso- and neuro-active peptides packaged within the dense core of the secretory granule. This activity-dependent differential transmitter release has been shown to rely on a mechanistic shift in the mode of exocytosis through the regulated dilation of the secretory fusion pore between granule and cell surface membranes. However, biochemical description of the mechanism regulating fusion pore dilation remains elusive. In the experimental setting, electrical stimulation designed to mimic sympathetic input, is achieved through single-cell voltage-clamp. While precise, this approach is incompatible with biochemical and proteomic analysis, both of which require large sample sizes. We address this limitation in the current study. We describe a bulk chemical stimulation paradigm calibrated to match defined electrical activity. We utilize calcium and single-cell amperometric measurements to match extracellular potassium concentrations to physiological electrical stimulation under sympathetic tone as well as acute stress conditions. This approach provides larger samples of uniformly stimulated cells for determining molecular players in activity-dependent differential transmitter release from adrenal chromaffin cells.

  5. Combination of Foot Stimulation and Tramadol Treatment Reverses Irritation Induced Bladder Overactivity in Cats

    PubMed Central

    Mally, Abhijith D.; Zhang, Fan; Matsuta, Yosuke; Shen, Bing; Wang, Jicheng; Roppolo, James R.; de Groat, William C.; Tai, Changfeng

    2013-01-01

    Purpose We determined whether transcutaneous electrical foot stimulation combined with a low dose of tramadol (Sigma-Aldrich®) could completely suppress bladder overactivity. Materials and Methods Repeat cystometrograms were performed in 18 α-chloralose anesthetized cats by infusing the bladder with saline or 0.25% acetic acid. Transcutaneous electrical stimulation (5 Hz) of the cat hind foot at 2 to 4 times the threshold intensity needed to induce observable toe movement was applied to suppress acetic acid induced bladder overactivity. Tramadol (1 to 3 mg/kg intravenously) was administered to enhance foot inhibition. Results Acetic acid irritated the bladder, induced bladder overactivity and significantly decreased bladder capacity to a mean ± SE of 26% ± 5% of saline control capacity (p <0.01). Without tramadol, foot stimulation at 2 and 4 threshold intensity applied during acetic acid cystometrograms significantly increased bladder capacity to a mean of 47% ± 5% and 62% ± 6% of saline control capacity, respectively (p <0.05). Without foot stimulation, tramadol (1 mg/kg) only slightly changed bladder capacity to a mean of 39% ± 2% of saline control capacity (p >0.05), while 3 mg/kg significantly increased capacity to 85% ± 14% that of control (p <0.05). However, 1 mg/kg tramadol combined with foot stimulation increased bladder capacity to a mean of 71% ± 18% (2 threshold intensity) and 84% ± 14% (4 threshold intensity), respectively, which did not significantly differ from saline control capacity. In addition, long lasting (greater than 1.5 to 2 hours) post-stimulation inhibition was induced by foot stimulation combined with 3 mg/kg tramadol treatment. Conclusions This study suggests a new treatment strategy for overactive bladder by combining foot stimulation with a low dose of tramadol, which is noninvasive and has potentially high efficacy and fewer adverse effects. PMID:23088991

  6. [Finite element analysis of temperature field of retina by electrical stimulation with microelectrode array].

    PubMed

    Wang, Wei; Qiao, Qingli; Gao, Weiping; Wu, Jun

    2014-12-01

    We studied the influence of electrode array parameters on temperature distribution to the retina during the use of retinal prosthesis in order to avoid thermal damage to retina caused by long-term electrical stimulation. Based on real epiretinal prosthesis, a three-dimensional model of electrical stimulation for retina with 4 X 4 microelectrode array had been established using the finite element software (COMSOL Multiphysics). The steady-state temperature field of electrical stimulation of the retina was calculated, and the effects of the electrode parameters such as the distance between the electrode contacts, the materials and area of the electrode contact on temperature field were considered. The maximum increase in the retina steady temperature was about 0. 004 degrees C with practical stimulation current. When the distance between the electrode contacts was changed from 130 microm to 520 microm, the temperature was reduced by about 0.006 microC. When the contact radius was doubled from 130 microm to 260 microm, the temperature decrease was about 0.005 degrees C. It was shown that there were little temperature changes in the retina with a 4 x 4 epiretinal microelectrode array, reflecting the safety of electrical stimulation. It was also shown that the maximum temperature in the retina decreased with increasing the distance between the electrode contacts, as well as increasing the area of electrode contact. However, the change of the maximum temperature was very small when the distance became larger than the diameter of electrode contact. There was no significant difference in the effects of temperature increase among the different electrode materials. Rational selection of the distance between the electrode contacts and their area in electrode design can reduce the temperature rise induced by electrical stimulation.

  7. Investigating the Effects of Peripheral Electrical Stimulation on Corticomuscular Functional Connectivity Stroke Survivors.

    PubMed

    Lai, Meei-I; Pan, Li-Ling; Tsai, Mei-Wun; Shih, Yi-Fen; Wei, Shun-Hwa; Chou, Li-Wei

    2016-06-01

    Electrical stimulation (ES) in the periphery can induce brain plasticity and has been used clinically to promote motor recovery in patients with central nervous system lesion. Electroencephalogram (EEG) and electromyogram (EMG) are readily applicable in clinical settings and can detect real-time functional connectivity between motor cortex and muscles with EEG-EMG (corticomuscular) coherence. The purpose of this study was to determine whether EEG-EMG coherence can detect changes in corticomuscular control induced by peripheral ES. Fifteen healthy young adults and 15 stroke survivors received 40-min electrical stimulation session on median nerve. The stimulation (1-ms rectangular pulse, 100 Hz) was delivered with a 20-s on-20-s off cycle, and the intensity was set at the subjects' highest tolerable level without muscle contraction or pain. Both before and after the stimulation session, subjects performed a 20-s steady-hold thumb flexion at 50% maximal voluntary contraction (MVC) while EEG and EMG were collected. Our results demonstrated that after ES, EEG-EMG coherence in gamma band increased significantly for 22.1 and 48.6% in healthy adults and stroke survivors, respectively. In addition, after ES, force steadiness was also improved in both groups, as indicated by the decrease in force fluctuation during steady-hold contraction (-1.7% MVC and -3.9%MVC for healthy and stroke individuals, respectively). Our results demonstrated that EEG-EMG coherence can detect ES-induced changes in the neuromuscular system. Also, because gamma coherence is linked to afferent inputs encoding, improvement in motor performance is likely related to ES-elicited strong sensory input and enhanced sensorimotor integration.

  8. Distributed stimulation increases force elicited with functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Buckmire, Alie J.; Lockwood, Danielle R.; Doane, Cynthia J.; Fuglevand, Andrew J.

    2018-04-01

    Objective. The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. Approach. We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. Main results. We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. Significance. It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.

  9. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  10. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    PubMed

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  11. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells.

    PubMed

    Díaz-Vegas, Alexis; Campos, Cristian A; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.

  12. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells

    PubMed Central

    Díaz-Vegas, Alexis; Campos, Cristian A.; Contreras-Ferrat, Ariel; Casas, Mariana; Buvinic, Sonja; Jaimovich, Enrique; Espinosa, Alejandra

    2015-01-01

    During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC. PMID:26053483

  13. Memory scrutinized through electrical brain stimulation: A review of 80 years of experiential phenomena.

    PubMed

    Curot, Jonathan; Busigny, Thomas; Valton, Luc; Denuelle, Marie; Vignal, Jean-Pierre; Maillard, Louis; Chauvel, Patrick; Pariente, Jérémie; Trebuchon, Agnès; Bartolomei, Fabrice; Barbeau, Emmanuel J

    2017-07-01

    Electrical brain stimulations (EBS) sometimes induce reminiscences, but it is largely unknown what type of memories they can trigger. We reviewed 80 years of literature on reminiscences induced by EBS and added our own database. We classified them according to modern conceptions of memory. We observed a surprisingly large variety of reminiscences covering all aspects of declarative memory. However, most were poorly detailed and only a few were episodic. This result does not support theories of a highly stable and detailed memory, as initially postulated, and still widely believed as true by the general public. Moreover, memory networks could only be activated by some of their nodes: 94.1% of EBS were temporal, although the parietal and frontal lobes, also involved in memory networks, were stimulated. The qualitative nature of memories largely depended on the site of stimulation: EBS to rhinal cortex mostly induced personal semantic reminiscences, while only hippocampal EBS induced episodic memories. This result supports the view that EBS can activate memory in predictable ways in humans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty.

    PubMed

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre; Vaes, Peter

    2014-01-01

    To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality.

  15. A systematic review investigating the relationship between efficacy and stimulation parameters when using transcutaneous electrical nerve stimulation after knee arthroplasty

    PubMed Central

    Beckwée, David; Bautmans, Ivan; Swinnen, Eva; Vermet, Yorick; Lefeber, Nina; Lievens, Pierre

    2014-01-01

    Objective: To evaluate the clinical efficacy of transcutaneous electric nerve stimulation in the treatment of postoperative knee arthroplasty pain and to relate these results to the stimulation parameters used. Data Sources: PubMed, Pedro and Web of Knowledge were systematically screened for studies investigating effects of transcutaneous electric nerve stimulation on postoperative knee arthroplasty pain. Review Methods: Studies were screened for their methodological and therapeutical quality. We appraised the influence of the stimulation settings used and indicated whether or not a neurophysiological and/or mechanistic rationale was given for these stimulation settings. Results: A total of 5 articles met the inclusion criteria. In total, 347 patients were investigated. The number of patients who received some form of transcutaneous electric nerve stimulation was 117, and 54 patients received sham transcutaneous electric nerve stimulation. Pain was the primary outcome in all studies. The stimulation settings used in the studies (n = 2) that reported significant effects differed from the others as they implemented a submaximal stimulation intensity. Stimulation parameters were heterogeneous, and only one study provided a rationale for them. Conclusion: This review reveals that an effect of transcutaneous electric nerve stimulation might have been missed due to low methodological and therapeutical quality. Justifying the choice of transcutaneous electric nerve stimulation parameters may improve therapeutical quality. PMID:26770730

  16. The Effects of Transcutaneous Electrical Stimulation on the Orthodontic Movement of Teeth.

    DTIC Science & Technology

    1985-05-01

    Transcutaneous electrical nerve stimulation is an alternating electrical current applied k., ’ to the skin or gingiva with surface electrodes. Many...AD-AI68 889 THE EFFECTS OF TRANSCUTANEOUS ELECTRICAL STIMULATION ON 1/i THE ORTHODONTIC MOVEMENT OF TEETH(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON...SPECIAL FIELD OF THE THESIS: of Transcutaneous Electrical Stimiu- Transcutaneous Electrical Stimulation lation on the Orthodontic Movement

  17. [Hemispheric transcranial electrical stimulation: clinical results].

    PubMed

    Pastor Gómez, Jesús; Perla-Perla, Patricia; Pulido-Rivas, Paloma; Sola, Rafael G

    2010-07-16

    Transcranial electrical stimulation (TES) is a technique widely used in intraoperative neurophysiological monitoring. However, there are theoretical limitations to their use in supratentorial surgery. To test the usefulness of hemispheric TES (C3/C4-Cz) in supratentorial surgery. Hemispheric TES was conducted in a group of 15 patients operated on supratentorial region with possible compromise of the inner capsule. In all cases orbicularis oris, extensor digitorum, abductor of V finger, anterior tibialis and abductor hallucis brevis contralateral to stimulation were recorded. We used trains of 4-6 pulses of 50 micro-seconds at 500 Hz. The intensity of the movements induced by hemispheric TES did not interfere with the microsurgical dissection. We have used 78.5 +/- 11.2 trains per patient, with the voltage of 235 +/- 21 V and the equivalent current 370 +/- 37 mA. Stimulation resulted in response in facial region in 80% of cases, 100% in arm/hand and 66.7% in leg/foot. In eight patients, there was no change in latency and/or amplitude during resection. In six patients we observed retardation, decreased amplitude or both in any of the region studied. In these patients no neurologic injury was observed. In one patient a sharp decrease and complete absence of motor response was observed. In this case there was a post-surgical neurologic injury. The hemispheric TES have high sensitivity and specificity monitoring the inner capsule in supratentorial neurosurgery.

  18. The Effect of Surface Electrical Stimulation on Hyo-Laryngeal Movement in Normal Individuals at Rest and During Swallowing

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Crujido, Lisa; Wright-Harp, Wilhelmina; Payne, Joan; Jeffries, Neal; Sonies, Barbara C.; Ludlow, Christy L.

    2006-01-01

    Surface electrical stimulation is currently used in therapy for swallowing problems, although little is known about its physiological effects on neck muscles or swallowing. Previously, when one surface electrode placement was used in dysphagic patients at rest, it lowered the hyo-laryngeal complex. Here we examined the effects of nine other placements in normal volunteers to determine: 1) if movements induced by surface stimulation using other placements differ, and 2) if lowering the hyo-laryngeal complex by surface electrical stimulation interfered with swallowing in healthy adults. Ten bipolar surface electrode placements overlying the submental and laryngeal regions were tested. Maximum tolerated stimulation levels were applied at rest while participants held their mouths closed. Videofluoroscopic recordings were used to measure hyoid bone and subglottic air column (laryngeal) movements from resting position and while swallowing 5ml of liquid barium with and without stimulation. Videofluoroscopic recordings of swallows were rated blind to condition using the NIH-Swallowing Safety Scale (NIH-SSS). Significant (p<0.0001) laryngeal and hyoid descent occurred with stimulation at rest. During swallowing, significant (p≤0.01) reductions in both the larynx and hyoid bone peak elevation occurred during stimulated swallows. The stimulated swallows were also judged less safe than non-stimulated swallows using the NIH-SSS (p=0.0275). Because surface electrical stimulation reduced hyo-laryngeal elevation during swallowing in normal volunteers, our findings suggest that surface electrical stimulation will reduce elevation during swallowing therapy for dysphagia. PMID:16873602

  19. Effects of electrical stimulation-induced gluteal versus gluteal and hamstring muscles activation on sitting pressure distribution in persons with a spinal cord injury.

    PubMed

    Smit, C A J; Haverkamp, G L G; de Groot, S; Stolwijk-Swuste, J M; Janssen, T W J

    2012-08-01

    Ten participants underwent two electrical stimulation (ES) protocols applied using a custom-made electrode garment with built-in electrodes. Interface pressure was measured using a force-sensitive area. In one protocol, both the gluteal and hamstring (g+h) muscles were activated, in the other gluteal (g) muscles only. To study and compare the effects of electrically induced activation of g+h muscles versus g muscles only on sitting pressure distribution in individuals with a spinal cord injury (SCI). Ischial tuberosities interface pressure (ITs pressure) and pressure gradient. In all participants, both protocols of g and g+h ES-induced activation caused a significant decrease in IT pressure. IT pressure after g+h muscles activation was reduced significantly by 34.5% compared with rest pressure, whereas a significant reduction of 10.2% after activation of g muscles only was found. Pressure gradient reduced significantly only after stimulation of g+h muscles (49.3%). g+h muscles activation showed a decrease in pressure relief (Δ IT) over time compared with g muscles only. Both protocols of surface ES-induced of g and g+h activation gave pressure relief from the ITs. Activation of both g+h muscles in SCI resulted in better IT pressure reduction in sitting individuals with a SCI than activation of g muscles only. ES might be a promising method in preventing pressure ulcers (PUs) on the ITs in people with SCI. Further research needs to show which pressure reduction is sufficient in preventing PUs.

  20. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin.

    PubMed

    Kar, Kohitij; Krekelberg, Bart

    2012-10-01

    Transcranial electrical stimulation (tES) is a promising therapeutic tool for a range of neurological diseases. Understanding how the small currents used in tES spread across the scalp and penetrate the brain will be important for the rational design of tES therapies. Alternating currents applied transcranially above visual cortex induce the perception of flashes of light (phosphenes). This makes the visual system a useful model to study tES. One hypothesis is that tES generates phosphenes by direct stimulation of the cortex underneath the transcranial electrode. Here, we provide evidence for the alternative hypothesis that phosphenes are generated in the retina by current spread from the occipital electrode. Building on the existing literature, we first confirm that phosphenes are induced at lower currents when electrodes are placed farther away from visual cortex and closer to the eye. Second, we explain the temporal frequency tuning of phosphenes based on the well-known response properties of primate retinal ganglion cells. Third, we show that there is no difference in the time it takes to evoke phosphenes in the retina or by stimulation above visual cortex. Together, these findings suggest that phosphenes induced by tES over visual cortex originate in the retina. From this, we infer that tES currents spread well beyond the area of stimulation and are unlikely to lead to focal neural activation. Novel stimulation protocols that optimize current distributions are needed to overcome these limitations of tES.

  1. Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation

    PubMed Central

    Huang, Yu; Liu, Anli A; Lafon, Belen; Friedman, Daniel; Dayan, Michael; Wang, Xiuyuan; Bikson, Marom; Doyle, Werner K; Devinsky, Orrin; Parra, Lucas C

    2017-01-01

    Transcranial electric stimulation aims to stimulate the brain by applying weak electrical currents at the scalp. However, the magnitude and spatial distribution of electric fields in the human brain are unknown. We measured electric potentials intracranially in ten epilepsy patients and estimated electric fields across the entire brain by leveraging calibrated current-flow models. When stimulating at 2 mA, cortical electric fields reach 0.8 V/m, the lower limit of effectiveness in animal studies. When individual whole-head anatomy is considered, the predicted electric field magnitudes correlate with the recorded values in cortical (r = 0.86) and depth (r = 0.88) electrodes. Accurate models require adjustment of tissue conductivity values reported in the literature, but accuracy is not improved when incorporating white matter anisotropy or different skull compartments. This is the first study to validate and calibrate current-flow models with in vivo intracranial recordings in humans, providing a solid foundation to target stimulation and interpret clinical trials. DOI: http://dx.doi.org/10.7554/eLife.18834.001 PMID:28169833

  2. Prediction of the Seizure Suppression Effect by Electrical Stimulation via a Computational Modeling Approach.

    PubMed

    Ahn, Sora; Jo, Sumin; Jun, Sang Beom; Lee, Hyang Woon; Lee, Seungjun

    2017-01-01

    In this paper, we identified factors that can affect seizure suppression via electrical stimulation by an integrative study based on experimental and computational approach. Preferentially, we analyzed the characteristics of seizure-like events (SLEs) using our previous in vitro experimental data. The results were analyzed in two groups classified according to the size of the effective region, in which the SLE was able to be completely suppressed by local stimulation. However, no significant differences were found between these two groups in terms of signal features or propagation characteristics (i.e., propagation delays, frequency spectrum, and phase synchrony). Thus, we further investigated important factors using a computational model that was capable of evaluating specific influences on effective region size. In the proposed model, signal transmission between neurons was based on two different mechanisms: synaptic transmission and the electrical field effect. We were able to induce SLEs having similar characteristics with differentially weighted adjustments for the two transmission methods in various noise environments. Although the SLEs had similar characteristics, their suppression effects differed. First of all, the suppression effect occurred only locally where directly received the stimulation effect in the high noise environment, but it occurred in the entire network in the low noise environment. Interestingly, in the same noise environment, the suppression effect was different depending on SLE propagation mechanism; only a local suppression effect was observed when the influence of the electrical field transmission was very weak, whereas a global effect was observed with a stronger electrical field effect. These results indicate that neuronal activities synchronized by a strong electrical field effect respond more sensitively to partial changes in the entire network. In addition, the proposed model was able to predict that stimulation of a seizure focus

  3. Toward rational design of electrical stimulation strategies for epilepsy control

    PubMed Central

    Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom

    2009-01-01

    Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525

  4. Using non-invasive brain stimulation to augment motor training-induced plasticity

    PubMed Central

    Bolognini, Nadia; Pascual-Leone, Alvaro; Fregni, Felipe

    2009-01-01

    Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date. PMID:19292910

  5. Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction

    PubMed Central

    Jiao, Kun-Li; Li, Yi-Gang; Zhang, Peng-Pai; Chen, Ren-Hua; Yu, Yi

    2012-01-01

    Abstract The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression. PMID:22128836

  6. Real-time 4D electrical resistivity imaging of tracer transport within an energically stimulated fracture zone

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.

    2016-12-01

    Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.

  7. Technique of electrical stimulation of the vestibular analyzer under clinical conditions

    NASA Technical Reports Server (NTRS)

    Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.

    1980-01-01

    Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.

  8. Transcutaneous electrical nerve stimulation: nonparallel antinociceptive effects on chronic clinical pain and acute experimental pain.

    PubMed

    Cheing, G L; Hui-Chan, C W

    1999-03-01

    To investigate to what extent a single 60-minute session of transcutaneous electrical nerve stimulation (TENS) would modify chronic clinical pain, acute experimental pain, and the flexion reflex evoked in chronic low back pain patients. Thirty young subjects with chronic low back pain were randomly allocated to two groups, receiving either TENS or placebo stimulation to the lumbosacral region for 60 minutes. The flexion reflex was elicited by an electrical stimulation applied to the subject's right sole and recorded electromyographically from the biceps femoris and the tibialis anterior muscles. Subjective sensation of low back pain and the electrically induced pain were measured by two separate visual analog scales, termed VAS(LBP) and VAS(FR), respectively. Data obtained before, during, and 60 minutes after TENS and placebo stimulations were analyzed using repeated measures ANOVA. The VAS(LBP) score was significantly reduced to 63.1% of the prestimulation value after TENS (p<.001), but the reduction was negligible after placebo stimulation (to 96.7%, p = .786). In contrast, no significant change was found in the VASFR score (p = .666) and the flexion reflex area (p = .062) during and after stimulation within each group and between the two groups (p = .133 for VASFR and p = .215 for flexion reflex area). The same TENS protocol had different degrees of antinociceptive influence on chronic and acute pain in chronic low back pain patients.

  9. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  10. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study.

    PubMed

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-06-13

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.

  11. Local Muscle Metabolic Demand Induced by Neuromuscular Electrical Stimulation and Voluntary Contractions at Different Force Levels: A NIRS Study

    PubMed Central

    Muthalib, Makii; Kerr, Graham; Nosaka, Kazunori; Perrey, Stephane

    2016-01-01

    Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL. PMID:27478574

  12. Effect of neuromuscular electrical muscle stimulation on energy expenditure in healthy adults.

    PubMed

    Hsu, Miao-Ju; Wei, Shun-Hwa; Chang, Ya-Ju

    2011-01-01

    Weight loss/weight control is a major concern in prevention of cardiovascular disease and the realm of health promotion. The primary aim of this study was to investigate the effect of neuromuscular electrical stimulation (NMES) at different intensities on energy expenditure (oxygen and calories) in healthy adults. The secondary aim was to develop a generalized linear regression (GEE) model to predict the increase of energy expenditure facilitated by NMES and identify factors (NMES stimulation intensity level, age, body mass index, weight, body fat percentage, waist/hip ratio, and gender) associated with this NMES-induced increase of energy expenditure. Forty sedentary healthy adults (18 males and 22 females) participated. NMES was given at the following stimulation intensities for 10 minutes each: sensory level (E1), motor threshold (E2), and maximal intensity comfortably tolerated (E3). Cardiopulmonary gas exchange was evaluated during rest, NMES, and recovery stage. The results revealed that NMES at E2 and E3 significantly increased energy expenditure and the energy expenditure at recovery stage was still significantly higher than baseline. The GEE model demonstrated that a linear dose-response relationship existed between the stimulation intensity and the increase of energy expenditure. No subject's demographic or anthropometric characteristics tested were significantly associated with the increase of energy expenditure. This study suggested NMES may be used to serve as an additional intervention for weight loss programs. Future studies to develop electrical stimulators or stimulation electrodes to maximize the comfort of NMES are recommended.

  13. Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2012-05-01

    A randomized controlled trial, involving 35 post-acute hemiparetic patients, demonstrated that a four-week treatment of cycling induced by functional electrical stimulation (FES-cycling) promotes motor recovery. Analyzing additional data acquired during that study, the present work investigated whether these improvements were associated to changes in muscle strength and motor coordination. Participants were randomized to receive FES-cycling or placebo FES-cycling. Clinical outcome measures were: the Motricity Index (MI), the gait speed, the electromyography activation of the rectus femoris and biceps femoris, and the mechanical work produced by each leg during voluntary pedaling. To provide a comparison with normal values, healthy adults also carried out the pedaling test. Patients were evaluated before, after training, and at follow-up visits. A significant treatment effect in favor of FES-treated patients was found in terms of MI scores and unbalance in mechanical works, while differences in gait speed were not significant (ANCOVA). Significant improvements in the activation of the paretic muscles were highlighted in the FES group, while no significant change was found in the placebo group (Friedman test). Our findings suggested that improvements in motor functions induced by FES-cycling training were associated with a more symmetrical involvement of the two legs and an improved motor coordination.

  14. Measurement of the local muscular metabolism by time-domain near infrared spectroscopy during knee flex-extension induced by functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Contini, D.; Spinelli, L.; Torricelli, A.; Ferrante, S.; Pedrocchi, A.; Molteni, F.; Ferrigno, G.; Cubeddu, R.

    2009-02-01

    We present a preliminary study that combines functional electrical stimulation and time-domain near infrared spectroscopy for a quantitative measurement of the local muscular metabolism during rehabilitation of post-acute stroke patients. Seven healthy subjects and nine post-acute stroke patients underwent a protocol of knee flex-extension of the quadriceps induced by functional electrical stimulation. During the protocol time-domain near infrared spectroscopy measurement were performed on both left and right muscle. Hemodynamic parameters (concentration of oxy- and deoxy-genated hemoglobin) during baseline did not show any significant differences between healthy subject and patients, while functional performances (knee angle amplitude) were distinctly different. Nevertheless, even if their clinical histories were noticeably different, there was no differentiation among functional performances of patients. On the basis of the hemodynamic parameters measured during the recovery phase, instead, it was possible to identify two classes of patients showing a metabolic trend similar or very different to the one obtained by healthy subjects. The presented results suggest that the combination of functional and metabolic information can give an additional tool to the clinicians in the evaluation of the rehabilitation in post-acute stroke patients.

  15. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation

    PubMed Central

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis. PMID:28883745

  16. Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation.

    PubMed

    Takeda, Kotaro; Tanino, Genichi; Miyasaka, Hiroyuki

    2017-01-01

    Neuromuscular electrical stimulation (NMES), specifically functional electrical stimulation (FES) that compensates for voluntary motion, and therapeutic electrical stimulation (TES) aimed at muscle strengthening and recovery from paralysis are widely used in stroke rehabilitation. The electrical stimulation of muscle contraction should be synchronized with intended motion to restore paralysis. Therefore, NMES devices, which monitor electromyogram (EMG) or electroencephalogram (EEG) changes with motor intention and use them as a trigger, have been developed. Devices that modify the current intensity of NMES, based on EMG or EEG, have also been proposed. Given the diversity in devices and stimulation methods of NMES, the aim of the current review was to introduce some commercial FES and TES devices and application methods, which depend on the condition of the patient with stroke, including the degree of paralysis.

  17. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  18. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  19. Decreased Axon Flare Reaction to Electrical Stimulation in Patients With Chronic Demyelinating Inflammatory Polyneuropathy.

    PubMed

    Kokotis, Panagiotis; Schmelz, Martin; Papagianni, Aikaterini E; Zambelis, Thomas; Karandreas, Nikos

    2017-03-01

    In chronic inflammatory demyelinating polyradiculopathy (CIDP), the impairment of unmyelinated nerve fibers appears unexpected. The measurement of the electrically induced axon flare reflex is a clinical test to assess the peripheral C-nociceptor function. In this study, we compared the flare area in patients suffering from CIDP with healthy subjects. We examined 18 patients fulfilling the criteria for CIDP (11 men, mean age 51.8 years, SD 15.1) and 18 age-matched adult healthy volunteers (control group) (11 men, mean age 51.9 years, SD 15.8). The flare responses were elicited by transcutaneous electrical stimulation and recorded by laser Doppler imaging. There was a significant reduction of electrically induced maximum flare area in the foot dorsum of patients with CIDP (t-value 2.08, P = 0.04) which proved to be length-dependent measured by a numerical index comparing the results with the forearm and thigh. The repeatedmeasures ANOVA revealed statistically significant smaller flare areas in all body regions for the CIDP group (P < 0.001). The axon flare reaction to electrical stimulation was decreased in patients with chronic demyelinating inflammatory polyneuropathy. The evaluation of the axon flare response can be proposed as a noninvasive objective functional test to detect an impaired C-fiber function in CIDP patients with the advantages of simplicity of the procedure, time economy, and objectivity.

  20. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  1. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  2. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    PubMed

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  3. Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems—A Simulation Study

    PubMed Central

    Johansson, Johannes; Wårdell, Karin; Hemm, Simone

    2018-01-01

    The success of deep brain stimulation (DBS) relies primarily on the localization of the implanted electrode. Its final position can be chosen based on the results of intraoperative microelectrode recording (MER) and stimulation tests. The optimal position often differs from the final one selected for chronic stimulation with the DBS electrode. The aim of the study was to investigate, using finite element method (FEM) modeling and simulations, whether lead design, electrical setup, and operating modes induce differences in electric field (EF) distribution and in consequence, the clinical outcome. Finite element models of a MER system and a chronic DBS lead were developed. Simulations of the EF were performed for homogenous and patient-specific brain models to evaluate the influence of grounding (guide tube vs. stimulator case), parallel MER leads, and non-active DBS contacts. Results showed that the EF is deformed depending on the distance between the guide tube and stimulating contact. Several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution. The DBS EF volume can cover the intraoperatively produced EF, but can also extend to other anatomical areas. In conclusion, EF deformations between stimulation tests and DBS should be taken into consideration as they can alter the clinical outcome. PMID:29415442

  4. Electrical stimulation of transplanted motoneurons improves motor unit formation

    PubMed Central

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  5. Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering

    PubMed Central

    Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.

    2009-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486

  6. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    PubMed

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  7. Study of driving fatigue alleviation by transcutaneous acupoints electrical stimulations.

    PubMed

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving.

  8. Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations

    PubMed Central

    Wang, Fuwang; Wang, Hong

    2014-01-01

    Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242

  9. Microprocessor controlled movement of liquid gastric content using sequential neural electrical stimulation

    PubMed Central

    Mintchev, M; Sanmiguel, C; Otto, S; Bowes, K

    1998-01-01

    Background—Gastric electrical stimulation has been attempted for several years with little success. 
Aims—To determine whether movement of liquid gastric content could be achieved using microprocessor controlled sequential electrical stimulation. 
Methods—Eight anaesthetised dogs underwent laparotomy and implantation of four sets of bipolar stainless steel wire electrodes. Each set consisted of two to six electrodes (10×0.25 mm, 3 cm apart) implanted circumferentially. The stomach was filled with water and the process of gastric emptying was monitored. Artificial contractions were produced using microprocessor controlled phase locked bipolar four second trains of 50 Hz, 14 V (peak to peak) rectangular voltage. In four of the dogs four force transducers were implanted close to each circumferential electrode set. In one gastroparetic patient the effect of direct electrical stimulation was determined at laparotomy. 
Results—Using the above stimulating parameters circumferential gastric contractions were produced which were artificially propagated distally by phase locking the stimulating voltage. Averaged stimulated gastric emptying times were significantly shorter than spontaneus emptying times (t1/2 6.7 (3.0) versus 25.3 (12.9) minutes, p<0.01). Gastric electrical stimulation of the gastroparetic patient at operation produced circumferential contractions. 
Conclusions—Microprocessor controlled electrical stimulation produced artificial peristalsis and notably accelerated the movement of liquid gastric content. 

 Keywords: gastric electrical stimulation; gastric motility PMID:9824339

  10. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  11. 21 CFR 868.2775 - Electrical peripheral nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a device used to apply an electrical current to a patient to test the level of pharmacological... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrical peripheral nerve stimulator. 868.2775... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2775 Electrical peripheral nerve...

  12. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    PubMed

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  13. Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tass, P. A.; Barnikol, U. B.; Department of Stereotaxic and Functional Neurosurgery, University of Cologne, D-50931 Cologne

    2009-07-15

    In computational models it has been shown that appropriate stimulation protocols may reshape the connectivity pattern of neural or oscillator networks with synaptic plasticity in a way that the network learns or unlearns strong synchronization. The underlying mechanism is that a network is shifted from one attractor to another, so that long-lasting stimulation effects are caused which persist after the cessation of stimulation. Here we study long-lasting effects of multisite electrical stimulation in a rat hippocampal slice rendered epileptic by magnesium withdrawal. We show that desynchronizing coordinated reset stimulation causes a long-lasting desynchronization between hippocampal neuronal populations together with amore » widespread decrease in the amplitude of the epileptiform activity. In contrast, periodic stimulation induces a long-lasting increase in both synchronization and amplitude.« less

  14. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens].

    PubMed

    Ni, D

    1992-12-01

    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  15. Emotional behavior and arrhythmias induced in cats by hypothalamic stimulation.

