Sample records for catchment area analyses

  1. Analysing the impact of urban areas patterns on the mean annual flow of 43 urbanized catchments

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2015-06-01

    It is often argued that urban areas play a significant role in catchment hydrology, but previous studies reported disparate results of urbanization impacts on stream flow. This might stem either from the difficulty to quantify the historical flow changes attributed to urbanization only (and not climate variability) or from the inability to decipher what type of urban planning is more critical for flows. In this study, we applied a hydrological model on 43 urban catchments in the United States to quantify the flow changes attributable to urbanization. Then, we tried to relate these flow changes to the changes of urban/impervious areas of the catchments. We argue that these spatial changes of urban areas can be more precisely characterized by landscape metrics, which enable analysing the patterns of historical urban growth. Landscape metrics combine the richness (the number) and evenness (the spatial distribution) of patch types represented on the landscape. Urbanization patterns within the framework of patch analysis have been widely studied but, to our knowledge, previous research works had not linked them to catchments hydrological behaviours. Our results showed that the catchments with larger impervious areas and larger mean patch areas are likely to have larger increase of runoff yield.

  2. Comparison of Multi-Scale Digital Elevation Models for Defining Waterways and Catchments Over Large Areas

    NASA Astrophysics Data System (ADS)

    Harris, B.; McDougall, K.; Barry, M.

    2012-07-01

    Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.

  3. The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments

    NASA Astrophysics Data System (ADS)

    Van Tiel, Marit; Teuling, Adriaan J.; Wanders, Niko; Vis, Marc J. P.; Stahl, Kerstin; Van Loon, Anne F.

    2018-01-01

    Glaciers are essential hydrological reservoirs, storing and releasing water at various timescales. Short-term variability in glacier melt is one of the causes of streamflow droughts, here defined as deficiencies from the flow regime. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long timescales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and streamflow drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the Hydrologiska Byråns Vattenbalansavdelning (HBV-light) model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamic glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975-2004) and future (2071-2100) period. Two existing threshold approaches to define future droughts are employed: (1) the threshold from the historical period; (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamic glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historical periods are more similar when the transient threshold is used, for both glacier area conceptualisations. With the transient threshold, factors causing future droughts can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short-term climate variability on droughts and the dynamic glacier area to model more realistic future discharges under climate change.

  4. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    PubMed

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.

  5. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    PubMed Central

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166

  6. Impact of climate change on low flow characteristics in a small catchment of central Poland

    NASA Astrophysics Data System (ADS)

    Banasik, K.; Kaznowska, E.

    2016-12-01

    The Zagozdzonka catchment (left tributary of Vistula River) is a small lowland agricultural catchment, located in central Poland, about 100 km south of Warsaw. Hydrological investigations of the Zagozdzonka River at Plachty (N51°26'43.8''; E21°27'35.6''), have been carried out by the Department of River Engineering of Warsaw University of Life Science (WULS) since 1962. The catchment area is 82.4 km2 at the Plachty river gauging station. Annual data of temperature, annual and seasonal rainfall and runoff characteristics, as well as annual N-day (1-, 2-, 3-, 7-, 14- and 30-day) low flow from the catchment of the period of 53-year (1963-2015) were analysed. Mann-Kendall test was used for trend analysis. Analysis has revealed a long term decrease in annual discharge and in all of the analysed N-day low flows from the catchment, as well as a corresponding increase in annul temperature (1.61ºC/50 years) for this area of Poland. No trend was detected for annual precipitation nor summer/winter half year precipitation. There was little land use change in the catchment but remarkable increase of crop yields from the arable land in this region of Poland in the last 50 years, due to fertilisation. So the long term decrease of annual discharge and N-day low flows is assumed to be effect of higher evapotranspiration. The decrease of water resources in summer periods may cause problems when more intensive agriculture practice is planned (and water for irrigation is needed).

  7. Relict rock glaciers in alpine catchments: A regional study in Central Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried

    2013-04-01

    Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments. This proportion increases to 8.6% for areas above 1500 m a.s.l. and even to 23% for areas above 2000 m a.s.l.. Results for a 626 km² large subunit (Seckauer Tauern Range) reveal that even 15.6% of the area above 1500 m a.s.l. and more 42% above 2000 m a.s.l. are influenced by relict rock glaciers as aquifers. A total water volume of 4240 Mio m³ is precipitated annually (mean value for the normal period 1971-2000) in the entire study area. 22% of this water is evapotranspirated and the remaining water is the discharge of the catchments. Despite the fact that 8.6% of the entire Niedere Tauern Range above 1500 m a.s.l. belong to rock glacier catchments, about 9.5% of the total discharge and 9.2% of the total precipitation originates in the rock glacier catchments. In contrast, only 7.9% of all precipitated water is evapotranspirated in these catchments. In the subunit Seckauer Tauern Range the same figures for rock glacier catchments are substantially higher and more pronounced in their differences with 15.6% for area, 16.8% for precipitation, 14.5% for evapotranspiration and even 17.3% for discharge. These figures exemplarily show that rock glaciers and their catchments are highly relevant in the alpine water cycle of the study area.

  8. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  9. Synergies between geomorphic hazard and risk and sediment cascade research fields: exploiting geomorphic processes' susceptibility analyses to derive potential sediment sources in the Oltet, river catchment, southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta-Cristina

    2015-04-01

    Identifying sediment sources and sediment availability represents a major problem and one of the first concerns in the field of sediment cascade. This paper addresses the on-site effects associated with sediment transfer, investigating the degree to which studies pertaining to the field of geomorphic hazard and risk research could be exploited in sediment budget estimations. More precisely, the paper investigates whether results obtained in assessing susceptibility to various geomorphic processes (landslides, soil erosion, gully erosion) could be transferred to the study of sediment sources within a basin. The study area is a medium-sized catchment (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which supply sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets. The susceptibility analyses are conducted separately for each type of the considered processes in a top-down framework, i.e. at two different scales, using scale-adapted methods and validation techniques in each case, as widely-recognized in the hazard and risk research literature. The analyses start at a regional scale, which has in view the entire catchment, using readily available data on conditioning factors. In a second step, the suceptibility analyses are carried out at a medium scale for selected hotspot-compartments of the catchment. In order to appraise the extent to which susceptibility results are relevant in interpreting sediment sources at catchment scale, scale-induced differences are analysed in the case of each process. Based on the amount of uncertainty revealed by each regional-scale analysis in comparison to the medium-scale ones, decisions are made on whether the first are acceptable to the aim of identifying potential sediment source areas or if they should be refined using more precise methods and input data. The three final basin-wide susceptibility maps are eventually coverted, on a threshold basis, to maps showing the potential areas of sediment production by landslides, soil erosion and gully erosion respectively. These are then combined into one single map of potential sediment sources. The susceptibility assessments indicate that the basin compartments most prone to landslides and soil erosion correspond to the Subcarpathian hills, while the one most threatened by gully erosion corresponds to the piedmont relief. The final map of potential sediment sources shows that approximately 34% of the study catchment is occupied by areas potentially generating sediment through landslides and gully erosion, extending over most of the high piedmont and Subcarpathian hills. The results prove that there is an important link between the two research fields, i.e. geomorphic hazard and risk and sediment cascade, by allowing the transfer of knowledge from geomorphic processes' susceptibility analyses to the estimation of potential sediment sources within catchments. The synergy between the two fields raises further challenges to be tackled in future (e.g. how to derive sediment transfer rates from quantitative hazard estimates).

  10. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.

  11. Land use change impacts on discharge analysis using SWAT model at Ciherang Pondok DAM catchment area

    NASA Astrophysics Data System (ADS)

    Utamahadi, M. A.; Pandjaitan, N. H.; Rau, M. I.

    2018-05-01

    The prompt increase of population influenced the requirement for new regions to fulfill people’s primary needs. Its increased land use change and caused many impacts on the environment, including watersheds as well. Ciherang Pondok DAM catchment area is part of Cisadane watershed and was selected as the research area. This research aimed to analyse the water supply and water discharge change caused by the Urban Planning (RTRW) in 2020. The analysis was conducted using soil and water assessment tools (SWAT) model. Stages of this research were catchment area delineation, HRU identification, calibration and validation of models, and prediction of discharge and water demand. The result showed that RTRW of 2020 increased the maximum discharge of 1.6 m3/s and decreased the minimum discharge of 0.01 m3/s, hence the maximum and minimum discharge ratio increased 0.26% from 2016. Output discharge in 2020 at Ciherang Pondok Dam Catchment Area was classified as well, with discharge of 6.72 – 126.2 m3/s, and could fulfil water demand. For the best result, it is better to use climate data from weather stations inside the study area and it is required an improvement in data archiving system.

  12. Spatially distributed rockfall activity inferred from talus deposits and corresponding rockwall areas in the Gradenbach catchment (Schober Mountains, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, Joachim; Buckel, Johannes; Heckmann, Tobias

    2013-04-01

    The analysis of alpine sediment cascades requires the identification, differentiation and quantification of sediment sources, storages, and transport processes. This study deals with the origin of alpine sediment transfer and relates primary talus deposits to corresponding rockwall source areas within the Gradenbach catchment (Schober Mountains, Austrian Alps). Sediment storage landforms are based on a detailed geomorphological map of the catchment which was generated to analyse the sediment transfer system. Mapping was mainly performed in the field and supplemented by post-mapping analysis using LIDAR data and digital orthophotos. A fundamental part of the mapping procedure was to capture additional landform-based information with respect to morphometry, activity and connectivity. The applied procedure provides a detailed inventory of sediment storage landforms including additional information on surface characteristics, dominant and secondary erosion and deposition processes, process activity and sediment storage coupling. We develop the working hypothesis that the present-day surface area ratio between rockfall talus (area as a proxy for volume, backed by geophysical analysis of selected talus cones) and corresponding rockwall source area is a measure of rockfall activity since deglaciation; large talus cones derived from small rockwall catchments indicate high activity, while low activity can be inferred where rockfall from large rock faces has created only small deposits. The surface area ratio of talus and corresponding rockwalls is analysed using a landform-based and a process-based approach. For the landform-based approach, we designed a GIS procedure which derives the (hydrological) catchment area of the contact lines of talus and rockwall landforms in the geomorphological map. The process-based approach simulates rockfall trajectories from steep (>45°) portions of a DEM generated by a random-walk rockfall model. By back-tracing those trajectories that end on a selected talus landform, the 'rockfall contributing area' is delineated; this approach takes account of the stochastic nature of rockfall trajectories and is able to identify, for example, rockfall delivery from one rockwall segment to multiple talus landforms (or from multiple rockfall segments to the same deposit, respectively). Using both approaches, a total of 290 rockwall-talus-subsystems are statistically analysed indicating a constant relationship between rockfall source areas and corresponding areas of talus deposits of almost 1:1. However, certain rockwall-talus-subsystems deviate from this correlation since sediment storage landforms of similar size originate from varying rockwall source areas and vice versa. This varying relationship is assumed to be strongly controlled by morphometric parameters, such as rockwall slope, altitudinal interval, and aspect. The impact of these parameters on the surface area ratio will be finally discussed.

  13. Future streamflow droughts in glacierized catchments: the impact of dynamic glacier modelling and changing thresholds

    NASA Astrophysics Data System (ADS)

    Van Tiel, Marit; Van Loon, Anne; Wanders, Niko; Vis, Marc; Teuling, Ryan; Stahl, Kerstin

    2017-04-01

    In glacierized catchments, snowpack and glaciers function as an important storage of water and hydrographs of highly glacierized catchments in mid- and high latitudes thus show a clear seasonality with low flows in winter and high flows in summer. Due to the ongoing climate change we expect this type of storage capacity to decrease with resultant consequences for the discharge regime. In this study we focus on streamflow droughts, here defined as below average water availability specifically in the high flow season, and which methods are most suitable to characterize future streamflow droughts as regimes change. Two glacierized catchments, Nigardsbreen (Norway) and Wolverine (Alaska), are used as case study and streamflow droughts are compared between two periods, 1975-2004 and 2071-2100. Streamflow is simulated with the HBV light model, calibrated on observed discharge and seasonal glacier mass balances, for two climate change scenarios (RCP 4.5 & RCP 8.5). In studies on future streamflow drought often the same variable threshold of the past has been applied to the future, but in regions where a regime shift is expected this method gives severe "droughts" in the historic high-flow period. We applied the new alternative transient variable threshold, a threshold that adapts to the changing hydrological regime and is thus better able to cope with this issue, but has never been thoroughly tested in glacierized catchments. As the glacier area representation in the hydrological modelling can also influence the modelled discharge and the derived streamflow droughts, we evaluated in this study both the difference between the historical variable threshold (HVT) and transient variable threshold (TVT) and two different glacier area conceptualisations (constant area (C) and dynamical area (D)), resulting in four scenarios: HVT-C, HVT-D, TVT-C and TVT-D. Results show a drastic decrease in the number of droughts in the HVT-C scenario due to increased glacier melt. The deficit volume is expected to be up to almost eight times larger in the future compared to the historical period (Wolverine, +674%) in the HVT-D scenario, caused by the regime shift. Using the TVT the drought characteristics between the C and D scenarios and between future and historic droughts are more similar. However, when using the TVT, causing factors of future droughts, anomalies in temperature and/or precipitation, can be analysed. This study highlights the different conclusions that may be drawn on future streamflow droughts in glacierized catchments depending on methodological choices. They could be used to answer different questions: the TVT for analysing drought processes in the future, the HVT to assess changes between historical and future periods, the constant area conceptualisation to analyse the effect of short term climate variability and the dynamical glacier area to model realistic future discharges in glacierized catchments.

  14. Regional estimation of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.

    2015-04-01

    Reducing the number of calibration parameters is of a considerable advantage when area distributed hydrological models are to be calibrated, both due to equifinality and over-parameterization of the model in general, and for making the calibration process more efficient. A simple non-threshold response model for drainage in natural catchments based on among others Kirchner's article in WRR 2009 is implemented in the gridded hydrological model in the ENKI framework. This response model takes only the hydrogram into account; it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. In former analyses of natural discharge series from a large number of catchments in different regions of Norway, we found that these response model parameters can be calculated from some known catchment characteristics, as catchment area and lake percentage, found in maps or data bases, meaning that the parameters can easily be found also for ungauged catchments. In the presented work from the EU project COMPLEX a large region in Mid-Norway containing 27 simulated catchments of different sizes and characteristics is calibrated. Results from two different calibration strategies are compared: 1) removing the response parameters from the calibration by calculating them in advance, based on the results from our former studies, and 2) including the response parameters in the calibration, both as maps with different values for each catchment, and as a constant number for the total region. The resulting simulation performances are compared and discussed.

  15. Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison

    NASA Astrophysics Data System (ADS)

    Hale, V. Cody; McDonnell, Jeffrey J.

    2016-02-01

    The effect of bedrock permeability and underlying catchment boundaries on stream base flow mean transit time (MTT) and MTT scaling relationships in headwater catchments is poorly understood. Here we examine the effect of bedrock permeability on MTT and MTT scaling relations by comparing 15 nested research catchments in western Oregon; half within the HJ Andrews Experimental Forest and half at the site of the Alsea Watershed Study. The two sites share remarkably similar vegetation, topography, and climate and differ only in bedrock permeability (one poorly permeable volcanic rock and the other more permeable sandstone). We found longer MTTs in the catchments with more permeable fractured and weathered sandstone bedrock than in the catchments with tight, volcanic bedrock (on average, 6.2 versus 1.8 years, respectively). At the permeable bedrock site, 67% of the variance in MTT across catchments scales was explained by drainage area, with no significant correlation to topographic characteristics. The poorly permeable site had opposite scaling relations, where MTT showed no correlation to drainage area but the ratio of median flow path length to median flow path gradient explained 91% of the variance in MTT across seven catchment scales. Despite these differences, hydrometric analyses, including flow duration and recession analysis, and storm response analysis, show that the two sites share relatively indistinguishable hydrodynamic behavior. These results show that similar catchment forms and hydrologic regimes hide different subsurface routing, storage, and scaling behavior—a major issue if only hydrometric data are used to define hydrological similarity for assessing land use or climate change response.

  16. Changes in catchment hydrology in relation to vegetation recovery: a comparative modelling experiment

    NASA Astrophysics Data System (ADS)

    Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.

    2010-05-01

    Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling experiment aims at separating the effect of land cover from other differences (e.g. catchment area, morphology) between the two catchments. This approach allows us to make general statements on effects of land cover, required for future predictions for larger areas. In our modelling experiment, a process-based distributed hydrological model is used for the two catchments. First, we calibrate the model using data from the two catchments until a single set of parameters valid for both is found. With this set of parameters and considering a given meteorological driver (due to their proximity, it can be considered the same for both catchments), runoff at the outlet of each catchment is simulated. Land cover is then swapped between catchments and a new runoff simulation is performed for each "swapped" catchment, using the same set of parameters and the same meteorological driver. The effects of the land cover change are determined by analysing the differences between the first and the "swapped" simulations. This study is based on an analysis of the hydrological differences of two catchments with different history of land use, and a comparative modelling experiment applied to them. Following this approach, we attempt to advance our understanding of the effects of land-use/land-cover changes in catchment hydrology and, ultimately, anticipate their hydrological consequences under a future re-vegetation scenario.

  17. Extended principle component analysis - a useful tool to understand processes governing water quality at catchment scales

    NASA Astrophysics Data System (ADS)

    Selle, B.; Schwientek, M.

    2012-04-01

    Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables and environmental tracers indicating groundwater age were analysed for deep groundwater from production wells. For deep groundwater, we found that microbial turnover was stronger influenced by local availability of energy sources than by travel times of groundwater to the wells. Groundwater quality primarily reflected the input of pollutants determined by landuse, e.g. agrochemicals. We concluded that for water quality in the Ammer catchment, conservative mixing of waters with different origin is more important than reactive transport processes along the flow path.

  18. Process-based interpretation of conceptual hydrological model performance using a multinational catchment set

    NASA Astrophysics Data System (ADS)

    Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles

    2017-08-01

    Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.

  19. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    NASA Astrophysics Data System (ADS)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  20. Climate, runoff and landuse trends in the Owo River Catchment in Nigeria

    NASA Astrophysics Data System (ADS)

    Adegun, O.; Odunuga, S.; Ajayi, O. S.

    2015-06-01

    The Owo River is an important surface water source in Lagos particularly to the western section. It is the source of direct water intake for water supply by Lagos State Water Corporation to Amuwo-Odofin, Ojo and parts of Badagry Local Government Areas. This paper examines the complex interactions and feedbacks between many variables and processes within that catchment and analyses the future ability of this semi-urban watershed in sustaining water supply in the face of cumulative environmental change. Stationarity analysis on rainfall, change detection analysis and morphometry analysis were combined to analyse the non-stationarity of Owo River catchment. On rainfall trend analysis, since the correlation coefficient (0.38) with test statistic of 2.17 did not satisfy the test condition we concluded that there is trend and that rainfall in the watershed is not stationary. The dominant land use impacting on the bio-geochemical fluxes is built up area (including structures and paved surfaces) which grew from about 142.92 km2 (12.20%) in 1984 to 367.22 km2 (31.36%) in 2013 recording gain of 224.3 km2 at average growth rate of 7.73 km2 per annum. Total length of streams within the catchment reduced from 622.24 km in 1964 to 556 km in 2010, while stream density reduced from 0.53 in 1964 to 0.47 in 2010 an indication of shrinking hydrological network. The observed trends in both natural and anthropogenic processes indicated non-stationarity of the hydrological fluxes within the Catchment and if this continues, the urban ecosystem services of water supply will be compromised.

  1. Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire

    USGS Publications Warehouse

    Moody, J.A.; Kinner, D.A.

    2006-01-01

    The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.

  2. Climatic and Catchment-Scale Predictors of Chinese Stream Insect Richness Differ between Taxonomic Groups

    PubMed Central

    Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.

    2015-01-01

    Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190

  3. Statistical classification of hydrogeologic regions in the fractured rock area of Maryland and parts of the District of Columbia, Virginia, West Virginia, Pennsylvania, and Delaware

    USGS Publications Warehouse

    Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.

    2013-01-01

    Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.

  4. Compound-specific stable carbon isotope composition as a fingerprint for sediment transport: Reproducibility, homogeneity and application in a catchment of the Swiss plateau.

    NASA Astrophysics Data System (ADS)

    Birkholz, Axel; Niemann, Helge; Alewell, Christine

    2014-05-01

    A new field for the applications of compound-specific isotope analyses (CSIA) has opened in the recent years. The isotopic signature in fatty acids (FA) can be used to track sediment transport pathways from erosional areas to river systems. In this approach distinct FA d13C values of even numbered saturated and/or unsaturated FAs from soils are traced in suspended river sediments, ie. the place of deposition. CSIA has been shown to be particularly useful in catchment areas with C4 plant crops because, compared to the regularly occurring C3-plants, they are (naturally) depleted in 13C. However, in theory, all plant species even among C3 plants should inherit significant differences in their d13C of FAs. Thus, we tried to differentiate between source areas for suspended sediments from three different land use types: forest (C3 plants), grassland (C3 plants) and arable land (mixture of C3 and C4 plants). Statistical geo software (eg. Isosource) can be used to additionally model the spatial and temporal variability of erosion. We present d13C values of FAs from 8 erosion areas from the Enziwigger catchment of the Swiss plateau (Canton of Lucerne). Each area was assessed through randomised triplicate sampling to test the spatial homogeneity of each one. The homogeneity of a single sample, as well as the reproducibility of our measurements was tested by extracting and analysing the same sample bag in triplicates. We compare compound-specific stable isotope (CSSI) fingerprints of source areas to d13C-values of FAs from suspended sediments of two high-flow events and one base flow period at 3 different sites of the Enziwiger river (upstream, midstream, downstream).

  5. Hysteresis and parent-metabolite analyses unravel characteristic pesticide transport mechanisms in a mixed land use catchment.

    PubMed

    Tang, Ting; Stamm, Christian; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan

    2017-11-01

    To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km 2 ) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?

    NASA Astrophysics Data System (ADS)

    Callow, John Nikolaus; Van Niel, Kimberly P.; Boggs, Guy S.

    2007-01-01

    SummaryMany digital elevation models (DEMs) have difficulty replicating hydrological patterns in flat landscapes. Efforts to improve DEM performance in replicating known hydrology have included a variety of soft (i.e. algorithm-based approaches) and hard techniques, such as " Stream burning" or "surface reconditioning" (e.g. Agree or ANUDEM). Using a representation of the known stream network, these methods trench or mathematically warp the original DEM to improve how accurately stream position, stream length and catchment boundaries replicate known hydrological conditions. However, these techniques permanently alter the DEM and may affect further analyses (e.g. slope). This paper explores the impact that commonly used hydrological correction methods ( Stream burning, Agree.aml and ANUDEM v4.6.3 and ANUDEM v5.1) have on the overall nature of a DEM, finding that different methods produce non-convergent outcomes for catchment parameters (such as catchment boundaries, stream position and length), and differentially compromise secondary terrain analysis. All hydrological correction methods successfully improved calculation of catchment area, stream position and length as compared to using the DEM without any modification, but they all increased catchment slope. No single method performing best across all categories. Different hydrological correction methods changed elevation and slope in different spatial patterns and magnitudes, compromising the ability to derive catchment parameters and conduct secondary terrain analysis from a single DEM. Modification of a DEM to better reflect known hydrology can be useful, however knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  7. Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment

    NASA Astrophysics Data System (ADS)

    Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav

    2010-05-01

    Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis

  8. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding complex relationships in the management of the catchment.

  9. Combining measurements and modelling to quantify the contribution of atmospheric fallout, local industry and road traffic to PAH stocks in contrasting catchments.

    PubMed

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-06-01

    Various sources supply PAHs that accumulate in soils. The methodology we developed provided an evaluation of the contribution of local sources (road traffic, local industries) versus remote sources (long range atmospheric transport, fallout and gaseous exchanges) to PAH stocks in two contrasting subcatchments (46-614 km²) of the Seine River basin (France). Soil samples (n = 336) were analysed to investigate the spatial pattern of soil contamination across the catchments and an original combination with radionuclide measurements provided new insights into the evolution of the contamination with depth. Relationships between PAH concentrations and the distance to the potential sources were modelled. Despite both subcatchments are mainly rural, roadside areas appeared to concentrate 20% of the contamination inside the catchment while a local industry was found to be responsible for up to 30% of the stocks. Those results have important implications for understanding and controlling PAH contamination in rural areas of early-industrialized regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Hydrologic data for urban storm runoff from three localities in the Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Ellis, Sherman R.

    1978-01-01

    Urban storm-runoff data, collected from 1975 to 1977, on three catchment areas in the Denver, Colo., metropolitan area are presented. The catchment are predominantly a single-family residential catchment area in Littleton, a multifamily residential and commercial catchment area in Lakewood, and a high-density residential and commercial catchment area in Denver. Precipitation, rainfall-runoff, snowmelt-runoff, water-quality (common constituents, nutrients, biochemical oxygen demand, coliform bacteria, and solids, trace elements, and pesticides), and catchment-area data are necessary to use the U.S. Environmental Protection Agency 's Storm Water Management Model II. The urban storm-runoff data may be used by planning, water-management, and environmental-protection agencies to assess the impact of urban storm runoff on the hydrologic system. (Woodard-USGS)

  11. Estimating Catchment-Scale Snowpack Variability in Complex Forested Terrain, Valles Caldera National Preserve, NM

    NASA Astrophysics Data System (ADS)

    Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.

    2011-12-01

    Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of canopy), which further explained snow depth variability. The importance of SFI for explaining catchment-scale snow depth variability demonstrates that aspect is not a sufficient metric for direct radiation in complex terrain where slope and remote topographic shading are significant. Surprisingly, the net effects of interception and shading by vegetation on snow depths were minimal compared to elevation and aspect in these catchments. These results suggest that snowpack losses from interception may be balanced by increased shading to reduce the overall impacts from vegetation compared to topographic factors in this high radiation environment. Our analysis indicated that elevation and solar radiation are likely to control snow variability in larger catchments, with interception and shading from vegetation becoming more important at smaller scales.

  12. Moments of catchment storm area

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Wang, Q.

    1985-01-01

    The portion of a catchment covered by a stationary rainstorm is modeled by the common area of two overlapping circles. Given that rain occurs within the catchment and conditioned by fixed storm and catchment sizes, the first two moments of the distribution of the common area are derived from purely geometrical considerations. The variance of the wetted fraction is shown to peak when the catchment size is equal to the size of the predominant storm. The conditioning on storm size is removed by assuming a probability distribution based upon the observed fractal behavior of cloud and rainstorm areas.

  13. Extreme erosion response after wildfire in the Upper Ovens, south-east Australia: Assessment of catchment scale connectivity by an intensive field survey

    NASA Astrophysics Data System (ADS)

    Box, Walter; Keestra, Saskia; Nyman, Petter; Langhans, Christoph; Sheridan, Gary

    2015-04-01

    South-eastern Australia is generally regarded as one of the world's most fire-prone environments because of its high temperatures, low rainfall and flammable native Eucalyptus forests. Modifications to the landscape by fire can lead to significant changes to erosion rates and hydrological processes. Debris flows in particular have been recognised as a process which increases in frequency as a result of fire. This study used a debris flow event in the east Upper Ovens occurred on the 28th of February 2013 as a case study for analysing sediment transport processes and connectivity of sediment sources and sinks. Source areas were identified using a 15 cm resolution areal imagery and a logistic regression model was made based on fire severity, aridity index and slope to predict locations of source areas. Deposits were measured by making cross-sections using a combination of a differential GPS and a total station. In total 77 cross-sections were made in a 14.1 km2 sub-catchment and distributed based on channel gradient and width. A more detailed estimation was obtained by making more cross-sections where the volume per area is higher. Particle size distribution between sources and sink areas were obtained by combination of field assessment, photography imagery analyses and sieve and laser diffraction. Sediment was locally eroded, transported and deposited depending on factors such as longitude gradient, stream power and the composition of bed and bank material. The role of headwaters as sediment sinks changed dramatically as a result of the extreme erosion event in the wildfire affected areas. Disconnected headwaters became connected to low order streams due to debris flow processes in the contributing catchment. However this redistribution of sediment from headwaters to the drainage network was confined to upper reaches of the Ovens. Below this upper part of the catchment the event resulted in redistribution of sediment already existing in the channel through a combination of debris flows and hyperconcentrated flows. These results indicate that there is a stepwise outflow of sediment influencing long-term erosion rates and landform development.

  14. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    NASA Astrophysics Data System (ADS)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response as a function of the catchments' elevation and land cover. The forested catchment, located at the higher elevations, had the highest seasonal streamflows. During the wet season, different land covers at the lower elevations were important in defining the streamflow responses between the deforested catchment and the catchment with intermediate forest cover. Streamflows were higher and the rainfall-runoff responses were faster in the deforested catchment than in the intermediate forest cover catchment. During the dry season, the catchments' elevation defined streamflows due to higher water inputs and lower evaporative demand at the higher elevations.

  15. Drought propagation and its relation with catchment biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.

    2016-12-01

    Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical properties, and climatic conditions is done for all the catchments. Data mining techniques are applied to identify the main exogenous and endogenous factors determining drought characteristics and propagation.

  16. Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Ochoa-Rodriguez, Susana; Willems, Patrick; Ichiba, Abdellah; Wang, Lipen; Pina, Rui; Van Assel, Johan; Bruni, Guendalina; Murla Tuyls, Damian; ten Veldhuis, Marie-Claire

    2017-04-01

    Land use distribution and sewer system geometry exhibit complex scale dependent patterns in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. Such features are well grasped with fractal tools, which are based scale invariance and intrinsically designed to characterise and quantify the space filled by a geometrical set exhibiting complex and tortuous patterns. Fractal tools have been widely used in hydrology but seldom in the specific context of urban hydrology. In this paper, they are used to analyse surface and sewer data from 10 urban or peri-urban catchments located in 5 European countries in the framework of the NWE Interreg RainGain project (www.raingain.eu). The aim was to characterise urban catchment properties accounting for the complexity and inhomogeneity typical of urban water systems. Sewer system density and imperviousness (roads or buildings), represented in rasterized maps of 2 m x 2 m pixels, were analysed to quantify their fractal dimension, characteristic of scaling invariance. It appears that both sewer density and imperviousness exhibit scale invariant features that can be characterized with the help of fractal dimensions ranging from 1.6 to 2, depending on the catchment. In a given area, consistent results were found for the two geometrical features, yielding a robust and innovative way of quantifying the level of urbanization. The representation of imperviousness in operational semi-distributed hydrological models for these catchments was also investigated by computing fractal dimensions of the geometrical sets made up of the sub-catchments with coefficients of imperviousness greater than a range of thresholds. It enables to quantify how well spatial structures of imperviousness are represented in the urban hydrological models.

  17. The Use of Asymptotic Functions for Determining Empirical Values of CN Parameter in Selected Catchments of Variable Land Cover

    NASA Astrophysics Data System (ADS)

    Wałęga, Andrzej; Młyński, Dariusz; Wachulec, Katarzyna

    2017-12-01

    The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980-2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area. The study analyses confirmed that asymptotic functions properly described P-CNobs relationship for the entire range of precipitation variability. In the case of high rainfalls, CNobs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CNobs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.

  18. Spatio-temporal dynamics of sediment sources in a peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Blake, William; Kikuchi, Ryunosuke; Ferreira, António

    2017-04-01

    Sediment fluxes driven by hydrological processes lead to natural soil losses, but human activities, such as urbanization, influence hydrology and promote erosion, altering the landscape and sediment fluxes. In peri-urban areas, comprising a mixture of semi-natural and man-made land-uses, understanding sediment fluxes is still a research challenge. This study investigates spatial and temporal dynamics of fluvial sediments in a rapidly urbanizing catchment. Specific objectives are to understand the main sources of sediments relating to different types of urban land disturbance, and their variability driven by (i) weather, season and land-use changes through time, and (ii) sediment particle size. The study was carried out Ribeira dos Covões, a peri-urban catchment (6.2km2) in central Portugal. The climate is humid Mediterranean, with mean annual temperature and rainfall of 15˚ C and 892 mm, respectively. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). The catchment has an average slope of 9˚ , but includes steep slopes of up to 46˚ . The land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels, resulting from urbanization occurring progressively since 1973. Urbanization since 2010 has mainly comprised the building of a major road, covering 1% of the catchment area, and the ongoing construction of an enterprise park, occupying 5% of the catchment. This study uses a multi-proxy sediment fingerprinting approach, based on X-Ray Fluorescence (XRF) analyses to characterize the elemental geochemistry of sediments collected within the stream network after three storm events in 2012 and 2015. A range of statistical techniques, including hierarchical cluster analysis, was used to identify discriminant sediment properties and similarities between fine bed-sediment samples of tributaries and downstream sites. Quantification of sediment supply from upstream sub-catchments was undertaken using a Bayesian unmixing model. Geochemical signatures of sub-catchment sediment varied significantly with lithology and type of urban influence, but a tendency for limestone sub-catchments to be more urbanized made it difficult to isolate the influence of each factor. Nevertheless, differences in sub-catchment geochemistry between the survey dates indicate significant changes through time in both the relative importance and character of urban impacts. In 2012 the sandstone sub-catchment provided 88%, 92% and 93% of the <63μm, 63μm-125μm and 125μm-2000μm sediment, respectively, with most sediment deriving from the enterprise park site undergoing deforestation and construction. Most of the remaining sediment derived from the construction of the major road in the limestone sub-catchment. In 2015, however, sediment losses within the catchment appear to have been significantly reduced by planned and accidental retention basins below the enterprise park and major road construction sites, respectively. Nevertheless, the landscape disturbance provided by these constructional sites was of much greater importance than sediment mobilization in urban areas with paved roads and other impervious surfaces. The greatest heavy metal concentrations, however, were recorded in sediments deriving from road runoff. Despite the positive impact of retention basins in reducing sediment delivery from human disturbed areas, sediment connectivity could be reduced further by dispersing and filtering upslope runoff from urban surfaces more systematically into woodland sink areas.

  19. Hydrogeochemical signatures of catchment evolution - the role of calcium and sulphate release in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Hu, Yuzhu; Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph

    2016-04-01

    The constructed Hühnerwasser ("Chicken Creek") catchment is an ecohydrological system in an initial state of development. The catchment with an area of 6 ha was built up from quaternary sediments in the post-mining landscape of Lusatia in Eastern Germany and serves as a critical zone observatory for detecting ecosystem transition. The soil substrate is characterized as sands to loamy sands with low carbonate contents but significant amounts of gypsum in the sediments of the catchment. The catchment undergoes a strong transition from an abiotic system in the initial years to a system with growing influence of biota. Concerning the hydrology, a regime shift from surface runoff to groundwater flow dominated processes is significant. It is of interest, whether the catchment transition is also reflected by hydrogeochemical indicators. We assume gypsum dissolution as dominant process at the catchment scale. In order to investigate the hydrogeochemical evolution of the catchment we analysed electric conductivity, calcium and sulphate concentrations and pH-values of biweekly composite samples from 2007-2013 of the atmospheric deposition, of runoff and soil water. The two observation points in the flowing water represent surface runoff and groundwater discharge respectively. Soil water has been analysed at four soil pits in three depths. The monitoring data were provided by the Research Platform Chicken Creek (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). From the macroscopic data analysis we found an exponential decay of the electric conductivity, calcium and sulphate concentrations in the flowing waters and some of the soil pits. In the flowing water, the decrease slope of the electric conductivity and the calcium and sulphate concentrations is almost identical. The calcium / sulphate molar ratio as an indicator of gypsum dissolution is almost equal to one up to 2010, afterwards more calcium than sulphate is released. The pH-values in the flowing and soil water are generally higher than in the atmospheric deposition, they do show variabilites but no trend behaviour. The time series analyses showed that the interannual variability of the hydrogeochemical properties is less pronounced in the first years of ecosystem development than in the later years. This leads to the conclusion, that in the first years, gypsum dissolution is the major source for calcium and sulphate in the soil and the flowing waters. The increasing interannual variability and changes in the calcium / sulphate ratio in the later years might be interpreted as hydrogeochemical response to the development of vegetation and acidification due to the development of the rhizosphere.

  20. Systems analysis of urban wastewater systems--two systematic approaches to analyse a complex system.

    PubMed

    Benedetti, L; Blumensaat, F; Bönisch, G; Dirckx, G; Jardin, N; Krebs, P; Vanrolleghem, P A

    2005-01-01

    This work was aimed at performing an analysis of the integrated urban wastewater system (catchment area, sewer, WWTP, receiving water). It focused on analysing the substance fluxes going through the system to identify critical pathways of pollution, as well as assessing the effectiveness of energy consumption and operational/capital costs. Two different approaches were adopted in the study to analyse urban wastewater systems of diverse characteristics. In the first approach a wide ranged analysis of a system at river basin scale is applied. The Nete river basin in Belgium, a tributary of the Schelde, was analysed through the 29 sewer catchments constituting the basin. In the second approach a more detailed methodology was developed to separately analyse two urban wastewater systems situated within the Ruhr basin (Germany) on a river stretch scale. The paper mainly focuses on the description of the method applied. Only the most important results are presented. The main outcomes of these studies are: the identification of stressors on the receiving water bodies, an extensive benchmarking of wastewater systems, and the evidence of the scale dependency of results in such studies.

  1. Impacts of forestry planting on primary production in upland lakes from north-west Ireland.

    PubMed

    Stevenson, Mark A; McGowan, Suzanne; Anderson, N John; Foy, Robert H; Leavitt, Peter R; McElarney, Yvonne R; Engstrom, Daniel R; Pla-Rabés, Sergi

    2016-04-01

    Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). (210)Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ(13)C) and nitrogen (δ(15)N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance. © 2015 John Wiley & Sons Ltd.

  2. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-09-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  3. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-03-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  4. Understanding catchment scale sediment sources using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2013-04-01

    It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and <0.063mm) obtained, where the <0.063mm fraction was considered equivalent to the suspended sediment load during storm events. The elemental composition (33 elements) of each fraction was assessed using a Niton X-ray fluorescence analyzer. The results were used to identify distinctive composite signatures of each tributary catchment and their influence on the geochemistry of the catchment outlet bed-sediment was explored. An unmixing model was applied to estimate the relative contribution of each tributary to channel-stored sediment at the catchment outlet. Many of the chemical elements analysed, including Zr, Sr, Zn and Ti, showed significant differences between sandstone and limestone areas. The closeness of values at the catchment outlet to those of sandstone stream bed-sediment indicates that most of the current catchment erosion is derived from the sandstone area. This is supported by the higher measured discharges and suspended sediment concentrations in storm events from the latter. Eroded sediments from urban areas still under construction also showed distinctive characteristics. It is concluded that this methodology represents a potentially useful tool for river managers and policy-makers to detect and assess sediment sources in urbanized catchments.

  5. Hydrogeomorphic Classification of Wetlands on Mt. Desert Island, Maine, Including Hydrologic Susceptibility Factors for Wetlands in Acadia National Park

    USGS Publications Warehouse

    Nielsen, Martha G.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, developed a hydrogeomorphic (HGM) classification system for wetlands greater than 0.4 hectares (ha) on Mt. Desert Island, Maine, and applied this classification using map-scale data to more than 1,200 mapped wetland units on the island. In addition, two hydrologic susceptibility factors were defined for a subset of these wetlands, using 11 variables derived from landscape-scale characteristics of the catchment areas of these wetlands. The hydrologic susceptibility factors, one related to the potential hydrologic pathways for contaminants and the other to the susceptibility of wetlands to disruptions in water supply from projected future changes in climate, were used to indicate which wetlands (greater than 1 ha) in Acadia National Park (ANP) may warrant further investigation or monitoring. The HGM classification system consists of 13 categories: Riverine-Upper Perennial, Riverine-Nonperennial, Riverine- Tidal, Depressional-Closed, Depressional-Semiclosed, Depressional-Open, Depressional-No Ground-Water Input, Mineral Soil Flat, Organic Soil Flat, Tidal Fringe, Lacustrine Fringe, Slope, and Hilltop/Upper Hillslope. A dichotomous key was developed to aid in the classification of wetlands. The National Wetland Inventory maps produced by the U.S. Fish and Wildlife Service provided the wetland mapping units used for this classification. On the basis of topographic map information and geographic information system (GIS) layers at a scale of 1:24,000 or larger, 1,202 wetland units were assigned a preliminary HGM classification. Two of the 13 HGM classes (Riverine-Tidal and Depressional-No Ground-Water Input) were not assigned to any wetlands because criteria for determining those classes are not available at that map scale, and must be determined by more site-specific information. Of the 1,202 wetland polygons classified, which cover 1,830 ha in ANP, 327 were classified as Slope, 258 were Depressional (Open, Semiclosed, and Closed), 231 were Riverine (Upper Perennial and Nonperennial), 210 were Soil Flat (Mineral and Organic), 68 were Lacustrine Fringe, 51 were Tidal Fringe, 22 were Hilltop/Upper Hillslope, and another 35 were small open water bodies. Most small, isolated wetlands classified on the island are Slope wetlands. The least common, Hilltop/Upper Hillslope wetlands, only occur on a few hilltops and shoulders of hills and mountains. Large wetland complexes generally consist of groups of Depressional wetlands and Mineral Soil Flat or Organic Soil Flat wetlands, often with fringing Slope wetlands at their edges and Riverine wetlands near streams flowing through them. The two analyses of wetland hydrologic susceptibility on Mt. Desert Island were applied to 186 wetlands located partially or entirely within ANP. These analyses were conducted using individually mapped catchments for each wetland. The 186 wetlands were aggregated from the original 1,202 mapped wetland polygons on the basis of their HGM classes. Landscape-level hydrologic, geomorphic, and soil variables were defined for the catchments of the wetlands, and transformed into scaled scores from 0 to 10 for each variable. The variables included area of the wetland, area of the catchment, area of the wetland divided by the area of the catchment, the average topographic slope of the catchment, the amount of the catchment where bedrock crops out with no soil cover or excessively thin soil cover, the amount of storage (in lakes and wetlands) in the catchment, the topographic relief of the catchment, the amount of clay-rich soil in the catchment, the amount of manmade impervious surface, whether the wetland had a stream inflow, and whether the wetland had a hydraulic connection to a lake or estuary. These data were determined using a GIS and data layers mapped at a scale of 1:24,000 or larger. These landscape variables were combined in different ways for the two hydrologic susceptibility fact

  6. Multiple runoff processes and multiple thresholds control agricultural runoff generation

    NASA Astrophysics Data System (ADS)

    Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.

    2016-11-01

    Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and ultimately to the stream, persisted between events for a period of 1 month. These findings are supported by isotope results which showed the dominance of pre-event water, together with significant contributions of event water early (rising limb and peak) in the event hydrograph. Based on a combination of various hydrometric analyses and some isotope and major ion data, we conclude that event runoff at this site is typically a combination of subsurface event flow and saturation excess overland flow. However, during high intensity rainfall events, flashy catchment flow was observed even though the soil moisture threshold for activation of subsurface flow was not exceeded. We hypothesise that this was due to the activation of infiltration excess overland flow and/or fast lateral flow through preferential pathways on the hillslope and saturation overland flow from the riparian zone.

  7. Prairie Pothole Region wetlands and subsurface drainage systems: Key factors for determining drainage setback distances

    USGS Publications Warehouse

    Tangen, Brian; Wiltermuth, Mark T.

    2018-01-01

    Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing subsurface drainage systems on these lands. The length of slope of individual catchments and depth of subsurface drainage systems could be considered when prescribing drainage setback distances and assessing potential effects to wetland hydrology. Moreover, because of uncertainties associated with the efficacy of standard drainage setback distances, exclusion of subsurface drainage systems from wetland catchments would be ideal when the goal is to protect wetlands.

  8. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    PubMed

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-06-15

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  9. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  10. Evidence for the Continuous Latent Structure of Mania in the Epidemiologic Catchment Area from Multiple Latent Structure and Construct Validation Methodologies

    PubMed Central

    Prisciandaro, James J.; Roberts, John E.

    2011-01-01

    Background Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon, appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic systems, several influential theories of mania have suggested a continuous conceptualization. The present study examined whether mania has a continuous or discrete latent structure using a comprehensive approach including taxometric, information-theoretic latent distribution modeling (ITLDM), and predictive validity methodologies in the Epidemiologic Catchment Area (ECA) study. Methods Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses; including factor analyses, taxometric procedures, and ITLDM; in 10,105 ECA community participants. Additionally, a variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict outcomes (i.e., health service utilization, internalizing and externalizing disorders, and suicidal behavior). Results Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM analyses, a continuous model of mania demonstrated 6:52:1 odds over the best fitting latent class model of mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative to discrete models. Conclusions The present study provided three independent lines of support for a continuous conceptualization of mania. The implications of a continuous model of mania are discussed. PMID:20507671

  11. Understanding discharge data uncertainty and its consequences for analyses of spatial and temporal change in hydrological response

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida

    2017-04-01

    Understanding and quantifying how hydrological response behaviour varies across catchments, or how catchments change with time requires reliable discharge data. For reliable estimation of spatial and temporal change, the change in the response behaviour needs to be larger than the uncertainty in the response behaviour estimates that are compared. Understanding how discharge data uncertainty varies between catchments and over time, and how these uncertainties propagate to information derived from the data, is therefore key to drawing the right conclusions in comparative analyses. Uncertainty in discharge data is often highly place-specific and reliable estimation depends on detailed analyses of the rating curve model and stage-discharge measurements used to calculate discharge time series from stage (water level) at the gauging station. This underlying information is often not available when discharge data is provided by monitoring agencies. However, even without detailed analyses, the chance that the discharge data would be uncertain at particular flow ranges can be assessed based on information about the gauging station, the flow regime, and the catchment. This type of information is often available for most catchments even if the rating curve data are not. Such 'soft information' on discharge uncertainty may aid interpretation of results from regional and temporal change analyses. In particular, it can help reduce the risk of wrongly interpreting differences in response behaviour caused by discharge uncertainty as real changes. In this presentation I draw on several previous studies to discuss some of the factors that affect discharge data uncertainty and give examples from catchments worldwide. I aim to 1) illustrate the consequences of discharge data uncertainty on comparisons of different types of hydrological response behaviour across catchments and when analysing temporal change, and 2) give practical advice as to what factors may help identify catchments with potentially large discharge uncertainty.

  12. TUM Critical Zone Observatory, Germany

    NASA Astrophysics Data System (ADS)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  13. Large catchment area recharges Titan's Ontario Lacus

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2018-01-01

    We seek to address the question of what processes are at work to fill Ontario Lacus while other, deeper south polar basins remain empty. Our hydrological analysis indicates that Ontario Lacus has a catchment area spanning 5.5% of Titan's surface and a large catchment area to lake surface area ratio. This large catchment area translates into large volumes of liquid making their way to Ontario Lacus after rainfall. The areal extent of the catchment extends to at least southern mid-latitudes (40°S). Mass conservation calculations indicate that runoff alone might completely fill Ontario Lacus within less than half a Titan year (1 Titan year = 29.5 Earth years) assuming no infiltration. Cassini Visual and Infrared Mapping Spectrometer (VIMS) observations of clouds over the southern mid and high-latitudes are consistent with precipitation feeding Ontario's large catchment area. This far-flung rain may be keeping Ontario Lacus filled, making it a liquid hydrocarbon oasis in the relatively dry south polar region.

  14. Study of Spatial Interrelationship of Long-term River Runoff Variability

    NASA Astrophysics Data System (ADS)

    Jouk, V.; Romanova, H.; Polianin, V.

    To do a number of practical tasks related to water resources management, planning a hydrological monitoring network, estimation of economic activity influence on river runoff, recollection of runoff rows for rivers with short period of observation and other, it is necessary to know about spatial distribution of an annual river runoff. Most of the methods including optimal interpolation that are being used nowadays to solve such problems can deal only with homogeneous and isotropic fields what isn't true in case of an annual river runoff. To find the causes that make an annual river runoff non- isotropic, first of all it is necessary to learn the field structure of its main climatic factors such as precipitation and air humidity deficit. The analyses of anisotropy of these fields can be performed by using unrolled spatially-correlation functions (USCF): Ri,j =f(Si,j;a), Ri,j - empirical correlation of observed rows; Si,j - distance between meteorological stations; a - an anngle between a parallel and the lines that join the centers of river catchments. The form of lines of equal level of USCF shows the direction of bigger or smaller spa- tial interrelationship of the field. In this work an annual river runoff field, precipitation and air humidity deficit fields were studied. The data of 55 meteorological stations was used and the data on water discharge of more than 255 rivers within the East-Europe plain was processed (a period of runoff observation for every river is about 60 years and a catchment area varies from 1 to 20 thousand sq. km.). Joint analyses of the USCFs shows that anisotropy of an annual river runoff field de- pends strongly on anisotropy of the fields of precipitation forming river runoff. In other words, stronger interrelationship of annual river runoff is observed in the direction of dominant moisture transfer. Landscape features of a catchment also have considerable influence on interrelation- ship between annual runoff values of different rivers. This influence was studied by us- ing conditional spatially-correlation functions or CSCF (i.e. spatially-correlation func- 1 tions constructed according to certain conditions applied to some landscape features). The following factors that affect annual river runoff were studied: catchment area, slope, mean elevation of a catchment, percentage of a forest cover of a catchment. As the study shows, the last factor mentioned above is the most important one which affects spatial interrelationship of an annual river runoff. It can be explained by the fact that the forest is a considerable seasonal and annual runoff redistributor. Moreover a forested area of river catchments varies greatly over the studied region. The influence of elevation occurred to be less obvious than that of the forest because of its small variation within the territory. The use of interpolation schemes taking into account anisotropy and heterogeneity of the field made it possible to improve quality of recollection of runoff rows. So considering heterogeneity of an annual runoff field using the information of percent- age of forest cover of a river catchment and mean elevation of a catchment lessened inaccuracy of runoff rows recollection by more than 7%. In principle, quality of in- terpolation can be enhanced more by taking into consideration not only the factors mentioned above, but also all possible landscape features of a river catchment.But this is the task of further researches. 2

  15. [The development of legal guardianship and involuntary treatment in a Bavarian catchment area in comparison to trends at the federal state and the federal level between 1999 and 2009].

    PubMed

    Valdes-Stauber, Juan; Putzhammer, Albert; Kilian, Reinhold

    2011-05-01

    In this study trends in legal guardianship and involuntary treatment in a Bavarian catchment area in comparison to trends at federal state and federal level between 1999 and 2009 will be examined. Data from the federal department of justice, from the federal health monitoring system and data from a district court were used to compute rates, quotas and quotients. Regression analyses were conducted to analyse associations between time series. In comparison to the federal state and the federal level the target region shows a significantly higher rate of new guardianships but a lower rate of judicial ordered mobility restrictions and at least in comparison to the federal state level a significantly lower rate of involuntary admissions according to guardianship law. The obtained differences indicate significant differences in the legal guardianship and involuntary admission practise which cannot be explained by epidemiological developments. Therefore it is necessary to investigate potential socio-cultural and socioeconomic sources for these varieties. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Modelling catchment areas for secondary care providers: a case study.

    PubMed

    Jones, Simon; Wardlaw, Jessica; Crouch, Susan; Carolan, Michelle

    2011-09-01

    Hospitals need to understand patient flows in an increasingly competitive health economy. New initiatives like Patient Choice and the Darzi Review further increase this demand. Essential to understanding patient flows are demographic and geographic profiles of health care service providers, known as 'catchment areas' and 'catchment populations'. This information helps Primary Care Trusts (PCTs) to review how their populations are accessing services, measure inequalities and commission services; likewise it assists Secondary Care Providers (SCPs) to measure and assess potential gains in market share, redesign services, evaluate admission thresholds and plan financial budgets. Unlike PCTs, SCPs do not operate within fixed geographic boundaries. Traditionally, SCPs have used administrative boundaries or arbitrary drive times to model catchment areas. Neither approach satisfactorily represents current patient flows. Furthermore, these techniques are time-consuming and can be challenging for healthcare managers to exploit. This paper presents three different approaches to define catchment areas, each more detailed than the previous method. The first approach 'First Past the Post' defines catchment areas by allocating a dominant SCP to each Census Output Area (OA). The SCP with the highest proportion of activity within each OA is considered the dominant SCP. The second approach 'Proportional Flow' allocates activity proportionally to each OA. This approach allows for cross-boundary flows to be captured in a catchment area. The third and final approach uses a gravity model to define a catchment area, which incorporates drive or travel time into the analysis. Comparing approaches helps healthcare providers to understand whether using more traditional and simplistic approaches to define catchment areas and populations achieves the same or similar results as complex mathematical modelling. This paper has demonstrated, using a case study of Manchester, that when estimating the catchment area of a planned new hospital, the extra level of detail provided by the gravity model may prove necessary. However, in virtually all other applications, the Proportional Flow method produced the optimal model for catchment populations in Manchester, based on several criteria: it produced the smallest RMS error; it addressed cross-boundary flows; the data used to create the catchment was readily available to SCPs; and it was simpler to reproduce than the gravity model method. Further work is needed to address how the Proportional Flow method can be used to reflect service redesign and handle OAs with zero or low activity. A next step should be the rolling out of the method across England and looking at further drill downs of data such as catchment by Healthcare Resource Group (HRG) rather than specialty level.

  17. A tracer test to determine a hydraulic connection between the Lauchert and Danube karst catchments (Swabian Alb, Germany)

    NASA Astrophysics Data System (ADS)

    Knöll, Paul; Scheytt, Traugott

    2018-03-01

    A dye tracer experiment was conducted between the rivers Lauchert and Danube near Sigmaringen (Swabian Alb, southern Germany). After a flood event in the River Lauchert, it was suspected that flood water infiltrated into the karst system and drained towards springs in the Danube Valley. A potential connection of the two rivers is provided by the margin of a tectonic graben crossing the valleys. The aim of the tracer experiment was to gain insight into the dominant groundwater flow direction as well as to study a possible preferential connection between the Lauchert surface catchment area and springs in the Danube Valley. After introducing sodium-fluorescein into the unsaturated zone, six springs in the Danube Valley and the River Lauchert itself were observed. Tracer breakthrough at three springs showed that these springs are fed by groundwater originating in the Lauchert surface catchment. Adjacent springs were not affected by the experiment, indicating a rather sharp divide between separate spring catchments. Analyses of tracer breakthrough curves suggest that springs with a tracer occurrence are fed by the same conduit system. It was possible to show that spring catchments in Sigmaringen reach significantly into the Lauchert surface catchment. As a consequence, a drinking-water supplier has changed its supply strategy. The results also help to explain significant differences between flood damage in the central and lower courses of the River Lauchert.

  18. Solid discharge and landslide activity at basin scale

    NASA Astrophysics Data System (ADS)

    Ardizzone, F.; Guzzetti, F.; Iadanza, C.; Rossi, M.; Spizzichino, D.; Trigila, A.

    2012-04-01

    This work presents a preliminary analysis aimed at understanding the relationship between landslide sediment supply and sediment yield at basin scale in central and southern Italy. A database of solid discharge measurements regarding 116 gauging stations, located along the Apennines chain in Italy, has been compiled by investigating the catalogues, named Annali Idrologici, published by Servizio Idrografico e Mareografico Italiano in the period from 1917 to 1997. The database records several information about the 116 gauging stations, and especially reports the sediment yield monthly measurements (103 ton) and the catchments area (km2). These data have been used to calculate the average solid yield and the normalized solid yield for each station in the observation period. The Italian Landslide Inventory (Progetto IFFI) has been used to obtained the size of the landslides, in order to estimate the landslide mobilization rates. The IFFI Project funded by the Italian Government is realized by ISPRA (Italian National Institute for Environmental Protection and Research - Geological Survey of Italy) in partnership with the 21 Regions and Self Governing Provinces. 21 of the 116 gauging stations and the related catchments have been selected on the basis of the length of the solid discharge observation period and excluding the catchments with dams located upstream the stations. The landslides inside the selected catchments have been extracted from the IFFI inventory, calculating the planimetric area of each landslide. Considering both the shallow and deep landslides, the landslide volume has been estimated using an empirical power law relation (landslide area vs. volume). The total landslide volume in the study areas and the average sediment yield measured at the gauging stations have been compared, analysing the behaviour of the basins which drainage towards the Tyrrhenian sea and the basins which drainage towards the Adriatic sea.

  19. The combined effects of topography and vegetation on catchment connectivity

    NASA Astrophysics Data System (ADS)

    Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.

    2012-12-01

    The deconvolution of whole catchment runoff response into its temporally dynamic source areas is a grand challenge in hydrology. The extent to which the intersection of static and dynamic catchment characteristics (e.g. topography and vegetation) influences water redistribution within a catchment and the hydrologic connectivity of hillslopes to the riparian and stream system is largely unknown. Over time, patterns of catchment storage shift and, because of threshold connectivity behavior, catchment areas become disconnected from the stream network. We developed a simple but spatially distributed modeling framework that explicitly incorporates static (topography) and dynamic (vegetation) catchment structure to document the evolution of catchment connectivity over the course of a water year. We employed directly measured eddy-covariance evapotranspiration data co-located within a highly instrumented (>150 recording groundwater wells) and gauged catchment to parse the effect of current and zero vegetation scenarios on the temporal evolution of hydrologic connectivity. In the absence of vegetation, and thus in the absence of evapotranspiration, modeled absolute connectivity was 4.5% greater during peak flow and 3.9% greater during late summer baseflow when compared to the actual vegetation scenario. The most significant differences in connected catchment area between current and zero vegetation (14.9%) occurred during the recession period in early July, when water and energy availability were at an optimum. However, the greatest relative difference in connected area occurs during the late summer baseflow period when the absence of evapotranspiration results in a connected area approximately 500% greater than when vegetation is present, while the relative increase during peak flow is just 6%. Changes in connected areas ultimately lead to propose a biologically modified geomorphic width function. This biogeomorphic width function is the result of lateral water redistribution driven by topography and water uptake by vegetation.

  20. Determining health-care facility catchment areas in Uganda using data on malaria-related visits

    PubMed Central

    Charland, Katia; Kigozi, Ruth; Dorsey, Grant; Kamya, Moses R; Buckeridge, David L

    2014-01-01

    Abstract Objective To illustrate the use of a new method for defining the catchment areas of health-care facilities based on their utilization. Methods The catchment areas of six health-care facilities in Uganda were determined using the cumulative case ratio: the ratio of the observed to expected utilization of a facility for a particular condition by patients from small administrative areas. The cumulative case ratio for malaria-related visits to these facilities was determined using data from the Uganda Malaria Surveillance Project. Catchment areas were also derived using various straight line and road network distances from the facility. Subsequently, the 1-year cumulative malaria case rate was calculated for each catchment area, as determined using the three methods. Findings The 1-year cumulative malaria case rate varied considerably with the method used to define the catchment areas. With the cumulative case ratio approach, the catchment area could include noncontiguous areas. With the distance approaches, the denominator increased substantially with distance, whereas the numerator increased only slightly. The largest cumulative case rate per 1000 population was for the Kamwezi facility: 234.9 (95% confidence interval, CI: 226.2–243.8) for a straight-line distance of 5 km, 193.1 (95% CI: 186.8–199.6) for the cumulative case ratio approach and 156.1 (95% CI: 150.9–161.4) for a road network distance of 5 km. Conclusion Use of the cumulative case ratio for malaria-related visits to determine health-care facility catchment areas was feasible. Moreover, this approach took into account patients’ actual addresses, whereas using distance from the facility did not. PMID:24700977

  1. A GIS-based approach for identifying potential runoff harvesting sites in the Thukela River basin, South Africa

    NASA Astrophysics Data System (ADS)

    de Winnaar, G.; Jewitt, G. P. W.; Horan, M.

    Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.

  2. Use of reservoir deposits to reconstruct the recent changes in sediment yields from a small granite catchment in the Yimeng Mountain region, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqi; Long, Yi; Li, Bao; Xu, Shujian; Wang, Xiaoli; Liao, Jia

    2017-09-01

    Information on recent changes in sediment yields from small catchments provides a better understanding of temporal trends in soil loss from certain physical and human-influenced landscapes that have been subjected to recent environmental changes, and will help bridge the current knowledge gap that exists between hillslope erosion and sediment transport in rivers. The Yimeng Mountain region, characterized by alternating granite and limestone, is one of the most susceptible regions to soil erosion in northern China, and has been subjected to intensive anthropogenic activity in recent years. Soil loss from areas underlain by granite is particularly obvious, and is the main sediment source for the Yihe River. In this study, we used reservoir deposits to estimate the changes in sediment yields over the past 50 years from a small catchment underlain by granite, namely the Jiangzhuang catchment in the Yimeng Mountain region. Three cores were collected from the Jiangzhuang Reservoir in the catchment. The activities of 137Cs and 210Pbex at different depths, clay (grain size < 5 μm) contents, and sedimentary organic carbon (SOC) contents in the cores were analysed with reference to human activity and environmental change in the catchment. The chronologies of the cores were established by 137Cs and 210Pbex dating. The area-specific sediment yield (SSY) for different time periods since dam construction was estimated from each core by referring to the original capacity curve of the reservoir. The results indicate that the depth profiles of 137Cs, 210Pbex, clay, and SOC contents in cores from the Jiangzhuang Reservoir reflect the general history of human disturbances on the catchment over the past 50 years. The estimated SSY value from each core for each period ranged from 7.2 ± 2.7 to 23.7 ± 8.3 t ha- 1 y- 1, with a mean of 12.5 ± 4.6 t ha- 1 y- 1. SSY decreased during 1954-1972, and then showed a general tendency to increase. The temporal pattern of the sediment yield largely reflects the history of environmental change influenced by human activity in the catchment.