    PubMed

    Tashiro, N; Tanaka, T; Fukumoto, T; Hirata, K; Nakao, H

    1985-03-18

    As the relationship between emotional behavior and electrocardiographic (ECG) change induced by hypothalamic stimulation is poorly understood, eighty-four points in various areas within the hypothalamus in conscious cats were stimulated electrically through chronically implanted electrodes, the objective being to clarify the behavior accompanying ECG changes, in particular poststimulus arrhythmias. Forty-one of 84 points elicited behavioral patterns such as defense reaction, pseudo-rage and restlessness (classified as group A), and in twenty-one (51%) of these 41 points arrhythmias occurred after cessation of stimulation. Forty-three of 84 points elicited behavioral patterns including predatory, exploratory and other behavioral responses (classified as group B), and in three (7%) of 43 points, poststimulus arrhythmias followed. Under light anesthesia, stimulations of twofold current intensity were applied at these points, and the incidences of the arrhythmias did not change in either group. The arrhythmia-inducing area in the cases of group A was found to lie dorsal and caudal to the optic chiasma and to extend caudally in the fornix. Three points in the cases of group B were located in the outer area of the aforementioned area. These studies showed that arrhythmias and group A behavior were observed mainly from stimulation of the anterior hypothalamus, whereas stimulation of other areas of the hypothalamus, including the lateral and the posterolateral hypothalamus, produced group B behavior and no arrhythmias.

  16. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields

    NASA Astrophysics Data System (ADS)

    Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni

    2018-02-01

    Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm-1 whereas that of dc pulses is about 0.5 kV cm-1.

  17. Emerging modalities in dysphagia rehabilitation: neuromuscular electrical stimulation.

    PubMed

    Huckabee, Maggie-Lee; Doeltgen, Sebastian

    2007-10-12

    The aim of this review article is to advise the New Zealand medical community about the application of neuromuscular electrical stimulation (NMES) as a treatment for pharyngeal swallowing impairment (dysphagia). NMES in this field of rehabilitation medicine has quickly emerged as a widely used method overseas but has been accompanied by significant controversy. Basic information is provided about the physiologic background of electrical stimulation. The literature reviewed in this manuscript was derived through a computer-assisted search using the biomedical database Medline to identify all relevant articles published until from the initiation of the databases up to January 2007. The reviewers used the following search strategy: [(deglutition disorders OR dysphagia) AND (neuromuscular electrical stimulation OR NMES)]. In addition, the technique of reference tracing was used and very recently published studies known to the authors but not yet included in the database systems were included. This review elucidates not only the substantive potential benefit of this treatment, but also potential key concerns for patient safety and long term outcome. The discussion within the clinical and research communities, especially around the commercially available VitalStim stimulator, is objectively explained.

  18. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  19. Saccade Modulation by Optical and Electrical Stimulation in the Macaque Frontal Eye Field

    PubMed Central

    Grimaldi, Piercesare; Schweers, Nicole

    2013-01-01

    Recent studies have demonstrated that strong neural modulations can be evoked with optogenetic stimulation in macaque motor cortex without observing any evoked movements (Han et al., 2009, 2011; Diester et al., 2011). It remains unclear why such perturbations do not generate movements and if conditions exist under which they may evoke movements. In this study, we examine the effects of five optogenetic constructs in the macaque frontal eye field and use electrical microstimulation to assess whether optical perturbation of the local network leads to observable motor changes during optical, electrical, and combined stimulation. We report a significant increase in the probability of evoking saccadic eye movements when low current electrical stimulation is coupled to optical stimulation compared with when electrical stimulation is used alone. Experiments combining channelrhodopsin 2 (ChR2) and electrical stimulation with simultaneous fMRI revealed no discernible fMRI activity at the electrode tip with optical stimulation but strong activity with electrical stimulation. Our findings suggest that stimulation with current ChR2 optogenetic constructs generates subthreshold activity that contributes to the initiation of movements but, in most cases, is not sufficient to evoke a motor response. PMID:24133271

  20. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  1. The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.

    PubMed

    Janssen, Arno M; Oostendorp, Thom F; Stegeman, Dick F

    2015-05-17

    The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject's head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the relationship between the coil orientation and the direction of the induced electric field on the one hand, and the head and brain anatomy on the other hand, seems crucial. Therefore, the induced electric field in the cortex as a function of the coil orientation has been examined in this study. The effect of changing the coil orientation on the induced electric field was evaluated for fourteen cortical targets. We used a finite element model to calculate the induced electric fields for thirty-six coil orientations (10 degrees resolution) per target location. The effects on the electric field due to coil rotation, in combination with target site anatomy, have been quantified. The results confirm that the electric field perpendicular to the anterior sulcal wall of the central sulcus is highly susceptible to coil orientation changes and has to be maximized for an optimal stimulation effect of the motor cortex. In order to obtain maximum stimulation effect in areas other than the motor cortex, the electric field perpendicular to the cortical surface in those areas has to be maximized as well. Small orientation changes (10 degrees) do not alter the induced electric field drastically. The results suggest that for all cortical targets, maximizing the strength of the electric field perpendicular to the targeted cortical surface area (and inward directed) optimizes the effect of TMS. Orienting the TMS coil based on anatomical information (anatomical magnetic resonance imaging data) about the targeted brain area can improve future results. The standard coil orientations, used in cognitive and clinical neuroscience, induce (near) optimal electric fields in the subject-specific head model in

  2. Consideration of magnetically-induced and conservative electric fields within a loaded gradient coil.

    PubMed

    Mao, Weihua; Chronik, Blaine A; Feldman, Rebecca E; Smith, Michael B; Collins, Christopher M

    2006-06-01

    We present a method to calculate the electric (E)-fields within and surrounding a human body in a gradient coil, including E-fields induced by the changing magnetic fields and "conservative" E-fields originating with the scalar electrical potential in the coil windings. In agreement with previous numerical calculations, it is shown that magnetically-induced E-fields within the human body show no real concentration near the surface of the body, where nerve stimulation most often occurs. Both the magnetically-induced and conservative E-fields are shown to be considerably stronger just outside the human body than inside it, and under some circumstances the conservative E-fields just outside the body can be much larger than the magnetically-induced E-fields there. The order of gradient winding and the presence of conductive RF shield can greatly affect the conservative E-field distribution in these cases. Though the E-fields against the outer surface of the body are not commonly considered, understanding gradient E-fields may be important for reasons other than peripheral nerve stimulation (PNS), such as potential interaction with electrical equipment. Copyright 2006 Wiley-Liss, Inc.

  3. High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging

    PubMed Central

    Daily, Neil J.; Du, Zhong-Wei

    2017-01-01

    Abstract Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments. PMID:28525289

  4. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    PubMed

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  5. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  6. Basic and functional effects of transcranial Electrical Stimulation (tES)-An introduction.

    PubMed

    Yavari, Fatemeh; Jamil, Asif; Mosayebi Samani, Mohsen; Vidor, Liliane Pinto; Nitsche, Michael A

    2018-02-01

    Non-invasive brain stimulation (NIBS) has been gaining increased popularity in human neuroscience research during the last years. Among the emerging NIBS tools is transcranial electrical stimulation (tES), whose main modalities are transcranial direct, and alternating current stimulation (tDCS, tACS). In tES, a small current (usually less than 3mA) is delivered through the scalp. Depending on its shape, density, and duration, the applied current induces acute or long-lasting effects on excitability and activity of cerebral regions, and brain networks. tES is increasingly applied in different domains to (a) explore human brain physiology with regard to plasticity, and brain oscillations, (b) explore the impact of brain physiology on cognitive processes, and (c) treat clinical symptoms in neurological and psychiatric diseases. In this review, we give a broad overview of the main mechanisms and applications of these brain stimulation tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Electric fields in hippocampus due to transcranial focal electrical stimulation via concentric ring electrodes.

    PubMed

    Besio, Walter G; Hadidi, Ruba; Makeyev, Oleksandr; Luna-Munguía, Hiram; Rocha, Luisa

    2011-01-01

    As epilepsy affects approximately one percent of the world population, electrical stimulation of brain has recently shown potential as an additive seizure control therapy. In this study we applied focal transcranial electrical stimulation (TFS) on the surface of the skull of rats via concentric ring electrodes. We recorded electric potentials with a bipolar electrode consisting of two stainless steel wires implanted into the left ventral hippocampus. TFS current was gradually increased by 20% starting at 103 μA allowing us to assess the relationship between TFS current and both potentials recorded from the bipolar electrode and the resulting electric field. Generally, increases in TFS current resulted in increases in the electric field. This allows us to estimate what extra-cranial TFS current would be sufficient to cause the activation of neurons in the hippocampus.

  8. Right median nerve electrical stimulation for acute traumatic coma (the Asia Coma Electrical Stimulation trial): study protocol for a randomised controlled trial.

    PubMed

    Wu, Xiang; Zhang, Chao; Feng, Junfeng; Mao, Qing; Gao, Guoyi; Jiang, Jiyao

    2017-07-10

    Traumatic brain injury (TBI) has become the most common cause of death and disability in persons between 15 and 30 years of age, and about 10-15% of patients affected by TBI will end up in a coma. Coma caused by TBI presents a significant challenge to neuroscientists. Right median nerve electrical stimulation has been reported as a simple, inexpensive, non-invasive technique to speed recovery and improve outcomes for traumatic comatose patients. This multicentre, prospective, randomised (1:1) controlled trial aims to demonstrate the efficacy and safety of electrical right median nerve stimulation (RMNS) in both accelerating emergence from coma and promoting long-term outcomes. This trial aims to enrol 380 TBI comatose patients to partake in either an electrical stimulation group or a non-stimulation group. Patients assigned to the stimulation group will receive RMNS in addition to standard treatment at an amplitude of 15-20 mA with a pulse width of 300 μs at 40 Hz ON for 20 s and OFF for 40 s. The electrical treatment will last for 8 h per day for 2 weeks. The primary endpoint will be the percentage of patients regaining consciousness 6 months after injury. The secondary endpoints will be Extended Glasgow Outcome Scale, Coma Recovery Scale-Revised and Disability Rating Scale scores at 28 days, 3 months and 6 months after injury; Glasgow Coma Scale, Glasgow Coma Scale Motor Part and Full Outline of Unresponsiveness scale scores on day 1 and day 7 after enrolment and 28 days, 3 months and 6 months after injury; duration of unconsciousness and mechanical ventilation; length of intensive care unit and hospital stays; and incidence of adverse events. Right median nerve electrical stimulation has been used as a safe, inexpensive, non-invasive therapy for neuroresuscitation of coma patients for more than two decades, yet no trial has robustly proven the efficacy and safety of this treatment. The Asia Coma Electrical Stimulation (ACES) trial has the

  9. Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

    PubMed

    Tsuji, Kojun; Tsujimura, Takanori; Magara, Jin; Sakai, Shogo; Nakamura, Yuki; Inoue, Makoto

    2015-02-01

    The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    PubMed

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  11. Spinal cord stimulation suppresses bradycardias and atrial tachyarrhythmias induced by mediastinal nerve stimulation in dogs.

    PubMed

    Cardinal, René; Pagé, Pierre; Vermeulen, Michel; Bouchard, Caroline; Ardell, Jeffrey L; Foreman, Robert D; Armour, J Andrew

    2006-11-01

    Spinal cord stimulation (SCS) applied to the dorsal aspect of the cranial thoracic cord imparts cardioprotection under conditions of neuronally dependent cardiac stress. This study investigated whether neuronally induced atrial arrhythmias can be modulated by SCS. In 16 anesthetized dogs with intact stellate ganglia and in five with bilateral stellectomy, trains of five electrical stimuli were delivered during the atrial refractory period to right- or left-sided mediastinal nerves for up to 20 s before and after SCS (20 min). Recordings were obtained from 191 biatrial epicardial sites. Before SCS (11 animals), mediastinal nerve stimulation initiated bradycardia alone (12 nerve sites), bradycardia followed by tachyarrhythmia/fibrillation (50 sites), as well as tachyarrhythmia/fibrillation without a preceding bradycardia (21 sites). After SCS, the number of responsive sites inducing bradycardia was reduced by 25% (62 to 47 sites), and the cycle length prolongation in residual bradycardias was reduced. The number of responsive sites inducing tachyarrhythmia was reduced by 60% (71 to 29 sites). Once elicited, residual tachyarrhythmias arose from similar epicardial foci, displaying similar dynamics (cycle length) as in control states. In the absence of SCS, bradycardias and tachyarrhythmias induced by repeat nerve stimulation were reproducible (five additional animals). After bilateral stellectomy, SCS no longer influenced neuronal induction of bradycardia and atrial tachyarrhythmias. These data indicate that SCS obtunds the induction of atrial arrhythmias resulting from excessive activation of intrinsic cardiac neurons and that such protective effects depend on the integrity of nerves coursing via the subclavian ansae and stellate ganglia.

  12. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols.

    PubMed

    Klooster, D C W; de Louw, A J A; Aldenkamp, A P; Besseling, R M H; Mestrom, R M C; Carrette, S; Zinger, S; Bergmans, J W M; Mess, W H; Vonck, K; Carrette, E; Breuer, L E M; Bernas, A; Tijhuis, A G; Boon, P

    2016-06-01

    Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats.

    PubMed

    Lyubashina, Olga A; Panteleev, Sergey S; Sokolov, Alexey Y

    2017-02-01

    Electrical stimulation of the greater occipital nerve (GON) has recently shown promise as an effective non-pharmacological prophylactic therapy for drug-resistant chronic primary headaches, but the neurobiological mechanisms underlying its anticephalgic action are not elucidated. Considering that the spinal trigeminal nucleus (STN) is a key segmental structure playing a prominent role in pathophysiology of headaches, in the present study we evaluated the effects of GON electrical stimulation on ongoing and evoked firing of the dura-sensitive STN neurons. The experiments were carried out on urethane/chloralose-anesthetized, paralyzed and artificially ventilated male Wistar rats. Extracellular recordings were made from 11 neurons within the caudal part of the STN that received convergent input from the ipsilateral facial cutaneous receptive fields, dura mater and GON. In each experiment, five various combinations of the GON stimulation frequency (50, 75, 100 Hz) and intensity (1, 3, 6 V) were tested successively in 10 min interval. At all parameter sets, preconditioning GON stimulation (250 ms train of pulses applied before each recording) produced suppression of both the ongoing activity of the STN neurons and their responses to electrical stimulation of the dura mater. The inhibitory effect depended mostly on the GON stimulation intensity, being maximally pronounced when a stimulus of 6 V was applied. Thus, the GON stimulation-induced inhibition of trigeminovascular nociceptive processing at the level of STN has been demonstrated for the first time. The data obtained can contribute to a deeper understanding of neurophysiological mechanisms underlying the therapeutic efficacy of GON stimulation in primary headaches.

  14. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Molteni, Franco

    2011-04-01

    This study assessed whether cycling induced by functional electrical stimulation (FES) was more effective than passive cycling with placebo stimulation in promoting motor recovery and walking ability in postacute hemiparetic patients. In a double-blind, randomized, controlled trial, 35 patients were included and randomized to receive FES-induced cycling training or placebo FES cycling. The 4-week treatment consisted of 20 sessions lasting 25 minutes each. Primary outcome measures included the leg subscale of the Motricity Index and gait speed during a 50-meter walking test. Secondary outcomes were the Trunk Control Test, the Upright Motor Control Test, the mean work produced by the paretic leg, and the unbalance in mechanical work between paretic and nonparetic legs during voluntary pedaling. Participants were evaluated before training, after training, and at 3- to 5-month follow-up visits. No significant differences were found between groups at baseline. Repeated-measures ANOVA (P<0.05) revealed significant increases in Motricity Index, Trunk Control Test, Upright Motor Control Test, gait speed, and mean work of the paretic leg after training and at follow-up assessments for FES-treated patients. No outcome measures demonstrated significant improvements after training in the placebo group. Both groups showed no significant differences between assessments after training and at follow-up. A main effect favoring FES-treated patients was demonstrated by repeated-measures ANCOVA for Motricity Index (P<0.001), Trunk Control Test (P=0.001), Upright Motor Control Test (P=0.005), and pedaling unbalance (P=0.038). The study demonstrated that 20 sessions of FES cycling training significantly improved lower extremity motor functions and accelerated the recovery of overground locomotion in postacute hemiparetic patients. Improvements were maintained at follow-up.

  15. Effects of electrical stimulation on the histological properties of wounds in diabetic mice.

    PubMed

    Thawer, H A; Houghton, P E

    2001-01-01

    The purpose of this study was to identify mechanisms underlying electrically stimulated wound closure in diabetic mice. Adult male mice (n = 58) with full-thickness excisional wounds were treated five times using negative polarity over the wound site for 15 minutes each over a 16-day period with sham (0 Volts) or 5.0, 10.0, 12.5 Volts. In addition, animals (diabetic (n = 33) and nondiabetic (n = 22)) received treatments of electrical stimulation (12.5 V), or sham treatment (0 V) at wound sites which were then harvested and prepared for histological analysis at 2, 8, and 16 days postwounding. Using computerized image analysis of sections stained with a picro sirus red-fast green staining technique, we found that increasing doses of electrical stimulation reduced collagen/noncollagenous protein ratios measured in the superficial scar of nondiabetic animals, with no effect in diabetic animals. In the deep scar, lower doses of electrical stimulation (5.0 V) produced significantly (p < 0.01) increased collagen deposition in wounds of nondiabetic animals compared with sham controls. Higher doses of electrical stimulation (12.5 V) were required to produce changes in diabetic animals than were observed in nondiabetic animals. These results suggest that electrical stimulation altered collagen deposition in excisional wounds of diabetic and nondiabetic animals. Electrical stimulation had a differential effect on wound healing in diabetic compared with nondiabetic animals. These data speak to the need to study the effects of electrical stimulation on healing in disease-specific models.

  16. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke.

    PubMed

    Byeon, Haewon; Koh, Hyeung Woo

    2016-06-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study's findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia.

  17. Comparison of treatment effect of neuromuscular electrical stimulation and thermal-tactile stimulation on patients with sub-acute dysphagia caused by stroke

    PubMed Central

    Byeon, Haewon; Koh, Hyeung Woo

    2016-01-01

    [Purpose] The effectiveness of neuromuscular electrical stimulation in the rehabilitation of swallowing remains controversial. This study compared the effectiveness of neuromuscular electrical stimulation and thermal tactile oral stimulation, a traditional swallowing recovery treatment, in patients with sub-acute dysphagia caused by stroke. [Subjects and Methods] Subjects of the present study were 55 patients diagnosed with dysphagia caused by stroke. This study had a nonequivalent control group pretest-posttest design. [Results] Analysis of pre-post values of videofluoroscopic studies of the neuromuscular electrical stimulation and thermal tactile oral stimulation groups using a paired t-test showed no significant difference between the two groups despite both having decreased mean values of the videofluoroscopic studies after treatment. [Conclusion] This study’s findings show that both neuromuscular electrical stimulation and thermal tactile oral stimulation significantly enhanced the swallowing function of patients with sub-acute dysphagia. PMID:27390421

  18. Economic substitutability of electrical brain stimulation, food, and water.

    PubMed Central

    Green, L; Rachlin, H

    1991-01-01

    Concurrent variable-ratio schedules of electrical brain stimulation, food, and water were paired in various combinations as reinforcement of rats' lever presses. Relative prices of the concurrent reinforcers were varied by changing the ratio of the response requirements on the two levers. Economic substitutability, measured by the sensitivity of response ratio to changes in relative price, was highest with brain stimulation reinforcement of presses on both levers and lowest with food reinforcement of presses on one lever and water reinforcement of presses on the other. Substitutability with brain stimulation reinforcement of presses on one lever and either food or water reinforcement for presses on the other was about as high as with brain stimulation for presses on both levers. Electrical brain stimulation for rats may thus serve as an economic substitute for two reinforcers, neither of which is substitutable for the other. PMID:2037823

  19. Neuromuscular electric stimulation in patellofemoral dysfunction: literature review

    PubMed Central

    dos Santos, Ricardo Lucas; Souza, Márcia Leal São Pedro; dos Santos, Fernanda Andrade

    2013-01-01

    Patellofemoral dysfunction is a fairly common deficiency among young individuals that primarily affects females and may be characterized by pain, swelling and retropatellar crepitation. The purpose of this review of literature from the period between 2005 and 2011 was to systematize knowledge in relation to the increase in quadriceps muscle strength and pain relief in patients with patellofemoral dysfunction, using neuromuscular electrical stimulation and resistance exercises. The inclusion criteria were intervention articles from the past six years, in English, Spanish and Portuguese, which used muscle strengthening and neuromuscular electrical stimulation for rehabilitation obtained through searches in the electronic databases Medline and Lilacs and in the Bireme library. The bibliographic search yielded 28 references, of which nine were excluded in accordance with the aims and inclusion criteria while 16 articles were selected for reading of the abstracts and subsequent analysis. Mediumfrequency Neuromuscular Electrical Stimulation (NMES) can be used in association with resistance exercises as an adjuvant in the treatment of patellofemoral dysfunction (PFD), both to achieve muscle rebalance and for pain relief. PMID:24453645

  20. Asymmetrical electrically induced injury of rabbit ventricular myocytes.

    PubMed

    Knisley, S B; Grant, A O

    1995-05-01

    Strong defibrillation-type electric field stimulation may injure myocytes when transmembrane potentials during the pulse exceed the threshold for membrane permeabilization. The location of injury may depend on intrinsic transmembrane potential or influx of calcium by "electro-osmosis" during the stimulation pulse in addition to the transmembrane potential changes induced by the pulse. We have studied injury by examining contracture and changes in transmembrane potential-sensitive dye fluorescence induced by electric field stimulation (St) with a duration of 20 ms and strength of 16-400 V/cm in isolated rabbit ventricular myocytes. St of 100-150 V/cm produced injury in myocytes oriented parallel to the St field frequently without injuring myocytes oriented perpendicular to the field. Injury required calcium in the solution and was asymmetric, occurring first at the myocyte and facing the St anode in 100% of injured myocytes in normal Tyrode's solution. Injury depended significantly on whether the product of the electric field strength and myocyte length exceeded a threshold of 1.1 V (P < 0.05). Asymmetric injury at the end facing the anode was still present in 96% of injured myocytes for stimulation after depolarization by an action potential or 20 mM or 125 mM potassium, suggesting that intrinsic transmembrane potential is not responsible for asymmetry. In 125 mM potassium, eliminating calcium from the bathing solution during the St pulse and introducing calcium after the pulse decreased the fraction of injured myocytes in which injury occurred at the end facing the anode to 62%, suggesting that calcium influx by "electro-osmosis" at the myocyte end facing the anode contributes to asymmetry. Asymmetric injury at the end facing the anode was still present in 100% of injured myocytes after adding 1 mM tetraethylammonium chloride, indicating that asymmetry is not sensitive to the potassium channel blockade. For stimulation pulses stronger than 50 V/cm given after

  1. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices.

    PubMed

    Lopez-de la Fuente, M S; Moncada-Hernandez, H; Perez-Gonzalez, V H; Lapizco-Encinas, B H; Martinez-Chapa, S O

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  2. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  3. Electric-field-stimulated protein mechanics

    PubMed Central

    Hekstra, Doeke R.; White, K. Ian; Socolich, Michael A.; Henning, Robert W.; Šrajer, Vukica; Ranganathan, Rama

    2017-01-01

    The internal mechanics of proteins—the coordinated motions of amino acids and the pattern of forces constraining these motions—connects protein structure to function. Here we describe a new method combining the application of strong electric field pulses to protein crystals with time-resolved X-ray crystallography to observe conformational changes in spatial and temporal detail. Using a human PDZ domain (LNX2PDZ2) as a model system, we show that protein crystals tolerate electric field pulses strong enough to drive concerted motions on the sub-microsecond timescale. The induced motions are subtle, involve diverse physical mechanisms, and occur throughout the protein structure. The global pattern of electric-field-induced motions is consistent with both local and allosteric conformational changes naturally induced by ligand binding, including at conserved functional sites in the PDZ domain family. This work lays the foundation for comprehensive experimental study of the mechanical basis of protein function. PMID:27926732

  4. [Functional electric stimulation (FES) in cerebral palsy].

    PubMed

    Miyazaki, M H; Lourenção, M I; Ribeiro Sobrinho, J B; Battistella, L R

    1992-01-01

    Our study concerns a patient with cerebral palsy, submitted to conventional occupational therapy and functional electrical stimulation. The results as to manual ability, spasticity, sensibility and synkinesis were satisfactory.

  5. Electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induces involuntary reflex contraction of the frontalis muscles.

    PubMed

    Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya

    2013-02-01

    The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.

  6. Electrical stimulation of anal sphincter or pudendal nerve improves anal sphincter pressure.

    PubMed

    Damaser, Margot S; Salcedo, Levilester; Wang, Guangjian; Zaszczurynski, Paul; Cruz, Michelle A; Butler, Robert S; Jiang, Hai-Hong; Zutshi, Massarat

    2012-12-01

    Stimulation of the pudendal nerve or the anal sphincter could provide therapeutic options for fecal incontinence with little involvement of other organs. The goal of this project was to assess the effects of pudendal nerve and anal sphincter stimulation on bladder and anal pressures. Ten virgin female Sprague Dawley rats were randomly allocated to control (n = 2), perianal stimulation (n = 4), and pudendal nerve stimulation (n = 4) groups. A monopolar electrode was hooked to the pudendal nerve or placed on the anal sphincter. Aballoon catheter was inserted into the anus to measure anal pressure, and a catheter was inserted into the bladder via the urethra to measure bladder pressure. Bladder and anal pressures were measured with different electrical stimulation parameters and different timing of electrical stimulation relative to spontaneous anal sphincter contractions. Increasing stimulation current had the most dramatic effect on both anal and bladder pressures. An immediate increase in anal pressure was observed when stimulating either the anal sphincter or the pudendal nerve at stimulation values of 1 mA or 2 mA. No increase in anal pressure was observed for lower current values. Bladder pressure increased at high current during anal sphincter stimulation, but not as much as during pudendal nerve stimulation. Increased bladder pressure during anal sphincter stimulation was due to contraction of the abdominal muscles. Electrical stimulation caused an increase in anal pressures with bladder involvement only at high current. These initial results suggest that electrical stimulation can increase anal sphincter pressure, enhancing continence control.

  7. MRI-induced heating of deep brain stimulation leads

    NASA Astrophysics Data System (ADS)

    Mohsin, Syed A.; Sheikh, Noor M.; Saeed, Usman

    2008-10-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  8. Does preoperative electrical stimulation of the skin alter the healing process?

    PubMed

    Borba, Graziela C; Hochman, Bernardo; Liebano, Richard E; Enokihara, Milvia M S S; Ferreira, Lydia M

    2011-04-01

    In vitro studies have demonstrated that electrical current may affect fibroblast proliferation and synthesis of collagen fibers. In humans, the application of electrical current by positioning the positive electrode on skin wounds resulted in thinner hypertrophic scars. The aim of this study was to evaluate the effects of preoperative electrical stimulation on cutaneous wound healing in rats. Forty rats were divided into two groups of 20 animals each. In the control group, an incision was made on the back of the animals. In the stimulation group, a preoperative electrical stimulation was applied using a rectangular pulse current at a frequency of 7.7 Hz, and intensity of 8 mA, for 30 min, with the positive electrode placed on the back of the animal, and the negative electrode placed on the abdominal wall. Following, an incision was made on their back. Biopsy was carried out on postoperative day 7 and 14, and histologic analysis was performed. The number of newly formed vessels, fibroblasts, and type III collagen fibers in the stimulation group on postoperative day 7 were greater than those in the control group. Preoperative positive-polarity electrical stimulation positively affects angiogenesis and fibroblast proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. High-Frequency Transcutaneous Peripheral Nerve Stimulation Induces a Higher Increase of Heat Pain Threshold in the Cutaneous Area of the Stimulated Nerve When Confronted to the Neighbouring Areas

    PubMed Central

    Buonocore, M.; Camuzzini, N.; Cecini, M.; Dalla Toffola, E.

    2013-01-01

    Background. TENS (transcutaneous electrical nerve stimulation) is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females) underwent three different sessions: in two, heat pain thresholds (HPTs) were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec) of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application. PMID:24027756

  10. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation.

    PubMed

    Wunder, Sophia; Hunold, Alexander; Fiedler, Patrique; Schlegelmilch, Falk; Schellhorn, Klaus; Haueisen, Jens

    2018-05-08

    Neuromodulation induced by transcranial electric stimulation (TES) exhibited promising potential for clinical practice. However, the underlying mechanisms remain subject of research. The combination of TES and electroencephalography (EEG) offers great potential for investigating these mechanisms and brain function in general, especially when performed simultaneously. In conventional applications, the combination of EEG and TES suffers from limitations on the electrode level (gel for electrode-skin interface) and the usability level (preparation time, reproducibility of positioning). To overcome these limitations, we designed a bifunctional cap for simultaneous TES-EEG applications. We used novel electrode materials, namely textile stimulation electrodes and dry EEG electrodes integrated in a flexible textile cap. We verified the functionality of this cap by analysing the effect of TES on visual evoked potentials (VEPs). In accordance with previous reports using standard TES, the amplitude of the N75 component was significantly decreased post-stimulation, indicating the feasibility of using this novel flexible cap for simultaneous TES and EEG. Further, we found a significant reduction of the P100 component only during TES, indicating a different brain modulation effect during and after TES. In conclusion, the novel bifunctional cap offers a novel tool for simultaneous TES-EEG applications in clinical research, therapy monitoring and closed-loop stimulation.

  11. Topical hyperbaric oxygen and electrical stimulation: exploring potential synergy.

    PubMed

    Edsberg, Laura E; Brogan, Michael S; Jaynes, C David; Fries, Kristin

    2002-11-01

    Treatment of chronic wounds involves interventions ranging from dressings to surgery. Modalities gaining popularity in clinical settings include topical hyperbaric oxygen and electrical stimulation. A prospective, uncontrolled study was conducted to obtain preliminary observations and data about the effects of topical hyperbaric oxygen therapy and topical hyperbaric oxygen used with electrical stimulation on the healing of chronic wounds. All subjects were geriatric residents of long-term care facilities with Stage III or Stage IV pressure ulcers. Topical hyperbaric oxygen was applied daily to the wounds of eight subjects; three also received electrical stimulation. Initial wound size ranged from 87.75 cm2 to 7.04 cm2 with an average size of 30.1 +/- 28.5 (mean +/- sd) cm2. Healing times ranged from 8 to 49 weeks. After 4 weeks of treatment with topical hyperbaric oxygen, wound size decreased an average of 34.4% +/- 22.9%. Incidentally, the wounds of five of the eight subjects decreased more than 20%, for an average of 51.8% +/- 17.9%. No significant differences in healing were observed between patients receiving topical hyperbaric oxygen alone and those receiving topical hyperbaric oxygen/electrical stimulation. Preliminary data indicate that topical hyperbaric oxygen facilitates wound healing and full closure for pressure ulcers in patients with and without diabetes mellitus. A multicenter, prospective, randomized, double-blind controlled study is currently under way.

  12. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  13. Deep Brain Electrical Stimulation in Epilepsy

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  14. Transcutaneous Electrical Nerve Stimulation Combined with Oxybutynin is Superior to Monotherapy in Children with Urge Incontinence: A Randomized, Placebo Controlled Study.

    PubMed

    Borch, Luise; Hagstroem, Soeren; Kamperis, Konstantinos; Siggaard, C V; Rittig, Soeren

    2017-08-01

    . Furthermore, transcutaneous electrical nerve stimulation was associated with a decreased risk of oxybutynin induced post-void residual urine greater than 20 ml. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2017-10-01

    expected. Statistics: Comparisons were analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...2016 – 29 Sep 2017 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic

  16. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage PRINCIPAL...DATES COVERED 30 Sep 2014 – 29 Sep 2015 4. TITLE AND SUBTITLE Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage...instability, among other traumatic affections of joints, and occupations or sports that subject joints to high levels of impact and torsional loading

  17. Modeling transcranial magnetic stimulation from the induced electric fields to the membrane potentials along tractography-based white matter fiber tracts

    NASA Astrophysics Data System (ADS)

    De Geeter, Nele; Dupré, Luc; Crevecoeur, Guillaume

    2016-04-01

    Objective. Transcranial magnetic stimulation (TMS) is a promising non-invasive tool for modulating the brain activity. Despite the widespread therapeutic and diagnostic use of TMS in neurology and psychiatry, its observed response remains hard to predict, limiting its further development and applications. Although the stimulation intensity is always maximum at the cortical surface near the coil, experiments reveal that TMS can affect deeper brain regions as well. Approach. The explanation of this spread might be found in the white matter fiber tracts, connecting cortical and subcortical structures. When applying an electric field on neurons, their membrane potential is altered. If this change is significant, more likely near the TMS coil, action potentials might be initiated and propagated along the fiber tracts towards deeper regions. In order to understand and apply TMS more effectively, it is important to capture and account for this interaction as accurately as possible. Therefore, we compute, next to the induced electric fields in the brain, the spatial distribution of the membrane potentials along the fiber tracts and its temporal dynamics. Main results. This paper introduces a computational TMS model in which electromagnetism and neurophysiology are combined. Realistic geometry and tissue anisotropy are included using magnetic resonance imaging and targeted white matter fiber tracts are traced using tractography based on diffusion tensor imaging. The position and orientation of the coil can directly be retrieved from the neuronavigation system. Incorporating these features warrants both patient- and case-specific results. Significance. The presented model gives insight in the activity propagation through the brain and can therefore explain the observed clinical responses to TMS and their inter- and/or intra-subject variability. We aspire to advance towards an accurate, flexible and personalized TMS model that helps to understand stimulation in the connected

  18. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    PubMed

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  20. The effect of surface electrical stimulation on swallowing in dysphagic Parkinson patients.

    PubMed

    Baijens, Laura W J; Speyer, Renée; Passos, Valeria Lima; Pilz, Walmari; Roodenburg, Nel; Clavé, Père

    2012-12-01

    Surface electrical stimulation has been applied on a large scale to treat oropharyngeal dysphagia. Patients suffering from oropharyngeal dysphagia in the presence of Parkinson's disease have been treated with surface electrical stimulation. Because of controversial reports on this treatment, a pilot study was set up. This study describes the effects of a single session of surface electrical stimulation using different electrode positions in ten patients with idiopathic Parkinson's disease (median Hoehn and Yahr score: II) and oropharyngeal dysphagia compared to ten age- and gender-matched healthy control subjects during videofluoroscopy of swallowing. Three different electrode positions were applied in random order per subject. For each electrode position, the electrical current was respectively turned "on" and "off" in random order. Temporal, spatial, and visuoperceptual variables were scored by experienced raters who were blinded to the group, electrode position, and status (on/off) of the electrical current. Interrater and interrater reliabilities were calculated. Only a few significant effects of a single session of surface electrical stimulation using different electrode positions in dysphagic Parkinson patients could be observed in this study. Furthermore, significant results for temporal and spatial variables were found regardless of the status of the electrical current in both groups suggesting placebo effects. Following adjustment for electrical current status as well as electrode positions (both not significant, P > 0.05) in the statistical model, significant group differences between Parkinson patients and healthy control subjects emerged. Further studies are necessary to evaluate the potential therapeutic effect and mechanism of electrical stimulation in dysphagic patients with Parkinson's disease.

  1. Fatigue-induced changes in group IV muscle afferent activity: differences between high- and low-frequency electrically induced fatigues.

    PubMed

    Darques, J L; Jammes, Y

    1997-03-07

    Recordings of group IV afferent activity of tibialis anterior muscle were performed in paralysed rabbits during runs of electrically induced fatigue produced by direct muscle stimulation at a high (100 Hz, high-frequency fatigue HFF) or a low rate (10 Hz, low-frequency fatigue LFF). In addition to analysis of afferent nerve action potentials, muscle force and compound muscle action potentials (M waves) elicited by direct muscle stimulation with single shocks were recorded. Changes in M wave configuration were used as an index of the altered propagation of membrane potentials and the associated efflux of potassium from muscle fibers. The data show that increased group IV afferent activity occurred during LFF as well as HFF trials and developed parallel with force failure. Enhanced afferent activity was significantly higher during LFF (maximal delta f(impulses) = 249 +/- 35%) than HFF (147 +/- 45%). No correlation was obtained between the responses of group IV afferents to LFF or to pressure exerted on tibialis anterior muscle. On the other hand, decreased M wave amplitude was minimal with LFF while it was pronounced with HFF. Close correlations were found between fatigue-induced activation of group IV afferents and decreases in force or M wave amplitude, but their strength was significantly higher with LFF compared to HFF. Thus, electrically induced fatigue activates group IV muscle afferents with a prominent effect of low-frequency stimulation. The mechanism of muscle afferent stimulation does not seem to be due to the sole increase in extracellular potassium concentration, but also by the efflux of muscle metabolites, present during fatiguing contractions at low rate of stimulation.

  2. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  3. Electrical stimulation superimposed onto voluntary muscular contraction.

    PubMed

    Paillard, Thierry; Noé, Frédéric; Passelergue, Philippe; Dupui, Philippe

    2005-01-01

    Electrical stimulation (ES) reverses the order of recruitment of motor units (MU) observed with voluntary muscular contraction (VOL) since under ES, large MU are recruited before small MU. The superimposition of ES onto VOL (superimposed technique: application of an electrical stimulus during a voluntary muscle action) can theoretically activate more motor units than VOL performed alone, which can engender an increase of the contraction force. Two superimposed techniques can be used: (i) the twitch interpolation technique (ITT), which consists of interjecting an electrical stimulus onto the muscle nerve; and (ii) the percutaneous superimposed electrical stimulation technique (PST), where the stimulation is applied to the muscle belly. These two superimposed techniques can be used to evaluate the ability to fully activate a muscle. They can thus be employed to distinguish the central or peripheral nature of fatigue after exhausting exercise. In general, whatever the technique employed, the superimposition of ES onto volitional exercise does not recruit more MU than VOL, except with eccentric actions. Nevertheless, the neuromuscular response associated with the use of the superimposed technique (ITT and PST) depends on the parameter of the superimposed current. The sex and the training level of the subjects can also modify the physiological impact of the superimposed technique. Although the motor control differs drastically between training with ES and VOL, the integration of the superimposed technique in training programmes with healthy subjects does not reveal significant benefits compared with programmes performed only with voluntary exercises. Nevertheless, in a therapeutic context, training programmes using ES superimposition compensate volume and muscle strength deficit with more efficiency than programmes using VOL or ES separately.

  4. Effects of Electrical and Optogenetic Deep Brain Stimulation on Synchronized Oscillatory Activity in Parkinsonian Basal Ganglia.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Cheung, Chung C; Rubchinsky, Leonid L

    2017-11-01

    Conventional deep brain stimulation of basal ganglia uses high-frequency regular electrical pulses to treat Parkinsonian motor symptoms but has a series of limitations. Relatively new and not yet clinically tested, optogenetic stimulation is an effective experimental stimulation technique to affect pathological network dynamics. We compared the effects of electrical and optogenetic stimulation of the basal gangliaon the pathologicalParkinsonian rhythmic neural activity. We studied the network response to electrical stimulation and excitatory and inhibitory optogenetic stimulations. Different stimulations exhibit different interactions with pathological activity in the network. We studied these interactions for different network and stimulation parameter values. Optogenetic stimulation was found to be more efficient than electrical stimulation in suppressing pathological rhythmicity. Our findings indicate that optogenetic control of neural synchrony may be more efficacious than electrical control because of the different ways of how stimulations interact with network dynamics.

  5. A patient-controlled functional electrical stimulation system for arm weight relief.

    PubMed

    Klauer, C; Ferrante, S; Ambrosini, E; Shiri, U; Dähne, F; Schmehl, I; Pedrocchi, A; Schauer, T

    2016-11-01

    A patient-driven control strategy for Functional Electrical Stimulation (FES), which amplifies volitionally-initiated shoulder abductions, is proposed to improve stroke patients' rehabilitation. Based on the measured abduction angle, a FES-induced muscle recruitment is generated that yields a pre-specified percentage of this angle - yielding arm weight relief. To guarantee the correct recruitment also under fatigue and uncertain muscle activation we employ feedback control of the recruitment level determined by filtering the FES-evoked electromyogram. Filter parameters are user-optimized to obtain a linear relation between filter output and angle with a good signal-to-noise ratio. The auto-tuned recruitment controller (RC) was tested on five healthy subjects and compared to direct stimulation (DS) while muscle fatigue progressively occurred. Results showed a more linear relation between recruitment level and angle than between non-controlled stimulation intensity and angle (R 2 =0.93 vs. R 2 =0.79, angular range of 54°). After 6 min of stimulation, abduction decreased by 42% ± 14 for DS and by 0% ± 12 for RC, showing an effective compensation of fatigue. RC yielded significant smaller errors than DS in generating desired angles (0.23% ± 5.9 vs. 14.6% ± 9.7). When FES-induced arm weight support was provided, a mean reduction of the volitional effort (determined by Electromyography) of 78% was achieved compared to angular tracking without FES. First experiments with one acute stroke patient are also reported. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Transcutaneous Electrical Nerve Stimulation: Research Update.

    ERIC Educational Resources Information Center

    Johns, Florene Carnicelli

    Currently, research is being performed in the area of nonsurgical and nonchemical means for influencing the body's threshold for pain. Today, transcutaneous electrical nerve stimulation (TENS) is being widely used for this purpose. Application of this treatment can be confusing, however, because determining such things as selection of the proper…

  7. Surgical treatment of insular tumours with tractography, functional magnetic resonance imaging, transcranial electrical stimulation and direct subcortical stimulation support.

    PubMed

    Majchrzak, Krzysztof; Bobek-Billewicz, Barbara; Tymowski, Michał; Adamczyk, Piotr; Majchrzak, Hneryk; Ladziński, Piotr

    2011-01-01

    Surgical treatment of insular tumours carries significant risks of limb paresis or speech disturbances due to their localization. The development of intraoperative neuromonitoring techniques that involve evoked motor potentials induced via both direct and transcranial cortical electrical stimulation as well as direct subcortical white matter stimulation, intraoperative application of preoperative tractography and functional magnetic resonance imaging (fMRI) in conjunction with neuronavigation resulted in significant reduction of postoperative disabilities that enabled widening of indications for surgical treatment. The aim of this study was to present the authors' own experience with surgical treatment of insular gliomas. Our cohort comprises 30 patients with insular gliomas treated at the Department of Neurosurgery in Sosnowiec. Clinical symptoms included sensorimotor partial seizures in 86.6%; generalized seizures in 23.3%; persistent headaches in 16.6% and hemiparesis in 6.6%. All the patients were operated on with intraoperative neuromonitoring that included transcranial cortical stimulation, direct subcortical white matter stimulation as well as tractography and fMRI concurrently with neuronavigation. The analysis in-cluded postoperative neurological evaluation along with the assessment of the radicalism of resection evaluated based on postoperative MRI. Postoperatively, four patients had permanent hemiparesis (13.3%); importantly, two out of those patients had preoperative deficits (6.6%). Persistent speech disturbances were present in four patients (13.3%). Partial sensorimotor seizures were noted in two patients (6.6%). Seizures in the other patients receded. Intraoperative transcranial electrical stimulation as well as direct subcortical white matter stimulation along with tractography (DTI) and fMRI facilitated gross total resection of insular gliomas in 53.5%, subtotal in 13.3% and partial resection in 33.1%. Implementation of TES, direct subcortical

  8. Transcutaneous electrical nerve stimulation effect on postoperative complications.

    PubMed

    Sezen, Celal Bugra; Akboga, Suleyman Anil; Celik, Ali; Kalafat, Cem Emrah; Tastepe, Abdullah Irfan

    2017-05-01

    Objectives Transcutaneous electrical nerve stimulation has been used to control post-thoracotomy pain, with conflicting results. We aimed to assess its efficacy on post-thoracotomy pain and early complications. Methods Between January 2012 and December 2014, 87 patients underwent a standard posterolateral thoracotomy and were randomized in 2 groups: group T was 43 patients who had transcutaneous electrical nerve stimulation and group C was 44 patients who had placebo stimulation with an inoperative device. Pain score was measured using a visual analogue scale ranging from 0 to 10. The frequency of the device was set at 100 Hz and pulse width at 100 ms. Results There were no statistically significant differences in the demographic characteristics of the 2 groups, and there was no difference in the duration of hospitalization (4.74 ± 1.6 vs. 5.23 ± 1.5 days; p = 0.06). Postoperative pain scores of the two groups showed that on postoperative day 0, 1, and 2, the mean pain scores of group T were significantly lower ( p = 0.001, p < 0.001, and p = 0.003). There were no significant differences in early complications or surgical technique. Conclusion We concluded that electrical stimulation is a safe and effective adjunctive therapy for acute post-thoracotomy pain control. However, it does not affect the duration of hospitalization or early pulmonary complications.

  9. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation.

    PubMed

    Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q

    2015-01-01

    Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  10. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  11. Preliminary results of sacral transcutaneous electrical nerve stimulation for fecal incontinence.

    PubMed

    Leung, Edmund; Francombe, James

    2013-03-01

    Fecal incontinence is a common debilitating condition. The aim of this study is to investigate the feasibility of sacral transcutaneous electrical nerve stimulation as an alternative treatment modality for fecal incontinence. All consecutive patients who presented with fecal incontinence to the senior author's clinic were prospectively recruited between June 2009 and September 2010. The severity of their fecal incontinence was assessed by the Wexner and Vaizey scores and anal physiology. Any improvement following a period of sacral transcutaneous electrical nerve stimulation treatment was determined by repeating the scores. In addition, patient satisfaction with the procedure was assessed by using a patient impression score. Twenty female patients with a median age of 57.5 years (range, 30-86) were evaluated. The median follow-up was 10 months (range, 5-12 months). Two patients did not record a change in their Vaizey score. The overall mean Wexner score was 7.9 ± 4.2 before in comparison with 4.0 ± 3.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 2.2-5.7, SE = 0.832). The overall mean Vaizey score was 12.7 ± 5.7 before in comparison with 5.8 ± 5.6 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 4.5-9.4, SE = 1.162). The pretreatment patient impression score was set at a mean of 1 ± 0 in comparison with 2.8 ± 1.1 after sacral transcutaneous electrical nerve stimulation treatment (p < 0.0001, CI = 1.2-2.3, SE = 0.25). The preliminary results suggest sacral transcutaneous electrical nerve stimulation is a promising noninvasive alternative to existing modalities in the treatment of idiopathic fecal incontinence.

  12. Effects of transcranial focal electrical stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced seizures in rats

    PubMed Central

    Besio, W.G.; Makeyev, O.; Medvedev, A.; Gale, K.

    2013-01-01

    Purpose To study the effects of noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCRE) on the electrographic and behavioral activity from pentylenetetrazole (PTZ)-induced seizures in rats. Methods The TCREs were attached to the rat scalp. PTZ was administered and, after the first myoclonic jerk was observed, TFS was applied to the TFS treated group. The electroencephalogram (EEG) and behavioral activity were recorded and studied. Results In the case of the TFS treated group, after TFS, there was a significant (p = 0.001) decrease in power compared to the control group in delta, theta, and alpha frequency bands. The number of myoclonic jerks was significantly different (p = 0.002) with median of 22 and 4.5 for the control group and the TFS treated groups, respectively. The duration of myoclonic activity was also significantly different (p= 0.031) with median of 17.56 min for the control group versus 8.63 min for the TFS treated group. At the same time there was no significant difference in seizure onset latency and maximal behavioral seizure activity score between control and TFS treated groups. Conclusions TFS via TCREs interrupted PTZ-induced seizures and electrographic activity was reduced towards the “baseline.” The significantly reduced electrographic power, number of myoclonic jerks, and duration of myoclonic activity of PTZ-induced seizures suggests that TFS may have an anticonvulsant effect. PMID:23290195

  13. Effects of transcranial focal electrical stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced seizures in rats.

    PubMed

    Besio, W G; Makeyev, O; Medvedev, A; Gale, K

    2013-07-01

    To study the effects of noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCRE) on the electrographic and behavioral activity from pentylenetetrazole (PTZ)-induced seizures in rats. The TCREs were attached to the rat scalp. PTZ was administered and, after the first myoclonic jerk was observed, TFS was applied to the TFS treated group. The electroencephalogram (EEG) and behavioral activity were recorded and studied. In the case of the TFS treated group, after TFS, there was a significant (p=0.001) decrease in power compared to the control group in delta, theta, and alpha frequency bands. The number of myoclonic jerks was significantly different (p=0.002) with median of 22 and 4.5 for the control group and the TFS treated groups, respectively. The duration of myoclonic activity was also significantly different (p=0.031) with median of 17.56 min for the control group versus 8.63 min for the TFS treated group. At the same time there was no significant difference in seizure onset latency and maximal behavioral seizure activity score between control and TFS treated groups. TFS via TCREs interrupted PTZ-induced seizures and electrographic activity was reduced toward the "baseline." The significantly reduced electrographic power, number of myoclonic jerks, and duration of myoclonic activity of PTZ-induced seizures suggests that TFS may have an anticonvulsant effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia.

    PubMed

    Deley, Gaëlle; Denuziller, Jérémy; Babault, Nicolas

    2015-01-01

    Regular exercise can be broadly beneficial to health and quality of life in humans with spinal cord injury (SCI). However, exercises must meet certain criteria, such as the intensity and muscle mass involved, to induce significant benefits. SCI patients can have difficulty achieving these exercise requirements since the paralysed muscles cannot contribute to overall oxygen consumption. One solution is functional electrical stimulation (FES) and, more importantly, hybrid training that combines volitional arm and electrically controlled contractions of the lower limb muscles. However, it might be rather complicated for therapists to use FES because of the wide variety of protocols that can be employed, such as stimulation parameters or movements induced. Moreover, although the short-term physiological and psychological responses during different types of FES exercises have been extensively reported, there are fewer data regarding the long-term effects of FES. Therefore, the purpose of this brief review is to provide a critical appraisal and synthesis of the literature on the use of FES for exercise in paraplegic individuals. After a short introduction underlying the importance of exercise for SCI patients, the main applications and effects of FES are reviewed and discussed. Major findings reveal an increased physiological demand during FES hybrid exercises as compared with arms only exercises. In addition, when repeated within a training period, FES exercises showed beneficial effects on muscle characteristics, force output, exercise capacity, bone mineral density and cardiovascular parameters. In conclusion, there appears to be promising evidence of beneficial effects of FES training, and particularly FES hybrid training, for paraplegic individuals.

  15. An Electrical Muscle Stimulation Suit for Increasing Blood Pressure

    DTIC Science & Technology

    2008-09-01

    an exploratory way in about 100 trials. Maximal indi- vidual stimulation intensity was selected to give a solid, tetanic muscle contraction without...therapy and in muscle strength training in athletes. However, if the electrical stimulation is too intense, the result will be muscle contraction pain...Each subject was instructed to have the investigator lower the intensity or stop the stimulation if muscle contraction pain was experienced

  16. Electrical and mechanical stimulation of cardiac cells and tissue constructs.

    PubMed

    Stoppel, Whitney L; Kaplan, David L; Black, Lauren D

    2016-01-15

    The field of cardiac tissue engineering has made significant strides over the last few decades, highlighted by the development of human cell derived constructs that have shown increasing functional maturity over time, particularly using bioreactor systems to stimulate the constructs. However, the functionality of these tissues is still unable to match that of native cardiac tissue and many of the stem-cell derived cardiomyocytes display an immature, fetal like phenotype. In this review, we seek to elucidate the biological underpinnings of both mechanical and electrical signaling, as identified via studies related to cardiac development and those related to an evaluation of cardiac disease progression. Next, we review the different types of bioreactors developed to individually deliver electrical and mechanical stimulation to cardiomyocytes in vitro in both two and three-dimensional tissue platforms. Reactors and culture conditions that promote functional cardiomyogenesis in vitro are also highlighted. We then cover the more recent work in the development of bioreactors that combine electrical and mechanical stimulation in order to mimic the complex signaling environment present in vivo. We conclude by offering our impressions on the important next steps for physiologically relevant mechanical and electrical stimulation of cardiac cells and engineered tissue in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  18. Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces

    PubMed Central

    Qian, Jing-guang; Rong, Ke; Qian, Zhenyun; Wen, Chen; Zhang, Songning

    2015-01-01

    [Purpose] The purpose of the study was to design and implement a multichannel dynamic functional electrical stimulation system and investigate acute effects of functional electrical stimulation of the tibialis anterior and rectus femoris on ankle and knee sagittal-plane kinematics and related muscle forces of hemiplegic gait. [Subjects and Methods] A multichannel dynamic electrical stimulation system was developed with 8-channel low frequency current generators. Eight male hemiplegic patients were trained for 4 weeks with electric stimulation of the tibia anterior and rectus femoris muscles during walking, which was coupled with active contraction. Kinematic data were collected, and muscle forces of the tibialis anterior and rectus femoris of the affected limbs were analyzed using a musculoskelatal modeling approach before and after training. A paired sample t-test was used to detect the differences between before and after training. [Results] The step length of the affected limb significantly increased after the stimulation was applied. The maximum dorsiflexion angle and maximum knee flexion angle of the affected limb were both increased significantly during stimulation. The maximum muscle forces of both the tibia anterior and rectus femoris increased significantly during stimulation compared with before functional electrical stimulation was applied. [Conclusion] This study established a functional electrical stimulation strategy based on hemiplegic gait analysis and musculoskeletal modeling. The multichannel functional electrical stimulation system successfully corrected foot drop and altered circumduction hemiplegic gait pattern. PMID:26696734

  19. Calculating the electric field in real human head by transcranial magnetic stimulation with shield plate

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2009-04-01

    In this paper, we present a transcranial magnetic stimulation (TMS) system by incorporating a conductive shield plate. The magnetic field, induced current density, and electric field in a real human head were calculated by impedance method and the results were compared with TMS without shielding. Our results show that the field localization can be improved by introducing a conductive shield plate; the stimulation magnitude (depth) in the brain is reduced comparing with the TMS without shielding. The strong magnetic field near the TMS coil is difficult to be efficiently shielded by a thinner conductive shield plate.

  20. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation.

    PubMed

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron-glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron-glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation.

  1. Astrocyte Hypertrophy and Microglia Activation in the Rat Auditory Midbrain Is Induced by Electrical Intracochlear Stimulation

    PubMed Central

    Rosskothen-Kuhl, Nicole; Hildebrandt, Heika; Birkenhäger, Ralf; Illing, Robert-Benjamin

    2018-01-01

    Neuron–glia interactions contribute to tissue homeostasis and functional plasticity in the mammalian brain, but it remains unclear how this is achieved. The potential of central auditory brain tissue for stimulation-dependent cellular remodeling was studied in hearing-experienced and neonatally deafened rats. At adulthood, both groups received an intracochlear electrode into the left cochlea and were continuously stimulated for 1 or 7 days after waking up from anesthesia. Normal hearing and deafness were assessed by auditory brainstem responses (ABRs). The effectiveness of stimulation was verified by electrically evoked ABRs as well as immunocytochemistry and in situ hybridization for the immediate early gene product Fos on sections through the auditory midbrain containing the inferior colliculus (IC). Whereas hearing-experienced animals showed a tonotopically restricted Fos response in the IC contralateral to electrical intracochlear stimulation, Fos-positive neurons were found almost throughout the contralateral IC in deaf animals. In deaf rats, the Fos response was accompanied by a massive increase of GFAP indicating astrocytic hypertrophy, and a local activation of microglial cells identified by IBA1. These glia responses led to a noticeable increase of neuron–glia approximations. Moreover, staining for the GABA synthetizing enzymes GAD65 and GAD67 rose significantly in neuronal cell bodies and presynaptic boutons in the contralateral IC of deaf rats. Activation of neurons and glial cells and tissue re-composition were in no case accompanied by cell death as would have been apparent by a Tunel reaction. These findings suggest that growth and activity of glial cells is crucial for the local adjustment of neuronal inhibition to neuronal excitation. PMID:29520220

  2. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    DTIC Science & Technology

    2016-10-01

    analyzed using ANOVA with Tukey’s post -hoc test (pɘ.05). RESULTS: In study 1, a proportion of synovial fibroblasts migrated to a maximum depth of ~250...AWARD NUMBER: W81XWH-14-1-0591 TITLE: Electric Field Stimulation Enhances Healing of Post -Traumatic Osteoarthritic Cartilage PRINCIPAL...COVERED 30 Sep 2015 – 29 Sep 2016 4. TITLE AND SUBTITLE Cartilage 5a. CONTRACT NUMBER Electric Field Stimulation Enhances Healing of Post -Traumatic

  3. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.

    PubMed

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram

    2011-04-01

    Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Effect of Electrical Stimulation of the Suprahyoid Muscles in Brain-Injured Patients with Dysphagia.

    PubMed

    Beom, Jaewon; Oh, Byung-Mo; Choi, Kyoung Hyo; Kim, Won; Song, Young Jin; You, Dae Sang; Kim, Sang Jun; Han, Tai Ryoon

    2015-08-01

    The purpose of this study is to determine whether neuromuscular electrical stimulation of the suprahyoid muscle is effective compared to that of the infrahyoid muscle in brain-injured patients with dysphagia. A total of 132 patients with stroke, traumatic brain injury, or brain tumor in 2 university hospitals were allocated to 2 groups: those who received electrical stimulation therapy (EST) on the suprahyoid muscles (SM group, n = 66) and those who received EST with one pair of electrodes on the suprahyoid muscle and the other pair on the infrahyoid muscle (SI group, n = 66). Patients received 11.2 ± 3.4 sessions of electrical stimulation in the SM group and 11.9 ± 3.4 sessions in the SI group. The functional dysphagia scale (FDS), swallow function score (SFS), supraglottic penetration, and subglottic aspiration were measured using videofluoroscopic swallowing study. FDS scores decreased from 42.0 ± 19.1 to 32.3 ± 17.8 in the SM group and from 44.8 ± 17.4 to 32.9 ± 18.8 in the SI group by per-protocol (PP) analysis, and those decreased from 41.2 ± 20.9 to 34.5 ± 20.3 in the SM group and from 44.3 ± 19.1 to 35.7 ± 20.5 in the SI group by intention-to-treat (ITT) analysis, after electrical stimulation (p < 0.001 for each). SFSs increased from 3.3 ± 1.8 to 4.2 ± 1.6 in the SM group and from 2.8 ± 1.8 to 4.0 ± 1.8 in the SI group by PP analysis, and those increased from 3.3 ± 1.6 to 3.9 ± 1.6 in the SM group and from 2.8 ± 1.9 to 3.6 ± 2.0 in the SI group by ITT analysis, after electrical stimulation (p < 0.001, respectively). However, changes in FDS scores, SFSs, penetration, and aspiration were comparable between the SM and the SI groups. The results suggest that both SM and SI therapies induced similar improvements in swallowing function in brain-injured patients.

  5. Magneto-electric nano-particles for non-invasive brain stimulation.

    PubMed

    Yue, Kun; Guduru, Rakesh; Hong, Jeongmin; Liang, Ping; Nair, Madhavan; Khizroev, Sakhrat

    2012-01-01

    This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson's Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm(-1) Oe(-1) in the aqueous solution) is 3 × 10(6) particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.

  6. Short-term anomia training and electrical brain stimulation.

    PubMed

    Flöel, Agnes; Meinzer, Marcus; Kirstein, Robert; Nijhof, Sarah; Deppe, Michael; Knecht, Stefan; Breitenstein, Caterina

    2011-07-01

    Language training success in chronic aphasia remains only moderate. Electric brain stimulation may be a viable way to enhance treatment efficacy. In a randomized, double-blind, sham-controlled crossover trial, we assessed if anodal transcranial direct current stimulation compared to cathodal transcranial direct current stimulation and sham stimulation over the right temporo-parietal cortex would improve the success of short-term high-frequency anomia training. Twelve chronic poststroke aphasia patients were studied. Naming outcome was assessed after training and 2 weeks later. All training conditions led to a significant increase in naming ability, which was retained for at least 2 weeks after the end of the training. Application of anodal transcranial direct current stimulation significantly enhanced the overall training effect compared to sham stimulation. Baseline naming ability significantly predicted anodal transcranial direct current stimulation effects. Anodal transcranial direct current stimulation applied over the nonlanguage dominant hemisphere can enhance language training outcome in chronic aphasia. Clinical Trial Registration- URL: www.clinicaltrials.gov/. Unique identifier: NCT00822068.

  7. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves

    PubMed Central

    Zhao, Feng; He, Wei; Zhang, Yingze; Tian, Dehu; Zhao, Hongfang; Yu, Kunlun; Bai, Jiangbo

    2013-01-01

    Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves. PMID:25206506

  8. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Comparison electrical stimulation and passive stretching for blood glucose control type 2 diabetes mellitus patients

    NASA Astrophysics Data System (ADS)

    Arsianti, Rika Wahyuni; Parman, Dewy Haryanti; Lesmana, Hendy

    2018-04-01

    Physical exercise is one of the cornerstones for management and treatment type 2 diabetes mellitus. But not all people are able to perform physical exercise because of their physical limitation condition. The strategy for those people in this study is electrical stimulation and passive stretching. The aim of this study is to find out the effect of electrical stimulation and passive stretching to lowering blood glucose level. 20 subjects is divided into electrical stimulation and passive stretching group. The provision of electrical stimulation on lower extremities muscles for 30 minutes for electrical stimulation group (N=10). And other underwent passive stretching for 30 minutes (N=10). The result shows that blood glucose level is decrease from 192.9 ± 10.7087 mg/dL to 165.3 ± 10.527 mg/dL for electrical stimulation intervention group while for the passive stretching group the blood glucose decrease from 153 ± 12.468 mg/dL to 136.1 ± 12.346 mg/dL. Both electrical stimulation and passive stretching are effective to lowering blood glucose level and can be proposed for those people restricted to perform exercise.

  10. Inhibition of xanthine oxidase reduces oxidative stress and improves skeletal muscle function in response to electrically stimulated isometric contractions in aged mice

    PubMed Central

    Ryan, Michael J.; Jackson, Janna R.; Hao, Yanlei; Leonard, Stephen S.; Alway, Stephen E.

    2012-01-01

    Oxidative stress is a putative factor responsible for reducing function and increasing apoptotic signaling in skeletal muscle with aging. This study examined the contribution and functional significance of the xanthine oxidase enzyme as a potential source of oxidant production in aged skeletal muscle during repetitive in situ electrically stimulated isometric contractions. Xanthine oxidase activity was inhibited in young adult and aged mice via a subcutaneously placed time release (2.5 mg/day) allopurinol pellet, 7 days prior to the start of in situ electrically stimulated isometric contractions. Gastrocnemius muscles were electrically activated with 20 maximal contractions for three consecutive days. Xanthine oxidase activity was 65% greater in the gastrocnemius muscle of aged mice compared to young mice. Xanthine oxidase activity also increased after in situ electrically stimulated isometric contractions in muscles from both young (33%) and aged (28%) mice, relative to contralateral non-contracted muscles. Allopurinol attenuated the exercise-induced increase in oxidative stress, but it did not affect the elevated basal levels of oxidative stress that was associated with aging. In addition, inhibition of xanthine oxidase activity decreased caspase 3 activity, but it had no effect on other markers of mitochondrial associated apoptosis. Our results show that compared to control conditions, suppression of xanthine oxidase activity by allopurinol reduced xanthine oxidase activity, H2O2 levels, lipid peroxidation and caspase-3 activity, prevented the in situ electrically stimulated isometric contraction-induced loss of glutathione, prevented the increase of catalase and copper-zinc superoxide dismutase activities, and increased maximal isometric force in the plantar flexor muscles of aged mice after repetitive electrically evoked contractions. PMID:21530649

  11. Electric ventilation: indications for and technical aspects of diaphragm pacing stimulation surgical implantation.

    PubMed

    Tedde, Miguel Lia; Onders, Raymond P; Teixeira, Manoel Jacobsen; Lage, Silvia Gelas; Ballester, Gerson; Brotto, Mario Wilson Iersolino; Okumura, Erica Mie; Jatene, Fabio Biscegli

    2012-01-01

    Patients with high cervical spinal cord injury are usually dependent on mechanical ventilation support, which, albeit life saving, is associated with complications and decreased life expectancy because of respiratory infections. Diaphragm pacing stimulation (DPS), sometimes referred to as electric ventilation, induces inhalation by stimulating the inspiratory muscles. Our objective was to highlight the indications for and some aspects of the surgical technique employed in the laparoscopic insertion of the DPS electrodes, as well as to describe five cases of tetraplegic patients submitted to the technique. Patient selection involved transcutaneous phrenic nerve studies in order to determine whether the phrenic nerves were preserved. The surgical approach was traditional laparoscopy, with four ports. The initial step was electrical mapping in order to locate the "motor points" (the points at which stimulation would cause maximal contraction of the diaphragm). If the diaphragm mapping was successful, four electrodes were implanted into the abdominal surface of the diaphragm, two on each side, to stimulate the branches of the phrenic nerve. Of the five patients, three could breathe using DPS alone for more than 24 h, one could do so for more than 6 h, and one could not do so at all. Although a longer follow-up period is needed in order to reach definitive conclusions, the initial results have been promising. At this writing, most of our patients have been able to remain ventilator-free for long periods of time.

  12. Evoked potentials after painful cutaneous electrical stimulation depict pain relief during a conditioned pain modulation.

    PubMed

    Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph

    2017-08-29

    Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p < 0.001). In the 10 °C-condition changes of subjective pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.

  13. Prolonged Reduction in Shoulder Strength after Transcutaneous Electrical Nerve Stimulation Treatment of Exercise-Induced Acute Muscle Pain.