  3. Exploring the Recurrence of Contributing Area Dynamics

    NASA Astrophysics Data System (ADS)

    Spence, C.; Mengistu, S. G.

    2015-12-01

    Recent years have witnessed a progression towards using models as a tool for predicting high frequency contributing area dynamics in catchments. High frequency contributing area modeling can become a viable alternative to the current approach for estimating contributing area in Canadian catchments, which assumes a static portion of the catchment's gross drainage area. The current approach does not consider the spatiotemporal variability of contributing area dynamics, and therefore, represents an important challenge for characterizing the recurrence that saturated areas in the catchment can actively connect and contribute to the main channel in response to runoff producing snowmelt or storm events. Such characterizations are useful to assess the relative importance of different areas within a catchment for runoff generation, and nutrient production and transport. In this study, the PDMROF configuration of Environment Canada's MESH model has been applied to simulate areas actively contributing to daily streamflow from four nested catchments of the Qu'Appelle River basin. The return periods of annual maximum contributing areas were computed using Weibull's equation. The research also evaluates if runoff magnitude is always associated with the same extent and recurrence of contributing area and investigates how contributing area and streamflow return periods relate. This work provides the foundation for evaluating the effect of environmental changes (mainly land use and climate associated changes) on contributing area recurrence by conducting similar investigations under various environmental change scenarios.

  4. Outcomes of antiretroviral treatment programmes in rural Lesotho: health centres and hospitals compared

    PubMed Central

    Labhardt, Niklaus Daniel; Keiser, Olivia; Sello, Motlalepula; Lejone, Thabo Ishmael; Pfeiffer, Karolin; Davies, Mary-Ann; Egger, Matthias; Ehmer, Jochen; Wandeler, Gilles

    2013-01-01

    Introduction Lesotho was among the first countries to adopt decentralization of care from hospitals to nurse-led health centres (HCs) to scale up the provision of antiretroviral therapy (ART). We compared outcomes between patients who started ART at HCs and hospitals in two rural catchment areas in Lesotho. Methods The two catchment areas comprise two hospitals and 12 HCs. Patients ≥16 years starting ART at a hospital or HC between 2008 and 2011 were included. Loss to follow-up (LTFU) was defined as not returning to the facility for ≥180 days after the last visit, no follow-up (no FUP) as not returning after starting ART, and retention in care as alive and on ART at the facility. The data were analysed using logistic regression, competing risk regression and Kaplan-Meier methods. Multivariable analyses were adjusted for sex, age, CD4 cell count, World Health Organization stage, catchment area and type of ART. All analyses were stratified by gender. Results Of 3747 patients, 2042 (54.5%) started ART at HCs. Both women and men at hospitals had more advanced clinical and immunological stages of disease than those at HCs. Over 5445 patient-years, 420 died and 475 were LTFU. Kaplan-Meier estimates for three-year retention were 68.7 and 69.7% at HCs and hospitals, respectively, among women (p=0.81) and 68.8% at HCs versus 54.7% at hospitals among men (p<0.001). These findings persisted in adjusted analyses, with similar retention at HCs and hospitals among women (odds ratio (OR): 0.89, 95% confidence interval (CI): 0.73–1.09) and higher retention at HCs among men (OR: 1.53, 95% CI: 1.20–1.96). The latter result was mainly driven by a lower proportion of patients LTFU at HCs (OR: 0.68, 95% CI: 0.51–0.93). Conclusions In rural Lesotho, overall retention in care did not differ significantly between nurse-led HCs and hospitals. However, men seemed to benefit most from starting ART at HCs, as they were more likely to remain in care in these facilities compared to hospitals. PMID:24267671

  5. Outcomes of antiretroviral treatment programmes in rural Lesotho: health centres and hospitals compared.

    PubMed

    Labhardt, Niklaus Daniel; Keiser, Olivia; Sello, Motlalepula; Lejone, Thabo Ishmael; Pfeiffer, Karolin; Davies, Mary-Ann; Egger, Matthias; Ehmer, Jochen; Wandeler, Gilles

    2013-11-21

    Lesotho was among the first countries to adopt decentralization of care from hospitals to nurse-led health centres (HCs) to scale up the provision of antiretroviral therapy (ART). We compared outcomes between patients who started ART at HCs and hospitals in two rural catchment areas in Lesotho. The two catchment areas comprise two hospitals and 12 HCs. Patients ≥16 years starting ART at a hospital or HC between 2008 and 2011 were included. Loss to follow-up (LTFU) was defined as not returning to the facility for ≥180 days after the last visit, no follow-up (no FUP) as not returning after starting ART, and retention in care as alive and on ART at the facility. The data were analysed using logistic regression, competing risk regression and Kaplan-Meier methods. Multivariable analyses were adjusted for sex, age, CD4 cell count, World Health Organization stage, catchment area and type of ART. All analyses were stratified by gender. Of 3747 patients, 2042 (54.5%) started ART at HCs. Both women and men at hospitals had more advanced clinical and immunological stages of disease than those at HCs. Over 5445 patient-years, 420 died and 475 were LTFU. Kaplan-Meier estimates for three-year retention were 68.7 and 69.7% at HCs and hospitals, respectively, among women (p=0.81) and 68.8% at HCs versus 54.7% at hospitals among men (p<0.001). These findings persisted in adjusted analyses, with similar retention at HCs and hospitals among women (odds ratio (OR): 0.89, 95% confidence interval (CI): 0.73-1.09) and higher retention at HCs among men (OR: 1.53, 95% CI: 1.20-1.96). The latter result was mainly driven by a lower proportion of patients LTFU at HCs (OR: 0.68, 95% CI: 0.51-0.93). In rural Lesotho, overall retention in care did not differ significantly between nurse-led HCs and hospitals. However, men seemed to benefit most from starting ART at HCs, as they were more likely to remain in care in these facilities compared to hospitals.

  6. Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China)

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui

    2016-07-01

    The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.

  7. Area characteristics and admission rates of people with schizophrenia and affective disorders in a German rural catchment area.

    PubMed

    Losert, C; Schmauß, M; Becker, T; Kilian, R

    2012-12-01

    Studies in urban areas identified environmental risk factors for mental illness, but little research on this topic has been performed in rural areas. Hospital admission rates were computed for 174 rural municipalities in the catchment area of the state psychiatric hospital in Günzburg in years 2006 to 2009 and combined with structural and socio-economic data. Relationships of overall and diagnosis-specific admission rates with municipality characteristics were analysed by means of negative binomial regression models. Admission rates of patients with a diagnosis of schizophrenia and affective disorder combined decrease with increasing population growth, population density, average income and green areas, while admission rates are positively correlated with commuter balance, income inequality, unemployment rates and traffic areas. Admission rates for schizophrenia are negatively related to population growth, average income and agricultural areas, but positively related to mobility index, income inequality and unemployment rate. Admission rates for affective disorders are negatively related to population growth, population density, average income and green areas, while higher admission rates are correlated with commuter balance, high income inequality, unemployment rate and traffic-related areas. Effects of wealth, economic inequality, population density and structural area characteristics influence psychiatric admission rates also in rural areas.

  8. Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment

    NASA Astrophysics Data System (ADS)

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2017-04-01

    Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.

  9. Paramedic Physical Demands Analysis

    DTIC Science & Technology

    2014-07-01

    The five national sites included: British Columbia Ambulance Service (Vancouver, British Columbia - Metro catchment area ), Superior North Emergency...routinely drove within their assigned catchment area between calls, in addition to their driving duties on route to and from a call. Figure 10...been spent driving the ambulance roaming through their catchment area , seated in the ambulance or in a satellite station awaiting a call, or

  10. Effects of gully erosion on sediment connectivity in a small agrarian catchment: basis of an experimental proposal

    NASA Astrophysics Data System (ADS)

    Zubieta, Elena; Casalí, Javier; Masselink, Rens J. H.; Giménez, Rafael; Keesstra, Saskia D.

    2017-04-01

    Connectivity aims to explain the transit of substances in a certain (natural) area. Thereby, the connectivity of sediments from soil erosion involves complex factors determining the subsequent movement of detached matter across the land (for instance, a hydrographic catchment). Agricultural soil erosion in Navarre has been studied mainly by recording sediments at the outlets of experimental catchments. These studies have revealed a complex dynamics in the sediments. For example, a clear seasonality was noticed, with the highest records in winter and the beginning of spring, coinciding, however, with rainfall events of a relatively low erosion capacity. In fact, this dynamics was not only conditioned by the intensity and duration of precipitations, but also, for instance, by the soil's previous humidity, use and management, and by plant cover. Further, it was suspected that a key factor in sediment connectivity would be erosion due to concentrated flows (i.e. ephemeral gullies), which would act as a source and transport of sediments. The aim of this research is to monitor, long-term, the movement of sediments generated by erosion from ephemeral gullies within a typical agrarian catchment in Navarra, in order to clarify the role played by those gullies in sediment connectivity. The experiments will be performed in the experimental catchment of "La Tejería" (169 ha) located in the Central Area of Navarre, and which is frequently affected by concentrated flow erosion and with long-term records of sediments at its outlet. The climate is humid submediterranean, with an average annual precipitation of approximately 725 mm. The prevailing soil class is Vertic Haploxerept and cereal crops usually cover over 90% of the total area. Our previous experience in the study area would permit the prediction, with a high degree of certainty, of the appearance of ephemeral gullies at least in 4-5 watercourses selected. A specific tracer (a rare-earth oxide) will be sprinkled over each watercourse following the methodology proposed by Masselink et al.(under review). This will also be done throughout the principal channel of the catchment in an area next to its outlet. These tracers do not affect either the soil properties - or therefore their erodibility - or the natural process of sediment transport by runoff either. With the formation of each gully, after the occurrence of rain events, significant for their intensity or duration, the surface layer of the soil will be sampled. This will be carried out throughout the natural drainage network of the catchment (determined from a high resolution DEM), starting from the gully upper limit to the main channel of the catchment. The soil samples will be analysed in our laboratory. A very much higher rare-earth oxide concentration than those found naturally in the soil would indicate that this element comes from the experimentation and, therefore, from a certain gully. The spatial-temporal monitoring of the sediments from different gullies associated with rainfall records, soil conditions, degree of plant cover, and sediment records at the catchment outlet, would contribute to a better understanding of sediment movement and the factors conditioning its dynamics. References Masselink, R. J.H., A. Temme, R. Giménez, J. Casalí, S. Keesstra. Determining hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests. Cuadernos de Investigación Geográfica. (Under review).

  11. Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment

    NASA Astrophysics Data System (ADS)

    Guida, Domenico; Cuomo, Albina; Palmieri, Vincenzo

    2016-08-01

    The aim of the paper is to apply an object-based geomorphometric procedure to define the runoff contribution areas and support a hydro-geomorphological analysis of a 3 km2 Mediterranean research catchment (southern Italy). Daily and sub-hourly discharge and electrical conductivity data were collected and recorded during a 3-year monitoring activity. Hydro-chemograph analyses carried out on these data revealed a strong seasonal hydrological response in the catchment that differed from the stormflow events that occur in the wet periods and in dry periods. This analysis enabled us to define the hydro-chemograph signatures related to increasing flood magnitude, which progressively involves various runoff components (baseflow, subsurface flow and surficial flow) and an increasing contributing area to discharge. Field surveys and water table/discharge measurements carried out during a selected storm event enabled us to identify and map specific runoff source areas with homogeneous geomorphological units previously defined as hydro-geomorphotypes (spring points, diffuse seepage along the main channel, seepage along the riparian corridors, diffuse outflow from hillslope taluses and concentrate sapping from colluvial hollows). Following the procedures previously proposed and used by authors for object-based geomorphological mapping, a hydro-geomorphologically oriented segmentation and classification was performed with the eCognition (Trimble, Inc.) package. The best agreement with the expert-based geomorphological mapping was obtained with weighted plan curvature at different-sized windows. By combining the hydro-chemical analysis and object-based hydro-geomorphotype map, the variability of the contribution areas was graphically modeled for the selected event, which occurred during the wet season, by using the log values of flow accumulation that better fit the contribution areas. The results allow us to identify the runoff component on hydro-chemographs for each time step and calculate a specific discharge contribution from each hydro-geomorphotype. This kind of approach could be useful when applied to similar, rainfall-dominated, forested and no-karst catchments in the Mediterranean eco-region.

  12. Analysis of land use changes over the last 200 years in the catchment of Lake Czechowskie (Pomerania, northern Poland)

    NASA Astrophysics Data System (ADS)

    Tyszkowski, Sebastian; Kaczmarek, Halina

    2014-05-01

    Changes in land cover in the catchment area are, beside climate change, some of the major factors affecting sedimentation processes in lakes. With increasing human impact, changes in land cover no longer depend primarily on climate. In relation to research on sediments of Lake Czechowskie in Pomeranian Province in North Poland, land use changes over the last 200 years were analysed, with particular reference to deforestation or afforestation. The study area was the lake catchment, which covers nearly 20 km2. The analysis was based on archival and contemporary cartographic and photogrammetric materials, georeferenced and rectified using ArcGIS software. The following materials were used: Schrötter-Engelhart, Karte von Ost-Preussen nebst Preussisch Litthauen und West-Preussen nebst dem Netzdistrict, 1:50 000, section 92, 93, 1796-1802; Map Messtishchblatt, 1:25000, sheet Czarnen, (mapping conducted in 1874), 1932; Map WIG (Military Geographical Institute - Wojskowy Instytut Geograficzny), 1:25000, sheet Osowo, (mapping conducted in 1929-31), 1933; aerial photos 1:13000, 1964, 1969; 1:25000, 1987; 1:26000, 1997; aerial ortophotomap , 1:5000, 2010. Today, over 60% of the catchment of Lake Czechowskie is covered with forests, dominated by planted Scots pine (Pinus sylvestris), while the remaining areas are used for agricultural purposes or are built up. The first cartographic materials indicate that in the late 18th c., forest covered almost 50% of the catchment surface. By the year 1870, there was a significant reduction in the forested area, as its contribution fell to 40%. Deforestation took place mainly between the main villages. In the 1920s the forest cover increased to 44%. Today, almost the entire lake is surrounded by forest and a wetland belt (at least 0.5 km wide). Deforestation in the catchment should not be attributed solely to logging because the area of Tuchola Forests (Bory Tucholskie) was repeatedly affected by natural disasters. In the 19th c. these predominantly included fires, while in the 20th c., mostly pest outbreaks were observed. Human activity in the catchment of Lake Czechowskie, shown in the cartographic materials from the late 18th and early 19th c., is also manifested by the creation of dams on the lake, which might have increased water level in the lake. The early 20th c., imaged on the map from 1933, was a period of intense change, leading to agricultural use of wetlands. They were drained by ditches, also in the Trzechowskie peatland. This study was supported by the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association and the research project no. 2011/01/B/ST10/07367 Polish Ministry of Science and Higher Education

  13. Modelling the effects of land use changes on the streamflow of a peri-urban catchment in central Portugal

    NASA Astrophysics Data System (ADS)

    Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano

    2016-04-01

    Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model was calibrated for the hydrological years 2008 to 2010 and validated for the three following years using streamflow data. The impact of future land use changes was analysed by investigating the impact of the size and location of the urban areas within the catchment. Modelling results are expected to support the decision making process in planning and developing new urban areas.

  14. Understanding the mobilisation of metal pollution associated with historical mining in a carboniferous upland catchment.

    PubMed

    Valencia-Avellan, Magaly; Slack, Rebecca; Stockdale, Anthony; Mortimer, Robert John George

    2017-08-16

    Point and diffuse pollution from metal mining has led to severe environmental damage worldwide. Mine drainage is a significant problem for riverine ecosystems, it is commonly acidic (AMD), but neutral mine drainage (NMD) can also occur. A representative environment for studying metal pollution from NMD is provided by carboniferous catchments characterised by a circumneutral pH and high concentrations of carbonates, supporting the formation of secondary metal-minerals as potential sinks of metals. The present study focuses on understanding the mobility of metal pollution associated with historical mining in a carboniferous upland catchment. In the uplands of the UK, river water, sediments and spoil wastes were collected over a period of fourteen months, samples were chemically analysed to identify the main metal sources and their relationships with geological and hydrological factors. Correlation tests and principal component analysis suggest that the underlying limestone bedrock controls pH and weathering reactions. Significant metal concentrations from mining activities were measured for zinc (4.3 mg l -1 ), and lead (0.3 mg l -1 ), attributed to processes such as oxidation of mined ores (e.g. sphalerite, galena) or dissolution of precipitated secondary metal-minerals (e.g. cerussite, smithsonite). Zinc and lead mobility indicated strong dependence on biogeochemistry and hydrological conditions (e.g. pH and flow) at specific locations in the catchment. Annual loads of zinc and lead (2.9 and 0.2 tonnes per year) demonstrate a significant source of both metals to downstream river reaches. Metal pollution results in a large area of catchment having a depleted chemical status with likely effects on the aquatic ecology. This study provides an improved understanding of geological and hydrological processes controlling water chemistry, which is critical to assessing metal sources and mobilization, especially in neutral mine drainage areas.

  15. Uncertainties on the definition of critical rainfall patterns for debris-flows triggering. Results from the Rebaixader monitoring site (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, Jose; Berenguer, Marc

    2015-04-01

    Empirical rainfall thresholds are a widespread technique in debris-flow hazard assessment and can be established by statistical analysis of historic data. Typically, data from one or several rain gauges located nearby the affected catchment is used to define the triggering conditions. However, this procedure has been demonstrated not to be accurate enough due to the spatial variability of convective rainstorms. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, 28 torrential flows (debris flows and debris floods) have occurred and rainfall data of 25 of them are available with a 5-minutes frequency of recording ("event rainfalls"). Other 142 rainfalls that did not trigger events ("no event rainfalls) were also collected and analysed. The goal of this work was threefold: a) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential events and others that did not; b) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment; c) estimate the uncertainty derived from the use of rain gauges located outside the catchment based on the spatial correlation depicted by radar rainfall maps. The results of the statistical analysis showed that the parameters that more distinguish between the two populations of rainfalls are the rainfall intensities, the mean rainfall and the total precipitation. On the other side, the storm duration and the antecedent rainfall are not significantly different between "event rainfalls" and "no event rainfalls". Four different ID rainfall thresholds were derived based on the dataset of the first 5 years and tested using the 2014 dataset. The results of the test indicated that the threshold corresponding to the 90% percentile showed the best performance. Weather radar data was used to analyse the spatial variability of the triggering rainfalls. The analysis indicates that rain gauges outside the catchment may be considered useful or not to describe the rainfall depending on the type of rainfall. For widespread rainfalls, further rain gauges can give a reliable measurement, because the spatial correlation decreases slowly with the distance between the rain gauge and the debris-flow initiation area. Contrarily, local storm cells show higher space-time variability and, therefore, representative rainfall measurements are obtained only by the closest rain gauges. In conclusion, the definition of rainfall thresholds is a delicate task. When the rainfall records are coming from gauges that are outside the catchment under consideration, the data should be carefully analysed and crosschecked with radar data (especially for small convective cells).

  16. Spatio-temporal variability of streamwater chemistry within a Peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2015-04-01

    The complex landscape of peri-urban areas, characterized by a mosaic of land-uses and urban fabric, provides different sources of runoff and pollutants which affect stream ecosystems. This study investigates the impact of land-uses and their location within catchments on streamwater quality in a peri-urban Mediterranean catchment, including temporal variations driven by antecedent weather and rainstorm characteristics. The study is based in Ribeira dos Covões, a small (6 km2) catchment in the city of Coimbra, central Portugal. Land-use is dominated by woodland (56%) and urban cover (40%), with a small agriculture area (4%). Streamwater was monitored at the catchment outlet (ESAC) and three upstream locations: Espírito Santo and Porto Bordalo, with similar urban cover (42% and 49%) but different imperviousness (27% and 15%) and lithologies (sandstone versus limestone), and Quinta with lower urban extent (25%) but including a construction site covering 10% of the area. Samples collected throughout ten rainfall events between October 2011 and March 2013 were analysed for natural water chemistry and major pollutants (notably ammonium, nitrates, total phosphorus, COD and metals). In the paper, temporal variations in water quality are explored via hysteresis loop and correlation analysis. Hydrological regime exerted a major influence on water quality. Major nutrients declined within and after the dry summer than in winter events, because of limited dilution by the low stream baseflow. Through the wet season, increasing baseflow led to increased concentrations of major cations (Na, Mg and Ca) because of reduced dilution by solute-poor stormflow. Espírito Santo, the most urbanized sub-catchment, displayed higher concentrations of COD and NO3 (tended to peak with stormflow), but the latter was thought to result from agricultural fields located adjacent the tributary. At the catchment outlet (ESAC), the high Nk and NH4 concentrations exceeded water quality standards (2 mg/l and 1 mg/l) at summer baseflow and at peak flow during late winter storms. Zn, Cu and Cd also attained pollutant levels in late winter storms. When clear-felled areas were located close to tributary watercourses they supplied high suspended sediment concentrations into streamflow, whereas when they were located upslope the impact was minor, due to enhanced opportunities for overland flow retention and infiltration. Artificial drainage systems, however, increase the connectivity between the sources and the stream channel; this explained the greatest turbidity in the Quinta sub-catchment, where sediment was derived from an upslope construction site. Specific loads of water quality parameters (except for suspended sediment) increased with percentage impervious area, but linear relationships were only significant for NO3 and major cations (Na, Mg, Ca and K), possibly due to cement chemical composition. Sources of contaminants include bare surfaces (turbidity), untreated sewage (COD, TP, NH4, Fe and Zn), manure (NH4), industrial pollution (Fe and Zn) and vehicles (metals). The identification of pollutant sources and knowledge about seasonal and within-storm variations are important to establish spatially- and temporally-explicit water management strategies to improve local water quality. Moreover, a better understanding of the potential sources and sinks of pollutants should guide stakeholders to design more sustainable peri-urban areas.

  17. The AVuPUR project (Assessing the Vulnerability of Peri-Urban Rivers) : experimental and modelling strategy

    NASA Astrophysics Data System (ADS)

    Braud, I.; Chancibault, K.; Debionne, S.; Lieme Kouyi, G.; Sarrazin, B.; Jacqueminet, C.

    2009-04-01

    Due to the development of urbanisation and the associated pollutions, peri-urban rivers face an increasing pressure on the receiving waters and an enhancement of floods. In order to limit the risks and define adapted management scenarios, it is important to identify the key factors over which action is possible. In particular, due to the Water Framework Directive, discharge of polluted water into rivers must be limited and actions must be undertaken in order to restore the ecological quality of water. In this context, integrated modelling tools, taking into account anthropogenic effects on the water cycle are interesting as they provide ways to test and evaluate the efficiency of different management scenarios. However improvements are still required to derive tools allowing a continuous and long term modelling of the hydrological cycle in peri-urban areas. The models must take into account the surface heterogeneity (mixture of rural and urbanised areas), and also the natural and artificial water pathways, which influence the water quality. These questions are the focus of the AVuPUR (Assessing the Vulnerability of Peri-Urban Rivers) project. Its aims are 1) to provide a better description of the heterogeneity of peri-urban catchments and of the associated water pathways using field survey, GIS and remote sensing analysis of high resolution images; 2) to provide long term detailed simulation models of the hydrological cycle in peri-urban catchments to increase our understanding of the processes involved; 3) to improve existing hydrological models with a better handling of the urbanised areas in order to derive tools usable by stakeholders; 4) to run long term simulations of the hydrological cycle using past and future land-use and climate scenarios and quantify the impact on the hydrological regime. The project focuses on two experimental catchments: the Yzeron catchment (147 km2), a peri-urban catchment located in the west of Lyon (south-east of France) and the Chézine catchment (34 km2) located close to the city of Nantes (west of France). Both catchments are part of hydrometeorological observatories which ensures a long-term monitoring of the catchments. Both catchments experience a rapid increase of urbanisation. They are located in two contrasted climates and physiographic contexts: Mediterranean type climate and marked topography for the Yzeron catchment and oceanic climate with rather flat areas for the Chézine catchment. This will allow testing the robustness and transferability of the developed approaches. The presentation will focus on the data which are currently acquired in the framework of the project: rainfall, streamflow, water levels in ephemeral reaches, lidar survey, geophysical surveys, infiltration tests. A diachronic analysis of land use since the 50th is also performed using satellite and aerial photographs. Some work is also planned to determine future land use scenarios of urbanisation and water management. Urban data bank provided by the Grand Lyon and Nantes-Métropole services are also analysed in order to document the change in water pathways due to urbanisation. The paper will present an overview of these data and first results of their analysis in terms of hydrological functioning and water pathways. The modelling strategy, which will rely on these data, will also be presented.

  18. Predicting forested catchment evapotranspiration and streamflow from stand sapwood area and Aridity Index

    NASA Astrophysics Data System (ADS)

    Lane, Patrick

    2016-04-01

    Estimating the water balance of ungauged catchments has been the subject of decades of research. An extension of the fundamental problem of estimating the hydrology is then understanding how do changes in catchment attributes affect the water balance component? This is a particular issue in forest hydrology where vegetation exerts such a strong influence on evapotranspiration (ET), and consequent streamflow (Q). Given the primacy of trees in the water balance, and the potential for change to species and density through logging, fire, pests and diseases and drought, methods that directly relate ET/Q to vegetation structure, species, and stand density are very powerful. Plot studies on tree water use routinely use sapwood area (SA) to calculate transpiration and upscale to the stand/catchment scale. Recent work in south eastern Australian forests have found stand-wide SA to be linearly correlated (R2 = 0.89) with long term mean annual loss (P-Q), and hence, long term mean annual catchment streamflow. Robust relationships can be built between basal area (BA), tree density and stand SA. BA and density are common forest inventory measurements. Until now, no research has related the fundamental stand attribute of SA to streamflow. The data sets include catchments that have been thinned and with varying age classes. Thus far these analyses have been for energy limited systems in wetter forest types. SA has proven to be a more robust biometric than leaf area index which varies seasonally. That long term ET/Q is correlated with vegetation conforms to the Budyko framework. Use of a downscaled (20 m) Aridity Index (AI) has shown distinct correlations with stand SA, and therefore T. Structural patterns at a the hillslope scale not only correlate with SA and T, but also with interception (I) and forest floor evaporation (Es). These correlations between AI and I and Es have given R2 > 0.8. The result of these studies suggest an ability to estimate mean annual ET fluxes at sub hillslope scale using mappable attributes (AI, forest inventory data). Advances in forest inventory techniques, including LiDAR, mean stand attributes can increasingly be mapped over large areas. If combined with process measurements, these mapped attributes provide a powerful platform for simple but robust modelling at the sub-hillslope scale, including exploring hinge points of stand vulnerability to the drier, hotter climate predicted for SE Australia where energy limited systems may face water limitation.

  19. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.

  20. Isotope characterisation of deep aquifers in the Gwda catchment, northern Poland

    NASA Astrophysics Data System (ADS)

    Kotowski, Tomasz; Satora, Stefan

    2016-06-01

    We present the results of isotope measurements (δ18O, δ D, δ13CDIC and 14C) and chemical analyses (TDS, TOC, HCO3-, SO42-, Cl-, NO3-, NH4+, Ca2+, Mg2+ Na+ and K+) conducted on groundwater samples collected from deep Cenozoic aquifers. These aquifers are the basic source of drinking water at numerous localities within the study area in northern Poland. Most of the δ18O determinations are characterised by low variability (i.e., > 70 per cent of δ18O are between -9.5‰ and -9.2‰). In most cases tritium activity was not detected or its content slightly exceeded the uncertainty of measurement (from ±0.3 T.U. to ± 0.5 T.U.). On average, 14C activity is twice higher than that under similar conditions and in hydrogeological systems. The δ13CDIC values fall within the -13.6‰ to -12.8‰ range. A slight variability is observed when considering all isotope and chemical data within the study area and under these hydrogeological conditions. In general, the results of isotope and chemical analyses seem to be homogeneous, indicating the presence of closely similar groundwaters in the system, irrespective of geological formation. It is likely that there is a significant hydraulic connection between shallow and deep aquifers in the Gwda catchment, which indicates the potential for seepage of pollutants from shallow Pleistocene to deep Miocene aquifers. This can endanger the latter by e.g., high concentrations of NO3-, SO42- and Cl- ions from shallow aquifers within the Gwda catchment.

  1. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.

    PubMed

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species richness in temperate lakes. This approach may prove useful and cost-effective for the management and conservation of aquatic ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Jewitt, G. P. W.; Garratt, J. A.; Calder, I. R.; Fuller, L.

    In arid and semi-arid areas, total evaporation is a major component of the hydrological cycle and seasonal water shortages and drought are common. In these areas, the role of land use and land use change is particularly important and it is imperative that land and water resources are well managed. To aid efficient water management, it is useful to demonstrate how changing land use affects water resources. A convenient framework to consider this is through the use of the ‘blue-water’ and ‘green-water’ classification of Falkenmark, where green-water represents water use by land and blue-water represents runoff. In this study the hydrological response of nine land-use scenarios were simulated for the upper reaches of the Mutale River, an important tributary of the Luvuvhu River in S. Africa. The ACRU and HYLUC land use sensitive hydrological models, were used to investigate the change in blue and green water under the various land-use scenarios. The GIS software ArcGIS(8.3) was used to analyse available spatial data to generate inputs required by the hydrological models. The scenarios investigated included the current land use in the catchment, an increase or decrease in forest cover, and an increase or decrease in the area irrigated. Both models predict that increasing either forestry or irrigation significantly reduces the proportion of blue water in the catchment. The predictions from the models were combined with maps of catchment land use, to illustrate the changes in distribution of green and blue water in a user-friendly manner. The use of GIS in this way is designed to enable policy-makers and managers to quickly assimilate the water resource implication of the land use change.

  3. Parameter Set Cloning Based on Catchment Similarity for Large-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Kaheil, Y.; McCollum, J.

    2016-12-01

    Parameter calibration is a crucial step to ensure the accuracy of hydrological models. However, streamflow gauges are not available everywhere for calibrating a large-scale hydrologic model globally. Thus, assigning parameters appropriately for regions where the calibration cannot be performed directly has been a challenge for large-scale hydrologic modeling. Here we propose a method to estimate the model parameters in ungauged regions based on the values obtained through calibration in areas where gauge observations are available. This parameter set cloning is performed according to a catchment similarity index, a weighted sum index based on four catchment characteristic attributes. These attributes are IPCC Climate Zone, Soil Texture, Land Cover, and Topographic Index. The catchments with calibrated parameter values are donors, while the uncalibrated catchments are candidates. Catchment characteristic analyses are first conducted for both donors and candidates. For each attribute, we compute a characteristic distance between donors and candidates. Next, for each candidate, weights are assigned to the four attributes such that higher weights are given to properties that are more directly linked to the hydrologic dominant processes. This will ensure that the parameter set cloning emphasizes the dominant hydrologic process in the region where the candidate is located. The catchment similarity index for each donor - candidate couple is then created as the sum of the weighted distance of the four properties. Finally, parameters are assigned to each candidate from the donor that is "most similar" (i.e. with the shortest weighted distance sum). For validation, we applied the proposed method to catchments where gauge observations are available, and compared simulated streamflows using the parameters cloned by other catchments to the results obtained by calibrating the hydrologic model directly using gauge data. The comparison shows good agreement between the two models for different river basins as we show here. This method has been applied globally to the Hillslope River Routing (HRR) model using gauge observations obtained from the Global Runoff Data Center (GRDC). As next step, more catchment properties can be taken into account to further improve the representation of catchment similarity.

  4. Winter streamflow analysis in frozen, alpine catchments to quantify groundwater contribution and properties

    NASA Astrophysics Data System (ADS)

    Stoelzle, Michael; Weiler, Markus

    2016-04-01

    Alpine catchments are often considered as quickly responding systems where streamflow contributions from subsurface storages (groundwater) are mostly negligible due to the steep topography, low permeable bedrock and the absence of well-developed soils. Many studies in high altitude catchments have hence focused on water stored in snowpack and glaciers or on rainfall-runoff processes as the dominant streamflow contributions. Interestingly less effort has been devoted to winter streamflow analysis when melt- or rainfall-driven contributions are switched off due to the frozen state of the catchment. Considering projected changes in the alpine cryosphere (e.g. snow, glacier, permafrost) quantification of groundwater storage and contribution to streamflow is crucial to assess the social and ecological implications for downstream areas (e.g. water temperature, drought propagation). In this study we hypothesize that groundwater is the main streamflow contribution during winter and thus being responsible for the perennial regime of many alpine catchments. The hypothesis is investigated with well-known methods based on recession and breakpoint analysis of the streamflow regimes and temperature data to determine frozen periods. Analyzing nine catchments in Switzerland with mean elevation between 1000 and 2400 m asl, we found that above a mean elevation of 1800 m asl winter recessions are sufficient long and persistent enough to quantify groundwater contribution to streamflow and to characterize the properties of subsurface storage. The results show that groundwater in alpine catchment is the dominant streamflow contribution for nearly half a year and accountable for several hundred millimeter of annual streamflow. In sub-alpine catchments, driven by a mix of snowmelt and rainfall, a clear quantification of groundwater contributions is rather challenging due to discontinuous frozen periods in winter. We found that the inter-annual variability of different streamflow contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.

  5. Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Mussá, F. E. F.; Zhou, Y.; Maskey, S.; Masih, I.; Uhlenbrook, S.

    2015-02-01

    Global climate change has received much attention worldwide in the scientific as well as in the political community, indicating that changes in precipitation, extreme droughts and floods may increasingly threaten many regions. Drought is a natural phenomenon that causes social, economical and environmental damage to society. In this study, we assess the drought intensity and severity and the groundwater potential to be used as a supplementary source of water to mitigate drought impacts in the Crocodile River catchment, a water-stressed sub-catchment of the Incomati River catchment in South Africa. The research methodology consists of three parts. First, the spatial and temporal variation of the meteorological and hydrological drought severity and intensity over the catchment were evaluated. The Standardized Precipitation Index (SPI) was used to analyse the meteorological drought and the Standardized Runoff Index (SRI) was used for the hydrological drought. Second, the water deficit in the catchment during the drought period was computed using a simple water balance method. Finally, a groundwater model was constructed in order to assess the feasibility of using groundwater as an emergency source for drought impact mitigation. Results show that the low-rainfall areas are more vulnerable to severe meteorological droughts (lower and upper crocodile). Moreover, the most water stressed sub-catchments with high level of water uses but limited storage, such as the Kaap located in the middle catchment and the Lower Crocodile sub-catchments, are more vulnerable to severe hydrological droughts. The analysis of the potential groundwater use during droughts showed that a deficit of 97 Mm3 yr-1 could be supplied from groundwater without considerable adverse impacts on the river base flow and groundwater storage. Abstraction simulations for different scenarios of extremely severe droughts reveal that it is possible to use groundwater to cope with the droughts in the catchment. However, local groundwater exploitation in Nelspruit and White River sub-catchment will cause large drawdowns (> 10 m) and high base flow reduction (> 20%). This case study shows that conjunctive water management of groundwater and surface water resources is necessary to mitigate the impacts of droughts.

  6. Runoff scenarios of the Ötz catchment (Tyrol, Austria) considering climate change driven changes of the cryosphere

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin

    2014-05-01

    The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect of reduced glacier areas can be seen in a reduction of runoff particularly in summer. Maintaining the glacier areas constant, runoff would increase in summer month caused by higher ice melt under climate change conditions. Also runoff increases in spring and fall is expected due to a shift from solid to liquid precipitation in the mountain catchments. The simulation of the combination of glacier change and climate change scenarios results in an increase in runoff in spring due to a shift in the snowline and a decrease in runoff in summer caused by reduced glacier area.

  7. Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: the case of the Tapado glacier, dry Andes of Chile (30°S)

    NASA Astrophysics Data System (ADS)

    Pourrier, J.; Jourde, H.; Kinnard, C.; Gascoin, S.; Monnier, S.

    2013-12-01

    In the Dry Andes, high altitude glacierized catchments are important contributor to streamflow and aquifer recharge. In this study we focused on the Tapado catchment, (30°S, 9 km2, elevation range: 4000m - 5550m) located in the upper Elqui river basin in northern Chile. This catchment encompasses the Tapado glacial complex, composed of an assemblage of the Tapado glacier and the glacial foreland (debris-covered glacier, rock glacier and moraines). Here we present the results of intensive hydrometeorological observations conducted over the 2011 glacier melt season (February to April). Weather, discharge and water electrical conductivity were monitored near the glacier snout and at the outlet of the glacial foreland. GPR observations realized on the glacial foreland are used to verify or complete interpretations of underground transfer modalities. The results show that the water production from the Tapado glacier is highly correlated with weather conditions, in particular incoming shortwave radiation and air temperature. Resulting daily and seasonal streamflow variability is buffered by the glacial foreland, where underground transfers occur through complex flow paths. However, the development of a thermokarst drainage network in a part of the glacial foreland, allows fast and concentrated water transfers, which reduces this buffering effect. The glacial foreland is shown to act as a reservoir, storing water during period of strong ice melt and providing water to downstream areas during periods of low melt. The internal structure of the glacial foreland revealed by GPR observations corroborates these analyses. The south-western part is composed by massive ice, covered by rock debris. The north-eastern part is composed by mixed ice and rock debris, presenting spatially variable ice content. Finally, the computation of the catchment water balance shows that the Tapado catchment presents a particularly high specific discharge in summer under a dry hydro-climatic context. Hence the Tapado catchment provides important water resources to downstream cultivated areas. Our study enables to better anticipate the impacts of the ongoing glacier shrinkage on the variability of streamflow at the outlet of the Tapado catchment.

  8. Use of a forest sapwood area index to explain long-term variability in mean annual evapotranspiration and streamflow in moist eucalypt forests

    NASA Astrophysics Data System (ADS)

    Benyon, Richard G.; Lane, Patrick N. J.; Jaskierniak, Dominik; Kuczera, George; Haydon, Shane R.

    2015-07-01

    Mean sapwood thickness, measured in fifteen 73 year old Eucalyptus regnans and E. delegatensis stands, correlated strongly with forest overstorey stocking density (R2 0.72). This curvilinear relationship was used with routine forest stocking density and basal area measurements to estimate sapwood area of the forest overstorey at various times in 15 research catchments in undisturbed and disturbed forests located in the Great Dividing Range, Victoria, Australia. Up to 45 years of annual precipitation and streamflow data available from the 15 catchments were used to examine relationships between mean annual loss (evapotranspiration estimated as mean annual precipitation minus mean annual streamflow), and sapwood area. Catchment mean sapwood area correlated strongly (R2 0.88) with catchment mean annual loss. Variation in sapwood area accounted for 68% more variation in mean annual streamflow than precipitation alone (R2 0.90 compared with R2 0.22). Changes in sapwood area accounted for 96% of the changes in mean annual loss observed after forest thinning or clear-cutting and regeneration. We conclude that forest inventory data can be used reliably to predict spatial and temporal variation in catchment annual losses and streamflow in response to natural and imposed disturbances in even-aged forests. Consequently, recent advances in mapping of sapwood area using airborne light detection and ranging will enable high resolution spatial and temporal mapping of mean annual loss and mean annual streamflow over large areas of forested catchment. This will be particularly beneficial in management of water resources from forested catchments subject to disturbance but lacking reliable long-term (years to decades) streamflow records.

  9. Influence of hydroclimatic variations on solute concentration dynamics in nested subtropical catchments with heterogeneous landscapes.

    PubMed

    Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander

    2018-04-20

    Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Improving transferability strategies for debris flow susceptibility assessment: Application to the Saponara and Itala catchments (Messina, Italy)

    NASA Astrophysics Data System (ADS)

    Cama, M.; Lombardo, L.; Conoscenti, C.; Rotigliano, E.

    2017-07-01

    Debris flows can be described as rapid gravity-induced mass movements controlled by topography that are usually triggered as a consequence of storm rainfalls. One of the problems when dealing with debris flow recognition is that the eroded surface is usually very shallow and it can be masked by vegetation or fast weathering as early as one-two years after a landslide has occurred. For this reason, even areas that are highly susceptible to debris flow might suffer of a lack of reliable landslide inventories. However, these inventories are necessary for susceptibility assessment. Model transferability, which is based on calibrating a susceptibility model in a training area in order to predict the distribution of debris flows in a target area, might provide an efficient solution to dealing with this limit. However, when applying a transferability procedure, a key point is the optimal selection of the predictors to be included for calibrating the model in the source area. In this paper, the issue of optimal factor selection is analysed by comparing the predictive performances obtained following three different factor selection criteria. The study includes: i) a test of the similarity between the source and the target areas; ii) the calibration of the susceptibility model in the (training) source area, using different criteria for the selection of the predictors; iii) the validation of the models, both at the source (self-validation, through random partition) and at the target (transferring, through spatial partition) areas. The debris flow susceptibility is evaluated here using binary logistic regression through a R-scripted based procedure. Two separate study areas were selected in the Messina province (southern Italy) in its Ionian (Itala catchment) and Tyrrhenian sides (Saponara catchment), each hit by a severe debris flow event (in 2009 and 2011, respectively). The investigation attested that the best fitting model in the calibration areas resulted poorly performing in predicting the landslides of the test target area. At the same time, the susceptibility models calibrated with an optimal set of covariates in the source area allowed us to produce a robust and accurate prediction image for the debris flows activated in the Saponara catchment in 2011, exploiting only the data known after the Itala-2009 event.

  11. Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach

    NASA Astrophysics Data System (ADS)

    Babaei, Sahar; Ghazavi, Reza; Erfanian, Mahdi

    2018-06-01

    Urban runoff increased due to augment of impervious surfaces. In order to flood mitigation during rainy season, determination of critical urban sub-catchments is very important for urban planners. Due to lack of information, adopting a simulation approach is one of the practical ways to identify the surcharged junctions and critical sub-catchments. Occurrence of destructive floods in the rainy seasons indicates the inappropriateness of the urban drainage system in Urmia. The main aims of this study were to estimate the surface runoff of urban sub-catchments using SWMM, to evaluate the accuracy of the drainage system of the study urban area and to prioritize sub-catchments using PROMETHEE II approach and SWMM. In the present study, the occurrence of rainfall event of the Urmia city (West Azerbaijan province, Iran) used for estimation of runoff depth. The study area was divided into 22 sub-catchments. For calibration and validation of model parameters, 3 rainfall events and their related runoff were measured. According to sensitivity analysis CN was the most sensitive parameter for model calibration. Amount of surcharged conduits and junctions indicates that the drainage system of the study area has not enough capacity for converting of the runoff and. For 10 year return period, depth of channels should increase by 20% for prevention of flooding in these sub-catchments. Sub-catchments were prioritized using PROMETHEE II approach and its results were compared with SWMM simulation outcomes. Based on SWMM simulation, S11, S7, S18, S16 and S1 sub-catchments are more critical sub-catchments respectively, while according to PROMETHEE method, S1, S11, S16, S14 and S18 are determined as the critical areas.

  12. The Population Burden of Cancer: Research Driven by the Catchment Area of a Cancer Center.

    PubMed

    Tai, Caroline G; Hiatt, Robert A

    2017-01-01

    Cancer centers, particularly those supported by the National Cancer Institute, are charged with reducing the cancer burden in their catchment area. However, methods to define both the catchment area and the cancer burden are diverse and range in complexity often based on data availability, staff resources, or confusion about what is required. This article presents a review of the current literature identifying 4 studies that have defined various aspects of the cancer burden in a defined geographical area and highlights examples of how some cancer centers and other health institutions have defined their catchment area and characterized the cancer burden within it. We then present a detailed case study of an approach applied by the University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center to define its catchment area and its population cancer burden. We cite examples of how the Cancer Center research portfolio addresses the defined cancer burden. Our case study outlines a systematic approach to using publicly available data, such as cancer registry data, that are accessible by all cancer centers. By identifying gaps and formulating future research directions based on the needs of the population within the catchment area, epidemiologic studies and other types of cancer research can be directed to the population served. This review can help guide cancer centers in developing an approach to defining their own catchment area as mandated and applying research findings to this defined population. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A needs index for mental health care.

    PubMed

    Glover, G R; Robin, E; Emami, J; Arabscheibani, G R

    1998-02-01

    The study aimed to develop a mental illness needs index to help local managers, district purchasers and national policy makers in allocating resources. Formulae were developed by regression analysis using 1991 census data to predict the period prevalence of acute psychiatric admission from electoral wards. Census variables used were chosen on the basis of an established association with mental illness rates. Data from one English Health Service region were analysed for patterns common to wards at hospital catchment area level and patterns common to district health authorities at regional level. The North East Thames region was chosen as the setting for the study, with 7096 patients being admitted during 1991. In most, but not all, catchment areas reasonable prediction of the pattern of admission prevalence was possible using the variables chosen. However, different population characteristics predicted admission prevalence in rural and urban areas. Prediction methods based on one or two variables are thus unlikely to work in both settings. A Mental Illness Needs Index (MINI) based on social isolation, poverty, unemployment, permanent sickness and temporary and insecure housing predicted differences in admission prevalence between wards at catchment area level better than Jarman's Underprivileged Area (UPA) score [1] and between districts at regional level better than the UPA score and comparably to the York Psychiatric Index [2] (adjusted r2 at regional level (MINI 0.82, UPA 0.53, York index 0.70). District admission prevalence rates vary by a factor of three between rural and inner city areas; this difference may not fully reflect the variation in the cost of providing care. It did not prove possible to incorporate factors related to bed availability in the models used; reasons for this are discussed. Data covering other aspects of mental health care in addition to hospital admission are needed for more satisfactory modelling.

  14. Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Ferreira, António

    2017-04-01

    Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas, but was 21-fold higher in winter than in summer in the least urbanized sub-catchment, indicating greater flow connectivity in winter, enhanced by increased soil moisture. Lithology also played an important role on hydrology, with sandstone sub-catchments exhibiting greater annual baseflow index values (23-46%) than found in limestone ones (<5%). For sub-catchments underlain by both lithologies, linear relationships were found between storm runoff coefficients and percentage urban and percentage impervious area, but with greater runoff responses in the sandstone ones. Nevertheless, linear regression lines for both lithologies get close to each other when the extent of urban areas reached about 50%. The proximity of urban areas to the stream network and whether urban storm runoff is directly piped to the stream network were important parameters influencing peak flows and response time. Landscape mosaics that include land-use patches of high soil permeability tend to provide locations of surface water retention and enhanced infiltration, thereby breaking flow connectivity between hillslope urban surfaces and the stream network. This kind of spatial pattern should be considered for urban planning, in order to minimize flood hazards.

  15. Use of modeling to protect, plan, and manage water resources in catchment areas.

    PubMed

    Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves

    2016-08-01

    The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another model, developed from Epiclès© software, permits the calculation of the under-root nitrate concentrations for each field based on soil type, climate, and farming practices. When the Watermodel and Epiclès© are coupled, nitrate transfers from the soil to the catchment and the river can be modeled. In this study, the initial pollution due to the actual farming practices was simulated and we were also able to estimate the efficiency of the agronomic action plan by testing several scenarios and calculating the time needed to reach the target nitrate concentration in the well.

  16. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    PubMed Central

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  17. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China.

    PubMed

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-02-28

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  18. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  19. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  20. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010-can the efficiency of undertaken water protection measures seen?

    PubMed

    Tattari, Sirkka; Koskiaho, Jari; Kosunen, Maiju; Lepistö, Ahti; Linjama, Jarmo; Puustinen, Markku

    2017-03-01

    Long-term data from a network of intensively monitored research catchments in Finland was analysed. We studied temporal (1981-2010) and spatial variability in nitrogen (N) and phosphorus (P), from 1987 losses, both from agricultural and forestry land. Based on trend analysis, total nitrogen (TN) concentrations increased in two of the four agricultural sites and in most of the forested sites. In agricultural catchments, the total phosphorus (TP) trends were decreasing in two of the four catchments studied. Dissolved P (DRP) concentrations increased in two catchments and decreased in one. The increase in DRP concentration can be a result of reducing erosion by increased non-plough cultivation and direct sowing. In forested catchments, the TP trends in 1987-2011 were significantly decreasing in three of the six catchments, while DRP concentrations decreased significantly in all sites. At the same time, P fertilisation in Finnish forests has decreased significantly, thus contributing to these changes. The mean annual specific loss for agricultural land was on average 15.5 kg ha -1  year -1 for N and 1.1 kg ha -1  year -1 for P. In the national scale, total TN loading from agriculture varied between 34,000-37,000 t year -1 and total P loading 2400-2700 t year -1 . These new load estimates are of the same order than those reported earlier, emphasising the need for more efforts with wide-ranging and carefully targeted implementation of water protection measures.

  1. Environmental effects of hydrothermal alteration and historical mining on water and sediment quality in Central Colorado

    USGS Publications Warehouse

    Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.

    2009-01-01

    The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining, whereas a larger part of the study area is underlain by hydrothermally altered rock that has weathered to produce water and sediment with naturally elevated geochemical baselines. 

  2. Controls on Water Storage, Mixing and Release in a Nested Catchment Set-up with Clean and Mixed Physiographic Characteristics

    NASA Astrophysics Data System (ADS)

    Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.

    2015-12-01

    With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.

  3. Stream water quality in the context of payments for environmental services in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Piccolo, M. C.; Reis, L. D. C.; Figueiredo, R. D. O.; Camargo, P. B. D.; Costa, C. F. G. D.; Zuccari, M. L.; Green, T. R.

    2015-12-01

    Public policy of payment for environmental services (PES) was established in 2007 to face the challenge of recuperatingwater resources at one of the headwater areas of the Jaguari River Basin, which supplies an important reservoir for the metropolitan region of São Paulo, Brazil. Such effort consists of reforestation of riparian zones and spring lands at the hills of selected catchments, including the Ribeirão das Posses (RP) catchment. Since 2012 the University of São Paulo has developed research at RP to monitor the benefits of these practices on stream water quality, and identified a few parameters as good indicators to follow up the results of this PES program. The present study has the objective to show results of the monthly monitoring in2015,including 13 sampling stations at RP catchment distributed as follows: one in a spring forested area, three in spring areas of different ages of reforestation (3, 5 and 8 years), and nine at reaches of RP streamlocated in a way to contemplate the effects of the first order streams that comes from the studied spring areas entering RP. We established two additional stations at the Jaguari River, upstream and downstream of RP outlet. In situ measurements include temperature, pH, electric conductivity (EC) and dissolved oxygen (DO), and collect water samples to bring to the laboratory for analyses of dissolved organic and inorganic carbon (DOC and DIC), total nitrogen (TN) and alkalinity. Also, sediments (fine fraction: >0.45 μm; and coarse fraction: >63 μm) are collected for isotopic carbon analyses. Preliminary results show pH values ranging from 5.5 to 7.8, while DO ranges from 5.8 to 8.9 mg L-1. As for EC, the mean at the spring forested station was 34.6 μS cm-1, while at spring areas of 3, 6 and 8 years of reforestation they were 53.3, 73.8 and 34.8 μS cm-1, respectively. We expected that by the end of this annual monitoring the benefits of reforestation will be affirmed.

  4. RNICO: a new simple geometric index for assessing the impact of urban development pattern on peak flows in urban catchments

    NASA Astrophysics Data System (ADS)

    Kasaee Roodsari, B.; Chandler, D. G.

    2016-12-01

    Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.

  5. Identifying the impacts of land use on water and nutrient cycling in the South-West Mau, Kenya

    NASA Astrophysics Data System (ADS)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana

    2016-04-01

    The Mau Forest is the largest closed canopy forest system and indigenous montane forest in Kenya, covering approximately 400,000 ha. It is the source of twelve major rivers in the Rift Valley and Western Kenya and one of Kenya's five 'water towers' that provide around 10 million people with fresh water. Significant areas have been affected by deforestation and land use changes in the past decades, resulting in a loss of approx. 25% of the forest area. Recent changes in downstream water supply are discussed to be attributed to land use change, though compelling scientific evidence is still lacking. The study area is located in the South-West Mau as a part of the Sondu River basin that drains into Lake Victoria. This area has suffered a forest loss of 25% through conversion of natural forest to smallholder agriculture and tea/tree plantations. A nested catchment approach has been applied, whereby automatic measurement equipment for monitoring discharge, turbidity, nitrate, total and dissolved organic carbon, electrical conductivity and water temperature at a 10 minute interval has been set up at the outlets of three sub-catchments of 27 - 36 km² and the outlet of the 1023 km² major catchment. The dominant land use in the sub-catchments is either natural forest, tea/tree plantation or smallholder agriculture. The river data is complemented by six precipitation gauging stations and three climate stations, that all measure at the same interval. Installed during October 2014, the systems have collected high resolution data for one and a half year now. The high resolution dataset is being analysed for patterns in stream flow and water quality during dry and wet seasons as well as diurnal cycling of nitrate. The results of the different sub-catchments are compared to identify the role of land use in water and nutrient cycling. First results of the high temporal resolution data already indicate that the different types of land use affect the stream nitrate concentration. In addition to that the high resolution allows to investigate diurnal patterns, showing a shift in nitrate concentrations between wet and dry seasons. Additional spatial stream water snapshot sampling campaigns within the major catchment, as well as sampling for End Member Mixing Analysis (EMMA) and analysis of stable isotopes of precipitation, throughfall, stream water and soil and ground water is ongoing and will provide further information to increase our understanding of hydrological and biogeochemical processes and how these are affected by land use in the Mau Forest. We will report results from six snapshot sampling campaigns that depict the impact of tea/tree plantations on nitrate concentrations and an influence of land use on catchment specific discharge.

  6. Long-term changes in flood event patterns due to changes in hydrological distribution parameters in a rural-urban catchment, Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Kanae, Shinjiro; Oki, Taikan

    2011-07-01

    This article describes the principal control parameters of flood events and precipitation and the relationships between corresponding hydrologic and climatologic parameters. The long-term generation of runoff and associated processes is important in understanding floods and droughts under changes in climate and land use. This study presents detailed analyses of flood events in a coastal amphitheatre catchment with a total area of 445 km 2 in western Japan, followed by analyses of flood events in both urban and forest areas. Using long-term (1962 to 2002) hydrological and climatological data from the Ministry of Land, Infrastructure and Transport, Japan, the contributions of precipitation, river discharge, temperature, and relative humidity to flood events were analysed. Flood events could be divided into three types with respect to hydrologic and climatologic principal control parameters: the long-term tendency; medium-term changes as revealed by hydrographs and hyetographs of high-intensity events such as the relative precipitation, river discharge, and temperature; and large events, as shown by the flow-duration curve, with each cluster having particular characteristics. River discharge showed a decreasing tendency of flow quantity during small rainfall events of less than 100 mm/event from the 1980s to the present. An approximately 7% decrease from 44.8 to 37.3% occurred in the percentage of river water supplied by precipitation in the years after the 1980s. For the medium-term changes, no marked change occurred in the flow quantity of the peak point over time in event hydrographs. However, flow quantities before and after the peak tended to decrease by 1 to 2 m 3/s after the 1980s. Theoretical considerations with regard to the influence of hydrologic and climatologic parameters on flood discharge are discussed and examined in terms of observational data. These findings provide a sound foundation for use in hydrological catchment modelling.

  7. From hydro-geomorphological mapping to sediment transfer evaluation in the Upper Guil Catchment (Queyras, French Alps)

    NASA Astrophysics Data System (ADS)

    Lissak, Candide; Fort, Monique; Arnaud-Fassetta, Gilles; Mathieu, Alexandre; Malet, Jean-Philippe; Carlier, Benoit; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charney, Bérengère; Bletterie, Xavier

    2014-05-01

    The Guil River catchment (Queyras, Southern French Alps) is prone to hydro-geomorphic hazards related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity such as in 1957 (> R.I. 100 yr), and more recently in 2000 (R.I. 30 yr). In both cases, the rainfall intensity, aggravated by pre-existing saturated soils, explained the immediate response of the fluvial system and the subsequent destabilisation of slopes. This resulted in serious damages to infrastructure and buildings in the valley bottom, mostly along some specific reaches and confluences with debris flow prone tributaries. After each event, new protective structures are built. One of the purposes of this study, undertaken in the frame of the SAMCO (ANR) project, was to understand the hydro-geomorphological functioning of this upper Alpine catchment in a context of hazards mitigation and sustainable management of sediment yield, transfer and deposition. To determine the main sediment storages that could be mobilised during the next major hydro-meteorological events, the first step of our study consists in the identification and characterisation of areas that play a role into the sediment transfer processing. From environmental characteristics (channel geometric, vegetation cover…) and anthropogenic factors (hydraulic infrastructures, urban development…), a semi-automatic method provides a typology of contribution areas with sediment storages sensitive to erosion, or areas that will be prone to deposition of sediments during the next flooding event. The second step of the study is focused on the sediment storages with their characterisation and connectivity to the trunk channel. Taking into account the entire catchment and including the torrential system, this phase analyses the sedimentary transfers from the identification and classification of sediment storages to the evaluation of the degree of connectivity with the main or secondary channels. The proposed methodology is based on data directly derived from GIS analysis using interpretation of aerial photographs, regional scale Digital Elevation Model (DEM), high-resolution DEM derived from airborne-based LiDAR, and field survey. The data thus obtained can be used in the final geomorphological map. Future investigations will quantify the contribution of each sub-catchment in the global sediment budget of the Guil catchment. For a better assessment of sediment fluxes and sediment delivery into the main channel network, tracers (pit-tags) and diachronic Terrestrial Laser Scanning will be performed in selected sub-catchments in order to measure erosion rates and contribution to the sediment yield in the valley bottoms during the floods, avalanches and rainfall seasonal events.

  8. Determination of The Water Catchment Area in Semarang City Using a Combination of Object Based Image Analysis (OBIA) Classification, InSAR and Geographic Information System (GIS) Methods Based On a High-Resolution SPOT 6 Image and Radar Imagery

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Ardi Gunawan, Setyo; Maksum, Zia Ul

    2016-11-01

    Semarang is the biggest city in central Java-Indonesia which has a rapid and massive infrastructure development nowadays. In order to control water resources and flood, the local goverment has been built east and west flood canal in Kaligarang and West Semarang River. One of main problem in Semarang city is the lack of fresh water in dry season because ground water is not rechargeable well. Rechargeable groundwater ability depends on underground water recharge rate and catchment area condition. The objective of the study is to determine condition and classification of water catchment area in Semarang city. The catchment area conditions will be determine by five parameters as follows soil type, land use, slope, ground water potential and rainfall intensity. In this study, we use three methods approach to solve the problem which is segmentation classification to acquire land use classification from high resolution imagery using nearest neighborhood algorithm, Interferometric Synthetic Aperture Radar (SAR) to derive DTM from SAR Imagery and multi criteria weighting and spatial analysis using GIS method. There are three types optical image (ALOS PRISM, SPOT-6 and ALOS PALSAR) to calculate water catchment area condition in Semarang city. For final result, this research will divide the water catchment into six criteria as follows good, naturally normal, early critical, a little bit critical, critical and very critical condition. The result shows that water catchment area condition is in an early critical condition around 2607,523 Ha (33,17 %), naturally normal condition around 1507,674 Ha (19,18 %), a little bit critical condition around 1452,931 Ha (18,48 %), good with 1157,04 Ha (14,72 %), critical with 1058,639 Ha (13,47 %) and very critical with 75,0387 Ha (0,95 %). The distribution of water catchment area conditions in West and East Flood Canal have an irreguler pattern. In northern area of watershed consists of begin to critical, naturally normal and good condition. Meanwhile in southern area of watershed consists of a little bit critical, critical and very critical condition.

  9. Water Discolouration Risk Mapping: a Regionally Mapped Model

    NASA Astrophysics Data System (ADS)

    Kirkby, M.; Arrell, K.; McDonald, A.; Tillotson, M.; Foulger, M.; Walker, A.