    PubMed

    Butera, Katie A; George, Steven Z; Borsa, Paul A; Dover, Geoffrey C

    2018-03-05

    Transcutaneous electrical nerve stimulation (TENS) is commonly used for reducing musculoskeletal pain to improve function. However, peripheral nerve stimulation using TENS can alter muscle motor output. Few studies examine motor outcomes following TENS in a human pain model. Therefore, this study investigated the influence of TENS sensory stimulation primarily on motor output (strength) and secondarily on pain and disability following exercise-induced delayed-onset muscle soreness (DOMS). Thirty-six participants were randomized to a TENS treatment, TENS placebo, or control group after completing a standardized DOMS protocol. Measures included shoulder strength, pain, mechanical pain sensitivity, and disability. TENS treatment and TENS placebo groups received 90 minutes of active or sham treatment 24, 48, and 72 hours post-DOMS. All participants were assessed daily. A repeated measures analysis of variance and post-hoc analysis indicated that, compared to the control group, strength remained reduced in the TENS treatment group (48 hours post-DOMS, P < 0.05) and TENS placebo group (48 hours post-DOMS, P < 0.05; 72 hours post-DOMS, P < 0.05). A mixed-linear modeling analysis was conducted to examine the strength (motor) change. Randomization group explained 5.6% of between-subject strength variance (P < 0.05). Independent of randomization group, pain explained 8.9% of within-subject strength variance and disability explained 3.3% of between-subject strength variance (both P < 0.05). While active and placebo TENS resulted in prolonged strength inhibition, the results were nonsignificant for pain. Results indicated that higher pain and higher disability were independently related to decreased strength. Regardless of the impact on pain, TENS, or even the perception of TENS, may act as a nocebo for motor output. © 2018 World Institute of Pain.

  14. Chronometric Electrical Stimulation of Right Inferior Frontal Cortex Increases Motor Braking

    PubMed Central

    Conner, Christopher R.; Aron, Adam R.; Tandon, Nitin

    2013-01-01

    The right inferior frontal cortex (rIFC) is important for stopping responses. Recent research shows that it is also activated when response emission is slowed down when stopping is anticipated. This suggests that rIFC also functions as a goal-driven brake. Here, we investigated the causal role of rIFC in goal-driven braking by using computer-controlled, event-related (chronometric), direct electrical stimulation (DES). We compared the effects of rIFC stimulation on trials in which responses were made in the presence versus absence of a stopping-goal (“Maybe Stop” [MS] vs “No Stop” [NS]). We show that DES of rIFC slowed down responses (compared with control-site stimulation) and that rIFC stimulation induced more slowing when motor braking was required (MS) compared with when it was not (NS). Our results strongly support a causal role of a rIFC-based network in inhibitory motor control. Importantly, the results extend this causal role beyond externally driven stopping to goal-driven inhibitory control, which is a richer model of human self-control. These results also provide the first demonstration of double-blind chronometric DES of human prefrontal cortex, and suggest that—in the case of rIFC—this could lead to augmentation of motor braking. PMID:24336725

  15. WITHDRAWN: Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    PubMed

    Gadsby, J G; Flowerdew, M W

    2007-07-18

    In view of the claims and counter-claims of the effectiveness of transcutaneous electrical nerve stimulation, it would seem appropriate to systematically review the literature. To determine the effectiveness of transcutaneous electrical nerve stimulation in reducing pain and improving range of movement in patients with chronic low back pain. Electronic searches of EMBASE, MEDLINE, CISCOM, AMED for all studies of TENS in the English language, identifying those treating chronic low back pain and hand searching their references. The inclusion criterion for studies included in this review, 6 of 68 identified, was comparisons of TENS/ALTENS versus placebo in patients with chronic low back pain. Outcome data on pain reduction, range of movement, functional status and work was extracted by two independent reviewers together with trial design qualities to construct a Quality Index. The ratio of odds of improvement in pain for each comparison was calculated: TENS vs. placebo at 1.62 (95% CI 0.90, 2.68); ALTENS vs. placebo at 7.22 (95% CI 2.60, 20.01) and TENS/ALTENS vs. placebo at 2.11 (95% CI 1.32, 3.38) times that of placebo. An improvement in pain reduction was seen in 45.80% (CI 37.00%, 55.00%) of TENS; 86.70% (CI 80.00%, 93.00%) of ALTENS; 54.00% (CI 46.20%, 61.80%) of TENS/ ALTENS and 36.40% (95%CI 28.40%, 44.40%) of placebo subjects. The odds of improvement in range of movement on ALTENS vs. placebo was 6.61 times (95% CI 2.36, 18.55) that of placebo. Transcutaneous electrical nerve stimulation appears to reduce pain and improve the range of movement in chronic low back pain subjects. A definitive randomised controlled study of ALTENS, TENS, placebo/no treatment controls, of sufficient power, is needed to confirm these findings.

  16. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with

  17. Different Movement of Hyolaryngeal Structures by Various Application of Electrical Stimulation in Normal Individuals

    PubMed Central

    Kim, Sae Hyun; Oh, Byung-Mo; Han, Tae Ryun; Jeong, Ho Joong

    2015-01-01

    Objective To identify the differences in the movement of the hyoid bone and the vocal cord with and without electrical stimulation in normal subjects. Methods Two-dimensional motion analysis using a videofluoroscopic swallowing study with and without electrical stimulation was performed. Surface electrical stimulation was applied during swallowing using electrodes placed at three different locations on each subject. All subjects were analyzed three times using the following electrode placements: with one pair of electrodes on the suprahyoid muscles and a second pair on the infrahyoid muscles (SI); with placement of the electrode pairs on only the infrahyoid muscles (IO); and with the electrode pairs placed vertically on the suprahyoid and infrahyoid muscles (SIV). Results The main outcomes of this study demonstrated an initial downward displacement as well as different movements of the hyoid bone with the three electrode placements used for electrical stimulation. The initial positions of the hyoid bone with the SI and IO placements resulted in an inferior and anterior displaced position. During swallowing, the hyoid bone moved in a more superior and less anterior direction, resulting in almost the same peak position compared with no electrical stimulation. Conclusion These results demonstrate that electrical stimulation caused an initial depression of the hyoid bone, which had nearly the same peak position during swallowing. Electrical stimulation during swallowing was not dependent on the position of the electrode on the neck, such as on the infrahyoid or on both the suprahyoid and infrahyoid muscles. PMID:26361589

  18. Metrological characterization of a cycle-ergometer to optimize the cycling induced by functional electrical stimulation on patients with stroke.

    PubMed

    Comolli, Lorenzo; Ferrante, Simona; Pedrocchi, Alessandra; Bocciolone, Marco; Ferrigno, Giancarlo; Molteni, Franco

    2010-05-01

    Functional electrical stimulation (FES) is a well established method in the rehabilitation of stroke patients. Indeed, a bilateral movement such as cycling induced by FES would be crucial for these patients who had an unilateral motor impairment and had to recover an equivalent use of limbs. The aim of this study was to develop a low-cost meteorologically qualified cycle-ergometer, optimized for patients with stroke. A commercial ergometer was instrumented with resistive strain gauges and was able to provide the torque produced at the right and left crank, independently. The developed system was integrated with a stimulator, obtaining a novel FES cycling device able to control in real-time the movement unbalance. A dynamic calibration of the sensors was performed and a total torque uncertainty was computed. The system was tested on a healthy subject and on a stroke patient. Results demonstrated that the proposed sensors could be successfully used during FES cycling sessions where the maximum torque produced is about 9Nm, an order of magnitude less than the torque produced during voluntary cycling. This FES cycling system will assist in future investigations on stroke rehabilitation by means of FES and in new exercise regimes designed specifically for patients with unilateral impairments.

  19. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  20. Electrical stimulation as a means for achieving recovery of function in stroke patients.

    PubMed

    Popović, Dejan B; Sinkaer, Thomas; Popović, Mirjana B

    2009-01-01

    This review presents technologies used in and assesses the main clinical outcomes of electrical therapies designed to speed up and increase functional recovery in stroke patients. The review describes methods which interface peripheral systems (e.g., cyclic neural stimulation, stimulation triggered by electrical activity of muscles, therapeutic functional electrical stimulation) and transcranial brain stimulation with surface and implantable electrodes. Our conclusion from reviewing these data is that integration of electrical therapy into exercise-active movement mediated by electrical activation of peripheral and central sensory-motor mechanisms enhances motor re-learning following damage to the central nervous system. Motor re-learning is considered here as a set of processes associated with practice or experience that leads to long-term changes in the capability for movement. An important suggestion is that therapeutic effects are likely to be much more effective when treatment is applied in the acute, rather than in the chronic, phase of stroke.

  1. Transcutaneous electrical nerve stimulation and acupuncture-like transcutaneous electrical nerve stimulation for chronic low back pain.

    PubMed

    Gadsby, J G; Flowerdew, M W

    2000-01-01

    Transcutaneous electrical nerve stimulation (TENS), originally based on the gate-control theory of pain, is widely used for the treatment of chronic low back pain. Despite its wide use and theoretical rationale, there appears at first glance little scientific evidence to support its use. This Cochrane review examines the available evidence on TENS for the treatment of chronic back pain through an exhaustive search of the literature. Transcutaneous electrical nerve stimulation (TENS) and acupuncture-like transcutaneous electrical nerve stimulation (ALTENS) for chronic low back pain management have experienced a tremendous growth over the past 25 years. The objective of this review was to assess the effects of TENS and ALTENS for reducing pain and improving function in patients with chronic back pain. We searched MEDLINE up to November 1997, EMBASE from 1985 to September 1995, Amed and Ciscom to January 1995, reference lists of the retrieved articles, proceedings of conferences and contacted investigators in the field. Randomised trials comparing TENS or ALTENS therapy to placebo in patients with chronic low back pain. Two reviewers independently assessed trial quality and extracted data on pain reduction, range of movement, functional and work status. Six trials were included. The trials included 288 participants with an average age range of 45 to 50 years and approximately equal numbers of women and men. The overall odds ratio for improvement in pain for each comparison was: TENS/ALTENS versus placebo 2.11 (95% confidence interval 1.32 to 3. 38), ALTENS versus placebo 7.22 (95% confidence interval 2.60 to 20.01) and TENS versus placebo 1.52 (95% confidence interval 0.90 to 2.58). The odds ration for improvement in range of motion on ALTENS versus placebo was 6.61 (95% confidence interval 2.36 to 18.55). There is evidence from the limited data available that TENS/ALTENS reduces pain and improves range of motion in chronic back pain patients, at least in the short

  2. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  3. What is the optimal anodal electrode position for inducing corticomotor excitability changes in transcranial direct current stimulation?

    PubMed

    Lee, Minji; Kim, Yun-Hee; Im, Chang-Hwan; Kim, Jung-Hoon; Park, Chang-hyun; Chang, Won Hyuk; Lee, Ahee

    2015-01-01

    Transcranial direct current stimulation (tDCS) non-invasively modulates brain function by inducing neuronal excitability. The conventional hot spot for inducing the highest current density in the hand motor area may not be the optimal site for effective stimulation. In this study, we investigated the influence of the center position of the anodal electrode on changes in motor cortical excitability. We considered three tDCS conditions in 16 healthy subjects: (i) real stimulation with the anodal electrode located at the conventional hand motor hot spot determined by motor evoked potentials (MEPs); (ii) real stimulation with the anodal electrode located at the point with the highest current density in the hand motor area as determined by electric current simulation; and (iii) sham stimulation. Motor cortical excitability as measured by MEP amplitude increased after both real stimulation conditions, but not after sham stimulation. Stimulation using the simulation-derived anodal electrode position, which was found to be posterior to the MEP hot spot for all subjects, induced higher motor cortical excitability. Individual positioning of the anodal electrode, based on the consideration of anatomical differences between subjects, appears to be important for maximizing the effects of tDCS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Optical imaging of the retina in response to the electrical stimulation

    NASA Astrophysics Data System (ADS)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  5. Treatment of Post-Herpetic Neuralgia by Prolonged Electric Stimulation

    PubMed Central

    Nathan, P. W.; Wall, P. D.

    1974-01-01

    The results of treating patients with severe post-herpetic neuralgia with prolonged self-administered electric stimulation from a portable apparatus were good in 11 out of 30 patients. None of these patients had had as good relief of pain with other forms of treatment. In 10 patients some effects from stimulation continued after stimulation stopped. In eight there was an improvement in the course of the neuralgia, and in two there was a cure. Imagesp646-a PMID:4425789

  6. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease.

    PubMed

    Kaplan, Robert E; Czyrny, James J; Fung, Tat S; Unsworth, John D; Hirsh, Jack

    2002-08-01

    Venous stasis caused by immobility is an important risk factor for deep vein thrombosis following surgery and lower limb trauma, in bed-ridden medical patients, and in high-risk long distance air travelers. A safe and convenient method for reducing venous stasis would be useful in patients while in hospital and after discharge during their rehabilitation. 49 healthy subjects aged 51-76 were seated for 4 hours during which they received mild electrical stimulation of the calf, or sole of the foot (plantar muscles). Popliteal and femoral venous blood flow velocities were measured via doppler ultrasound. The non-stimulated lower extremity served as the simultaneous control. Subjects completed a questionnaire regarding their acceptance and tolerance of the electrical stimulation. There was a significant increase in venous femoral and popliteal blood flow for both calf (p < 0.035, p < 0.003), and plantar muscles (p < 0.0001, p < 0.009) on the stimulated side compared to the unstimulated side. The magnitude of the effect was similar for calf and plantar muscle stimulation. Subjects did not find the experience uncomfortable, and would use an electrical stimulator if told by their physician that they were at risk for developing blood clots. Mild electrical stimulation of the feet, as well as the calf, is a safe effective and convenient method for counteracting venous stasis and therefore has the potential to reduce the risk of deep vein thrombosis and pulmonary embolism for subjects who are immobilized.

  7. Numerical dosimetry of transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  8. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  9. The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures.

    PubMed

    Zhang, Xueqin; Feng, Huajun; Liang, Yuxiang; Zhao, Zhiqing; Long, Yuyang; Fang, Yuan; Wang, Meizhen; Yin, Jun; Shen, Dongsheng

    2015-05-01

    Low temperature aggravates biological treatment of refractory p-fluoronitrobenzene (p-FNB) because of microtherm inhibition of microbial activity. Considering the potential characterization of energy supply for microbial metabolism and spurring microbial activity by electrical stimulation, a bioelectrochemical system (BES) was established to provide sustaining electrical stimulation for p-FNB mineralization at a low temperature. Electrical stimulation facilitated p-FNB treatment and bioelectrochemical reaction rate constants for the removal and defluorination of p-FNB at 10 °C were 0.0931 and 0.0054 h(-1), which were higher than the sums of the rates found using a biological system and an electrocatalytic system by 62.8 and 64.8%, respectively. At a low temperature, microbial activity in terms of dehydrogenase and ATPase was found to be higher with electrical stimulation, being 121.1 and 100.1% more active than that in the biological system. Moreover, stronger antioxidant ability was observed in the BES, which implied a better cold-resistance and relief of microtherm inhibition by electrical stimulation. Bacterial diversity analysis revealed a significant evolution of microbial community by electrical stimulation, and Clostridia was uniquely enriched. One bacterial sequence close to Pseudomonas became uniquely predominant, which appeared to be crucial for excellent p-FNB treatment performance in the BES at a low temperature. Economic evaluation revealed that the energy required to mineralize an extra mole of p-FNB was found to be 247 times higher by heating the system than by application of electrical stimulation. These results indicated that application of electrical stimulation is extremely promising for treating refractory waste at low temperatures.

  10. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manual stimulation or before the carcass chain is started in an automatic system. (c) Operation—(1... personnel, the electricity supplied to the stimulating surfaces shall be locked-off when cleaning...

  11. Effects of electrical stimulation on cell proliferation and apoptosis.

    PubMed

    Love, Maria R; Palee, Siripong; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2018-03-01

    The application of exogenous electrical stimulation (ES) to cells in order to manipulate cell apoptosis and proliferation has been widely investigated as a possible method of treatment in a number of diseases. Alteration of the transmembrane potential of cells via ES can affect various intracellular signaling pathways which are involved in the regulation of cellular function. Controversially, several types of ES have proved to be effective in both inhibiting or inducing apoptosis, as well as increasing proliferation. However, the mechanisms through which ES achieves this remain fairly unclear. The aim of this review was to comprehensively summarize current findings from in vitro and in vivo studies on the effects of different types of ES on cell apoptosis and proliferation, highlighting the possible mechanisms through which ES induced these effects and define the optimum parameters at which ES can be used. Through this we hope to provide a greater insight into how future studies can most effectively use ES at the clinical trial stage. © 2017 Wiley Periodicals, Inc.

  12. Electrical stimulation of the insular cortex as a novel target for the relief of refractory pain: An experimental approach in rodents.

    PubMed

    Dimov, Luiz Fabio; Toniolo, Elaine Flamia; Alonso-Matielo, Heloísa; de Andrade, Daniel Ciampi; Garcia-Larrea, Luis; Ballester, Gerson; Teixeira, Manoel Jacobsen; Dale, Camila Squarzoni

    2018-07-02

    Cortical electrical stimulation (CES) has shown to be an effective therapeutic alternative for neuropathic pain refractory to pharmacological treatment. The primary motor cortex(M1) was the main cortical target used in the vast majority of both invasive and non-invasive studies. Despite positive results M1-based approaches still fail to relieve pain in a significant proportion of individuals. It has been advocated that the direct stimulation of cortical areas directly implicated in the central integration of pain could increase the efficacy of analgesic brain stimulation. Here, we evaluated the behavioral effects of electrical stimulation of the insular cortex (ESI) on pain sensitivity in an experimental rat model of peripheral neuropathy, and have described the pathways involved. Animals underwent chronic constriction of the sciatic nerve in the right hind limb and had concentric electrodes implanted in the posterior dysranular insular cortex. Mechanical nociception responses were evaluated before and at the end of a 15-min session of ESI (60Hz, 210μs, 1V). ESI reversed mechanical hypersensitivity in the paw contralateral to the brain hemisphere stimulated, without inducing motor impairment in the open-field test. Pharmacological blockade of μ-opioid (MOR) or type 1-cannabinoid receptors (CB1R) abolished ESI-induced antinociceptive effects. Evaluation of CB1R and MOR spatial expression demonstrated differential modulation of CB1R and MOR in the periaqueductal gray matter (PAG) of ESI-treated rats in sub-areas involved in pain processing/modulation. These results indicate that ESI induces antinociception by functionally modulating opioid and cannabinoid systems in the PAG pain circuitry in rats with experimentally induced neuropathic pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    PubMed Central

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71) nor due to the delay after the last stimulation dose (p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain. PMID:29065603

  14. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    PubMed

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  15. Microinfusion of nefazodone into the basolateral nucleus of the amygdala enhances defensive behavior induced by NMDA stimulation of the inferior colliculus.

    PubMed

    Maisonnette, S; Villela, C; Carotti, A P; Landeira-Fernandez, J

    2000-01-01

    The inferior colliculus is notably associated with defensive behavior. Electrical or pharmacological stimulation of the inferior colliculus induces aversive reactions such as running and jumping. Lesion of the basolateral nucleus of the amygdala decreases the threshold of aversive reactions induced by electrical stimulation of the inferior colliculus. The present work examined the influence of microinjections of nefazodone, a serotonin (5-HT(2)) antagonist, into the basolateral nucleus of amygdala on aversive reactions induced by N-methyl-D-aspartate (NMDA) microinjected into the inferior colliculus. Rats implanted with cannulae in the inferior colliculus and in the basolateral nucleus of the amygdala were submitted to the open-field test where defensive behaviors were observed. Results indicated that microinjection of nefazodone into the basolateral nucleus of the amygdala increases aversive responses induced by NMDA injections into the inferior colliculus. This result suggests that the inferior colliculus and the basolateral nucleus of the amygdala have a functional relationship on the neural circuitry of defensive behavior. Moreover, 5-HT(2) receptors located at the basolateral nucleus of the amygdala seem to play an inhibitory role on defensive behaviors induced by inferior colliculus stimulation.

  16. Electrical engram: how deep brain stimulation affects memory.

    PubMed

    Lee, Hweeling; Fell, Jürgen; Axmacher, Nikolai

    2013-11-01

    Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinson's disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimer's disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.

    PubMed

    Snow, P J; Andre, P; Pompeiano, O

    1999-02-01

    very large size probably corresponding to large layer V pyramidal cells, were often difficult to activate with air puffs applied at the centre of the receptive field (RF) and were submitted to electrical stimulation of the skin. 4. Among the 59 isolated SI units tested either to air puffs (45 neurons) or to electrical skin stimulation (14 neurons), 15 units (i.e., 25.4%) were facilitated, while 12 units (i.e., 20.3%) were inhibited following stimulation of the LC complex. 5. A marked feature of the facilitatory effects which usually involved the predominant response to the first air puff, but also the smaller response to the second puff, was that the increase in the number of spikes per stimulus was accompanied by a temporal focusing of the responses characterized by a clear tightening of the latency and narrowing of the peak of activity, which was often accompanied by some level of tonic inhibition of the background discharge. Thus, LC stimulation increased the signal-to-noise ratio of SI neuronal responses to skin stimulation. When inhibitory effects were induced by LC stimulation, they clearly affected the unit response to the first air puff, which was severely depressed. However, the response to the second puff could be facilitated, suggesting that LC stimulation might have produced inhibition of those inhibitory interneurons responsible for the postexcitatory inhibition of the units under examination. Evidence for spatial focusing of the response was not easily documented. In some units, however, LC stimulation produced either facilitation of the responses to puffs at the receptive field center and inhibition of the responses to puffs at the edge at the receptive field or vice versa. 6. Since the LC complex contains in the rat a predominant population of noradrenergic neurons, it is likely that the effects described above were mainly due to activation of these noradrenergic neurons. 7. (ABSTRACT TRUNCATED)

  18. Neural Responses to Electrical Stimulation on Patterned Silk Films

    PubMed Central

    Hronik-Tupaj, Marie; Raja, Waseem Khan; Tang-Schomer, Min; Omenetto, Fiorenzo G.; Kaplan, David L.

    2013-01-01

    Peripheral nerve injury is a critical issue for trauma patients. Following injury, incomplete axon regeneration or misguided axon innervation into tissue will result in loss of sensory and motor functions. The objective of this study was to examine axon outgrowth and axon alignment in response to surface patterning and electrical stimulation. To accomplish our objective, metal electrodes with dimensions of 1.5 mm × 4 cm, were sputter coated onto micropatterned silk protein films, with surface grooves 3.5 μm wide × 500 nm deep. P19 neurons were seeded on the patterned electronic silk films and stimulated at 120 mV, 1 kHz, for 45 minutes each day for 7 days. Responses were compared to neurons on flat electronic silk films, patterned silk films without stimulation, and flat silk films without stimulation. Significant alignment was found on the patterned film groups compared to the flat film groups. Axon outgrowth was greater (p < 0.05) on electronic films on day 5 and day 7 compared to the unstimulated groups. In conclusion, electrical stimulation, at 120 mV, 1 kHz, for 45 minutes daily, in addition to surface patterning, of 3.5 μm wide × 500 nm deep grooves, offered control of nerve axon outgrowth and alignment. PMID:23401351

  19. Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery

    PubMed Central

    Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian

    2016-01-01

    Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients’ ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. PMID:27106613

  20. Functional electrical stimulation equipment: a review of marketplace availability and reimbursement.

    PubMed

    Teeter, J O; Moora, C R

    2000-01-01

    Functional electrical stimulation (FES) is a rehabilitation tool that has broad application in disability management for improving consumer health and independence. This review examines the availability and delivery of electrical stimulation equipment in a managed care environment, focusing particularly on recent advances and marketplace influences. New electrical stimulation products that are unique in their ability to improve function after disease or injury over conventional drug therapy, surgical intervention, or other rehabilitation techniques are described. Research directions, including new uses for existing products to expand patient indications, are discussed. Guidelines to assist providers and developers of FES technology with managing the reimbursement process are provided. The successful introduction of recent FES products should pave the way for even more exciting developments. However, reimbursement requires careful and early planning to ensure that FES technologies are available to people who may benefit from them.

  1. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  2. Challenges associated with nerve conduction block using kilohertz electrical stimulation

    NASA Astrophysics Data System (ADS)

    Patel, Yogi A.; Butera, Robert J.

    2018-06-01

    Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.

  3. An electrical bio-chip to transfer and detect electromagnetic stimulation on the cells based on vertically aligned carbon nanotubes.

    PubMed

    Rafizadeh-Tafti, Saeed; Haqiqatkhah, Mohammad Hossein; Saviz, Mehrdad; Janmaleki, Mohsen; Faraji Dana, Reza; Zanganeh, Somayeh; Abdolahad, Mohammad

    2017-01-01

    A highly sensitive impedimetric bio-chip based on vertically aligned multiwall carbon nanotubes (VAMWCNTs), was applied in direct interaction with lung cancer cells. Our tool provided both inducing and monitoring the bioelectrical changes in the cells initiated by electromagnetic (EM) wave stimulation. EM wave of 940MHz frequency with different intensities was used. Here, wave ablation might accumulate electrical charge on the tips of nanotubes penetrated into cell's membrane. The charge might induce ionic exchanges into the cell and cause alterations in electrical states of the membrane. Transmembrane electrostatic/dynamic states would be strongly affected due to such exchanges. Our novel modality was that, the cells' vitality changes caused by charge inductions were electrically detected with the same nanotubes in the architecture of electrodes for impedance measurement. The responses of the sensor were confirmed by electron and florescent microscopy images as well as biological assays. In summation, our method provided an effective biochip for enhancing and detecting external EM stimulation on the cells useful for future diagnostic and therapeutic applications, such as wave-guided drug-resistance breakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. ERAASR: an algorithm for removing electrical stimulation artifacts from multielectrode array recordings

    NASA Astrophysics Data System (ADS)

    O'Shea, Daniel J.; Shenoy, Krishna V.

    2018-04-01

    Objective. Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. Approach. We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. Main results. The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. Significance. We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.

  5. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  6. Electrophysiological evidence for the antinociceptive effect of transcutaneous electrical stimulation on mechanically evoked responsiveness of dorsal horn neurons in neuropathic rats.

    PubMed

    Leem, J W; Park, E S; Paik, K S

    1995-06-16

    Using a rat model of peripheral neuropathy induced by a tight ligation of L5-6 spinal nerves, the effects of transcutaneous electrical stimulation on the mechanical responses of wide dynamic range (WDR) dorsal horn neurons were investigated. The responses of the WDR neurons to both the brush and pinch stimuli were found to be enhanced in the neuropathic rats compared to those in the normal rats. These enhanced responses were depressed by low-frequency and high-intensity transcutaneous electrical stimulation (2 Hz, 4-5 mA) applied to the somatic receptive field. The durations of the depressive effects on the brush responses ranged between 30 and 45 min and those on the pinch responses were 60-90 min. These results imply that the transcutaneous electrical stimulation used here produces an antinociceptive effect via a depressive action on the enhanced mechanical responsiveness of the spinal neurons in this rat model of peripheral neuropathy.

  7. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain's ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable and provides imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles. SR using imperceptible stochastic electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS) applied to normal subjects has shown to improve the degree of association between the weak input periodic signals introduced via venous blood pressure receptors and the heart-rate responses. Also, application of SVS over 24

  8. Transcranial magnetic and electrical stimulation compared: does TES activate intracortical neuronal circuits?

    PubMed

    Brocke, J; Irlbacher, K; Hauptmann, B; Voss, M; Brandt, S A

    2005-12-01

    To determine whether, and under which conditions, transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) can activate similar neuronal structures of the human motor cortex, as indicated by electromyographic recordings. Focal TMS was performed on three subjects inducing a postero-anterior directed current (p-a), TES with postero-anteriorly (p-a) and latero-medially (l-m) oriented electrodes. We analyzed the onset latencies and amplitudes (single-pulse) and intracortical inhibition and excitation (paired-pulse). TMS p-a and TES p-a produced muscle responses with the same onset latency, while TES l-m led to 1.4-1.9 ms shorter latencies. Paired-pulse TMS p-a and TES p-a induced inhibition at short inter-stimulus intervals (ISI) (maximum: 2-3 ms) and facilitation at longer ISIs (maximum: 10 ms). No inhibition but a strong facilitation was obtained from paired-pulse TES l-m (ISIs 1-5 ms). Our findings support the hypothesis, that current direction is the most relevant factor in determining the mode of activation for both TMS and TES: TMS p-a and TES p-a are likely to activate the corticospinal neurons indirectly. In contrast, TES l-m may preferentially activate the corticospinal fibres directly, distant of the neuronal body. TES is a suitable tool to induce intracortical inhibition and excitation.

  9. Electrical Stimulation of Afferent Pathways for the Suppression of Pathological Tremor

    PubMed Central

    Dideriksen, Jakob L.; Laine, Christopher M.; Dosen, Strahinja; Muceli, Silvia; Rocon, Eduardo; Pons, José L.; Benito-Leon, Julian; Farina, Dario

    2017-01-01

    Pathological tremors are involuntary oscillatory movements which cannot be fully attenuated using conventional treatments. For this reason, several studies have investigated the use of neuromuscular electrical stimulation for tremor suppression. In a recent study, however, we found that electrical stimulation below the motor threshold also suppressed tremor, indicating involvement of afferent pathways. In this study, we further explored this possibility by systematically investigating how tremor suppression by afferent stimulation depends on the stimulation settings. In this way, we aimed at identifying the optimal stimulation strategy, as well as to elucidate the underlying physiological mechanisms of tremor suppression. Stimulation strategies varying the stimulation intensity and pulse timing were tested in nine tremor patients using either intramuscular or surface stimulation. Significant tremor suppression was observed in six patients (tremor suppression > 75% was observed in three patients) and the average optimal suppression level observed across all subjects was 52%. The efficiency for each stimulation setting, however, varied substantially across patients and it was not possible to identify a single set of stimulation parameters that yielded positive results in all patients. For example, tremor suppression was achieved both with stimulation delivered in an out-of-phase pattern with respect to the tremor, and with random timing of the stimulation. Overall, these results indicate that low-current stimulation of afferent fibers is a promising approach for tremor suppression, but that further research is required to identify how the effect can be maximized in the individual patient. PMID:28420958

  10. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    PubMed

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  11. The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke.

    PubMed

    Gandolla, Marta; Ward, Nick S; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership-the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.

  12. Gender effect on discrimination of location and frequency in surface electrical stimulation.

    PubMed

    Geng, Bo; Paramanathan, Senthoopiya A; Pedersen, Karina F; Lauridsen, Mette V; Gade, Julie; Lontis, Romulus; Jensen, Winnie

    2015-01-01

    This work investigated the gender effect on discrimination of surface electrical stimulation applied on the human forearm. Three experiments were conducted to examine the abilty of discriminating stimulation frequency, location, or both parameters in 14 healthy subjects. The results indicated a statistically significant impact of gender on the discrimination performance in all the three experiments (p <; 0.01, p <; 0.01, and p <; 0.001, respectively). The female group performed noticeably better than the male group (i.e., mean difference 15.4%, 11.9%, and 16.7% in repective experiment). The findings may provide evidence of gender difference in perceiving and interpreting electrical stimulation. Considering the gender difference may improve the efficacy of electrically evoked sensory feedback in applications such as prosthetic use and pain relief.

  13. A CONTINUED INVESTIGATION OF ELECTRICALLY STIMULATED FABRIC FILTRATION

    EPA Science Inventory

    The report summarizes three experiments performed by Southern Research Institute under a cooperative agreement with EPA. First was a demonstration of electrostatically stimulated fabric filtration (ESFF) used to collect particulate matter (PM) from fossil fuel electrical power pl...

  14. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    PubMed

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  15. Transcranial Magnetic Stimulation-coil design with improved focality

    NASA Astrophysics Data System (ADS)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  16. Electrical stimulation treatment for facial palsy after revision pleomorphic adenoma surgery.

    PubMed

    Goldie, Simon; Sandeman, Jack; Cole, Richard; Dennis, Simon; Swain, Ian

    2016-04-22

    Surgery for pleomorphic adenoma recurrence presents a significant risk of facial nerve damage that can result in facial weakness effecting patients' ability to communicate, mental health and self-image. We report two case studies that had marked facial weakness after resection of recurrent pleomorphic adenoma and their progress with electrical stimulation. Subjects received electrical stimulation twice daily for 24 weeks during which photographs of expressions, facial measurements and Sunnybrook scores were recorded. Both subjects recovered good facial function demonstrating Sunnybrook scores of 54 and 64 that improved to 88 and 96, respectively. Neither subjects demonstrated adverse effects of treatment. We conclude that electrical stimulation is a safe treatment and may improve facial palsy in patients after resection of recurrent pleomorphic adenoma. Larger studies would be difficult to pursue due to the low incidence of cases. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  17. Closing a Venus Flytrap with electrical and mid-IR photon stimulations

    NASA Astrophysics Data System (ADS)

    Eisen, David; Janssen, Douglas; Chen, Xing; Choa, Fow-Sen; Kostov, Dan; Fan, Jenyu

    2013-03-01

    Plants have mechanisms to perceive and transmit information between its organs and tissues. These signals had long been considered as hormonal or hydraulic in nature, but recent studies have shown that electrical signals are also produced causing physiological responses. In this work we show that Venus Flytrap, Dionaea muscipula, can respond to both electrical and optical signals beside mechanical stimulations. While the Venus Flytrap does not have any neurons, it does contain transport cells with very similar characteristics to neurotransmitters and uses ionic mechanisms, as human neurons do, to generate action potentials. In our electrical stimulation study, electrodes made out of soft cloth were soaked in salt water before being placed to the midrib (+) and lobe (-). The flytrap's surface resistance was determined by subtracting out the average electrode resistance from the measured electrode to plant surface resistance, yielding an average contact resistance of around 0.98MΩ. A logarithmic amplifier was used to monitor mechanically generated electrical signals. Two electrical pulses were generated by mechanically touching the trigger hairs in the lobe twice within 20 seconds. By discharging around 600μC charge stored in a capacitor we demonstrated electrically closing of the flytrap. For optical excitation we found in our FTIR study it's tissue contains very similar protein absorption peaks to that of insects. A 7.35μm laser with 50mw power was then used for the stimulation study. Electrical action potential was generated twice by mid-infrared photons before closure of the flytrap.

  18. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats

    NASA Astrophysics Data System (ADS)

    Li, Yu-Ting; Wickens, Jeffery R.; Huang, Yi-Ling; Pan, Wynn H. T.; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Objective. Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. Approach. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. Main results. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg-1 cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. Significance. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous

  19. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.

    PubMed

    Li, Yu-Ting; Wickens, Jeffery R; Huang, Yi-Ling; Pan, Wynn H T; Chen, Fu-Yu Beverly; Chen, Jia-Jin Jason

    2013-08-01

    Fast-scan cyclic voltammetry (FSCV) is commonly used to monitor phasic dopamine release, which is usually performed using tethered recording and for limited types of animal behavior. It is necessary to design a wireless dopamine sensing system for animal behavior experiments. This study integrates a wireless FSCV system for monitoring the dopamine signal in the ventral striatum with an electrical stimulator that induces biphasic current to excite dopaminergic neurons in awake freely moving rats. The measured dopamine signals are unidirectionally transmitted from the wireless FSCV module to the host unit. To reduce electrical artifacts, an optocoupler and a separate power are applied to isolate the FSCV system and electrical stimulator, which can be activated by an infrared controller. In the validation test, the wireless backpack system has similar performance in comparison with a conventional wired system and it does not significantly affect the locomotor activity of the rat. In the cocaine administration test, the maximum electrically elicited dopamine signals increased to around 230% of the initial value 20 min after the injection of 10 mg kg(-1) cocaine. In a classical conditioning test, the dopamine signal in response to a cue increased to around 60 nM over 50 successive trials while the electrically evoked dopamine concentration decreased from about 90 to 50 nM in the maintenance phase. In contrast, the cue-evoked dopamine concentration progressively decreased and the electrically evoked dopamine was eliminated during the extinction phase. In the histological evaluation, there was little damage to brain tissue after five months chronic implantation of the stimulating electrode. We have developed an integrated wireless voltammetry system for measuring dopamine concentration and providing electrical stimulation. The developed wireless FSCV system is proven to be a useful experimental tool for the continuous monitoring of dopamine levels during animal learning

  20. Transcranial electric stimulation for the investigation of speech perception and comprehension

    PubMed Central

    Zoefel, Benedikt; Davis, Matthew H.

    2017-01-01

    ABSTRACT Transcranial electric stimulation (tES), comprising transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), involves applying weak electrical current to the scalp, which can be used to modulate membrane potentials and thereby modify neural activity. Critically, behavioural or perceptual consequences of this modulation provide evidence for a causal role of neural activity in the stimulated brain region for the observed outcome. We present tES as a tool for the investigation of which neural responses are necessary for successful speech perception and comprehension. We summarise existing studies, along with challenges that need to be overcome, potential solutions, and future directions. We conclude that, although standardised stimulation parameters still need to be established, tES is a promising tool for revealing the neural basis of speech processing. Future research can use this method to explore the causal role of brain regions and neural processes for the perception and comprehension of speech. PMID:28670598

  1. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...Sept 2015 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury 5a...evaluate the restoration of bladder and bowel function using electrical stimulation and block after spinal cord injury in human subjects. All staff

  2. Electrical stimulation accelerates motor functional recovery in autograft-repaired 10 mm femoral nerve gap in rats.

    PubMed

    Huang, Jinghui; Hu, Xueyu; Lu, Lei; Ye, Zhengxu; Wang, Yuqing; Luo, Zhuojing

    2009-10-01

    Electrical stimulation has been shown to enhance peripheral nerve regeneration after nerve injury. However, the impact of electrical stimulation on motor functional recovery after nerve injuries, especially over long nerve gap lesions, has not been investigated in a comprehensive manner. In the present study, we aimed to determine whether electrical stimulation (1 h, 20 Hz) is beneficial for motor functional recovery after a 10 mm femoral nerve gap lesion in rats. The proximal nerve stump was electrically stimulated for 1 h at 20 Hz frequency prior to nerve repair with an autologous graft. The rate of motor functional recovery was evaluated by single frame motion analysis and electrophysiological studies, and the nerve regeneration was investigated by double labeling and histological analysis. We found that brief electrical stimulation significantly accelerated motor functional recovery and nerve regeneration. Although the final outcome, both in functional terms and morphological terms, was not improved by electrical stimulation, the observed acceleration of functional recovery and axon regeneration may be of therapeutic importance in clinical setting.

  3. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

  4. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  5. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    PubMed

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  6. Efficacy of Carcass Electrical Stimulation in Meat Quality Enhancement: A Review

    PubMed Central

    Adeyemi, Kazeem Dauda; Sazili, Awis Qurni

    2014-01-01

    The use of electrical stimulation (ES) as a management tool to improve meat quality and efficiency of meat processing is reviewed. The basis of the efficacy of ES is its ability to fast track postmortem glycolysis, which in turn stimulates myriad histological, physical, biochemical, biophysical and physiological changes in the postmortem muscle. Electrical stimulation hastens the onset and resolution of rigor mortis thereby reducing processing time and labor and plays a vital role in improving meat tenderness and other meat quality traits. However, ES may have negative impacts on some meat quality traits such as color stability and water holding capacity in some animals. Electrical stimulation is not an end in itself. In order to achieve the desired benefits from its application, the technique must be properly used in conjunction with various intricate antemortem, perimortem and postmortem management practices. Despite extensive research on ES, the fundamental mechanisms and the appropriate commercial applications remained obscured. In addition, muscles differ in their response to ES. Thus, elementary knowledge of the various alterations with respect to muscle type is needed in order to optimize the effectiveness of ES in the improvement of meat quality. PMID:25049973

  7. Electrical Stimulation Technologies for Wound Healing

    PubMed Central

    Kloth, Luther C.

    2014-01-01

    Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348

  8. Effects of electrical muscle stimulation on oxygen consumption.

    PubMed

    Hayter, Tina L; Coombes, Jeff S; Knez, Wade L; Brancato, Tania L

    2005-02-01

    Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.

  9. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads.

    PubMed

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W

    2011-10-21

    Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on

  10. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    PubMed Central

    2011-01-01

    Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter was not significant to

  11. Synchronous electrical stimulation of laryngeal muscles: an alternative for enhancing recovery of unilateral recurrent laryngeal nerve paralysis.

    PubMed

    Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio

    2014-07-01

    Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  12. Effect of Fixed Versus Adjusted Transcutaneous Electrical Nerve Stimulation Amplitude on Chronic Mechanical Low Back Pain.

    PubMed

    Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham

    2016-07-01

    This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.

  13. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  14. The effect of subthreshold continuous electrical stimulation on the facial function of patients with Bell's palsy.

    PubMed

    Kim, Jin; Choi, Jae Young

    2016-01-01

    The drug regimen plus electrical stimulation was more effective in treating Bell's palsy than the conventional drug treatment alone. The effectiveness of such a sub-threshold, continuous, low frequency electrical stimulation suggests a new therapeutic approach to accelerate nerve regeneration and improve functional recovery after injury. The purpose of this study was to determine whether sub-threshold, continuous electrical stimulation at 20 Hz facilitates functional recovery of patients with Bell's palsy. The authors performed a prospective randomized study that included 60 patients with mild-to-moderate grade Bell's palsy (HB grade ≤4, SB grade ≥40), to evaluate the effect of developed electrical stimulation on the resolution of symptoms. Thirty patients were treated with prednisolone or/and acyclovir plus electrical stimulation within 7 days of the onset of symptoms. The other 30 patients were treated with only prednisolone or/and acyclovir as a control group. The overall rate of patient recovery among those treated with prednisolone or/and acyclovir plus electrical stimulation (96%) was significantly better (p < 0.05) than the rate among those treated with only prednisolone or/and acyclovir (88%).

  15. [Physical exercise versus exercise program using electrical stimulation devices for home use].

    PubMed

    Santos, F M; Rodrigues, R G S; Trindade-Filho, E M

    2008-02-01

    To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.

  16. Cutaneous electrical stimulation treatment in unresolved facial nerve paralysis: an exploratory study.

    PubMed

    Hyvärinen, Antti; Tarkka, Ina M; Mervaala, Esa; Pääkkönen, Ari; Valtonen, Hannu; Nuutinen, Juhani

    2008-12-01

    The purpose of this study was to assess clinical and neurophysiological changes after 6 mos of transcutaneous electrical stimulation in patients with unresolved facial nerve paralysis. A pilot case series of 10 consecutive patients with chronic facial nerve paralysis either of idiopathic origin or because of herpes zoster oticus participated in this open study. All patients received below sensory threshold transcutaneous electrical stimulation for 6 mos for their facial nerve paralysis. The intervention consisted of gradually increasing the duration of electrical stimulation of three sites on the affected area for up to 6 hrs/day. Assessments of the facial nerve function were performed using the House-Brackmann clinical scale and neurophysiological measurements of compound motor action potential distal latencies on the affected and nonaffected sides. Patients were tested before and after the intervention. A significant improvement was observed in the facial nerve upper branch compound motor action potential distal latency on the affected side in all patients. An improvement of one grade in House-Brackmann scale was observed and some patients also reported subjective improvement. Transcutaneous electrical stimulation treatment may have a positive effect on unresolved facial nerve paralysis. This study illustrates a possibly effective treatment option for patients with the chronic facial paresis with no other expectations of recovery.

  17. Effects of electrical stimulation on House-Brackmann scores in early Bell's palsy.

    PubMed

    Alakram, Prisha; Puckree, Threethambal

    2010-04-22

    ABSTRACT Limited evidence may support the application of electrical stimulation in the subacute and chronic stages of facial palsy, yet some physiotherapists in South Africa have been applying this modality in the acute stage in the absence of published evidence of clinical efficacy. This preliminary study's aim was to determine the safety and potential efficacy of applying electrical stimulation to the facial muscles during the early phase of Bells palsy. A pretest posttest control vs. experimental groups design composed of 16 patients with Bell's palsy of less than 30 days' duration. Adult patients with clinical diagnosis of Bell's palsy were systematically (every second patient) allocated to the control and experimental groups. Each group (n = 8) was pretested and posttested using the House-Brackmann index. Both groups were treated with heat, massage, exercises, and a home program. The experimental group also received electrical stimulation. The House-Brackmann Scale of the control group improved between 17% and 50% with a mean of 30%. The scores of the experimental group ranged between 17% and 75% with a mean of 37%. The difference between the groups was not statistically significant (two-tailed p = 0.36). Electrical stimulation as used in this study during the acute phase of Bell's palsy is safe but may not have added value over spontaneous recovery and multimodal physiotherapy. A larger sample size or longer stimulation time or both should be investigated.

  18. Transcutaneous electrical nerve stimulation reduces exercise-induced perceived pain and improves endurance exercise performance.

    PubMed

    Astokorki, Ali H Y; Mauger, Alexis R

    2017-03-01

    Muscle pain is a natural consequence of intense and prolonged exercise and has been suggested to be a limiter of performance. Transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) have been shown to reduce both chronic and acute pain in a variety of conditions. This study sought to ascertain whether TENS and IFC could reduce exercise-induced pain (EIP) and whether this would affect exercise performance. It was hypothesised that TENS and IFC would reduce EIP and result in an improved exercise performance. In two parts, 18 (Part I) and 22 (Part II) healthy male and female participants completed an isometric contraction of the dominant bicep until exhaustion (Part I) and a 16.1 km cycling time trial as quickly as they could (Part II) whilst receiving TENS, IFC, and a SHAM placebo in a repeated measures, randomised cross-over, and placebo-controlled design. Perceived EIP was recorded in both tasks using a validated subjective scale. In Part I, TENS significantly reduced perceived EIP (mean reduction of 12%) during the isometric contraction (P = 0.006) and significantly improved participants' time to exhaustion by a mean of 38% (P = 0.02). In Part II, TENS significantly improved (P = 0.003) participants' time trial completion time (~2% improvement) through an increased mean power output. These findings demonstrate that TENS can attenuate perceived EIP in a healthy population and that doing so significantly improves endurance performance in both submaximal isometric single limb exercise and whole-body dynamic exercise.

  19. Chronic neuromuscular electrical stimulation of paralyzed hindlimbs in a rodent model.

    PubMed

    Jung, Ranu; Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J

    2009-10-15

    Neuromuscular electrical stimulation (NMES) can be used to activate paralyzed or paretic muscles to generate functional or therapeutic movements. The goal of this research was to develop a rodent model of NMES-assisted movement therapy after spinal cord injury (SCI) that will enable investigation of mechanisms of NMES-induced plasticity, from the molecular to systems level. Development of the model requires accurate mapping of electrode and muscle stimulation sites, the capability to selectively activate muscles to produce graded contractions of sufficient strength, stable anchoring of the implanted electrode within the muscles and stable performance with functional reliability over several weeks of the therapy window. Custom designed electrodes were implanted chronically in hindlimb muscles of spinal cord transected rats. Mechanical and electrical stability of electrodes and the ability to achieve appropriate muscle recruitment and joint angle excursion were assessed by characterizing the strength duration curves, isometric torque recruitment curves and kinematics of joint angle excursion over 6-8 weeks post implantation. Results indicate that the custom designed electrodes and implantation techniques provided sufficient anchoring and produced stable and reliable recruitment of muscles both in the absence of daily NMES (for 8 weeks) as well as with daily NMES that is initiated 3 weeks post implantation (for 6 weeks). The completed work establishes a rodent model that can be used to investigate mechanisms of neuroplasticity that underlie NMES-based movement therapy after spinal cord injury and to optimize the timing of its delivery.

  20. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    PubMed

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Effects of coil orientation on the electric field induced by TMS over the hand motor area

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).

  2. Determination of stimulation focality in heterogeneous head models during transcranial magnetic stimulation (TMS)

    NASA Astrophysics Data System (ADS)

    Lee, Erik; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial Magnetic Stimulation (TMS) is an increasingly popular tool used by both the scientific and medical community to understand and treat the brain. TMS has the potential to help people with a wide range of diseases such as Parkinson's, Alzheimer's, and PTSD, while currently being used to treat people with chronic, drug-resistant depression. Through computer simulations, we are able to see the electric field that TMS induces in anatomical human models, but there is no measure to quantify this electric field in a way that relates to a specific patient undergoing TMS therapy. We propose a way to quantify the focality of the induced electric field in a heterogeneous head model during TMS by relating the surface area of the brain being stimulated to the total volume of the brain being stimulated. This figure would be obtained by conducting finite element analysis (FEA) simulations of TMS therapy on a patient specific head model. Using this figure to assist in TMS therapy will allow clinicians and researchers to more accurately stimulate the desired region of a patient's brain and be more equipped to do comparative studies on the effects of TMS across different patients. This work was funded by the Carver Charitable Trust.

  3. Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.

    PubMed

    Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J

    2011-10-01

    A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The efficacy of electrical stimulation in lower extremity cutaneous wound healing: A systematic review.

    PubMed

    Ashrafi, Mohammed; Alonso-Rasgado, Teresa; Baguneid, Mohamed; Bayat, Ardeshir

    2017-02-01

    Current gold standard lower extremity cutaneous wound management is not always effective. Cutaneous wounds generate a "current of injury" which is directly involved in wound healing processes. Application of exogenous electrical stimulation has been hypothesised to imitate the natural electric current that occurs in cutaneous wounds. The aim of this extensive review was to provide a detailed update on the variety of electrical stimulation modalities used in the management of lower extremity wounds. Several different waveforms and delivery methods of electrical stimulation have been used. Pulsed current appears superior to other electrical modalities available. The majority of studies support the beneficial effects of pulsed current over conservative management of lower extremity cutaneous wounds. Although it appears to have no benefit over causal surgical intervention, it is a treatment option which could be utilised in those patients unsuitable for surgery. Other waveforms and modalities appear promising; however, they still lack large trial data to recommend a firm conclusion with regards to their use. Current studies also vary in quantity, quality and protocol across the different modalities. The ideal electrical stimulation device needs to be non-invasive, portable and cost-effective and provides minimal interference with patients' daily life. Further studies are necessary to establish the ideal electrical stimulation modality, parameters, method of delivery and duration of treatment. The development and implementation of newer devices in the management of acute and chronic wounds provides an exciting direction in the field of electrotherapy. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Propofol, more than halothane, depresses electroencephalographic activation resulting from electrical stimulation in reticular formation.

    PubMed

    Antognini, J F; Bravo, E; Atherley, R; Carstens, E

    2006-09-01

    Halothane and propofol depress the central nervous system, and this is partly manifested by a decrease in electroencephalographic (EEG) activity. Little work has been performed to determine the differences between these anesthetics with regard to their effects on evoked EEG activity. We examined the effects of halothane and propofol on EEG responses to electrical stimulation of the reticular formation. Rats (n= 12) were anesthetized with either halothane or propofol, and EEG responses were recorded before and after electrical stimulation of the reticular formation. Two anesthetic concentrations were used (0.8 and 1.2 times the amount needed to prevent gross, purposeful movement in response to supramaximal noxious stimulation), and both anesthetics were studied in each rat using a cross-over design. Electrical stimulation in the reticular formation increased the spectral edge (SEF) and median edge (MEF) frequencies by approximately 1-2 Hz during halothane anesthesia at low and high concentrations. During propofol anesthesia, MEF increased at the low propofol infusion rate, but SEF was unaffected. At the high propofol infusion rate, SEF and MEF decreased following electrical stimulation in the reticular formation. At immobilizing concentrations, propofol produces a larger decrease than halothane in EEG responses to reticular formation stimulation, consistent with propofol having a more profound depressant effect on cortical and subcortical structures.

  6. Focused intracochlear electric stimulation with phased array channels.

    PubMed

    van den Honert, Chris; Kelsall, David C

    2007-06-01

    A method is described for producing focused intracochlear electric stimulation using an array of N electrodes. For each electrode site, N weights are computed that define the ratios of positive and negative electrode currents required to produce cancellation of the voltage within scala tympani at all of the N-1 other sites. Multiple sites can be stimulated simultaneously by superposition of their respective current vectors. The method allows N independent stimulus waveforms to be delivered to each of the N electrode sites without spatial overlap. Channel interaction from current spread associated with monopolar stimulation is substantially eliminated. The method operates by inverting the spread functions of individual monopoles as measured with the other electrodes. The method was implemented and validated with data from three human subjects implanted with 22-electrode perimodiolar arrays. Results indicate that (1) focusing is realizable with realistic precision; (2) focusing comes at the cost of increased total stimulation current; (3) uncanceled voltages that arise beyond the ends of the array are weak except when stimulating the two end channels; and (4) close perimodiolar positioning of the electrodes may be important for minimizing stimulation current and sensitivity to measurement errors.

  7. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.

    PubMed

    Manoli, Zoi; Parazzini, Marta; Ravazzani, Paolo; Samaras, Theodoros

    2017-01-01

    The lack of knowledge of the electric field distribution inside the brain of stroke patients receiving transcranial direct current stimulation (tDCS) calls for estimating it computationally. Moreover, the impact on this distribution of a novel clinical management approach which involves secondary motor areas (SMA) in stroke rehabilitation needs to be evaluated. Finally, the differences in the electric field distributions due to gender and age need to be investigated. This work presents the development of two different anatomical models (young adult female and elderly male) with an ischemic stroke region of spherical volume 10 cm 3 or 50 cm 3 , using numerical models of the Virtual Population (ViP). The stroke phase was considered as acute or chronic, resulting in different electrical properties of the area. Two different electrode montages were used - One over the lesion area and the contralateral supra-orbital region and the other over the SMA and the contralateral supra-orbital region. A quasi-electrostatic solver was used to numerically solve the Laplace equation with the finite-difference technique. Both the 99th percentile of the electric field intensity distribution ("E peak value") and the percentage of the tissue volumes with electric field intensity over 50% and 70% of the E peak value were assessed inside the target areas of the primary motor cortex (M1) and the SMA, as well as in other brain tissues (hypothalamus and cerebellum). In the acute phase of an ischemic stroke, the normalized electric field intensity distributions do not differ noticeably compared to those in the brain of a healthy person (mean square difference < 2%). The difference becomes larger (up to 4.5%) for the chronic phase of a large ischemic lesion. Moreover, the maximum values of the induced electric field in the tissues in the SMA are almost equal for both electrode montages. The peak values of the electric field distribution ("E peak values") in cerebellum and hypothalamus for

  8. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation.

    PubMed

    Stutzig, Norman; Rzanny, Reinhard; Moll, Kevin; Gussew, Alexander; Reichenbach, Jürgen R; Siebert, Tobias

    2017-06-01

    The aim of the study was to examine pH heterogeneity during fatigue induced by neuromuscular electrical stimulation (NMES) using phosphorus magnetic resonance spectroscopy ( 31 P-MRS). It is hypothesized that three pH components would occur in the 31 P-MRS during fatigue, representing three fiber types. The medial gastrocnemius of eight subjects was stimulated within a 3-Tesla whole body MRI scanner. The maximal force during stimulation (F stim ) was examined by a pressure sensor. Phosphocreatine (PCr), adenosintriphosphate, inorganic phosphate (Pi), and the corresponding pH were estimated by a nonvolume-selective 31 P-MRS using a small loop coil at rest and during fatigue. During fatigue, F stim and PCr decreased to 27% and 33% of their initial levels, respectively. In all cases, the Pi peak increased when NMES was started and split into three different peaks. Based on the single Pi peaks during fatigue, an alkaline (6.76 ± 0.08), a medium (6.40 ± 0.06), and an acidic (6.09 ± 0.05) pH component were observed compared to the pH (7.02 ± 0.02) at rest. It is suggested that NMES is able to induce pH heterogeneity in the medial gastrocnemius, and that the single Pi peaks represent the different muscle fiber types of the skeletal muscle. Magn Reson Med 77:2097-2106, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Evaluation of effect of transcutaneous electrical nerve stimulation on salivary flow rate in radiation induced xerostomia patients: a pilot study.

    PubMed

    Lakshman, Anusha Rangare; Babu, G Subhas; Rao, Suresh

    2015-01-01

    Xerostomia is a common sequel in patients undergoing irradiation of malignant tumors of the head and neck. Palliative treatments of xerostomia like topical agents such as ice-chips, saliva substitutes, systemic sialogogues like pilocarpine and cevimeline work well for some patients. Electrostimulation was studied in the past and showed moderate promise but never became part of the mainstream therapy for better management of xerostomia patients. The aim of the following study is to evaluate the effectiveness of a transcutaneous electrical nerve stimulation (TENS) unit in stimulating the whole salivary flow rate in radiation induced xerostomia patients. A total of 40 subjects were included in the study. The study group consisted of 30 individuals and was divided into Group S1 (n = 20), which was further subdivided into Group S1A (n = 10) subjects complaining of dry mouth who were undergoing head and neck radiotherapy with TENS stimulation during the commencement of radiotherapy, on the 3 rd , 6 th week and after a month of completion of radiotherapy and Group S1B (n = 10) with TENS stimulation daily during the full course of radiotherapy and Group S2 (n = 10) subjects complaining of dry mouth who had undergone head and neck radiotherapy that ended 1 month prior to their entry into the study. The control group (n = 10) consisted of healthy individuals not complaining of dry mouth and who have not undergone head and neck radiotherapy. Whole saliva was collected without stimulation for 10 min and after electrostimulation with TENS unit for additional 10 min in a graduated test tube. The results were statistically analyzed using Mann-Whitney U-test and Kruskal-Wallis's test. The data analysis revealed that control and S1B group showed increased salivary flow rate after stimulation by TENS therapy compared with the unstimulated salivary flow, whereas in S1A and S2 group it was found to be statistically non-significant. The present study gave us an insight about the

  10. Electrical stimulation systems for cardiac tissue engineering

    PubMed Central

    Tandon, Nina; Cannizzaro, Christopher; Chao, Pen-Hsiu Grace; Maidhof, Robert; Marsano, Anna; Au, Hoi Ting Heidi; Radisic, Milica; Vunjak-Novakovic, Gordana

    2009-01-01

    We describe a protocol for tissue engineering of synchronously contractile cardiac constructs by culturing cardiac cells with the application of pulsatile electrical fields designed to mimic those present in the native heart. Tissue culture is conducted in a customized chamber built to allow for cultivation of (i) engineered three-dimensional (3D) cardiac tissue constructs, (ii) cell monolayers on flat substrates or (iii) cells on patterned substrates. This also allows for analysis of the individual and interactive effects of pulsatile electrical field stimulation and substrate topography on cell differentiation and assembly. The protocol is designed to allow for delivery of predictable electrical field stimuli to cells, monitoring environmental parameters, and assessment of cell and tissue responses. The duration of the protocol is 5 d for two-dimensional cultures and 10 d for 3D cultures. PMID:19180087

  11. [Phrenic nerve stimulation protects against mechanical ventilation-induced diaphragmatic dysfunction through myogenic regulatory factors].

    PubMed

    An, G H; Chen, M; Zhan, W F; Hu, B; Zhang, H X

    2018-02-12

    Objective: To explore the protective effect of electrical stimulation of phrenic nerve on diaphragmatic function during mechanical ventilation. Methods: Forty healthy adult SD rats were randomly divided into 5 groups: blank control group (BC), spontaneous breathing group (SB), electrical stimulation group (ES), mechanical ventilation group (MV), and electrical stimulation and mechanical ventilation group (MS). The rats in each group were treated for 18 h except for the BC group. After treatment, the diaphragm muscle tissue was obtained and the diaphragm contractility including peak-to-peak value(Vpp) and maximum rate of contraction(+ dT/dt max) were measured. Expression of MyoD and myogenin were detected. Results: Except for the ES and the MS groups, there was a significant difference for peak-to-peak value (Vpp) between each 2 groups ( P <0.05). Expression levels of MyoD in treatment groups were also significantly different ( P <0.05). Expressions of MS(Q-PCR 2(-ΔΔCt) value: 11.66±2.80) and MV(Q-PCR 2(-ΔΔCt) value: 40.89±24.71) in the treatment group were significantly different ( P <0.05). The expression of myogenin in the MS and the MV groups were significantly different from those of the BC group( P <0.05), however there was no significant difference between the MS(Q-PCR 2(-ΔΔCt) value: 2.58±2.75) and the MV group(Q-PCR 2(-ΔΔCt) value: 1.63±0.71). Conclusions: Electrical stimulation of the phrenic nerve can change the expression level of MyoD and myogenin to offset mechanical ventilation induced diaphragmatic function damage, and therefore plays a protective effect on the diaphragm.

  12. Braille line using electrical stimulation

    NASA Astrophysics Data System (ADS)

    Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.

    2007-11-01

    Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.

  13. Nonpainful remote electrical stimulation alleviates episodic migraine pain.

    PubMed

    Yarnitsky, David; Volokh, Lana; Ironi, Alon; Weller, Boaz; Shor, Merav; Shifrin, Alla; Granovsky, Yelena

    2017-03-28

    To evaluate the efficacy of remote nonpainful electrical upper arm skin stimulation in reducing migraine attack pain. This is a prospective, double-blinded, randomized, crossover, sham-controlled trial. Migraineurs applied skin electrodes to the upper arm soon after attack onset for 20 minutes, at various pulse widths, and refrained from medications for 2 hours. Patients were asked to use the device for up to 20 attacks. In 71 patients (299 treatments) with evaluable data, 50% pain reduction was obtained for 64% of participants based on best of 200-μs, 150-μs, and 100-μs pulse width stimuli per individual vs 26% for sham stimuli. Greater pain reduction was found for active stimulation vs placebo; for those starting at severe or moderate pain, reduction (1) to mild or no pain occurred in 58% (25/43) of participants (66/134 treatments) for the 200-μs stimulation protocol and 24% (4/17; 8/29 treatments) for placebo ( p = 0.02), and (2) to no pain occurred in 30% (13/43) of participants (37/134 treatments) and 6% (1/17; 5/29 treatments), respectively ( p = 0.004). Earlier application of the treatment, within 20 minutes of attack onset, yielded better results: 46.7% pain reduction as opposed to 24.9% reduction when started later ( p = 0.02). Nonpainful remote skin stimulation can significantly reduce migraine pain, especially when applied early in an attack. This is presumably by activating descending inhibition pathways via the conditioned pain modulation effect. This treatment may be proposed as an attractive nonpharmacologic, easy to use, adverse event free, and inexpensive tool to reduce migraine pain. NCT02453399. This study provides Class III evidence that for patients with an acute migraine headache, remote nonpainful electrical stimulation on the upper arm skin reduces migraine pain. © 2017 American Academy of Neurology.

  14. Effects of coil characteristics for femoral nerve magnetic stimulation.

    PubMed

    Tomazin, Katja; Verges, Samuel; Decorte, Nicolas; Oulerich, Alain; Millet, Guillaume Y

    2010-03-01

    The aim of this study was to compare the efficiency of two coils used for femoral nerve magnetic stimulation and to compare them with electrical stimulation in inducing maximal response of the quadriceps. The mechanical and electromyographic (EMG) responses were dependent on the coil used. The 45-mm double coil showed greater efficiency to elicit a maximal quadriceps response, which was similar to electrical stimulation.

  15. Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional pictures) are increased in patients with schizophrenia

    PubMed Central

    Duval, Céline Z.; Goumon, Yannick; Kemmel, Véronique; Kornmeier, Jürgen; Dufour, André; Andlauer, Olivier; Vidailhet, Pierre; Poisbeau, Pierrick; Salvat, Eric; Muller, André; Mensah-Nyagan, Ayikoé G.; Schmidt-Mutter, Catherine; Giersch, Anne

    2016-01-01

    Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients’ evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers. PMID:26935652

  16. Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents

    PubMed Central

    Kanchiku, Tsukasa; Kato, Yoshihiko; Suzuki, Hidenori; Imajo, Yasuaki; Yoshida, Yuichiro; Moriya, Atsushi; Taguchi, Toshihiko; Jung, Ranu

    2012-01-01

    Background Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. Objective To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. Methods The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength–duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. Results Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. Conclusions This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries. PMID:22507026

  17. A pilot study of contralateral homonymous muscle activity simulated electrical stimulation in chronic hemiplegia.

    PubMed

    Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen

    2012-01-01

    For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.

  18. The effects of electrical stimulation and exercise therapy in patients with limb girdle muscular dystrophy

    PubMed Central

    Kılınç, Muhammed; Yıldırım, Sibel A.; Tan, Ersin

    2015-01-01

    Objective: To evaluate and compare the effects of exercise therapy and electrical stimulation on muscle strength and functional activities in patients with limb-girdle muscular dystrophy (LGMD). Methods: This controlled clinical trial included 24 subjects who were diagnosed with LGMD by the Neurology Department of the Hacettepe University Hospital, Ankara, Turkey and were referred to the Physical Therapy Department between May 2013 and December 2014. Subjects were enrolled into an electrical stimulation (11 patients) group, or an exercise therapy (13 patients) group. Results: The mean age of patients was 31.62 years in the electrical stimulation group, and 30.14 years in the exercise therapy group. The most important results in this controlled clinical study were that the muscle strength in both groups was significantly decreased and post-treatment evaluation results indicated that muscle strength of the Deltoideus was higher in the electrical stimulation group, and the difference between the groups was maintained in the follow-up period (p<0.05). However, the muscle strength of quadriceps was similar in both groups, according to the post-treatment and follow-up evaluation results (p>0.05). Additionally, the electrical stimulation group presented more obvious overall improvements than the exercise therapy group according to muscle strength, endurance, and timed performance tests. Conclusions: Since no definitive treatments currently exist for patients with LGMD, these results provide important information on the role of exercise therapy and electrical stimulation for clinicians working in rehabilitation. PMID:26166595

  19. The effect of intra-operative transcutaneous electrical nerve stimulation on posterior neck pain following thyroidectomy.