    2006-12-01

    Discolouration in catchment waters is caused by the release through oxidation, warming and biological decomposition of the soil. Catchments that yield highly discoloured waters not only increase treatment and sludge disposal costs but also risk compliance failures and increase the potential for Trihalomethane (THM) production; an unwanted byproduct of water chlorination. Therefore it is important for water companies to quantify and map water discolouration risk within their catchments to guide surveillance and intervention strategies. Yorkshire Water Services derives significant water resources from upland catchments. These catchments continue to produce increasing quantities of discolouration which are problematic and costly to treat. The company is taking several initiatives to manage colour. Traditional water colour studies tend to be restricted in scale and are unable to make conclusions about water colour production within a region. Sensitivities of water colour production to feedbacks and interactions between multiple factors also remains largely unquantified. This research addressed these limitations and mapped water discolouration risk for the Yorkshire Water area. Many factors are believed to influence colour production within a catchment. These are divided into two groups: dynamic factors for example, drought frequency, duration and severity or changes in the levels of acid precipitation; and static factors that are catchment specific, such as land management techniques, slope, soil type and erosion. A map of discolouration risk was created by sourcing and combining data for each of these variables. Data were categorised as either factors or constraints on water colour production and combined in a series of weighted overlays within a GIS, reflecting recent research on the processes leading to water colour production. Resulting risk maps identified a large variability in risk throughout study catchments. Analyses were also undertaken to examine the sensitivities of these distributions to changing land management techniques which will in turn inform Yorkshire Water of potential strategies towards the reduction of water discolouration.

  10. Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management.

    PubMed

    Rusiñol, Marta; Fernandez-Cassi, Xavier; Timoneda, Natàlia; Carratalà, Anna; Abril, Josep Francesc; Silvera, Carolina; Figueras, Maria José; Gelati, Emiliano; Rodó, Xavier; Kay, David; Wyn-Jones, Peter; Bofill-Mas, Sílvia; Girones, Rosina

    2015-08-15

    Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution. Persistent decreases in precipitation during summer can lead to a higher presence of human viruses because river and sea water present the highest viral concentrations during warmer months. In a global context, wastewater management will be the key to preventing environmental dispersion of human faecal pathogens in future climate change scenarios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Phytotoxic substances in runoff from forested catchment areas

    NASA Astrophysics Data System (ADS)

    Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan

    Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.

  12. Microbial source tracking: a forensic technique for microbial source identification?

    PubMed

    Stapleton, Carl M; Wyer, Mark D; Kay, David; Crowther, John; McDonald, Adrian T; Walters, Martin; Gawler, Andrew; Hindle, Terry

    2007-05-01

    As the requirements of the Water Framework Directive (WFD) and the US Clean Water Act (USCWA) for the maintenance of microbiological water quality in 'protected areas' highlight, there is a growing recognition that integrated management of point and diffuse sources of microbial pollution is essential. New information on catchment microbial dynamics and, in particular, the sources of faecal indicator bacteria found in bathing and shellfish harvesting waters is a pre-requisite for the design of any 'programme of measures' at the drainage basin scale to secure and maintain compliance with existing and new health-based microbiological standards. This paper reports on a catchment-scale microbial source tracking (MST) study in the Leven Estuary drainage basin, northwest England, an area for which quantitative faecal indicator source apportionment empirical data and land use information were also collected. Since previous MST studies have been based on laboratory trials using 'manufactured' samples or analyses of spot environmental samples without the contextual microbial flux data (under high and low flow conditions) and source information, such background data are needed to evaluate the utility of MST in USCWA total maximum daily load (TMDL) assessments or WFD 'Programmes of Measures'. Thus, the operational utility of MST remains in some doubt. The results of this investigation, using genotyping of Bacteroidetes using polymerase chain reaction (PCR) and male-specific ribonucleic acid coliphage (F + RNA coliphage) using hybridisation, suggest some discrimination is possible between livestock- and human-derived faecal indicator concentrations but, in inter-grade areas, the degree to which the tracer picture reflected the land use pattern and probable faecal indicator loading were less distinct. Interestingly, the MST data was more reliable on high flow samples when much of the faecal indicator flux from catchment systems occurs. Whilst a useful supplementary tool, the MST information did not provide quantitative source apportionment for the study catchment. Thus, it could not replace detailed empirical measurement of microbial flux at key catchment outlets to underpin faecal indicator source apportionment. Therefore, the MST techniques reported herein currently may not meet the standards required to be a useful forensic tool, although continued development of the methods and further catchment scale studies could increase confidence in such methods for future application.

  13. Community Perception of Water Quality in a Mining-Affected Area: A Case Study for the Certej Catchment in the Apuseni Mountains in Romania

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities’ perceptions on the quality of water in their living area. Logistic regression was used to examine peoples’ perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  14. Community perception of water quality in a mining-affected area: a case study for the Certej catchment in the Apuseni Mountains in Romania.

    PubMed

    Dogaru, Diana; Zobrist, Jürg; Balteanu, Dan; Popescu, Claudia; Sima, Mihaela; Amini, Manouchehr; Yang, Hong

    2009-06-01

    Mining-contaminated sites and the affected communities at risk are important issues on the agenda of both researchers and policy makers, particularly in the former communist block countries in Eastern Europe. Integrated analyses and expert based assessments concerning mining affected areas are important in providing solid policy guidelines for environmental and social risk management and mitigation. Based on a survey for 103 households conducted in a former mining site in the Certej Catchment of the Apuseni Mountains, western Romania, this study assesses local communities' perceptions on the quality of water in their living area. Logistic regression was used to examine peoples' perception on the quality of the main river water and of the drinking water based on several predictors relating to social and economic conditions. The results from the perception analysis were then compared with the measurements of heavy metal contamination of the main river and drinking water undertaken in the same study area. The findings indicate that perception and measurement results for the water quality in the Certej Catchment are convergent, suggesting an obvious risk that mining activities pose on the surface water. However, the perception on drinking water quality was little predicted by the regression model and does not seem to be so much related to mining as to other explanatory factors, such as special mineralogy of rock and soils or improper water treatment infrastructure, facts suggested by the measurements of the contaminants. Discussion about the implications of these joint findings for risk mitigation policies completes this article.

  15. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    NASA Astrophysics Data System (ADS)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom did not change significantly. This is due primarily to the stable vegetation cover conditions between the mid of 1980s and 2000 (average NDVI of 0.34 with std. deviation of 0.07). Vegetation cover and area of upper catchments are important controlling factors of the morphologic characteristics of braided rivers in drylands. Thus, measures geared towards reducing the impacts of braided rivers on agricultural systems and there by the livelihood of the society in plains need to focus on rehabilitation activities (soil and water conservation) in upper catchments.

  16. Thermotolerant coliform loadings to coastal areas of Santa Catarina (Brazil) evidence the effect of growing urbanisation and insufficient provision of sewerage infrastructure.

    PubMed

    Garbossa, Luis H P; Souza, Robson V; Campos, Carlos J A; Vanz, Argeu; Vianna, Luiz F N; Rupp, Guilherme S

    2017-01-01

    Thermotolerant coliform (TC) loadings were quantified for 49 catchments draining into the North and South Bays of Santa Catarina (SC, southeastern Brazil), an area known for its tourism and aquaculture. TC loadings were calculated based on flow measurements taken in 26 rivers. TC concentrations ere quantified based on surface water samples collected at 49 catchment outlets in 2012 and 2013. Median TC loads ranged from 3.7 × 10 3 to 6.8 × 10 8 MPN s -1 . TC loadings in the catchments increased in proportion to increases in resident human population, population density and percentage of urbanised area. Catchments with more than 60% of area covered by wastewater collection and treatment systems had higher TC loads per person than catchments with less than 25%. Based on the study catchments, these results indicate that current sewerage infrastructure is ineffective in reducing contamination of faecal origin to surface waters. These findings have important implications for the management of microbiological health hazards in bathing, recreational and shellfish aquaculture waters in the North and South Bays of Santa Catarina Island.

  17. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands. Runoff data from our three catchments reflect the interaction between ecosystems and elevation. The less-forested catchment at lower elevations has a more seasonally variable runoff and present the lowest base flows during the dry season. In this season, soil water storage and the wetter conditions at higher elevations are crucial to sustain their base flow. The hydro-meteorological patterns of our study area are similar to those at the eastern Andean TMCF sites, but differences in the elevation of fog and rainfall persistence suggest that specific upwind ecosystem conditions and distance to the coast are important to explain and understand regional seasonal differences.

  18. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method.

    PubMed

    Kattaa, Bassam; Al-Fares, Walid; Al Charideh, Abdul Rahman

    2010-05-01

    Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Using streamflow and hydrochemical tracers to conceptualise hydrological function of underground channel system in a karst catchment of southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicai; Chen, Xi; Wang, Jinli

    2016-04-01

    Karst hydrodynamic behaviour is complex because of special karst geology and geomorphology. The permeable multi-media consisting of soil, epikarst fractures and conduits has a key influence on karst hydrological processes. Spatial heterogeneity is high due to special landforms of vertical shafts, caves and sinkholes, which leads to a high dynamic variability of hydrological processes in space and time, and frequent exchange of surface water and groundwater. Underground water in different reach were sampled over the 1996-2001 in a karst catchment of Houzhai, with 81km2, located in Guizhou province of southwest China. Samples were analysed for water temperature, pH, conductivity and four solute concentrations. The monitoring sought to assess the combined utility of flow discharge and natural geochemical tracers in upscaling flow structure understanding in karst area. Based on previous researches and field investigation, the catchment characteristics were explored with the use of a GIS. Both flow discharge and solute concentrations exhibited clear seasonal patterns at every groundwater sampling sites. The variations of flow and chemistry are more dramatic in upstream site with less soil cover and more sinkholes development, which affect the hydrological pathways significantly. There was clear evidence that the differences in geology and soil were the main controls on hydrology and flow chemistry, which was spatially variable in different sites of underground channel. Conceptual flow structures in main hydrological response units for different area in the catchment were developed according to the variation of discharge and flow chemistry.

  20. Threshold responses in runoff from sub-humid heterogeneous low relief regions

    NASA Astrophysics Data System (ADS)

    Devito, K.; Hokanson, K. J.; Chasmer, L.; Kettridge, N.; Lukenbach, M.; Mendoza, C. A.; Moore, P.; Peters, D.; Silins, U.

    2017-12-01

    We examined runoff in 20 catchments (50 to 50000 km2) over a 25 year wet and dry climate cycle to understand temporal and spatial thresholds in runoff generation responses in the water limited, glaciated continental Boreal Plains (BP) eco-region of Western Canada. Annual runoff ranged over 3 orders of magnitude (<3 mm to >300 mm/year) but was poorly correlated with annual precipitation. A threshold relationship was observed with multi-year cumulative moisture deficit (CMD) that reflected temporal and spatial differences in effective storage, antecedent moisture state and hydrologic connectivity among catchments with differing portions of land-cover (e.g. wetland vs. forestland) and glacial-deposit types. During dry states (CMD< -200 mm), catchment annual low flow ranged by over one order of magnitude (2 to 80 mm/yr), and increased with percent area of coarse textured deposits. In fine textured catchments, runoff was only observed in catchments with >30% wetland area. During mesic conditions (CMD 0 mm), runoff remained very low in catchments with large proportions of forests and poorly connected open water depressions associated with fine-textured moraines. Runoff was positively correlated with percent peatland area, suggesting that peatland networks were the primary source areas of surface water to regional runoff. During the infrequent wet states (CMD > 200 mm) of the study period, runoff coefficients were similar among all catchments indicating that both forests and peatlands contributed to catchment runoff. . Rather than estimating regional runoff from topographic drainage networks, integrating CMD with the classification of catchments based on land-cover configuration and glacial-deposit type can: 1) better represent water cycling and regional sink-source dynamics controlling regional runoff, and 2) provide an effective management framework for predicting climate and land-use impacts on regional runoff in low relief glacial landscapes such as the Boreal Plain.

  1. The distribution of catchment coverage by stationary rainstorms

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1984-01-01

    The occurrence of wetted rainstorm area within a catchment is modeled as a Poisson arrival process in which each storm is composed of stationary, nonoverlapping, independent random cell clusters whose centers are Poisson-distributed in space and whose areas are fractals. The two Poisson parameters and hence the first two moments of the wetted fraction are derived in terms of catchment average characteristics of the (observable) station precipitation. The model is used to estimate spatial properties of tropical air mass thunderstorms on six tropical catchments in the Sudan.

  2. Mineral deficiency status of ranging zebu (Bos indicus) cattle around the Gilgel Gibe catchment, Ethiopia.

    PubMed

    Dermauw, Veronique; Yisehak, Kechero; Belay, Duguma; Van Hecke, Thomas; Du Laing, Gijs; Duchateau, Luc; Janssens, Geert P J

    2013-06-01

    Mineral deficiencies in cattle, widespread in East Africa, impair optimal health and production and consequently place a great burden on the farmers' income. Therefore, detection of shortages and imbalances of specific minerals is essential. Our objective was to evaluate the mineral status of grazing cattle around the Gilgel Gibe catchment in Ethiopia and associated factors. In study I, individual animal plasma and herd faecal Ca, P, Mg, Na, K, S, Fe, Zn, Mn and Cu concentrations were determined in adult zebu cattle (Bos indicus; n=90) grazing at three altitudes around the catchment, whilst recording body condition score and sex. In study II, liver samples of adult male zebu cattle (n=53) were analysed for Cu, Zn, Fe, Se and Mo concentrations and inspected for parasitic infections. Plasma and liver analyses revealed a Cu deficiency problem in the area, since 68 and 47 % of cattle, respectively, were Cu deprived according to diagnostic criteria for Bos taurus cattle. High hepatic Mo concentrations in 17 % of cases might reflect excessive dietary Mo intake. Liver Se and plasma Na concentrations were too low in 92 and 80 % of cattle. Plasma Mn concentrations were largely below the detection limit. Plasma Cu as well as Ca concentrations were lower in the lowest altitude compared to the highest altitude group (P<0.05), whereas lean to medium cattle had lower plasma Cu concentrations (P<0.05). No differences in hepatic mineral concentrations were detected between cattle with different types of parasitic infection. In conclusion, bovine mineral deficiencies were present in the Gilgel Gibe area and were associated with grazing altitude and body condition score.

  3. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  4. Estimation of diffuse and point source microbial pollution in the ribble catchment discharging to bathing waters in the north west of England.

    PubMed

    Wither, A; Greaves, J; Dunhill, I; Wyer, M; Stapleton, C; Kay, D; Humphrey, N; Watkins, J; Francis, C; McDonald, A; Crowther, J

    2005-01-01

    Achieving compliance with the mandatory standards of the 1976 Bathing Water Directive (76/160/EEC) is required at all U.K. identified bathing waters. In recent years, the Fylde coast has been an area of significant investments in 'point source' control, which have not proven, in isolation, to satisfactorily achieve compliance with the mandatory, let alone the guide, levels of water quality in the Directive. The potential impact of riverine sources of pollution was first confirmed after a study in 1997. The completion of sewerage system enhancements offered the potential for the study of faecal indicator delivery from upstream sources comprising both point sources and diffuse agricultural sources. A research project to define these elements commenced in 2001. Initially, a desk study reported here, estimated the principal infrastructure contributions within the Ribble catchment. A second phase of this investigation has involved acquisition of empirical water quality and hydrological data from the catchment during the 2002 bathing season. These data have been used further to calibrate the 'budgets' and 'delivery' modelling and these data are still being analysed. This paper reports the initial desk study approach to faecal indicator budget estimation using available data from the sewerage infrastructure and catchment sources of faecal indicators.

  5. A review on the establishment and research in hydrological experimental areas (catchments) in plain areas in China and abroad

    NASA Astrophysics Data System (ADS)

    Yang, Hai; Wang, Chuanhai; Hua, Wenjuan

    2017-04-01

    This paper reviewed some specific conceptions of hydrological experimental areas (catchments) while found that the traditional definition of 'catchment' may be difficult to meet in plain areas. According to the review of development history and current situation of hydrological experimental areas (catchments) in plain areas in China, 4 stages were shown besides the recent 10 years, i.e., 'golden stage(1952-1966)', 'backward stage(1966-1986)', 'short recovery stage(1986-1989)' and 'stagnant stage(1986-2006)'. It gets new impetus since 2006 with some investigation work promoted by the government. Furthermore, some historic problems during establishing experimental areas (catchments) in plain areas were revealed based on the document literature and a few meaningful lessons were drawn from the past. It was also the first time to collect and classify the details of both 11 representative experimental areas in China and abroad, after that a brief comparison about the measurement level and research directions was made between two regions. Additionally, we took the experimental research work in the plain of Taihu Lake Basin as example and introduced the particular research goals and the corresponding establishing process, including how to design the experimental area, eg, size, location, land use type, arranging the measurement instruments et al. We hope such case can provide a reference for newly-building, recovering and extending hydrological experimental areasin plain areas in the future. Finally, this paper prospected the future development in establishment and research in hydrological experimental areas (catchments) in plain areas. It may be more common to see the cooperation between model scientists and field experts. Because of the comprehensive goals in water problems, researchers from various fields would work together in the future experimental research work. Scale study and modelling in plain areas will be a promising branch after some typical experimental areas with different land use types are established. Facing such hopeful opportunities, we also made some suggestions.

  6. Disastrous torrential floods in mountain areas in Serbia

    NASA Astrophysics Data System (ADS)

    Gavrilovic, Z.

    2009-04-01

    In Serbia, the relief is predominantly hilly and mountainous, intersected with numerous rivers. The greatest number of watercourses are small torrents; however the proportionally large rivers also have a distinctive torrential character. The highest parts of the catchments are at the altitudes above 1500 m, while their confluences are at the altitudes of 200 - 300 m. The catchment and channel slopes are extremely steep. So, as the initial natural preconditions are satisfied, torrential floods are the consequence. Although the Južna Morava catchments were regulated by erosion control works, during the last decades there were numerous torrential floods. Some of the floods had disastrous proportions, not recorded in Serbia or in Europe. The flood of river Vlasina in 1988 was presented to the professional public several times. This flood was not an isolated case. Many large-scale torrential floods occurred in Serbia from 1994 to 2007. As there were floods also in 2007, the causes of the recorded floods had to be analysed. The analysis pointed out a series of scenarios which were the causes of disastrous torrential floods, and also the disadvantages of the actual system of torrent and erosion control. Special attention was focused on the floods which resulted from sudden snow melting. This paper will present the results of the analyses of the extreme torrential floods of the rivers Nišava and Vlasina. Key words: Flood, torrents, torrent control, erosion control

  7. Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times

    NASA Astrophysics Data System (ADS)

    ten Veldhuis, Marie-Claire; Schleiss, Marc

    2017-04-01

    Urban catchments are typically characterised by a more flashy nature of the hydrological response compared to natural catchments. Predicting flow changes associated with urbanisation is not straightforward, as they are influenced by interactions between impervious cover, basin size, drainage connectivity and stormwater management infrastructure. In this study, we present an alternative approach to statistical analysis of hydrological response variability and basin flashiness, based on the distribution of inter-amount times. We analyse inter-amount time distributions of high-resolution streamflow time series for 17 (semi-)urbanised basins in North Carolina, USA, ranging from 13 to 238 km2 in size. We show that in the inter-amount-time framework, sampling frequency is tuned to the local variability of the flow pattern, resulting in a different representation and weighting of high and low flow periods in the statistical distribution. This leads to important differences in the way the distribution quantiles, mean, coefficient of variation and skewness vary across scales and results in lower mean intermittency and improved scaling. Moreover, we show that inter-amount-time distributions can be used to detect regulation effects on flow patterns, identify critical sampling scales and characterise flashiness of hydrological response. The possibility to use both the classical approach and the inter-amount-time framework to identify minimum observable scales and analyse flow data opens up interesting areas for future research.

  8. Modelling metaldehyde in catchments: a River Thames case-study.

    PubMed

    Lu, Q; Whitehead, P G; Bussi, G; Futter, M N; Nizzetto, L

    2017-04-19

    The application of metaldehyde to agricultural catchment areas to control slugs and snails has caused severe problems for drinking water supply in recent years. In the River Thames catchment, metaldehyde has been detected at levels well above the EU and UK drinking water standards of 0.1 μg l -1 at many sites across the catchment between 2008 and 2015. Metaldehyde is applied in autumn and winter, leading to its increased concentrations in surface waters. It is shown that a process-based hydro-biogeochemical transport model (INCA-contaminants) can be used to simulate metaldehyde transport in catchments from areas of application to the aquatic environment. Simulations indicate that high concentrations in the river system are a direct consequence of excessive application rates. A simple application control strategy for metaldehyde in the Thames catchment based on model results is presented.

  9. The role of land use and soils in regulating water flow in small headwater catchments of the Andes

    NASA Astrophysics Data System (ADS)

    Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.

    2011-05-01

    Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.

  10. Treated Incidence of Psychotic Disorders in the Multinational EU-GEI Study.

    PubMed

    Jongsma, Hannah E; Gayer-Anderson, Charlotte; Lasalvia, Antonio; Quattrone, Diego; Mulè, Alice; Szöke, Andrei; Selten, Jean-Paul; Turner, Caitlin; Arango, Celso; Tarricone, Ilaria; Berardi, Domenico; Tortelli, Andrea; Llorca, Pierre-Michel; de Haan, Lieuwe; Bobes, Julio; Bernardo, Miguel; Sanjuán, Julio; Santos, José Luis; Arrojo, Manuel; Del-Ben, Cristina Marta; Menezes, Paulo Rossi; Velthorst, Eva; Murray, Robin M; Rutten, Bart P; Jones, Peter B; van Os, Jim; Morgan, Craig; Kirkbride, James B

    2018-01-01

    Psychotic disorders contribute significantly to the global disease burden, yet the latest international incidence study of psychotic disorders was conducted in the 1980s. To estimate the incidence of psychotic disorders using comparable methods across 17 catchment areas in 6 countries and to examine the variance between catchment areas by putative environmental risk factors. An international multisite incidence study (the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions) was conducted from May 1, 2010, to April 1, 2015, among 2774 individuals from England (2 catchment areas), France (3 catchment areas), Italy (3 catchment areas), the Netherlands (2 catchment areas), Spain (6 catchment areas), and Brazil (1 catchment area) with a first episode of nonorganic psychotic disorders (International Statistical Classification of Diseases and Related Health Problems, Tenth Revision [ICD-10] codes F20-F33) confirmed by the Operational Criteria Checklist. Denominator populations were estimated using official national statistics. Age, sex, and racial/ethnic minority status were treated as a priori confounders. Latitude, population density, percentage unemployment, owner-occupied housing, and single-person households were treated as catchment area-level exposures. Incidence of nonorganic psychotic disorders (ICD-10 codes F20-F33), nonaffective psychoses (ICD-10 codes F20-F29), and affective psychoses (ICD-10 codes F30-F33) confirmed by the Operational Criteria Checklist. A total of 2774 patients (1196 women and 1578 men; median age, 30.5 years [interquartile range, 23.0-41.0 years]) with incident cases of psychotic disorders were identified during 12.9 million person-years at risk (crude incidence, 21.4 per 100 000 person-years; 95% CI, 19.4-23.4 per 100 000 person-years). A total of 2183 patients (78.7%) had nonaffective psychotic disorders. After direct standardization for age, sex, and racial/ethnic minority status, an 8-fold variation was seen in the incidence of all psychotic disorders, from 6.0 (95% CI, 3.5-8.6) per 100 000 person-years in Santiago, Spain, to 46.1 (95% CI, 37.3-55.0) per 100 000 person-years in Paris, France. Rates were elevated in racial/ethnic minority groups (incidence rate ratio, 1.6; 95% CI, 1.5-1.7), were highest for men 18 to 24 years of age, and were lower in catchment areas with more owner-occupied homes (incidence rate ratio, 0.8; 95% CI, 0.7-0.8). Similar patterns were observed for nonaffective psychoses; a lower incidence of affective psychoses was associated with higher area-level unemployment (incidence rate ratio, 0.3; 95% CI, 0.2-0.5). This study confirmed marked heterogeneity in risk for psychotic disorders by person and place, including higher rates in younger men, racial/ethnic minorities, and areas characterized by a lower percentage of owner-occupied houses.

  11. Computer-Based Model Calibration and Uncertainty Analysis: Terms and Concepts

    DTIC Science & Technology

    2015-07-01

    uncertainty analyses throughout the lifecycle of planning, designing, and operating of Civil Works flood risk management projects as described in...value 95% of the time. In the frequentist approach to PE, model parameters area regarded as having true values, and their estimate is based on the...in catchment models. 1. Evaluating parameter uncertainty. Water Resources Research 19(5):1151–1172. Lee, P. M. 2012. Bayesian statistics: An

  12. Terrain representation impact on periurban catchment morphological properties

    NASA Astrophysics Data System (ADS)

    Rodriguez, F.; Bocher, E.; Chancibault, K.

    2013-04-01

    SummaryModelling the hydrological behaviour of suburban catchments requires an estimation of environmental features, including land use and hydrographic networks. Suburban areas display a highly heterogeneous composition and encompass many anthropogenic elements that affect water flow paths, such as ditches, sewers, culverts and embankments. The geographical data available, either raster or vector data, may be of various origins and resolutions. Urban databases often offer very detailed data for sewer networks and 3D streets, yet the data covering rural zones may be coarser. This study is intended to highlight the sensitivity of geographical data as well as the data discretisation method used on the essential features of a periurban catchment, i.e. the catchment border and the drainage network. Three methods are implemented for this purpose. The first is the DEM (for digital elevation model) treatment method, which has traditionally been applied in the field of catchment hydrology. The second is based on urban database analysis and focuses on vector data, i.e. polygons and segments. The third method is a TIN (or triangular irregular network), which provides a consistent description of flow directions from an accurate representation of slope. It is assumed herein that the width function is representative of the catchment's hydrological response. The periurban Chézine catchment, located within the Nantes metropolitan area in western France, serves as the case study. The determination of both the main morphological features and the hydrological response of a suburban catchment varies significantly according to the discretization method employed, especially on upstream rural areas. Vector- and TIN-based methods allow representing the higher drainage density of urban areas, and consequently reveal the impact of these areas on the width function, since the DEM method fails. TINs seem to be more appropriate to take streets into account, because it allows a finer representation of topographical discontinuities. These results may help future developments of distributed hydrological models on periurban areas.

  13. Restoration of active gully systems following the implementation of bioengineering techniques.

    NASA Astrophysics Data System (ADS)

    Borja, Pablo; Vanacker, Veerle; Govers, Gerard

    2015-04-01

    Intensive land use in the central parts of the Andean basin has led to widespread land degradation. The formation of badlands dates back from the 1950s and 1960s. Several studies indicate that human activities have accelerated mountain erosion rates by up to 100 times. In this study, we have evaluated the effects of bio-engineering works aiming to stabilize degraded catchments. Five micro-catchments (0.2 up to 5 ha) have been selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The five micro-catchments differ in vegetation cover and implementation of bio-engineering works. The experimental design consisted of three micro-catchments: (1) DI with conservation works, (2) DF with reforestation by Eucalyptus sp and (3) DT with no conservation works. Two micro-catchments have been monitored in an agricultural area: with (AI) and without (AT) bio-engineering works in the active gullies. Small checkdams were constructed in the gully floors of two of the micro-catchments in the badland area (DI) and the agricultural area (AI). The checkdams are made of wood and tires. Water flow has been measured in every micro-catchment, while sediment traps were constructed to monitor sediment transport. Results show that bio-engineering techniques are effective to stabilize active gullies. Deposition of sediments in manmade dams is strongly dependent on previous rainfall events, as well as gully channel slope, and its vegetation cover. From the experimental data, an I30 max threshold value was determined. Above this threshold value, all micro-catchments are actively contributing sediment to the main river system. The checkdams built with wood and tires have an efficiency of 70%, and were shown to be very effective to stabilize active gullies in bad lands through significant reduction (about 62%) of the amount of sediment exported from the micro-catchments. Key words: degraded soils, erosion, sediment, restoration, reforestation

  14. Groundwater as an emergency source for drought mitigation in the Crocodile River catchment, South Africa

    NASA Astrophysics Data System (ADS)

    Mussá, F. E. F.; Zhou, Y.; Maskey, S.; Masih, I.; Uhlenbrook, S.

    2014-03-01

    Global climate change has received much attention worldwide in the scientific as well as in the political community, indicating that changes in precipitation, extreme droughts and floods may threaten increasingly many regions. Drought is a natural phenomenon that may cause social, economical and environmental damages to the society. In this study, we assess the drought intensity and severity and the groundwater potential to be used as a supplement source of water to mitigate drought impacts in the Crocodile River catchment, a water-stressed sub-catchment of the Incomati River catchment in South Africa. The research methodology consists mainly of three parts. First, the spatial and temporal variation of the meteorological and hydrological drought severity and intensity over the catchment were evaluated. The Standardized Precipitation Index (SPI) was used to analyse the meteorological drought and the Standardized Runoff Index (SRI) was used for the hydrological drought. Second, the water deficit in the catchment during the drought period was computed using a simple water balance method. Finally, a groundwater model was constructed in order to assess the feasibility of using groundwater as an emergency source for drought impact mitigation. Results show that the meteorological drought severity varies accordingly with the precipitation; the low rainfall areas are more vulnerable to severe meteorological droughts (lower and upper crocodile). Moreover, the most water stressed sub-catchments with high level of water uses but limited storage, such as the Kaap located in the middle catchment and the Lower Crocodile sub-catchments are those which are more vulnerable to severe hydrological droughts. The analysis of the potential groundwater use during droughts showed that a deficit of 97 Mm3 yr-1 could be supplied from groundwater without considerable adverse impacts on the river base flow and groundwater storage. Abstraction simulations for different scenarios of extremely severe droughts reveal that it is possible to use groundwater to cope with the droughts in the catchment. However, local groundwater exploitation in Nelspruit and White River sub-catchment will cause large drawdowns (> 10 m) and high base flow reduction (> 20%). This case study shows that conjunctive water management of groundwater and surface water resources is the necessary to mitigate the impacts of droughts.

  15. Influence of urbanization pattern on stream flow of a peri-urban catchment under Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.

    2015-04-01

    The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.

  16. DEM-based analysis of landscape organization: 2) Application to catchment comparison

    NASA Astrophysics Data System (ADS)

    Seibert, J.; McGlynn, B.

    2003-04-01

    The delineation of homogeneous landscape elements (or "hydrologic response units") is often a prerequisite in field investigations and the application of semi-distributed hydrologic (or coupled hydrologic and biogeochemical) models. Delineation and quantification of dominant landscape elements requires methods to extract the features from digital elevation data or other readily available information. It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. In addition, we have found that that the degree of hillslope water expression in stormflow is partially a function of riparian to hillslope reservoir ratios and landscape organization. Therefore, we developed a simple approach for quantifying landscape organization and distributed riparian to hillslope area ratios (riparian buffer ratios), as described in the accompanying contribution. Here we use this method as a framework for comparing and classifying diverse catchments located in Europe, the U.S., and New Zealand. Based on the three catchments Maimai (New Zealand), Panola (Georgia) and Sleepers (Vermont) we obtained the following preliminary results: (1) Local area entering the stream channels was most variable at Maimai and consistently diffuse at Sleepers and Panola. Also the median local area entering the channel network was largest at Maimai and smallest at Sleepers and Panola. This demonstrates the degree of landscape dissection (highest for Maimai) and the concentration of hillslope inputs along the stream network. (2) Riparian areas were smallest at Maimai, larger at Sleepers, and largest at Panola. The combination of riparian zone extent and focused (Maimai) versus diffuse (Sleepers and Panola) hillslope inputs to riparian zones controls local riparian to hillslope area ratios (riparian buffer capacities). (3) Area was accumulated to a large extend in the channel heads in all catchments. At Sleepers about 75 percent of all area originated from sub-catchments of less than 5 ha, whereas this proportion was 50 and 40 percent at Panola and Maimai respectively.

  17. Effects of broadleaf woodland cover on streamwater chemistry and risk assessments of streamwater acidification in acid-sensitive catchments in the UK.

    PubMed

    Gagkas, Z; Heal, K V; Stuart, N; Nisbet, T R

    2008-07-01

    Streamwater was sampled at high flows from 14 catchments with different (0-78%) percentages of broadleaf woodland cover in acid-sensitive areas in the UK to investigate whether woodland cover affects streamwater acidification. Significant positive correlations were found between broadleaf woodland cover and streamwater NO3 and Al concentrations. Streamwater NO3 concentrations exceeded non-marine SO4 in three catchments with broadleaf woodland cover>or=50% indicating that NO3 was the principal excess acidifying ion in the catchments dominated by woodland. Comparison of calculated streamwater critical loads with acid deposition totals showed that 11 of the study catchments were not subject to acidification by acidic deposition. Critical loads were exceeded in three catchments, two of which were due to high NO3 concentrations in drainage from areas with large proportions of broadleaved woodland. The results suggest that the current risk assessment methodology should protect acid-sensitive catchments from potential acidification associated with broadleaf woodland expansion.

  18. A critical source area phosphorus index with topographic transport factors using high resolution LiDAR digital elevation models

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Murphy, Paul; Fenton, Owen; Shine, Oliver; Mellander, Per-Erik; Dunlop, Paul; Jordan, Phil

    2015-04-01

    A new phosphorus index (PI) tool is presented which aims to improve the identification of critical source areas (CSAs) of phosphorus (P) losses from agricultural land to surface waters. In a novel approach, the PI incorporates topographic indices rather than watercourse proximity as proxies for runoff risk, to account for the dominant control of topography on runoff-generating areas and P transport pathways. Runoff propensity and hydrological connectivity are modelled using the Topographic Wetness Index (TWI) and Network Index (NI) respectively, utilising high resolution digital elevation models (DEMs) derived from Light Detection and Ranging (LiDAR) to capture the influence of micro-topographic features on runoff pathways. Additionally, the PI attempts to improve risk estimates of particulate P losses by incorporating an erosion factor that accounts for fine-scale topographic variability within fields. Erosion risk is modelled using the Unit Stream Power Erosion Deposition (USPED) model, which integrates DEM-derived upslope contributing area and Universal Soil Loss Equation (USLE) factors. The PI was developed using field, sub-field and sub-catchment scale datasets of P source, mobilisation and transport factors, for four intensive agricultural catchments in Ireland representing different agri-environmental conditions. Datasets included soil test P concentrations, degree of P saturation, soil attributes, land use, artificial subsurface drainage locations, and 2 m resolution LiDAR DEMs resampled from 0.25 m resolution data. All factor datasets were integrated within a Geographical Information System (GIS) and rasterised to 2 m resolution. For each factor, values were categorised and assigned relative risk scores which ranked P loss potential. Total risk scores were calculated for each grid cell using a component formulation, which summed the products of weighted factor risk scores for runoff and erosion pathways. Results showed that the new PI was able to predict in-field risk variability and hence was able to identify CSAs at the sub-field scale. PI risk estimates and component scores were analysed at catchment and subcatchment scales, and validated using measured dissolved, particulate and total P losses at subcatchment snapshot sites and gauging stations at catchment outlets. The new PI provides CSA delineations at higher precision compared to conventional PIs, and more robust P transport risk estimates. The tool can be used to target cost-effective mitigation measures for P management within single farm units and wider catchments.

  19. A new approach to comprehensive quantification of linear landscape elements using biotope types on a regional scale

    NASA Astrophysics Data System (ADS)

    Hirt, Ulrike; Mewes, Melanie; Meyer, Burghard C.

    The structure of a landscape is highly relevant for research and planning (such as fulfilling the requirements of the Water Framework Directive - WFD - and for implementation of comprehensive catchment planning). There is a high potential for restoration of linear landscape elements in most European landscapes. By implementing the WFD in Germany, the restoration of linear landscape elements could be a valuable measure, for example to reduce nutrient input into rivers. Despite this importance of landscape structures for water and nutrients fluxes, biodiversity and the appearance of a landscape, specific studies of the linear elements are rare for larger catchment areas. Existing studies are limited because they either use remote sensing data, which does not adequately differentiate all types of linear landscape elements, or they focus only on a specific type of linear element. To address these limitations, we developed a framework allowing comprehensive quantification of linear landscape elements for catchment areas, using publicly available biotope type data. We analysed the dependence of landscape structures on natural regions and regional soil characteristics. Three data sets (differing in biotopes, soil parameters and natural regions) were generated for the catchment area of the middle Mulde River (2700 km 2) in Germany, using overlay processes in geographic information systems (GIS), followed by statistical evaluation. The linear landscape components of the total catchment area are divided into roads (55%), flowing water (21%), tree rows (14%), avenues (5%), and hedges (2%). The occurrence of these landscape components varies regionally among natural units and different soil regions. For example, the mixed deciduous stands (3.5 m/ha) are far more frequent in foothills (6 m/ha) than in hill country (0.9 m/ha). In contrast, fruit trees are more frequent in hill country (5.2 m/ha) than in the cooler foothills (0.5 m/ha). Some 70% of avenues, and 40% of tree rows, are discontinuous; in contrast, only 20% of hedges are discontinuous. Using our innovative framework, comprehensive information about landscape elements can now be obtained for regional applications. This approach can be applied to other regions and is highly relevant for landscape planning, erosion control, protection of waters and preservation of biotopes and species.

  20. Assessing the role of urban developments on storm runoff response through multi-scale catchment experiments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Owen, Gareth; Geris, Josie; Soulsby, Chris; Quinn, Paul

    2015-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality issues with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). In particular for mixed rural and urban catchments where the spatio-temporal variability of hydrological responses is high, there remains a key research challenge in evaluating the timing and magnitude of storage and flow pathways at multiple scales. This is of crucial importance for appropriate catchment management, for example to aid the design of Green Infrastructure (GI) to mitigate the risk of flooding, among other multiple benefits. The aim of this work was to (i) explore spatio-temporal storm runoff generation characteristics in multi-scale catchment experiments that contain rural and urban land use zones, and (ii) assess the (preliminary) impact of Sustainable Drainage (SuDs) as GI on high flow and flood characteristics. Our key research catchment, the Ouseburn in Northern England (55km2), has rural headwaters (15%) and an urban zone (45%) concentrated in the lower catchment area. There is an intermediate and increasingly expanding peri-urban zone (currently 40%), which is defined here as areas where rural and urban features coexist, alongside GIs. Such a structure is typical for most catchments with urban developments. We monitored spatial precipitation and multiscale nested (five gauges) runoff response, in addition to the storage dynamics in GIs for a period of 6 years (2007-2013). For a range of events, we examined the multiscale nested runoff characteristics (lag time and magnitude) of the rural and urban flow components, assessed how these integrated with changing land use and increasing scale, and discussed the implications for flood management in the catchment. The analyses indicated three distinctly different patterns in the timing and magnitude of the contributions of the different land use zones and their nested integrated runoff response at increasing scales. These can be clearly linked to variations in antecedent conditions and precipitation patterns. For low antecedent flow conditions, the main flood peak is dominated by urban origins (faster responding and larger in relative magnitude); for high antecedent flow conditions, rural (and peri-urban) sources are most dominant. A third type of response involves mixed events, where both rural and urban contributions interact and reinforce the peak flow response. Our analyses showed that the effectiveness of the GIs varied substantially between the different events, suggesting that their design could be improved by introducing variable drainage rates and strategic placements to allow for interactions with the stream network. However, more information is needed on the spatio-temporal variability in water sources, flow pathways and residence times. This is of particular importance to also assess other multiple benefits of GIs, including the impacts on water quality. These challenges are currently addressed in two new case study catchment in the North East of Scotland (10km2) which are undergoing major land use change from rural to urban. Here, integrated tracer and hydrometric data are being collected to characterise the integrated impacts of urbanisation and GIs on flow pathways (nature and length) and associated water quality.

  1. Treated Incidence of Psychotic Disorders in the Multinational EU-GEI Study

    PubMed Central

    Jongsma, Hannah E.; Gayer-Anderson, Charlotte; Lasalvia, Antonio; Quattrone, Diego; Mulè, Alice; Szöke, Andrei; Selten, Jean-Paul; Turner, Caitlin; Arango, Celso; Tarricone, Ilaria; Berardi, Domenico; Tortelli, Andrea; Llorca, Pierre-Michel; de Haan, Lieuwe; Bobes, Julio; Bernardo, Miguel; Sanjuán, Julio; Santos, José Luis; Arrojo, Manuel; Del-Ben, Cristina Marta; Menezes, Paulo Rossi; Murray, Robin M.; Rutten, Bart P.; Jones, Peter B.; van Os, Jim; Morgan, Craig

    2017-01-01

    Importance Psychotic disorders contribute significantly to the global disease burden, yet the latest international incidence study of psychotic disorders was conducted in the 1980s. Objectives To estimate the incidence of psychotic disorders using comparable methods across 17 catchment areas in 6 countries and to examine the variance between catchment areas by putative environmental risk factors. Design, Setting, and Participants An international multisite incidence study (the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions) was conducted from May 1, 2010, to April 1, 2015, among 2774 individuals from England (2 catchment areas), France (3 catchment areas), Italy (3 catchment areas), the Netherlands (2 catchment areas), Spain (6 catchment areas), and Brazil (1 catchment area) with a first episode of nonorganic psychotic disorders (International Statistical Classification of Diseases and Related Health Problems, Tenth Revision [ICD-10] codes F20-F33) confirmed by the Operational Criteria Checklist. Denominator populations were estimated using official national statistics. Exposures Age, sex, and racial/ethnic minority status were treated as a priori confounders. Latitude, population density, percentage unemployment, owner-occupied housing, and single-person households were treated as catchment area–level exposures. Main Outcomes and Measures Incidence of nonorganic psychotic disorders (ICD-10 codes F20-F33), nonaffective psychoses (ICD-10 codes F20-F29), and affective psychoses (ICD-10 codes F30-F33) confirmed by the Operational Criteria Checklist. Results A total of 2774 patients (1196 women and 1578 men; median age, 30.5 years [interquartile range, 23.0-41.0 years]) with incident cases of psychotic disorders were identified during 12.9 million person-years at risk (crude incidence, 21.4 per 100 000 person-years; 95% CI, 19.4-23.4 per 100 000 person-years). A total of 2183 patients (78.7%) had nonaffective psychotic disorders. After direct standardization for age, sex, and racial/ethnic minority status, an 8-fold variation was seen in the incidence of all psychotic disorders, from 6.0 (95% CI, 3.5-8.6) per 100 000 person-years in Santiago, Spain, to 46.1 (95% CI, 37.3-55.0) per 100 000 person-years in Paris, France. Rates were elevated in racial/ethnic minority groups (incidence rate ratio, 1.6; 95% CI, 1.5-1.7), were highest for men 18 to 24 years of age, and were lower in catchment areas with more owner-occupied homes (incidence rate ratio, 0.8; 95% CI, 0.7-0.8). Similar patterns were observed for nonaffective psychoses; a lower incidence of affective psychoses was associated with higher area-level unemployment (incidence rate ratio, 0.3; 95% CI, 0.2-0.5). Conclusions and Relevance This study confirmed marked heterogeneity in risk for psychotic disorders by person and place, including higher rates in younger men, racial/ethnic minorities, and areas characterized by a lower percentage of owner-occupied houses. PMID:29214289

  2. Estimation of streamflow response to wildfire and salvage logging in a snow-dominated catchment using a model-based change detection approach

    NASA Astrophysics Data System (ADS)

    Moore, R. D.; Mahrlein, M.; Chuang, Y. C. M.

    2016-12-01

    Forest cover changes associated with natural disturbance and forest management can have significant influences on the magnitude and timing of streamflow. This study quantified the effect of a wildfire that burned over 60% of the catchment of Fishtrap Creek in the southern interior of British Columbia in August 2003. Fishtrap Creek has been gauged from 1970 to present. The catchment drains 158 km2 at the gauging station and has a snow-dominated hydrologic regime. In 2006, about one-third of the burned area was salvage logged. A semi-distributed hydrologic model was calibrated and tested using the pre-fire streamflow data. Simulated daily streamflow based on the "best" parameter set, and assuming pre-fire forest cover, was used as a "virtual" control in a paired-catchment analysis. Each year was divided into 73 five-day periods (pentads), and separate pre-fire regressions were fit for each of the 73 pentad time series. This approach avoids issues with autocorrelation and can address seasonally varying model bias. Statistically significant increases in streamflow were detected in late winter and through the month of April, with no evidence for increased peak flows, which is inferred to reflect a de-synchronization of snowmelt between disturbed and undisturbed areas of the catchment. The results of the model-based change detection are consistent with statistical analyses using climatic variables as covariates, but have the advantage of providing more temporal detail. However, the power of the change detection can be limited by insufficiently long records of streamflow and driving weather variables for both the pre- and post-fire periods and model structural errors (e.g., an inability to reproduce winter baseflow). An interesting side result of the study was the identification of parameter uncertainty associated with uncertainty regarding forest cover during the calibration period.

  3. Characterisation of sources and pathways of microbiological pollutants to protect remote private water supplies

    NASA Astrophysics Data System (ADS)

    Neill, Aaron; Tetzlaff, Doerthe; Strachan, Norval; Hough, Rupert; Soulsby, Chris

    2016-04-01

    In order to comply with legislation such as the Water Framework Directive and to safeguard public health, there is a critical need to maintain the quality of water sources that are used to supply drinking water. Private water supplies (PWS) are still common in many rural areas in the UK, and are especially vulnerable to poor water quality, owing to the limited treatment they often receive and variable raw water quality in groundwater and surface water sources. A significant issue affecting PWS quality is contamination by faecal pathogens derived from grazing animals or agricultural practices. In Scotland, approximately 20,000 PWS serve around 200,000 people, with a number of these PWS consistently failing to meet water quality targets relating to coliform bacteria and E. coli, both of which can be indicative of faecal contamination (faecal indicator organisms - FIOs). The purpose of our study was to employ integrated empirical and modelling approaches from hydrology and microbiology to elucidate the nature of the still poorly-understood interplay between hydrological flow pathways which connect sources of pathogens to PWS sources, antecedent conditions, seasonality and pathogen transfer risk, for two catchments with contrasting land uses in Scotland: an agricultural catchment (Tarland Burn) and a montane catchment (Bruntland Burn). In the Tarland Burn, 15 years of spatially-distributed samples collected at the catchment-scale of FIO counts were analysed alongside hydrometric data to identify "hot spots" of faecal pathogen transfer risk and possible spatial and temporal controls. We also used a combination of tracer-based and numerical modelling approaches to identify the relationship between hydrological connectivity, flow pathways, and the mobilisation of faecal pathogens from different sources. In the Bruntland Burn, we coupled a pathogen storage, mobilisation and transport scheme to a previously developed tracer-informed hydrological model for the catchment to investigate temporal patterns and controls of pathogen transfer risk from different hydrological source areas identified from extensive past tracer and numerical modelling work: groundwater, hillslopes and the dynamic riparian zone.

  4. Water quality assessment of the Asata River catchment area in Enugu Metropolis, Southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Osinowo, Olawale Olakunle

    2016-09-01

    Hydrogeochemical mapping of the Asata River Catchment area in the Enugu metropolis, southeast Nigeria was carried out in order to assess the quality of the surface and groundwater and based on the analyses of the hydrogeochemical data, establish the level of chemical contaminations which inhibit the availability of potable water in the area. Forty (40) water samples comprising five (5) springs, nineteen (19) surface (streams/rivers) and sixteen (16) groundwater (well/borehole) samples were collected and analysed for the presence and degree of contamination of nine (9) major chemical contaminants. Hydrochemical analyses indicate that Electrical Conductivity (EC) which has a linear relationship with Total Dissolved Solid (TDS) ranges between 015 and 887 μS/cm, pH between 4.4 and 8.3, nitrate (NO3-) ranges between 40 and 130 mg/l and chloride (Cl-) between 7 and 130 mg/l. The concentrations of the dissolved chemical constituents defined the pollution trend and the rate of dispersion of contaminants. The degree of contaminants followed a simple trend, where the level of contamination of the dissolved chemical constituents is least in sampled spring water, with measured chemical constituents of EC, pH, NO3- and Cl- range from 15 to 354 μS/cm; 6.4-6.5; 4.0-70 mg/l and 8-36 mg/l, respectively. However, the value of the measured chemical constituent of EC, pH, NO3- and Cl- gradually increases down the stream in both the surface (63-354 μS/cm; 4.5-7.7; 7.1-110 mg/l; 8-41 mg/l) and groundwater (56-531 μS/cm; 4.5-7.5; 40-130 mg/l; 7-130 mg/l), respectively. Noticeable peaks in contamination levels characterised sections of the study area where human population or their activities is highest. The result of the hydrogeochemical mapping indicate that Enugu coal mine operation, the industrial activities, fertilizer applied to plants cultivated on river banks and domestic human wastes which are indiscriminately dumped along river channels are the major sources of chemical contamination in the Asata River catchment area. An adequate water resource management scheme is urgently needed to rescue the shallow regolith aquifer from being permanently damaged. Acts such as construction of uncased toilet pits and septic tanks into the thin shallow regolith aquifer, application of inorganic fertilizers along river bank farms and indiscriminate dumping of untreated industrial and human wastes should also be discouraged.

  5. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    NASA Astrophysics Data System (ADS)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  6. Soil water erosion processes in mountain forest catchment - analysis by using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław

    2013-04-01

    The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser scanning shows that anthropogenic activities in the form of forest management and their effects in the form of dense network of forest roads and skid trails and obtaining wood diminish correct functioning of a forest or even increase the phenomenon of erosion. Submit the results of the analysis consider the problem of dynamics and intensity of erosion processes in mountain areas, and show the effectiveness of the methodology of research.

  7. SUSTAINABLE AGRICULTURE FOR THE WATER CATCHMENT PROTECTION AREA IN NTISAW, CAMEROON

    EPA Science Inventory

    We expect that the catchment area will increase food output for the community in addition to preserving the water source. Increased food output will benefit needy residents and allow them to focus more on education and economic development. Additionally, an area of sustainable...

  8. A synoptic survey of ecosystem services from headwater catchments in the United States

    Treesearch

    Brian H. Hill; Randall K. Kolka; Frank H. McCormick; Matthew A. Starry

    2014-01-01

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Results are reported for nine USA ecoregions. Headwater streams represented 74-80% of total catchment stream length. Water supply per unit catchment area was highest in the Northern Appalachian Mountains ecoregion...

  9. Critical level of water recharges in the catchment areas of Manna watershed Bengkulu Province Indonesia

    NASA Astrophysics Data System (ADS)

    Amri, Khairul; Nugraha, Loparedo; Barchia, Muhammad Faiz

    2017-11-01

    Land use changes in Manna watershed are caused degradation in the watershed functions. When water infiltration goes down, some water runs off flowing to Manna River cause submerged on the downstream. The aim of this study is to analyze how the Manna watershed overcoming environmentally degraded conditions. The critical level of the Manna catchment areas was determined by overlaying some digital maps based on procedure applying in the Ministry of Forestry, Republic of Indonesia (P.32/MENHUT-II/2009). Measuring the critical level of the catchment also needed natural and actual infiltrations map, and the interpretation process of the analysis used ArcGIS 10.1 software. Based on the spatial data analysis by overlaying maps of slope, soils, and rainfall, the natural infiltration rate in the Manna watershed categorized high level (44.1%). While, the critical level of the catchment areas of the Manna watershed classified in good condition cover about 64,5 % of the areas, and starting to degraded state cover about 35,5 % of the watershed areas. The environment degradation conditions indicated the land use changes in the Manna watershed could deteriorate infiltration rates. The cultivated agricultural activities neglected conservation rule could accelerate the critical catchment areas in the Manna watershed.

  10. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  11. A sediment budget from a glaciated catchment: reconciling subglacial and periglacial erosion on short timescales

    NASA Astrophysics Data System (ADS)

    Delaney, Ian; Gindraux, Saskia; Weidmann, Yvo; Bauder, Andreas

    2017-04-01

    Glaciated catchments are known to expel great amounts of sediment, particularly during periods of climatic perturbation. Sediment in these catchments either originates subglacially, where it is eroded by pressurized water below the glacier, or from periglacial areas, which are commonly comprised of easily erodible, unconsolidated material no longer buttressed and held in place by ice. To better forecast sediment dynamics and erosion rates in to the future, contributions of subglacial and periglacial sediment must be quantified, and the processes controlling erosion in these respective sources described. To determine the relative contributions of these sources, we examine the Griesgletscher catchment in the Swiss Alps. Its rather simplistic geometry, as well as, the presence of a proglacial reservoir that serves as a sediment trap, provides an unusually constrained environment to directly measure sediment sources and sinks in the catchment. Subtraction of three digital elevation models created from structure-from-motion and photogrammetric techniques over a one year period, from October 2015 to October 2016, were used to measured sediment flux from the proglacial area. Furthermore, comparison of bathymetries collected from the proglacial reservoir in fall of 2015 and 2016 determined total sediment flux from the entire catchment over this 10 km2time period. Data from a turbidity meter, installed below the reservoir outflow, suggest that negligible amounts of sediment leave the reservoir. Thus comparison of reservoir bathymetry and sediment fluxes from the proglacial area give estimates of the relative contribution of proglacial and subglacial sediment erosion to total catchment sedimentation. Analysis of this data suggest that while the proglacial area experiences a greater erosion rate, it is likely more sediment originates subglacially. As proglacial areas are expected to grow in area and partially stabilize, and glacial areas are predicted to shrink and possibly loose erosive capacity, these competing processes must be reconciled.

  12. New estimated Holocene denudation rates for non-glaciated areas in the southernmost Patagonian Andes (53°S), Chile

    NASA Astrophysics Data System (ADS)

    Breuer, Sonja; Kilian, Rolf; Baeza, Oscar; Arz, Helge

    2010-05-01

    Cenozoic denudation rates are sparsely known for the southernmost Patagonian Andes. One of the scientific approaches is to calculate long-term denudation rates based on fission track analyses. Though, these average rates comprise a long period with distinct climate conditions and very different extend of glaciation. These integrated denudation rates include extensive surface areas with different morphological, glacial and vegetational properties. In contrast, our approach is restricted to relative short Holocene periods and small catchment areas, for which the denudation and its controlling surface characteristics could be defined more precisely. Thus a more precise evaluation of the influencing parameters like climate, morphology and vegetation cover was possible. We concentrated on three restricted and nearly closed areas of denudation and accumulation. In those catchments we determined the sediment masses of lakes, based on sediment drilling, echosounding and computer based interpolation of the siliciclastic sediment masses. These masses were transferred to the denudation areas which have been characterised and measured by remote sensing. The westernmost Tamar Lake is located on the Tamar Island in the western part of the Magellan Strait, where the annual precipitation is about 4,000 mm. The catchment area has a dense vegetation cover. The lake surrounding slopes reach an elevation of 400 m a.s.l and they are up to 60° steep. The calculated denudation rate for this catchment is about 2.56 mm/ka, which represents a minimum value, because the postglacial weathering horizon is only partly removed into the lake. The highest elevated lake Muy Profundo (500 m a.s.l.) possesses a denudation area with a nearly vegetation-free zone up to 750 m a.s.l. within the Patagonian Batholith. The catchment area of this lake is characterised by a roche moutonnée landform with steep slopes and active fracture zones. The precipitation varies between 5,000 and 8,000 mm/a. The denudation rates of the catchment amount to 0.42 mm/ka. Despite the high precipitation and the exposed position this denudation rate is unexpectedly low. Along the active fracture zones a stronger denudation could be observed by the occurrence of restricted gullies. The removed predominantly coarse clastic material is stored in alluvial cones and not included in our mass balance. The elevation of the catchment of the easternmost Chandler does not exceed 200 m a.s.l. and the area is characterised by a moderate relief with relatively flat slopes. The roche moutonnée landscape is interspersed with tracts of peat land and Magellanic rainforest. The precipitation ranges between 3,500 and 5,000 mm/a. Circulating acid soil water cause an intense chemical weathering and formed a 10-20 cm thick weathering horizon at the interface between bedrock and peaty soil. Due to the sediment core and the echosound stratigraphy, the denudation could be determined for two periods of time. The 2,040 cal. a BP tephra layer of the Mt. Burney volcano is the most distinct reflector in the echosound data. Therefore it was used as a sedimentation boundary. The denudation rates for the period 12,100 to ~2,000 and for the last 2000 years are very similar with ~2.55 mm/ka. On the basis of e.g. Ti/U enrichment in the weathering horizon, we conclude that the chemical denudation is very important in areas with vegetation cover in the superhumid Andes. In a long-term perspective, the relatively high denudation rates of low elevated peat land compared to the exposed rock surfaces may further increase the relief even during interglacial periods, like the Holocene. On the basis of our results we could state that the precipitation plays only a subordinated role as a control mechanism concerning the denudation in ice-free, but low temperate areas of the Patagonian Andes.

  13. Quantifying the origin of different sediment types in a catchment of the Southern French Alps by combining hydro-sedimentary records and fingerprinting

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Navratil, Oldrich; Ayrault, Sophie; Esteves, Michel; Legout, Cédric; Némery, Julien; Lefèvre, Irène; Bonté, Philippe

    2013-04-01

    Soil erosion and subsequent sediment supply to rivers are particularly massive and episodic in mountainous environments, such as in the Southern French Alps. Those processes typically lead to an increase in water turbidity and a rapid filling of reservoirs in downstream areas. This situation is particularly problematic in regions where reservoirs are used to provide clear water to hydroelectric power plants. Sediment source areas must first be delineated and sediment fluxes between hillslopes and the river system must be better understood to implement efficient sediment management. We therefore combined traditional monitoring techniques (i.e., installation of river gauges and sediment samplers in several subcatchments) and sediment fingerprinting using elemental geochemistry and fallout radionuclides as potential discriminant properties to quantify the supply of sediment provided by different lithological sources (i.e., black marls, marly limestones, conglomerates, Quaternary deposits) to the River Bléone (905 km²). Those analyses were conducted on different material types collected within the catchment (i.e. suspended and riverbed sediment), and at the catchment outlet (i.e. on a sequence of sections of a 3-m long sediment core). Sediment exports at the river catchment outlet (330±100 t km-2 yr-1) were mainly driven (80%) by the occurrence of widespread rainfall events (long duration, low intensities). In contrast, heavy, local and short duration storms generated high peak discharges and suspended sediment concentrations, but they were restricted to small upstream torrents. Our study (2007-2009) confirmed the important contribution of black marls (up to 70% at the flood scale) to sediment transported in rivers, although this substrate only occupies c. 10% of the total catchment surface. However, the contribution of other lithological sources varied at both intra- and inter-flood scales. Sediment exports generated by local convective storms were dominated by black marls/marly limestones. In contrast, widespread flood events that generate the bulk of annual sediment supply at the outlet were characterized by a more stable lithologic composition and by a larger contribution of limestones, Quaternary deposits and conglomerates, which corroborated the analysis of riverbed sediment. Finally, we found that black marls and marly limestone sources provided the main fraction of sediment analysed throughout the outlet core sequence (40 and 22 %, respectively, for the period 1962-2009). However, we also found evidence for the occurrence of major floods carrying large quantities of sediment originating from Quaternary deposits and conglomerates (25 and 16 %, respectively). The variability of sediment sources throughout the sequence may reflect the spatial variability of rainfall within the catchment, which in turn reflects its origin. This study emphasizes the importance of using archival data to validate the results of sediment fingerprinting studies conducted during short contemporary monitoring programmes.

  14. Reservoirs as hotspots of fluvial carbon cycling in peatland catchments.

    PubMed

    Stimson, A G; Allott, T E H; Boult, S; Evans, M G

    2017-02-15

    Inland water bodies are recognised as dynamic sites of carbon processing, and lakes and reservoirs draining peatland soils are particularly important, due to the potential for high carbon inputs combined with long water residence times. A carbon budget is presented here for a water supply reservoir (catchment area~9km 2 ) draining an area of heavily eroded upland peat in the South Pennines, UK. It encompasses a two year dataset and quantifies reservoir dissolved organic carbon (DOC), particulate organic carbon (POC) and aqueous carbon dioxide (CO 2 (aq)) inputs and outputs. The budget shows the reservoir to be a hotspot of fluvial carbon cycling, as with high levels of POC influx it acts as a net sink of fluvial carbon and has the potential for significant gaseous carbon export. The reservoir alternates between acting as a producer and consumer of DOC (a pattern linked to rainfall and temperature) which provides evidence for transformations between different carbon species. In particular, the budget data accompanied by 14 C (radiocarbon) analyses provide evidence that POC-DOC transformations are a key process, occurring at rates which could represent at least ~10% of the fluvial carbon sink. To enable informed catchment management further research is needed to produce carbon cycle models more applicable to these environments, and on the implications of high POC levels for DOC composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Linking water quality guidelines to the natural characteristics of catchments in order to support distinct aquatic ecosystems: Water quality guidelines for suspended particulate matter

    NASA Astrophysics Data System (ADS)

    Bilotta, G. S.; Grove, M. K.; Harrison, C.; Joyce, C. B.; Peacock, C.