    PubMed

    Park, C; Choi, J B; Lee, Y-S; Chang, H-S; Shin, C S; Kim, S; Han, D W

    2015-04-01

    Posterior neck pain following thyroidectomy is common because full neck extension is required during the procedure. We evaluated the effect of intra-operative transcutaneous electrical nerve stimulation on postoperative neck pain in patients undergoing total thyroidectomy under general anaesthesia. One hundred patients were randomly assigned to one of two groups; 50 patients received transcutaneous electrical nerve stimulation applied to the trapezius muscle and 50 patients acted as controls. Postoperative posterior neck pain and anterior wound pain were evaluated using an 11-point numerical rating scale at 30 min, 6 h, 24 h and 48 h following surgery. The numerical rating scale for posterior neck pain was significantly lower in the transcutaneous electrical nerve stimulation group compared with the control group at all time points (p < 0.05). There were no significant differences in the numerical rating scale for anterior wound pain at any time point. No adverse effects related to transcutaneous electrical nerve stimulation were observed. We conclude that intra-operative transcutaneous electrical nerve stimulation applied to the trapezius muscle reduced posterior neck pain following thyroidectomy. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  20. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... beam sensors form the enclosure, the stimulating equipment shall be automatically shut off when the sensor signals are broken. (3) Mandatory Warning Devices and Signals. The following warning devices or.... (ii) An ANSI Z53.1-Color Code sign reading (a) “Danger Electrical Hazard” for stimulating voltage...

  1. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... beam sensors form the enclosure, the stimulating equipment shall be automatically shut off when the sensor signals are broken. (3) Mandatory Warning Devices and Signals. The following warning devices or.... (ii) An ANSI Z53.1-Color Code sign reading (a) “Danger Electrical Hazard” for stimulating voltage...

  2. Motor recovery and cortical plasticity after functional electrical stimulation in a rat model of focal stroke.

    PubMed

    Cecatto, Rebeca Boltes; Maximino, Jessica Ruivo; Chadi, Gerson

    2014-09-01

    The aim of this study was to investigate the functional responses and plastic cortical changes in a sample of animals with sequelae of cerebral ischemia that were subjected to a model of functional electrical stimulation (FES). Rats received an ischemic cortical lesion (Rose Bengal method) and were randomized and submitted to an FES stimulation (1-2 mA, 30 Hz, 20-40 mins for 14 days) or sham stimulation. The Foot Fault Test was performed before inducing the cortical lesion and also before and after FES. Brain immunochemistry labeling with microtubule-associated protein-2 and neurofilament-200 markers was performed after FES. The authors found a decreased percentage of errors in the Foot Fault Test (P < 0.001) in the stimulated group compared with the sham group after FES. FES has not altered the lesion size. Spontaneous motor parameters returned to basal values in both groups. The qualitative analysis showed an increased amount of radial microtubule-associated protein-2 immunoreactive fibers in the preserved cortex adjacent to stroke site in the stimulated animals. Regarding the measurements of neurofilament-200 immunostaining, there were no differences between the hemispheres or groups in area or intensity. Acute and short period of FES led to motor recovery of ankle joint neurodisability. The extent to which compensatory plasticity occurs after stroke or after FES and the extent to which it contributes to functional recovery are yet unclear. The changes induced by the stimulation may improve the ability of the nervous system to undergo spontaneous recovery, which is of substantial interest for neurorehabilitation strategies.

  3. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics.

    PubMed

    Shannon, R V

    1983-08-01

    Basic psychophysical measurements were obtained from three patients implanted with multichannel cochlear implants. This paper presents measurements from stimulation of a single channel at a time (either monopolar or bipolar). The shape of the threshold vs. frequency curve can be partially related to the membrane biophysics of the remaining spiral ganglion and/or dendrites. Nerve survival in the region of the electrode may produce some increase in the dynamic range on that electrode. Loudness was related to the stimulus amplitude by a power law with exponents between 1.6 and 3.4, depending on frequency. Intensity discrimination was better than for normal auditory stimulation, but not enough to offset the small dynamic range for electrical stimulation. Measures of temporal integration were comparable to normals, indicating a central mechanism that is still intact in implant patients. No frequency analysis of the electrical signal was observed. Each electrode produced a unique pitch sensation, but they were not simply related to the tonotopic position of the stimulated electrode. Pitch increased over more than 4 octaves (for one patient) as the frequency was increased from 100 to 300 Hz, but above 300 Hz no pitch change was observed. Possibly the major limitation of single channel cochlear implants is the 1-2 ms integration time (probably due to the capacitative properties of the nerve membrane which acts as a low-pass filter at 100 Hz). Another limitation of electrical stimulation is that there is no spectral analysis of the electrical waveform so that temporal waveform alone determines the effective stimulus.

  4. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  5. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  6. Hypothesis that vagal reinervation of diaphragm could sensitise it to electrical stimulation.

    PubMed

    Pavlovic, Dragan; Wendt, Michael

    2003-03-01

    The hypothesis proposed is that restoration of functional capacity of denervated diaphragm may be achieved by reinervating it with vagus nerve. Following trauma, carcinomatose infiltration, and/or large thoracic surgery and neck surgery, phrenic nerve is frequently injured. Reinervation even in the most favourable conditions would not follow and diaphragm would rest permanently denervated and paralysed. This results in unilateral or bilateral paralysis of diaphragm. In principle, intermittent electrical stimulation of the phrenic nerve or diaphragm could elicit regular diaphragm contractions and maintain satisfactory respiration. While this technique could be used in upper motor neurone injury, in lower motor neurone injury and denervated diaphragm, that imposes too high electrical resistance, direct diaphragm pacing is practically impossible. In these cases, long term artificial ventilation is often necessary. Nevertheless, those patients are at high risk to suffer from atelectasis and respiratory infections. We project a hypothesis that reinervation of denervated diaphragm by vagus nerve could re-establishes its sensitivity to intramuscular electrical stimulation and may allow stimulation of the diaphragm by implanted pace-maker electrodes. An appropriate electrical stimulation might then be possible and diaphragm pacing could replace prolonged artificial ventilation in those patients. Restoration of functional capacity of denervated diaphragm could open a perspective for long term diaphragm pacing in patients with irreversible phrenic nerve injury and diaphragm paralysis.

  7. Multi-Scale Computational Models for Electrical Brain Stimulation

    PubMed Central

    Seo, Hyeon; Jun, Sung C.

    2017-01-01

    Electrical brain stimulation (EBS) is an appealing method to treat neurological disorders. To achieve optimal stimulation effects and a better understanding of the underlying brain mechanisms, neuroscientists have proposed computational modeling studies for a decade. Recently, multi-scale models that combine a volume conductor head model and multi-compartmental models of cortical neurons have been developed to predict stimulation effects on the macroscopic and microscopic levels more precisely. As the need for better computational models continues to increase, we overview here recent multi-scale modeling studies; we focused on approaches that coupled a simplified or high-resolution volume conductor head model and multi-compartmental models of cortical neurons, and constructed realistic fiber models using diffusion tensor imaging (DTI). Further implications for achieving better precision in estimating cellular responses are discussed. PMID:29123476

  8. Near-infrared signals associated with electrical stimulation of peripheral nerves

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Chen, Debbie K.; Martin, Jeffrey M.; Sassaroli, Angelo; Bergethon, Peter R.

    2009-02-01

    We report our studies on the optical signals measured non-invasively on electrically stimulated peripheral nerves. The stimulation consists of the delivery of 0.1 ms current pulses, below the threshold for triggering any visible motion, to a peripheral nerve in human subjects (we have studied the sural nerve and the median nerve). In response to electrical stimulation, we observe an optical signal that peaks at about 100 ms post-stimulus, on a much longer time scale than the few milliseconds duration of the electrical response, or sensory nerve action potential (SNAP). While the 100 ms optical signal we measured is not a direct optical signature of neural activation, it is nevertheless indicative of a mediated response to neural activation. We argue that this may provide information useful for understanding the origin of the fast optical signal (also on a 100 ms time scale) that has been measured non-invasively in the brain in response to cerebral activation. Furthermore, the optical response to peripheral nerve activation may be developed into a diagnostic tool for peripheral neuropathies, as suggested by the delayed optical signals (average peak time: 230 ms) measured in patients with diabetic neuropathy with respect to normal subjects (average peak time: 160 ms).

  9. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and

  10. Treating a pressure ulcer with bio-electric stimulation therapy.

    PubMed

    Hampton, Sylvie; Collins, Fiona

    Mr Jones lived independently until he developed necrotic pressure ulcers over his heels and could no longer mobilize to care for himself. He was transferred to a nursing home where he lived for 18 months and where the nurses could care for his wounds. The wound had been on his right heel without changing over the 18 months and, although attempts to hydrate the eschar had been somewhat successful, the necrotic tissue proved stubborn creating large quantity of fibrous slough. Mr Jones was initially assessed by the tissue viability consultant on 14 March 2005 and agreed to the application of bio-electric stimulation therapy (POSiFEC). The wound change was immediate and was fully healed by 16 June 2005, 12 weeks after his initial assessment. This article outlines his care and the background to bio-electrical stimulation in wounds.

  11. Therapeutic Angiogenesis via Solar Cell-Facilitated Electrical Stimulation.

    PubMed

    Jeong, Gun-Jae; Oh, Jin Young; Kim, Yeon-Ju; Bhang, Suk Ho; Jang, Hyeon-Ki; Han, Jin; Yoon, Jeong-Kee; Kwon, Sang-Mo; Lee, Tae Il; Kim, Byung-Soo

    2017-11-08

    Cell therapy has been suggested as a treatment modality for ischemic diseases, but the poor survival and engraftment of implanted cells limit its therapeutic efficacy. To overcome such limitation, we used electrical stimulation (ES) derived from a wearable solar cell for inducing angiogenesis in ischemic tissue. ES enhanced the secretion of angiogenic growth factors and the migration of mesenchymal stem cells (MSCs), myoblasts, endothelial progenitor cells, and endothelial cells in vitro. In a mouse ischemic hindlimb model, ES generated by a solar cell and applied to the ischemic region promoted migration of MSCs toward the ischemic site and upregulated expression of angiogenic paracrine factors (vascular endothelial, basic fibroblast, and hepatocyte growth factors; and stromal cell-derived factor-1α). Importantly, solar cell-generated ES promoted the formation of capillaries and arterioles at the ischemic region, attenuated muscle necrosis and fibrosis, and eventually prevented loss of the ischemic limb. Solar cell ES therapy showed higher angiogenic efficacy than conventional MSC therapy. This study shows the feasibility of using solar cell ES as a novel treatment for therapeutic angiogenesis.

  12. Non-Invasive Electrical Brain Stimulation Montages for Modulation of Human Motor Function.

    PubMed

    Curado, Marco; Fritsch, Brita; Reis, Janine

    2016-02-04

    Non-invasive electrical brain stimulation (NEBS) is used to modulate brain function and behavior, both for research and clinical purposes. In particular, NEBS can be applied transcranially either as direct current stimulation (tDCS) or alternating current stimulation (tACS). These stimulation types exert time-, dose- and in the case of tDCS polarity-specific effects on motor function and skill learning in healthy subjects. Lately, tDCS has been used to augment the therapy of motor disabilities in patients with stroke or movement disorders. This article provides a step-by-step protocol for targeting the primary motor cortex with tDCS and transcranial random noise stimulation (tRNS), a specific form of tACS using an electrical current applied randomly within a pre-defined frequency range. The setup of two different stimulation montages is explained. In both montages the emitting electrode (the anode for tDCS) is placed on the primary motor cortex of interest. For unilateral motor cortex stimulation the receiving electrode is placed on the contralateral forehead while for bilateral motor cortex stimulation the receiving electrode is placed on the opposite primary motor cortex. The advantages and disadvantages of each montage for the modulation of cortical excitability and motor function including learning are discussed, as well as safety, tolerability and blinding aspects.

  13. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  14. Non-invasive electric current stimulation for restoration of vision after unilateral occipital stroke.

    PubMed

    Gall, Carolin; Silvennoinen, Katri; Granata, Giuseppe; de Rossi, Francesca; Vecchio, Fabrizio; Brösel, Doreen; Bola, Michał; Sailer, Michael; Waleszczyk, Wioletta J; Rossini, Paolo M; Tatlisumak, Turgut; Sabel, Bernhard A

    2015-07-01

    Occipital stroke often leads to visual field loss, for which no effective treatment exists. Little is known about the potential of non-invasive electric current stimulation to ameliorate visual functions in patients suffering from unilateral occipital stroke. One reason is the traditional thinking that visual field loss after brain lesions is permanent. Since evidence is available documenting vision restoration by means of vision training or non-invasive electric current stimulation future studies should also consider investigating recovery processes after visual cortical strokes. Here, protocols of repetitive transorbital alternating current stimulation (rtACS) and transcranial direct current stimulation (tDCS) are presented and the European consortium for restoration of vision (REVIS) is introduced. Within the consortium different stimulation approaches will be applied to patients with unilateral occipital strokes resulting in homonymous hemianopic visual field defects. The aim of the study is to evaluate effects of current stimulation of the brain on vision parameters, vision-related quality of life, and physiological parameters that allow concluding about the mechanisms of vision restoration. These include EEG-spectra and coherence measures, and visual evoked potentials. The design of stimulation protocols involves an appropriate sham-stimulation condition and sufficient follow-up periods to test whether the effects are stable. This is the first application of non-invasive current stimulation for vision rehabilitation in stroke-related visual field deficits. Positive results of the trials could have far-reaching implications for clinical practice. The ability of non-invasive electrical current brain stimulation to modulate the activity of neuronal networks may have implications for stroke rehabilitation also in the visual domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Electrically induced contraction levels of the quadriceps femoris muscles in healthy men: the effects of three patterns of burst-modulated alternating current and volitional muscle fatigue.

    PubMed

    Parker, Michael G; Broughton, Alex J; Larsen, Ben R; Dinius, Josh W; Cimbura, Mac J; Davis, Matthew

    2011-12-01

    The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P < 0.001) than did the 90% burst duty cycle pattern. There was no significant interaction effect (P = 0.392) of electrical stimulation patterns and fatigue on the electrically induced contraction levels. The lower burst duty cycle (10%) patterns of electrical stimulation produced stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.

  16. Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation

    PubMed Central

    Amaris, M A; Rashev, P Z; Mintchev, M P; Bowes, K L

    2002-01-01

    Background and aims: Invoked peristaltic contractions and movement of solid content have not been attempted in normal canine colon. The purpose of this study was to determine if movement of solid content through the colon could be produced by microprocessor controlled sequential stimulation. Methods: The study was performed on six anaesthetised dogs. At laparotomy, a 15 cm segment of descending colon was selected, the proximal end closed with a purse string suture, and the distal end opened into a collecting container. Four sets of subserosal stimulating electrodes were implanted at 3 cm intervals. The segment of bowel was filled with a mixture of dog food and 50 plastic pellets before each of 2–5 random sessions of non-stimulated or stimulated emptying. Propagated contractions were generated using microprocessor controlled bipolar trains of 50 Hz rectangular voltage having 20 V (peak to peak) amplitude, 18 second stimulus duration, and a nine second phase lag between stimulation trains in sequential electrode sets. Results: Electrical stimulation using the above mentioned parameters resulted in powerful phasic contractions that closed the lumen. By phase locking the stimulation voltage between adjacent sets of electrodes, propagated contractions could be produced in an aboral or orad direction. The number of evacuated pellets during the stimulation sessions was significantly higher than during the non-stimulated sessions (p<0.01). Conclusions: Microprocessor controlled electrical stimulation accelerated movement of colonic content suggesting the possibility of future implantable colonic stimulators. PMID:11889065

  17. Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability.

    PubMed

    Inukai, Yasuto; Saito, Kei; Sasaki, Ryoki; Tsuiki, Shota; Miyaguchi, Shota; Kojima, Sho; Masaki, Mitsuhiro; Otsuru, Naofumi; Onishi, Hideaki

    2016-01-01

    Transcranial direct current stimulation (tDCS) is a representative non-invasive brain stimulation method (NIBS). tDCS increases cortical excitability not only in healthy individuals, but also in stroke patients where it contributes to motor function improvement. Recently, two additional types of transcranial electrical stimulation (tES) methods have been introduced that may also prove beneficial for stimulating cortical excitability; these are transcranial random noise stimulation (tRNS) and transcranial alternating current stimulation (tACS). However, comparison of tDCS with tRNS and tACS, in terms of efficacy in cortical excitability alteration, has not been reported thus far. We compared the efficacy of the three different tES methods for increasing cortical excitability using the same subject population and same current intensity. Fifteen healthy subjects participated in this study. Similar stimulation patterns (1.0 mA and 10 min) were used for the three conditions of stimulation (tDCS, tRNS, and tACS). Cortical excitability was explored via single-pulse TMS elicited motor evoked potentials (MEPs). Compared with pre-measurements, MEPs significantly increased with tDCS, tACS, and tRNS ( p < 0.05). Compared with sham measurements, significant increases in MEPs were also observed with tRNS and tACS ( p < 0.05), but not with tDCS. In addition, a significant correlation of the mean stimulation effect was observed between tRNS and tACS ( p = 0.019, r = 0.598). tRNS induced a significant increase in MEP compared with the Pre or Sham at all time points. tRNS resulted in the largest significant increase in MEPs. These findings suggest that tRNS is the most effective tES method and should be considered as part of a treatment plan for improving motor function in stroke patients.

  18. Current-Controlled Electrical Point-Source Stimulation of Embryonic Stem Cells

    PubMed Central

    Chen, Michael Q.; Xie, Xiaoyan; Wilson, Kitchener D.; Sun, Ning; Wu, Joseph C.; Giovangrandi, Laurent; Kovacs, Gregory T. A.

    2010-01-01

    Stem cell therapy is emerging as a promising clinical approach for myocardial repair. However, the interactions between the graft and host, resulting in inconsistent levels of integration, remain largely unknown. In particular, the influence of electrical activity of the surrounding host tissue on graft differentiation and integration is poorly understood. In order to study this influence under controlled conditions, an in vitro system was developed. Electrical pacing of differentiating murine embryonic stem (ES) cells was performed at physiologically relevant levels through direct contact with microelectrodes, simulating the local activation resulting from contact with surrounding electroactive tissue. Cells stimulated with a charged balanced voltage-controlled current source for up to 4 days were analyzed for cardiac and ES cell gene expression using real-time PCR, immunofluorescent imaging, and genome microarray analysis. Results varied between ES cells from three progressive differentiation stages and stimulation amplitudes (nine conditions), indicating a high sensitivity to electrical pacing. Conditions that maximally encouraged cardiomyocyte differentiation were found with Day 7 EBs stimulated at 30 µA. The resulting gene expression included a sixfold increase in troponin-T and a twofold increase in β-MHCwithout increasing ES cell proliferation marker Nanog. Subsequent genome microarray analysis revealed broad transcriptome changes after pacing. Concurrent to upregulation of mature gene programs including cardiovascular, neurological, and musculoskeletal systems is the apparent downregulation of important self-renewal and pluripotency genes. Overall, a robust system capable of long-term stimulation of ES cells is demonstrated, and specific conditions are outlined that most encourage cardiomyocyte differentiation. PMID:20652088

  19. Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen

    2012-01-01

    Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.

  20. Communication calls produced by electrical stimulation of four structures in the guinea pig brain

    PubMed Central

    Green, David B.; Shackleton, Trevor M.; Grimsley, Jasmine M. S.; Zobay, Oliver; Palmer, Alan R.

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation. PMID:29584746

  1. Communication calls produced by electrical stimulation of four structures in the guinea pig brain.

    PubMed

    Green, David B; Shackleton, Trevor M; Grimsley, Jasmine M S; Zobay, Oliver; Palmer, Alan R; Wallace, Mark N

    2018-01-01

    One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.

  2. A pelvic motion driven electrical stimulator for drop-foot treatment.

    PubMed

    Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son

    2009-01-01

    Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.

  3. Use of electroacupuncture and transcutaneous electrical acupoint stimulation in reproductive medicine: a group consensus.

    PubMed

    Qu, Fan; Li, Rong; Sun, Wei; Lin, Ge; Zhang, Rong; Yang, Jing; Tian, Li; Xing, Guo-Gang; Jiang, Hui; Gong, Fei; Liang, Xiao-Yan; Meng, Yan; Liu, Jia-Yin; Zhou, Li-Ying; Wang, Shu-Yu; Wu, Yan; He, Yi-Jing; Ye, Jia-Yu; Han, Song-Ping; Han, Ji-Sheng

    With the rapid development of assisted reproductive technology, various reproductive disorders have been effectively addressed. Acupuncture-like therapies, including electroacupuncture (EA) and transcutaneous electrical acupoint stimulation (TEAS), become more popular world-wide. Increasing evidence has demonstrated that EA and TEAS are effective in treating gynecological disorders, especially infertility. This present paper describes how to select acupoints for the treatment of infertility from the view of theories of traditional Chinese medicine and how to determine critical parameters of electric pulses of EA/TEAS based on results from animal and clinical studies. It summarizes the principles of clinical application of EA/TEAS in treating various kinds of reproductive disorders, such as polycystic ovary syndrome (PCOS), pain induced by oocyte retrieval, diminished ovarian reserve, embryo transfer, and oligospermia/ asthenospermia. The possible underlying mechanisms mediating the therapeutic effects of EA/TEAS in reproductive medicine are also examined.

  4. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    PubMed

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  5. Pharyngeal electrical stimulation device for the treatment of neurogenic dysphagia: technology update.

    PubMed

    Restivo, Domenico A; Hamdy, Shaheen

    2018-01-01

    Neurogenic dysphagia (ND) can occur in patients with nervous system diseases of varying etiologies. Moreover, recovery from ND is not guaranteed. The therapeutic approaches for oropharyngeal ND have drastically changed over the last decade, mainly due to a better knowledge of the neurophysiology of swallowing along with the progress of neuroimaging and neurophysiological studies. For this reason, it is a priority to develop a treatment that is repeatable, safe, and can be carried out at the bedside as well as for outpatients. Pharyngeal electrical stimulation (PES) is a novel rehabilitation treatment for ND. PES is carried out via location-specific intraluminal catheters that are introduced transnasally and enable clinicians to stimulate the pharynx directly. This technique has demonstrated increasingly promising evidence in improving swallowing performance in patients with ND associated with stroke and multiple sclerosis, probably by increasing the corticobulbar excitability and inducing cortical reorganization of swallowing motor cortex. In this article, we update the reader as to both the physiologic background and past and current studies of PES in an effort to highlight the clinical progress of this important technique.

  6. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  7. Electrical Stimulation for Wound-Healing: Simulation on the Effect of Electrode Configurations

    PubMed Central

    2017-01-01

    Endogenous electric field is known to play important roles in the wound-healing process, mainly through its effects on protein synthesis and cell migration. Many clinical studies have demonstrated that electrical stimulation (ES) with steady direct currents is beneficial to accelerating wound-healing, even though the underlying mechanisms remain unclear. In the present study, a three-dimensional finite element wound model was built to optimize the electrode configuration in ES. Four layers of the skin, stratum corneum, epidermis, dermis, and subcutis, with defined thickness and electrical properties were modeled. The main goal was to evaluate the distributions of exogenous electric fields delivered with direct current (DC) stimulation using different electrode configurations such as sizes and positions. Based on the results, some guidelines were obtained in designing the electrode configuration for applications of clinical ES. PMID:28497054

  8. Playing the electric light orchestra—how electrical stimulation of visual cortex elucidates the neural basis of perception

    PubMed Central

    Cicmil, Nela; Krug, Kristine

    2015-01-01

    Vision research has the potential to reveal fundamental mechanisms underlying sensory experience. Causal experimental approaches, such as electrical microstimulation, provide a unique opportunity to test the direct contributions of visual cortical neurons to perception and behaviour. But in spite of their importance, causal methods constitute a minority of the experiments used to investigate the visual cortex to date. We reconsider the function and organization of visual cortex according to results obtained from stimulation techniques, with a special emphasis on electrical stimulation of small groups of cells in awake subjects who can report their visual experience. We compare findings from humans and monkeys, striate and extrastriate cortex, and superficial versus deep cortical layers, and identify a number of revealing gaps in the ‘causal map′ of visual cortex. Integrating results from different methods and species, we provide a critical overview of the ways in which causal approaches have been used to further our understanding of circuitry, plasticity and information integration in visual cortex. Electrical stimulation not only elucidates the contributions of different visual areas to perception, but also contributes to our understanding of neuronal mechanisms underlying memory, attention and decision-making. PMID:26240421

  9. Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity

    PubMed Central

    Zeitler, Magteld; Tass, Peter A.

    2016-01-01

    Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies. PMID:27242500

  10. An in-situ stimulation experiment in crystalline rock - assessment of induced seismicity levels during stimulation and related hazard for nearby infrastructure

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin; Broccardo, Marco; Amann, Florian; Jalali, Mohammadreza; Esposito, Simona; Krietsch, Hannes; Doetsch, Joseph; Madonna, Claudio; Wiemer, Stefan; Loew, Simon; Giardini, Domenico

    2016-04-01

    A decameter in-situ stimulation experiment is currently being performed at the Grimsel Test Site in Switzerland by the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE). The underground research laboratory lies in crystalline rock at a depth of 480 m, and exhibits well-documented geology that is presenting some analogies with the crystalline basement targeted for the exploitation of deep geothermal energy resources in Switzerland. The goal is to perform a series of stimulation experiments spanning from hydraulic fracturing to controlled fault-slip experiments in an experimental volume approximately 30 m in diameter. The experiments will contribute to a better understanding of hydro-mechanical phenomena and induced seismicity associated with high-pressure fluid injections. Comprehensive monitoring during stimulation will include observation of injection rate and pressure, pressure propagation in the reservoir, permeability enhancement, 3D dislocation along the faults, rock mass deformation near the fault zone, as well as micro-seismicity. The experimental volume is surrounded by other in-situ experiments (at 50 to 500 m distance) and by infrastructure of the local hydropower company (at ~100 m to several kilometres distance). Although it is generally agreed among stakeholders related to the experiments that levels of induced seismicity may be low given the small total injection volumes of less than 1 m3, detailed analysis of the potential impact of the stimulation on other experiments and surrounding infrastructure is essential to ensure operational safety. In this contribution, we present a procedure how induced seismic hazard can be estimated for an experimental situation that is untypical for injection-induced seismicity in terms of injection volumes, injection depths and proximity to affected objects. Both, deterministic and probabilistic methods are employed to estimate that maximum possible and the maximum expected induced

  11. The Effect of Surface Electrical Stimulation on Vocal Fold Position

    PubMed Central

    Humbert, Ianessa A.; Poletto, Christopher J.; Saxon, Keith G.; Kearney, Pamela R.; Ludlow, Christy L.

    2008-01-01

    Objectives/Hypothesis Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Design Prospective single effects study. Methods The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using ten different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Results Vocal fold angles changed only to a small extent during two electrode placements (p ≤ 0.05). When two sets of electrodes were placed vertically on the neck the mean true vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (p=0.03). Conclusions Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing and one position may produce a slight increase in true vocal fold opening. PMID:18043496

  12. Modulating Human Auditory Processing by Transcranial Electrical Stimulation

    PubMed Central

    Heimrath, Kai; Fiene, Marina; Rufener, Katharina S.; Zaehle, Tino

    2016-01-01

    Transcranial electrical stimulation (tES) has become a valuable research tool for the investigation of neurophysiological processes underlying human action and cognition. In recent years, striking evidence for the neuromodulatory effects of transcranial direct current stimulation, transcranial alternating current stimulation, and transcranial random noise stimulation has emerged. While the wealth of knowledge has been gained about tES in the motor domain and, to a lesser extent, about its ability to modulate human cognition, surprisingly little is known about its impact on perceptual processing, particularly in the auditory domain. Moreover, while only a few studies systematically investigated the impact of auditory tES, it has already been applied in a large number of clinical trials, leading to a remarkable imbalance between basic and clinical research on auditory tES. Here, we review the state of the art of tES application in the auditory domain focussing on the impact of neuromodulation on acoustic perception and its potential for clinical application in the treatment of auditory related disorders. PMID:27013969

  13. Vertical electric field stimulation of neural cells on porous amorphous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2014-03-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to stimulate neuronal cell proliferation in presence of external electric field. The electric field was applied perpendicular to carbon electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm2) and low impedance (3.3 k Ω at 1 kHz). When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to stimulate neurite outgrowth and viability of nerve cells.

  14. Breast feeding increases vasoconstriction induced by electrical field stimulation in rat mesenteric artery. Role of neuronal nitric oxide and ATP.

    PubMed

    Blanco-Rivero, Javier; Sastre, Esther; Caracuel, Laura; Granado, Miriam; Balfagón, Gloria

    2013-01-01

    The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O(2)(.-)), NA and ATP releases were also determined. EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O(2)(.-) production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.

  15. Breast Feeding Increases Vasoconstriction Induced by Electrical Field Stimulation in Rat Mesenteric Artery. Role of Neuronal Nitric Oxide and ATP

    PubMed Central

    Caracuel, Laura; Granado, Miriam; Balfagón, Gloria

    2013-01-01

    Objectives The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Methods Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2 .–), NA and ATP releases were also determined. Results EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2 .– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Conclusion Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats. PMID:23342008

  16. Effect of nitric oxide synthase inhibitor on increase in nasal mucosal blood flow induced by sensory and parasympathetic nerve stimulation in rats.

    PubMed

    Ogawa, Fumio; Hanamitsu, Masakazu; Ayajiki, Kazuhide; Aimi, Yoshinari; Okamura, Tomio; Shimizu, Takeshi

    2010-06-01

    Neural control of nasal blood flow (NBF) has not been systematically investigated. The aim of the present study was to evaluate the effect of electrical stimulation of both sensory and parasympathetic nerves innervating the nasal mucosal arteries on NBF in rats. In anesthetized rats, nasociliary (sensory) nerves and postganglionic (parasympathetic) nerves derived from the right sphenopalatine ganglion were electrically stimulated. We measured NBF with a laser-Doppler flowmeter. The nerve stimulation increased NBF on both sides and increased the mean arterial blood pressure. The increase in NBF was larger on the ipsilateral side than on the contralateral side. Hexamethonium bromide, a ganglion blocker, abolished the stimulation-induced pressure effect and the increase in NBF on the contralateral side, but did not abolish the increase in NBF on the ipsilateral side. The remaining increase in NBF was abolished by N(G)-nitro-L-arginine, a nitric oxide synthase inhibitor. Histochemical analysis with nicotinamide adenine dinucleotide phosphate-diaphorase showed neuronal nitric oxide synthase-containing nerves that innervate nasal mucosal arteries. Nitric oxide released from parasympathetic nitrergic nerves may contribute to an increase in NBF in rats. The afferent impulses induced by sensory nerve stimulation may lead to an increase in mean arterial blood pressure that is partly responsible for the increase in NBF.

  17. The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.

    PubMed

    Bagosi, Zsolt; Jászberényi, Miklós; Telegdy, Gyula

    2009-05-01

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

  18. Altered responsiveness of the guinea-pig isolated ileum to smooth muscle stimulants and to electrical stimulation after in situ ischemia.

    PubMed

    Rodriguez, Rodolfo; Ventura-Martinez, Rosa; Santiago-Mejia, Jacinto; Avila-Costa, Maria R; Fortoul, Teresa I

    2006-02-01

    1. We evaluated changes in contractility of the guinea-pig isolated ileum, using intact segments and myenteric plexus-longitudinal muscle (MPLM) preparations, after several times (5-160 min) of ischemia in situ. 2. Intestinal ischemia was produced by clamping the superior mesenteric artery. Ischemic and nonischemic segments, obtained from the same guinea-pig, were mounted in organ baths containing Krebs-bicarbonate (K-B) solution, maintained at 37 degrees C and gassed with 95% O2/5% CO2. The preparations were allowed to equilibrate for 60 min under continuous superfusion of warm K-B solution and then electrically stimulated at 40 V (0.3 Hz, 3.0 ms). Thereafter, complete noncumulative concentration-response curves were constructed for acetylcholine (ACh), histamine (HIS), potassium chloride (KCl), and barium chloride (BaCl2). Mean Emax (maximal response) values were calculated for each drug. 3. Our study shows that alterations of chemically and electrically evoked contractions are dependent on ischemic periods. It also demonstrates that contractile responses of ischemic tissues to neurogenic stimulation decreases earlier and to a significantly greater extent than the non-nerve mediated responses of the intestinal smooth muscle. Contractile responses to smooth muscle stimulants were all similarly affected by ischemia. Electron microscopy images indicated necrotic neuronal death. The decrease in reactivity of ischemic tissues to electrical stimulation was ameliorated by dexrazoxane, an antioxidant agent. 4. We consider the guinea-pig isolated ileum as a useful model system to study the processes involved in neuronal ischemia, and we propose that the reduction in maximal responses to electrical stimulation is a useful parameter to study neuroprotection.

  19. Audio-Visual Stimulation in Conjunction with Functional Electrical Stimulation to Address Upper Limb and Lower Limb Movement Disorder.

    PubMed

    Kumar, Deepesh; Verma, Sunny; Bhattacharya, Sutapa; Lahiri, Uttama

    2016-06-13

    Neurological disorders often manifest themselves in the form of movement deficit on the part of the patient. Conventional rehabilitation often used to address these deficits, though powerful are often monotonous in nature. Adequate audio-visual stimulation can prove to be motivational. In the research presented here we indicate the applicability of audio-visual stimulation to rehabilitation exercises to address at least some of the movement deficits for upper and lower limbs. Added to the audio-visual stimulation, we also use Functional Electrical Stimulation (FES). In our presented research we also show the applicability of FES in conjunction with audio-visual stimulation delivered through VR-based platform for grasping skills of patients with movement disorder.