    2012-12-01

    The natural characteristics of a catchment provide a template that controls the background rates of geomorphological processes operating within that catchment, which in-turn determines the background physico-chemical and hydro-morphological characteristics of the catchment's surface waters. Large differences in the natural characteristics of catchments (e.g. geology, topography, climate), lead to unique physico-chemical and hydro-morphological conditions that support unique freshwater communities. However, this uniqueness is not always recognised in international water quality guidelines, which often attempt to apply blanket water-quality guidelines to 'protect' a wide range of ecosystems. In this paper we investigate the natural characteristics that control background concentrations of suspended particulate matter (SPM - including nano-scale particles to sand-sized sediments), which is a well-known cause of ecological degradation. At present, the management of SPM is hampered by a lack of understanding of the SPM conditions that water quality managers should aim to achieve in contrasting environments in order to support good ecological status. To address this, in this paper we examine the SPM preferences of contrasting biological communities that are in reference condition (minimal anthropogenic disturbance and high ecological status). We analyse historical SPM data collected on a monthly basis from a wide range of reference-condition temperate environments (638 stream/river sites comprising 42 different biological community-types). This analysis reveals that there are statistically significant differences (One-way ANOVA p < 0.001) between the background SPM concentrations observed in contrasting communities that are in reference condition. Mean background SPM concentrations for contrasting communities ranged from 1.7 to 26.2 mg L-1 (i.e. more than a 15-fold difference). We propose a model for predicting environment-specific water quality guidelines for SPM. In order to develop this model, the 638 reference-condition sites were first classified into one of five mean background SPM ranges (0.00-5.99, 6.00-11.99, 12.00-17.99, 18.00-23.99 and >24.00 mg L-1). Stepwise Multiple Discriminant Analysis (MDA) of these ranges showed that a site's SPM range can be predicted as a function of: mean annual air temperature, mean annual precipitation, mean altitude of upstream catchment, distance from source, slope to source, channel width and depth, the percentage of catchment area comprised of clay, chalk, and hard rock solid geology, and the percentage of the catchment area comprised of blown sand/landslide material as the surface (drift) material. Although the model is still being improved and developed, this research highlights the need to link water quality guidelines to the natural characteristics of catchments and the physico-chemical preferences of the biological communities that would naturally inhabit them.

  16. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    NASA Astrophysics Data System (ADS)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets. Together they can help to constrain relationships between carbon and water balances on the continental scale. References .Barth JAC, Freitag H, Fowler HJ, Smith A, Ingle C, Karim A (2007) Water fluxes and their control on the terrestrial carbon balance: Results from a stable isotope study on the Clyde Watershed (Scotland). Appl Geochem 22: 2684-2694 DOI 10.1016/j.apgeochem.2007.06.002 Karim A, Veizer J, Barth J.A.C. (2008) Net ecosystem production in the great lakes basin and its implications for the North American missing carbon sink: A hydrologic and stable isotope approach. Global and Planetary Change 61: 15-27 DOI 10.1016/j.gloplacha.2007.08.004

  17. A 125 year record of fluvial calcium flux from a temperate catchment: Interplay of climate, land-use change and atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2012-10-01

    SummaryThis paper analyses the world's longest fluvial record of water hardness and calcium (Ca) concentration. We used records of permanent and temporary hardness and river flow for the UK's River Thames (catchment area 9998 km2) to estimate annual Ca flux from the river since 1883. The Thames catchment has a mix of agricultural and urban land use; it is dominated by mineral soils with groundwater contributing around 60% of river flow. Since the late 1800s, the catchment has undergone widespread urbanisation and climate warming, but has also been subjected to large-scale land-use change, especially during World War II and agricultural intensification in the 1960s. Here, we use a range of time series methods to explore the relative importance of these drivers in determining catchment-scale biogeochemical response. Ca concentrations in the Thames rose to a peak in the late 1980s (106 mg Ca/l). The flux of Ca peaked in 1916 at 385 ktonnes Ca/yr; the minimum was in 1888 at 34 ktonnes Ca/yr. For both the annual average Ca concentration and the annual flux of Ca, there were significant increases with time; a significant positive memory effect relative to the previous year; and significant correlation with annual water yield. No significant correlation was found with either temperature or land use, but sulphate deposition was found to be significant. It was also possible, for a shorter time series, to show a significant relationship with inorganic nitrogen inputs into the catchment. We suggest that ionic inputs did not acidify the mineral soils of the catchment but did cause the leaching of metals, so we conclude that the decline in river Ca concentrations is caused by the decline in both S and N inputs.

  18. Extreme Events in Urban Streams Leading to Extreme Temperatures in Birmingham, UK

    NASA Astrophysics Data System (ADS)

    Rangecroft, S.; Croghan, D.; Van Loon, A.; Sadler, J. P.; Hannah, D. M.

    2016-12-01

    Extreme flows and high water temperature events act as critical stressors on the ecological health of rivers. Urban headwater streams are considered particularly vulnerable to the effects of these extreme events. Despite this, such catchments remain poorly characterised and the effect of differences in land use is rarely quantified, especially in relation to water temperature. Thus a key research gap has emerged in understanding the patterns of water temperature during extreme events within contrasting urban, headwater catchments. We studied the headwaters of two bordering urban catchments of contrasting land use within Birmingham, UK. To characterise response to extreme events, precipitation and flow were analysed for the period of 1970-2016. To analyse the effects of extreme events on water temperature, 10 temperature loggers recording at 15 minute intervals were placed within each catchment covering a range of land use for the period May 2016 - present. During peak over threshold flood events higher average peaks were observed in the less urbanised catchment; however highest maximum flow peaks took place in the more densely urbanised catchment. Very similar average drought durations were observed between the two catchments with average flow drought durations of 27 days in the most urbanised catchment, and 29 in the less urbanised catchment. Flashier water temperature regimes were observed within the more urbanised catchment and increases of up to 5 degrees were apparent within 30 minutes during certain storms at the most upstream sites. Only in the most extreme events did the more densely urban stream appear more susceptible to both extreme high flows and extreme water temperature events, possibly resultant from overland flow emerging as the dominant flow pathway during intense precipitation events. Water temperature surges tended to be highly spatially variable indicating the importance of local land use. During smaller events, water temperature was less changeable and spatially variable, suggesting that overland flow may not the dominant flow pathway in such events. During drought events, the effect of catchment land use on water temperature was less apparent.

  19. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985-2006.

    PubMed

    Ekholm, Petri; Rankinen, Katri; Rita, Hannu; Räike, Antti; Sjöblom, Heidi; Raateland, Arjen; Vesikko, Ljudmila; Cano Bernal, José Enrique; Taskinen, Antti

    2015-04-01

    The Finnish Agri-Environmental Programme aims to reduce nutrient load to waters. Using national monitoring data, we estimated the agricultural load (incl. natural background) of total phosphorus (TP) and total nitrogen (TN) transported by 21 Finnish rivers to the northern Baltic Sea and analysed the flow-adjusted trends in the loads and concentrations from 1985 to 2006. We also related the loads to spatial and temporal patterns in catchment and agricultural characteristics. Agricultural load of TN increased, especially in the rivers discharging into the Bothnian Bay, while the load of TP decreased in most of the rivers, except those discharging into the Archipelago Sea. The trends may partly be related to a decrease in grassed area (TP, TN) and increased mineralisation (TN), but the available data on catchment and agricultural characteristics did not fully explain the observed pattern. Our study showed that data arising from relatively infrequent monitoring may prove useful for analysing long-term trend. The mutual correlation among the explaining variables hampered the analysis of the load generating factors.

  20. Impact of land-use on water pollution in a rapidly urbanizing catchment in China

    NASA Astrophysics Data System (ADS)

    Khu, Soon-Thiam; Qin, Huapeng

    2010-05-01

    Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a rapidly urbanizing area, particularly in heavy storm.

  1. [Comparison of nitrogen loss via surface runoff from two agricultural catchments in semi-arid North China].

    PubMed

    Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying

    2008-10-01

    Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.

  2. A Novel Low-Cost Approach to Estimate the Incidence of Japanese Encephalitis in the Catchment Area of Three Hospitals in Bangladesh

    PubMed Central

    Paul, Repon C.; Rahman, Mahmudur; Gurley, Emily S.; Hossain, M. Jahangir; Diorditsa, Serguei; Hasan, ASM Mainul; Banu, Sultana S.; Alamgir, ASM; Rahman, Muhammad Aziz; Sandhu, Hardeep; Fischer, Marc; Luby, Stephen P.

    2011-01-01

    Acute meningoencephalitis syndrome surveillance was initiated in three medical college hospitals in Bangladesh in October 2007 to identify Japanese encephalitis (JE) cases. We estimated the population-based incidence of JE in the three hospitals' catchment areas by adjusting the hospital-based crude incidence of JE by the proportion of catchment area meningoencephalitis cases who were admitted to surveillance hospitals. Instead of a traditional house-to-house survey, which is expensive for a disease with low frequency, we attempted a novel approach to identify meningoencephalitis cases in the hospital catchment area through social networks among the community residents. The estimated JE incidence was 2.7/100,000 population in Rajshahi (95% confidence interval [CI] = 1.8–4.9), 1.4 in Khulna (95% CI = 0.9–4.1), and 0.6 in Chittagong (95% CI = 0.4–0.9). Bangladesh should consider a pilot project to introduce JE vaccine in high-incidence areas. PMID:21813862

  3. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  4. Morphology, geology and water quality assessment of former tin mining catchment.

    PubMed

    Ashraf, Muhammad Aqeel; Maah, Mohd Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river.

  5. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment

    PubMed Central

    Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549

  6. A simple distributed sediment delivery approach for rural catchments

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Scherer, Ulrike

    2014-05-01

    The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The flow pathways were extracted in a geographic information system. Then the sediment delivery ratio for each source area was determined using an empirical approach considering the slope, morphology and land use properties along the flow path. As a benchmark for the calibration of the model parameters we used results of a detailed process based erosion model available for the study area. Afterwards the approach was tested in larger catchments located in the same loess region.

  7. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Li; Zhang, Fan; Zhang, Hongbo; Scott, Christopher A.; Zeng, Chen; Shi, Xiaonan

    2018-01-01

    Precipitation is one of the most critical inputs for models used to improve understanding of hydrological processes. In high mountain areas, it is challenging to generate a reliable precipitation data set capturing the spatial and temporal heterogeneity due to the harsh climate, extreme terrain and the lack of observations. This study conducts intensive observation of precipitation in the Mabengnong catchment in the southeast of the Tibetan Plateau during July to August 2013. Because precipitation is greatly influenced by altitude, the observed data are used to characterize the precipitation gradient (PG) and hourly distribution (HD), showing that the average PG is 0.10, 0.28 and 0.26 mm/d/100 m and the average duration is around 0.1, 0.8 and 5.2 h for trace, light and moderate rain, respectively. A distributed biosphere hydrological model based on water and energy budgets with improved physical process for snow (WEB-DHM-S) is applied to simulate the hydrological processes with gridded precipitation data derived from a lower altitude meteorological station and the PG and HD characterized for the study area. The observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are used for model calibration and validation. Runoff, SCA and LST simulations all show reasonable results. Sensitivity analyses illustrate that runoff is largely underestimated without considering PG, indicating that short-term intensive precipitation observation has the potential to greatly improve hydrological modelling of poorly gauged high mountain catchments.

  8. The effects of lithology and base level on topography in the northern alpine foreland

    NASA Astrophysics Data System (ADS)

    Baumann, Sebastian; Robl, Jörg; Prasicek, Günther; Salcher, Bernhard; Keil, Melanie

    2018-07-01

    The evolution of topography is driven by climate and tectonics, and strongly influenced by substrate properties and different base levels. The contributions of these factors may vary in space and time and are thus difficult to disentangle. Our study area, the Hausruck-Kobernaußerwald range, has a rather uniform climatic and tectonic history but is drained by rivers with different base levels and consists of contrasting sedimentary rocks, mainly due to different sedimentation environments. This makes them an ideal location to study the effects of lithology and base level on topography. To decipher the roles of these influences, we used a high-resolution digital elevation model and performed a series of morphometric analyses. Longitudinal river profiles indicate that all channels in the study area, independent from base level, bed rock and overall morphological expression, are well graded. Hypsometry shows no evidence for base level effects on the present topography, while variations in the hypsometric curves coincide with lithological differences. This is also reflected in contrasts of mean elevation and slope distributions. Lithology-dependent variations in channel concavity and catchment-wide hypsometric integrals show that lithology controls both channel incision and hillslope processes in the study area. Our results further indicate that variations in channel and catchment metrics are not linked to the prevalence of different rock types alone, but to different successions of lithological units along the channels and within the catchments. Variations in channel slope and geomorphological mapping suggest that lithology-dependent landsliding is the dominant process causing the observed large-scale landscape diversity in the Hausruck-Kobernaußerwald range.

  9. Export of dissolved organic matter in relation to land use along a European climatic gradient.

    PubMed

    Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal

    2009-03-01

    The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.

  10. Hydrologic connectivity between landscapes and streams: Transferring reach‐ and plot‐scale understanding to the catchment scale

    USGS Publications Warehouse

    Jencso, Kelsey G.; McGlynn, Brian L.; Gooseff, Michael N.; Wondzell, Steven M.; Bencala, Kenneth E.; Marshall, Lucy A.

    2009-01-01

    The relationship between catchment structure and runoff characteristics is poorly understood. In steep headwater catchments with shallow soils the accumulation of hillslope area (upslope accumulated area (UAA)) is a hypothesized first‐order control on the distribution of soil water and groundwater. Hillslope‐riparian water table connectivity represents the linkage between the dominant catchment landscape elements (hillslopes and riparian zones) and the channel network. Hydrologic connectivity between hillslope‐riparian‐stream (HRS) landscape elements is heterogeneous in space and often temporally transient. We sought to test the relationship between UAA and the existence and longevity of HRS shallow groundwater connectivity. We quantified water table connectivity based on 84 recording wells distributed across 24 HRS transects within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana. Correlations were observed between the longevity of HRS water table connectivity and the size of each transect's UAA (r2 = 0.91). We applied this relationship to the entire stream network to quantify landscape‐scale connectivity through time and ascertain its relationship to catchment‐scale runoff dynamics. We found that the shape of the estimated annual landscape connectivity duration curve was highly related to the catchment flow duration curve (r2 = 0.95). This research suggests internal catchment landscape structure (topography and topology) as a first‐order control on runoff source area and whole catchment response characteristics.

  11. Radar-rain-gauge rainfall estimation for hydrological applications in small catchments

    NASA Astrophysics Data System (ADS)

    Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio

    2017-07-01

    The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.

  12. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling: Case studies from Zimbabwe

    NASA Astrophysics Data System (ADS)

    Lørup, Jens Kristian; Refsgaard, Jens Christian; Mazvimavi, Dominic

    1998-03-01

    The purpose of this study was to identify and assess long-term impacts of land use change on catchment runoff in semi-arid Zimbabwe, based on analyses of long hydrological time series (25-50 years) from six medium-sized (200-1000 km 2) non-experimental rural catchments. A methodology combining common statistical methods with hydrological modelling was adopted in order to distinguish between the effects of climate variability and the effects of land use change. The hydrological model (NAM) was in general able to simulate the observed hydrographs very well during the reference period, thus providing a means to account for the effects of climate variability and hence strengthening the power of the subsequent statistical tests. In the test period the validated model was used to provide the runoff record which would have occurred in the absence of land use change. The analyses indicated a decrease in the annual runoff for most of the six catchments, with the largest changes occurring for catchments located within communal land, where large increases in population and agricultural intensity have taken place. However, the decrease was only statistically significant at the 5% level for one of the catchments.

  13. The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy).

    PubMed

    Reichenbach, P; Busca, C; Mondini, A C; Rossi, M

    2014-12-01

    The spatial distribution of landslides is influenced by different climatic conditions and environmental settings including topography, morphology, hydrology, lithology, and land use. In this work, we have attempted to evaluate the influence of land use change on landslide susceptibility (LS) for a small study area located in the southern part of the Briga catchment, along the Ionian coast of Sicily (Italy). On October 1, 2009, the area was hit by an intense rainfall event that triggered abundant slope failures and resulted in widespread erosion. After the storm, an inventory map showing the distribution of pre-event and event landslides was prepared for the area. Moreover, two different land use maps were developed: the first was obtained through a semi-automatic classification of digitized aerial photographs acquired in 1954, the second through the combination of supervised classifications of two recent QuickBird images. Exploiting the two land use maps and different land use scenarios, LS zonations were prepared through multivariate statistical analyses. Differences in the susceptibility models were analyzed and quantified to evaluate the effects of land use change on the susceptibility zonation. Susceptibility maps show an increase in the areal percentage and number of slope units classified as unstable related to the increase in bare soils to the detriment of forested areas.

  14. A geographical information system (GIS) as a tool for microbial risk assessment in catchment areas of drinking water reservoirs.

    PubMed

    Kistemann, T; Dangendorf, F; Exner, M

    2001-03-01

    The main tributaries of three drinking water reservoirs of Northrhine-Westfalia (Germany) were monitored within a 14-month period mainly for bacterial and parasitic contamination. In this context a detailed geo-ecological characterisation within the differing catchment areas was carried out to reveal a reliable informational basis for tracing back the origin of microbial loads present in the watercourses. To realise a microbial risk assessing geo-ecological information system (MRA-GIS), a Geographical Information System (GIS) has been implemented for the study areas. The results of the microbiological investigations of the watercourses showed an input of pathogens into all three of the tributaries. It could be demonstrated that the use of MRA-GIS database and some GIS-techniques substantially support the spatial analysis of the microbial contamination patterns. From the hygienic point of view, it is of the utmost importance to protect catchment areas of surface water reservoirs from microbial contamination stemming from human activities and animal sources. This constitutes essential part of the multi-barrier concept which stresses the importance of reducing diffuse and point pollution in catchment areas of water resources intended for human consumption. MRA-GIS proves to be helpful to manage multi-barrier water protection in catchment areas and ideally assists the application of the HACCP concept on drinking water production.

  15. Modeling pluvial flooding damage in urban environments: spatial relationships between citizens' complaints and overland catchment areas

    NASA Astrophysics Data System (ADS)

    Gaitan, Santiago; ten Veldhuis, Marie-Claire; van de Giesen, Nick

    2013-04-01

    Extreme weather events such as floods and storms are expected to cause severe economic losses in The Netherlands. Cumulative damage due to pluvial flooding can be considerable, especially in lowland areas where this type of floods occurs relatively frequently. Currently, in The Netherlands, water-related damages to property and contents are covered through private insurance. As pluvial flooding is becoming heavier and more likely to occur, sound modelling of damages is required to ensure that insurance systems are able to stand as an adaptation measure. Current damage models based on rainfall intensity, registries of insurance claims, and classifications of building types are unable to fully explain damage variability. Further developments assessing additional explanatory factors and reducing uncertainties, are required in order to significantly explain damage. In this study, urban topography is used as an explanatory factor for modelling of urban pluvial flooding. Flood damage is evaluated based on complaints data, a valuable resource for assessing vulnerability to urban pluvial flooding. Though previous research has shown coincidences between the localization of high complaint counts and large size catchments areas in Rotterdam, additional research is needed to establish the precise spatial relationship of those two variables. This additional task is the focus of the presented work. To that end a data base of complaints, that was made available by the Municipality Administration of the City, will be analysed. It comprises close to 36800 complaints from 2004 to 2011. The geographical position of the registries is aggregated into 4 to 6-digit Postal Code zones, which represents entire streets or relative positions along a street, respectively. The Municipality also provided the DEM, characterized by a spatial resolution of 0.5 m × 0.5 m, a vertical precision of 5 cm, and an accuracy better than two standard deviations of 15 cm. First the localization of complaints will be tested for spatial randomness: the distribution of Global Moran's I will be used as a measure of spatial aggregation of complaints. We expect high values of spatial aggregation, that would confirm the existence of a spatial structure in the distribution of complaints. Then we will probe how much does the extent of catchment areas influence such distribution of complaints. That will be done through both an ordinary least squares regression and a geographically weighted regression. By contrasting the results from these two regressions, the relationship between complaints and size of catchment area across the urban environment will be evaluated. The results will confirm whether complaints have a spatial distribution pattern. Furthermore, the results will provide insight into the importance of the size of catchment areas as a significant factor for complaints distribution, and for the assessment of urban vulnerability to pluvial flooding in the City of Rotterdam.

  16. Representing macropore flow at the catchment scale: a comparative modeling study

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.

    2017-12-01

    Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.

  17. Benchmarking hydrological model predictive capability for UK River flows and flood peaks.

    NASA Astrophysics Data System (ADS)

    Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten

    2017-04-01

    Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.

  18. Catchments of general practice in different countries– a literature review

    PubMed Central

    2014-01-01

    The purpose of this paper is to review the current research on catchment areas of private general practices in different developed countries because healthcare reform, including primary health care, has featured prominently as an important political issue in a number of developed countries. The debates around health reform have had a significant health geographic focus. Conceptually, GP catchments describe the distribution, composition and profile of patients who access a general practitioner or a general practice (i.e. a site or facility comprising one or more general practitioners). Therefore, GP catchments provide important information into the geographic variation of access rates, utilisation of services and health outcomes by all of the population or different population groups in a defined area or aggregated area. This review highlights a wide range of diversity in the literature as to how GP catchments can be described, the indicators and measures used to frame the scale of catchments. Patient access to general practice health care services should be considered from a range of locational concepts, and not necessarily constrained by their place of residence. An analysis of catchment patterns of general practitioners should be considered as dynamic and multi-perspective. Geographic information systems provide opportunities to contribute valuable methodologies to study these relationships. However, researchers acknowledge that a conceptual framework for the analysis of GP catchments requires access to real world data. Recent studies have shown promising developments in the use of real world data, especially from studies in the UK. Understanding the catchment profiles of individual GP surgeries is important if governments are serious about patient choice being a key part of proposed primary health reforms. Future health planning should incorporate models of GP catchments as planning tools, at the micro level as well as the macro level, to assist policies on the allocation of resources so that opportunities for good health outcomes for all groups within society, especially those who have been systematically denied equitable access, are maximised. PMID:25174719

  19. A synoptic survey of ecosystem services from headwater catchments in the United States (presentation)

    EPA Science Inventory

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...

  20. A synoptic survey of ecosystem services from headwater catchments in the United States- webinar

    EPA Science Inventory

    Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...

  1. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions.

    PubMed

    Guittonny-Philippe, Anna; Masotti, Véronique; Höhener, Patrick; Boudenne, Jean-Luc; Viglione, Julien; Laffont-Schwob, Isabelle

    2014-03-01

    In the Mediterranean area, surface waters often have low discharge or renewal rates, hence metal contamination from industrialised catchments can have a high negative impact on the physico-chemical and biological water quality. In a context of climate and anthropological changes, it is necessary to provide an integrative approach for the prevention and control of metal pollution, in order to limit its impact on water resources, biodiversity, trophic network and human health. For this purpose, introduction of constructed wetlands (CWs) between natural aquatic ecosystems and industrialised zones or catchments is a promising strategy for eco-remediation. Analysis of the literature has shown that further research must be done to improve CW design, selection and management of wetland plant species and catchment organisation, in order to ensure the effectiveness of CWs in Mediterranean environments. Firstly, the parameters of basin design that have the greatest influence on metal removal processes must be identified, in order to better focus rhizospheric processes on specific purification objectives. We have summarised in a single diagram the relationships between the design parameters of a CW basin and the physico-chemical and biological processes of metal removal, on the basis of 21 mutually consistent papers. Secondly, in order to optimise the selection and distribution of helophytes in CWs, it is necessary to identify criteria of choice for the plant species that will best fit the remediation objectives and environmental and economic constraints. We have analysed the factors determining plant metal uptake efficiency in CWs on the basis of a qualitative meta-analysis of 13 studies with a view to determine whether the part played by metal uptake by plants is relevant in comparison with the other removal processes. Thirdly, we analysed the parameters to consider for establishing suitable management strategies for CWs and how they affect the whole CW design process. Finally, we propose monitoring and policy measures to facilitate the integration of CWs within Mediterranean industrialised catchments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Quantifying, Analysing and Modeling Rockfall Activity in two Different Alpine Catchments using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M.

    2011-12-01

    Rockfall processes play a major role as a natural hazard, especially if the rock faces are located close to infrastructure. However these processes cause also the retreat of the steep rock faces by weathering and the growth of the corresponding talus cones by routing debris down the talus cones. That's why this process plays also an important role for the geomorphic system and the sediment budget of high mountain catchments. The presented investigation deals with the use of TLS for quantification and for analysis of rockfall activity in two study areas located in the Alps. The rockfaces of both catchments and the corresponding talus cones were scanned twice a year from different distances. Figure 1 shows an example for the spatial distribution of surface changes at a rockface in the Northern Dolomites between 2008 and 2010. The measured surface changes at this location yields to a mean rockwall retreat of 0.04 cm/a. But high resolution TLS data are not only applicable to quantify rockfall activity they can also be used to characterize the surface properties of the corresponding talus cones and the runout distances of bigger boulders and this can lead to a better process understanding. Therefore the surface roughness of talus cones in both catchments was characterized from the TLS point clouds by a GIS approach. The resulting detailed maps of the surface conditions on the talus cones were used to improve an existing process model which is able to model runout distances on the talus cones using distributed friction parameters. Beside this the investigations showed, that also the shape of the boulders has an influence on the runout distance. That's why the interrelationships between rock fragment morphology and runout distance of over 600 single boulders were analysed at the site of a large rockfall event. The submitted poster will show the results of the quantification of the rockfall activity and additionally it will show the results of the analyses of the talus cones and of the large rockfall event and applying these results to an existing rockfall model.

  3. Which catchment characteristics control the temporal dependence structure of daily river flows?

    NASA Astrophysics Data System (ADS)

    Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim

    2014-05-01

    A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete daily river flow record.

  4. Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany

    NASA Astrophysics Data System (ADS)

    Lam, Q. D.; Schmalz, B.; Fohrer, N.

    2012-05-01

    SummaryThe pollution of rivers and streams with agro-chemical contaminants has become one of the most crucial environmental problems in the world. The assessment of spatial and temporal variations of water quality influenced by point and diffuse source pollution is necessary to manage the environment sustainably in various watershed scales. The overall objectives of this study were to assess the transferability of parameter sets between lowland catchments on different scales using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to evaluate the temporal and spatial patterns of water quality in the whole catchments before and after implementation of best management practices (BMPs). The study area Kielstau catchment is located in Northern Germany as typical example of lowland - flood plain landscape. Sandy, loamy and peat soils are characteristic for this area. Land use is dominated by arable land and pasture. In this study we examined two catchment areas including Kielstau catchment 50 km2 and its subcatchment, namely Moorau, with the area of 7.6 km2. The water quality of these catchments is not only influenced by diffuse sources from agricultural areas but also by point sources from municipal wastewater treatment plants (WWTPs). Diffuse sources as well as punctual entries from the WWTPs are considered in the model set-up. For this study, the calibration and validation of the model were carried out in a daily time step for flow and nutrients. The results indicate that the parameter sets could be transferred in lowland catchments with similar environmental conditions. Shallow groundwater is the major contributor to total nitrate load in the stream accounting for about 93% of the total nitrate load, while only about 7% originates in surface runoff and lateral flow. The study also indicates that applying a spatially distributed modeling approach was an appropriate method to generate source maps showing the spatial distribution of TN load from hydrologic response units (HRUs) as well as from subbasins and to identify the crucial pollution areas within a watershed whose management practices can be improved to control more effectively nitrogen loading to water bodies.

  5. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 Catchments (Version 2.1) for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    EPA Pesticide Factsheets

    This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds based on 2010 US Census data. Densities are calculated for every block group and watershed averages are calculated for every local NHDPlusV2 catchment(see Data Sources for links to NHDPlusV2 data and Census Data). This data set is derived from The TIGER/Line Files and related database (.dbf) files for the conterminous USA. It was downloaded as Block Group-Level Census 2010 SF1 Data in File Geodatabase Format (ArcGIS version 10.0). The landscape raster (LR) was produced based on the data compiled from the questions asked of all people and about every housing unit. The (block-group population / block group area) and (block-group housing units / block group area) were summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description). Using a riparian buffer(see Process Steps), statistics were generated for areas within each catchment that are within 100 meters of the stream reach in an attempt to evaluate for the riparian zone.

  6. Soil pipe flow tracer experiments: 1. Connectivity and transport characteristics

    USDA-ARS?s Scientific Manuscript database

    Much debate has occurred in catchment hydrology regarding the connectivity of flow paths from upslope areas to catchment outlets. This study was conducted in two catchments, one with three upper branches, in a loess soil with a fragipan that fosters lateral flow and exhibits an extensive distributio...

  7. Potential of remotely-sensed data for mapping sediment connectivity pathways and their seasonal changes in dryland environments

    NASA Astrophysics Data System (ADS)

    Foerster, Saskia; Wilczok, Charlotte; Brosinsky, Arlena; Kroll, Anja; Segl, Karl; Francke, Till

    2014-05-01

    Many drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity relates to the physical transfer of sediment through a drainage basin (Bracken and Croke 2007). The identification of sediment source areas and the way they connect to the channel network are essential to environmental management (Reid et al. 2007), especially where high erosion and sediment delivery rates occur. Vegetation cover and its spatial and temporal pattern is one of the main factors affecting sediment connectivity. This is particularly true for patchy vegetation covers typical for dryland environments. While many connectivity studies are based on field-derived data, the potential of remotely-sensed data for sediment connectivity analyses has not yet been fully exploited. Recent advances in remote sensing allow for quantitative, spatially explicit, catchment-wide derivation of surface information to be used in connectivity analyses. These advances include a continuous increase in spatial image resolution to comprise processes at the plot to hillslope to catchment scale, an increase in the temporal resolution to cover seasonal and long-term changes and an increase in the spectral resolution enabling the discrimination of dry and green vegetation fractions from soil surfaces in heterogeneous dryland landscapes. The utilization of remotely-sensed data for connectivity studies raises questions on what type of information is required, how scale of sediment flux and image resolution match, how the connectivity information can be incorporated into water and sediment transport models and how this improves model predictions. The objective of this study is to demonstrate the potential of remotely-sensed data for mapping sediment connectivity pathways and their seasonal change at the example of a mesoscale dryland catchment in the Spanish Pyrenees. Here, sediment connectivity pathways have been mapped for two adjacent sub-catchments (approx. 70 km²) of the Isábena River in different seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. Fractional cover of green and dry vegetation, bare soil and rock were derived by applying a Multiple Endmember Spectral Mixture Analysis approach applied to a hyperspectral image dataset. Sediment connectivity was mapped using the Index of Connectivity (Borselli et al. 2008), in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighing factor (in this study, the cover and management factor of the RUSLE). The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover but also on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in summer than in spring. The studied sub-catchments show a slightly different connectivity behaviour reflecting the different land cover proportions and their spatial configuration. Future work includes the incorporation of sediment connectivity information into a hydrological model (WASA-SED, Mueller et al. 2010) to better reflect connectivity processes and testing the sensitivity of the model to different input data.

  8. Catchment land use predicts benthic vegetation in small estuaries

    PubMed Central

    Warry, Fiona Y.; Reich, Paul; Mac Nally, Ralph; Woodland, Ryan J.

    2018-01-01

    Many estuaries are becoming increasingly eutrophic from human activities within their catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such data are expensive and time consuming to obtain. We compared the percent of fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land within the catchment was the best predictor of the proportion of macroalgae within the estuaries studied. There was a transition to a dominance of macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of estuaries to catchment land use. PMID:29473004

  9. Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera

    NASA Astrophysics Data System (ADS)

    Bellin, N.; Vanacker, V.; Kubik, P. W.

    2014-03-01

    The tectonic control on landscape morphology and long-term denudation is largely documented for settings with high uplift rates. Relatively little is known about the rates of geomorphic response in areas of low tectonic uplift. Here, we evaluate spatial variations in denudation of the Spanish Betic Cordillera based on cosmogenic 10Be-derived denudation rates. Denudation rates are compared to published data on rock uplift and exhumation of the Betic Cordillera to evaluate steady-state topography. The spatial patterns of catchment-wide denudation rates (n=20) are then analysed together with topographic metrics of hillslope and channel morphology. Catchments draining the Betic ranges have relatively low denudation rates (64±54 mm kyr), but also show large variation as they range from 14 to 246 mm kyr-1. Catchment-wide denudation is linearly proportional to the mean hillslope gradient and local relief. Despite large spatial variation in denudation, the magnitude and spatial pattern of denudation rates are generally consistent with longer-term local uplift rates derived from elevated marine deposits, fission-track measurements and vertical fault slip rates. This might be indicative of a steady-state topography where rock uplift is balanced by denudation.

  10. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain

    NASA Astrophysics Data System (ADS)

    Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.

    2018-01-01

    A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.

  11. Sources of nitrogen and phosphorus emissions to Irish rivers: estimates from the Source Load Apportionment Model (SLAM)

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Deakin, Jenny; Archbold, Marie; Daly, Donal; Bruen, Michael

    2017-04-01

    More than half of the river and lake water bodies in Europe are at less than good ecological status or potential, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. In Ireland, it is evident that agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water, mitigating the potential impact on water quality. However, additional measures may be required in order to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given the on-going agricultural intensification in Ireland. Catchment management can be greatly supported by modelling, which can reduce the resources required to analyse large amounts of information and can enable investigations and measures to be targeted. The Source Load Apportionment Model (SLAM) framework was developed to support catchment management in Ireland by characterising the contributions from various sources of phosphorus (P) and nitrogen (N) emissions to water. The SLAM integrates multiple national spatial datasets relating to nutrient emissions to surface water, including land use and physical characteristics of the sub-catchments to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, peatlands, etc.). The annual nutrient emissions predicted by the SLAM were assessed against nutrient monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that the total average annual emissions to surface water in Ireland are over 2,700 t yr-1 of P and 80,000 t yr-1 of N. The SLAM results include the proportional contributions from individual sources at a range of scales from sub-catchment to national, and show that the main sources of P are from wastewater and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. The SLAM results have been incorporated into an Integrated Catchment Management process and used in conjunction with monitoring data and local knowledge during the characterisation of all Irish water bodies by the Environmental Protection Agency. This demonstrates the successful integration of research into catchment management to inform the identification of (i) the sources of nutrients at regional and local scales and (ii) the potential significant pressures and appropriate mitigation measures.

  12. Integration of sewer system maps in topographically based sub-basin delineation in suburban areas

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Branger, Flora; Braud, Isabelle; Rodriguez, Fabrice

    2010-05-01

    Due to the increase of urbanization, suburban areas experience a fast change in land use. The impact of such modifications on the watershed hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the possibility to take into account land use change, and more particularly to consider urbanized areas and anthropogenic features such as roads or ditches and their impact on the hydrological cycle. A detailed definition of the hydrographical drainage network and a corresponding delineation of sub-basins is therefore necessary as input to distributed models. Sub-basins in natural catchments are usually delineated using standard GIS based terrain analysis. The drainage network in urbanised watersheds is often modified, due to sewer systems, ditches, retention basins, etc.. Therefore, its delineation is not only determined by topography. The simple application of terrain analysis algorithms to delineate sub-basins in suburban areas can consequently lead to erroneous sub-basin borders. This study presents an improved approach for sub-basin delineation in suburban areas. It applies to small catchments connected to a sewage plant, located outside the catchment boundary. The approach assumes that subsurface flow follows topography. The method requires a digital elevation model (DEM), maps of land use, cadastre, sewer system and the location of measurement stations and retention basins. Firstly, the topographic catchment border must be defined for the concerning flow measurement station. Standard GIS based algorithms, like the d8-flow direction algorithm (O'Callaghan and Mark, 1984) can be applied using a high resolution DEM. Secondly, the artificial catchment outlets have to be determined. Each catchment has one natural outlet - the measurement station on the river- but it can have several artificial outlets towards a sewage station. Once the outlets are determined, a first approximation of the "theoretical maximal contributing area" can be made. It encompasses the whole connected sewer system and the topographic catchment boundary. The area of interest is therefore defined. The next step is the determination of the extended drainage network, consisting of the natural river, ditches, combined and separated sewer systems and retention basins. This requires a detailed analysis of sewer system data, field work (mapping of ditches and inlets into the natural river). Contacts with local authorities are also required to keep up-to-date about recent changes. Pure wastewater and drinking water pipes are not integrated in the drainage network. In order to have a unique drainage network for the model, choices might have to be made in case of several coexisting drainage pipes. The urban sub-basins are then delineated with the help of a cadastral map (Rodriguez et al., 2003) or an aerial photography. Each cadastral unit is connected to the closest drainage pipe, following the principle of proximity and gravity. The assembly of all cadastral units connected to one network reach represents one urban sub-basin. The sub-basins in the rural part are calculated using the d8 flow direction and watershed delineation algorithm with "stream burning" (Hutchinson, 1989). One sub-basin is delineated for each reach of the extended drainage network. Some manual corrections of the calculated sub-basins are necessary. Finally, the urban and rural sub-basins are merged by subtraction of the urban area from the rural area and subsequent union of both maps. This method was applied to the Chaudanne catchment, a sub-basin of the Yzeron catchment (ca. 4 km2) in the suburban region of Lyon city, France. The method leads to a 30 % extended catchment area, as compared to the topographic catchment area. For each river inlet the sub-basin area could be determined, as well as for each retention basin. This information can be directly used for the dimensioning of retention basins, pipe diameters, etc.

  13. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  14. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water/heat budgets, and simulated the change of water/heat dynamics by human activity in order to help decision-making on sustainable development in the catchment.

  15. Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of Peatland

    USGS Publications Warehouse

    Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.

    2000-01-01

    In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.

  16. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As mineralization were added to anomaly class and also one catchment basin with known As occurrence was highlighted as anomalous using new approach. The results demonstrated the usefulness of considering geomorphological parameters in dealing with dilution phenomenon in a catchment basin.

  17. An empirical analysis of the impact of choice on waiting times.

    PubMed

    Siciliani, Luigi; Martin, Steve

    2007-08-01

    Policy-makers often claim that enhancing patient choice induces more competition among hospitals and may therefore reduce waiting times. This paper tests this claim using 120 English NHS hospitals over the period 1999-2001. Several proxies for the degree of choice (or competition) are constructed including: (a) the number of hospitals within the catchment area of each hospital; (b) the number of hospitals in the catchment area of each hospital standardised by the population of the catchment area; (c) the inverse of the Herfindahl index (or 'the number of effective competitors'). Several control variables are included: the availability of doctors, junior doctors, nurses, and other personnel; the availability of acute beds; the emergency admission rate; the day-case rate; the average length of inpatient stay; an indicator of case-mix; and mortality and re-admission rates. We find that more choice is significantly associated with lower waiting times at the sample mean (five hospitals) although the quantitative effect is modest: an extra hospital in a catchment area will only reduce waiting by at most a few days (or 1-2% reduction in waiting). There is also some evidence that increases in choice can boost waiting times when the degree of choice is very high (i.e. more than 11 hospitals are included in the catchment area). Copyright 2007 John Wiley & Sons, Ltd.

  18. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Shakespeare, B.; Gooseff, M. N.

    2005-12-01

    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  19. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians.

    PubMed

    Luo, Wei; Qi, Yi

    2009-12-01

    This paper presents an enhancement of the two-step floating catchment area (2SFCA) method for measuring spatial accessibility, addressing the problem of uniform access within the catchment by applying weights to different travel time zones to account for distance decay. The enhancement is proved to be another special case of the gravity model. When applying this enhanced 2SFCA (E2SFCA) to measure the spatial access to primary care physicians in a study area in northern Illinois, we find that it reveals spatial accessibility pattern that is more consistent with intuition and delineates more spatially explicit health professional shortage areas. It is easy to implement in GIS and straightforward to interpret.

  20. A Needs Assessment of Phoenix South Catchment Area Children: The Responses of Parents, Neighbors, and Teachers.

    ERIC Educational Resources Information Center

    Balk, David

    Summarized in this document are results from a survey conducted from 1975 to 1977 with parents, neighbors, and fifth-grade teachers as part of a needs assessment of Phoenix, Arizona, South Catchment Area children. A questionnaire consisting of 34 items, generated from studies reviewed in the area of children's behavioral symptoms and strengths,…

  1. Contribution of rainfall, snow and ice melt to the hydrological regime of the Arve upper catchment and to severe flood events

    NASA Astrophysics Data System (ADS)

    Lecourt, Grégoire; Revuelto, Jesús; Morin, Samuel; Zin, Isabella; Lafaysse, Matthieu; Condom, Thomas; Six, Delphine; Vionnet, Vincent; Charrois, Luc; Dumont, Marie; Gottardi, Frédéric; Laarman, Olivier; Coulaud, Catherine; Esteves, Michel; Lebel, Thierry; Vincent, Christian

    2016-04-01

    In Alpine catchments, the hydrological response to meteorological events is highly influenced by the precipitation phase (liquid or solid) and by snow and ice melt. It is thus necessary to simulate accurately the snowpack evolution and its spatial distribution to perform relevant hydrological simulations. This work is focused on the upper Arve Valley (Western Alps). This 205 km2 catchment has large glaciated areas (roughly 32% of the study area) and covers a large range of elevations (1000-4500 m a.s.l.). Snow presence is significant year-round. The area is also characterized by steep terrain and strong vegetation heterogeneity. Modelling hydrological processes in such a complex catchment is therefore challenging. The detailed ISBA land surface model (including the Crocus snowpack scheme) has been applied to the study area using a topography based discretization (classifying terrain by aspect, elevation, slope and presence of glacier). The meteorological forcing used to run the simulations is the reanalysis issued from the SAFRAN model which assimilates meteorological observations from the Meteo-France networks. Conceptual reservoirs with calibrated values of emptying parameters are used to represent the underground water storage. This approach has been tested to simulate the discharge on the Arve catchment and three sub-catchments over 1990-2015. The simulations were evaluated with respect to observed water discharges for several headwaters with varying glaciated areas. They allow to quantify the relative contribution of rainfall, snow and ice melt to the hydrological regime of the basin. Additionally, we present a detailed analysis of several particular flood events. For these events, the ability of the model to correctly represent the catchment behaviour is investigated, looking particularly to the relevance of the simulated snowpack. Particularly, its spatial distribution is evaluated using MODIS snow cover maps, punctual snowpack observations and summer glacier mass balance estimations.

  2. Relationship between land use and water quality in Pesanggrahan River

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  3. Research in karst aquifers developed in high-mountain areas combining KARSYS models with springs discharge records. Picos de Europa, Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Meléndez, Mónica; Malard, Arnauld; Jiménez-Sánchez, Montserrat; Heredia, Nemesio; Jeannin, Pierre-Yves; García-Sansegundo, Joaquín

    2014-05-01

    The study of karst aquifers developed in high-mountain areas is quite complex since the application of many techniques of hydrogeology in these areas is difficult, expensive, and requires many hours of field work. In addition, the access to the study area is usually conditioned by the orography and the meteorological conditions. A pragmatic approach to study these aquifers can be the combination of geometric models of the aquifer with the monitoring of the discharge rate of springs and the meteorological records. KARSYS approach (Jeannin et al. 2013) allows us to elaborate a geometric model of karst aquifers establishing the boundaries of the groundwater bodies, the main drainage axes and providing evidences of the catchment delineation of the springs. The aim of this work is to analyse the functioning of the karst aquifer from the western and central part of the Picos de Europa Mountains (Spain) combining the KARSYS approach, the discharge record from two springs and the meteorological records (rain, snow and temperature). The Picos de Europa (North Spain) is a high-mountains area up to 2.6 km altitude with 2,500 mm/year of precipitations. The highest part of these mountains is covered by snow four to seven months a year. The karst aquifer is developed in Carboniferous limestone which is strongly compartmentalized in, at least, 17 groundwater bodies. The method of work includes: 1) the elaboration of a hydrogeological 3D model of the geometry of the karst aquifers by KARSYS approach, 2) the definition of the springs catchment areas based on the hydrogeological 3D model, 3) the selection of two representative springs emerging from the aquifers to study it, 4) the continuous monitoring of water levels in two karst springs since October 2013, 5) the transformation of the water level values to flow values using height-stream relation curves constructed by measures of the spring discharge, and 5) the comparison of the spring discharge rate records and meteorological measurements with the geometry, extension and elevation of the springs catchment areas. This comparison allows us to characterize the functioning of the karst aquifer, validating the dimensioning of the catchment, identify other overflow springs, etc. Pressure sensors have been placed into caves of springs with the purpose of establishing quantitative relations between hydraulic heads and discharge rates in these aquifers. Jeannin et al. 2013. Environmental Earth Sciences, 69, 999-1013.

  4. A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.

    PubMed

    Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K

    2012-01-01

    Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (∼50,000mg/l), horticulture (∼3000mg/l), dryland cropping (∼2000mg/l), cotton (∼600mg/l) and grazing on native pastures (∼300mg/l). The highest median TN concentrations are from horticulture (∼32,000μg/l), cotton (∼6500μg/l), bananas (∼2700μg/l), grazing on modified pastures (∼2200μg/l) and sugar (∼1700μg/l). For TP it is forestry (∼5800μg/l), horticulture (∼1500μg/l), bananas (∼1400μg/l), dryland cropping (∼900mg/l) and grazing on modified pastures (∼400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Rockfall catchment area design guide : metric edition : appendices.

    DOT National Transportation Integrated Search

    2001-12-01

    The appendices belong to "Rockfall catchment area design guide : metric edition". : The data gathered from an exhaustive research project consisting of rolling a total of approximately 11,250 rocks off vertical; 4V:1H;2V;1H;1.33V:1H;1.0V:1.0H slopes ...

  6. Historical land-use influences the long-term stream turbidity response to a wildfire.

    PubMed

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  7. Hydrological interaction between glacier and páramos in the tropical Andes: implications for water resources availability

    NASA Astrophysics Data System (ADS)

    Villacís, Marcos; Cadier, Eric; Mena, Sandra; Anaguano, Marcelo; Calispa, Marlon; Maisisncho, Luis; Galárraga, Remigio; Francou, Bernard

    2010-05-01

    Preliminary hydro glacier estimates indicate that glacier contribution to the average annual consumption (5.6 m3 s-1) of the city of Quito (Capital of Ecuador, ~2'500.000 inhabitants, 2800 masl) represents only about 2%-4% of the total supply for human consumption. However, at the local level at the Antizana volcano (0°28'S, 78°09'W), the mass balance analysis of the system composed by the Humboldt catchment (area of 15.1 km2, 15% of glaciarized area, 5% of moraines area, 80% of the area is páramo-endemic ecosystem of the tropical Andes, range from 5670 masl to 4000 masl) and Los Crespos catchment (area of 2.4 km2, 67% glaciarized area, 27% moraines area, range from 5670 masl to 4500 masl), which is nested into the Humboldt catchment, allows us to identify that due to the presence of the glacier reservoirs there is an additional contribution of 24% to the annual volume at the Humboldt catchment and it helps to regulate the runoff during the dry season, where the daily additional glacier contribution from November to February in some cases could reach t 40%. The Humboldt catchment has similar physiographic characteristics than the sites where new diversions will be built in the future in order to satisfy the increasing demand of water for human consumption of the city of Quito and its surrounding populations. Based on detail hydrological observations (every 15 minutes measurements) during 2005 to 2009 and sporadic environmental trace analysis during the same period, the annual percentage of glacier contribution from the Humboldt catchment could potentially be as high as 37% due in part to the glacier melt contribution that gets infiltrated over 4750 masl it is then delivered around 4100 masl through underground circulation. Some of the sites where the glacier contribution reaches de surface has been identified through field work and the glacier origin of this water have been confirmed using a conductivity measurement, which seems to be a good indicator in when there is low precipitation. This additional contribution from glacier melt will reinforce the capacity to transform precipitation into runoff at the saturation zone of this high land catchment. As a consequence, the hydrologic behavior of these catchments could be negatively affected by disappearing glacier contribution under the climate change context predicted by the IPCC for this region. This could be also the case for catchments from other glacierized mountains located in the tropical Andes, where water supply for surrounding populations, high land ecosystems (locally known as páramos), and in some cases other economic activities such as agriculture will be in jeopardy.

  8. Research on Multi Hydrological Models Applicability and Modelling Data Uncertainty Analysis for Flash Flood Simulation in Hilly Area

    NASA Astrophysics Data System (ADS)

    Ye, L.; Wu, J.; Wang, L.; Song, T.; Ji, R.

    2017-12-01

    Flooding in small-scale watershed in hilly area is characterized by short time periods and rapid rise and recession due to the complex underlying surfaces, various climate type and strong effect of human activities. It is almost impossible for a single hydrological model to describe the variation of flooding in both time and space accurately for all the catchments in hilly area because the hydrological characteristics can vary significantly among different catchments. In this study, we compare the performance of 5 hydrological models with varying degrees of complexity for simulation of flash flood for 14 small-scale watershed in China in order to find the relationship between the applicability of the hydrological models and the catchments characteristics. Meanwhile, given the fact that the hydrological data is sparse in hilly area, the effect of precipitation data, DEM resolution and their interference on the uncertainty of flood simulation is also illustrated. In general, the results showed that the distributed hydrological model (HEC-HMS in this study) performed better than the lumped hydrological models. Xinajiang and API models had good simulation for the humid catchments when long-term and continuous rainfall data is provided. Dahuofang model can simulate the flood peak well while the runoff generation module is relatively poor. In addition, the effect of diverse modelling data on the simulations is not simply superposed, and there is a complex interaction effect among different modelling data. Overall, both the catchment hydrological characteristics and modelling data situation should be taken into consideration in order to choose the suitable hydrological model for flood simulation for small-scale catchment in hilly area.

  9. The impact of land use and season on the riverine transport of mercury into the marine coastal zone.

    PubMed

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Szubska, Marta; Romanowski, Andrzej; Falkowska, Lucyna

    2014-11-01

    In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.

  10. Concentration-discharge relationships for variably sized streams in Florida: Patterns and drivers in long-term catchment studies

    NASA Astrophysics Data System (ADS)

    Diamond, J.; Cohen, M.

    2012-12-01

    Catchment-scale analyses can provide important insight into the processes governing solute sources, transport and storage. Understanding solute dynamics is vital for water management both for accurate predictions of chemical fluxes as well as ecosystem responses to them. This project synthesized long-term (>15 years) hydrochemical data from 80 variably sized (101-105 m2) watersheds in Florida. Our goal was to evaluate scaling effects on flow-solute relationships, and determine the factors that control observed inter-catchment variation. We obtained long term records of a variety of chemical parameters include color, nutrients (N and P), and geogenic solutes (Ca, Si, Mg, Na, Cl) from stations where chemistry and flow data were matched. Catchment attributes (land use, terrain, surface geology) were obtained for each stream as potential covariates. Concentration-discharge relationships were modeled as power functions, the exponents (b) of which were categorized into three end-member scenarios: (1) b>0, or chemodynamic conditions, where increased discharge increases concentration, (2) b=0, or chemostatic conditions, where concentration is independent of discharge, and (3) b<0, or dilution conditions, where increased discharge decreases concentrations. Color was strongly chemodynamic, while geogenic solutes tended to be chemostatic;nutrient-flow relationships varied substantially (from dilution to chemodynamic) suggesting important ancillary controls. To assess between-site variability, power function exponents were compared against land use and catchment area. These results indicate that watersheds dominated by urban land use exhibit stronger dilution effects for most solutes while watersheds dominated by agricultural land use were generally chemostatic particularly for nutrients. This synthesis approach to understanding controls on observed concentration-discharge relationships is crucial to understanding the dynamics and early-warning indicators of anthropogenically-induced transition from dilution to chemostatic behavior.

  11. Climate-scale modelling of suspended sediment load in an Alpine catchment debris flow (Rio Cordon-northeastern Italy)

    NASA Astrophysics Data System (ADS)

    Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni

    2018-05-01

    Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.

  12. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    NASA Astrophysics Data System (ADS)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (<100 sq-km) urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent investigations into carbon fluxes in British rivers have focused on long term increases in DOC in rural and predominantly upland catchments. Our results suggest that research is needed into understanding long term variations in inorganic carbon concentration, as well as total (organic and inorganic) carbon fluxes from British rivers, to obtain total carbon loads. In particular, we provide evidence that DIC concentrations may be greater in urbanized catchments compared to equivalent non-urban catchments, with the implication that increasing urbanization in the future will see increases in riverine DIC and a decrease in the strength of any DOC DIC anti correlation. Further studies of urban catchment DIC sources, within stream processing, long term trends, and potential ecological impacts, are required.

  13. Catchment virtual observatory for sharing flow and transport models outputs: using residence time distribution to compare contrasting catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald

    2017-04-01

    The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison

  14. Developing an Integrated Understanding of the Relationship Between Urban Wastewater Flows and Downstream Reuse in Irrigated Agriculture: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Thebo, A.; Nelson, K.; Drechsel, P.; Lambin, E.

    2015-12-01

    Globally, less than ten percent of collected wastewater receives any form of treatment. This untreated wastewater is discharged to surface waters where it is diluted and reused by farmers and municipalities downstream. Without proper safeguards, the use of these waters can present health risks. However, these same waters also provide a reliable and nutrient rich water source for farmers, often in regions where water is already physically or economically scarce. Case studies show the prevalence and diversity of motivations for indirect reuse, but are difficult to interpret in aggregate at the global scale. This study quantifies the global extent and characteristics of the reuse of wastewater in irrigated agriculture through three main components: Quantifying the global extent of urban and peri-urban irrigated and rainfed croplands; Evaluating the contribution of urban wastewater production to available blue water at the catchment scale; Developing an irrigation water quality indicator and classifying irrigated croplands downstream of cities on the basis of this indicator. Each of these components integrates several global scale spatial datasets including MIRCA2000 (irrigated croplands); GDBD (stream channels and catchments); and compilations of water use, sewerage and wastewater treatment data. All analyses were conducted using spatial analysis tools in ArcGIS and Python. This analysis found that 60 percent of all irrigated croplands (130 Mha) were within 20 km of cities. Urban irrigated croplands were found to be farmed with greater cropping intensity (1.48) as compared to non-urban irrigated croplands. Ten percent of the global catchment area is in catchments where domestic wastewater constitutes greater than five percent of available blue water. In contrast, 25 percent of irrigated croplands are located in catchments where domestic wastewater exceeds five percent of available blue water. Particularly in the water scarce regions of North Africa and East Asia, a strong correlation between the volume of urban wastewater production and the area of peri-urban irrigated croplands was found. A better understanding of global reliance on the indirect reuse of untreated wastewater in irrigated agriculture can provide valuable insights for large-scale water allocation planning and risk mitigation efforts.

  15. The effect of topography and rock type on soil cation contents and stream solute and phosphorus concentrations of streams in the southwestern Brazilian Amazon basin.

    NASA Astrophysics Data System (ADS)

    Biggs, T. W.; Dunne, T.; Holmes, K.; Martinelli, L. A.

    2001-12-01

    Topography plays an important role in determining soil properties, stream solute concentrations and landscape denudation rates. Stallard (1985) suggested that catchment denudation rates should depend on soil thickness. Areas with low slopes are limited by the rate of transport of sediment, and typically contain thick soils that prevent interaction of stream waters with underlying bedrock [Stallard 1985]. Steep areas typically have thin soils, but a lower hydrologic residence time that may prevent soil water from coming into thermodynamic equilibrium with the soil-rock complex. In a survey of streams in the Brazilian Amazon basin, Biggs et al. (2001) found that stream solute concentrations correlate with soil cation contents in the humid tropics, but the mechanism underlying the correlation has not been determined. We combine chemical analyses of water samples from ~40 different streams with soil surveys, geology maps, and a 100m resolution DEM to examine the relationship between topography, rock type, soil cation contents, and stream solute concentrations in the Brazilian Amazon state of Rondônia. The basins are all more than 60% forested at the time of stream sampling and lie on granite-gneiss rocks, tertiary sediments, or sandstone. The catchment-averaged slope correlates positively with both soil cation contents and stream concentrations of P, Na, Ca, Mg, K, Si, ANC, and pH. Though we have no data about the relationship between soil depth and average slope, we assume an inverse correlation, so the data demonstrates that thick soils yield lower solute concentrations. Stream concentrations of Ca, Mg, ANC and pH reach a maximum at intermediate average slopes (3 degrees), suggesting that denudation rates may increase with slope up to a maximum, when the catchment becomes limited by the weathering rate of the basement rock. Catchments on mica-schists or mafic rocks have low average slopes and higher concentrations of Ca, Mg, Si, ANC, and pH than catchments on granite-gneiss, tertiary sediments or sandstone.

  16. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    PubMed

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Downscaling catchment scale flood risk to contributing sub-catchments to determine the optimum location for flood management.

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    The recent increase in flood frequency and magnitude has been hypothesised to have been caused by either climate change or land management. Field scale studies have found that changing land management practices does affect local runoff and streamflow, but upscaling these effects to the catchment scale continues to be problematic, both conceptually and more importantly methodologically. The impact on downstream flood risk is highly dependent upon where the changes are in the catchment, indicating that some areas of the catchment are more important in determining downstream flood risk than others. This is a major flaw in the traditional approach to studying the effect of land use on downstream flood risk: catchment scale hydrological models, which treat every cell in the model equally. We are proposing an alternative ideological approach for doing flood management research, which is underpinned by downscaling the downstream effect (problem i.e. flooding) to the upstream causes (contributing sub-catchments). It is hoped that this approach could have several benefits over the traditional upscaling approach. Firstly, it provides an efficient method to prioritise areas for land use management changes to be implemented to reduce downstream flood risk. Secondly, targets for sub-catchment hydrograph change can be determined which will deliver the required downstream effect. Thirdly, it may be possible to detect the effect of land use changes in upstream areas on downstream flood risk, by weighting the areas of most importance in hydrological models. Two methods for doing this downscaling are proposed; 1) data-based statistical analysis; and 2) hydraulic modelling-based downscaling. These will be outlined using the case study of the River Eden, Cumbria, NW England. The data-based methodology uses the timing and magnitude of floods for each sub-catchment. Principal components analysis (PCA) is used to simplify sub-catchment interactions and optimising stepwise regression is used to predict downstream flood magnitude from the significant principal components. Two particular sub-catchments, the Eamont and the Upper Eden were highlighted as explaining the highest proportion of downstream flood risk, with 21.0% and 19.6% respectively. This approach uses the concept of data mining, whereby commonly available discharge data is used in an innovative way to learn about catchment behaviour. An alternative downscaling approach is hydraulic modelling whereby the input hydrographs from each tributary are changed in turn, both in terms of the magnitudes and the timing of the flows. This basic scenario testing approach can be used to assess the sensitivity of downstream flood risk to upstream contributing tributaries. This approach also highlighted the Upper Eden and Eamont as the most sensitive sub-catchments. A 25% reduction in the flows from these sub-catchments resulted in a 33.1cm and 21.9cm stage reduction downstream respectively, while an 8 hour delay of the peak flow caused a 32.3cm and 27.4cm decrease in downstream stage respectively. This alternative flood management approach is not a replacement to traditional hydrological modelling (upscaling), but a pre-step which allows for more focussed and informed investigation of land management scenarios, in the area where they are most likely to have beneficial impacts on downstream flooding.

  18. Predicting storm runoff from different land-use classes using a geographical information system-based distributed model

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.

    2006-02-01

    A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.

  19. An analysis of the chemical and microbiological quality of ground water from boreholes and shallow wells in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Moyo, N. A. G.

    Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the recommended levels in a few areas under irrigation. Most of the chloride is probably from agricultural activity particularly the application of potassium chloride. Fluoride levels were particularly elevated in the Gwayi catchment area and this is because of the geology of the area. There was no evidence of microbial contamination in all the boreholes sampled as the total coliform, faecal coliforms, heterotrophs count was nil. However, severe microbial contamination was found in the wells especially those in clay areas.

  20. Catchment controls on water temperature and the development of simple metrics to inform riparian zone management

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Wilby, Robert

    2015-04-01

    Water temperature is a key water quality parameter and is critical to aquatic life Therefore, rising temperatures due to climate and environmental change will have major consequences for river biota. As such, it is important to understand the environmental controls of the thermal regime of rivers. The Loughborough University TEmperature Network (LUTEN) consists of a distributed network of 25 sites along 40 km of two rivers in the English Peak District, from their source to confluence. As a result, the network covers a range of hydrological, sedimentary, geomorphic and land-use conditions. At each site, air and water temperature have been recorded at a 15-minute resolution for over 4 years. Water temperature is spatially patchy and temporally variable in the monitored rivers. For example, the annual temperature range at Beresford Dale is over 18° C, whereas 8 km downstream it is less than 8° C. This heterogeneity leads to some sites being more vulnerable to future warming than others. The sensitivity of sites to climate was quantified by comparing the parameters of logistic regression models, constructed at each site, that relate water temperature to air temperature. These analyses, coupled with catchment modelling suggest that reaches that are surface-water dominated with minimal shade and relatively low water volumes are most susceptible to warming. Such reaches tended to occur at intermediate distances from rivers source in the monitored catchments. Reaches that were groundwater dominated had relatively stable thermal regimes, which were relatively unaffected by inter-annual changes in climatic conditions. Such areas could provide important thermal refuge to many organisms, which is supported by monitoring of the invertebrate community in the catchment. The phenology (i.e. timing of life events) of some species remained consistent between years in a river reach with a stable thermal regime, but changed markedly in other areas of the river. Consequently, areas of thermal refuge could be important in the context of future climate change, potentially maintaining populations of animals excluded from other parts of the river during hot summer months. International management strategies to mitigate rising temperatures tend to focus on the protection, enhancement or creation of riparian shade. Simple metrics derived from catchment landscape models, the heat capacity of water, and modelled solar radiation receipt, suggest that approximately 1 km of deep riparian shading is necessary to offset a 1° C rise in temperature in the monitored catchments. A similar value is likely to be obtained for similar sized rivers at similar latitudes. Trees would take 20 years to attain sufficient height to shade the necessary solar angles. However, 1 km of deep riparian shade will have substantial impacts on the hydrological and geomorphological functioning of the river, beyond simply altering the thermal regime. Consequently, successful management of rising water temperature in rivers will require catchment scale consideration, as part of an integrated management plan.

  1. The 87Sr/86Sr aquatic isoscape of the Danube catchment from the source to the mouth as tool for studying fish migrations

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Tchaikovsky, Anastassiya; Irrgeher, Johanna; Waidbacher, Herwig; Prohaska, Thomas

    2014-05-01

    Isoscapes - spatially distributed isotope patterns across landscapes - are increasingly used as important basis for ecological studies. The natural variation of the isotopic abundances in a studied area bears the potential to be used as natural tracer for studying e.g. migrations of animals or prey-predator relations. The 87Sr/86Sr ratio is one important tracer, since it is known to provide a direct relation of biological samples to geologically distinct regions, as Sr isotopes are incorporated into living tissues as a proxy for calcium and taken up from the environment without any significant fractionation. Although until now the focus has been mainly set on terrestrial systems, maps for aquatic systems are increasingly being established. Here we present the first 87Sr/86Sr aquatic isoscape of the Danube catchment, the second largest river catchment in Europe, from near its source starting at river km 2581 in Germany down to its mouth to river km 107 in Romania. The total length of the river Danube is 2780 km draining a catchment area 801 463 km2 (10 % of the European continent). The major purpose of this study was to assess the potential of the 87Sr/86Sr isotope ratio to be used as tool for studying fish migrations at different scales in the entire Danube catchment. Within the Joint Danube Research 3 (JDS 3), the biggest scientific multi-disciplinary river expedition of the World in 2013 aiming at the assessment of the ecological status and degree of human alterations along the river Danube, water samples were taken at 68 pre-defined sites along the course of the river Danube including the major tributaries as a basis to create the so called 'Isoscape of the Danube catchment'. The determination of 87Sr/86Sr isotope ratio in river water was performed by multicollector-sector field-inductively coupled plasma-mass spectrometry (MC-SF-ICP-MS). The JDS 3 data were combined with existing data from prior studies conducted within the Austrian part of the Danube catchment. Finally, the dominating geological formations in the catchment upstream of the sampling site were determined using ArcGIS. Analyses of water samples yielded several 'Isozones' along the course of the Danube, indicating diverse geological conditions. Studying migration phenomena of fish using natural isotopic marks in hard parts is especially possible between these 'Isozones'. In geologically similar regions with little differences in the 87Sr/86Sr isotope ratio, element distributions or artificial marking methods (tagging, spiking) can be used complementarily. A significant positive relationship between the 87Sr/86Sr ratio in river water and the proportion of siliceous geological formations in the catchment was found. Moreover, the 87Sr/86Sr isotope ratio along the Austrian part of the Danube and its tributaries proved to be stable between seasons. The strong relation of the geology of a catchment to the 87Sr/86Sr isotope ratios in river water provides the possibility to predict the 87Sr/86Sr ratios in river water by the dominating geology in river catchments, for an estimation of the general applicability of the 87Sr/86Sr ratio in European rivers to fish ecological questions.

  2. Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will

    2016-04-01

    One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (<0.4m) on steeper limestone terrain. The catchment has an average slope of 9° , but includes steep slopes of up to 46° . The sediment fingerprinting methodology involved characterizing the chemical properties of sediments from individual upstream sub-catchments and comparing these to the properties of downstream transported fluvial material. Three fine bed-sediment sampling surveys were carried out after (i) a long dry period (21/09/2012), (ii) a winter storm of relatively high rainfall intensity (23.2mm day-1) (19/02/2015), and (iii) after several storms in Spring (22/04/2015). All samples were oven-dried (at 38° C) and sieved to obtain different particle size fractions (0.125-2.000mm, 0.063-0.125mm and <0.063mm). Seventeen stream sites were sampled plus a sample of sediment from a road surface immediately it entered the stream network. The elemental composition (40 elements) of each size fraction was assessed using a Niton X-ray fluorescence elemental analyser. Results show that rock type has a profound influence on the geochemical properties of bed-sediments. Catchment outlet sediment collected after the summer and a storm of high rainfall intensity following dry weather displayed geochemical properties closer to those of sediment from sandstone sub-catchments, and in particularly sediment from the enterprise park under construction. After the storm that followed very wet weather, however, limestone areas became of much greater significance as sediment sources, probably because of the high soil saturation. At limestone stream sites receiving runoff from the newly constructed road, fine bed-sediment geochemistry was found to be similar to that of road sediment, indicating a high contribution of this source. These results are supported by spatio-temporal differences in streamflow and suspended sediment concentrations at instrumented monitoring stations. It is concluded that this methodology represents a potentially useful tool to enable river managers to detect and assess sediment sources in urbanized and partly urbanized catchments, and to supporting them in designing and implementing effective land-use mosaics and site-specific measures to mitigate erosion.

  3. Info-Gap Decision Theory for Assessing the Management of Catchments for Timber Production and Urban Water Supply

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael A.; Lindenmayer, David B.

    2007-04-01

    While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.

  4. Info-gap decision theory for assessing the management of catchments for timber production and urban water supply.

    PubMed

    McCarthy, Michael A; Lindenmayer, David B

    2007-04-01

    While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.

  5. Linearity and nonlinearity of basin response as a function of scale: Discussion of alternative definitions

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Jothityangkoon, C.; Menabde, M.

    2002-02-01

    Two uses of the terms ``linearity'' and ``nonlinearity'' appear in recent literature. The first definition of nonlinearity is with respect to the dynamical property such as the rainfall-runoff response of a catchment, and nonlinearity in this sense refers to a nonlinear dependence of the storm response on the magnitude of the rainfall inputs [Minshall, 1960; Wang et al., 1981]. The second definition of nonlinearity [Huang and Willgoose, 1993; Goodrich et al., 1997] is with respect to the dependence of a catchment statistical property, such as the mean annual flood, on the area of the catchment. They are both linked to important and interconnected hydrologic concepts, and furthermore, the change of nonlinearity with area (scale) has been an important motivation for hydrologic research. While both definitions are correct mathematically, they refer to hydrologically different concepts. In this paper we show that nonlinearity in the dynamical sense and that in the statistical sense can exist independently of each other (i.e., can be unrelated). If not carefully distinguished, the existence of these two definitions can lead to a catchment's response being described as being both linear and nonlinear at the same time. We therefore recommend separating these definitions by reserving the term ``nonlinearity'' for the classical, dynamical definition with respect to rainfall inputs, while adopting the term ``scaling relationship'' for the dependence of a catchment hydrological property on catchment area.

  6. Urbanisation impacts on storm runoff along a rural-urban gradient

    NASA Astrophysics Data System (ADS)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.

  7. Using lot quality assurance sampling to assess access to water, sanitation and hygiene services in a refugee camp setting in South Sudan: a feasibility study.

    PubMed

    Harding, Elizabeth; Beckworth, Colin; Fesselet, Jean-Francois; Lenglet, Annick; Lako, Richard; Valadez, Joseph J

    2017-08-08

    Humanitarian agencies working in refugee camp settings require rapid assessment methods to measure the needs of the populations they serve. Due to the high level of dependency of refugees, agencies need to carry out these assessments. Lot Quality Assurance Sampling (LQAS) is a method commonly used in development settings to assess populations living in a project catchment area to identify their greatest needs. LQAS could be well suited to serve the needs of refugee populations, but it has rarely been used in humanitarian settings. We adapted and implemented an LQAS survey design in Batil refugee camp, South Sudan in May 2013 to measure the added value of using it for sub-camp level assessment. Using pre-existing divisions within the camp, we divided the Batil catchment area into six contiguous segments, called 'supervision areas' (SA). Six teams of two data collectors randomly selected 19 respondents in each SA, who they interviewed to collect information on water, sanitation, hygiene, and diarrhoea prevalence. These findings were aggregated into a stratified random sample of 114 respondents, and the results were analysed to produce a coverage estimate with 95% confidence interval for the camp and to prioritize SAs within the camp. The survey provided coverage estimates on WASH indicators as well as evidence that areas of the camp closer to the main road, to clinics and to the market were better served than areas at the periphery of the camp. This assumption did not hold for all services, however, as sanitation services were uniformly high regardless of location. While it was necessary to adapt the standard LQAS protocol used in low-resource communities, the LQAS model proved to be feasible in a refugee camp setting, and program managers found the results useful at both the catchment area and SA level. This study, one of the few adaptations of LQAS for a camp setting, shows that it is a feasible method for regular monitoring, with the added value of enabling camp managers to identify and advocate for the least served areas within the camp. Feedback on the results from stakeholders was overwhelmingly positive.

  8. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    NASA Astrophysics Data System (ADS)

    Hinić, V.; Rubinić, J.; Vučković, I.; Ružić, I.; Gržetić, A.; Volf, G.; Ljubotina, M.; Kvas, N.

    2008-11-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  9. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  10. Modeling Land Use Change Impacts on Water Resources in a Tropical West African Catchment (dano, Burkina Faso)

    NASA Astrophysics Data System (ADS)

    Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.

    2015-12-01

    This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007 and 2013. A reclassification procedure of the maps permitted to assess the major land use changes in the catchment from 1990 to 2013. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during the calibration and the validation ranged between 0.9 and 0.6 for total discharge, soil moisture, and groundwater level, indicating satisfying to good agreements between observed and simulated variables. After a successful multi-criteria validation the model was run with the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment in 2013 it can be assumed that savannah was mainly converted to cropland. The increase in cropland area results from the population growth and the farming system in the catchment. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high discharge and peak flow, suggesting (i) an increase in water resources that is not available for plant growth and the population of the catchment and (ii) an alteration of flood risk for both the population within and downstream of the catchment.

  11. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  12. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken

    2013-04-01

    In Europe, flash floods mainly occur in the Mediterranean area on small catchments with a short concentration time. Anticipating this kind of events is a major issue in order to reduce the resulting damages. But for many of the impacted catchments, no data are available to calibrate and evaluate hydrological models. In this context, the aims of this study is to develop and evaluate a warning method for the Southern French Alps. This area is of particular interest, because it regroups different hydrological regimes, from purely Mediterranean to purely Alpine influences. Two main issues should be addressed: - How to define the hydrological model and its parameterization for an application in an ungauged context? - How to evaluate the final results on 'real' ungauged catchments? The first issue is a classic one. Using a 'observed' data set (154 streamflow stations with catchment areas ranging from 5 to 1000 km² and distributed rainfall available on the 1997-2006 period), we developed a regional model specifically for the studied area. For this purpose, the AIGA method, initially developed for Mediterranean catchments was adapted, in order to take into account snowmelt and to produce baseflows. Then, different parameterizations were tested, derived from different simple regionalisation techniques: - the same parameters set for the whole area defined as the median of the local calibrated parameters; - the same technique as the previous case, but by considering different sub-areas, defined as "hydro-climatically" homogeneous by previous studies; - and finally the neighbour's method. The second issue is more original. Indeed, in most studies the final evaluation is done using gauged stations as they were 'ungauged', ie keeping the at-site discharge data only for validation ant not for calibration. The main disadvantage of this approach is that the evaluation is made at the scale of the gauged catchments, which are in general greater than the catchments impacted by flash floods. Furthermore, many events are missed, since flash floods can occur very locally. In this study, we try to evaluate the results on observations collected by witnesses on 'real' ungauged catchments. The proposed method consists to use an historical data-base of flood damages reports. These data have been collected by local authorities (RTM). Finally, 139 ungauged locations were considered, where we simulated discharges for the entire 1997-2006 period. The comparison of these modelled discharges with the occurrence of an observed discharge makes it possible to determine a local 'modelled' discharge threshold above it most of the damages are observed. The pertinence of this threshold (and consequently of the model used for the simulation) is assessed by considering classical contingency statistics: probability of detection (POD), false alarm rate (FAR) and critical success index (CSI). The main advantage of this historical approach is the availability of many events in the database on very small catchments (50% less than 20 km²). The preliminary results show that on gauged basins, the base flow and the snowmelt added modules improve the performance of the AIGA method when locally calibrated. But when results are applied on real ungauged catchments, improvements become less obvious, with a small advantage for neighbour's method. These results shows the difficulty arising with ungauged catchments, specially when target catchments are smaller than the gauged 'parents'. It also illustrates the interest of the damages database used as 'proxy' data to investigate the model performances at smaller scales. This work has been done in the framework of the RHYTMME project, with the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  13. The influence of climate, topography and land-use on the hydrology of ephemeral upland catchments

    NASA Astrophysics Data System (ADS)

    Daly, E.; Webb, J.; Dresel, E.

    2016-12-01

    We report on an on-going project aimed at determining the effects of climate variability and land use change on water resources in ephemeral productive catchments. Meteorological data (including rainfall, solar radiation, air temperature, humidity and wind speed), streamflow and groundwater levels were collected continuously for over five years in seven ephemeral catchments in southeastern Australia. The catchments, dominated by either pasture for grazing (four) or Eucalyptus globulus (blue gum) plantations of different ages (three), were located in three different geological settings. Rainfall varied from higher than the long-term average of this area for the initial years of the study period to much drier than the long-term average for the last two years. Groundwater levels in the farm sites remained stable or slightly increased through the study period, while levels declined in all the plantation catchments, where evapotranspiration rates were greater than rainfall. The trees intercept groundwater recharge and in some areas of the catchments directly access groundwater. Streamflow occurred mainly during winter, with short-term flows in summer caused by sporadic large rainfall events. Despite the large annual rainfall variability, flow rates in each year were similar in most catchments, with the duration of flow being important in determining the annual flow. The frequency rather than the amount of rainfall events determines the generation of streamflow in the two catchments with steeper slopes. The effect of the tree plantations on streamflow varied from a substantial reduction in one catchment to no effect in another, where the tree rows are oriented predominantly downslope, allowing greater runoff. In the third plantation catchment, geology is the main driver of runoff due to capture into underlying karst conduits.

  14. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  15. Modelling the effects of Prairie wetlands on streamflow

    NASA Astrophysics Data System (ADS)

    Shook, K.; Pomeroy, J. W.

    2015-12-01

    Recent research has demonstrated that the contributing areas of Prairie streams dominated by depressional (wetland) storage demonstrate hysteresis with respect to catchment water storage. As such contributing fractions can vary over time from a very small percentage of catchment area to the entire catchment during floods. However, catchments display complex memories of past storage states and their contributing fractions cannot be modelled accurately by any single-valued function. The Cold Regions Hydrological Modelling platform, CRHM, which is capable of modelling all of the hydrological processes of cold regions using a hydrological response unit discretization of the catchment, was used to further investigate dynamical contributing area response to hydrological processes. Contributing fraction in CRHM is also controlled by the episodic nature of runoff generation in this cold, sub-humid environment where runoff is dominated by snowmelt over frozen soils, snowdrifts define the contributing fraction in late spring, unfrozen soils have high water holding capacity and baseflow from sub-surface flow does not exist. CRHM was improved by adding a conceptual model of individual Prairie depression fill and spill runoff generation that displays hysteresis in the storage - contributing fraction relationship and memory of storage state. The contributing area estimated by CRHM shows strong sensitivity to hydrological inputs, storage and the threshold runoff rate chosen. The response of the contributing area to inputs from various runoff generating processes from snowmelt to rain-on-snow to rainfall with differing degrees of spatial variation was investigated as was the importance of the memory of storage states on streamflow generation. The importance of selecting hydrologically and ecologically meaningful runoff thresholds in estimating contributing area is emphasized.

  16. The effects of land use and its patterns on soil properties in a small catchment of the Loess Plateau.

    PubMed

    Wang, Jun; Fu, Bo-jie; Qiu, Yang; Chen, Li-ding

    2003-03-01

    Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed; (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationship between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other area. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.

  17. Simulating nitrogen budgets in complex farming systems using INCA: calibration and scenario analyses for the Kervidy catchment (W. France)

    NASA Astrophysics Data System (ADS)

    Durand, P.

    The integrated nitrogen model INCA (Integrated Nitrogen in Catchments) was used to analyse the nitrogen dynamics in a small rural catchment in Western France. The agrosystem studied is very complex, with: extensive use of different organic fertilisers, a variety of crop rotations, a structural excess of nitrogen (i.e. more animal N produced by the intensive farming than the N requirements of the crops and pastures), and nitrate retention in both hydrological stores and riparian zones. The original model features were adapted here to describe this complexity. The calibration results are satisfactory, although the daily variations in stream nitrate are not simulated in detail. Different climate scenarios, based on observed climate records, were tested; all produced a worsening of the pollution in the short term. Scenarios of alternative agricultural practices (reduced fertilisation and catch crops) were also analysed, suggesting that a reduction by 40% of the fertilisation combined with the introduction of catch crops would be necessary to stop the degradation of water quality.

  18. Flash Flood Type Identification within Catchments in Beijing Mountainous Area

    NASA Astrophysics Data System (ADS)

    Nan, W.

    2017-12-01

    Flash flood is a common type of disaster in mountainous area, Flash flood with the feature of large flow rate, strong flushing force, destructive power, has periodically caused loss to life and destruction to infrastructure in mountainous area. Beijing as China's political, economic and cultural center, the disaster prevention and control work in Beijing mountainous area has always been concerned widely. According to the transport mechanism, sediment concentration and density, the flash flood type identification within catchment can provide basis for making the hazards prevention and mitigation policy. Taking Beijing as the study area, this paper extracted parameters related to catchment morphological and topography features respectively. By using Bayes discriminant, Logistic regression and Random forest, the catchments in Beijing mountainous area were divided into water floods process, fluvial sediment transport process and debris flows process. The results found that Logistic regression analysis showed the highest accuracy, with the overall accuracy of 88.2%. Bayes discriminant and Random forest had poor prediction effects. This study confirmed the ability of morphological and topography features to identify flash flood process. The circularity ratio, elongation ratio and roughness index can be used to explain the flash flood types effectively, and the Melton ratio and elevation relief ratio also did a good job during the identification, whereas the drainage density seemed not to be an issue at this level of detail. Based on the analysis of spatial patterns of flash flood types, fluvial sediment transport process and debris flow process were the dominant hazards, while the pure water flood process was much less. The catchments dominated by fluvial sediment transport process were mainly distributed in the Yan Mountain region, where the fault belts were relatively dense. The debris flow process prone to occur in the Taihang Mountain region thanks to the abundant coal gangues. The pure water flood process catchments were mainly distributed in the transitional mountain front.

  19. Modeling nonlinear responses of DOC transport in boreal catchments in Sweden

    NASA Astrophysics Data System (ADS)

    Kasurinen, Ville; Alfredsen, Knut; Ojala, Anne; Pumpanen, Jukka; Weyhenmeyer, Gesa A.; Futter, Martyn N.; Laudon, Hjalmar; Berninger, Frank

    2016-07-01

    Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10-68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.

  20. Material-balance assessment of the New Albany-Chesterian petroleum system of the Illinois basin

    USGS Publications Warehouse

    Lewan, M.D.; Henry, M.E.; Higley, D.K.; Pitman, Janet K.

    2002-01-01

    The New Albany-Chesterian petroleum system of the Illinois basin is a well-constrained system from which petroleum charges and losses were quantified through a material-balance assessment. This petroleum system has nearly 90,000 wells penetrating the Chesterian section, a single New Albany Shale source rock accounting for more than 99% of the produced oil, well-established stratigraphic and structural frameworks, and accessible source rock samples at various maturity levels. A hydrogen index (HI) map based on Rock-Eval analyses of source rock samples of New Albany Shale defines the pod of active source rock and extent of oil generation. Based on a buoyancy-drive model, the system was divided into seven secondary-migration catchments. Each catchment contains a part of the active pod of source rock from which it derives a petroleum charge, and this charge is confined to carrier beds and reservoirs within these catchments as accountable petroleum, petroleum losses, or undiscovered petroleum. A well-constrained catchment with no apparent erosional or leakage losses is used to determine an actual petroleum charge from accountable petroleum and residual migration losses. This actual petroleum charge is used to calibrate the other catchments in which erosional petroleum losses have occurred. Petroleum charges determined by laboratory pyrolysis are exaggerated relative to the actual petroleum charge. Rock-Eval charges are exaggerated by a factor of 4-14, and hydrouspyrolysis charges are exaggerated by a factor of 1.7. The actual petroleum charge provides a more meaningful material balance and more realistic estimates of petroleum losses and remaining undiscovered petroleum. The total petroleum charge determined for the New Albany-Chesterian system is 78 billion bbl, of which 11.4 billion bbl occur as a accountable in place petroleum, 9 billion bbl occur as residual migration losses, and 57.6 billion bbl occur as erosional losses. Of the erosional losses, 40 billion bbl were lost from two catchments that have highly faulted and extensively eroded sections. Anomalies in the relationship between erosional losses and degree of erosion suggest there is potential for undiscovered petroleum in one of the catchments. These results demonstrate that a material-balance assessment of migration catchments provides a useful means to evaluate and rank areas within a petroleum system. The article provides methodologies for obtaining more realistic petroleum charges and losses that can be applied to less data-rich petroleum systems.

  1. Evaluation of Green Infrastructure on Peak Flow Mitigation Focusing on the Connectivity of Impervious Areas

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Hwang, J.; Kwon, Y.

    2017-12-01

    The existence of impervious areas is one of the most distinguishing characteristics of urban catchments. It decreases infiltration and increases direct runoff in urban catchments. The recent introduction of green infrastructure in urban catchments for the purpose of sustainable development contributes to the decrease of the directly connected impervious areas (DCIA) by isolating existing impervious areas and consequently, to the flood risk mitigation. This study coupled the width function-based instantaneous hydrograph (WFIUH), which is able to handle the spatial distribution of the impervious areas, with the concept of the DCIA to assess the impact of decreasing DCIA on the shape of direct runoff hydrographs. Using several scenarios for typical green infrastructure and corresponding changes of DCIA in a test catchment, this study evaluated the effect of green infrastructure on the shape of the resulting direct runoff hydrographs and peak flows. The results showed that the changes in the DCIA immediately affects the shape of the direct runoff hydrograph and decreases peak flows depending on spatial implementation scenarios. The quantitative assessment of the spatial distribution of impervious areas and also the changes to the DCIA suggests effective and well-planned green infrastructure can be introduced in urban environments for flood risk management.

  2. Phosphorus and dissolved organic carbon export during peak flow periods in three small homogenous catchments in eastern Germany

    NASA Astrophysics Data System (ADS)

    Benning, R.; Schwärzel, K.; Feger, K. H.

    2012-04-01

    Regional climate change scenarios for Central Europe predict both an overall increase in temperature and alterations in annual precipitation regimes. For large parts of Central Europe, climate change is expected to result in an increase in winter precipitation and a decrease in summer precipitation. In addition, an increase in extreme conditions, such as heat waves, prolonged drought periods, and heavy rainfall events are predicted. This research examines the potential impacts of increased heavy rainfall events on matter export from small catchment areas, and how different vegetation cover and land management options effects these exports. In order to evaluate the export of matter from different land-use types in the Eastern Ore Mountains (Saxony, NE Germany, 50° 48'18.06" North, 13° 36'24.54" East), study sites were established in three small catchments with homogeneous land-use. These study areas are each sub-catchments of the Ammelsdorf catchment, which provides inflow to the Lehnmühle reservoir (a major water supply for the city of Dresden). Each sub catchment represents one of the three main land-use types in the catchment area of the reservoir: crops (winter oilseed rape, winter wheat), grasslands, and forests (primarily spruce). Since November 2009 the discharge from these sub catchments has been continuously measured and water quality was analyzed on a weekly basis. During peak flow events, discharge was collected using automatic water samplers, which allowed for high temporal resolution analysis of matter export during these periods to be made. During the 2010 and 2011 hydrological years, several heavy rainfall events occurred which have been evaluated. During a 110-hour long precipitation event (P = 170 mm) between 37 and 81 water samples per sub catchment were collected and analyzed. The resulting export of dissolved phosphorus (ortho-PO4-) and dissolved organic carbon (DOC) from the sub catchments during this event is provided in the results. In addition, the matter export resulting from a 59-hour precipitation event (P = 39 mm, between 31 and 48 analyzed water samples per sub catchment) is presented. The contribution of these two events to the annual export of ortho-PO4- and DOC will be discussed.

  3. Engaging farmers to inform future diffuse pollution policy in England

    NASA Astrophysics Data System (ADS)

    Vrain, Emilie; Lovett, Andrew; Nobel, Lister; Grant, Fiona; Blundell, Paul; Cleasby, Will

    2013-04-01

    Stakeholder knowledge and engagement is increasingly seen as a necessary ingredient for catchment management. Whilst many agricultural management options remain voluntary, the implementation of diffuse pollution mitigation measures will only be effective with the cooperation of stakeholders. Anthony et al. (2009) and Zhang et al. (2012) state the need for more information on the realistic farmer uptake of methods to enhance analyses of the potential for pollution mitigation. A study engaging farmers to understand current agricultural practices and their attitudes towards mitigation measures has formed part of the Demonstration Test Catchment (DTC) programme in England. Interviews with over seventy farmers were conducted during 2012 in three contrasting areas of the UK: the grassland dominated Eden catchment in the North West of England; the arable dominated Wensum catchment in East Anglia and the mixed farming of the Hampshire Avon catchment in southern England. Results from the farmer survey provide a baseline regarding current agricultural practices and give insight regarding attitudes to the adoption of other mitigation measures in the future. Opinions were obtained on eighty different measures taken from a recent guide to possible measures prepared for the UK government (Newell-Price et al., 2011). Analyses have been conducted examining how current use and attitudes towards future adoption of measures varies according to different characteristics of farm businesses. These findings will be of benefit to researchers, policy makers and farm advisers, particularly aiding decision making with respect to strategies for future implementation of programmes of measures. References. Anthony, S.G. et al., 2009. Quantitative assessment of scenarios for managing trade-off between the economic performance of agriculture and the environment and between different environmental media. Available at: http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14421&FromSearch=Y&Status=3&Publisher=1&SearchText=quantitative assessment&SortString=ProjectCode&SortOrder=Asc&Paging=10#Description. Newell-Price, J.P., Harris, D., Taylor, M., Williams, J.R., Anthony, S.G., Duethmann, D., Gooday, R.D., Lord, E.I. and Chambers, B.J. (ADAS), A. & Chadwick, D.R. and Misselbrook, T.H., 2011. An Inventory of Mitigation Methods and Guide to their Effects on Diffuse Water Pollution , Greenhouse Gas Emissions and Ammonia Emissions from Agriculture Prepared as part of Defra Project WQ0106. , (December). Zhang, Y., Collins, A.L. & Gooday, R.D., 2012. Application of the FARMSCOPER tool for assessing agricultural diffuse pollution mitigation methods across the Hampshire Avon Demonstration Test Catchment, UK. Environmental Science & Policy.

  4. Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream

    NASA Astrophysics Data System (ADS)

    Caruso, Brian S.; Downs, Peter W.

    2007-08-01

    This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.

  5. Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs

    NASA Astrophysics Data System (ADS)

    Brunner, Manuela I.; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine

    2018-03-01

    Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establish these regions is very flexible and has the potential to be extended to other geographical regions or toward the use in climate impact studies.

  6. Modelling the effect of wildfire on forested catchment water quality using the SWAT model

    NASA Astrophysics Data System (ADS)

    Yu, M.; Bishop, T.; van Ogtrop, F. F.; Bell, T.

    2016-12-01

    Wildfire removes the surface vegetation, releases ash, increase erosion and runoff, and therefore effects the hydrological cycle of a forested water catchment. It is important to understand chnage and how the catchment recovers. These processes are spatially sensitive and effected by interactions between fire severity and hillslope, soil type and surface vegetation conditions. Thus, a distributed hydrological modelling approach is required. In this study, the Soil and Water Analysis Tool (SWAT) is used to predict the effect of 2001/02 Sydney wild fire on catchment water quality. 10 years pre-fire data is used to create and calibrate the SWAT model. The calibrated model was then used to simulate the water quality for the 10 years post-fire period without fire effect. The simulated water quality data are compared with recorded water quality data provided by Sydney catchment authority. The mean change of flow, total suspended solid, total nitrate and total phosphate are compare on monthly, three month, six month and annual basis. Two control catchment and three burn catchment were analysed.

  7. Using global Climate Impact Indicators to assess water resource availability in a Mediterranean mountain catchment: the Sierra Nevada study case (Spain) in the SWICCA platform

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Sáenz de Rodrigáñez, Marta; Gulliver, Zacarias; José Polo, María

    2017-04-01

    Climate services provide water resource managements and users with science-based information on the likely impacts associated to the future climate scenarios. Mountainous areas are especially vulnerable to climate variations due to the expected changes in the snow regime, among others; in Mediterranean regions, this shift involves significant effects on the river flow regime and water resource availability and management. The Guadalfeo River Basin is a 1345 km2 mountainous, coastal catchment in southern Spain, ranging from the Mediterranean Sea coastline to the Sierra Nevada mountains to the north (up to 3450 m a.s.l.) within a 40-km distance. The climate variability adds complexity to this abrupt topography and heterogeneous area. The uncertainty associated to snow occurrence and persistence for the next decades poses a challenge for the current and future water resource uses in the area. The development of easy-to-use local climate indicators and derived decision-making variables is key to assess and face the economic impact of the potential changes. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform (http://swicca.climate.copernicus.eu/) has been developed under the Copernicus Climate Change Service (C3S) and provides global climate and hydrology indicators on a Pan-European scale. Different case studies are included to assess the platform development and contents, and analyse the indicators' performance from a proof-of-concept approach that includes end-users feedbacks. The Guadalfeo River Basin is one of these case studies. This work presents the work developed so far to analyse and use the SWICCA Climate Impact Indicators (CIIs) related to river flow in this mountainous area, and the first set of local indicators specifically designed to assess selected end-users on the potential impact associated to different climate scenarios. Different CIIs were extracted from the SWICCA interface and tested against the local information available in the case study. The Essential Climate Variables used were precipitation and flow daily values, obtained at different spatial scales. The analysis led to the use of SWICCA-river flow on a catchment scale as the most suitable global CIIs in this area. Further treatment included local downscaling by means of transfer functions and a final relative anomaly correction. Three final end-users (clients) were identified within the water resource management framework: 1) mini hydropower facilities at the head areas, 2) urban supply at the southern area, and 3) water management decision makers (reservoir operation). From the corrected CIIs, local indicators were defined from the interaction with each client, to tailor water services easily and readily usable. Knowledge brokering from this interaction resulted in a first identification of a set of 4, 3 and 4 indicators for hydropower generation, urban users and water resource decision-makers, respectively, with different time scales. The projections of three future climate scenarios were assessed for each indicator and presented to each client. Local indicators are an efficient tool to assess the potential range of water allocation possibilities in this area on an annual and decadal basis, and get a deeper insight of the seasonal future potential regime of water resource availability. The results are good examples of key information for decision making in the future, and show how to derive local indicators with impact in the short and medium term planning in heterogeneous catchments in this region.

  8. Quantifying the variability of snowpack properties and processes in a small-forested catchment representative of the boreal zone

    NASA Astrophysics Data System (ADS)

    Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.

    2017-12-01

    In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.

  9. Utilization of Historical Maps in the Land Use Change Impact Studies: A Case Study from Myjava River Basin

    NASA Astrophysics Data System (ADS)

    Valent, P.; Rončák, P.; Maliariková, M.; Behan, Š.

    2016-12-01

    The way land is used has a significant impact on many hydrological processes that determine the generation of flood runoff or soil erosion. Advancements in remote sensing which took place in the second half of the 20th century have led to the rise of a new research area focused on analyses of land use changes and their impact on hydrological processes. This study deals with an analysis of the changes in land use over a period of almost three centuries in the Myjava River catchment, which has an outlet at Šaštín-Stráže. In order to obtain information about the way the land was used in the past, three historical mappings representing various periods were used: the first (1st) military mapping (1764-1787), second (2nd) military mapping (1807-1869), and a military topographic mapping (1953-1957). The historical mappings have been manually vectorised in an ArcGIS environment to identify various land use categories. The historical evolution of land use was further compared with a concurrent land use mapping, which was undertaken in 2010 and exploited remote sensing techniques. The study also quantifies the impact of these changes on the long-term catchment runoff as well as their impact on flows induced by extreme precipitation events. This analysis was performed using the WetSpa distributed hydrological model, which enables the simulation of catchment runoff in a daily time step. The analysis showed that the selected catchment has undergone significant changes in land use, mainly characterized by massive deforestation at the end of the 18th century and land consolidation in the middle of the 20th century induced by communist collectivisation. The hydrological simulations demonstrated that the highest and lowest mean annual runoffs were simulated in the first (1st military mapping) and the last (concurrent land use monitoring) time intervals respectively with the smallest and largest percentages of forested areas.

  10. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Treesearch

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  11. School Catchment Area Evasion: The Case of Berlin, Germany

    ERIC Educational Resources Information Center

    Noreisch, Kathleen

    2007-01-01

    This paper seeks to examine the ways in which school segregation plays out in a pure catchment area system and to what extent residential composition is directly mirrored in schools. The research examines the data for the districts in Berlin and, more specifically at the school level, for the district of Tempelhof-Schoneberg. The research is based…

  12. On the Relationship Between Transfer Function-derived Response Times and Hydrograph Analysis Timing Parameters: Are there Similarities?

    NASA Astrophysics Data System (ADS)

    Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.

    2017-12-01

    The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.

  13. Sediment budgets of unglaciated alpine catchments - the example of the Johnsbach and Schöttlbach valleys in Styria

    NASA Astrophysics Data System (ADS)

    Sass, Oliver; Rascher, Eric; Stangl, Johannes; Lutzmann, Silke

    2017-04-01

    Extensive research has been performed in glacier forefields and in glaciated catchments in order to predict their future behaviour in a warming climate. However, the majority of medium-scale torrential catchments in the European Alps are non-glaciated and their response to disturbance events (e.g. changing climate) is more subtle and hard to predict. We report from two torrential catchments in the Eastern Alps, the Johnsbach and the Schöttlbach valleys, that have been monitored for several years. The catchments are located in Styria (Austria) and are remarkably similar in terms of size (60-70 km3) and elevation (600/800 - 2400 m). The main difference is the geological setting of the sediment delivering areas which is limestone and brittle dolomite at Johnsbach, and a prominent late-pleistocene valley fill at Schöttlbach, respectively. Slope processes in both areas were monitored by means of repeated TLS surveys of active slope and channel areas and by ALS and/or UAV surveys. Fluvial transport in the main channels was measured using Helly-Smith samplers and recorded continuously by means of new developed, low-budget sediment impact sensors (SIS). In both areas, the catchment output was quantified: by regular surveys of a retention basin at Schöttlbach and by a bedload measurement station (geophone sill) at Johnsbach. The results show that at Johnsbach, the sediment source areas are active tributary trenches in the lower third of the catchment. The sediments derive from brittle dolomite rockwalls and are transported to the main river episodically during rainstorm events. In a 2-yr period, 7400 m3 yr-1 were eroded in the surveyed areas and 9900 m3 yr-1 m3 yr-1 were deposited; of this amount, only a minor portion of 650 m3 yr-1 reached the Johnsbach River. The degree of coupling between tributaries and creek is strongly influenced by anthropogenic measures, e.g. former disturbance by gravel mining and undersized bridge openings. Besides limited bank erosion, sediment transport of the main creek is governed by the reworking of recurrent sediment pulses from the tributaries. At Schöttlbach, sediment budget is strongly governed by the steep valley sides along the lowermost stretch of the main creek. Here, a catastrophic event in 2011 mobilized huge amounts of sediments which are being reworked since. Many erosional areas and side gullies developed which now become stowly stabilized. The highest average retreat rates of erosional cuts are 0.08 m yr-1 for glacifluvial valley fills while those in weathered bedrock are lower by an order of magnitude (0.006 m yr-1). Sedimentation rates at the outlet decreased from 40-50,000 m3 in the years after the event to approx. 7000 m3 yr-1 in recent years. Current catchment-wide sediment production at slope erosion sites is around 2000 m3 yr-1 and so we assume that parts of the sediment pulse originating from the disturbance event are still being reworked in the channel. Despite many dissimilarities, both catchments are similar with regard to the sediments being provided in their lowest parts, while large areas of the alpine process domain are widely decoupled from the sediment output. Schematic diagrams showing spatial and temporal distribution of sediment yields will be presented, with the aim to better understand the catchments' response to possibly higher rainstorm frequencies in a warming climate.

  14. Flash flood characterisation of the Haor area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, B.; Suman, A.

    2012-04-01

    Haors are large bowl-shaped flood plain depressions located mostly in north-eastern part of Bangladesh covering about 25% of the entire region. During dry season haors are used for agriculture and during rainy season it is used as fisheries. Haors have profound ecological importance. About 8000 migratory wild birds visit the area annually. Some of the haors are declared at Ramsar sites. Haors are frequently affected by the flash floods due to hilly topography and steep slope of the rivers draining the area. These flash floods spill onto low-lying flood plain lands in the region, inundating crops, damaging infrastructure by erosion and often causing loss of lives and properties. Climate change is exacerbating the situation. For appropriate risk mitigation mechanism it is necessary to explore flood characteristics of that region. The area is not at all studied well. Under a current project a numerical 1D2D model based on MIKE Flood is developed to study the flooding characteristics and estimate the climate change impacts on the haor region. Under this study the progression of flood levels at some key haors in relation to the water level data at specified gauges in the region is analysed. As the region is at the border with India so comparing with the gauges at the border with India is carried out. The flooding in the Haor area is associated with the rainfall in the upstream catchment in India (Meghalaya, Barak and Tripura basins in India). The flood propagation in some of the identified haors in relation to meteorological forcing in the three basins in India is analysed as well. Subsequently, a ranking of haors is done based on individual risks. Based on the IPCC recommendation the precipitation scenario in the upstream catchments under climate change is considered. The study provides the fundamental inputs for preparing a flood risk management plan of the region.

  15. Nitrogen Concentrations and Exports in Baseflow and Stormflow from Three Small Urban Catchments in Central Florida

    NASA Astrophysics Data System (ADS)

    Luo, J.; Hochmuth, G.; Clark, M. W.

    2014-12-01

    Export of nitrogen from different watersheds across the United States is receiving increasing attention due to the impairment of water quality in receiving water bodies. Researchers have indicated that different land uses exerted a substantial influence on the water quality. Nitrogen loadings on the watershed scale are being studied in many large ecosystems, such as the Baltimore Ecosystem and Arizona Ecosystem, but only a few focuses in a smaller scale such as catchment scale. Characterization of the land use in catchment scale can better explain the observed environmental phenomena under the watershed scale and enrich the related watershed studies. Nitrogen fluxes have been studied at Lake Alice watershed in Gainesville, Florida with a focus on the rarely studied catchments such as sports fields with intensive fertilization management (SFC), urban area with reclaimed water irrigation (RWC) and urban area without irrigation (CC). The entire study started from May 2013. Discharge was monitored in the three catchments by transducers every 5 minutes. Regular biweekly grab samples in the three catchments were used to estimate the baseflow N loads, composite samples in 13 storms were collected to estimate the stormflow N loads. The results showed that in the baseflow, the average NO3-N concentration in SFC was 12.19 mg/l, which was significantly different from the urban catchments. Also there was a significant difference between the NO3-N concentrations in RWC (1.17 mg/l on average) and CC (0.60 mg/l on average). A separate log-log relationship was developed between discharge and N loads to estimate the baseflow N loads and stormflow N loads. It showed that baseflow contributed more N loads than stormflow in the three catchments in the annual N load. In conclusion, the recreational catchment received the greatest N load compared to the other catchments, so it should be the priority catchment when it comes to adopting nutrient management practices in the Lake Alice watershed.

  16. Operational validation of a multi-period and multi-criteria model conditioning approach for the prediction of rainfall-runoff processes in small forest catchments

    NASA Astrophysics Data System (ADS)

    Choi, H.; Kim, S.

    2012-12-01

    Most of hydrologic models have generally been used to describe and represent the spatio-temporal variability of hydrological processes in the watershed scale. Though it is an obvious fact that hydrological responses have the time varying nature, optimal values of model parameters were normally considered as time invariants or constants in most cases. The recent paper of Choi and Beven (2007) presents a multi-period and multi-criteria model conditioning approach. The approach is based on the equifinality thesis within the Generalised Likelihood Uncertainty Estimation (GLUE) framework. In their application, the behavioural TOPMODEL parameter sets are determined by several performance measures for global (annual) and short (30-days) periods, clustered using a Fuzzy C-means algorithm, into 15 types representing different hydrological conditions. Their study shows a good performance on the calibration of a rainfall-runoff model in a forest catchment, and also gives strong indications that it is uncommon to find model realizations that were behavioural over all multi-periods and all performance measures, and multi-period model conditioning approach may become new effective tool for predictions of hydrological processes in ungauged catchments. This study is a follow-up study on the Choi and Beven's (2007) model conditioning approach to test how the approach is effective for the prediction of rainfall-runoff responses in ungauged catchments. To achieve this purpose, 6 small forest catchments are selected among the several hydrological experimental catchments operated by Korea Forest Research Institute. In each catchment, long-term hydrological time series data varying from 10 to 30 years were available. The areas of the selected catchments range from 13.6 to 37.8 ha, and all areas are covered by coniferous or broad-leaves forests. The selected catchments locate in the southern coastal area to the northern part of South Korea. The bed rocks are Granite gneiss, Granite or Limestone. The study is progressed based on the followings. Firstly, hydrological time series of each catchment are sampled and clustered into multi-period having distinctly different temporal characteristics, and secondly, behavioural parameter distributions are determined in each multi-period based on the specification of multi-criteria model performance measures. Finally, behavioural parameter sets of each multi-period of single catchment are applied on the corresponding period of other catchments, and the cross-validations are conducted in this manner for all catchments The multi-period model conditioning approach is clearly effective to reduce the width of prediction limits, giving better model performance against the temporal variability of hydrological characteristics, and has enough potential to be the effective prediction tool for ungauged catchments. However, more advanced and continuous studies are needed to expand the application of this approach in prediction of hydrological responses in ungauged catchments,

  17. A new perspective on catchment storage gained from a nested catchment experiment in Luxembourg (Europe)

    NASA Astrophysics Data System (ADS)

    Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.

    2014-05-01

    Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found strong correlations between baseflow prior to the recharge period (i.e. at initiation of the total storage calculations) and the seasonal maximum value of the total storage change calculations. In order to determine the maximum storage potential for each catchment, we fitted a trendline through the annual 'initial baseflow - maximum storage' populations. By extrapolating these trendlines to zero flow conditions, we obtained the maximum storage potential. Our results show that these maximum storage values clearly tend to be larger in catchments dominated by permeable substrate, compared to areas underlain by impermeable bedrock. In the latter, average filling ratios were found to be substantially higher (exceeding 80%) than in catchments dominated by permeable substrate (approximately 40%). These findings were confirmed by average seasonal winter runoff coefficients that are substantially higher in catchments dominated by impermeable bedrock (Pfister et al., in prep.). Our new approach allows a fast assessment of storage potential in catchments based on discharge, precipitation and evapotranspiration data. Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908.

  18. Catchment-scale evaluation of pollution potential of urban snow at two residential catchments in southern Finland.

    PubMed

    Sillanpää, Nora; Koivusalo, Harri

    2013-01-01

    Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.

  19. Elevated Annual Runoff Ratios in Pacific Northwest Catchments Impacted by Epidemic Foliage Disease of Douglas-fir

    NASA Astrophysics Data System (ADS)

    Bladon, K. D.; Bywater-Reyes, S.; LeBoldus, J. M.; Segura, C.; Ritokova, G.; Shaw, D. C.

    2017-12-01

    Catchments in the Western United States are undergoing unprecedented levels of tree die-off and/or reduced vigor due to increased severity of wildfire, drought, insect outbreaks, and disease. In the U.S. Pacific Northwest, Swiss needle cast (SNC) is the most damaging foliar disease of Douglas-fir (Pseudotsuga menziesii), physically obstructing stomata and preventing CO2 uptake and transpiration. A recent analysis in coastal Oregon indicated a substantial increase in area affected by the disease, from 530.5 km2 in 1996 to 2,387.1 km2 in 2015. Deforestation or reduced tree vigor can have profound impacts on catchment hydrology, in theory, producing increased streamflow due to reduced interception and transpiration. However, these increases have not always been detectable as impacts also depend on factors such as climate and vegetation composition. Moreover, press disturbances, such as insect outbreaks or disease, often do not result in complete removal of understorey or canopy vegetation. We analyzed trends in annual runoff ratios (quotient of discharge divided by precipitation) from 1990-2015 in 12 catchments (183-1,744 km2) in western Oregon. In general, runoff ratios increased by 10-27% in catchments with a total area of SNC >10%, with the most substantial runoff increases in catchments with SNC impacting >25% of the area. Interestingly, the most severely impacted catchment ( 90.5% SNC) showed a decrease in runoff. This is consistent with a potential compensatory response from understory western hemlock (Tsuga heterophylla) trees, a phenomenon observed in the most severely impacted sites. Findings from this study are important for assessing the impacts of biotic forest disturbances on water supply and aquatic ecosystem health.

  20. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    PubMed

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and <0.22 µm) in runoff water was similar at both scales. KM was predominantly detected below 0.22 μm, whereas CY was mainly detected in the fraction between 0.22 and 0.7 μm. Although KM and CY have similar physicochemical properties and are expected to behave similarly, our results show that their partitioning between two fractions of the dissolved phase differs largely. It is concluded that combined observations of pesticide runoff at both the catchment and the plot scales enable to evaluate the sources areas of pesticide off-site transport.

  1. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling

    NASA Astrophysics Data System (ADS)

    Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.

    2017-12-01

    Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.

  3. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  4. Hydrological modelling of the Mabengnong catchment in the southeast Tibet with support of short term intensive precipitation observation

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zhang, F.; Zhang, H.; Scott, C. A.; Zeng, C.; SHI, X.

    2017-12-01

    Precipitation is one of the crucial inputs for models used to better understand hydrological processes. In high mountain areas, it is a difficult task to obtain a reliable precipitation data set describing the spatial and temporal characteristic due to the limited meteorological observations and high variability of precipitation. This study carries out intensive observation of precipitation in a high mountain catchment in the southeast of the Tibet during July to August 2013. According to the rain gauges set up at different altitudes, it is found that precipitation is greatly influenced by altitude. The observed precipitation is used to depict the precipitation gradient (PG) and hourly distribution (HD), showing that the average duration is around 0.1, 0.8 and 6.0 hours and the average PG is 0.10, 0.28 and 0.26 mm/d/100m for trace, light and moderate rain, respectively. Based on the gridded precipitation derived from the PG and HD and the nearby Linzhi meteorological station at lower altitude, a distributed biosphere hydrological model based on water and energy budgets (WEB-DHM) is applied to simulate the hydrological processes. Beside the observed runoff, MODIS/Terra snow cover area (SCA) data, and MODIS/Terra land surface temperature (LST) data are also used for model calibration and validation. The resulting runoff, SCA and LST simulations are all reasonable. Sensitivity analyses indicate that runoff is greatly underestimated without considering PG, illustrating that short-term intensive precipitation observation contributes to improving hydrological modelling of poorly gauged high mountain catchments.

  5. Identifying hydrologically sensitive areas using LiDAR DEMs to mitigate critical source areas of diffuse pollution: development and application

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Jordan, Phil; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; hUallacháin, Daire Ó.; Creamer, Rachel; McDonald, Noeleen; Dunlop, Paul; Murphy, Paul

    2016-04-01

    Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants such as phosphorus (P). A new GIS-based HSA Index is presented that identifies HSAs at the sub-field scale. It uses a soil topographic index (STI) and accounts for the hydrological disconnection of overland flow via topographic impediment from flow sinks such as hedgerows and depressions. High resolution (0.25-2 m) LiDAR Digital Elevation Models (DEMs) are utilised to capture these microtopographic controls on flow pathways and hydrological connectivity. The HSA Index was applied to four agricultural catchments (~7.5-12 km2) with contrasting topography and soil types. Catchment HSA sizes were estimated using high resolution rainfall-quickflow measurements during saturated winter storm events in 2009-2014, and mapped using the HSA Index. HSA sizes ranged from 1.6-3.4% of the catchment area during median storm events and 2.9-8.5% during upper quartile events depending on whether well or poorly drained soils dominated, which validated HSA Index value distributions. Total flow sink volume capacities ranged from 8,298-59,584 m3 and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'delivery points' along surface runoff pathways where transported pollutants such as P are delivered to the open drainage network. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips (RBS) reduced costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. Considering that HSAs are often the dominant P CSA factor in agricultural catchments and can override source pressures, targeting measures at HSAs is potentially a more sustainable, cost-effective and policy-applicable strategy for mitigating diffuse pollution.

  6. Presence-only approach to assess landslide triggering-thickness susceptibility. A test for the Mili catchment (North-Eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lombardo, Luigi; Fubelli, Giandomenico; Amato, Gabriele; Bonasera, Mauro; Hochschild, Volker; Rotigliano, Edoardo

    2015-04-01

    This study aims at comparing the performances of a presence only approach, namely Maximum Entropy, in assessing landslide triggering-thickness susceptibility within the Mili catchment, located in the north-eastern Sicily, Italy. This catchment has been recently exposed to three main meteorological extreme events, resulting in the activation of multiple fast landslides, which occurred on the 1st October 2009, 10th March 2010 and 1st March 2011. Differently from the 2009 event, which only marginally hit the catchment, the 2010 and 2011 storms fully involved the area of the Mili catchment. Detailed field data was collected to associate the thickness of mobilised materials at the triggering zone to each mass movement within the catchment. This information has been used to model the landslide susceptibility for two classes of processes clustered into shallow failures for maximum depths of 0.5m and deep ones in case of values equal or greater than 0.5m. As the authors believed that the peculiar geomorphometry of this narrow and steep catchment played a fundamental role in generating two distinct patterns of landslide thicknesses during the initiation phase, a HRDEM was used to extract topographic attributes to express near-triggering geomorphological conditions. On the other hand, medium resolution vegetation indexes derived from ASTER scenes were used as explanatory variables pertaining to a wider spatial neighbourhood, whilst a revised geological map, the land use from CORINE and a tectonic map were used to convey an even wider area connected to the slope instability. The choice of a presence-only approach allowed to effectively discriminate between the two types of landslide thicknesses at the triggering zone, producing outstanding prediction skills associated with relatively low variances across a set of 20 randomly generated replicates. The validation phase produced indeed average AUC values of 0.91 with a standard deviation of 0.03 for both the modelled landslide thicknesses. In addition, the role of each predictor within the whole modelling procedure was assessed by applying Jackknife tests. These analyses focussed on evaluating the variation of AUC values across replicates comparing single variable models with models based on the full set of predictors iteratively deprived of one covariate. As a result, relevant differences among main contributors between the two considered classes were also quantitatively derived and geomorphologically interpreted. This work can be considered as an example for creating specific landslide susceptibility maps to be used in master planning in order to establish proportional countermeasures to different activation mechanisms. Keywords: statistical analysis, shallow landslide, landslide susceptibility, triggering factors, presence-only approach

  7. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.

    PubMed

    Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  8. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    NASA Astrophysics Data System (ADS)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  9. From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada

    NASA Astrophysics Data System (ADS)

    Carey, S. K.

    2015-12-01

    Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.

  10. The need for an improved risk index for phosphorus losses to water from tile-drained agricultural land

    NASA Astrophysics Data System (ADS)

    Ulén, Barbro; Djodjic, Faruk; Etana, Araso; Johansson, Göran; Lindström, Jan

    2011-03-01

    SummaryA refined version of a conditional phosphorus risk index (PRI) for P losses to waters was developed based on monitoring and analyses of PRI factors from an agricultural catchment in Sweden. The catchment has a hummocky landscape of heavy glacial till overlying moraine and an overall balanced soil P level. Single P source factors and combinations of factors were tested and discussed together with water movement and water management factors important for catchments dominated by drained clay soils. An empirical relationship was established (Pearson correlation coefficient 0.861, p < 0.001) between phosphorus sorption index (PSI-CaCl 2), measured in a weak calcium chloride solution, and iron (Fe-AL) aluminium (Al-AL) and phosphorus (P-AL) in soil extract with acid ammonium lactate. Differing relationships were found for a field that had not received any manure in the last 15 years and a field that had received chicken litter very recently. In addition, a general relationship (Pearson correlation coefficient 0.839, p < 0.001) was found between the ratio of phosphorus extracted from fresh soil in water (Pw) to PSI-CaCl 2 and the degree of phosphorus saturation in lactate extract (DPS-AL). One exception was a single field, representing 7% of agricultural land in the catchment, that had been treated with glyphosate shortly before soil sampling. Saturated hydraulic conductivity (SHC) in heavy clay in contact with the moraine base (at 1 m depth) was on average 0.06 m day -1. In clay not in contact with moraine, SHC was significantly lower (mean 0.007 m day -1). A reduction in the present tile drain spacing (from 14-16 m to 11 m) is theoretically required to maintain satisfactory water discharge and groundwater level. Up to 10% of the arable land was estimated to be a potential source area for P, based on different indices. Parts of a few fields close to farm buildings (1% of total arable land) were identified as essential P source areas, with high DPS-AL values and low PSI-CaCl 2 values throughout the soil profile. A further 2% of arable land was identified as potential important transport areas, based on visible surface water rills or frequent water-ponded conditions. Fields comprising 10% of the total arable land in the catchment should be re-drained in the near future to improve water infiltration and avoid unnecessary channelised water flow. The need for an improved PRI for erosion and water transport is discussed.

  11. Using Emergent and Internal Catchment Data to Elucidate the Influence of Landscape Structure and Storage State on Hydrologic Response in a Piedmont Watershed

    NASA Astrophysics Data System (ADS)

    Putnam, S. M.; Harman, C. J.

    2017-12-01

    Many studies have sought to unravel the influence of landscape structure and catchment state on the quantity and composition of water at the catchment outlet. These studies run into issues of equifinality where multiple conceptualizations of flow pathways or storage states cannot be discriminated against on the basis of the quantity and composition of water alone. Here we aim to parse out the influence of landscape structure, flow pathways, and storage on both the observed catchment hydrograph and chemograph, using hydrometric and water isotope data collected from multiple locations within Pond Branch, a 37-hectare Piedmont catchment of the eastern US. This data is used to infer the quantity and age distribution of water stored and released by individual hydrogeomorphic units, and the catchment as a whole, in order to test hypotheses relating landscape structure, flow pathways, and catchment storage to the hydrograph and chemograph. Initial hypotheses relating internal catchment properties or processes to the hydrograph or chemograph are formed at the catchment scale. Data from Pond Branch include spring and catchment discharge measurements, well water levels, and soil moisture, as well as three years of high frequency precipitation and surface water stable water isotope data. The catchment hydrograph is deconstructed using hydrograph separation and the quantity of water associated with each time-scale of response is compared to the quantity of discharge that could be produced from hillslope and riparian hydrogeomorphic units. Storage is estimated for each hydrogeomorphic unit as well as the vadose zone, in order to construct a continuous time series of total storage, broken down by landscape unit. Rank StorAge Selection (rSAS) functions are parameterized for each hydrogeomorphic unit as well as the catchment as a whole, and the relative importance of changing proportions of discharge from each unit as well as storage in controlling the variability in the catchment chemograph is explored. The results suggest that the quantity of quickflow can be accounted for by direct precipitation onto < 5.2% of the catchment area, representing a zero-order swale plus the riparian area. rSAS modeling suggests that quickflow is largely composed of pre-event, stored water, generated through a process such as groundwater ridging.

  12. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, J. J.; Majaliwa, A. M.

    Malagarasi river catchment represents one of the largest and most significant transboundary natural ecosystems in Africa. The catchment constitutes about one third of the catchment area of Lake Tanganyika and contains ecosystems of both national and international importance (i.e. Muyovozi Wetland Ramsar site). It has been increasingly said that increased anthropogenic activities have had negative impacts on the Muyovozi wetland in particular and other catchment resources. Nevertheless, these beliefs are little supported by quantitative data. A study on the dynamics of land use and cover in the Malagarasi river catchment therefore investigated long-term and seasonal changes that have occurred as a result of human activities in the area for the periods between 1984 and 2001. Landsat TM and ETM+ images were used to locate and quantify the changes. Perceptions of local people on historical changes and drivers for the changes were also collected and integrated in the assessment. The study revealed a significant change in land use and cover within a period of 18 year. Between 1984 and 2001, the woodland and wetland vegetation covers declined by 0.09% and 2.51% per year. Areas with settlements and cultivation increased by 1.05% annually while bushed grassland increased at 1.93% annually. The perceived principal drivers for the changes were found to include fire, cultivation along rivers and lake shores, overgrazing, poor law enforcement, insufficient knowledge on environmental issues, increasing poverty, deforestation and population growth. The human population growth rate stands at 4.8% against a national figure of 2.9%. The most perceived environmental problems include drying of streams and rivers, change in rainfall, loss of soil fertility, soil erosion and reduced crop yield. The study concludes that, there has been significant changes in land use and cover in the catchment and these require concerted actions to reverse the changes. The study highlights the importance of integrating remote sensing and local knowledge in understanding the dynamics catchment resources and generating information that could be used to overcome the catchment management problems.

  13. Learning from Nature - Mapping of Complex Hydrological and Geomorphological Process Systems for More Realistic Modelling of Hazard-related Maps

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Tilch, Nils

    2010-05-01

    Introduction Hydrological or geomorphological processes in nature are often very diverse and complex. This is partly due to the regional characteristics which vary over time and space, as well as changeable process-initiating and -controlling factors. Despite being aware of this complexity, such aspects are usually neglected in the modelling of hazard-related maps due to several reasons. But particularly when it comes to creating more realistic maps, this would be an essential component to consider. The first important step towards solving this problem would be to collect data relating to regional conditions which vary over time and geographical location, along with indicators of complex processes. Data should be acquired promptly during and after events, and subsequently digitally combined and analysed. Study area In June 2009, considerable damage occurred in the residential area of Klingfurth (Lower Austria) as a result of great pre-event wetness and repeatedly heavy rainfall, leading to flooding, debris flow deposit and gravitational mass movement. One of the causes is the fact that the meso-scale watershed (16 km²) of the Klingfurth stream is characterised by adverse geological and hydrological conditions. Additionally, the river system network with its discharge concentration within the residential zone contributes considerably to flooding, particularly during excessive rainfall across the entire region, as the flood peaks from different parts of the catchment area are superposed. First results of mapping Hydro(geo)logical surveys across the entire catchment area have shown that - over 600 gravitational mass movements of various type and stage have occurred. 516 of those have acted as a bed load source, while 325 mass movements had not reached the final stage yet and could thus supply bed load in the future. It should be noted that large mass movements in the initial or intermediate stage were predominately found in clayey-silty areas and weathered material, where the fluvial bank erosion only plays a minor role as an initiating factor. On the other hand, fluvial bank erosion does appear to be a cause of smaller mass movements in their final stage which develop spontaneously, most noticeably in regions of gravel-rich soils (coarse-grained) and of shallow weathered material (several decimetres). - numerous marks of surface runoff were found over the entire catchment area to a greatly variable extent and intensity. In the more eastern parts of the catchment, these signs can be linked especially to anthropogenic concentrated inputs of surface discharge e.g. drainage system of streets. Their spread is limited, but usually associated with huge erosion channels of up to 2 m depth. In the western parts of the catchment, however, signs of surface discharge are more commonly found in forests. Depending on their location, they can be a result of an up-hill infiltration surplus in areas of fields and pastures, or an infiltration surplus in the forest itself. In many places, rapid interflow through biologically-created macropores takes place, which often re-emerges at the surface in the form of return flow. In general, it is noticeable that marks of surface runoff often terminate at the scarps of landslides, which were not caused by fluvial bank erosion. The excess water produces a strong local saturation of the ground, which gives a higher landslide-susceptibility of the embankment. Future work Based on the acquired field knowledge, it was possible to distinguish areas of different heterogeneities/homogeneities of the dominant process chains for several micro-scale parts of the catchment area. Subsequently, conceptual slope profiles should be derived from the detailed field data, and these should include information of the dominant and complex process systems. This forms an essential starting point in order to be able to realistically consider relevant hazard-related processes as part of process-oriented modelling.