  20. Robust Neurite Extension Following Exogenous Electrical Stimulation within Single Walled Carbon Nanotube-Composite Hydrogels

    PubMed Central

    Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.

    2016-01-01

    The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609

  1. Soft Encapsulation of Flexible Electrical Stimulation Implant: Challenges and Innovations

    PubMed Central

    Debelle, Adrien; Hermans, Laura; Bosquet, Maxime; Dehaeck, Sam; Lonys, Laurent; Scheid, Benoit; Nonclercq, Antoine; Vanhoestenberghe, Anne

    2016-01-01

    In this document we discuss the main challenges encountered when producing flexible electrical stimulation implants, and present our approach to solving them for prototype production. We include a study of the optimization of the flexible PCB design, the selection of additive manufacturing materials for the mold, and the chemical compatibility of the different materials. Our approach was tested on a flexible gastro-stimulator as part of the ENDOGES research program. PMID:28078073

  2. Catheter-Based Renal Sympathetic Denervation Significantly Inhibits Atrial Fibrillation Induced by Electrical Stimulation of the Left Stellate Ganglion and Rapid Atrial Pacing

    PubMed Central

    Po, Sunny S.; Wang, Huan; Zhang, Ling; Zhang, Feng; Wang, Kun; Zhou, Qina

    2013-01-01

    Background Sympathetic activity involves the pathogenesis of atrial fibrillation (AF). Renal sympathetic denervation (RSD) decreases sympathetic renal afferent nerve activity, leading to decreased central sympathetic drive. The aim of this study was to identify the effects of RSD on AF inducibility induced by hyper-sympathetic activity in a canine model. Methods To establish a hyper-sympathetic tone canine model of AF, sixteen dogs were subjected to stimulation of left stellate ganglion (LSG) and rapid atrial pacing (RAP) for 3 hours. Then animals in the RSD group (n = 8) underwent radiofrequency ablation of the renal sympathetic nerve. The control group (n = 8) underwent the same procedure except for ablation. AF inducibility, effective refractory period (ERP), ERP dispersion, heart rate variability and plasma norepinephrine levels were measured at baseline, after stimulation and after ablation. Results LSG stimulation combined RAP significantly induced higher AF induction rate, shorter ERP, larger ERP dispersion at all sites examined and higher plasma norepinephrine levels (P<0.05 in all values), compared to baseline. The increased AF induction rate, shortened ERP, increased ERP dispersion and elevated plasma norepinephrine levels can be almost reversed by RSD, compared to the control group (P<0.05). LSG stimulation combined RAP markedly shortened RR-interval and standard deviation of all RR-intervals (SDNN), Low-frequency (LF), high-frequency (HF) and LF/HF ratio (P<0.05). These changes can be reversed by RSD, compared to the control group (P<0.05). Conclusions RSD significantly reduced AF inducibility and reversed the atrial electrophysiological changes induced by hyper-sympathetic activity. PMID:24223140

  3. Toward an implantable functional electrical stimulation device to correct strabismus

    PubMed Central

    Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.

    2010-01-01

    PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369

  4. Development of a neuromuscular electrical stimulation protocol for sprint training.

    PubMed

    Russ, David W; Clark, Brian C; Krause, Jodi; Hagerman, Fredrick C

    2012-09-01

    Sprint training is associated with several beneficial adaptations in skeletal muscle, including an enhancement of sarcoplasmic reticulum (SR) Ca(2+) release. Unfortunately, several patient populations (e.g., the elderly, those with cardiac dysfunction) that might derive great benefit from sprint exercise are unlikely to tolerate it. The purpose of this report was to describe the development of a tolerable neuromuscular electrical stimulation (NMES) protocol that induces skeletal muscle adaptations similar to those observed with sprint training. Our NMES protocol was modeled after a published sprint exercise protocol and used a novel electrode configuration and stimulation sequence to provide adequate training stimulus while maintaining subject tolerance. Nine young, healthy subjects (four men) began and completed the training protocol of the knee extensor muscles. All subjects completed the protocol, with ratings of discomfort far less than those reported in studies of traditional NMES. Training induced significant increases in SR Ca(2+) release and citrate synthase activity (~16% and 32%, respectively), but SR Ca(2+) uptake did not change. The percentage of myosin heavy chain IIx isoform was decreased significantly after training. At the whole muscle level, neither central activation nor maximum voluntary isometric contraction force were significantly altered, although isometric force did exhibit a trend toward an increase (~3%, P = 0.055). Surprisingly, the NMES training produced a significant increase in muscle cross-sectional area (~3%, P = 0.04). It seems that an appropriately designed NMES protocol can mimic many of the benefits of sprint exercise training, with a low overall time commitment and training volume. These findings suggest that NMES has the potential to bring the benefits of sprint exercise to individuals who are unable to tolerate traditional sprint training.

  5. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    PubMed

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Stimulating Music: The Pleasures and Dangers of “Electric Music,” 1750–1900

    PubMed Central

    Kennaway, James

    2014-01-01

    Far from being a purely modern idea, the notion of “electric music” was already common in the eighteenth and nineteenth centuries. The shift in thinking about music from cosmic harmony to nervous stimulation made metaphors and speculative theories relating music and electricity irresistible. This essay considers the development of the idea of electric music, looking at its associations with a sexual “body electric.” It will then examine how this conception of music went from being the subject of sympathy to becoming part of a medical critique of music as a dangerous stimulant, with echoes in music criticism and beyond. PMID:24587689

  7. Surface Electrical Stimulation for Treating Swallowing Disorders after Stroke: A Review of the Stimulation Intensity Levels and the Electrode Placements

    PubMed Central

    Poorjavad, Marziyeh; Talebian Moghadam, Saeed; Daemi, Mostafa

    2014-01-01

    Neuromuscular electrical stimulation (NMES) for treating dysphagia is a relatively new therapeutic method. There is a paucity of evidence about the use of NMES in patients with dysphagia caused by stroke. The present review aimed to introduce and discuss studies that have evaluated the efficacy of this method amongst dysphagic patients following stroke with emphasis on the intensity of stimulation (sensory or motor level) and the method of electrode placement on the neck. The majority of the reviewed studies describe some positive effects of the NMES on the neck musculature in the swallowing performance of poststroke dysphagic patients, especially when the intensity of the stimulus is adjusted at the sensory level or when the motor electrical stimulation is applied on the infrahyoid muscles during swallowing. PMID:24804147

  8. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of

  9. Assessment of deep tissue hyperalgesia in the groin - a method comparison of electrical vs. pressure stimulation.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2014-09-01

    Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment and preventive strategies. Thus, there is a need for development of methods with direct stimulation of suspected hyperalgesic tissues to identify the peripheral origin of nociceptive input. We compared the reliability of an ultrasound-guided needle stimulation protocol of electrical detection and pain thresholds to pressure algometry, by performing identical test-retest sequences 10 days apart, in deep tissues in the groin region. Electrical stimulation was performed by five up-and-down staircase series of single impulses of 0.04 ms duration, starting from 0 mA in increments of 0.2 mA until a threshold was reached and descending until sensation was lost. Method reliability was assessed by Bland-Altman plots, descriptive statistics, coefficients of variance and intraclass correlation coefficients. The electrical stimulation method was comparable to pressure algometry regarding 10 days test-retest repeatability, but with superior same-day reliability for electrical stimulation (P < 0.05). Between-subject variance rather than within-subject variance was the main source for test variation. There were no systematic differences in electrical thresholds across tissues and locations (P > 0.05). The presented tissue-specific direct deep tissue electrical stimulation technique has equal or superior reliability compared with the indirect tissue-unspecific stimulation by pressure algometry. This method may facilitate advances in mechanism based preventive and treatment strategies in acute and chronic post-surgical pain states. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. Concepts and methods in neuromodulation and functional electrical stimulation: an introduction.

    PubMed

    Holsheimer, J

    1998-04-01

    This article introduces two clinical fields in which stimulation is applied to the nervous system: neuromodulation and functional electrical stimulation. The concepts underlying these fields and their main clinical applications, as well as the methods and techniques used in each field, are described. Concepts and techniques common in one field that might be beneficial to the other are discussed. 1998 Blackwell Science, Inc.

  11. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  12. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia

    PubMed Central

    Knutson, Jayme S.; Fu, Michael J.; Sheffler, Lynne R.; Chae, John

    2015-01-01

    Synopsis This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized. PMID:26522909

  13. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.

    PubMed

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang

    2018-01-23

    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  14. The application of direct current electrical stimulation of the ear and cervical spine kinesitherapy in tinnitus treatment.

    PubMed

    Mielczarek, Marzena; Konopka, Wieslaw; Olszewski, Jurek

    2013-02-01

    The aim of the study was to evaluate the effectiveness of electrical stimulations of the hearing organ in tinnitus treatment adapting the frequency of stimulation according to tinnitus frequency, to assess the influence of cervical spine kinesitherapy on tinnitus, as well as to evaluate hearing after electrical stimulations alone and together with cervical spine kinesitherapy. The study comprised 80 tinnitus, sensorineural hearing loss patients (119 tinnitus ears) divided into two groups. In group I (n - 58 tinnitus ears) electrical stimulation of the hearing organ was performed, in group II (n - 61 tinnitus ears) electrical stimulation together with cervical spine kinesitherapy. Hydrotransmissive, selective electrical stimulations were conducted using direct, rectangular current. The passive electrode was placed on the forehead, the active--a silver probe--was immersed in the external ear canal in 0.9% saline solution. The treatment involved fifteen applications of electrical stimulations (each lasted for 4 min) administered three or four times a week (whole treatment lasted approximately 30 days). The evaluation of the results considered a case history (change from permanent to temporary tinnitus), questionnaires (the increase/decrease of the total points) and the audiometric evaluation of hearing level. Before the treatment, group I comprised 51 ears (87.93%) with permanent, and 7 ears (12.07%) with temporary tinnitus; group II - 55 ears (90.17%) with permanent and 6 ears (9.83%) with temporary tinnitus. After the treatment, in both groups the number of ears with permanent tinnitus decreased considerably obtaining the pauses or disappearing of tinnitus. Directly after the treatment, group I comprised 25 ears (43.11%) with permanent, and 10 ears (17.24%) with temporary tinnitus, in 23 ears (39.65%) tinnitus disappeared; group II - 33 ears (54.1%) with permanent and 11 ears (18.03%) with temporary tinnitus, in 17 ears (27.87%) tinnitus disappeared. Regarding

  15. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  16. Electrical stimulation for gastroesophageal reflux disease: current state of the art.

    PubMed

    Kim, Sharon E; Soffer, Edy

    2016-01-01

    Patients with gastroesophageal reflux disease (GERD) who are not satisfied with acid suppression therapy can benefit primarily from fundoplication, a surgical intervention. Fundoplication has been the standard surgical procedure for GERD. It is effective but is associated with adverse effects, resulting in a declining number of interventions, creating a need for alternative interventions that are effective, yet have a better adverse effect profile. One such alternative involves the application of electrical stimulation to the lower esophageal sphincter. A number of animal studies showed that such stimulation can increase resting lower esophageal sphincter pressure. An acute human study confirmed this effect, and was followed by two open-label studies, with a follow-up of up to 3 years. Results thus far show that the therapy is associated with a significant improvement in symptoms, a significant reduction in esophageal acid exposure, and a very good safety profile. This review will describe the evolution of electrical stimulation therapy for GERD, as well as the safety and efficacy of this intervention.

  17. Distribution and Network of Basal Temporal Language Areas: A Study of the Combination of Electric Cortical Stimulation and Diffusion Tensor Imaging.

    PubMed

    Enatsu, Rei; Kanno, Aya; Ookawa, Satoshi; Ochi, Satoko; Ishiai, Sumio; Nagamine, Takashi; Mikuni, Nobuhiro

    2017-10-01

    The basal temporal language area (BTLA) is considered to have several functions in language processing; however, its brain network is still unknown. This study investigated the distribution and networks of the BTLA using a combination of electric cortical stimulation and diffusion tensor imaging (DTI). 10 patients with intractable focal epilepsy who underwent presurgical evaluation with subdural electrodes were enrolled in this study (language dominant side: 6 patients, language nondominant side: 4 patients). Electric stimulation at 50 Hz was applied to the electrodes during Japanese sentence reading, morphograms (kanji) reading, and syllabograms (kana) reading tasks to identify the BTLA. DTI was used to identify the subcortical fibers originating from the BTLA found by electric stimulation. The BTLA was found in 6 patients who underwent implantation of the subdural electrodes in the dominant hemisphere. The BTLA was located anywhere between 20 mm and 56 mm posterior to the temporal tips. In 3 patients, electric stimulation of some or all areas within the BTLA induced disturbance in reading of kanji words only. DTI detected the inferior longitudinal fasciculus (ILF) in all patients and the uncinate fasciculus (UF) in 1 patient, originating from the BTLA. ILF was detected from both kanji-specific areas and kanji-nonspecific areas. This study indicates that the network of the BTLA is a part of a ventral stream and is mainly composed of the ILF, which acts as a critical structure for lexical retrieval. ILF is also associated with the specific processing of kanji words. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Subacute and chronic electrical stimulation of the hippocampus on intractable temporal lobe seizures: preliminary report.

    PubMed

    Velasco, A L; Velasco, M; Velasco, F; Menes, D; Gordon, F; Rocha, L; Briones, M; Márquez, I

    2000-01-01

    Recent animal experiments show that the application of an electrical stimulus to the amygdala or hippocampus following the kindling stimulus produced a significant and long-lasting suppressive effect on this experimental model of epilepsy. This is a preliminary report on the development of a surgical neuromodulatory procedure by chronic electrical stimulation of the hippocampus (CHCS) for control of intractable temporal lobe seizures in patients in whom anterior temporal lobectomy is not advisable, i.e., patients with bilateral temporal foci or a unilateral focus spreading to surrounding cerebral regions of the dominant hemisphere. This work was divided in two main consecutive stages. In the first stage, we demonstrated that subacute hippocampal stimulation (SAHCS) blocks intractable temporal lobe epileptogenesis with no additional damage to the stimulated tissue, and in a second stage, we attempt to demonstrate that CHCS may produce a sustained, long-lasting antiepileptic condition without additional undesirable effects on language and memory. In addition, taking advantage of this unique and ethically permissible situation, we attempt to determine whether or not the antiepileptic effects of SAHCS and CHCS are due to inhibition of the stimulation of hippocampal tissue by means of a number of electrophysiological, single photon computed tomography (SPECT) perfusion, and autoradiographic techniques.SAHCS during 3-4 weeks prior to anterior temporal lobectomy applied to a critical area located either at the anterior Pes hippocampus close to the amygdala or at the parahippocampal gyrus close to the entorhinal cortex abolished clinical seizures and significantly decreased the number of interictal spikes at focus after 5-6 days. Microscopy analysis of the stimulated tissue showed no evident histopathological differences between stimulated vs. non-stimulated hippocampal tissues. Additionally, CHCS persistently blocked temporal lobe epileptogenesis for 3-4 months with no

  19. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    NASA Astrophysics Data System (ADS)

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-06-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.

  20. A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions

    PubMed Central

    Perumal, Ramu; Wexler, Anthony S.; Kesar, Trisha M.; Jancosko, Angela; Laufer, Yocheved

    2010-01-01

    Superimposition of electrical stimulation during voluntary contractions is used to produce functional movements in individuals with central nervous system impairment, to evaluate the ability to activate a muscle, to characterize the nature of fatigue, and to improve muscle strength during postsurgical rehabilitation. Currently, the manner in which voluntary contractions and electrically elicited forces summate is not well understood. The objective of the present study is to develop a model that predicts the forces obtained when electrical stimulation is superimposed on a volitional contraction. Quadriceps femoris muscles of 12 able-bodied subjects were tested. Our results showed that the total force produced when electrical stimulation was superimposed during a volitional contraction could be modeled by the equation T = V + S[(MaxForce − V)/MaxForce]N, where T is the total force produced, V is the force in response to volitional contraction alone, S is the force response to the electrical stimulation alone, MaxForce is the maximum force-generating ability of the muscle, and N is a parameter that we posit depends on the differences in the motor unit recruitment order and firing rates between volitional and electrically elicited contractions. In addition, our results showed that the model predicted accurately (intraclass correlation coefficient ≥0.97) the total force in response to a wide range of stimulation intensities and frequencies superimposed on a wide range of volitional contraction levels. Thus the model will be helpful to clinicians and scientists to predict the amount of stimulation needed to produce the targeted force levels in individuals with partial paralysis. PMID:20299613

  1. A Comparison of Two Electric Taste Stimulation Devices

    PubMed Central

    McClure, Scott T.; Lawless, Harry T.

    2016-01-01

    Electrical stimulation of the tongue, commonly used in clinical evaluations of taste dysfunction, can produce a variety of sensations including reports of metallic taste. Two studies compared responses to a fabricated electrical stimulator (a 1.6 V battery, anode side exposed) and a clinical electrogustometer (Rion TR-06). Batteries placed on the anterior dorsal tongue surface produced sensations similar in intensity and quality to those produced by the clinical electrogustometer, with equal intensity on the tongue tip for the 1.6 V battery in the range of 33 – 56 µA from the electrogustometer. A second study examined responses on three areas of the tongue on each side. Responses declined for areas lower in fungiform papillae for both devices, but at different rates. Higher current levels were required to match the battery in lower density areas, indicating spatial summation for the larger battery surface area. A consistent pattern of lateral differences was seen in only one subject. Quality descriptions were similar in frequency whether or not a word list was provided, with metallic, sour, pain and bitter being the most frequently mentioned words for both electric stimuli. Similarities in response to the battery device and electrogustometer were evident in intensity, qualities evoked, lack of a laterality effect and decreasing response in areas with lower fungiform papillae density. The battery device may provide an inexpensive portable alternative to an electrogustometer for use in clinical testing of taste. PMID:17573078

  2. Chronic Electrical Stimulation with a Suprachoroidal Retinal Prosthesis: A Preclinical Safety and Efficacy Study

    PubMed Central

    Nayagam, David A. X.; Williams, Richard A.; Allen, Penelope J.; Shivdasani, Mohit N.; Luu, Chi D.; Salinas-LaRosa, Cesar M.; Finch, Sue; Ayton, Lauren N.; Saunders, Alexia L.; McPhedran, Michelle; McGowan, Ceara; Villalobos, Joel; Fallon, James B.; Wise, Andrew K.; Yeoh, Jonathan; Xu, Jin; Feng, Helen; Millard, Rodney; McWade, Melanie; Thien, Patrick C.; Williams, Chris E.; Shepherd, Robert K.

    2014-01-01

    Purpose To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. Methods Seven normally-sighted feline subjects were implanted for 96–143 days with a suprachoroidal electrode array and six were chronically stimulated for 70–105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. Results All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11–15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. Conclusions Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and

  3. Comparing the force ripple during asynchronous and conventional stimulation.

    PubMed

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  4. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.

    PubMed

    Vromans, Maria; Faghri, Pouran

    2017-12-05

    This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  5. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    PubMed

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  6. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.

    PubMed

    Howell, Bryan; McIntyre, Cameron C

    2016-06-01

    Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  7. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  8. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-08-01

    Persistent postherniotomy pain is located around the scar and external inguinal ring and is often described as deep rather than cutaneous, with frequent complaints of pain in adjacent areas. Whether this pain is due to local pathology or referred/projected pain is unknown, hindering mechanism-based treatment. Deep tissue electrical pain stimulation by needle electrodes in the right groin (rectus muscle, ilioinguinal/iliohypogastric nerve and perispermatic cord) was combined with assessment of referred/projected pain and the cutaneous heat pain threshold (HPT) at three prespecified areas (both groins and the lower right arm) in 19 healthy subjects. The assessment was repeated 10 days later to assess the reproducibility of individual responses. Deep electrical stimulation elicited pain at the stimulation site in all subjects, and in 15 subjects, pain from areas outside the stimulation area was reported, with 90-100% having the same response on both days, depending on the location. Deep pain stimulation significantly increased the cutaneous HPT (P<0.014). Individual HPT responses before and during deep electrical pain stimulation were significantly correlated (ρ>0.474, P≤0.040) at the two test days for the majority of test areas. Our results corroborate a systematic relationship between deep pain and changes in cutaneous nociception. The individual referred/projected pain patterns and cutaneous responses are variable, but reproducible, supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment and prevention. ClinicalTrials.gov (NCT01701427). © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  10. Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation.

    PubMed

    Arabi, K; Sawan, M A

    1999-06-01

    An advanced stimulator for neuromuscular stimulation of spinal cord injured patients has been developed. The stimulator is externally controlled and powered by a single encoded radio frequency carrier and has four independently controlled bipolar stimulation channels. It offers a wide range of reprogrammability and flexibility, and can be used in many neuromuscular electrical stimulation applications. The implant system is adaptable to patient's needs and to future developments in stimulation algorithms by reprogramming the stimulator. The stimulator is capable of generating a wide range of stimulation waveforms and stimulation patterns and therefore is very suitable for selective nerve stimulation techniques. The reliability of the implant has been increased by using a forward error detection and correction communication protocol and by designing the chip for structural testability based on scan test approach. Implemented testability scheme makes it possible to verify the complete functionality of the implant before and after implantation. The stimulators architecture is designed to be modular and therefore its different blocks can be reused as standard building blocks in the design and implementation of other neuromuscular prostheses. Design for low-power techniques have also been employed to reduce power consumption of the electronic circuitry.

  11. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Rolston, John D.; Fox, Neal P.; Knowlton, Robert; Rao, Vikram R.; Chang, Edward F.

    2018-04-01

    Objective. Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. Approach. To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. Main results. We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. Significance. Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.

  12. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  13. Electromotile hearing: Acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleaea)

    PubMed Central

    Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.

    2011-01-01

    When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416

  14. The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold.

    PubMed

    Karasuno, Hiroshi; Ogihara, Hisayoshi; Morishita, Katsuyuki; Yokoi, Yuka; Fujiwara, Takayuki; Ogoma, Yoshiro; Abe, Koji

    2016-04-01

    [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were collected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching (T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcutaneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle hardness, thus increasing range of motion.

  15. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity

    NASA Astrophysics Data System (ADS)

    Markovitz, Craig D.; Hogan, Patrick S.; Wesen, Kyle A.; Lim, Hubert H.

    2015-04-01

    Objective. The corticofugal system can alter coding along the ascending sensory pathway. Within the auditory system, electrical stimulation of the auditory cortex (AC) paired with a pure tone can cause egocentric shifts in the tuning of auditory neurons, making them more sensitive to the pure tone frequency. Since tinnitus has been linked with hyperactivity across auditory neurons, we sought to develop a new neuromodulation approach that could suppress a wide range of neurons rather than enhance specific frequency-tuned neurons. Approach. We performed experiments in the guinea pig to assess the effects of cortical stimulation paired with broadband noise (PN-Stim) on ascending auditory activity within the central nucleus of the inferior colliculus (CNIC), a widely studied region for AC stimulation paradigms. Main results. All eight stimulated AC subregions induced extensive suppression of activity across the CNIC that was not possible with noise stimulation alone. This suppression built up over time and remained after the PN-Stim paradigm. Significance. We propose that the corticofugal system is designed to decrease the brain’s input gain to irrelevant stimuli and PN-Stim is able to artificially amplify this effect to suppress neural firing across the auditory system. The PN-Stim concept may have potential for treating tinnitus and other neurological disorders.

  16. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  17. Effects of epithelium removal on relaxation of airway smooth muscle induced by vasoactive intestinal peptide and electrical field stimulation.

    PubMed Central

    Farmer, S. G.; Togo, J.

    1990-01-01

    1. We have studied the effect of epithelium removal on relaxation of guinea-pig isolated tracheal smooth muscle induced by vasoactive intestinal peptide (VIP) or stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves. Also examined were the effects of inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE). 2. Epithelium removal produced a 3.6 +/- 0.4 fold leftward shift in the VIP concentration-response curve. The supersensitivity to VIP, following epithelium removal was abolished by phosphoramidon or thiorphan (NEP inhibitors), but unaffected by captopril (an ACE inhibitor). In intact trachea, the NEP inhibitors produced leftward shifts in the VIP curves similar to those produced by epithelium removal. 3. In contrast to responses to exogenous VIP, neurogenic NANC inhibitory responses to electrical field stimulation were affected neither by epithelial denudation nor by the peptidase inhibitors. 4. As in previous studies, epithelium removal increased tracheal sensitivity to isoprenaline. This was not altered by pretreatment with a cocktail of peptidase inhibitors. Thus, the effect of the NEP inhibitors on responses to VIP appears to be relatively specific. 5. These data indicate that exogenous VIP is a substrate for airway NEP, since inhibition of the enzyme potentiates the peptide. This is further evidence that the airway epithelium provides a source for the metabolism of mediators. 6. In guinea-pig trachea the NEP responsible for cleaving VIP may be located largely in the epithelial layer, since NEP inhibition was without effect on sensitivity to VIP in epithelium-denuded preparations. If VIP is a NANC inhibitory neurotransmitter in this tissue its degradation endogenously does not appear to involve epithelial NEP. PMID:2196967

  18. Electrical stimulation vs thermal effects in a complex electromagnetic environment.

    PubMed

    Paniagua, Jesús M; Rufo, Montaña; Jiménez, Antonio; Antolín, Alicia; Sánchez, Miguel

    2009-08-01

    Studies linking exposure to low levels of radiofrequencies with adverse health effects, notwithstanding their present apparent inconsistency, have contributed to a steady improvement in the quality of evaluating that exposure. In complex electromagnetic environments, with a multitude of emissions of different frequencies acting simultaneously, knowledge of the spectral content is fundamental to evaluating human exposure to non-ionizing radiation. In the present work, we quantify the most significant spectral components in the frequency band 0.5-2200 MHz in an urban area. The measurements were made with a spectrum analyzer and monopole, biconical, and log-periodic antennas. Power density levels were calculated separately for the medium wave, short wave, and frequency modulation radio broadcasting bands, and for the television and GSM, DCS, and UMTS mobile telephony bands. The measured levels were compared with the ICNIRP reference levels for exposure to multiple frequency sources for thermal effects and electrical stimulation. The results showed the criterion limiting exposure on the basis of preventing electrical stimulation of peripheral nerves and muscles to be stricter (exposure quotient 24.7 10(-4)) than that based on thermal considerations (exposure quotient 0.16 10(-4)). The bands that contribute most to the latter are short wave, with 46.2%, and mobile telephony with 32.6% of the total exposure. In a complex electromagnetic environment, knowledge of the radiofrequency spectrum is essential in order to quantify the contribution of each type of emission to the public's exposure. It is also necessary to evaluate the electrical effects as well as the thermal effects because the criterion to limit exposure on the basis of the effect of the electrical stimulation of tissues is stricter than that based on thermal effects.

  19. EFFECTS OF FUNCTIONAL ELECTRICAL STIMULATION IN REHABILITATION WITH HEMIPARESIS PATIENTS

    PubMed Central

    Tanović, Edina

    2009-01-01

    Cerebrovascular accident is a focal neurological deficiency occurring suddenly and lasting for more than 24 hours. The purpose of our work is to determine the role of the functional electrical simulation (FES) in the rehabilitation of patients with hemiparesis, which occurred as a consequence of a cerebrovascular accident. This study includes the analysis of two groups of 40 patients with hemiparesis (20 patients with deep hemiparesis and 20 patients with light hemi- paresis), a control group which was only treated with kinesiotherapy and a tested group which was treated with kinesiotherapy and functional electrical stimulation. Both groups of patients were analyzed in respect to their sex and age. Additional analysis of the walking function was completed in accordance with the BI and RAP index. The analysis of the basic demographical data demonstrated that there is no significant difference between the control and tested group. The patients of both groups are equal in respect of age and sex. After 4 weeks of rehabilitation of patients with deep and light hemiparesis there were no statistically significant differences between the groups after evaluation by the BI index. However, a statistically significant difference was noted between the groups by the RAP index among patients with deep hemiparesis. After 8 weeks of rehabilitation the group of patients who were treated with kinesiotherapy and functional electrical stimulation showed better statistically significant results of rehabilitation in respect to the control group with both the BI index and the RAP index (p<0,001). In conclusion, we can state that the patients in rehabilitation after a cerebrovascular accident require rehabilitation longer than 4 weeks. Walking rehabilitation after stroke is faster and more successful if we used functional electrical stimulation, in combination with kinesiotherapy, in patients with disabled extremities. PMID:19284395

  20. A potential and novel therapy for obesity: "appendix" electrical stimulation in dogs.

    PubMed

    Lei, Yong; Chen, Jiande D Z

    2011-03-01

    Intestinal electrical stimulation (IES) has been introduced as a potential therapy for obesity. However, it is unknown whether the effects of IES on gastrointestinal motility and food intake are location-specific. The aim of this study was to assess the effects of "appendix" (cecum in dog) electrical stimulation (AES) on gastric tone, gastric emptying, and food intake in dogs. Twelve healthy dogs were used in three experiments. In experiments 1 and 2, gastric tone and food intake were studied in six dogs implanted with a gastric cannula and one pair of stimulation electrodes in the "appendix." Experiment 3 was performed to study gastric emptying in six dogs with a duodenal cannula and one pair of stimulation electrodes in the "appendix." (1) AES resulted in proximal gastric distention, with gastric volume increased from 114.9 ± 10.7 mL at baseline to 301.7 ± 37.1 mL during AES (p = 0.001), and the effect was completely blocked by a nitric oxide synthase inhibitor. (2) Gastric emptying was delayed at 90 min from 69.8 ± 9.5% in the control session to 15.2 ± 3.6% in the AES session (p = 0.002). 3) AES reduced food intake (average daily intake over a 1-week period) by 55.4% (550.4 ± 17.6 g at control vs. 245.7 ± 17.1 g with AES, p < 0.001). AES reduces gastric tone via the nitrergic pathway, delays gastric emptying, and inhibits food intake in healthy dogs. These data suggest the therapeutic potential of AES for obesity. Additionally, AES is technically more feasible than electrical stimulation of the stomach or duodenum because a stimulator with electrodes may be placed into the appendix via colonoscopy.

  1. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    PubMed

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present

  2. Literature Review and Meta-Analysis of Transcutaneous Electrical Nerve Stimulation in Treating Chronic Back Pain

    PubMed Central

    Wu, Lien-Chen; Weng, Pei-Wei; Chen, Chia-Hsien; Huang, Yi-You; Tsuang, Yang-Hwei; Chiang, Chang-Jung

    2018-01-01

    Background and Objectives This study is a meta-analysis of randomized controlled trials comparing the efficacy of transcutaneous electrical nerve stimulation (TENS) to a control and to other nerve stimulation therapies (NSTs) for the treatment of chronic back pain. Methods Citations were identified in MEDLINE, the Cochrane Library, Google Scholar, and ClinicalTrials.gov through June 2014 using the following keywords: nerve stimulation therapy, transcutaneous electrical nerve stimulation, back pain, chronic pain. Control treatments included sham, placebo, or medication only. Other NSTs included electroacupuncture, percutaneous electrical nerve stimulation, and percutaneous neuromodulation therapy. Results Twelve randomized controlled trials including 700 patients were included in the analysis. The efficacy of TENS was similar to that of control treatment for providing pain relief (standardized difference in means [SDM] = −0.20; 95% confidence interval [CI], −0.58 to 0.18; P = 0.293). Other types of NSTs were more effective than TENS in providing pain relief (SDM = 0.86; 95% CI, 0.15–1.57; P = 0.017). Transcutaneous electrical nerve stimulation was more effective than control treatment in improving functional disability only in patients with follow-up of less than 6 weeks (SDM = −1.24; 95% CI, −1.83 to −0.65; P < 0.001). There was no difference in functional disability outcomes between TENS and other NSTs. Conclusions These results suggest that TENS does not improve symptoms of lower back pain, but may offer short-term improvement of functional disability. PMID:29394211

  3. The role of membrane dynamics in electrical and infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Beier, Hope T.; Ibey, Bennett L.; Armani, Andrea M.

    2016-03-01

    We recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) to identify membrane disruption events in live cells. This technique was used to detect nanoporation in the plasma membrane following nanosecond pulsed electric field (nsPEF) exposure. It has been hypothesized that similar poration events could be induced by the thermal gradients generated by infrared (IR) laser energy. Optical pulses are a highly desirable stimulus for the nervous system, as they are capable of inhibiting and producing action potentials in a highly localized but non-contact fashion. However, the underlying mechanisms involved with infrared neural stimulation (INS) are not well understood. The ability of our method to non-invasively measure membrane structure and transmembrane potential via Two Photon Fluorescence (TPF) make it uniquely suited to neurological research. In this work, we leverage our technique to understand what role membrane structure plays during INS and contrast it with nsPEF stimulation. We begin by examining the effect of IR pulses on CHO-K1 cells before progressing to primary hippocampal neurons. The use of these two cell lines allows us to directly compare poration as a result of IR pulses to nsPEF exposure in both a neuron-derived cell line, and one likely lacking native channels sensitive to thermal stimuli.