  14. "Every Family": A Population Approach to Reducing Behavioral and Emotional Problems in Children Making the Transition to School

    ERIC Educational Resources Information Center

    Sanders, Matthew R.; Ralph, Alan; Sofronoff, Kate; Gardiner, Paul; Thompson, Rachel; Dwyer, Sarah; Bidwell, Kerry

    2008-01-01

    A large-scale population trial using the Triple P-Positive Parenting Program (TPS) was evaluated. The target population was all parents of 4- to 7-year-old children residing in ten geographical catchment areas in Brisbane (intervention communities) and ten sociodemographically matched catchment areas from Sydney (5) and Melbourne (5), care as…

  15. Don't fight the site: three geomorphic considerations in catchment-scale river rehabilitation planning.

    PubMed

    Brierley, Gary; Fryirs, Kirstie

    2009-06-01

    Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to 'fight the site.'

  16. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high proportion of large landslides in Taiwan contributes significantly to the high annual sediment yield, which is among the world's highest despite the small area of Taiwan.

  17. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy

    2017-08-01

    The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.

  18. Constructing a Sediment Budget for the Johnsbach, Styria - Adding up numbers and drawing arrows?

    NASA Astrophysics Data System (ADS)

    Rascher, Eric; Sass, Oliver

    2016-04-01

    Understanding the evolution and functions of a river system and interpreting the morphology and the dynamics of the channel is a key factor in fluvial geomorphology. For this purpose it is essential to analyse the processes of sediment input and output within and between river reaches and to detect the various forms of storage types on hillslopes and in the channel network. From these processes, catchment scale sediment fluxes are derived and result in sediment budgets showing the amount and motion of sediment through the system. This study aims at developing a sediment budget for the so called "Zwischenmäuerstrecke" in the Johnsbach Valley, a typical, non-glaciated alpine catchment in the eastern Austrian Alps. The valley covers an area of 65 km² with altitudes ranging from 584 m a.s.l. at the outlet to 2369 m a.s.l. (Hochtor). The valley is drained by the Johnsbach River which originates in a crystalline bedrock dominated part of the catchment. After approximately 10 km of the distance downstream the lithology changes to calcareous bedrock. In this part of the Johnsbach Valley ("Zwischenmäuerstrecke") most of the sediment contributing areas are located on both sides of the river along a 5 km river reach. Initial activities included geomorphological mapping and a GIS based connectivity analysis. Building on this survey, test sites were selected for detailed investigations, and an activity classification of all side channels in the "Zwischenmäuerstrecke" using different criteria was achieved from which the sediment budget will be extrapolated. Despite (or rather because of) the extensive dataset this is still a challenging task since geomorphic processes are highly variable in time and space. Our applied methods in the field are associated to the geomorphic process chain from source to sink. Sediment input from rock falls was investigated using TLS measurements to determine the spatial distribution of rock fall rates. The quantification of erosion and debris flow processes on the hillslopes was achieved by means of TLS surveys two times a year from 2013-2015. The precedent mapping and the ALS overview surveys (DEMs from 2010 and 2015) ensure that the measured processes are representative for wider areas. The thickness and structure of important sediment storage bodies at the slopes and in the side valleys were investigated using geophysical methods (ERT, GPR, seismics). The fluvial sediment transport was analyzed using impact sensors, geophone installations and mobile basket samplers. The results of all steps of quantification will later be transferred to the entire study area (Johnsbach catchment) using the mapping results and GIS analyses. The output will be a sediment budget model of the Johnsbachtal. The step towards application comprises the analysis of current management problems (amount of "missing" sediment for ecological purposes, and effects on hydropower plants) and the possible consequences of artificial barriers being altered or removed.

  19. Integration of rainfall/runoff and geomorphological analyses flood hazard in small catchments: case studies from the southern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio

    2017-04-01

    We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For such an approach has been used a methodology that consists of the application of a process-based geomorphological mapping, based on data derived from GIS analysis using high-resolution DEMs, field measurements and aerial photograph interpretations. Our integrated approach, which allows quantification of the flow rate and a semi-quantitative assessment of sediment that can be mobilized during hydro-meteorological events, is applied for the first time to torrential catchmenmts of the southern Apennines and may significantly contribute to previsional studies aimed at risk mitigation in the study region.

  20. Identification of groundwater nitrate sources in pre-alpine catchments: a multi-tracer approach

    NASA Astrophysics Data System (ADS)

    Stoewer, Myriam; Stumpp, Christine

    2014-05-01

    Porous aquifers in pre-alpine areas are often used as drinking water resources due to their good water quality status and water yield. Maintaining these resources requires knowledge about possible sources of pollutants and a sustainable management practice in groundwater catchment areas. Of particular interest in agricultural areas, like in pre-alpine regions, is limiting nitrate input as main groundwater pollutant. Therefore, the objective of the presented study is i) to identify main nitrate sources in a pre-alpine groundwater catchment with current low nitrate concentration using stable isotopes of nitrate (d18O and d15N) and ii) to investigate seasonal dynamics of nitrogen compounds. The groundwater catchment areas of four porous aquifers are located in Southern Germany. Most of the land use is organic grassland farming as well as forestry and residential area. Thus, potential sources of nitrate mainly are mineral fertilizer, manure/slurry, leaking sewage system and atmospheric deposition of nitrogen compounds. Monthly freshwater samples (precipitation, river water and groundwater) are analysed for stable isotope of water (d2H, d18O), the concentration of major anions and cations, electrical conductivity, water temperature, pH and oxygen. In addition, isotopic analysis of d18O-NO3- and d15N-NO3- for selected samples is carried out using the denitrifier method. In general, all groundwater samples were oxic (10.0±2.6mg/L) and nitrate concentrations were low (0.2 - 14.6mg/L). The observed nitrate isotope values in the observation area compared to values from local precipitation, sewage, manure and mineral fertilizer as well as to data from literature shows that the nitrate in freshwater samples is of microbial origin. Nitrate derived from ammonium in fertilizers and precipitation as well as from soil nitrogen. It is suggested that a major potential threat to the groundwater quality is ammonia and ammonium at a constant level mainly from agriculture activities as well as continuously release of nitrogen stored in agricultural soils due to mineralization processes. In all groundwater and river water samples a seasonal variation of nitrate sources and concentration is absent but nitrate in precipitation shows a clear seasonal variation with peaks in spring and fall according to agricultural activity. This points to dilution effects of high nitrate inputs due to the large groundwater volume and mean residence time and highlights the function of soil as initial sink for nitrogen compounds delivered by fertilizer. Even though nitrate contamination was low in the study area, the results emphasize the importance of reducing additional nitrate sources in pre-alpine oxic aquifers. This will maintain the good water quality status of the aquifers and enable its use for drinking water supply.

  1. Colonisation trends of the invasive plant, Impatiens glandulifera, along river corridors: some preliminary findings

    NASA Astrophysics Data System (ADS)

    Greenwood, Phil; Kuhn, Brigitte; Kuhn, Nikolaus

    2016-04-01

    Originating from the Himalayas, the highly invasive plant, Impatiens glandulifera (Himalayan Balsam), is now found on three separate continents, with a distribution that includes most temperate European countries, large areas of east and west North America and parts of New Zealand. As a ruderal species, it prefers damp, shady and fertile soils that are frequently disturbed. This means that it commonly occurs along the riparian zone of rivers and streams. Being highly sensitivity to cold weather, however, whole stands suddenly and often simultaneously die-off; leaving riparian areas bare or partially devoid of vegetation. These lifecycle traits have implicated it in promoting soil erosion in affected river systems in temperate regions. Recent work undertaken by members of the Physical Geography & Environmental Change Research Group, University of Basel, has documented erosion rates along a section of contaminated river systems in northwest Switzerland, and southwest UK. Collectively, these data now span a total of seven separate germination and die-off cycles. Results from both river systems over all monitoring campaigns indicate that soil loss from areas contaminated with I. glandulifera is significantly greater than comparable areas supporting perennial vegetation. Crucially, however, extremely high-magnitude erosion was recorded at approximately 30% of contaminated areas (n=41). Reasons for high disturbance levels focus on the possibility that I. glandulifera tends to colonise depositional areas within a flood-zone. As those areas act as foci for the accretion of flood-derived sediment, the ability of this material to resist subsequent mobilisation processes is low due to limited cohesion, poor compaction and undeveloped soil structure. We hypothesis, therefore, that the tendency of I. glanduilfera to grow in depositional sites will be reflected in a number of key physico-chemical traits associated with soils in such areas; namely lower in-situ bulk-density, finer grain-size characteristics, and possibly higher total phosphorous (TP) content, when compared against soils from nearby uncontaminated areas. Approximately 250 pairs of (contaminated and uncontaminated) soil samples were obtained from nine different sub-catchments located in four different European countries; namely, France, Germany, Switzerland and the UK. Sample pairs were sub-divided into contaminated & uncontaminated soils and each variable was subjected to a pair-wise statistical test; firstly for all catchments combined, and then on a catchment-by-catchment basis, to determine whether differences were significant. In addition to the above analyses, further evidence of spatial and topographic colonisation tendencies was sought from digital imagery captured using a remotely-controlled drone (quadcopter) flown along a ca. 1.0 km section of contaminated river corridor. Images were georeferenced, displayed together in a Geographic Information System (GIS) and used to construct a 3-dimensional digital elevation model (DEM). The DEM was interrogated to determine the presence / absence of colonisation trends (i.e. a tendency to colonise low-lying areas). This communication reports preliminary findings from this ongoing work and discusses key implications and possible future directions.

  2. Spatiotemporal dynamics of suspended sediment within an actively urbanizing peri-urban catchment in Portugal

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Ferreira, Carla; Ferreira, Antonio

    2016-04-01

    Suspended sediment levels tend to be enhanced in urban catchments, but vary considerably with (amongst many other factors) the degree of active urban development or redevelopment within the catchment and 'urbanization style'. Relatively little, however, is known about the relationship between suspended solids and urbanization style in peri-urban Mediterranean environments. This paper focuses on spatiotemporal suspended sediment dynamics within a typical Portuguese peri-urban catchment, Ribeira dos Covoes, that is undergoing rapid urbanization. The catchment currently has a 40% urban cover, with 17% impervious surfaces, dispersed between woodland (56%) and agricultural areas (4%). The study uses suspended sediment concentration measurements made at the catchment outlet (ESAC) and in three upstream tributaries: (i) Espírito Santo, with a largest urban area (49%); (ii) Porto Bordalo, 39% urbanized; and (iii) Quinta, 22% urbanized, most of which (18%) being an enterprise park under construction. Water sampling was carried out manually during 10 storm hydrographs between October 2011 and March 2013. Suspended sediment concentrations (SSC) were derived by laboratory analysis of the filtered samples using the gravimetric method. In addition total dissolved solids concentrations (TDS) were estimated using conductivity readings. Greatest SSCs were recorded in the Quinta sub-catchment and at the catchment outlet at ESAC (113-4320 mg L-1 and 200-1656 mg L-1, respectively) than in the Espírito Santo and Porto Bordalo sub-catchments (183-852 mg L-1 and 47-598 mg L-1 respectively, despite their greater impervious cover. The greatest SSCs for Quinta result from it containing the construction site, but it showed lower TDS (56-4010 mg L-1), perhaps due to the coarse sandy nature of the construction site. Higher TDS concentrations, however, were displayed in Porto Bordalo (27-5400 mg L-1), possibly due to the loamy soil. Espírito Santo, comprising sandy-loam soils, displayed 27-5400 mg L-1 of TDS, whereas the catchment outlet showed 1-4820 mg L-1. Over the study period, the highest SSCs were recorded in the storm with greatest rainfall intensity (15.9 mm h-1) on 2nd November 2011. For similar-sized storm events, ESAC, Quinta and Espírito Santo displayed greater SSCs in the first storms after the long dry summer, 1.6, 1.9 and 1.4 orders of magnitude greater than in late winter. Porto Bordalo, however, showed a distinct temporal pattern, with SSCs. seven times higher in late winter than in similar storms after summer. These patterns can be linked to seasonal patterns of soil erodibility and soil moisture. Overland flow providing the early stream responses was able to entrain an ample supply of loose soil particles resulting in greater SSCs that peaked before peak flow. The subsequent SSC decline prior to peak flow reflected partial exhaustion of available sediment on the slopes. Although some of the differences between sub-catchment responses are linked to differences in urbanization character, notably areas of active construction and urban areas with lower impervious cover, the type of soil, storm characteristics and antecedent weather are also important influences. Measures that could be used to retard and reduce runoff in the construction area in the headwaters of the catchment are discussed.

  3. Development of a hydrological model for simulation of runoff from catchments unbounded by ridge lines

    NASA Astrophysics Data System (ADS)

    Vema, Vamsikrishna; Sudheer, K. P.; Chaubey, I.

    2017-08-01

    Watershed hydrological models are effective tools for simulating the hydrological processes in the watershed. Although there are a plethora of hydrological models, none of them can be directly applied to make water conservation decisions in irregularly bounded areas that do not confirm to topographically defined ridge lines. This study proposes a novel hydrological model that can be directly applied to any catchment, with or without ridge line boundaries. The model is based on the water balance concept, and a linear function concept to approximate the cross-boundary flow from upstream areas to the administrative catchment under consideration. The developed model is tested in 2 watersheds - Riesel Experimental Watershed and a sub-basin of Cedar Creek Watershed in Texas, USA. Hypothetical administrative catchments that did not confirm to the location of ridge lines were considered for verifying the efficacy of the model for hydrologic simulations. The linear function concept used to account the cross boundary flow was based on the hypothesis that the flow coming from outside the boundary to administrative area was proportional to the flow generated in the boundary grid cell. The model performance was satisfactory with an NSE and r2 of ≥0.80 and a PBIAS of <25 in all the cases. The simulated hydrographs for the administrative catchments of the watersheds were in good agreement with the observed hydrographs, indicating a satisfactory performance of the model in the administratively bounded areas.

  4. Hydrological impact of high-density small dams in a humid catchment, Southeast China

    NASA Astrophysics Data System (ADS)

    Lu, W.; Lei, H.; Yang, D.

    2017-12-01

    The Jiulong River basin is a humid catchment with a drainage area of 14,741 km2; however, it has over 1000 hydropower stations within it. Such catchment with high-density small dams is scarce in China. Yet few is known about the impact of high-density small dams on streamflow changes. To what extent the large number of dams alters the hydrologic patterns is a fundamental scientific issue for water resources management, flood control, and aquatic ecological environment protection. Firstly, trend and change point analyses are applied to determine the characteristics of inter-annual streamflow. Based on the detected change point, the study period is divided into two study periods, the ``natural'' and ``disturbed'' periods. Then, a geomorphology-based hydrological model (GBHM) and the fixing-changing method are adopted to evaluate the relative contributions of climate variations and damming to the changes in streamflow at each temporal scale (i.e., from daily, monthly to annual). Based on the simulated natural streamflow, the impact of dam construction on hydrologic alteration and aquatic ecological environment will be evaluated. The hydrologic signatures that will be investigated include flood peak, seasonality of streamflow, and the inter-annual variability of streamflow. In particular, the impacts of damming on aquatic ecological environment will be investigated using eco-flow metrics and indicators of hydrologic alteration (IHA) which contains 33 individual streamflow statistics that are closely related to aquatic ecosystem. The results of this study expect to provide a reference for reservoir operation considering both ecological and economic benefits of such operations in the catchment with high-density dams.

  5. Modeling flash floods in southern France for road management purposes

    NASA Astrophysics Data System (ADS)

    Vincendon, Béatrice; Édouard, Simon; Dewaele, Hélène; Ducrocq, Véronique; Lespinas, Franck; Delrieu, Guy; Anquetin, Sandrine

    2016-10-01

    Flash-floods are among the most devastating hazards in the Mediterranean. A major subset of damage and casualties caused by flooding is related to road submersion. Distributed hydrological nowcasting can be used for road flooding monitoring. This requires rainfall-runoff simulations at a high space and time resolution. Distributed hydrological models, such as the ISBA-TOP coupled system used in this study, are designed to simulate discharges for any cross-section of a river but they are generally calibrated for certain outlets and give deteriorated results for the sub-catchment outlets. The paper first analyses ISBA-TOP discharge simulations in the French Mediterranean region for target points different from the outlets used for calibration. The sensitivity of the model to its governing factors is examined to highlight the validity of results obtained for ungauged river sections compared with those obtained for the main gauged outlets. The use of improved model inputs is found beneficial for sub-catchments simulation. The calibration procedure however provides the parameters' values for the main outlets only and these choices influence the simulations for ungauged catchments or sub-catchments. As a result, a new version of ISBA-TOP system without any parameter to calibrate is used to produce diagnostics relevant for quantifying the risk of road submersion. A first diagnostic is the simulated runoff spatial distribution, it provides a useful information about areas with a high risk of submersion. Then an indicator of the flood severity is given by simulated discharges presented with respect to return periods. The latter has to be used together with information about the vulnerability of road-river cross-sections.

  6. Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes.

    PubMed

    Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P

    2015-09-15

    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. The StreamCat Dataset: Accumulated Attributes for NHDPlusV2 (Version 2.1) Catchments Riparian Buffer for the Conterminous United States: 2010 US Census Housing Unit and Population Density

    EPA Pesticide Factsheets

    This dataset represents the population and housing unit density within individual, local NHDPlusV2 catchments and upstream, contributing watersheds riparian buffers based on 2010 US Census data. Densities are calculated for every block group and watershed averages are calculated for every local NHDPlusV2 catchment(see Data Sources for links to NHDPlusV2 data and Census Data). This data set is derived from The TIGER/Line Files and related database (.dbf) files for the conterminous USA. It was downloaded as Block Group-Level Census 2010 SF1 Data in File Geodatabase Format (ArcGIS version 10.0). The landscape raster (LR) was produced based on the data compiled from the questions asked of all people and about every housing unit. The (block-group population / block group area) and (block-group housing units / block group area) were summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).

  8. Flushing of distal hillslopes as an alternative source of stream dissolved organic carbon in a headwater catchment

    USGS Publications Warehouse

    Gannon, John P; Bailey, Scott W.; McGuire, Kevin J.; Shanley, James B.

    2015-01-01

    We investigated potential source areas of dissolved organic carbon (DOC) in headwater streams by examining DOC concentrations in lysimeter, shallow well, and stream water samples from a reference catchment at the Hubbard Brook Experimental Forest. These observations were then compared to high-frequency temporal variations in fluorescent dissolved organic matter (FDOM) at the catchment outlet and the predicted spatial extent of shallow groundwater in soils throughout the catchment. While near-stream soils are generally considered a DOC source in forested catchments, DOC concentrations in near-stream groundwater were low (mean = 2.4 mg/L, standard error = 0.6 mg/L), less than hillslope groundwater farther from the channel (mean = 5.7 mg/L, standard error = 0.4 mg/L). Furthermore, water tables in near-stream soils did not rise into the carbon-rich upper B or O horizons even during events. In contrast, soils below bedrock outcrops near channel heads where lateral soil formation processes dominate had much higher DOC concentrations. Soils immediately downslope of bedrock areas had thick eluvial horizons indicative of leaching of organic materials, Fe, and Al and had similarly high DOC concentrations in groundwater (mean = 14.5 mg/L, standard error = 0.8 mg/L). Flow from bedrock outcrops partially covered by organic soil horizons produced the highest groundwater DOC concentrations (mean = 20.0 mg/L, standard error = 4.6 mg/L) measured in the catchment. Correspondingly, stream water in channel heads sourced in part by shallow soils and bedrock outcrops had the highest stream DOC concentrations measured in the catchment. Variation in FDOM concentrations at the catchment outlet followed water table fluctuations in shallow to bedrock soils near channel heads. We show that shallow hillslope soils receiving runoff from organic matter-covered bedrock outcrops may be a major source of DOC in headwater catchments in forested mountainous regions where catchments have exposed or shallow bedrock near channel heads.

  9. Validation of soil hydraulic pedotransfer functions at the local and catchment scale for an Indonesian basin

    NASA Astrophysics Data System (ADS)

    Booij, Martijn J.; Oldhoff, Ruben J. J.; Rustanto, Andry

    2016-04-01

    In order to accurately model the hydrological processes in a catchment, information on the soil hydraulic properties is of great importance. These data can be obtained by conducting field work, which is costly and time consuming, or by using pedotransfer functions (PTFs). A PTF is an empirical relationship between easily obtainable soil characteristics and a soil hydraulic parameter. In this study, PTFs for the saturated hydraulic conductivity (Ks) and the available water content (AWC) are investigated. PTFs are area-specific, since for instance tropical soils often have a different composition and hydraulic behaviour compared to temperate soils. Application of temperate soil PTFs on tropical soils might result in poor performance, which is a problem as few tropical soil PTFs are available. The objective of this study is to determine whether Ks and AWC can be accurately approximated using PTFs, by analysing their performance at both the local scale and the catchment scale. Four published PTFs for Ks and AWC are validated on a data set of 91 soil samples collected in the Upper Bengawan Solo catchment on Java, Indonesia. The AWC is predicted very poorly, with Nash-Sutcliffe Efficiency (NSE) values below zero for all selected PTFs. For Ks PTFs better results were found. The Wösten and Rosetta-3 PTFs predict the Ks moderately accurate, with NSE values of 0.28 and 0.39, respectively. New PTFs for both AWC and Ks were developed using multiple linear regression and NSE values of 0.37 (AWC) and 0.55 (Ks) were obtained. Although these values are not very high, they are significantly higher than for the published PTFs. The hydrological SWAT model was set up for the Keduang, a sub-catchment of the Upper Bengawan Solo River, to simulate monthly catchment streamflow. Eleven cases were defined to validate the PTFs at the catchment scale. For the Ks-PTF cases NSE values of around 0.84 were obtained for the validation period. The use of AWC PTFs resulted in slightly lower NSE values, although the differences in model accuracy are low. The small differences between the cases are caused by the soil homogeneity in the Keduang catchment. Without model calibration an NSE value of 0.51 was found. At the local scale, the Wösten and Rosetta-3 PTFs can be used to predict Ks. AWC PTFs show insufficient accuracy at the local scale. At the catchment scale, the Wösten and Rosetta-3 Ks PTFs and the developed AWC and Ks PTFs are validated. It is recommended to use the PTFs developed in this study for the Upper Bengawan Solo catchment. More research is needed on the effect of PTF input on simulated hydrological state variables, such as soil moisture content, and the effect of catchment soil heterogeneity on the validation and application of PTFs.

  10. Hydrological impacts of urbanization at the catchment scale

    NASA Astrophysics Data System (ADS)

    Oudin, Ludovic; Salavati, Bahar; Furusho-Percot, Carina; Ribstein, Pierre; Saadi, Mohamed

    2018-04-01

    The impacts of urbanization on floods, droughts and the overall river regime have been largely investigated in the past few decades, but the quantification and the prediction of such impacts still remain a challenge in hydrology. We gathered a sample of 142 catchments that have a documented increase in urban areas over the hydrometeorological record period in the United States. The changes in river flow regimes due to urban spread were differentiated from climate variability using the GR4J conceptual hydrological model. High, low and mean flows were impacted at a threshold of a 10% total impervious area. Moreover, the historical evolution of urban landscape spatial patterns was used to further detail the urbanization process in terms of extent and fragmentation of urban areas throughout the catchment and to help interpret the divergent impacts observed in streamflow behaviors. Regression analysis pointed out the importance of major wastewater treatment facilities that might overpass the effects of imperviousness, and therefore further research should either take them explicitly into account or select a wastewater facility-free catchment sample to clearly evaluate the impacts of urban landscape on low flows.

  11. Stormflow generation: a meta-analysis of field studies and research catchments

    NASA Astrophysics Data System (ADS)

    Barthold, Frauke; Elsenbeer, Helmut

    2014-05-01

    Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.

  12. Geographic variations in involuntary care and associations with the supply of health and social care: results from a nationwide study.

    PubMed

    Gandré, Coralie; Gervaix, Jeanne; Thillard, Julien; Macé, Jean-Marc; Roelandt, Jean-Luc; Chevreul, Karine

    2018-04-06

    Involuntary psychiatric care remains controversial. Geographic disparities in its use can challenge the appropriateness of the care provided when they do not result from different health needs of the population. These disparities should be reduced through dedicated health policies. However, their association with the supply of health and social care, which could be targeted by such policies, has been insufficiently studied. Our objectives were therefore to describe geographic variations in involuntary admission rates across France and to identify the characteristics of the supply of care which were associated with these variations. Involuntary admission rate per 100,000 adult inhabitants was calculated in French psychiatric sectors' catchment areas using 2012 data from the national psychiatric discharge database. Its variations were first described numerically and graphically. Several factors potentially associated with these variations were then considered in a negative binomial regression with an offset term accounting for the size of catchment areas. They included characteristics of the supply of care (public and private care, health and social care, hospital and community-based care, specialised and non-specialised care) as well as adjustment factors related to epidemiological characteristics of the population of each sector's catchment area and its level of urbanization. Such variables were extracted from complementary administrative databases. Supply characteristics associated with geographic variations were identified using a significance level of 0.05. Significant variations in involuntary admission rates were observed between psychiatric sectors' catchment areas with a coefficient of variation close to 80%. These variations were associated with some characteristics of the supply of health and social care in the sectors' catchment areas. Notably, an increase in the availability of community-based private psychiatrists and the capacity of housing institutions for disabled individuals was associated with a decrease in involuntary admission rates while an increase in the availability of general practitioners was associated with an increase in those rates. There is evidence of considerable variations in involuntary admission rates between psychiatric sectors' catchment areas. Our results provide lines of thoughts to reduce such variations, in particular by supporting an increase in the availability of upstream and downstream care in the community.

  13. Sediment Carbon Accumulation in Southern Latitude Saltmarsh Communities of Tasmania, Australia.

    PubMed

    Ellison, Joanna C; Beasy, Kim M

    2018-05-02

    Carbon sequestration values of wetlands are greatest in their sediments. Northern hemisphere research dominates the earlier saltmarsh carbon sequestration literature, recently augmented by analyses across mainland Australia where species assemblages, catchment histories and environmental settings differ. No previous assessment has been made for Tasmania. Carbon stores and accumulation rates in saltmarsh sediments of the Rubicon estuary, Tasmania, were investigated. Carbon was determined from sediment cores by Elemental Analyser, combined with analysis of organic content and bulk density. Carbon accumulation was determined using short-term and long-term sediment accretion indicators. Results showed carbon densities to be lower than global averages, with variation found between carbon stores of native and introduced species zones. Cores from introduced Spartina anglica indicated a trend of higher sediment carbon percentages relative to cores from native saltmarsh Juncus kraussii and Sarcocornia quinqueflora , and in finer grain sizes. Sediment carbon stock of 30 cm depths was 49.5 Mg C ha −1 for native saltmarsh and 55.5 Mg C ha −1 for Spartina . Carbon percentages were low owing to high catchment inorganic sediment yields, however carbon accumulation rates were similar to global averages, particularly under Spartina . Covering 85% of saltmarsh area in the estuary, Spartina contributes the majority to carbon stores, potentially indicating a previously unrecognized value for this invasive species in Australia.

  14. Advances in the regionalization approach: geostatistical techniques for estimating flood quantiles

    NASA Astrophysics Data System (ADS)

    Chiarello, Valentina; Caporali, Enrica; Matthies, Hermann G.

    2015-04-01

    The knowledge of peak flow discharges and associated floods is of primary importance in engineering practice for planning of water resources and risk assessment. Streamflow characteristics are usually estimated starting from measurements of river discharges at stream gauging stations. However, the lack of observations at site of interest as well as the measurement inaccuracies, bring inevitably to the necessity of developing predictive models. Regional analysis is a classical approach to estimate river flow characteristics at sites where little or no data exists. Specific techniques are needed to regionalize the hydrological variables over the considered area. Top-kriging or topological kriging, is a kriging interpolation procedure that takes into account the geometric organization and structure of hydrographic network, the catchment area and the nested nature of catchments. The continuous processes in space defined for the point variables are represented by a variogram. In Top-kriging, the measurements are not point values but are defined over a non-zero catchment area. Top-kriging is applied here over the geographical space of Tuscany Region, in Central Italy. The analysis is carried out on the discharge data of 57 consistent runoff gauges, recorded from 1923 to 2014. Top-kriging give also an estimation of the prediction uncertainty in addition to the prediction itself. The results are validated using a cross-validation procedure implemented in the package rtop of the open source statistical environment R The results are compared through different error measurement methods. Top-kriging seems to perform better in nested catchments and larger scale catchments but no for headwater or where there is a high variability for neighbouring catchments.

  15. The artifcial catchment Chicken Creek as a tool to study initial ecosystem development

    NASA Astrophysics Data System (ADS)

    Schaaf, W.; Elmer, M.; Fischer, A.; Gerwin, W.; Nenov, R.

    2011-12-01

    The artificial catchment Chicken Creek was constructed in 2005 to study the increasingly complex interactions of processes and structures during initial development of ecosystems. The 6ha area serves as the central research site for the Transregional Collaborative Research Center 38. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment during the first five years of development. Initial structures formed by the construction process (e.g. catchment morphology, subsurface structures like clay dams and dumping cones, caterpillar tracks at the surface) and initial substrate characteristics (e.g. texture, geochemistry) were decisive both for the distribution and flow of precipitation water and for vegetation succession. External factors like episodic events (e.g. heavy thunderstorms) triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. These processes resulted in transport and redistribution of water and sediment within the catchment, mainly along the main slope, and the formation of new structural elements like gullies and channels, a sedimentation fan above and sediments within the pond. As a result, we observed an overall differentiation of the site, e.g. with respect to water availability and texture redistribution, into areas with abrasion or accumulation processes dominating and areas with stable surfaces. During further development, both external factors and processes within the catchment continued to influence the site. For example, beside the initial soil seed bank, the surrounding environment of the catchment clearly affected species invasion. The dissection and stability of surfaces may be an important factor for the establishment of plants and habitats as well as for the formation of vegetation patterns and biological soil crusts. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. We expect that these more permanent structures and patterns established after five years will greatly influence the future development of the catchment with respect to e.g. input and accumulation of soil organic matter, nitrogen input and availability by symbiotic microbial N-fixation, development of root systems and soil food webs, weathering and soil formation, element cycling, and the water and element budget at the catchment scale.

  16. Predicting nutrient responses to mitigation at catchment to national scale: the UK research platform (Invited)

    NASA Astrophysics Data System (ADS)

    Johnes, P.

    2013-12-01

    Nutrient enrichment of waters from land-based and atmospheric sources presents a significant management challenge, requiring effective stakeholder engagement and policy development, properly underpinned by robust scientific evidence. The challenge is complex, raising significant questions about the specific sources, apportionment and pathways that determine nutrient enrichment and the key priorities for effective management and policy intervention. This paper presents outputs from 4 major UK research programmes: the Defra Demonstration Test Catchments programme (DTC), the Environment Agency's Catchment Sensitive Farming monitoring and evaluation programme (CSF), Natural Resources Wales Welsh Catchment Initiative (WCI) and the NERC Environmental Virtual Observatory programme (EVOp). Funded to meet this challenge, they are delivering new understanding of the rates and sources of pollutant fluxes from land to water, their impacts on ecosystem goods and services, and likely trends under future climate and land use change from field to national scale. DTC, a 12m investment by the UK Government, has set up long-term, high resolution research platforms equipped with novel telemetered sensor networks to monitor stream ecosystem responses to on-farm mitigation measures at a representative scale for catchment management. Ecosystem structural and functional responses and bulk hydrochemistry are also being monitored using standard protocols. CSF has set up long-term, enhanced monitoring in 8 priority catchments, with monthly monitoring in a further 72 English catchments and 6 Welsh priority catchments, to identify shifts in pollutant flux to waters resulting from mitigation measures in priority areas and farming sectors. CSF and WCI have contributed to >50 million of targeted farm improvements to date, representing a significant shift in farming practice. Each programme has generated detailed evidence on stream ecosystem responses to targeted mitigation. However, to provide effective underpinning for policy the major challenge has been to upscale this knowledge beyond these data-rich systems and identify the dominant contributing areas and priorities for management intervention to control nutrient flux and ecological impacts in data-poor systems which are located downstream from existing monitoring infrastructure or are in unmonitored catchments in remote locations. EVOp has directly addressed this challenge, developing a cloud computing enabled National Biogeochemical Modelling Framework to support ensemble modelling, knowledge capture and transfer from DTC, CSF, WCI and data-rich research catchments. This platform provides opportunities for further development of national biogeochemical modelling capability, allowing upscaled predictions from plot to catchment and national scale, enabling knowledge transfer from data-rich to data-poor areas. This paper presents initial findings from these research platforms, identifying the key priorities for action emerging from our national scale scenario analysis, and future research directions to further improve understanding, prediction and management capability in nutrient enriched waters and their catchments under changing climate and land use.

  17. A MULTIDISCIPLINARY APPROACH TO STORMWATER MANAGEMENT AT THE catchment SCALE

    EPA Science Inventory

    Stormwater runoff from extensive impervious surfaces in urban and suburban areas has led to human safety risks and stream ecosystem impairment, triggering an interest in catchment-scale retrofit stormwater management. Such stormwater management is of multidisciplinary relevance, ...

  18. Relationships between landscape pattern, wetland characteristics, and water quality in agricultural catchments.

    PubMed

    Moreno-Mateos, David; Mander, Ulo; Comín, Francisco A; Pedrocchi, César; Uuemaa, Evelyn

    2008-01-01

    Water quality in streams is dependent on landscape metrics at catchment and wetland scales. A study was undertaken to evaluate the correlation between landscape metrics, namely patch density and area, shape, heterogeneity, aggregation, connectivity, land-use ratio, and water quality variables (salinity, nutrients, sediments, alkalinity, other potential pollutants and pH) in the agricultural areas of a semiarid Mediterranean region dominated by irrigated farmlands (NE Spain). The study also aims to develop wetland construction criteria in agricultural catchments. The percentage of arable land and landscape homogeneity (low value of Simpson index) are significantly correlated with salinity (r(2) = 0.72) and NO(3)-N variables (r(2) = 0.49) at catchment scale. The number of stock farms was correlated (Spearman's corr. = 0.60; p < 0.01) with TP concentration in stream water. The relative abundance of wetlands and the aggregation of its patches influence salinity variables at wetland scale (r(2) = 0.59 for Na(+) and K(+) concentrations). The number and aggregation of wetland patches are closely correlated to the landscape complexity of catchments, measured as patch density (r(2) = 0.69), patch size (r(2) = 0.53), and landscape heterogeneity (r(2) = 0.62). These results suggest that more effective results in water quality improvement would be achieved if we acted at both catchment and wetland scales, especially reducing landscape homogeneity and creating numerous wetlands scattered throughout the catchment. A set of guidelines for planners and decision makers is provided for future agricultural developments or to improve existing ones.

  19. Measuring Spatial Accessibility of Health Care Providers – Introduction of a Variable Distance Decay Function within the Floating Catchment Area (FCA) Method

    PubMed Central

    Groneberg, David A.

    2016-01-01

    We integrated recent improvements within the floating catchment area (FCA) method family into an integrated ‘iFCA`method. Within this method we focused on the distance decay function and its parameter. So far only distance decay functions with constant parameters have been applied. Therefore, we developed a variable distance decay function to be used within the FCA method. We were able to replace the impedance coefficient β by readily available distribution parameter (i.e. median and standard deviation (SD)) within a logistic based distance decay function. Hence, the function is shaped individually for every single population location by the median and SD of all population-to-provider distances within a global catchment size. Theoretical application of the variable distance decay function showed conceptually sound results. Furthermore, the existence of effective variable catchment sizes defined by the asymptotic approach to zero of the distance decay function was revealed, satisfying the need for variable catchment sizes. The application of the iFCA method within an urban case study in Berlin (Germany) confirmed the theoretical fit of the suggested method. In summary, we introduced for the first time, a variable distance decay function within an integrated FCA method. This function accounts for individual travel behaviors determined by the distribution of providers. Additionally, the function inherits effective variable catchment sizes and therefore obviates the need for determining variable catchment sizes separately. PMID:27391649

  20. Extraction and representation of nested catchment areas from digital elevation models in lake-dominated topography

    NASA Astrophysics Data System (ADS)

    Mackay, D. Scott; Band, Lawrence E.

    1998-04-01

    This paper presents a new method for extracting flow directions, contributing (upslope) areas, and nested catchments from digital elevation models in lake-dominated areas. Existing tools for acquiring descriptive variables of the topography, such as surface flow directions and contributing areas, were developed for moderate to steep topography. These tools are typically difficult to apply in gentle topography owing to limitations in explicitly handling lakes and other flat areas. This paper addresses the problem of accurately representing general topographic features by first identifying distinguishing features, such as lakes, in gentle topography areas and then using these features to guide the search for topographic flow directions and catchment marking. Lakes are explicitly represented in the topology of a watershed for use in water routing. Nonlake flat features help guide the search for topographic flow directions in areas of low signal to noise. This combined feature-based and grid-based search for topographic features yields improved contributing areas and watershed boundaries where there are lakes and other flat areas. Lakes are easily classified from remotely sensed imagery, which makes automated representation of lakes as subsystems within a watershed system tractable with widely available data sets.

  1. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.

    PubMed

    Braaten, Hans Fredrik Veiteberg; de Wit, Heleen A

    2016-11-01

    Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Projected impacts of urbanisation on hydrological resource flows: A case study within the uMngeni Catchment, South Africa.

    PubMed

    Schütte, S; Schulze, R E

    2017-07-01

    Significant land use changes from natural/agricultural to urban land uses have been proposed within the Mpushini/Mkhondeni sub-catchments of the uMngeni Catchment in South Africa. A better understanding of the influences which such land use changes are likely to have on hydrological flows, is required, in order to make informed land use decisions for a sustainable future. As a point of departure, an overview of linkages between urbanisation and hydrological flow responses within this sub-humid study area is given. The urban characteristics of increased impervious areas and the potential return flows from transfers of potable water from outside the catchment were identified as being important in regard to hydrological flow responses. A methodology was developed to model urban response scenarios with urban characteristics as variables, using the daily time-step process based ACRU model. This is a hydrological multi-process model and not an urban hydraulic model and it addresses the landscape as well as the channel components of a catchment, and in addition to runoff components includes evaporation and transpiration losses as outputs. For the study area strong links between proposed urbanisation and hydrological resource flow responses were found, with increases in stormflows, together with increased and more regulated baseflows, and with impacts varying markedly between dry or wet years and by season. The impacts will depend on the fractions of impervious areas, whether or not these are connected to permeable areas, the amount of imported water and water system leaks. Furthermore, the urban hydrological impacts were found to be relatively greater in more arid than humid areas because of changes in the rainfall to runoff conversion. Flow changes due to urbanisation are considered to have important environmental impacts, requiring mitigation. The methodology used in this paper could be used for other urbanising areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fluoroquinolones in the Wenyu River catchment, China: Occurrence simulation and risk assessment.

    PubMed

    Hao, Xuewen; Cao, Yan; Zhang, Lai; Zhang, Yongyong; Liu, Jianguo

    2015-12-01

    Concern is increasing regarding the environmental impact of the high usage rate and intensive release of antibiotics used for human and animal therapy in major urban areas of China. In the present study, regional environmental distribution simulations and risk assessments for 3 commonly used fluoroquinolones in the Wenyu River catchment were conducted using a typical catchment model widely used in Europe. The fluoroquinolone antibiotics investigated (ofloxacin, norfloxacin, and ciprofloxacin) are consumed at high levels for personal health care in China. These antibiotics were simulated in the aquatic environment of the Wenyu River catchment across the Beijing City area for annual average concentrations, with regional predicted environmental concentrations (PECs) of approximately 711 ng/L, 55.3 ng/L, and 22.2 ng/L and local PECs up to 1.8 µg/L, 116 ng/L, and 43 ng/L, respectively. Apart from hydrological conditions, the concentrations of fluoroquinolones were associated closely with the sewage treatment plants (STPs) and their serving population, as well as hospital distributions. The presence of these fluoroquinolones in the catchment area of the present study showed significant characteristics of the occurrence of pharmaceuticals in the aquatic environment in an urban river, with typical "down-the-drain" chemicals. Significantly high concentrations of specific antibiotics indicated non-negligible risks caused by the intensive use in the local aquatic environment in a metropolitan area, particularly ofloxacin in upstream Shahe Reservoir, middle stream and downstream Qing River, and Liangma River to the Ba River segment. Specific treatment measures for these pharmaceuticals and personal care products in STPs are required for such metropolitan areas. © 2015 SETAC.

  4. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-07-01

    During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel) for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes such as overland and macropore flow reduce the influence of the herbicide's chemical properties on transport due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These observations on the role of herbicide properties contradict previous findings to some degree. Furthermore, they demonstrate that valuable insight can be gained by making spatially detailed observations along the flow paths.

  5. Restoration of badlands through applying bio-engineering techniques in active gully systems: Evidence from the Ecuadorian Andes

    NASA Astrophysics Data System (ADS)

    Borja, P.; Vanacker, V.; Alvarado, D.; Govers, G.

    2012-04-01

    A better insight in the processes controlling sediment generation, transport and deposition in badlands is necessary to enhance restoration of degraded soils through eco-engineering techniques. In this study, we evaluate the effect of different bio-engineering measures on soil and slope stability. Five micro-catchments (of 0.2 to 5 ha) were selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The micro-catchments differ only by land cover and degree of implementation of soil and water conservation measures. Bio-engineering techniques were used to construct dikes made of fascines of wooden sticks and earth-filled tires in active gully beds, where they are most efficient to reduce water and sediment transport. The experimental design consists of three micro-catchments within highly degraded lands: (DI) micro-catchment with bio-engineering measures concentrated in the active gully beds, (DF) with reforestation of Eucalyptus trees, and (DT) reference situation without any conservation measures. Two micro-catchments were monitored in agricultural lands with (AI) and without (AT) bio-engineering measures in the active gully beds. All catchments were equipped with San Dimas flumes to measure water flow, and sediment traps to monitor sediment export. In the (active) gully beds, various parameters related to gully stability (soil water content, bed elevation, vegetation cover, sedimentation/erosion) were monitored at weekly intervals. First results show that bio-engineering techniques are efficient to stabilize active gully beds through a reduction of the rapid concentration of excess rainfall and the sediment production and transfer. Fascines made of wooden sticks are far more efficient than earth-filled tires. Sediment deposition behind dikes is strongly dependent on precedent rainfall events, and the slope and vegetation cover of the gully floor. The sediment deposited facilitates colonization of the gully floor by native grass and shrub species. Analyses of soil samples indicates that the soil moisture is significantly higher (and the bulk density lower) in the deposition zones within restored gullies compared to the reference situation. During rainfall events, the infiltration in the deposition zones becomes important. The increase in water availability in the gully floor permits grass seeds to germinate and shoot rapidly, which strongly enhances gully stabilization.

  6. Mountain Rivers and Climate Change: Analysis of hazardous events in torrents of small alpine watersheds

    NASA Astrophysics Data System (ADS)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Torrential processes like flooding, heavy bedload transport or debris flows in steep mountain channels emerge during intense, highly localized rainfall events. They pose a serious risk on the densely populated Alpine region. Hydrogeomorphic hazards are profoundly nonlinear, threshold mediated phenomena frequently causing costly damage to infrastructure and people. Thus, in the context of climate change, there is an ever rising interest in whether sediment cascades of small alpine catchments react to changing precipitation patterns and how the climate signal is propagated through the fluvial system. We intend to answer the following research questions: (i) What are critical meteorological characteristics triggering torrential events in the Eastern Alps of Austria? (ii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which factors control the internal susceptibility? (iii) Do torrential processes show an increase in magnitude and frequency or a shift in seasonality in the recent past? (iv) Which future changes can be expected under different climate scenarios? Quantifications of bedload transport in small alpine catchments are rare and often associated with high uncertainties. Detailed knowledge though exists for the Schöttlbach catchment, a 71 km2 study area in Styria in the Eastern Alps. The torrent is monitored since a heavy precipitation event resulted in a disastrous flood in July 2011. Sediment mobilisation from slopes as well as within-channel storage and fluxes are regularly measured by photogrammetric methods and sediment impact sensors (SIS). The associated hydro-meteorological conditions are known from a dense station network. Changing states of connectivity can thus be related to precipitation and internal dynamics (sediment availability, cut-and-fill cycles). The site-specific insights are then conceptualized for application to a broader scale. Therefore, a Styria wide database of torrential events dating back several decades is analysed. Precipitation thresholds varying in space and time are established using highly resolved INCA data of the Austrian weather service. Parameters possibly controlling the basic susceptibility of catchments are evaluated in a regional GIS analysis (vegetation, geology, topography, stream network, proxies for sediment availability). Similarity measures are then used to group catchments into sensitivity classes. Applying different climate scenarios, the spatiotemporal distribution of catchments sensitive towards heavier and more frequent precipitation can be determined giving valuable advice for planning and managing mountain protection zones.

  7. ‘As simple as possible but not simpler': What is useful in a temperature-based snow-accounting routine? Part 2 - Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments

    NASA Astrophysics Data System (ADS)

    Valéry, Audrey; Andréassian, Vazken; Perrin, Charles

    2014-09-01

    This paper investigates the degree of complexity required in a snow accounting routine to ultimately simulate flows at the catchment outlet. We present a simple, parsimonious and general snow accounting routine (SAR), called Cemaneige, that can be associated with any precipitation-runoff model to simulate discharge at the catchment scale. To get results of general applicability, this SAR was tested on a large set of 380 catchments from four countries (France, Switzerland, Sweden and Canada) and combined with four different hydrological models. Our results show that five basic features provide a good reliability and robustness to the SAR, namely considering: (1) a transition range of temperature for the determination of the solid fraction of precipitation; (2) five altitudinal bands of equal area for snow accumulation; (3) the cold-content of the snowpack (with a parameter controlling snowpack inertia); (4) a degree-day factor controlling snowmelt; (5) uneven snow distribution in each band. This general SAR includes two internal states (the snowpack and its cold-content). Results also indicate that only two free parameters (snowmelt factor and cold-content factor) are warranted in a SAR at the daily time step and that further complexity is not supported by improvements in flow simulation efficiency. To justify the reasons for considering the five features above, a sensitivity analysis comparing Cemaneige with other SAR versions is performed. It analyses the snow processes which should be selected or not to bring significant improvement in model performances. Compared with the six existing SARs presented in the companion article (Valéry et al., 2014) on the 380 catchments set, Cemaneige shows better performance on average than five of these six SARs. It provides performance similar to the sixth SAR (MORD4) but with only half its number of free parameters. However, CemaNeige still appears perfectible on mountainous catchments (France and Switzerland) where the lumped SAR, MORD4, outperforms Cemaneige. Cemaneige can easily be adapted for simulation on ungauged catchments: fixing its two parameters to default values much less degrades performances than the other best performing SAR. This may partly due to the Cemaneige parsimony.

  8. Can spatial statistical river temperature models be transferred between catchments?

    NASA Astrophysics Data System (ADS)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales.

  9. Land-use effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Hunter, Heather M.; Walton, Richard S.

    2008-07-01

    SummaryA 6-year study was conducted in the Johnstone River system in the wet tropics of north-eastern Australia, to address concerns that the Great Barrier Reef is at risk from elevated levels of suspended sediment (SS) and nutrients discharged from its river catchments. Aims were to quantify: (i) fluxes of SS, phosphorus (P) and nitrogen (N) exported annually from the catchment and (ii) the influence of rural land uses on these fluxes. Around 55% of the 1602 km2 catchment was native rainforest, with the reminder developed mainly for livestock and crop production. Water quality and stream flow were monitored at 16 sites, with the emphasis on sampling major runoff events. Monitoring data were used to calibrate a water quality model for the catchment (HSPF), which was run with 39 years of historical precipitation and evaporation data. Modelled specific fluxes from the catchment of 1.2 ± 1.1 t SS ha-1 y-1, 2.2 ± 1.8 kg P ha-1 y-1 and 11.4 ± 7.3 kg N ha-1y-1 were highly variable between and within years. Fluxes of SS and P were strongly dominated by major events, with 91% of SS and 84% of P exported during the highest 10% of daily flows. On average, sediment P comprised 81% of the total P flux. The N flux was less strongly dominated by major events and sediment N comprised 46% of total N exports. Specific fluxes of SS, N and P from areas receiving precipitation of 3545 mm y-1 were around 3-4 times those from areas receiving 1673 mm y-1. For a given mean annual precipitation, specific fluxes of SS and P from beef pastures, dairy pastures and unsewered residential areas were similar to those from rainforest, while fluxes from areas of sugar cane and bananas were 3-4 times higher. Specific fluxes of N from areas with an annual precipitation of 3545 mm ranged from 8.9 ± 6.5 kg N ha-1 y-1 (rainforest) to 72 ± 50 kg N ha-1 y-1 (unsewered residential). Aggregated across the entire catchment, disproportionately large fluxes of SS, total P and total N were derived from areas of sugar cane and banana production. Fluxes of nitrate N comprised 32% of mean annual total N flux and were disproportionately high from unsewered residential areas and from areas used for sugar cane and banana production. Notably, 60% of the total catchment flux of nitrate came from areas of sugar cane, which comprised only 12% of the total land area. Modelled scenarios suggest contemporary nitrate fluxes were nearly six times those under natural conditions (pre-development), a much greater increase than estimated for SS, total P and total N. These elevated nitrate fluxes are of particular concern for the protection of aquatic ecosystems, since nitrate is a readily bio-available form of N. Results of the study suggest management practices associated with certain land uses may need further investigation and improvement. To reduce nitrate fluxes, this includes a need to address fertiliser management in the sugar cane and banana industries and wastewater disposal practices in unsewered residential areas.

  10. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow

    Treesearch

    C.B. Graham; H.R. Barnard; K.L. Kavanagh; J.P. McNamara

    2012-01-01

    Diel fluctuations can comprise a significant portion of summer discharge in small to medium catchments. The source of these signals and the manner in which they are propagated to stream gauging sites is poorly understood. In this work, we analysed stream discharge from 15 subcatchments in Dry Creek, Idaho, Reynolds Creek, Idaho, and HJ Andrews, Oregon. We identified...

  11. Gridded rainfall estimation for distributed modeling in western mountainous areas

    NASA Astrophysics Data System (ADS)

    Moreda, F.; Cong, S.; Schaake, J.; Smith, M.

    2006-05-01

    Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall difference, b) annual difference, c) typical year monthly comparison, and d) regression fit of the MAPX and MAP data. In terms of mean areal precipitation, overall differences between the MAP and MAPX time series are very small for the North Fork American River elevation zones. For the East Fork Carson River zones, the over all difference is up to 10 percent. The difference tends to be high when the elevation zones are small in area. In our presentation, we will show the results of our analyses and discuss future evaluations of these precipitation estimates using distributed and lumped hydrologic models.

  12. Record of drainage rearrangement and erosion in a transpressive orogen: relative role of horizontal and vertical rock advection in drainage evolution

    NASA Astrophysics Data System (ADS)

    Brocard, G. Y.; Teyssier, C.; Dunlap, W. J.; Willenbring, J.; Simon-Labric, T.; Authemayou, C.

    2008-12-01

    Along transpressive orogens, both range-transverse and range-parallel motions influence drainage network evolution. Range-parallel motions promote stretching of drainage networks, river lengthening or shortening, and sudden shortenings by river capture. Range-transverse motions induce river course shortening or lengthening, and generates stronger rock uplift. River incision patterns are influenced by rock uplift and waves of incision resulting from drainage rearrangement. Thus, under steady conditions of wrenching, drainages evolve by continued deformation and discrete rearrangements. Therefore, a significant part of erosion can be achieved in a state of significant departure from dynamic equilibrium. The frequency, intensity, and duration of these events set the timescale over which their integrated effects can be regarded as the expression of a long-term dynamic equilibrium. We document the growth of a 103-104 km2 catchment drained by the Chixoy River in Guatemala. The catchment covers a large part of a 50 km wide orogen located astride the North American - Caribbean plates boundary (Sierra de las Minas - Sierra de Chuacus range). The range is wrenched by sinistral tectonics with a varying amount of transpression and transtension. On the northern flank of this range, the Polochic Fault (PF) accumulated 130 km of total strike-slip displacement, but the Chixoy River only displays a 25 km tectonic bend. Geological evidence indicates that the river probably experienced a diversion that reset earlier tectonic bending. Upstream, the catchment stands out as a large (110x30 km) zone of enhanced erosion (2500 km3 removed since the Middle Miocene). The catchment retains many paleovalleys that we use as markers to track drainage rearrangement, bedrock deformation and changes in erosion rates. Study of the paleovalleys includes: satellite image detection, field mapping of river deposits, analyses of grain-size, clast provenance, heavy mineral provenance, deposit architecture, geochemical analyses, Ar40 -Ar39 dating of volcanic tuffs, 10 Be-26 Al burial dating, and apatite He cooling ages of the bedrock. Coupled analyses of erosion and drainage rearrangement show that, in the studied case, catchment growth occurred over 107 years. Most of the catchment erosion and growth is attributable to uplift along the PF rather than strike-slip motion, although both motion types contribute to the rearrangement. Growth of the catchment is strongly catalyzed by a wealth of other factors, such as river avulsion, volcanism, karstic flow, phreatic flow, and aridity resulting from catchment deepening.

  13. Understanding fine sediment and phosphorous delivery in upland catchments

    NASA Astrophysics Data System (ADS)

    Perks, M. T.; Reaney, S. M.

    2013-12-01

    The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (< 2 mm) and associated pollutants (such as phosphorous). Most recent Environment Agency (EA) data reveals that 60% of monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring station at the 12.5 km2 outlet provides flow, turbidity, total phosphorous (TP), total reactive phosphorous (TRP), conductivity, temperature and pH measurements at 15-minute intervals. Within this catchment, two additional monitoring stations along adjacent tributaries with catchment areas of 2.3 km2 and 3.8 km2 provide continuous flow and turbidity data with soluble reactive phosphorous and TP collected during storms. Collection and analysis of this data over two full hydrological years has proved effective in; a) producing load estimates; b) producing better assessments of the magnitude and duration of aquatic organisms exposure to detrimental levels of suspended sediment and phosphorous; c) exploring the processes responsible for the delivery and transfer of fine sediment and phosphorous to and from the channel and; d) enhancing our understanding and prediction of the fluvial sediment system. The process understanding achieved using this monitoring framework has facilitated the production of a mitigation plan for the Morland catchment. Following this plan, a range of measures are currently being implemented to reduce the movement of diffuse pollutants across the hillslopes and channels whilst in-stream monitoring continues. The adopted mitigation measures may act as a trial for other upland catchments facing similar pressures.

  14. Application of Temperature Index Model to Assess the Future Hydrological Regime of the Glacierized Catchments in Nepal.

    NASA Astrophysics Data System (ADS)

    Kayastha, R.; Kayastha, R. B.

    2017-12-01

    Unavailability of hydro meteorological data in the Himalayan regions is challenging on understanding the flow regimes. Temperature index model is simple yet the powerful glacio-hydrological model to simulate the discharge in the glacierized basin. Modified Positive Degree Day (MPDD) Model Version 2.0 is a grid-ded based semi distributed model with baseflow module is a robust melt modelling tools to estimate the discharge. MPDD model uses temperature and precipitation as a forcing datasets to simulate the discharge and also to obtain the snowmelt, icemelt, rain and baseflow contribution on total discharge. In this study two glacierized, Marsyangdi and Langtang catchment were investigated for the future hydrological regimes. Marsyangdi encompasses an area of 4026.19 sq. km with 20% glaciated area, whereas Langtang catchment with area of 354.64 sq. km with 36% glaciated area is studied to examine for the future climatic scenarios. The model simulates discharge well for the observed period; (1992-1998) in Marsyangdi and from (2007-2013) in Langtang catchment. The Nash-Sutcliffe Efficiency (NSE) for the both catchment were above 0.75 with the volume difference less than - 8 %. The snow and ice melts contribution in Marsyangdi were 4.7% and 10.2% whereas in Langtang the contribution is 15.3% and 23.4%, respectively. Rain contribution ( 40%) is higher than the baseflow contribution in total discharge in both basins. The future river discharge is also predicted using the future climate data from the regional climate models (RCMs) of CORDEX South Asia experiments for the medium stabilization scenario RCP4.5 and very high radiative forcing scenario RCP8.5 after bias correction. The projected future discharge of both catchment shows slightly increase in both scenarios with increase of snow and ice melt contribution on discharge. The result generated from the model can be utilized to understand the future hydrological regimes of the glacierized catchment also the impact of climate change on the snow and ice contribution on discharge. The future discharge projection is also helpful for the water resource management and also for the strategic planners.

  15. How does precipitation become runoff? Comparison of hydrologic thresholds across hillslope and catchment scales

    NASA Astrophysics Data System (ADS)

    Ross, C.; Ali, G.; Oswald, C. J.; McMillan, H. K.; Walter, K.

    2017-12-01

    A hydrologic threshold is a critical point in time when runoff behavior rapidly changes, often in response to the activation of specific storage-driven or intensity-driven processes. Hydrologic thresholds can be viewed as characteristic signatures of hydrosystems, which makes them useful for site comparison as long as their presence (or lack thereof) can be evaluated in a standard manner across a range of environments. While several previous studies have successfully identified thresholds at a variety of individual sites, only a limited number have compared dynamics prevailing at the hillslope versus catchment scale, or distinguished the role of storage versus intensity thresholds. The objective of this study was therefore to examine precipitation input thresholds as well as "precipitation minus evapotranspiration" thresholds in environments with contrasted climatic and geographic characteristics. Historical climate and hydrometric datasets were consolidated for one hillslope site located at the Panola Mountain Research Watershed (Southeastern USA) and catchments located in the HJ Andrew's Experimental Forest (Northwestern USA), the Catfish Creek Watershed (Canadian prairies), the Experimental Lakes Area (Canadian boreal ecozone), the Tarrawarra catchment (Australia) and the Mahurangi catchment (New Zealand). Individual precipitation-runoff events were delineated using the newly introduced software HydRun to derive event-specific hydrograph parameters as well surrogate measures of antecedent moisture conditions and evapotranspiration in an automated and consistent manner. Various hydrograph parameters were then plotted against those surrogate measures to detect and evaluate site-specific threshold dynamics. Preliminary results show that a range of threshold shapes (e.g., "hockey stick", heaviside and dirac) were observed across sites. The influence of antecedent precipitation on threshold magnitude and shape also appeared stronger at sites with lower topographic relief and drier climate. Future analyses will focus on the interaction between storage and intensity thresholds in order to evaluate the importance of considering both for comparative hydrological studies.

  16. Understanding solute transport at catchment scales by using a synthesis of bottom-up and top-down modelling approaches

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Schwientek, Marc; Osenbrück, Karsten

    2013-04-01

    The understanding of flow paths and travel times of water and solutes in catchments can be substantially improved by a combination of bottom-up and top-down modelling approaches. This hypothesis was tested for the 180 km² Ammer catchment in south-western Germany in which the landuse is dominated by agricultural and urban areas. The Ammer River with a mean discharge of 1 m³/s is mainly fed by springs from karstified and fractured aquifers. A limestone aquifer is extensively used for groundwater production. As a first step, we analysed measured concentrations of major ions, selected organic micro-pollutants and environmental tracers for surface water, springs and deep groundwater from wells using typical top-down approaches such as principal component analysis and lumped parameter models. From these approaches, we gained an initial understanding of water and solute fluxes in the catchment. The initial hypotheses on subsurface flow paths and travel times were subsequently tested using a numerical, 3-D groundwater model as a typical bottom-up approach. Our synthesis of top-down and bottom-up approaches provided us with a reliable picture of the dominant processes governing water and solute fluxes in the Ammer catchment. Several spring waters indicated mixing with wastewater. These contaminations were indentified to be caused by either recharge of surface water or leaky sewer systems. Deep percolation below the plant root zone polluted with agrochemicals was found to affect most springs and surface waters resulting in nitrate concentrations of approximately 30 mg/l. This process also influenced some of the drinking-water wells, although water quality for most of these wells is still relatively high due to some attenuation of pollutants but - above all - due to a significant proportion of groundwater with ages > 50 years. However, water quality will likely decrease if contaminants break through and/or conditions for microbiological attenuation process will deteriorate, for example due to depletion of suitable electron donors.

  17. Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand.

    PubMed

    Vale, S S; Fuller, I C; Procter, J N; Basher, L R; Smith, I E

    2016-02-01

    Knowledge of sediment movement throughout a catchment environment is essential due to its influence on the character and form of our landscape relating to agricultural productivity and ecological health. Sediment fingerprinting is a well-used tool for evaluating sediment sources within a fluvial catchment but still faces areas of uncertainty for applications to large catchments that have a complex arrangement of sources. Sediment fingerprinting was applied to the Manawatu River Catchment to differentiate 8 geological and geomorphological sources. The source categories were Mudstone, Hill Subsurface, Hill Surface, Channel Bank, Mountain Range, Gravel Terrace, Loess and Limestone. Geochemical analysis was conducted using XRF and LA-ICP-MS. Geochemical concentrations were analysed using Discriminant Function Analysis and sediment un-mixing models. Two mixing models were used in conjunction with GRG non-linear and Evolutionary optimization methods for comparison. Discriminant Function Analysis required 16 variables to correctly classify 92.6% of sediment sources. Geological explanations were achieved for some of the variables selected, although there is a need for mineralogical information to confirm causes for the geochemical signatures. Consistent source estimates were achieved between models with optimization techniques providing globally optimal solutions for sediment quantification. Sediment sources was attributed primarily to Mudstone, ≈38-46%; followed by the Mountain Range, ≈15-18%; Hill Surface, ≈12-16%; Hill Subsurface, ≈9-11%; Loess, ≈9-15%; Gravel Terrace, ≈0-4%; Channel Bank, ≈0-5%; and Limestone, ≈0%. Sediment source apportionment fits with the conceptual understanding of the catchment which has recognized soft sedimentary mudstone to be highly susceptible to erosion. Inference of the processes responsible for sediment generation can be made for processes where there is a clear relationship with the geomorphology, but is problematic for processes which occur within multiple terrains. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hydrological significance of soil frost for pre-alpine areas

    NASA Astrophysics Data System (ADS)

    Stähli, Manfred

    2017-03-01

    Soil frost can have a substantial impact on water flows at the soil surface and-potentially-alter the dynamics of catchment runoff. While these findings are mainly based on studies from alpine and Northern-latitude areas (including permafrost areas), little is known about the significance of soil frost for hydrology in pre-alpine areas, i.e. the region at the transition from central European lowlands to high-alpine areas. Here I synthesize soil temperature data and soil frost observations from ten sites in Switzerland to assess the occurrence of soil frost and to determine its impact on catchment runoff. In addition, a well-established numerical model was used to reconstruct the presence of soil frost in two first-order catchments for single runoff events and winters. The data clearly demonstrates that shallow soil frost has formed regularly in this altitudinal range over the past decade. The presence of a frozen soil surface was found to be highly variable among the sites under study and did not significantly correlate with altitude or forest density. For the first-order catchments, it was not possible to relate important flood peaks or increased runoff coefficients to winter situations with substantial soil frost. Thus, the present analysis suggests that although soil frost is widespread and regularly occurring at this altitudinal range, it has no significant impact on winter runoff in pre-alpine watersheds.

  19. Landscape structure and climate influences on hydrologic response

    NASA Astrophysics Data System (ADS)

    Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.

    2011-12-01

    Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.

  20. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    USGS Publications Warehouse

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  1. From Points to Patterns - Functional Relations between Groundwater Connectivity and Catchment-scale Streamflow Response

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, I. H. J.

    2016-12-01

    Groundwater measurements can help us to improve our understanding of runoff generation at the catchment-scale but typically only provide point-scale data. These measurements, therefore, need to be interpolated or upscaled in order to obtain information about catchment scale groundwater dynamics. Our approach used data from 51 spatially distributed groundwater monitoring sites in a Swiss pre-alpine catchment and time series clustering to define six groundwater response clusters. Each of the clusters was characterized by distinctly different site characteristics (i.e., Topographic Wetness Index and curvature), which allowed us to assign all unmonitored locations to one of these clusters. Time series modeling and the definition of response thresholds (i.e., the depth of more transmissive soil layers) allowed us to derive maps of the spatial distribution of active (i.e., responding) locations across the catchment at 15 min time intervals. Connectivity between all active locations and the stream network was determined using a graph theory approach. The extent of the active and connected areas differed during events and suggests that not all active locations directly contributed to streamflow. Gate keeper sites prevented connectivity of upslope locations to the channel network. Streamflow dynamics at the catchment outlet were correlated to catchment average connectivity dynamics. In a sensitivity analysis we tested six different groundwater levels for a site to be considered "active", which showed that the definition of the threshold did not significantly influence the conclusions drawn from our analysis. This study is the first one to derive patterns of groundwater dynamics based on empirical data (rather than interpolation) and provides insight into the spatio-temporal evolution of the active and connected runoff source areas at the catchment-scale that is critical to understanding the dynamics of water quantity and quality in streams.

  2. The Access Vermont Initiative: An Investigation of Team Development in Two Vermont Catchment Areas Providing Services to Children with Severe Emotional Disturbances and Their Families.

    ERIC Educational Resources Information Center

    Fox, Barbara J.; Wright, Leanne M.

    This study was designed to document the processes and dynamics of two multidisciplinary teams under the Access Vermont program, which provides services for children and youth with serious emotional disabilities and their families. In both cases, local interagency teams in the largely rural catchment areas developed plans for an initiative focused…

  3. Ecological effects and chemical composition of fine sediments in Upper Austrian streams and resulting implications for river management

    NASA Astrophysics Data System (ADS)

    Höfler, Sarah; Pichler-Scheder, Christian; Gumpinger, Clemens

    2017-04-01

    In the current scientific discussion high loads of fine sediments are considered one of the most important causes of river ecosystem degradation worldwide. Especially in intensively used catchment areas changes in the sediment household must be regarded as a reason, which prevents the achievement of the objectives of the European Water Framework Directive (WFD). Therefore, the Upper Austrian Water Authorities have launched two comprehensive studies on the topic. The first one was a survey on the current siltation status of river courses in Upper Austria. The second study deals with two selected catchments in detail, in order to get a clear picture of the impacts of the fines on the aquatic fauna (trout eggs, benthic invertebrates), the chemical composition of these fractions, the crucial hydrogeological processes and to develop possible role models for measures both in the catchments and in the streams. At eight sites within the two catchments sediment and water samples were collected at two dates for detailed chemical analysis. On one date additionally the benthic invertebrate fauna was investigated on the microhabitat level. Thereby it was possible to enhance the understanding of the range of ecological impacts caused by silting-up in different hydro-morphological circumstances and with different fine sediment loads. The water samples as well as the sediment fraction samples <0.063 mm were examined for different metals, organochlorine pesticides, PAHs (Polycyclic Aromatic Hydrocarbons), PCBs (Polychlorinated biphenyls), BTEX (benzene, toluene, ethylbenzene, and xylenes), AOX (adsorbable organohalogens) and various nutrients. Additionally, the basic parameters dry residue, loss on ignition, TC (total carbon), TOC (total organic carbon) and nutrients were analysed. From the sediment eluates and the filtered water decomposition products of pesticides, remains of medical drugs, sweeteners, hormonally active substances and water-soluble elements were analysed. Furthermore, a GIS-based analysis was carried out for the two examined catchments. The model included data gained from a digital elevation model, land use data and digital soil classification maps. This led to findings concerning the main sources and processes, which are responsible for anthropogenically induced high fine sediment loads in the streams. According to these results a GIS-based risk assessment tool for all Upper Austrian watercourses is developed, which will be used as instrument for the planning and measure implementation of the water management authorities. Due to the necessity of highly integrative improvement measures covering whole catchments, fine sediments must be expected to be one of the most challenging future topics in aquatic ecology. Erosion, loss of soil, economical and social disadvantages due to that processes as well as ecological degradation of riverine systems and related flood risk issues, urgently have to be discussed and solved on a highly comprehensive basis.

  4. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of best management practices in Jatigede Catchment Area

    NASA Astrophysics Data System (ADS)

    Ridwansyah, Iwan; Fakhrudin, M.; Wibowo, Hendro; Yulianti, Meti

    2018-02-01

    Cimanuk watershed is one of the national priority watersheds for rehabilitation considering its critical condition. In this area, Jatigede Reservoir operates, which is the second largest reservoir in Indonesia, after Jatiluhur Reservoir. The reservoir performs several functions, including flood control, irrigation for 90.000 ha of rice fields, water supply of 3.500 litres per second, and power generation of 110 MW. In 2004 the Jatigede Reservoir catchment area had a critical land area of 40.875 ha (28% of the catchment area). The sedimentation rate in Cimanuk River at Eretan station shows a high rate (5.32 mm/year), which potentially decreases the function of Jatigede Reservoir. Therefore, a strategy of Best Management Practice’s (BMP’s) is required to mitigate the problem by using SWAT hydrology modelling. The aim of this study is to examine the impact of BMP’s on surface runoff and sediment yield in Jatigede Reservoir Catchment Area. Simulations were conducted using land use in 2011. The results of this study suggest that SWAT model is considered as a reasonable modelling of BMP’s simulation concerning Nash-Sutcliffe Coefficients (0.71). The simulation is using terraces, silt pit, and dam trenches as BMP’s techniques. The BMP’s application can reduce surface runoff from 99.7 mm to 75.8 mm, and decrease sediment yield from 61.9 ton/ha/year to 40.8 ton/ha/year.

  5. The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique.

    PubMed

    Genthe, Bettina; Kapwata, Thandi; Le Roux, Wouter; Chamier, Jessica; Wright, Caradee Y

    2018-05-01

    Anthropogenic pollution was identified as an environmental problem of concern when, in 2008, dozens of crocodiles died in the Olifants River catchment near the border of South Africa and Mozambique. Given the close proximity of households to the river and their making use of river water, we aimed to determine to what extent water pollution has an impact on health of indigent communities in South Africa and Mozambique in the catchment area. Water and vegetable samples were collected from the study areas. Biota samples were washed with double de-ionized Milli-Q water and freeze-dried. Heavy metal analyses in water and vegetables were done by means of Inductively Coupled Plasma Optical Emission Spectroscopy. Metal concentrations were applied in a human health risk assessment to estimate health risks. Mean concentrations of antimony, arsenic, cadmium, chromium, mercury, molybdenum, nickel and selenium in water samples from South Africa exceeded the World Health Organization guidelines for safe levels of intake. Only iron exceeded the recommended guidelines in water samples from Mozambique. Metals/metalloids were found in lower concentrations at Mozambique sites downstream of South African sites. In vegetables, uranium was between 10 and 20 times above safe guidelines in South Africa and between 3 and 6 times in Mozambique. Arsenic in water samples posed the highest cancer risk. Even with a reduction in the metal concentrations in river water from South Africa to Mozambique, the potential to cause adverse human health impacts from direct use of polluted river water is evident in both countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Managing the impact of gold panning activities within the context of integrated water resources management planning in the Lower Manyame Sub-Catchment, Zambezi Basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Zwane, Nonhlanhla; Love, David; Hoko, Zvikomborero; Shoko, Dennis

    Riverbed alluvial gold panning activities are a cause for degradation of river channels and banks as well as water resources, particularly through accelerated erosion and siltation, in many areas of Zimbabwe. The lower Manyame sub-catchment located in the Northern part of the country is one such area. This study analysed the implications of cross-sectoral coordination of the management of panning and its impacts. This is within the context of conflicts of interests and responsibilities. A situational analysis of different stakeholders from sectors that included mining, environment, water, local government and water users who were located next to identified panning sites, as well as panners was carried out. Selected sites along the Dande River were observed to assess the environmental effects. The study determined that all stakeholder groups perceived siltation and river bank degradation as the most severe effect of panning on water resources, yet there were divergent views with regards to coordination of panning management. The Water Act of 1998 does not give enough power to management institutions including the Lower Manyame Sub-catchment Council to protect water resources from the impacts of panning, despite the fact that the activities affect the water resource base. The Mines and Minerals Act of 1996 remains the most powerful legislation, while mining sector activities adversely affect environmental resources. Furthermore, complexities were caused by differences in the definition of water resources management boundaries as compared to the overall environmental resources management boundaries according to the Environmental Management Act (EMA) of 2000, and by separate yet parallel water and environmental planning processes. Environmental sector institutions according to the EMA are well linked to local government functions and resource management is administrative, enhancing efficient coordination.

  7. Fluvial dissolved organic carbon composition varies spatially and seasonally in a small catchment draining a wind farm and felled forestry.

    PubMed

    Zheng, Ying; Waldron, Susan; Flowers, Hugh

    2018-06-01

    Assessing whether land use, from activities such as wind farm construction and tree-felling, impacts on terrestrial C delivery to rivers has focused on quantifying the loss of dissolved organic carbon (DOC), and not the composition changes. Here we explore how land use influences DOC composition by considering fluvial DOC concentration, [DOC], and spectrophotometric composition of a river draining a peat-rich catchment. We find that in this 5.7km 2 catchment differences occur in both the concentration and composition of the DOC in its sub-catchments. This is attributed to differences in how land was used: one tributary (D-WF) drains an area with wind farm construction and forestry in the headwaters, and one tributary (D-FF) drains an area with felled plantation trees. Generally, [DOC] in both streams showed similar seasonal variation, and autumn maxima. However, the felled catchment had greater mean [DOC] than the wind farm catchment. The SUVA 254 and E 4 /E 6 indicated DOC in both streams had similar aromaticity and fulvic:humic acid for most of the time, but SUVA 410 and E 2 /E 4 indicated less DOC humification in the felled catchment. This may be due to young DOC from the breakdown of residual branches and roots, or more humification in soils in the wind farm area. During the dry months, DOC composition showed more spatial variation: the D-WF DOC had smaller SUVA 254 (less total aromatic material) and SUVA 410 (fewer humic substances). The decreased E 2 /E 4 in both streams indicated the total aromatic carbon decreased more than humic substances content. Moreover, the larger E 4 /E 6 for D-WF in summer indicated that the humic substances were richer in fulvic acids than humic acids. Soil disturbance associated with forestry-felling likely contributed to the higher [DOC] and release of less-humified material in D-FF. This research indicates drivers of different DOC concentration and composition can exist even in small catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Assessing Landscape Connectivity and River Water Quality Changes Using an 8-Day, 30-Meter Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Kamarinas, I.; Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.

    2014-12-01

    Water quality is dictated by interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses over multiple spatio-temporal scales. In order to understand how changes in climate and land use impact river water quality, a suite of data with high temporal resolution over a long period is needed. Further, all of this data must be analyzed with respect to connectivity to the river, thus requiring high spatial resolution data. Here, we present how changes in climate and land use over the past 25 years have affected water quality in the 268 sq. km Hoteo River catchment in New Zealand. Hydro-climatic data included daily solar radiation, temperature, soil moisture, rainfall, drought indices, and runoff at 5-km resolution. Land cover changes were measured every 8 days at 30-m resolution by fusing Landsat and MODIS satellite imagery. Water quality was assessed using 15-min turbidity (2011-2014) and monthly data for a suite of variables (1990-2014). Watershed connectivity was modeled using a corrected 15-m DEM and a high-resolution drainage network. Our analyses revealed that this catchment experiences cyclical droughts which, when combined with intense land uses such as livestock grazing and plantation forest harvesting, leaves many areas in the catchment disturbed (i.e. exposed soil) that are connected to the river through surface runoff. As a result, flow-normalized turbidity was elevated during droughts and remained relatively low during wet periods. For example, disturbed land area decreased from 9% to 4% over 2009-2013, which was a relatively wet period. During the extreme drought of 2013, disturbed area increased to 6% in less than a year due mainly to slow pasture recovery after heavy stocking rates. The relationships found in this study demonstrate that high spatiotemporal resolution land cover datasets are very important to understanding the interactions between landscape and climate, and how these interactions affect water quality.

  9. Early changes in intervention coverage and mortality rates following the implementation of an integrated health system intervention in Madagascar.

    PubMed

    Garchitorena, Andres; Miller, Ann C; Cordier, Laura F; Rabeza, Victor R; Randriamanambintsoa, Marius; Razanadrakato, Hery-Tiana R; Hall, Lara; Gikic, Djordje; Haruna, Justin; McCarty, Meg; Randrianambinina, Andriamihaja; Thomson, Dana R; Atwood, Sidney; Rich, Michael L; Murray, Megan B; Ratsirarson, Josea; Ouenzar, Mohammed Ali; Bonds, Matthew H

    2018-01-01

    The Sustainable Development Goals framed an unprecedented commitment to achieve global convergence in child and maternal mortality rates through 2030. To meet those targets, essential health services must be scaled via integration with strengthened health systems. This is especially urgent in Madagascar, the country with the lowest level of financing for health in the world. Here, we present an interim evaluation of the first 2 years of a district-level health system strengthening (HSS) initiative in rural Madagascar, using estimates of intervention coverage and mortality rates from a district-wide longitudinal cohort. We carried out a district representative household survey at baseline of the HSS intervention in over 1500 households in Ifanadiana district. The first follow-up was after the first 2 years of the initiative. For each survey, we estimated maternal, newborn and child health (MNCH) coverage, healthcare inequalities and child mortality rates both in the initial intervention catchment area and in the rest of the district. We evaluated changes between the two areas through difference-in-differences analyses. We estimated annual changes in health centre per capita utilisation from 2013 to 2016. The intervention was associated with 19.1% and 36.4% decreases in under-five and neonatal mortality, respectively, although these were not statistically significant. The composite coverage index (a summary measure of MNCH coverage) increased by 30.1%, with a notable 63% increase in deliveries in health facilities. Improvements in coverage were substantially larger in the HSS catchment area and led to an overall reduction in healthcare inequalities. Health centre utilisation rates in the catchment tripled for most types of care during the study period. At the earliest stages of an HSS intervention, the rapid improvements observed for Ifanadiana add to preliminary evidence supporting the untapped and poorly understood potential of integrated HSS interventions on population health.

  10. [Decentralized outpatient teams in community-based psychiatric care: comparison of two Bavarian rural catchment areas].

    PubMed

    Valdes-Stauber, J; Putzhammer, A; Kilian, R

    2014-05-01

    Psychiatric outpatient clinics (PIAs) are an indispensable care service for crisis intervention and multidisciplinary treatment of people suffering from severe and persistent mental disorders. The decentralization of outpatient clinics can be understood as a further step in the deinstitutionalization process. This cross-sectional study (n=1,663) compared the central outpatient clinic with the decentralized teams for the year 2010 by means of analyses of variance, χ(2)-tests and robust multivariate regression models. The longitudinal assessment (descriptively and by means of Prais-Winsten regression models for time series) was based on all hospitalizations for the two decentralized teams (n = 6,693) according to partial catchment areas for the time period 2002-2010 in order to examine trends after their installation in the year 2007. Decentralized teams were found to be similar with respect to the care profile but cared for relatively more patients suffering from dementia, addictive and mood disorders but not for those suffering from schizophrenia and personality disorders. Decentralized teams showed less outpatient care costs as well as psychopharmacological expenses but a lower contact frequency than the central outpatient clinic. Total expenses for psychiatric care were not significantly different and assessed hospitalization variables (e.g. total number of annual admissions, cumulative length of inpatient-stay and annual hospitalizations per patient) changed slightly 3 years after installation of the decentralized teams. The number of admissions of people suffering from schizophrenia decreased whereas those for mood and stress disorders increased. Decentralized outpatient teams seemed to reach patients in rural regions who previously were not reached by the central outpatient clinic. Economic figures indicate advantages for the installation of such teams because care expenses are not higher than for patients treated in centralized outpatient clinics and because hospitalization figures for the whole catchment area did not increase.

  11. Estimating of the impact of land use changes using the conceptual hydrological model THESEUS??a case study

    NASA Astrophysics Data System (ADS)

    Wegehenkel, Martin

    As a result of a new agricultural funding policy established in 1992 by the European Community, it was assumed that up to 15-20% of arable land would have been set aside in the next years in the new federal states of north-eastern Germany, for example, Brandenburg. As one potential land use option, afforestation of these set aside areas was discussed to obtain deciduous forests. Since the mean annual precipitation in north-eastern Germany, Brandenburg is relatively low (480-530 mm y -1), an increase in interception and evapotranspiration loss by forests compared to arable land would lead to a reduction in ground water recharge. Experimental evidence to determine effects of such land use changes are rarely available. Therefore, there is a need for indirect methods to estimate the impact of afforestation on the water balance of catchments. In this paper, a conceptual hydrological model was verified and calibrated in two steps using data from the Stobber-catchment located in Brandenburg. In the first step, model outputs like daily evapotranspiration rates and soil water contents were verified on the basis of experimental data sets from two test locations. One test site with the land use arable land was located within the Stobber-catchment. The other test site with pine forest was located near by the catchment. In the second step, the model was used to estimate the impact of afforestation on catchment water balance and discharge. For that purpose, the model was calibrated against daily discharge measurements for the period 1995-1997. For a simple afforestation scenario, it was assumed that the area of forest increases from 34% up to 80% of the catchment area. The impact of this change in forest cover proportion was analyzed using the calibrated model. In case of increasing the proportion of forest cover in the catchment due to the scenario afforestation, the model predicts a reduction in discharge and an increase in evapotranspiration.

  12. The hydrological response of a small catchment after the abandonment of terrace cultivation. A study case in northwestern Spain

    NASA Astrophysics Data System (ADS)

    Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion

    2015-04-01

    Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far, confirming the hypothesis that subsurface flow might be a dominant runoff generation process.

  13. Quantifying sediment source contributions in coastal catchments impacted by the Fukushima nuclear accident with carbon and nitrogen elemental concentrations and stable isotope ratios

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier

    2016-04-01

    The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are areas in particular where forest sources have elevated concentrations and may require some attention in the decontamination and monitoring of potential radiocesium downstream transfers.

  14. Integrated hydro-environmental impact assessment and alternative selection of low impact development practices in small urban catchments.

    PubMed

    Yang, Yang; Chui, Ting Fong May

    2018-06-20

    Attention is increasingly being paid to low impact development (LID) practices in urban stormwater management. Because LID practices offer a wide variety of hydro-environmental benefits, it is often necessary to account for these benefits collectively in cost-benefit analysis and LID alternative selection. The conventional methods of quantifying these benefits, however, can hardly incorporate the preferences of decision makers, and commonly involve tedious parameter estimations. To address these shortcomings, this study adopts a relative performance evaluation method to assess the various hydro-environmental impacts of LID alternatives in small urban catchments. This study considers several categories of hydro-environmental impacts, including water balance impact, surface pollutant load abatement, and combined sewer overflow and flood risk mitigation. Several performance indicators are used for each impact category. The system-wide effectiveness of an LID alternative is then derived by the weighted aggregation of its indicator scores, which are obtained by comparing its performance with that of all of the other alternatives. The hydro-environmental impact of green roofs and bioretention cells of varying areas in New York City, U.S. are investigated in detail. The results suggest that a green roof that covers the whole catchment is as effective as a bioretention cell that covers 3%-5% of the catchment in terms of stormwater management, and that the effectiveness of a bioretention cell doubles when its surface area increases from 2% to 10% of the catchment area. These assessment results are influenced by catchment-specific assessment criteria (e.g., the high flow threshold) and management interests, which suggests that design guidelines for different catchments should be tailored to their natural and drainage characteristics. The framework used in this study allows stakeholders' interests to be reflected in LID alternative selections and the implications of different design guidelines to be thoroughly investigated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Sediment budgets of mountain catchments: Scale dependence and the influence of land-use

    NASA Astrophysics Data System (ADS)

    Förster, Helga; Dotterweich, Markus; Wunderlich, Jürgen

    2010-05-01

    Long-term sediment budgets of forested mountain catchments are scarcely investigated today. This is because they are traditionally expected to show few erosion features and low sediment delivery. This opinion originates from process-based hydrological studies proving the runoff preventing properties of trees and forest soils. In addition mountain areas have been colonized later and only sporadically compared to the fruitful loess-covered lowlands. On the other hand steep hillslopes, narrow valleys and the availability of regolith cause a high erosion potential. And there is evidence that historical floods and yearly occurring storms initiate intensive but local and sporadic erosion events. Sediment budgets from zero-order catchments of the Palatinate Forest in the south-western sandstone escarpment in Rhineland-Palatinate show spatially varying intensities of land use impact and relief conditions. The budgets are based on field data and a soilscape model of an upper periglacial cover bed with a homogenous thickness. OSL- and 14C-dates of colluvial deposits allow relating erosion events to land-use changes derived from historical maps and written archives. The presented case studies from the Palatinate Forest are of special interest as the high proximity to the loess-covered and intensively cultivated Rhine Graben effected settlement and land-use intensity in the mountain catchments. Clear cuts for settlements were joined by deforestation for agriculture and stretched mainly along the Haardtrand and high order valleys. Off these areas the strength of interference in the forest ecosystem depended on transport possibilities and distance to the Rhine Graben. In the vicinity strong devastation and clear cutting occurred. With increasing distance the felling intensity decreased and some parts seem to be nearly undisturbed until the 18th century. The needs for wood were controlled by the economical development as well as political decisions on local to European scale. The results from Palatinate Forest show that some of the cultural phases, which have been determined as main Holocene erosion phases in the Rhine Graben, did not extend to the mountain areas. The colluvial documentation of settlement history in small catchments directly connected to the Rhine Graben starts in the Neolithic Period but is not continual, while in those within the mountains colluvial layers older than modern times are missing. An inquiry of historical and modern storm events supports the requirements of local differentiation of sediment dynamics. On the meso-scale the sediment budget of the Speyerbach shows, that the output of the catchment is higher than the sedimentation within the catchment area. A diverse pattern occurs on the local scale: while the loess-covered subcatchments show a dominance of sedimentation, the steeper ones with narrow valleys shows an exceeding delivery to the output. As the latter ones are dominant in the Speyerbach catchment, the meso-scale catchment budget seems to be determined by the majority. Micro-scale diversity of land-use history therefore determines the sediment delivery rate of small mountain catchments and underlines the need for systematic archaeological research activities in mountain areas in Germany.

  16. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia

    2017-04-01

    Storm events mobilize large proportions of sediments in catchment systems. Therefore understanding catchment sediment dynamics throughout the continuity of storms and how initial catchment states act as controls on the transport of sediment to catchment outlets is important for effective catchment management. Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within catchments (Baartman et al., 2013; Parsons et al., 2015; Masselink et al., 2016a,b; Mekonnen et al., 2016). However, sediment connectivity alone does not provide a practicable mechanism by which the catchment's initial state - and thus the location of entrained sediment in the sediment transport cascade - can be characterized. Studying the dynamic relationship between water discharge (Q) and suspended sediment (SS) at the catchment outlet can provide a valuable research tool to infer the likely source areas and flow pathways contributing to sediment transport because the relationship can be characterized by predictable hysteresis patterns. Hysteresis is observed when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed - towards the increase or towards the diminution of the flow. However, the complexity of the phenomena and factors which determine the hysteresis make its interpretation ambiguous. Previous work has described various types of hysteretic loops as well as the cause for the shape of the loop, mainly pointing to the origin of the sediments. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz principal and Oskotz woodland). La Tejería and Latxaga watersheds are similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr catchment, north-west Ethiopia. Accepted to Land Degradation and Development. Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714

  17. Application of global sensitivity analysis methods to Takagi-Sugeno-Kang rainfall-runoff fuzzy models

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  18. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  19. Hydrological responses in water loss due to thinning of forested watersheds in Japan using the short-term water balance method

    NASA Astrophysics Data System (ADS)

    Sano, K.; Gomi, T.; Hiraoka, M.; Sato, T.; Onda, Y.

    2015-12-01

    We examined the changes in seasonal patterns of catchment-scale evapotranspiration (i.e., water loss) using Short-Term Water Balance Model (STWBM) developed. STWBM is applied to estimate the value of water loss based on precipitation minus discharge volume during short-periods(8 to 80 days). This method can be applicable for examining seasonal characteristics of water loss that relets to ET. We applied STWBM for investigating the effects of 50% thinning in nested headwater catchments draining Japanese cypress (Cryptomeria japonica) and cedar (Chamaecyparis obtusa) forests. Study areas is located to 70 km north of Tokyo with 1250 mm annual precipitation and 14℃ mean annual temperature. 50% of the stems (46% of timber volume) were removed by strip thinning in 17 ha treatment catchment, 9 ha catchment remained untreated as a control. We installed 4 nested gauging stations in treated and control catchments with 3 to 10 ha of drainage areas. Runoff in each nested gauging station was measured in the pre- (from April, 2010 to June 2011) and the post-thinning periods (from January 2012 to December 2012). Total runoff coefficient in treated and control catchment was 54% and 26%, respectively. , . Estimated annual water loss by STWBM was 585 mm in treated and 969 mm in control catchments. Because annual evapotranspiration of Japanese cypress and cedar was about ranging from 400 to 800 mm in this catchment, our estimated water loss mostly associated with ET and partially by water loss by deep bedrock percolation. Estimated water loss after thinning in growth season (May to October) decreased 45 to 60 (in 2012) % and 51 to 60 (in 2013) % for all nested gauging station, while estimated water loss in control catchment was consistent. This result suggested that 50% of thinning decreased water loss by ET but changes can be varied among nested gauging station.

  20. Carbon redistribution by erosion processes in an intensively disturbed catchment

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana

    2016-04-01

    Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and reforestation works. However the organic carbon in deposited sediments comes not only from surface erosion processes, but also from deeper soil or sediment layers mobilized by concentrated erosion processes. Sediment richer in organic carbon comes from the soil surface of vegetated (reforested) areas close and well connected to the channels. Subcatchments dominated by laminar erosion processes showed two times higher TOC/total erosion ratio than subcatchments dominated by concentrated flow erosion processes. Lithology, soils and geomorphology exert a more important control on organic carbon redistribution than land use and vegetation cover in this geomorphologically very active catchment.

  1. Upstream structural management measures for an urban area flooding in Turkey

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.

    2015-06-01

    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.

  2. A GIS-based methodology for selecting stormwater disconnection opportunities.

    PubMed

    Moore, S L; Stovin, V R; Wall, M; Ashley, R M

    2012-01-01

    The purpose of this paper is to introduce a geographic information system (GIS)-based decision support tool that assists the user to select not only areas where (retrofit) sustainable drainage systems (SuDS) could be implemented within a large catchment (>100 ha), but also to allow discrimination between suitable SuDS techniques based on their likely feasibility and effectiveness. The tool is applied to a case study catchment within London, UK, with the aim of increasing receiving water quality by reducing combined sewer overflow (CSO) spill frequency and volume. The key benefit of the tool presented is to allow rapid assessment of the retrofit SuDS potential of large catchments. It is not intended to replace detailed site investigations, but may help to direct attention to sites that have the greatest potential for retrofit SuDS implementation. Preliminary InfoWorks CS modelling of 'global disconnections' within the case study catchment, e.g. the removal of 50% of the total impervious area, showed that CSO spill volume could be reduced by 55 to 78% during a typical year. Using the disconnection hierarchy developed by the authors, the feasibility of retrofit SuDS deployment within the case study catchment is assessed, and the implications discussed.

  3. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment.

    PubMed

    Swaffer, Brooke A; Vial, Hayley M; King, Brendon J; Daly, Robert; Frizenschaf, Jacqueline; Monis, Paul T

    2014-12-15

    Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  5. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda

    PubMed Central

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-01-01

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems. PMID:27556474

  6. USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.

    PubMed

    Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin

    2016-08-20

    Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.

  7. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin

    NASA Astrophysics Data System (ADS)

    Lafaysse, M.; Hingray, B.; Etchevers, P.; Martin, E.; Obled, C.

    2011-06-01

    SummaryThe SAFRAN-ISBA-MODCOU hydrological model ( Habets et al., 2008) presents severe limitations for alpine catchments. Here we propose possible model adaptations. For the catchment discretization, Relatively Homogeneous Hydrological Units (RHHUs) are used instead of the classical 8 km square grid. They are defined from the dilineation of hydrological subbasins, elevation bands, and aspect classes. Glacierized and non-glacierized areas are also treated separately. In addition, new modules are included in the model for the simulation of glacier melt, and retention of underground water. The improvement resulting from each model modification is analysed for the Upper Durance basin. RHHUs allow the model to better account for the high spatial variability of the hydrological processes (e.g. snow cover). The timing and the intensity of the spring snowmelt floods are significantly improved owing to the representation of water retention by aquifers. Despite the relatively small area covered by glaciers, accounting for glacier melt is necessary for simulating the late summer low flows. The modified model is robust over a long simulation period and it produces a good reproduction of the intra and interannual variability of discharge, which is a necessary condition for its application in a modified climate context.

  8. Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties

    NASA Astrophysics Data System (ADS)

    Chouaib, Wafa; Caldwell, Peter V.; Alila, Younes

    2018-04-01

    This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the Sacramento model (SAC-SMA) to simulate soil moisture and flow components FDCs. The catchments classification based on storm characteristics pointed to the effect of catchments landscape properties on the precipitation variability and consequently on the FDC shapes. The landscape properties effect was pronounce such that low value of the slope of FDC (SFDC)-hinting at limited flow variability-were present in regions of high precipitation variability. Whereas, in regions with low precipitation variability the SFDCs were of larger values. The topographic index distribution, at the catchment scale, indicated that saturation excess overland flow mitigated the flow variability under conditions of low elevations with large soil moisture storage capacity and high infiltration rates. The SFDCs increased due to the predominant subsurface stormflow in catchments at high elevations with limited soil moisture storage capacity and low infiltration rates. Our analyses also highlighted the major role of soil infiltration rates on the FDC despite the impact of the predominant runoff generation mechanism and catchment elevation. In conditions of slow infiltration rates in soils of large moisture storage capacity (at low elevations) and predominant saturation excess, the SFDCs were of larger values. On the other hand, the SFDCs decreased in catchments of prevalent subsurface stormflow and poorly drained soils of small soil moisture storage capacity. The analysis of the flow components FDCs demonstrated that the interflow contribution to the response was the higher in catchments with large value of slope of the FDC. The surface flow FDC was the most affected by the precipitation as it tracked the precipitation duration curve (PDC). In catchments with low SFDCs, this became less applicable as surface flow FDC diverged from PDC at the upper tail (> 40% of the flow percentile). The interflow and baseflow FDCs illustrated most the filtering effect on the precipitation. The process understanding we achieved in this study is key for flow simulation and assessment in addition to future works focusing on process-based FDC predictions.

  9. Improvement of a free software tool for the assessment of sediment connectivity

    NASA Astrophysics Data System (ADS)

    Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco

    2015-04-01

    Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of morphometric indexes, such as the Melton ruggedness number, commonly used for discriminating debris-flow catchments from bedload catchments. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188,31-41. doi:10.1016/j.geomorph.2012.05.007

  10. Assessing potential effects of highway runoff on receiving-water quality at selected sites in Oregon with the Stochastic Empirical Loading and Dilution Model (SELDM)

    USGS Publications Warehouse

    Risley, John C.; Granato, Gregory E.

    2014-01-01

    6. An analysis of the use of grab sampling and nonstochastic upstream modeling methods was done to evaluate the potential effects on modeling outcomes. Additional analyses using surrogate water-quality datasets for the upstream basin and highway catchment were provided for six Oregon study sites to illustrate the risk-based information that SELDM will produce. These analyses show that the potential effects of highway runoff on receiving-water quality downstream of the outfall depends on the ratio of drainage areas (dilution), the quality of the receiving water upstream of the highway, and the concentration of the criteria of the constituent of interest. These analyses also show that the probability of exceeding a water-quality criterion may depend on the input statistics used, thus careful selection of representative values is important.

  11. Hydrology-based understanding of Ontario Lacus in Titan's south pole

    NASA Astrophysics Data System (ADS)

    Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.

    2015-11-01

    Ontario Lacus is the largest presently filled lake at the south pole of Titan. Many other large basins in south pole exist at lower elevations than Ontario Lacus but are currently empty. To find out what sets Ontario apart from those empty basins, we have carried a detailed hydrological assessment of Ontario Lacus. Topography of the region, as derived from Cassini RADAR altimetry was used to determine the catchment area of Ontario Lacus. We could map the areal extent of catchments as far as southern mid-latitudes. Clouds in southern mid and high latitudes have been observed by Cassini VIMS which indicate possible precipitation in those regions. Precipitation in southern mid-latitudes coupled with the large catchment areas of Ontario Lacus could be the reason behind it being filled. Our mass conservation calculations indicate that if runoff was the only contributor to the lake volume, then the lake might be filled within one Titan year (29.5 Earth years) in entirety. We also observe a non-linear relationship between the longest identifiable stream and the catchment area (Hack's Law) which is consistent with terrestrial hydrological systems and may help in further interpretation of the hydrology of Ontario Lacus.

  12. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Buckles, Laura K.; Weijers, Johan W. H.; Verschuren, Dirk; Sinninghe Damsté, Jaap S.

    2014-09-01

    The MBT/CBT palaeotemperature proxy uses the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), membrane lipids that are supposed to derive from soil bacteria, to reconstruct mean annual air temperature (MAAT). Applied successfully in coastal marine sediments, its extension to lake-sediment records with potentially high time resolution would greatly expand its utility. Over the last years, however, studies have indicated the presence of additional sources of brGDGTs within lake systems. To constrain the factors influencing the MBT/CBT palaeotemperature proxy in lakes, detailed investigation of brGDGT fluxes in a modern lake system is necessary to identify their potential sources. This study concentrates on Lake Challa, a permanently stratified crater lake in equatorial East Africa with limited catchment area. An almost 3-year time series of approximately monthly samples of settling particles, supplemented with a depth profile of suspended particulate matter (SPM) and sets of profundal surface-sediment and catchment soil samples, were analysed for both the 'living' intact polar lipids (IPLs) and 'fossil' core lipids (CLs) of GDGTs. We found that brGDGTs are produced in oxic, suboxic and anoxic zones of the water column, and in substantial amounts compared to influxes from catchment soils. Additional in situ production within the lake sediments is most probable, but cannot be definitely confirmed at this time. These lacustrine brGDGTs display a different response to temperature variation than soil-derived brGDGTs, signifying either a different physiological adaptation to changing conditions within the water column and/or a different composition of the respective bacterial communities. Using this specific relationship with temperature, a local calibration based on brGDGT distributions in SPM generates relatively accurate water temperature estimates from settling particles but fails for surface sediments.

  13. Riparian vegetation and water yield: A synthesis

    NASA Astrophysics Data System (ADS)

    Salemi, Luiz Felippe; Groppo, Juliano Daniel; Trevisan, Rodrigo; Marcos de Moraes, Jorge; de Paula Lima, Walter; Martinelli, Luiz Antonio

    2012-08-01

    SummaryForested riparian zones perform numerous ecosystem functions, including the following: storing and fixing carbon; serving as wildlife habitats and ecological corridors; stabilizing streambanks; providing shade, organic matter, and food for streams and their biota; retaining sediments and filtering chemicals applied on cultivated/agricultural sites on upslope regions of the catchments. In this paper, we report a synthesis of a different feature of this type of vegetation, which is its effect on water yield. By synthesizing results from studies that used (i) the nested catchment and (ii) the paired catchment approaches, we show that riparian forests decrease water yield on a daily to annual basis. In terms of the treated area increases on average were 1.32 ± 0.85 mm day-1 and 483 ± 309 mm yr-1, respectively; n = 9. Similarly, riparian forest plantation or regeneration promoted reduced water yield (on average 1.25 ± 0.34 mm day-1 and 456 ± 125 mm yr-1 on daily and annual basis, respectively, when prorated to the catchment area subjected to treatment; n = 5). Although there are substantially fewer paired catchment studies assessing the effect of this vegetation type compared to classical paired catchment studies that manipulate the entire vegetation of small catchments, our results indicate the same trend. Despite the occurrence of many current restoration programs, measurements of the effect on water yield under natural forest restoration conditions are still lacking. We hope that presenting these gaps will encourage the scientific community to enhance the number of observations in these situations as well as produce more data from tropical regions.

  14. Influence of catchment-scale military land use on stream physical and organic matter variables in small Southeaster Plains Catchments (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Kelly

    2005-01-01

    We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less

  15. A Demographic and Epidemiological Study of Naval Hospital Charleston’s Catchment Area Population

    DTIC Science & Technology

    1993-08-01

    Management Project examines the military beneficiary population in the Naval Hospital Charleston Catchment Area to determine what demographic attributes...are exhibited, and what medical demands the beneficiaries have placed on the Military Health Service System between 01 and 30 June 1992. Various data...closure or realignment of the military treatment facility. 14. SUBJECT TERMS 15. NUMBER OF PAGES 304Demographic and Epidemiological Study 16. PRICE CODE 17

  16. Effects of model structure and catchment discretization on discharge simulation in a small forest catchment

    NASA Astrophysics Data System (ADS)

    Spieler, Diana; Schwarze, Robert; Schütze, Niels

    2017-04-01

    In the past a variety of different modeling approaches has been developed in catchment hydrology. Even though there is no argument on the relevant processes taking place, there is no unified theory on how best to represent them computationally. Thus a vast number of models has been developed, varying from lumped models to physically based models. Most of them have a more or less fixed model structure and follow the "one fits all" paradigm. However, a more flexible approach could improve model realism by designing catchment specific model structures based on data availability. This study focuses on applying the flexible hydrological modelling framework RAVEN (Craig et al., 2013), to systematically test several conceptual model structures on the 19 km2 Große Ohe Catchment in the Bavarian Forest (Germany). By combining RAVEN with the DREAM algorithm (Vrugt et al., 2009), the relationship between catchment characteristics, model structure, parameter uncertainty and data availability are analyzed. The model structure is progressively developed based on the available data of the well observed forested catchment area. In a second step, the impact of the catchment discretization is analyzed by testing different spatial resolutions of topographic input data.

  17. Evaluation of catchment delineation methods for the medium-resolution National Hydrography Dataset

    USGS Publications Warehouse

    Johnston, Craig M.; Dewald, Thomas G.; Bondelid, Timothy R.; Worstell, Bruce B.; McKay, Lucinda D.; Rea, Alan; Moore, Richard B.; Goodall, Jonathan L.

    2009-01-01

    Different methods for determining catchments (incremental drainage areas) for stream segments of the medium-resolution (1:100,000-scale) National Hydrography Dataset (NHD) were evaluated by the U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA). The NHD is a comprehensive set of digital spatial data that contains information about surface-water features (such as lakes, ponds, streams, and rivers) of the United States. The need for NHD catchments was driven primarily by the goal to estimate NHD streamflow and velocity to support water-quality modeling. The application of catchments for this purpose also demonstrates the broader value of NHD catchments for supporting landscape characterization and analysis. Five catchment delineation methods were evaluated. Four of the methods use topographic information for the delineation of the NHD catchments. These methods include the Raster Seeding Method; two variants of a method first used in a USGS New England study-one used the Watershed Boundary Dataset (WBD) and the other did not-termed the 'New England Methods'; and the Outlet Matching Method. For these topographically based methods, the elevation data source was the 30-meter (m) resolution National Elevation Dataset (NED), as this was the highest resolution available for the conterminous United States and Hawaii. The fifth method evaluated, the Thiessen Polygon Method, uses distance to the nearest NHD stream segments to determine catchment boundaries. Catchments were generated using each method for NHD stream segments within six hydrologically and geographically distinct Subbasins to evaluate the applicability of the method across the United States. The five methods were evaluated by comparing the resulting catchments with the boundaries and the computed area measurements available from several verification datasets that were developed independently using manual methods. The results of the evaluation indicated that the two New England Methods provided the most accurate catchment boundaries. The New England Method with the WBD provided the most accurate results. The time and cost to implement and apply these automated methods were also considered in ultimately selecting the methods used to produce NHD catchments for the conterminous United States and Hawaii. This study was conducted by a joint USGS-USEPA team during the 2-year period that ended in September 2004. During the following 2-year period ending in the fall of 2006, the New England Methods were used to produce NHD catchments as part of a multiagency effort to generate the NHD streamflow and velocity estimates for a suite of integrated geospatial products known as 'NHDPlus.'

  18. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow

    USGS Publications Warehouse

    Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.

    1999-01-01

    Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.

  19. Regionalisation of low flow frequency curves for the Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Mamun, Abdullah A.; Hashim, Alias; Daoud, Jamal I.

    2010-02-01

    SUMMARYRegional maps and equations for the magnitude and frequency of 1, 7 and 30-day low flows were derived and are presented in this paper. The river gauging stations of neighbouring catchments that produced similar low flow frequency curves were grouped together. As such, the Peninsular Malaysia was divided into seven low flow regions. Regional equations were developed using the multivariate regression technique. An empirical relationship was developed for mean annual minimum flow as a function of catchment area, mean annual rainfall and mean annual evaporation. The regional equations exhibited good coefficient of determination ( R2 > 0.90). Three low flow frequency curves showing the low, mean and high limits for each region were proposed based on a graphical best-fit technique. Knowing the catchment area, mean annual rainfall and evaporation in the region, design low flows of different durations can be easily estimated for the ungauged catchments. This procedure is expected to overcome the problem of data unavailability in estimating low flows in the Peninsular Malaysia.

  20. Assessing the drivers of dissolved organic matter export from two contrasting lowland catchments, U.K.

    PubMed

    Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M

    2016-11-01

    Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. River-groundwater connectivity and nutrient dynamics in a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico

    2017-04-01

    Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest gains were observed downstream of where the Selke River leaves the Harz Mountains and enters the alluvial plains. At this location, land use, hydrogeological setup and river slope as well as average slope of the contributing catchment area change significantly. Downstream of this point 15N isotope values were also significantly higher, suggesting higher denitrification activity in the deeper aquifers of lower catchment. While specific discharge (discharge per catchment area) was 3 times higher in the upper catchment, nitrate mass flux per area was more than 3 times higher in lower catchment compared to the respective other part of the catchment. We conclude that catchment morphology, (hydro)geology and hydrology control river-groundwater connectivity while the interplay with land use controls in stream nitrate concentrations. Repeated sampling campaigns will allow assessing seasonal changes in solute inputs and turnover. References Frei, S. & Gilfedder, B.S. (2015): FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resources Research, DOI: 10.1002/2015WR017212.

  2. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 3. The large catchment model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.

    1996-03-01

    This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.

  3. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their hydrological differences and the impact that annual and inter-annual climate and hydrological processes have on nutrient delivery. In the arable catchment total reactive P (TRP) concentrations in interpreted pathways declined across the quickflow, interflow and shallow groundwater of the slowflow, while TRP concentrations in the deeper groundwater, mostly contributing to baseflow, remained the same. However, the complexity of the flow pathways in the grassland catchment made it difficult to determine any trends in P concentrations as a result of changes in P source pressures. Additionally, although there were some inter annual trends, there was no clear indication of improvement in the ecological quality status in either catchment. Overall, a positive response to NAP measures (high soil P declines) was more clearly observable in the source component of the P transfer continuum for both catchments over the study period. This highlights the careful balance required for consideration between lag-time (policy implementation and water quality response) and agronomic sustainability (soil P fertility) in agricultural catchments.

  4. Gene Flow within and between Catchments in the Threatened Riparian Plant Myricaria germanica

    PubMed Central

    Werth, Silke; Scheidegger, Christoph

    2014-01-01

    One of the major distinctions of riparian habitats is their linearity. In linear habitats, gene flow is predicted to follow a one-dimensional stepping stone model, characterized by bidirectional gene flow between neighboring populations. Here, we studied the genetic structure of Myricaria germanica, a threatened riparian shrub which is capable of both wind and water dispersal. Our data led us to reject the ‘one catchment – one gene pool’ hypothesis as we found support for two gene pools, rather than four as expected in a study area including four catchments. This result also implies that in the history of the studied populations, dispersal across catchments has occurred. Two contemporary catchment-crossing migration events were detected, albeit between spatially proximate catchments. Allelic richness and inbreeding coefficients differed substantially between gene pools. There was significant isolation by distance, and our data confirmed the one-dimensional stepping-stone model of gene flow. Contemporary migration was bidirectional within the studied catchments, implying that dispersal vectors other than water are important for M. germanica. PMID:24932520

  5. Spatial and temporal variability of runoff and streamflow generation within and among headwater catchments: a combined hydrometric and stable isotope approach

    NASA Astrophysics Data System (ADS)

    Singh, N. K.; Emanuel, R. E.; McGlynn, B. L.

    2012-12-01

    The combined influence of topography and vegetation on runoff generation and streamflow in headwater catchments remains unclear. We aim to understand how spatial, hydrological and climate variables affect runoff generation and streamflow at hillslope and watershed scales at the Coweeta Hydrologic Laboratory (CHL) in the southern Appalachian Mountains by analyzing stable isotopes of hydrogen (2H) and oxygen (18O) coupled with measurements of hydrological variables (stream discharge, soil moisture, shallow groundwater) and landscape variables (upslope accumulated area, vegetation density slope, and aspect). We investigated four small catchments, two of which contained broadleaf deciduous vegetation and two of which contained evergreen coniferous vegetation. Beginning in June 2011, we collected monthly water samples at 25 m intervals along each stream, monthly samples from 24 shallow groundwater wells, and weekly to monthly samples from 10 rain gauges distributed across CHL. Water samples were analyzed for 2H and 18O using cavity ring-down spectroscopy. During the same time period we recorded shallow groundwater stage at 30 min intervals from each well, and beginning in fall 2011 we collected volumetric soil moisture data at 30 min intervals from multiple depths at 16 landscape positions. Results show high spatial and temporal variability in δ2H and δ18O within and among streams, but in general we found isotopic enrichment with increasing contributing area along each stream. We used a combination of hydrometric observations and geospatial analyses to understand why stream isotope patterns varied during the year and among watersheds, and we used complementary measurements of δ2H and δ18O from other pools within the watersheds to understand the movement and mixing of precipitation that precedes runoff formation. This combination of high resolution stable isotope data and hydrometric observations facilitates a clearer understanding of spatial controls on streamflow generation. In addition, understanding the relative influences of topography and vegetation on runoff generation could help scientists and managers better assess potential impacts of disturbance on water supplies downstream of forested headwater catchments.

  6. Which DEM is best for analyzing fluvial landscape development in mountainous terrains?

    NASA Astrophysics Data System (ADS)

    Boulton, Sarah J.; Stokes, Martin

    2018-06-01

    Regional studies of fluvial landforms and long-term (Quaternary) landscape development in remote mountain landscapes routinely use satellite-derived DEM data sets. The SRTM and ASTER DEMs are the most commonly utilised because of their longer availability, free cost, and ease of access. However, rapid technological developments mean that newer and higher resolution DEM data sets such as ALOS World 3D (AW3D) and TanDEM-X are being released to the scientific community. Geomorphologists are thus faced with an increasingly problematic challenge of selecting an appropriate DEM for their landscape analyses. Here, we test the application of four medium resolution DEM products (30 m = SRTM, ASTER, AW3D; 12 m = TanDEM-X) for qualitative and quantitative analysis of a fluvial mountain landscape using the Dades River catchment (High Atlas Mountains, Morocco). This landscape comprises significant DEM remote sensing challenges, notably a high mountain relief, steep slopes, and a deeply incised high sinuosity drainage network with narrow canyon/gorge reaches. Our goal was to see which DEM produced the most representative best fit drainage network and meaningful quantification. To achieve this, we used ArcGIS and Stream Profiler platforms to generate catchment hillshade and slope rasters and to extract drainage network, channel long profile and channel slope, and area data. TanDEM-X produces the clearest landscape representation but with channel routing errors in localised high relief areas. Thirty-metre DEMs are smoother and less detailed, but the AW3D shows the closest fit to the real drainage network configuration. The TanDEM-X elevation values are the closest to field-derived GPS measurements. Long profiles exhibit similar shapes but with minor differences in length, elevation, and the degree of noise/smoothing, with AW3D producing the best representation. Slope-area plots display similarly positioned slope-break knickpoints with modest differences in steepness and concavity indices, but again best represented by AW3D. Collectively, our study shows that despite the higher effective resolution of TanDEM-X (12 m), the AW3D (30 m) data performs strongly across all analyses suggesting that it currently offers the greatest potential for regional mountain geomorphological analyses.

  7. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  8. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira, Hygor Evangelista; Pissarra, Teresa Cristina Tarlé; Farias do Valle Junior, Renato

    Road spills of hazardous substances are common in developing countries due to increasing industrialization and traffic accidents, and represent a serious threat to soils and water in catchments. There is abundant literature on equations describing the wash-off of pollutants from roads during a storm event and there are a number of watershed models incorporating those equations in storm water quality algorithms that route runoff and pollution yields through a drainage system towards the catchment outlet. However, methods describing catchment vulnerability to contamination by road spills based solely on biophysical parameters are scarce. These methods could be particularly attractive to managersmore » because they can operate with a limited amount of easily collectable data, while still being able to provide important insights on the areas more prone to contamination within the studied watershed. The purpose of this paper was then to contribute with a new vulnerability model. To accomplish the goal, a selection of medium properties appearing in wash-off equations and routing algorithms were assembled and processed in a parametric framework based on multi criteria analysis to define the watershed vulnerability. However, parameters had to be adapted because wash-off equations and water quality models have been developed to operate primarily in the urban environment while the vulnerability model is meant to run in rural watersheds. The selected parameters were hillside slope, ground roughness (depending on land use), soil permeability (depending on soil type), distance to water courses and stream density. The vulnerability model is a spatially distributed algorithm that was prepared to run under the IDRISI Selva software, a GIS platform capable of handling spatial and alphanumeric data and execute the necessary terrain model, hydrographic and thematic analyses. For illustrative purposes, the vulnerability model was applied to the legally protected Environmental Protection Area (APA), located in the Uberaba region, state of Minas Gerais, Brazil. In this region, the risk of accidents causing chemical spills is preoccupying because large quantities of dangerous materials are transported in two important distribution highways while the APA is fundamental for the protection of water resources, the riverine ecosystems and remnants of native vegetation. In some tested scenarios, model results show 60% of vulnerable areas within the studied area. The most sensitive parameter to vulnerability is soil type. To prevent soils from contamination, specific measures were proposed involving minimization of land use conflicts that would presumably raise the soil's organic matter and in the sequel restore the soil's structural functions. Additionally, the present study proposed the preservation and reinforcement of riparian forests as one measure to protect the quality of surface water. - Highlights: • A multi criteria analog model was developed to assess rural catchment vulnerability along roads. • Model parameters were defined by analogy with urban wash-off equations and routing algorithms. • The model mixes up various biophysical and socio-economic parameters. • Model application was based on a scenario analysis. • The study is focused on the Environmental Protection Area of Uberaba River, Brazil.« less

  9. Estimating the input of wastewater-born micropollutants in a rural karst catchment (Gallusquelle, Germany)

    NASA Astrophysics Data System (ADS)

    Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Schiperski, Ferry; Scheytt, Traugott; Licha, Tobias

    2013-04-01

    The main focus of the AGRO research project is on the use of various micropollutants as indicators (e.g. for wastewater) in the catchment of the karst spring Gallusquelle, Swabian Alb. For modeling the micropollutants' fate in the subsurface and their occurrence in spring water, reliable estimates of the spatio-temporal input, i.e. input functions, are crucial. Therefore potential sources for wastewater-born substances are identified. These are the combined sewer system with a stormwater retention basin (untreated wastewater) and the river Fehla (treated wastewater). The micropollutants' concentrations and loads in the potentially infiltrating waters are estimated on the one hand by local water and substance consumption data and on the other hand by water sample analysis and stream gauging. The spring's discharge varies from 0.2-2.0 m³/s with an average of 0.5 m³/s. Treated spring water serves as drinking water for 45 000 people. The catchment area measures 45 km² and is rural in character with 55% forest, 27% grassland, 15% agriculture and 3% residential/industrial. Industrial activity is restricted to a few minor textile and metal works. There are around 4 000 inhabitants and except for a few farms, all households are connected to the public sewer system. The only surface water within the catchment is the stream Fehla, which forms a part of the catchment boundary. It was formerly identified as a sinking stream with an ephemeral part in the lower course. Connections to the Gallusquelle spring were proven by several tracer tests conducted in the 1960's, when the river started to become perennial over the whole course due to heavy colmatation. During a one week campaign, samples of wastewater and river water were taken three times per day. Additionally, hourly samples were taken during a 24 h period. Water samples were analysed for major ions and 58 micropollutants, including pharmaceuticals, stimulants (as caffeine), the artificial sweeteners acesulfame and cyclamate, contrast media, corrosion inhibitors, pesticides and metabolites of several substances. For analysis of micropollutants, water samples were spiked with internal standards before solid-phase-extraction (SPE) and the analysis was conducted by high-performance liquid chromatographic separation with tandem mass spectrometric detection (HPLC/MS-MS). Quantification limits were in the range of 1-28 ng/l for river water and 200-650 ng/l for untreated wastewater. Once the concentrations and loads of micropollutants in the infiltrating waters are known and compared to those in the spring water, one might distinguish and quantify the portions of water infiltrating from the different sources in the catchment area.

  10. What can we learn from sediment connectivitiy indicies regarding natural hazard processes in torrent catchments?

    NASA Astrophysics Data System (ADS)

    Schmutz, Daria; Zimmermann, Markus; Keiler, Margreth

    2017-04-01

    Sediment connectivity is defined as the degree of coupling between sediment sources and sinks in a system and describes the effectiveness of the transfer of sediment from hillslopes into channels and within channels (Bracken et al. 2015). Borselli et al. (2008) developed a connectivity index (IC) based on digital terrain models (DTMs). Cavalli et al. (2013) adapted this index for mountainous catchments. These measures of connectivity provide overall information about connectivity pattern in the catchment, thus the understanding of sediment connectivity can help to improve the hazard analysis in these areas. Considering the location of settlements in the alpine regions, high sediment transfer can pose a threat to villages located nearby torrents or at the debris cones. However, there is still a lack of studies on the linkage between IC and hazardous events with high sediment yield in alpine catchments. In this study, the expressiveness and applicability of IC is tested in relation with hazardous events in several catchments of the Bernese and Pennine Alps (Switzerland). The IC is modelled based on DTMs (resolution 2 m or if available 0.5 m) indicating the surface from the time before and after a documented hazardous event and analysed with respect to changes in connectivity caused by the event. The spatial pattern of connectivity is compared with the observed sediment dynamic during the event using event documentations. In order to validate the IC, a semi-quantitative field connectivity index (FIC) is developed addressing characteristics of the channel, banks and slopes and applied in a selection of the case studies. First analysis shows that the IC is highly sensitive to the resolution and quality of the DTM. Connectivity calculated by the IC is highest along the channel. The general pattern of connectivity is comparable applying the IC for the DTM before and after the event. Range of the connectivity values gained from IC modelling is highly specific for each study area and so are their changes by the events. Whereas some slopes show an increased connectivity, others are less connected or not affected according to the IC. Further results of the comparison between the FIC and the IC and an evaluation of both indices in the context of hazardous events will be presented. REFERENCES Borselli, L., Cassi, P. & Torri, D. 2008: Prolegomena to sediment and flow connectivity in the landscape. A GIS and field numerical assessment. CATENA 75 (3), 268-277. Bracken, L. J., Turnbull, L., Wainwright, J. & Bogaart, P. 2015: Sediment connectivity. A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms 40 (2), 177-188. Cavalli, M., Trevisani, S., Comiti, F. & Marchi, L. 2013: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41.

  11. SWMM Modeling Methods for Simulating Green Infrastructure at a Suburban Headwatershed: User’s Guide

    EPA Science Inventory

    Urban stormwater runoff quantity and quality are strongly dependent upon catchment properties. Models are used to simulate the runoff characteristics, but the output from a stormwater management model is dependent on how the catchment area is subdivided and represented as spatial...

  12. What is the Source? Post-glacial sediment flux from the Waipaoa Catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Bilderback, E. L.; Pettinga, J. R.; Litchfield, N. J.; Quigley, M.; Marden, M.

    2011-12-01

    In the Waipaoa, and for much of the eastern North Island, the shift from the last glacial coldest period to the current interglacial climatic regime resulted in Late Pleistocene-Holocene catchment-wide channel incision (Berryman et al., 2000; Litchfield and Berryman, 2005). Only ~25% of the total post 18 ka sediment yield for the Waipaoa Catchment can be accounted for by channel incision, one of the most widespread and most effective erosive processes in the catchment (Orpin et al., 2006; Marden et al., 2008). We find that deep-seated landslides, which are pervasive, cannot make up this apparent source area sediment deficit. This presents a challenge to our current understanding of the Waipaoa Sedimentary System. New high resolution topographic data sets (lidar and photogrammetry) combined with tephrochronology and field mapping have enabled us to approximate the sediment flux from post 18 ka deep-seated landslides. The sediment delivered to the offshore sink from these upper Waipaoa landslides is likely to be less than 20% of the sediment volume calculated for channel incision. A further GIS analysis of the ~2500 km2 Waipaoa catchment using work from Crosby and Whipple (2006) delineating relict topography and Marden et al. (2008) accounting for river incision and slopes stabilized behind terrace remnants indicates that only about half of the available catchment area could have contributed additional large volumes of sediment to the offshore post 18 ka sink. The presence of tephra cover older than 18 ka on landforms ranging from flat ridgelines to steep (>30 degree) slopes in this remaining terrestrial source area suggests that it has not been eroded en mass. The apparent source deficit remains even though many of the major erosive processes available to fill this deficit have been studied and the potentially contributing catchment area is dramatically reduced by these studies. This analysis raises questions about erosive processes and our ability to balance large scale sediment budgets. Does costal erosion contribute a significant volume to the offshore sink? Was sediment from other catchments trapped in the Poverty Bay postglacial shelf basin? Are the uncertainties in any of these source and sink calculations large enough that the previous questions are essentially irrelevant? We believe that it is an achievable goal to account for the major processes that generate sediment in the Waipaoa Sedimentary System and that this budget tuning can inform our understanding of active landscapes.