  4. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study.

    PubMed

    Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren

    2017-09-01

    In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Matsuki, Hidetoshi; Sato, Fumihiro; Satoh, Tadakuni; Handa, Nobuyasu

    2009-04-01

    Functional electrical stimulation (FES) is the therapy used for the rehabilitation of lost movement function by applying electrical stimulation (ES) to paralyzed extremities. To realize ES, we adapted the implanted direct feeding method (DFM). In this method, small implanted stimulators are placed under the skin at a depth of 10-20 mm and stimulus energy and signals for controlling devices are applied to them by a mounted system using magnetic coupling. This method has the merits of having no percutaneous points and high-precision stimulation. However, since the mounted system and implanted elements are separated, it is necessary to add feedback information from inside the body to confirm the system operation for safety therapy or to rehabilitate motor function smoothly. Satisfying both restrictions, we propose the magnetic connective dual resonance (MCDR) antenna, which has two resonance circuits. Adding the LC serial circuit to the LC parallel circuit gives the sending function. In this paper, we report the principle of the MCDR antenna and verify its duplex communication ability through communication experiment. This antenna enables DFM of FES to rehabilitate more complex movements.

  6. Modeling Intracochlear Magnetic Stimulation: A Finite-Element Analysis.

    PubMed

    Mukesh, S; Blake, D T; McKinnon, B J; Bhatti, P T

    2017-08-01

    This study models induced electric fields, and their gradient, produced by pulsatile current stimulation of submillimeter inductors for cochlear implantation. Using finite-element analysis, the lower chamber of the cochlea, scala tympani, is modeled as a cylindrical structure filled with perilymph bounded by tissue, bone, and cochlear neural elements. Single inductors as well as an array of inductors are modeled. The coil strength (~100 nH) and excitation parameters (peak current of 1-5 A, voltages of 16-20 V) are based on a formative feasibility study conducted by our group. In that study, intracochlear micromagnetic stimulation achieved auditory activation as measured through the auditory brainstem response in a feline model. With respect to the finite element simulations, axial symmetry of the inductor geometry is exploited to improve computation time. It is verified that the inductor coil orientation greatly affects the strength of the induced electric field and thereby the ability to affect the transmembrane potential of nearby neural elements. Furthermore, upon comparing an array of micro-inductors with a typical multi-site electrode array, magnetically excited arrays retain greater focus in terms of the gradient of induced electric fields. Once combined with further in vivo analysis, this modeling study may enable further exploration of the mechanism of magnetically induced, and focused neural stimulation.

  7. Electrical brain stimulation (tES) improves learning more than performance: A meta-analysis.

    PubMed

    Simonsmeier, Bianca A; Grabner, Roland H; Hein, Julia; Krenz, Ugne; Schneider, Michael

    2018-01-01

    Researchers have recently started evaluating whether stimulating the brain noninvasively with a weak and painless electrical current (transcranial Electrical Stimulation, tES) enhances physiological and cognitive processes. Some studies found that tES has weak but positive effects on brain physiology, cognition, or assessment performance, which has attracted massive public interest. We present the first meta-analytic test of the hypothesis that tES in a learning phase is more effective than tES in an assessment phase. The meta-analysis included 246 effect sizes from studies on language or mathematical competence. The effect of tES was stronger when stimulation was administered during a learning phase (d=0.712) as compared to stimulation administered during test performance (d=0.207). The overall effect was stimulation-dosage specific and, as found in a previous meta-analysis, significant only for anodal stimulation and not for cathodal. The results provide evidence for the modulation of long-term synaptic plasticity by tES in the context of practically relevant learning tasks and highlight the need for more systematic evaluations of tES in educational settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation

    PubMed Central

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J. Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam

    2016-01-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. PMID:27591222

  9. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    PubMed

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  11. Electrical stimulation for preventing and treating post-stroke shoulder pain.

    PubMed

    Price, C I; Pandyan, A D

    2000-01-01

    Shoulder pain after stroke is common and disabling. The optimal management is uncertain, but electrical stimulation (ES) is often used to treat and prevent pain. The objective of this review was to determine the efficacy of any form of surface ES in the prevention and / or treatment of pain around the shoulder at any time after stroke. We searched the Cochrane Stroke Review Group trials register and undertook further searches of MEDLINE, EMBASE and CINAHL. Contact was established with equipment manufacturers and centres that have published on the topic of ES. We considered all randomised trials that assessed any surface ES technique (functional electrical stimulation (FES), transcutaneous electrical nerve stimulation (TENS) or other), applied at any time since stroke for the purpose of prevention or treatment of shoulder pain. Two reviewers independently selected trials for inclusion, assessed trial quality and extracted the data. Four trials (a total of 170 subjects) fitted the inclusion criteria. Study design and ES technique varied considerably, often precluding the combination of studies. Population numbers were small. There was no significant change in pain incidence (Odds Ratio (OR) 0.64; 95% CI 0.19 to 2.14) or change in pain intensity (Standardised Mean Difference (SMD) 0.13; 95% CI -1.0 to 1.25) after ES treatment compared to control. There was a significant treatment effect in favour of ES for improvement in pain-free range of passive humeral lateral rotation (Weighted Mean Difference (WMD) 9.17; 95% CI 1.43 to 16.91). In these studies ES reduced the severity of glenohumeral subluxation (SMD -1.13; 95% CI -1.66 to -0.60), but there was no significant effect on upper limb motor recovery (SMD 0.24; 95% CI -0.14 to 0.62) or upper limb spasticity (WMD 0.05; 95% CI -0.28 to 0.37). There did not appear to be any negative effects of electrical stimulation at the shoulder. The evidence from randomised controlled trials so far does not confirm or refute that ES

  12. Detection of a diabetic sural nerve from the magnetic field after electric stimulation

    NASA Astrophysics Data System (ADS)

    Hayami, Takehito; Iramina, Keiji; Hyodo, Akira; Chen, Xian; Sunagawa, Kenji

    2009-04-01

    In this study, we proposed a new diagnostic technique for diabetic neuropathy using biomagnetic measurement. Peripheral neuropathy is one of the most common complications of diabetes. To examine the injury, the skin potential around the nerve is often measured after electric stimulation. However, measuring the magnetic field may reveal precise condition of the injury. To evaluate the effect of measuring the magnetic field, a simulation study was performed. A diabetic sural nerve was simulated as a bundle of myelinated nerve fibers. Each fiber was modeled as an electric cable of Ranvier's nodes. Anatomical data were used to determine the number of nerve fibers and distribution of nerve fiber diameters. The electric potential and the magnetic field on the skin after electric stimulation were computed to the boundary element method. Biphasic time courses were obtained as the electric potential and the magnetic flux density at measurement points. In diabetic nerves, the longer interpeak latency of the electric potential wave and the shorter interpeak latency of the magnetic flux wave were obtained. Measuring both the electric potential and the magnetic flux density seemed to provide a noninvasive and objective marker for diabetic neuropathy.

  13. Repetitive electric brain stimulation reduces food intake in humans.

    PubMed

    Jauch-Chara, Kamila; Kistenmacher, Alina; Herzog, Nina; Schwarz, Marianka; Schweiger, Ulrich; Oltmanns, Kerstin M

    2014-10-01

    The dorsolateral prefrontal cortex (DLPFC) plays an important role in appetite and food intake regulation. Because previous data revealed that transcranial direct current stimulation (tDCS) of the DLPFC reduces food cravings, we hypothesized that repetitive electric stimulation of the right DLPFC would lower food intake behavior in humans. In a single-blind, code-based, placebo-controlled, counterbalanced, randomized crossover experiment, 14 healthy young men with body mass index (in kg/m(2)) from 20 to 25 were examined during 8 d of daily tDCS or a sham stimulation. After tDCS or sham stimulation on the first and the last day of both experimental conditions, participants consumed food ad libitum from a standardized test buffet. One week of daily anodal tDCS reduced overall caloric intake by 14% in comparison with sham stimulation. Moreover, repetitive tDCS diminished self-reported appetite scores. Our study implies that the application of anodal direct currents to the right DLPFC represents a promising option for reducing both caloric intake and appetite in humans. This trial was registered at the German Clinical Trials Register (www.germanctr.de) as DRKS00005811. © 2014 American Society for Nutrition.

  14. Electric toothbrushes induce electric current in fixed dental appliances by creating magnetic fields.

    PubMed

    Kameda, Takashi; Ohkuma, Kazuo; Ishii, Nozomu; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto

    2012-01-01

    Magnetic fields can represent a health problem, especially low frequency electromagnetic fields sometimes induced by electric current in metallic objects worn or used in or on the body (as opposed to high frequency electromagnetic fields that produce heat). Electric toothbrushes are widely used because of their convenience, but the electric motors that power them may produce electromagnetic waves. In this study, we showed that electric toothbrushes generate low frequency (1-2000 Hz) magnetic fields and induce electric current in dental appliances (e. g. orthodontic and prosthetic appliances and dental implants). Current induced by electric toothbrushes might be dependent on the quantity and types of metals used, and the shape of the appliances. Furthermore, these induced currents in dental appliances could impact upon human oral health, producing pain and discomfort.

  15. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia.

    PubMed

    Knutson, Jayme S; Fu, Michael J; Sheffler, Lynne R; Chae, John

    2015-11-01

    This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described, and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Molecular mechanisms underlying antiproliferative and differentiating responses of hepatocarcinoma cells to subthermal electric stimulation.

    PubMed

    Hernández-Bule, María Luisa; Trillo, María Ángeles; Úbeda, Alejandro

    2014-01-01

    Capacitive Resistive Electric Transfer (CRET) therapy applies currents of 0.4-0.6 MHz to treatment of inflammatory and musculoskeletal injuries. Previous studies have shown that intermittent exposure to CRET currents at subthermal doses exert cytotoxic or antiproliferative effects in human neuroblastoma or hepatocarcinoma cells, respectively. It has been proposed that such effects would be mediated by cell cycle arrest and by changes in the expression of cyclins and cyclin-dependent kinase inhibitors. The present work focuses on the study of the molecular mechanisms involved in CRET-induced cytostasis and investigates the possibility that the cellular response to the treatment extends to other phenomena, including induction of apoptosis and/or of changes in the differentiation stage of hepatocarcinoma cells. The obtained results show that the reported antiproliferative action of intermittent stimulation (5 m On/4 h Off) with 0.57 MHz, sine wave signal at a current density of 50 µA/mm(2), could be mediated by significant increase of the apoptotic rate as well as significant changes in the expression of proteins p53 and Bcl-2. The results also revealed a significantly decreased expression of alpha-fetoprotein in the treated samples, which, together with an increased concentration of albumin released into the medium by the stimulated cells, can be interpreted as evidence of a transient cytodifferentiating response elicited by the current. The fact that this type of electrical stimulation is capable of promoting both, differentiation and cell cycle arrest in human cancer cells, is of potential interest for a possible extension of the applications of CRET therapy towards the field of oncology.

  17. Molecular Mechanisms Underlying Antiproliferative and Differentiating Responses of Hepatocarcinoma Cells to Subthermal Electric Stimulation

    PubMed Central

    Hernández-Bule, María Luisa; Trillo, María Ángeles; Úbeda, Alejandro

    2014-01-01

    Capacitive Resistive Electric Transfer (CRET) therapy applies currents of 0.4–0.6 MHz to treatment of inflammatory and musculoskeletal injuries. Previous studies have shown that intermittent exposure to CRET currents at subthermal doses exert cytotoxic or antiproliferative effects in human neuroblastoma or hepatocarcinoma cells, respectively. It has been proposed that such effects would be mediated by cell cycle arrest and by changes in the expression of cyclins and cyclin-dependent kinase inhibitors. The present work focuses on the study of the molecular mechanisms involved in CRET-induced cytostasis and investigates the possibility that the cellular response to the treatment extends to other phenomena, including induction of apoptosis and/or of changes in the differentiation stage of hepatocarcinoma cells. The obtained results show that the reported antiproliferative action of intermittent stimulation (5 m On/4 h Off) with 0.57 MHz, sine wave signal at a current density of 50 µA/mm2, could be mediated by significant increase of the apoptotic rate as well as significant changes in the expression of proteins p53 and Bcl-2. The results also revealed a significantly decreased expression of alpha-fetoprotein in the treated samples, which, together with an increased concentration of albumin released into the medium by the stimulated cells, can be interpreted as evidence of a transient cytodifferentiating response elicited by the current. The fact that this type of electrical stimulation is capable of promoting both, differentiation and cell cycle arrest in human cancer cells, is of potential interest for a possible extension of the applications of CRET therapy towards the field of oncology. PMID:24416255

  18. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    PubMed

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  19. Electrical stimulation on joint contracture: an experiment in rat model with direct current.

    PubMed

    Akai, M; Shirasaki, Y; Tateishi, T

    1997-04-01

    To examine whether electrical stimulation could decrease the degree of joint stiffness in a rat lower extremity model. Rat knee joints were surgically immobilized in a flexed position for 3 weeks. Two groups of rats were stimulated with 20 microA and 50 microA constant direct current. Another group had surgical intervention and sham electrodes without electricity. The hind leg was extirpated and prepared for a sample with the femur-knee joint-tibia unit. Recording the knee flexion angle with extension torque, the degree of joint contracture was assessed biomechanically by measuring the bone-joint-bone sample as a cantilever. Measurement was performed with (1) spectral analysis of transfer function measurement using random mechanical noise with frequency range from 1 to 50Hz, and (2) dynamic stiffness and loss tangent with steady-state sinusoidal excitation (11 and 35Hz). The results showed that no significant difference or trend was found in vibration analysis among three groups. However, spectral analysis of transfer function measurement revealed more deformation against load, and more viscous nature in the stimulation groups, especially in low frequency band, than in the sham group. Electrical stimulation with constant direct current has a possibility of reducing the degree of joint contracture.

  20. Electrical stimulation of acupoint combinations against deep venous thrombosis in elderly bedridden patients after major surgery.

    PubMed

    Hou, Lili; Chen, Cuiping; Xu, Lei; Yin, Peihao; Peng, Wen

    2013-04-01

    To compare the effects of electrical stimulation of different acupoint combinations among postoperative bedridden elderly patients on hemorheology and deep venous blood flow velocity and investigate the.role of electrical stimulation against deep vein thrombosis (DVT). From November 2010 to October 2011, a total of 160 elderly bedridden patients after major surgery were divided into the conventional care group, invigorating and promoting Qi group, blood-activating and damp-eliminating group, and acupoint-combination stimulation group. Whole blood viscosity, plasma viscosity, D-dimer levels, lower limb skin temperature, lower limb circumference, and flow velocities of the external iliac vein, femoral vein, popliteal vein, and deep calf veins in all patients were documented and compared among the four groups. Whole blood viscosity, plasma viscosity, D-dimer levels, and lower limb circumference were significantly reduced in the blood-activating and damp-eliminating group compared with the conventional care group (P < 0.05) and were almost equal to those in the acupoint-combination stimulation group (P > 0.05). Lower limb venous flow velocities were accelerated in the invigorating and promoting Qi group compared with the other groups, excluding the acupoint-combination stimulation group (P < 0.05). Hemorheological indices in postoperative bedridden elderly patients were improved after combined electrical stimulation at Yinlingquan (SP 9) and Sanyinjiao (SP 6). Combined electrical stimulation at Zusanli (ST 36) and Taichong (LR 3), on the other hand, accelerated lower limb venous flow.

  1. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Park, Hyoungshin (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor); Langer, Robert (Inventor); Radisic, Milica (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  2. 42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...

  3. Twitch analysis as an approach to motor unit activation during electrical stimulation.

    PubMed

    Heyters, M; Carpentier, A; Duchateau, J; Hainaut, K

    1994-12-01

    The mechanical twitch in response to increasing electrical stimulus intensity, delivered both over the motor point and motor nerve, was recorded in the first dorsal interosseous (FDI) and the adductor pollicis (AP), and only over the motor point in the soleus (Sol), lateral (LG), and medial (MG) gastrocnemius muscles of human subjects. The relationship between intensity of electrical stimulation (ES) and twitch torque showed a positive linear regression in all muscles. In the FDI and AP the relationship was not significantly different when ES was applied at the motor point or over the motor nerve. At small intensities of activation, ES induced larger twitch torques in the MG and LG, which contain a roughly equal proportion of slow and fast motor units (MUs) compared to the Sol, which is composed mainly of slow type fibres. Moreover, the relationship between ES intensity and twitch time-to-peak is best fitted in all muscles by a power curve that shows a greater twitch time-to-peak range in its initial part for muscles containing a larger proportion of fast MUs (LG, MG) than for muscles mainly composed of slow MUs (Sol). In conclusion, these results induced by ES at the motor point and/or over the motor nerve confirm the concept of a reversed sequence of MU activation, as compared to voluntary contractions, and document this viewpoint in muscles of different function and composition. The reversed sequence of MU activation is more clearly evident during motor point ES.

  4. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue

    PubMed Central

    Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-01-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772

  5. The release of labelled acetylcholine and choline from cerebral cortical slices stimulated electrically

    PubMed Central

    Richardson, I.W.; Szerb, J.C.

    1974-01-01

    1 In order to establish the origin of the increased efflux of radioactivity caused by electrical stimulation of cerebral cortical slices which had been incubated with [3H]-choline, labelled choline and acetylcholine (ACh) collected by superfusion were separated by gold precipitation. 2 In the presence of physostigmine electrical stimulation (1 Hz, 10 min) increased the release of only [3H]-ACh which was greatly enhanced by the addition of atropine. 3 Continuous stimulation in the presence of physostigmine resulted in an evoked release of [3H]-ACh which declined asymptotically. This evoked release appeared to follow first-order kinetics with a rate constant which remained stable over the course of prolonged stimulation. 4 The rate constant for the evoked release of [3H]-ACh with 1 Hz stimulation was three times greater in the presence of physostigmine and atropine than in the presence of physostigmine alone, while the size of the store from which [3H]-ACh was released was nearly identical under these two conditions. 5 In the absence of physostigmine and atropine, stimulation caused the appearance of only [3H]-choline in the samples. 6 Reduction of [3H]-ACh stores before the application of physostigmine resulted in a reduced evoked release of total radioactivity, both in the absence or presence of physostigmine and atropine, and decreased the evoked release of [3H]-ACh without affecting the release of [3H]-choline. 7 Results suggest that electrical stimulation of cortical slices which had been incubated with [3H]-choline causes the release of only [3H]-ACh, both in the presence or absence of an anticholinesterase. The evoked increase in the efflux of total radioactivity is therefore a good measure of the release of [3H]-ACh. PMID:4455326

  6. Interaction of post-stroke voluntary effort and functional neuromuscular electrical stimulation

    PubMed Central

    Makowski, Nathaniel; Knutson, Jayme; Chae, John; Crago, Patrick

    2012-01-01

    Functional Electrical Stimulation (FES) may be able to augment functional arm and hand movement after stroke. Post-stroke neuroprostheses that incorporate voluntary effort and FES to produce the desired movement need to consider how the forces generated by voluntary effort and FES combine together, even in the same muscle, in order to provide an appropriate level of stimulation to elicit the desired assistive force. The goal of this study was to determine if the force produced by voluntary effort and FES add together independently of effort, or if the increment in force is dependent on the level of voluntary effort. Isometric force matching tasks were performed under different combinations of voluntary effort and electrical stimulation. Participants reached a steady level of force and while attempting to maintain a constant effort level, FES was applied to augment the force. Results indicate that the increment in force produced by FES decreases as the level of initial voluntary effort increases. Potential mechanisms causing the change in force output are proposed, but the relative contribution of each mechanism is unknown. PMID:23516086

  7. Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0132 TITLE: Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal Cord Injury...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...COVERED 29 Sep 2015 - 28 Sep 2016 4. TITLE AND SUBTITLE Restoration of Bladder and Bowel Function Using Electrical Stimulation and Block after Spinal

  8. Comparison of percutaneous electrical nerve stimulation with transcutaneous electrical nerve stimulation for long-term pain relief in patients with chronic low back pain.

    PubMed

    Yokoyama, Masataka; Sun, Xiaohui; Oku, Satoru; Taga, Naoyuki; Sato, Kenji; Mizobuchi, Satoshi; Takahashi, Toru; Morita, Kiyoshi

    2004-06-01

    The long-term effect of percutaneous electrical nerve stimulation (PENS) on chronic low back pain (LBP) is unclear. We evaluated the number of sessions for which PENS should be performed to alleviate chronic LBP and how long analgesia is sustained. Patients underwent treatment on a twice-weekly schedule for 8 wk. Group A (n = 18) received PENS for 8 wk, group B (n = 17) received PENS for the first 4 wk and transcutaneous electrical nerve stimulation (TENS) for the second 4 wk, and group C (n = 18) received TENS for 8 wk. Pain level, degree of physical impairment, and the daily intake of nonsteroidal antiinflammatory drugs (NSAIDs) were assessed before the first treatment, 3 days after Week 2, Week 4, and Week 8 treatments, and at 1 and 2 mo after the sessions. During PENS therapy, the pain level decreased significantly from Week 2 in Groups A and B (P < 0.05 or 0.01), and physical impairment and required NSAIDs decreased significantly from Week 4 (P < 0.05 or 0.01) in Group A but only at Week 4 in Group B (P < 0.05 or 0.01). These effects were sustained until 1-mo follow-up (P < 0.01) in Group A but not in Group B; these effects were not observed at 2-mo follow-up even in Group A. In Group C, pain level decreased significantly only at Week 8 (P < 0.05). Our results indicate that repeated PENS is more effective than TENS for chronic LBP but must be continued to sustain the analgesic effect. A cumulative analgesic effect was observed in patients with chronic low back pain (LBP) after repeated percutaneous electrical nerve stimulation (PENS), but this effect gradually faded after the treatment was terminated. Results indicate that although PENS is effective for chronic LBP, treatments need to be continued to sustain analgesia.

  9. Electromyographic control of functional electrical stimulation in selected patients.

    PubMed

    Graupe, D; Kohn, K H; Basseas, S; Naccarato, E

    1984-07-01

    The paper describes initial results of above-lesion electromyographic (EMG) controlled functional electrical stimulation (FES) of paraplegics. Such controlled stimulation is to provide upper-motor-neuron paraplegics (T5 to T12) with self-controlled standing and some walking without braces and with only the help of walkers or crutches. The above-lesion EMG signal employed serves to map the posture of the patient's upper trunk via a computerized mapping of the temporal patterns of that EMG. Such control also has an inherent safety feature in that it prevents the patient from performing a lower-limb movement via FES unless his trunk posture is adequate. Copyright 2013, SLACK Incorporated.

  10. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  11. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People

    PubMed Central

    Mosole, Simone; Zampieri, Sandra; Furlan, Sandra; Carraro, Ugo; Löefler, Stefan; Kern, Helmut; Volpe, Pompeo

    2018-01-01

    Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins. PMID:29662923

  12. Muscle and bone plasticity after spinal cord injury: Review of adaptations to disuse and to electrical muscle stimulation

    PubMed Central

    Dudley-Javoroski, Shauna; Shields, Richard K.

    2009-01-01

    The paralyzed musculoskeletal system retains a remarkable degree of plasticity after spinal cord injury (SCI). In response to reduced activity, muscle atrophies and shifts toward a fast-fatigable phenotype arising from numerous changes in histochemistry and metabolic enzymes. The loss of routine gravitational and muscular loads removes a critical stimulus for maintenance of bone mineral density (BMD), precipitating neurogenic osteoporosis in paralyzed limbs. The primary adaptations of bone to reduced use are demineralization of epiphyses and thinning of the diaphyseal cortical wall. Electrical stimulation of paralyzed muscle markedly reduces deleterious post-SCI adaptations. Recent studies demonstrate that physiological levels of electrically induced muscular loading hold promise for preventing post-SCI BMD decline. Rehabilitation specialists will be challenged to develop strategies to prevent or reverse musculoskeletal deterioration in anticipation of a future cure for SCI. Quantifying the precise dose of stress needed to efficiently induce a therapeutic effect on bone will be paramount to the advancement of rehabilitation strategies. PMID:18566946

  13. Colour stability of bovine Longissimus and Psoas major muscle as affected by electrical stimulation and hot boning.

    PubMed

    van Laack, R L; Smulders, F J

    1990-01-01

    From eight electrically stimulated and eight non-stimulated cows the righthand-side longissimus and psoas major muscles were hot boned within 1 1 2 h post mortem, vacuum packaged and chilled and storred at 1±1°C. Immediately after slaughter, the lefthand carcass-sides were blast-chilled for 1 1 2 h and subsequently chilled at 1±1°C until the following day. After cold boning, the longissimus and psoas major muscle were packaged, chilled and stored as the hot boned muscles. After 12 days of storage, steaks, cut from the primals, were displayed at 1±1°C under continuous illumination (300-400 lx). Colour measurements after 0, 2 and 4 days of display revealed a significant (p<0·10) effect of time of boning on non-stimulated psoas major muscle (lower values for a (∗), b (∗) values, chroma and %R630-%R580). Significant effects of electrical stimulation were not observed. Changes in hue tended to be more pronounced when the meat had been stimulated. Changes in chroma were largest (p<0·10) is non-stimulated, hot boned psoas muscle. Analysis of variances showed that in the longissimus muscle significant effects (p<0·10) of time boning and electrical stimulation were present. The effect of time of boning was often influenced by the use of electrical stimulation. Changes in hue and chroma indicated that hot boned samples had a higher colour stability than cold boned controls, especially when the carcasses had not been stimulated electrically. The observed differences in colour stability were rather small in all treatment groups and are not expected to present any practical merchandising problem. Copyright © 1990. Published by Elsevier Ltd.

  14. Electrical stimulation (ES) in the management of sexual pain disorders.

    PubMed

    Nappi, Rossella E; Ferdeghini, Francesea; Abbiati, Ileana; Vercesi, Claudia; Farina, Claudio; Polatti, Franco

    2003-01-01

    We performed an open study to investigate the use of electrical stimulation (ES) on the vestibular area and vaginal introitus in women with sexual pain disorders. We recruited 29 women (age range 20-45 years) from among the patients at our Reproductive Psychobiology Unit to participate in the present study. They each experienced vestibular pain, inducing dyspareunia and vaginism. We performed ES with an ECL43400 apparatus (Elite, EssediEsse srl, Milan, Italy) once a week for 10 weeks. To evaluate the muscular activity of the perineal floor and sexual function, we employed the same apparatus with a vaginal probe for recording myoelectrical activity (muV), we employed a VAS scale for evaluating pain, and we administered the Female Sexual Function Index (FSFI; Rosen et al., 2000) before and after the study protocol. We analyzed data by parametric and nonparametric comparisons and correlations, as appropriate. Our major findings were as follows: (a) the contractile ability of pelvic floor muscles (p < 0.001), as well as the resting ability (p < 0.001), significantly improved following ES; (b) the current intensity tolerated significantly increased (p < 0.001) throughout the study, from 41.3 +/- 7.4 mA at the start of the study to 50 +/- 7.4 mA at the end of the stimulation protocol; (c) the Visual Analogic Scale (VAS) for pain significantly declined (p < 0.001), whereas FSFI pain scores (p < 0.001) and full scale scores (p < 0.001) significantly improved following ES, and 4 out of 9 women with vaginism went back to coital activity; (d) FSFI pain score and the current intensity tolerated, both before (R = .59; p < 0.006) and at the end (R = .53; p < 0.02) of the stimulation protocol, positively correlated. ES may be effective in the management of sexual pain disorders. Further controlled studies are necessary to standardize stimulation protocols according to the severity of pain and to better clarify the long-term clinical effects of ES.

  15. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han

    2018-04-01

    Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.

  16. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions.

    PubMed

    Jayasekeran, Vanoo; Singh, Salil; Tyrrell, Pippa; Michou, Emilia; Jefferson, Samantha; Mistry, Satish; Gamble, Ed; Rothwell, John; Thompson, David; Hamdy, Shaheen

    2010-05-01

    Oropharyngeal dysphagia is an important disability that occurs after stroke; it contributes to aspiration pneumonia and death, and current modalities for rehabilitation of dysphagia have uncertain efficacy. We therefore examined the role of pharyngeal electrical stimulation (PES) in expediting human swallowing recovery after experimental (virtual) and actual (stroke) brain lesions. First, healthy subjects (n = 13) were given 1-Hz repetitive transcranial magnetic stimulation to induce a unilateral virtual lesion in pharyngeal motor cortex followed by active or sham (control) PES. Motor-evoked potentials and swallow accuracy were recorded before and after the lesion to assess PES response. Thereafter, 50 acute dysphagic stroke patients underwent either a dose-response study, to determine optimal parameters for PES (n = 22), or were assigned randomly to groups given either active or sham (control) PES (n = 28). The primary end point was the reduction of airway aspiration at 2 weeks postintervention. In contrast to sham PES, active PES reversed the cortical suppression induced by the virtual lesion (F(7,70) = 2.7; P = .015) and was associated with improvement in swallowing behavior (F(3,42) = 5; P = .02). After stroke, 1 PES treatment each day (U = 8.0; P = .043) for 3 days (U = 10.0) produced improved airway protection compared with controls (P = .038). Active PES also reduced aspiration (U = 54.0; P = .049), improved feeding status (U = 58.0; P = .040), and resulted in a shorter time to hospital discharge (Mantel-Cox log-rank test, P = 0.038). This pilot study of PES confirms that it is a safe neurostimulation intervention that reverses swallowing disability after virtual lesion or stroke. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. A pioneer work on electric brain stimulation in psychotic patients. Rudolph Gottfried Arndt and his 1870s studies.

    PubMed

    Steinberg, Holger

    2013-07-01

    Today's brain stimulation methods are commonly traced back historically to surgical brain operations. With this one-sided historical approach it is easy to overlook the fact that non-surgical electrical brain-stimulating applications preceded present-day therapies. The first study on transcranial electrical brain stimulation for the treatment of severe mental diseases in a larger group of patients was carried out in the 1870s. Between 1870 and 1878 German psychiatrist Rudolph Gottfried Arndt published the results of his studies in three reports. These are contextualized with contemporary developments of the time, focusing in particular on the (neuro-) sciences. As was common practice at the time, Arndt basically reported individual cases in which electricity was applied to treat severe psychoses with depressive symptoms or even catatonia, hypochondriac delusion and melancholia. Despite their lengthiness, there is frequently a lack of precise physical data on the application of psychological-psychopathological details. Only his 1878 report includes general rules for electrical brain stimulation. Despite their methodological shortcomings and lack of precise treatment data impeding exact understanding, Arndt's studies are pioneering works in the field of electric brain stimulation with psychoses and its positive impacts. Today's transcranial direct current stimulation, and partly vagus nerve stimulation, can be compared with Arndt's methods. Although Arndt's only tangible results were indications for the application of faradic electricity (for inactivity, stupor, weakness and manic depressions) and galvanic current (for affective disorders and psychoses), a historiography of present-day brain stimulation therapies should no longer neglect studies on electrotherapy published in German and international psychiatric and neurological journals and monographs in the 1870s and 1880s. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field.

    PubMed

    Ye, Hui; Steiger, Amanda

    2015-08-12

    In laboratory research and clinical practice, externally-applied electric fields have been widely used to control neuronal activity. It is generally accepted that neuronal excitability is controlled by electric current that depolarizes or hyperpolarizes the excitable cell membrane. What determines the amount of polarization? Research on the mechanisms of electric stimulation focus on the optimal control of the field properties (frequency, amplitude, and direction of the electric currents) to improve stimulation outcomes. Emerging evidence from modeling and experimental studies support the existence of interactions between the targeted neurons and the externally-applied electric fields. With cell-field interaction, we suggest a two-way process. When a neuron is positioned inside an electric field, the electric field will induce a change in the resting membrane potential by superimposing an electrically-induced transmembrane potential (ITP). At the same time, the electric field can be perturbed and re-distributed by the cell. This cell-field interaction may play a significant role in the overall effects of stimulation. The redistributed field can cause secondary effects to neighboring cells by altering their geometrical pattern and amount of membrane polarization. Neurons excited by the externally-applied electric field can also affect neighboring cells by ephaptic interaction. Both aspects of the cell-field interaction depend on the biophysical properties of the neuronal tissue, including geometric (i.e., size, shape, orientation to the field) and electric (i.e., conductivity and dielectricity) attributes of the cells. The biophysical basis of the cell-field interaction can be explained by the electromagnetism theory. Further experimental and simulation studies on electric stimulation of neuronal tissue should consider the prospect of a cell-field interaction, and a better understanding of tissue inhomogeneity and anisotropy is needed to fully appreciate the neural

  19. Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test.

    PubMed

    Rogel-Salazar, G; Luna-Munguía, H; Stevens, K E; Besio, W G

    2013-04-01

    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Local entrainment of oscillatory activity induced by direct brain stimulation in humans

    PubMed Central

    Amengual, Julià L.; Vernet, Marine; Adam, Claude; Valero-Cabré, Antoni

    2017-01-01

    In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions. PMID:28256510