  13. Lateral, vertical, and longitudinal connectivity of runoff source areas drive stream hydro-biogeochemical signals across a low relief drainage network

    NASA Astrophysics Data System (ADS)

    Zimmer, M. A.; McGlynn, B. L.

    2017-12-01

    Our understanding of the balance between longitudinal, lateral, and vertical expansion and contraction of reactive flowpaths and source areas in headwater catchments is limited. To address this, we utilized an ephemeral-to-perennial stream network in the Piedmont region of North Carolina, USA to gain new understanding about critical zone mechanisms that drive runoff generation and biogeochemical signals in both groundwater and stream water. Here, we used chemical and hydrometric data collected from zero through second order catchments to characterize spatial and temporal runoff and overland, shallow soil, and deep subsurface flow across characteristic landscape positions. Our results showed that the active stream network was driven by two superimposed runoff generation regimes that produced distinct hydro-biogeochemical signals at the catchment outlet. The baseflow runoff generation regime expanded and contracted the stream network seasonally through the rise and fall of the seasonal water table. Superimposed on this, event-activated source area contributions were driven by surficial and shallow subsurface flowpaths. The subsurface critical zone stratigraphy in this landscape coupled with the precipitation regime activated these shallow flowpaths frequently. This drove an increase in dissolved organic carbon (DOC) concentrations with increases in runoff across catchment scales. DOC-runoff relationship variability and spread was driven by the balance between runoff regimes as well as a seasonal depletion of DOC from shallow subsurface flowpath activation and annual replenishment from litterfall. From this, we suggest that the hydro-biogeochemical signals at larger catchment outlets can be driven by a balance of longitudinal, lateral, and vertical source area contributions, critical zone structure, and complex hydrological processes.

  14. Improved methods to estimate the effective impervious area in urban catchments using rainfall-runoff data

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Ali; Wilson, Bruce N.; Gulliver, John S.

    2016-05-01

    Impervious surfaces are useful indicators of the urbanization impacts on water resources. Effective impervious area (EIA), which is the portion of total impervious area (TIA) that is hydraulically connected to the drainage system, is a better catchment parameter in the determination of actual urban runoff. Development of reliable methods for quantifying EIA rather than TIA is currently one of the knowledge gaps in the rainfall-runoff modeling context. The objective of this study is to improve the rainfall-runoff data analysis method for estimating EIA fraction in urban catchments by eliminating the subjective part of the existing method and by reducing the uncertainty of EIA estimates. First, the theoretical framework is generalized using a general linear least square model and using a general criterion for categorizing runoff events. Issues with the existing method that reduce the precision of the EIA fraction estimates are then identified and discussed. Two improved methods, based on ordinary least square (OLS) and weighted least square (WLS) estimates, are proposed to address these issues. The proposed weighted least squares method is then applied to eleven urban catchments in Europe, Canada, and Australia. The results are compared to map measured directly connected impervious area (DCIA) and are shown to be consistent with DCIA values. In addition, both of the improved methods are applied to nine urban catchments in Minnesota, USA. Both methods were successful in removing the subjective component inherent in the analysis of rainfall-runoff data of the current method. The WLS method is more robust than the OLS method and generates results that are different and more precise than the OLS method in the presence of heteroscedastic residuals in our rainfall-runoff data.

  15. Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran

    NASA Astrophysics Data System (ADS)

    Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh

    2016-12-01

    Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.

  16. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  17. River recharge sources and the partitioning of catchment evapotranspiration fluxes as revealed by stable isotope signals in a typical high-elevation arid catchment

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Tian, Lide; Wang, Lei; Yu, Wusheng; Qu, Dongmei

    2017-06-01

    Catchment-scale hydrological cycles are expected to suffer more extremes under a background of climate change. Quantifying hydrological changes in high and remote areas is practically challenging. However, stable isotopes in river water can be seen to vary, dependent upon the combined influence exerted by recharge sources and local climatic conditions; the study of river water stable isotopes can therefore provide a meaningful method for delineating catchment-scale hydrological studies. In this study, we present high-resolution time series of river δ18O and d-excess values; additionally, we identify the seasonal dynamics of river recharge sources and major components of the catchment-scale water balance, together with precipitation and groundwater isotopes, and concurrent meteorological data recorded in Magazangbu catchment on the northwestern Tibetan Plateau (TP). Using isotopic analysis, and within a proportional framework, we partitioned the isotopic fractionation (E1) or non-fractionation (E2) from soil evaporation fluxes (Esoil) apparent in different processes, using NDVI (Normal Differential Vegetation Index) data collected by MODIS satellites to calculate the vegetation fractional coverage (VFC), and Global Land Data Assimilation System (GLDAS) records to determine evapotranspiration data (ET). Finally, the contributions made by each ET component (Esoil and plant transpiration) to total catchment ET were computed for the high and remote northwestern TP. Our results show that: (1) river δ18O values were high in summer and low in winter, while d-excess values displayed a contrary seasonal cycle; (2) for the monsoon period, precipitation contributed 60.6% to Magazangbu catchment runoff. Deeper groundwater was the main water source for the winter low base flow, and shallow groundwater or high elevation snowmelt was the principal component of the spring thaw and autumn freezing periods; and (3) a substantial proportion of Esoil (96.4% annually; 92.2% during monsoon) was consumed without isotopic fractionation (E2); plant transpiration (T) constituted less than half of total ET (41% annually, 29% during monsoon) in Magazangbu catchment. This calculation of river recharge sources and partitioning of catchment ET components using isotopic signals and MODIS NDVI data or GLDAS ET data provide new methods for hydrological studies in high and remote areas. These results provide important catchment-scale water-balance information which is very useful to climate models conducted in a high-elevation arid environment.

  18. Remote sensing appraisal of Lake Chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area.

    PubMed

    Onamuti, Olapeju Y; Okogbue, Emmanuel C; Orimoloye, Israel R

    2017-11-01

    Lake Chad commonly serves as a major hub of fertile economic activities for the border communities and contributes immensely to the national growth of all the countries that form its boundaries. However, incessant and multi-decadal drying via climate change pose greater threats to this transnational water resource, and adverse effects on ecological sustainability and socio-economic status of the catchment area. Therefore, this study assessed the extent of shrinkage of Lake Chad using remote sensing. Landsat imageries of the lake and its surroundings between 1987 and 2005 were retrieved from Global Land Cover Facility website and analysed using Integrated Land and Water Information System version 3.3 (ILWIS 3.3). Supervised classification of area around the lake was performed into various land use/land cover classes, and the shrunk part of its environs was assessed based on the land cover changes. The shrinkage trend within the study period was also analysed. The lake water size reduced from 1339.018 to 130.686 km 2 (4.08-3.39%) in 1987-2005. The supervised classification of the Landsat imageries revealed an increase in portion of the lake covered by bare ground and sandy soil within the reference years (13 490.8-17 503.10 km 2 ) with 4.98% total range of increase. The lake portion intersected with vegetated ground and soil also reduced within the period (11 046.44-10 078.82 km 2 ) with 5.40% (967.62 km 2 ) total decrease. The shrunk part of the lake covered singly with vegetation increased by 2.74% from 1987 to 2005. The shrunk part of the lake reduced to sand and turbid water showed 5.62% total decrease from 1987 to 2005 and a total decrease of 1805.942 km 2 in area. The study disclosed an appalling rate of shrinkage and damaging influences on the hydrologic potential, eco-sustainability and socio-economics of the drainage area as revealed using ILWIS 3.3.

  19. Exploring the uncertainty in attributing sediment contributions in fingerprinting studies due to uncertainty in determining element concentrations in source areas.

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Owens, Phillip N.; Koiter, Alex J.; Lobb, David

    2016-04-01

    One of the major sources of uncertainty in attributing sediment sources in fingerprinting studies is the uncertainty in determining the concentrations of the elements used in the mixing model due to the variability of the concentrations of these elements in the source materials (e.g., Kraushaar et al., 2015). The uncertainty in determining the "true" concentration of a given element in each one of the source areas depends on several factors, among them the spatial variability of that element, the sampling procedure and sampling density. Researchers have limited control over these factors, and usually sampling density tends to be sparse, limited by time and the resources available. Monte Carlo analysis has been used regularly in fingerprinting studies to explore the probable solutions within the measured variability of the elements in the source areas, providing an appraisal of the probability of the different solutions (e.g., Collins et al., 2012). This problem can be considered analogous to the propagation of uncertainty in hydrologic models due to uncertainty in the determination of the values of the model parameters, and there are many examples of Monte Carlo analysis of this uncertainty (e.g., Freeze, 1980; Gómez et al., 2001). Some of these model analyses rely on the simulation of "virtual" situations that were calibrated from parameter values found in the literature, with the purpose of providing insight about the response of the model to different configurations of input parameters. This approach - evaluating the answer for a "virtual" problem whose solution could be known in advance - might be useful in evaluating the propagation of uncertainty in mixing models in sediment fingerprinting studies. In this communication, we present the preliminary results of an on-going study evaluating the effect of variability of element concentrations in source materials, sampling density, and the number of elements included in the mixing models. For this study a virtual catchment was constructed, composed by three sub-catchments each of 500 x 500 m size. We assumed that there was no selectivity in sediment detachment or transport. A numerical excercise was performed considering these variables: 1) variability of element concentration: three levels with CVs of 20 %, 50 % and 80 %; 2) sampling density: 10, 25 and 50 "samples" per sub-catchment and element; and 3) number of elements included in the mixing model: two (determined), and five (overdetermined). This resulted in a total of 18 (3 x 3 x 2) possible combinations. The five fingerprinting elements considered in the study were: C, N, 40K, Al and Pavail, and their average values, taken from the literature, were: sub-catchment 1: 4.0 %, 0.35 %, 0.50 ppm, 5.0 ppm, 1.42 ppm, respectively; sub-catchment 2: 2.0 %, 0.18 %, 0.20 ppm, 10.0 ppm, 0.20 ppm, respectively; and sub-catchment 3: 1.0 %, 0.06 %, 1.0 ppm, 16.0 ppm, 7.8 ppm, respectively. For each sub-catchment, three maps of the spatial distribution of each element was generated using the random generator of Mejia and Rodriguez-Iturbe (1974) as described in Freeze (1980), using the average value and the three different CVs defined above. Each map for each source area and property was generated for a 100 x 100 square grid, each grid cell being 5 m x 5 m. Maps were randomly generated for each property and source area. In doing so, we did not consider the possibility of cross correlation among properties. Spatial autocorrelation was assumed to be weak. The reason for generating the maps was to create a "virtual" situation where all the element concentration values at each point are known. Simultaneously, we arbitrarily determined the percentage of sediment coming from sub-catchments. These values were 30 %, 10 % and 60 %, for sub-catchments 1, 2 and 3, respectively. Using these values, we determined the element concentrations in the sediment. The exercise consisted of creating different sampling strategies in a virtual environment to determine an average value for each of the different maps of element concentration and sub-catchment, under different sampling densities: 200 different average values for the "high" sampling density (average of 50 samples); 400 different average values for the "medium" sampling density (average of 25 samples); and 1,000 different average values for the "low" sampling density (average of 10 samples). All these combinations of possible values of element concentrations in the source areas were solved for the concentration in the sediment already determined for the "true" solution using limSolve (Soetaert et al., 2014) in R language. The sediment source solutions found for the different situations and values were analyzed in order to: 1) evaluate the uncertainty in the sediment source attribution; and 2) explore strategies to detect the most probable solutions that might lead to improved methods for constructing the most robust mixing models. Preliminary results on these will be presented and discussed in this communication. Key words: sediment, fingerprinting, uncertainty, variability, mixing model. References Collins, A.L., Zhang, Y., McChesney, D., Walling, D.E., Haley, S.M., Smith, P. 2012. Sediment source tracing in a lowland agricultural catchment in southern England using a modified procedure combining statistical analysis and numerical modelling. Science of the Total Environment 414: 301-317. Freeze, R.A. 1980. A stochastic-conceptual analysis of rainfall-runoff processes on a hillslope. Water Resources Research 16: 391-408.

  20. Perylene in Lake Biwa sediments originating from Cenococcum geophilum in its catchment area

    NASA Astrophysics Data System (ADS)

    Itoh, Nobuyasu; Sakagami, Nobuo; Torimura, Masaki; Watanabe, Makiko

    2012-10-01

    Perylene, which is composed of five benzene rings, is commonly found in sediments throughout the world at concentrations and distributions that are different from those of other polycyclic aromatic hydrocarbons. The only information available on the origin of perylene comes from 4,9-dihydroxyperylene-3,10-quinone (DHPQ), which originates from fungal component symbiosis or from parasites on plants; however, there is no direct evidence of a mechanism of perylene formation. In this study, we examined the relationship between sedimentary perylene and Cenococcum geophilum (C. geophilum) in a catchment area at Lake Biwa. Sclerotium grains of C. geophilum containing DHPQ were found in this catchment area (approximately 40 balls kg-1 dried soil for >1 mm-ϕ), and small sclerotium grains were frequently found in the sediment. In the sediment sample, we also found broken particles containing perylene, and they had a porous structure characteristic of sclerotium grains. Furthermore, the particles contained DHPQ in different transformation stages to perylene via 3,10-perylenequinone (3,10-PQ). This finding was consistent with results from elemental analysis (oxygen/carbon). Because a remarkable amount of DHPQ originating from C. geophilum also exists in the humic acids of soils and because the inputs of compounds to the lake depend strongly on the rivers, perylene in the Lake Biwa sediment originates mainly from the DHPQ of C. geophilum in its catchment area.

  1. Modelling remediation scenarios in historical mining catchments.

    PubMed

    Gamarra, Javier G P; Brewer, Paul A; Macklin, Mark G; Martin, Katherine

    2014-01-01

    Local remediation measures, particularly those undertaken in historical mining areas, can often be ineffective or even deleterious because erosion and sedimentation processes operate at spatial scales beyond those typically used in point-source remediation. Based on realistic simulations of a hybrid landscape evolution model combined with stochastic rainfall generation, we demonstrate that similar remediation strategies may result in differing effects across three contrasting European catchments depending on their topographic and hydrologic regimes. Based on these results, we propose a conceptual model of catchment-scale remediation effectiveness based on three basic catchment characteristics: the degree of contaminant source coupling, the ratio of contaminated to non-contaminated sediment delivery, and the frequency of sediment transport events.

  2. Application of LiDAR to hydrologic flux estimation in Australian eucalypt forests (Invited)

    NASA Astrophysics Data System (ADS)

    Lane, P. N.; Mitchell, P. J.; Jaskierniak, D.; Hawthorne, S. N.; Griebel, A.

    2013-12-01

    The potential of LiDAR in ecohydrology is significant as characterising catchment vegetation is crucial to accurate estimation of evapotranspiration (ET). While this may be done at large scales for model parameterisation, stand-scale applications are equally appropriate where traditional methods of measurement of LAI or sapwood areas are time consuming and reliant on assumptions of representative sampling. This is particularly challenging in mountain forests where aspect, soil properties and energy budgets can vary significantly, reflected in the vegetation or where there are changes in the spatial distribution of structural attributes following disturbance. Recent research has investigated the spatial distribution of ET in a eucalypt forest in SE Australia using plot-scale sapflow, interception and forest floor ET measurements. LiDAR was used scale up these measurements. LiDAR (0.16 m scanner footprint) canopy indices were correlated via stepwise regression with 4 water use scalars: basal area (BA), sapwood area (SA), leaf area index (LAI) and canopy coverage (C), with Hmed, Hmean, H80, H95 the best predictors. Combining these indices with empirical relationships between SA and BA, and SA and transpiration (T), and inventory plot 'ground truthing' transpiration was estimated across the 1.3 km2 catchment. Interception was scaled via the Gash model with LiDAR derived inputs. The up-scaling showed a significant variability in the spatial distribution of ET, related to the distribution of SA. The use of LiDAR meant scaling could be achieved at an appropriate spatial scale (20 x 20 m) to the measurements. The second example is the use of airborne LiDAR in developing growth forest models for hydrologic modeling. LiDAR indices were used to stratify multilayered forests using mixed-effect models with a wide range of theoretical distribution functions. When combined with historical plot-scale inventory data we show demonstrated improved growth modeling over traditional inventory methods.These models can be used to parameterize hydrologic models to explore disturbance and age-related ET changes, and develop spatial-temporal maps of ET based on accurate representation of sapwood areas in complex terrain. The third example involves analyses of stand growth and long term streamflow response to thinning treatments in eucalyptus regnans forests. These forests have a strong age-streamflow relationship that can lead to streamflow declines as disturbed stands regrow. A set of thinning treatments in small experimental catchments (uniform, strip and understorey removal) were implemented in 1978-1982. The streamflow analysis supported early findings that flows increase and then relaxed, but also detected a flow decline below expected undisturbed levels for most catchments. Airborne LiDAR was used to analyse the structural recovery of treated stands, estimate LAI and canopy coverage via gap-fraction analysis, and scale ET measurements. The LiDAR data revealed the association of treatment type and regrowth and demonstrated that despite a net reduction in overstorey stem density, stand LAI had recovered and may explain the flow response. Finally, new terrestrial LiDAR instruments are being used in conjunction with eddy-covariance flux tower and sapflow measurement to measure fine temporal scale carbon-water dynamics. These instruments can be combined with airborne derived data to produce 3 dimensional canopy profile for linkage with ET processes.

  3. Runoff and solute mobilization processes in a semiarid headwater catchment

    NASA Astrophysics Data System (ADS)

    Hughes, Justin D.; Khan, Shahbaz; Crosbie, Russell S.; Helliwell, Stuart; Michalk, David L.

    2007-09-01

    Runoff and solute transport processes contributing to streamflow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Streamflow and electrical conductivity were monitored from two gauges draining a portion of the upper catchment area (UCA) and a saline scalded area, respectively. Runoff in the UCA was related to the formation of a seasonally perched aquifer in the near-surface zone (0-0.4 m). A similar process was responsible for runoff generation in the saline scalded area. However, saturation in the scald area was related to the proximity of groundwater rather than low subsurface hydraulic conductivity. Because of higher antecedent water content, runoff commenced earlier in winter from the scald than did the UCA. Additionally, areal runoff from the scald was far greater than from the UCA. Total runoff from the UCA was higher than the scald (15.7 versus 3.5 mL), but salt export was far lower (0.6 and 5.4 t for the UCA and scald area, respectively) since salinity of the scald runoff was far higher than that from the UCA, indicating the potential impact of saline scalded areas at the catchment scale. End-member mixing analysis modeling using six solutes indicated that most runoff produced from the scald was "new" (40-71%) despite the proximity of the groundwater surface and the high antecedent moisture levels. This is a reflection of the very low hydraulic conductivity of soils in the study area. Nearly all chloride exported to the stream from the scald emanated from the near-surface zone (77-87%). Runoff and solute mobilization processes depend upon seasonal saturation occurring in the near-surface zone during periods of low evaporative demand and generation of saturated overland flow.

  4. Design of runoff water harvesting systems and its role in minimizing water losses

    NASA Astrophysics Data System (ADS)

    Berliner, P.; Carmi, G.; Leake, S.; Agam, N.

    2016-12-01

    Precipitation is one of the major water sources for agricultural production in arid and semi-arid areas. Rainfalls are limited, erratic and not always coincide with the crop growing season. Only a part of the rain is absorbed by the soil. Soil evaporation is most severe in these regions and the large part of the absorbed water is lost to evaporation. The technique of collecting and conveying the runoff is known as runoff harvesting. Microcatchments are one of the primary techniques used for collecting, storing and conserving local surface runoff for growing trees/shrubs. In this system, runoff water is collected close-by the area in which it was generated, and trees/shrubs may utilize the water. The main objective of the present research was to estimate the effect of the design of the micro-catchment collection area (shallow basin and deep trench) has on the efficiency of the water conservation in the soil profile. The study was carried out during two years using regular micro-catchments (three replicates) with a surface area of 9 m2 (3 x 3 m) and a depth of 0.1 m and trenches (three replicates) with a surface area of 12 m2 (12 x 1 m) and 1 m depth. One and three olive trees were planted inside the trenches and micro-catchments, respectively. Access tubes for neutron probe were installed in micro-catchments and trenches (four and seven, respectively) to depths of 3m. Soil water content in the soil profile was monitored. Sap flow in trees was measured by PS-TDP8 Granier sap flow system every 0.5 hour and fluxes computed for the time intervals that correspond to the soil water measurements. The first year study included flooding trenches and regular micro-catchments once with the same amount of water (1.5 m3) and the second year study included flooding four times with 0.25 m3 each time. Flooding was followed by monitoring the water balance components and estimation of evaporation losses and water use efficiency by olive trees. Evaporation from trenches and regular micro-catchments was estimated as the difference between evapotranspiration obtained by soil water content monitoring and transpiration estimated by sap flow measurements. The results clearly show that the evaporation from the regular micro-catchments was significantly larger than that of trenches during the entire duration of the both experiments.

  5. SIMULATED IMPACTS OF SMALL-SCALE SPATIAL DISTRIBUTION OF IMPERVIOUS AREA ON RUNOFF RESPONSE OF FIELD-SCALE CATCHMENTS

    EPA Science Inventory

    Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...

  6. Environmental Factors Affecting Brook Trout Occurrence in Headwater Stream Segments

    Treesearch

    Yoichiro Kanno; Benjamin H. Letcher; Ana L. Rosner; Kyle P. O' Neil; Keith H. Nislow

    2015-01-01

    We analyzed the associations of catchment-scale and riparian-scale environmental factors with occurrence of Brook Trout Salvelinus fontinalis in Connecticut headwater stream segments with catchment areas of 15 < km2. A hierarchical Bayesian approach was applied to a statewide stream survey data set, in which Brook...

  7. Analysis of the Development of Available Soil Water Storage in the Nitra River Catchment

    NASA Astrophysics Data System (ADS)

    Tárník, Andrej; Leitmanová, Mária

    2017-10-01

    World is changing dramatically. Every sphere of our life is influenced by global climate changes, including agriculture sector. Rising air temperature and temporal variability of rainfall are crucial outcomes of climate changes for agricultural activities. Main impact of these outcomes on agriculture is the change of soil water amount. Soil water is an exclusive resource of water for plants. Changes of soil water storage are sensed very sensitively by farmers. Development of soil water storage was analysed in this paper. The Nitra River catchment is covered by nets of hydrological and meteorological stations of Department of Biometeorology and Hydrology, Slovak University of Agriculture in Nitra. Quantity of available soil water storage for plants was calculated every month in the years from 2013 to 2016. Calculations were done based on real measurements for soil horizon 0-30 cm. Ratio between a real available soil water storage and a potential available soil water storage was specified. Amount of potential available soil water storage was derived by retention curves of soil samples. Map of risk areas was created in GIS in pursuance of these calculations. We can see the negative trends of available soil water storage in years 2015 and 2016. Main addition of this paper is a selection of areas where soil moisture is a limiting factor of agriculture. In these areas, it is necessary to do the mitigation measures for sustainable development of agricultural activities.

  8. Rural and remote dental services shortages: filling the gaps through geo-spatial analysis evidence-based targeting.

    PubMed

    Shiika, Yulia; Kruger, Estie; Tennant, Marc

    Australia has a significant mal-distribution of its limited dental workforce. Outside the major capital cities, the distribution of accessible dental care is at best patchy. This study applied geo-spatial analysis technology to locate gaps in dental service accessibility for rural and remote dwelling Australians, in order to test the hypothesis that there are a few key location points in Australia where further dental services could make a significant contribution to ameliorating the immediate shortage crisis. A total of 2,086 dental practices were located in country areas, covering a combined catchment area of 1.84 million square kilometers, based on 50 km catchment zones around each clinic. Geo-spatial analysis technology was used to identify gaps in the accessibility of dental services for rural and remote dwelling Australians. An extraction of data was obtained to analyse the integrated geographically-aligned database. Results: Resolution of the lack of dental practices for 74 townships (of greater than 500 residents) across Australia could potentially address access for 104,000 people. An examination of the socio-economic mix found that the majority of the dental practices (84%) are located in areas classified as less disadvantaged. Output from the study provided a cohesive national map that has identified locations that could have health improvement via the targeting of dental services to that location. The study identified potential location sites for dental clinics, to address the current inequity in accessing dental services in rural and remote Australia.

  9. Urban stormwater run-off promotes compression of saltmarshes by freshwater plants and mangrove forests.

    PubMed

    Geedicke, Ina; Oldeland, Jens; Leishman, Michelle R

    2018-05-08

    Subtropical and temperate coastal saltmarsh of Australia is listed as an endangered ecological community under the Commonwealth Environment Protection and Biodiversity Conservation Act (EPBC Act). Saltmarshes are under threat from sea level rise, landward migration of mangroves, and in urban regions from habitat loss, input of litter, nutrients, and other contaminants. In urbanised catchments, saltmarsh areas receive nutrient-enriched and pollutant-contaminated run-off, such as heavy metals, through the stormwater system. This study aimed to investigate the impact of urban stormwater on saltmarsh and mangrove species composition and distribution. To test the effect of stormwater run-off in urbanised catchments on saltmarsh communities, we analysed the soil for pollutant elements, salinity and nutrient concentration and recorded vegetation composition at eight sites in the Sydney region, Australia. We found that elevated total nitrogen (>0.4 wt%) and reduced salinity of the soil downslope of stormwater outlets facilitates establishment of exotic plants and might promote migration of mangroves into saltmarshes, resulting in a squeezing effect on the distribution of saltmarsh vegetation. Saltmarsh cover was significantly lower below stormwater outlets and exotic plant cover increased significantly with sediment calcium concentrations above 8840 mg/kg, which are associated with stormwater run-off. However, this effect was found to be strongest in highly industrialised areas compared to residential areas. Understanding the impact of pollutants on coastal wetlands will improve management strategies for the conservation of this important endangered ecological community. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Peak discharges in steep mountain catchments in relation to rainfall variability, vegetation cover and geomorphology of the Rift Valley Escarpment of Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebreyohannes, Tesfaalem; Frankl, Amaury; Haile, Mitiku; Abraha, Amanuel; Monsieurs, Elise; Nyssen, Jan

    2015-04-01

    The hydrological characteristics of steep mountain streams are often considered to be mainly influenced by rainfall distribution and topography. In this study, with the objective of analyzing the runoff response of mountain catchments, a total of 340 peak stage discharges were recorded in three rainy seasons (2012-2014) in 11 sloping (27-65%) mountain catchments (0.4 - 25 km²) of the marginal western Rift Valley escarpment of Northern Ethiopia. Daily rainfall data were collected using 7 rain gauges installed at different altitudes (1623 - 2851 m a.s.l) in and nearby the catchments, and used to calculate weighted average daily rain depths over the catchments. Event peak discharges were calculated from daily measurements by 11 crest stage gauges using the Manning's equation. Percentages of land use and cover classes were detected from high resolution (0.6 m) Google Earth imagery (February 1, 2014). Morphometric characteristics of the catchments were computed from ASTER digital elevation model and topographic maps. Correlation analysis between daily rainfall and peak discharge showed direct relationship (R² = 0.5-0.94, P<0.01) in all the catchments. The average specific peak discharge was negatively related to percentage of forest and grass cover (R² = 0.64, P<0.01), time of concentration (R² = 0.31, P<0.01), drainage texture (R² = 0.42, P<0.01), and catchment perimeter (R² = 0.36, P<0.01). The specific peak discharge was positively correlated with average slope gradient of the catchments (R² = 0.34, P<0.01) and with an index representing the spatial distribution of forest and grass cover (R² = 0.43, P<0.01). A stepwise multiple regression analyses showed that 84% (P<0.01) of the variability of the runoff response in the catchments can be predicted by the percentage of forest and grass cover and the relief ratio of the catchments. All in all, this study demonstrates that the magnitude of flash floods in mountain catchments is not only influenced by the morphometric characteristics of the catchments and by rainfall, but more importantly even by vegetation cover (forest and grasses).

  11. Stream vulnerability to widespread and emergent stressors: a focus on unconventional oil and gas

    USGS Publications Warehouse

    Entrekin, Sally; Maloney, Kelly O.; Katherine E. Kapo,; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.

  12. Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and Gas

    PubMed Central

    Entrekin, Sally A.; Maloney, Kelly O.; Kapo, Katherine E.; Walters, Annika W.; Evans-White, Michelle A.; Klemow, Kenneth M.

    2015-01-01

    Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects. PMID:26397727

  13. Identification of dominant interactions between climatic seasonality, catchment characteristics and agricultural activities on Budyko-type equation parameter estimation

    NASA Astrophysics Data System (ADS)

    Xing, Wanqiu; Wang, Weiguang; Shao, Quanxi; Yong, Bin

    2018-01-01

    Quantifying precipitation (P) partition into evapotranspiration (E) and runoff (Q) is of great importance for global and regional water availability assessment. Budyko framework serves as a powerful tool to make simple and transparent estimation for the partition, using a single parameter, to characterize the shape of the Budyko curve for a "specific basin", where the single parameter reflects the overall effect by not only climatic seasonality, catchment characteristics (e.g., soil, topography and vegetation) but also agricultural activities (e.g., cultivation and irrigation). At the regional scale, these influencing factors are interconnected, and the interactions between them can also affect the single parameter of Budyko-type equations' estimating. Here we employ the multivariate adaptive regression splines (MARS) model to estimate the Budyko curve shape parameter (n in the Choudhury's equation, one form of the Budyko framework) of the selected 96 catchments across China using a data set of long-term averages for climatic seasonality, catchment characteristics and agricultural activities. Results show average storm depth (ASD), vegetation coverage (M), and seasonality index of precipitation (SI) are three statistically significant factors affecting the Budyko parameter. More importantly, four pairs of interactions are recognized by the MARS model as: The interaction between CA (percentage of cultivated land area to total catchment area) and ASD shows that the cultivation can weaken the reducing effect of high ASD (>46.78 mm) on the Budyko parameter estimating. Drought (represented by the value of Palmer drought severity index < -0.74) and uneven distribution of annual rainfall (represented by the value of coefficient of variation of precipitation > 0.23) tend to enhance the Budyko parameter reduction by large SI (>0.797). Low vegetation coverage (34.56%) is likely to intensify the rising effect on evapotranspiration ratio by IA (percentage of irrigation area to total catchment area). The Budyko n values estimated by the MARS model reproduce the calculated ones by the observation well for the selected 96 catchments (with R = 0.817, MAE = 4.09). Compared to the multiple stepwise regression model estimating the parameter n taken the influencing factors as independent inputs, the MARS model enhances the capability of the Budyko framework for assessing water availability at regional scale using readily available data.

  14. Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet

    NASA Astrophysics Data System (ADS)

    Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.

    2014-12-01

    The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.

  15. Impact of mineral fertility and bedrock erosion on single-mineral detrital studies: insights from trace-element and Nd-isotope systematics of detrital apatite from the Po River catchment

    NASA Astrophysics Data System (ADS)

    Malusa', Marco Giovanni; Wang, Jiangang; Garzanti, Eduardo; Villa, Igor M.; Wittman, Hella

    2017-04-01

    The detrital record provides an archive of mountain erosion that preserves key information for paleotectonic and paleoclimatic reconstructions. Detrital studies are often based on single-mineral analyses (e.g., geo/thermochronologic analyses on apatite and zircon). Their geologic interpretation can be challenging, because the impact of each eroding source on the detrital record is controlled by a range of factors including the rate of erosion and the fertility of chosen minerals in eroded bedrock. Here, we combine (i) a state-of-the art dataset of trace element and Nd isotope fingerprints of detrital apatite, (ii) a comprehensive dataset of apatite-fertility measurements (Malusà et al. 2016), (iii) fission-track data, and (iv) cosmogenic-derived erosion rates from the Po River catchment (Wittmann et al. 2016), to test the impact of mineral fertility and bedrock erosion on the single-mineral detrital signal preserved in the final sediment sink. Our results show that the information provided by accessory minerals, when complemented with accurate mineral fertility measurements, are fully consistent with information provided by the analysis of more abundant framework minerals. We found that trace element and Nd isotope analyses provide a reliable tool to disentangle the complex single-mineral record of orogenic erosion, and demonstrate that such a record is largely determined by high-fertility source rocks exposed within the drainage. Detrital thermochronology studies based on the lag-time approach should thus preferably include independent provenance discriminations and a full mineral fertility characterization of the potential source areas, in order to ensure a correct identification of the sediment sources and of the exogenic and endogenic processes monitored in the stratigraphic archive. Malusà M.G., Resentini A., Garzanti E., 2016. Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Res., 31, 1-19 Wittmann H., Malusà M.G., Resentini A., Garzanti E., Niedermann S., 2016. The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ 10Be, 26Al and 21Ne in sediment of the Po river catchment. Earth Planet. Sci. Lett. 452, 258-271

  16. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  17. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  18. Quantifying hydrological responses of small Mediterranean catchments under climate change projections.

    PubMed

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Vanclooster, Marnik

    2016-02-01

    Catchment flow regimes alteration is likely to be a prominent consequence of climate change projections in the Mediterranean. Here we explore the potential effects of climatic change on the flow regime of the Thau and the Chiba catchments which are located in Southern France and Northeastern Tunisia, respectively. The Soil and Water Assessment Tool (SWAT) hydrological model is forced with projections from an ensemble of 4 climate model (CM) to assess changes and uncertainty in relevant hydrological indicators related to water balance, magnitude, frequency and timing of the flow between a reference (1971-2000) and future (2041-2071) periods. Results indicate that both catchments are likely to experience a decrease in precipitation and increase in temperature in the future. Consequently, runoff and soil water content are projected to decrease whereas potential evapotranspiration is likely to increase in both catchments. Yet uncertain, the projected magnitudes of these changes are higher in the wet period than in the dry period. Analyses of extreme flow show similar trend in both catchments, projecting a decrease in both high flow and low flow magnitudes for various time durations. Further, significant increase in low flow frequency as a proxy for hydrological droughts is projected for both catchments but with higher uncertainty in the wet period than in the dry period. Although no changes in the average timing of maximum and minimum flow events for different flow durations are projected, substantial uncertainty remains in the hydrological projections. While the results in both catchments show consistent trend of change for most of the hydrologic indicators, the overall degree of alteration on the flow regime of the Chiba catchment is projected to be higher than that of the Thau catchment. The projected magnitudes of alteration as well as their associated uncertainty vary depending on the catchment characteristics and flow seasonality. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes

    NASA Astrophysics Data System (ADS)

    Newson, A.; See, L.

    2005-12-01

    Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of an ungauged catchment as inputs to an ANN. It also demonstrated how the ANN Q100 estimates can be used in conjunction with a number of other estimates in order to provide a more accurate and confident estimate of Q100 at an ungauged catchment. This clearly exploits the strengths of existing methods in combination with the latest soft computing tools.

  20. Past landscape dynamics in mountain territories: historical trajectory of vulnerability in the Vars catchment (French Alps)

    NASA Astrophysics Data System (ADS)

    Puissant, Anne; Cioloboc, Florin; Schlosser, Arnaud; Gazo, Aurelien; Martin, Brice; Malet, Jean-Philippe

    2016-04-01

    Over the last decades and centuries, mountain landscapes have experiment natural and man-made landcover/use changes with mainly the development of tourism activities and the reduction of agro-pastoral activities. These transformations have directly influenced the spatial organization of mountain landscapes. To better anticipate the future exposure of the territory to natural hazards, decision-makers need retrospective analyses of the past changes. In the frame of the SAMCO project, whose objective is to propose mountain risk assessment methodologies in the context of global changes, this research presents a retrospective analysis of land cover/use changes (from 1948 to 2013) in the Vars catchment (French South Alps) submitted to several natural hazards (rockfall, landslide, and flood). Database of elements at risk has been built for five dates and evolution of vulnerability is performed through a versatile GIS-based analysis tool developed for the estimation of vulnerability indicators (physical, economical, social) at a fine scale (1:5000). Results allow identifying several areas with different trajectories of vulnerability which can be use as input data for risk analysis and define future trends.

  1. Integrated modelling of nitrogen transport and turnover in lowland catchements of northern Germany

    NASA Astrophysics Data System (ADS)

    Wriedt, G.

    2003-04-01

    Nitrogen loads in surface water often do not reflect the actual input situation. This retention of nitrogen can be explained by chemical transformations in the soil and groundwater (e.g. denitrification) and hydrological factors (e.g. transition time, mixing) in soil and groundwater and depends strongly on the geological and chemical patterns within the catchment areas (e.g. reactive substances, conductivities). In order to facilitate modelling studies on the relation between nitrogen transport and catchment characteristics we developed a modelling approach, that allows simulation of the complete nitrogen transport path from the soil input until the exfiltration into the surface water system. This approach is based on the loose coupling of a soil water model and an analytical soil nitrogen model (mRISK-N) with a groundwater flow model (MODFLOW) and a multi-species reactive transport model (RT3D). Groundwater nitrogen turnover is represented by a closed reaction scheme that explicitly includes oxidation of organic matter and pyrite oxidation by several electron acceptors as the main reactive pathways, in order to link nitrogen turnover directly to the availability of the substances involved in the chemical reactions. This reaction module has been implemented into the modelling system as a user defined reaction module within the RT3D-environment. The soil submodel was tested against lysimeter data. It was found, that soil water balance was represented quite well. Nitrogen leaching rates however, can only be interpreted for larger time scales, whereas considerable deviations from measured values do occur in single years. Nevertheless, model performance is comparable to other, more complex soil water and nitrogen models currently available. It was found, that the high uncertainty of model parameters and input data as well as limited knowledge on processes limit the accuracy of soil nitrogen models in general. The next step of the project is the model application in the study area “Schaugraben catchment”. The study area is located near Osterburg/Altmark in the north of Sachsen-Anhalt, its size is about 25 km2. The geology is determined by pleistocene deposits, mainly glacial till in the plateau areas and glaciofluvial sandy deposits in the valleys. A dense drainage network, a high groundwater table and intensive agricultural use provide a high risk for both, groundwater and surface water quality. Model application focuses on the analysis of the interactions between catchment characteristics (hydrological and geological), spatial input patterns and the fate of nitrogen within the catchment. This is done by applying sensitivity analysis, uncertainty analysis and scenario simulation. A three dimensional groundwater flow model for the Schaugraben area has been set up and calibrated in order to analyse the regional flow paths, transition times and groundwater catchments. More detailed modelling studies including the reactive groundwater transport are performed on selected cutouts and transects, defining specific hydrogeological settings, e.g. riparian areas, buffer stripes, hydrological windows etc. Under special consideration is also the influence of spatial input patterns of nitrate and organic matter leaching to the groundwater. Results of the modelling studies are expect until March ‘03. The modelling approach developed here is a tool for the assessment of transport-turnover interaction and may help to improve experimental studies and measurement strategies and to provide useful information for managing purposes.

  2. Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?

    USGS Publications Warehouse

    Archfield, Stacey A.; Pugliese, Alessio; Castellarin, Attilio; Skøien, Jon O.; Kiang, Julie E.

    2013-01-01

    In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS.

  3. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the hillslope reservoir/stormflow flux partially controls the relative contributions of hillslope and riparian zones to catchment runoff and solute dynamics.

  4. Relationships between Rainy Days, Mean Daily Intensity, and Seasonal Rainfall over the Koyna Catchment during 1961–2005

    PubMed Central

    Nandargi, S.; Mulye, S. S.

    2012-01-01

    There are limitations in using monthly rainfall totals in studies of rainfall climatology as well as in hydrological and agricultural investigations. Variations in rainfall may be considered to result from frequency changes in the daily rainfall of the respective regime. In the present study, daily rainfall data of the stations inside the Koyna catchment has been analysed for the period of 1961–2005 to understand the relationship between the rain and rainy days, mean daily intensity (MDI) and seasonal rainfall over the catchment on monthly as well as seasonal scale. Considering the topographical location of the catchment, analysis of seasonal rainfall data of 8 stations suggests that a linear relationship fits better than the logarithmic relationship in the case of seasonal rainfall versus mean daily intensity. So far as seasonal rainfall versus number of rainy days is considered, the logarithmic relationship is found to be better. PMID:22654646

  5. Mechanisms underlying export of N from high-elevation catchments during seasonal transitions

    USGS Publications Warehouse

    Sickman, J.O.; Leydecker, A.L.; Chang, Cecily C.Y.; Kendall, C.; Melack, J.M.; Lucero, D.M.; Schimel, J.

    2003-01-01

    Mechanisms underlying catchment export of nitrogen (N) during seasonal transitions (i.e., winter to spring and summer to autumn) were investigated in high-elevation catchments of the Sierra Nevada using stable isotopes of nitrate and water, intensive monitoring of stream chemistry and detailed catchment N-budgets. We had four objectives: (1) determine the relative contribution of snowpack and soil nitrate to the spring nitrate pulse, (2) look for evidence of biotic control of N losses at the catchment scale, (3) examine dissolved organic nitrogen (DON) export patterns to gain a better understanding of the biological and hydrological controls on DON loss, and (4) examine the relationship between soil physico-chemical conditions and N export. At the Emerald Lake watershed, nitrogen budgets and isotopic analyses of the spring nitrate pulse indicate that 50 to 70% of the total nitrate exported during snowmelt (ca. April to July) is derived from catchment soils and talus; the remainder is snowpack nitrate. The spring nitrate pulse occurred several weeks after the start of snowmelt and was different from export patterns of less biologically labile compounds such as silica and DON suggesting that: (1) nitrate is produced and released from soils only after intense flushing has occurred and (2) a microbial N-sink is operating in catchment soils during the early stages of snowmelt. DON concentrations varied less than 20-30% during snowmelt, indicating that soil processes tightly controlled DON losses.

  6. A simple topography-driven, calibration-free runoff generation model

    NASA Astrophysics Data System (ADS)

    Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H. H. G.

    2017-12-01

    Determining the amount of runoff generation from rainfall occupies a central place in rainfall-runoff modelling. Moreover, reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we created a new method to estimate runoff generation - HAND-based Storage Capacity curve (HSC) which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and partially the saturated areas of catchments. We then coupled the HSC model with the Mass Curve Technique (MCT) method to estimate root zone storage capacity (SuMax), and obtained the calibration-free runoff generation model HSC-MCT. Both the two models (HSC and HSC-MCT) allow us to estimate runoff generation and simultaneously visualize the spatial dynamic of saturated area. We tested the two models in the data-rich Bruntland Burn (BB) experimental catchment in Scotland with an unusual time series of the field-mapped saturation area extent. The models were subsequently tested in 323 MOPEX (Model Parameter Estimation Experiment) catchments in the United States. HBV and TOPMODEL were used as benchmarks. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB catchment compared with TOPMODEL which is based on the topographic wetness index (TWI). The HSC also outperformed HBV and TOPMODEL in the MOPEX catchments for both calibration and validation. Despite having no calibrated parameters, the HSC-MCT model also performed comparably well with the calibrated HBV and TOPMODEL, highlighting the robustness of the HSC model to both describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate the SuMax. Moreover, the HSC-MCT model facilitated effective visualization of the saturated area, which has the potential to be used for broader geoscience studies beyond hydrology.

  7. Thermal infrared imagery as a tool for analysing the variability of surface saturated areas at various temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian

    2017-04-01

    Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.

  8. Prioritization of catchments based on soil erosion using remote sensing and GIS.

    PubMed

    Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K

    2015-06-01

    Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.

  9. Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2004-05-01

    Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.

  10. Assessing Receiving Water Quality Impacts due to Flow Path Alteration in Residential Catchments, using the Stormwater and Wastewater Management Model

    NASA Astrophysics Data System (ADS)

    Wolosoff, S. E.; Duncan, J.; Endreny, T.

    2001-05-01

    The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.

  11. Catchment area-based evaluation of the AMC-dependent SCS-CN-based rainfall-runoff models

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jain, M. K.; Pandey, R. P.; Singh, V. P.

    2005-09-01

    Using a large set of rainfall-runoff data from 234 watersheds in the USA, a catchment area-based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS-CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS-CN method showed that the modified version performed better than did the existing one on the data of all seven area-based groups of watersheds ranging from 0.01 to 310.3 km2.

  12. Transport of cyazofamid and kresoxim methyl in runoff at the plot and catchment scales

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Joaquín García Verdú, Antonio; Maillard, Elodie; Imfeld, Gwenaël; Payraudeau, Sylvain

    2013-04-01

    Surface runoff and erosion during the course of rainfall events represent major processes of pesticides transport from agricultural land to aquatic ecosystem. In general, field and catchment studies on pesticide transfer are carried out separately. A study at both scales may enable to improve the understanding of scale effects on processes involved in pesticides transport and to give clues on the source areas within an agricultural catchment. In this study, the transport in runoff of two widely used fungicides, i.e. kresoxim methyl (KM) and cyazofamid (CY) was assessed in a 43 ha vineyard catchment and the relative contribution of the total fungicides export from one representative plot was evaluated. During an entire period of fungicide application, from May to August 2011, the discharge and loads of dissolved and particle-laden KM and CY were monitored at the plot and catchment scales. The results showed larger export coefficient of KM and CY from catchment (0.064 and 0.041‰ for KM and CY respectively) than from the studied plot (0.009 and 0.023 ‰ for KM and CY respectively). It suggests that the plot margins especially the road network contributed as well to the fungicide loads. This result underlines the impact of fungicide drift on non-target areas. Furthermore, a larger rainfall threshold is necessary at the plot scale to trigger runoff and mobilise pesticides than on the road network. At the plot scale, a rapid dissipation of the both fungicides in the top soil was observed. It highlights that the risky period encompasses the first rainfall events triggering runoff after the applications. At both scales, KM and CY were not detected in suspended solids (i.e. > 0.7 µm). However their partitioning in runoff water differed. 64.1 and 91.8% of the KM load was detected in the dissolved phase (i.e. < 0.22 µm) at the plot and catchment scales respectively, whereas 98.7 and 100% of the CY load was detected in the particulate phase (i.e. between 0.22 and 0.7 µm) at the plot and catchment scales respectively. Although KM and CY have similar lab-defined properties, our results showed that their behaviour in field is different suggesting that these properties are insufficient to assess their transport and fate on site. This study highlights that assessing fungicides export at two different scales enable to improve the understanding of period and source areas of contamination within an agricultural catchment.

  13. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  14. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    PubMed

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. Copyright © 2009 Elsevier B.V. All rights reserved.

  15. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.

    2002-02-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.

  16. An approach to predict water quality in data-sparse catchments using hydrological catchment similarity

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.

    2017-04-01

    An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple objective functions. The relationships between indicators of hydrological catchment similarity, physical catchment characteristics and nitrate and phosphorus concentrations in rivers are then investigated using multivariate statistics. This understanding of the relationship between catchment characteristics, hydrological processes and water quality will allow us to implement more efficient regulatory water quality monitoring strategies, to improve existing water quality models and to model mitigation and adaptation scenarios to global change in data-sparse catchments.

  17. Analysis of water supply and demand in high mountain cities of Bolivia under growing population and changing climate

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Mendoza, J.; Asaoka, Y.; Fuchs, P.

    2017-12-01

    Water resources in La Paz and El Alto, high mountain capital cities of Bolivia, strongly depend on the surface and subsurface runoff from partially glacierized catchments located in the Cordillera Real, Andes. Due to growing population and changing climate, the balance between water supply from the source catchments and demand for drinking, agriculture, industry and hydropower has become precarious in recent years as evidenced by a serious drought during the 2015-2016 El Nino event. To predict the long-term availability of water resources under changing climate, we developed a semi-distributed glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitude catchments. Two GCM projections (MRI-AGCM and INGV-ECHAM4) were used for the prediction with bias corrected by reanalysis data (ERA-INTERIM) and downscaled to target areas using data monitored at several weather stations. The model was applied to three catchments from which current water resources are supplied and eight additional catchments that will be potentially effective in compensating reduced runoff from the current water resource areas. For predicting the future water demand, a cohort-component method was used for the projection of size and composition of population change, considering natural and social change (birth, death and transfer). As a result, total population is expected to increase from 1.6 million in 2012 to 2.0 million in 2036. The water demand was predicted for given unit water consumption, non-revenue water rate (NWR), and sectorial percentage of water consumption for domestic, industrial and commercial purposes. The results of hydrological simulations and the analysis of water demand indicated that water supply and demand are barely balanced in recent years, while the total runoff from current water resource areas will continue to decrease and unprecedented water shortage is likely to occur since around 2020 toward the middle of 21st century even if NWR is improved. We showed that the runoff from a partially-glacierized catchment located in the vicinity of the current water resource catchments can greatly compensate the projected shortage in water supply. Therefore, consensus building on diverting water from the new catchment will be critical for sustainable development of the region.

  18. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-02-01

    During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel) with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and catch basins for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes like overland and macropore flow reduce the influence of herbicide properties due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These two observations on the role of herbicide properties contradict, to some degrees, previous findings. They demonstrate that valuable insight can be gained by spatially detailed observations along the flow paths.

  19. Tri-Service Champus Statistical Database Project (TCSDP): Champus Ambulatory Data Analysis. Detail Report

    DTIC Science & Technology

    1993-03-30

    Navy was highest in all three measures, followed by the Air Force, and the Army was the lowest. No branch accounted for a large proportion of the...the largest proportion of workload and costs were in the category ’Outside Catchment Area’. The total government pay for outside catchment area category...services. MACDILL REG HOSP MACDILL AFB had the highest amount of total government pay in the Air Force’s billable MTF. It accounted for 4.13

  20. A Global Classification System for Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Woods, R. A.

    2004-05-01

    It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.

  1. Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis.

    PubMed

    Petrucci, Guido; Gromaire, Marie-Christine; Shorshani, Masoud Fallah; Chebbo, Ghassan

    2014-09-01

    The characterization and control of runoff pollution from nonpoint sources in urban areas are a major issue for the protection of aquatic environments. We propose a methodology to quantify the sources of pollutants in an urban catchment and to analyze the associated uncertainties. After describing the methodology, we illustrate it through an application to the sources of Cu, Pb, Zn, and polycyclic aromatic hydrocarbons (PAH) from a residential catchment (228 ha) in the Paris region. In this application, we suggest several procedures that can be applied for the analysis of other pollutants in different catchments, including an estimation of the total extent of roof accessories (gutters and downspouts, watertight joints and valleys) in a catchment. These accessories result as the major source of Pb and as an important source of Zn in the example catchment, while activity-related sources (traffic, heating) are dominant for Cu (brake pad wear) and PAH (tire wear, atmospheric deposition).

  2. The influence of synthetic hyetograph parameters on simulation results of runoff from urban catchment

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, Karolina; Skotnicki, Marcin

    2018-02-01

    The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.

  3. Understanding drought propagation in the UK in the context of climatology and catchment properties

    NASA Astrophysics Data System (ADS)

    Barker, Lucy; Hannaford, Jamie; Bloomfield, John; Marchant, Ben

    2017-04-01

    Droughts are a complex natural phenomena that are challenging to plan and prepare for. The propagation of droughts through the hydrological cycle is one of many factors which contribute to this complexity, and a thorough understanding of drought propagation is crucial for informed drought management, particularly in terms of water resources management in both the short and long term. Previous studies have found that both climatological and catchment factors cause lags in drought propagation from meteorological to hydrological and hydrogeological droughts. There are strong gradients in both climatology and catchment properties across the UK. Catchments in the north and west of the UK are relatively impermeable, upland catchments with thin soils and receive the highest annual precipitation with relatively low mean annual temperatures. Conversely, in the south and east of the UK, characterised by higher mean temperatures and lower annual precipitation, catchments are underlain by a number of major aquifers (e.g. Chalk, limestone) and are typically associated with high baseflow rivers. Here we explore the effects of these gradients in climatology and catchments on the propagation of droughts. Using standardised drought indices (the Standardised Precipitation Index; the Standardised Streamflow Index; and the Standardised Groundwater Index) we analyse drought propagation characteristics for selected catchment-borehole pairs across the UK using reconstructed time series back to the 19th century. We investigate how the timing, nature and predictability of drought propagation changes across the UK, given gradients in climatology and catchment characteristics. We use probability of detection methods, usually used for forecast verification, to investigate how well precipitation and streamflow deficits predict deficits in streamflow and groundwater levels and how this varies across the UK.

  4. Catchment Storage and Transport on Timescales from Minutes to Millennia

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.

    2017-12-01

    Landscapes are characterized by preferential flow and pervasive heterogeneity on all scales. They therefore store and transmit water and solutes over a wide spectrum of time scales, with important implications for contaminant transport, weathering rates, and runoff chemistry. Theoretical analyses predict, and syntheses of age tracer data confirm, that waters in aquifers are older - often by orders of magnitude - than in the rivers that flow from them, and that this disconnect between water ages arises from aquifer heterogeneity. Recent theoretical studies also suggest that catchment transit time distributions are nonstationary, reflecting temporal variability in precipitation forcing, structural heterogeneity in catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. In recent years, long-term isotope time series have been collected in many research catchments, and new technologies have emerged that allow quasi-continuous measurements of isotopes in precipitation and streamflow. These new data streams create new opportunities to study how rainfall becomes streamflow following the onset of precipitation. Here I present novel methods for quantifying the fraction of current rainfall in streamflow across ensembles of precipitation events. Benchmark tests with nonstationary catchment models demonstrate that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. Applications using high-frequency tracer time series from several experimental catchments demonstrate the utility of the new approach outlined here.

  5. Getting a feel for parameters: using interactive parallel plots as a tool for parameter identification in the new rainfall-runoff model WALRUS

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko

    2015-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS) to fill the gap between complex, spatially distributed models often used in lowland catchments and simple, parametric models which have mostly been developed for mountainous catchments (Brauer et al., 2014ab). This parametric rainfall-runoff model can be used all over the world in both freely draining lowland catchments and polders with controlled water levels. The open source model code is implemented in R and can be downloaded from www.github.com/ClaudiaBrauer/WALRUS. The structure and code of WALRUS are simple, which facilitates detailed investigation of the effect of parameters on all model variables. WALRUS contains only four parameters requiring calibration; they are intended to have a strong, qualitative relation with catchment characteristics. Parameter estimation remains a challenge, however. The model structure contains three main feedbacks: (1) between groundwater and surface water; (2) between saturated and unsaturated zone; (3) between catchment wetness and (quick/slow) flowroute division. These feedbacks represent essential rainfall-runoff processes in lowland catchments, but increase the risk of parameter dependence and equifinality. Therefore, model performance should not only be judged based on a comparison between modelled and observed discharges, but also based on the plausibility of the internal modelled variables. Here, we present a method to analyse the effect of parameter values on internal model states and fluxes in a qualitative and intuitive way using interactive parallel plotting. We applied WALRUS to ten Dutch catchments with different sizes, slopes and soil types and both freely draining and polder areas. The model was run with a large number of parameter sets, which were created using Latin Hypercube Sampling. The model output was characterised in terms of several signatures, both measures of goodness of fit and statistics of internal model variables (such as the percentage of rain water travelling through the quickflow reservoir). End users can then eliminate parameter combinations with unrealistic outcomes based on expert knowledge using interactive parallel plots. In these plots, for instance, ranges can be selected for each signature and only model runs which yield signature values in these ranges are highlighted. The resulting selection of realistic parameter sets can be used for ensemble simulations. C.C. Brauer, A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet (2014a): The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall-runoff model for catchments with shallow groundwater, Geoscientific Model Development, 7, 2313-2332, www.geosci-model-dev.net/7/2313/2014/gmd-7-2313-2014.pdf C.C. Brauer, P.J.J.F. Torfs, A.J. Teuling, R. Uijlenhoet (2014b): The Wageningen Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment and Cabauw polder, Hydrology and Earth System Sciences, 18, 4007-4028, www.hydrol-earth-syst-sci.net/18/4007/2014/hess-18-4007-2014.pdf

  6. Structural and functional connectivity in the agricultural Can Revull catchment (Mallorca, Spain)

    NASA Astrophysics Data System (ADS)

    Calsamiglia, Aleix; García-Comendador, Julián; Fortesa, Josep; Crema, Stefano; Cavalli, Marco; Alorda, Bartomeu; Estrany, Joan

    2017-04-01

    Unravelling the spatio-temporal variability of the sediment transfer within a catchment represents a challenge of great importance to quantify erosion, soil redistribution and their impacts on agricultural landscape. Structural and functional connectivity have been identified as useful aspects of connectivity that may clarify how these processes are coupled or decoupled in various types of catchment sediment cascades. In this study, hydrological and sediment connectivity in a Mediterranean agricultural catchment (1.4 km2) modified through traditional drainage systems (i.e., ditches and subsurface tile drainages) was assessed during two contrasted rainfall events occurred in October 2016 (20 mm in 24 h -return period < 1 yr-, I30 6.6 mm h-1 with 32 mm accumulated in 14 days) and in December 2016 (99 mm in 24 h -return period ≈ 25 yr-, I30 23 mm h-1 with 39 mm accumulated in 14 days). A morphometric index of connectivity (IC) was calculated to study the spatial patterns of structural connectivity. The identification of the main sediment pathways -in terms of functional connectivity- was conducted by field mapping, whilst the estimation of erosion and deposition rates by the analysis of high resolution digital terrain models (i.e., 5 cm pix-1; RMSE < 0.05 m) obtained from automated digital photogrammetry and unmanned aerial vehicle (UAV). The IC estimations allowed the identification of the most (dis-)connected areas related with the anthropogenic control in the resisting forces of the catchment. On the one hand, in the upper part of the catchment, depositional compartments were created by dry-stone walls that separate agricultural properties laminating flash floods. On the other hand, in the lower part of the catchment these depositional compartments were generated by an orthogonal network of ditches situated topographically above the natural thalwegs. In its turn, the most connected areas are located in the steepest parts of the catchment under rainfed herbaceous crops without dry stone walls and also within the lowland depositional compartments where the pathways are diverted generating parallel concentrated flows because of the greater elevation of these ditches. The observed spatial patterns of functional connectivity showed significant differences between the two events, although well fitted with IC as a clear evidence of anthropogenic controls in the resisting forces. During the October 2016 event -representative of high frequency-low magnitude events in the catchment- traditional drainage systems controlled the water and sediment transfer which was mainly concentrated within the ditches. By contrast, during the event of December 2016 -representative of extreme events- this transfer process was controlled by the natural morphology of the catchment, which activated coupling mechanisms between different compartments, increasing the effective area and triggering erosion processes including the formation of rills and incipient gullies. The spatial location of the sediment mobilization and deposition areas during the extreme event in December 2016 is well fitted with the IC estimations. The application of IC, therefore, may provide useful information to improve the drainage systems design and the implementation of measures to prevent soil losses.

  7. Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea.

    PubMed

    Cho, Jinhyung; Hyun, Sangmin; Han, J-H; Kim, Suhyun; Shin, Dong-Hyeok

    2015-06-15

    The spatiotemporal distribution and their mass accumulation rate (MAR) of heavy metals were investigated to evaluate the time-dependent historical trends of heavy metal concentration. The three short cores used for this study were collected from the catchment area (MS-PC5, 60cm length), the central part (MS-PC4, 40cm length) and the offshore (MS-PC2, 60cm length) of the Masan Bay, Korea. The concentration of heavy metals (Co, Ni, Cu, Zn, Cr and Pb) in catchment area is as much as 1.5-2 times higher than central part of the Bay, and about 2 times higher than offshore area approximately. In particular, MAR of metals (Cu, Zn and Pb) show clear spatiotemporal variation, so that MAR's of heavy metal may provide more accurate information in evaluating the degree of pollution. Temporally, the heavy metal concentration had been increased since the late 1970s, but it seems to decrease again since the 2004yr in catchment area. This may came from concentrated efforts for the government to reduce industrial waste release. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. On Flood Frequency in Urban Areas under Changing Conditions and Implications on Stormwater Infrastructure Planning and Design

    NASA Astrophysics Data System (ADS)

    Norouzi, A.; Habibi, H.; Nazari, B.; Noh, S.; Seo, D. J.; Zhang, Y.

    2016-12-01

    With urbanization and climate change, many areas in the US and abroad face increasing threats of flash flooding. Due to nonstationarities arising from changes in land cover and climate, however, it is not readily possible to project how such changes may modify flood frequency. In this work, we describe a simple spatial stochastic model for rainfall-to-areal runoff in urban areas, evaluate climatological mean and variance of mean areal runoff (MAR) over a range of catchment scale, translate them into runoff frequency, which is used as a proxy for flood frequency, and assess its sensitivity to precipitation, imperviousness and soil, and their changes as a function of catchment scale and magnitude of precipitation. The findings indicate that, due to large sensitivity of frequency of MAR to multiple hydrometeorological and physiographic factors, estimation of flood frequency for urban catchments is inherently more uncertain. The approach used in this work is useful in developing bounds for flood frequencies in urban areas under nonstationary conditions arising from urbanization and climate change.

  9. Climatic and geomorphic drivers of plant organic matter transport in the Arun River, E Nepal

    NASA Astrophysics Data System (ADS)

    Hoffmann, Bernd; Feakins, Sarah J.; Bookhagen, Bodo; Olen, Stephanie M.; Adhikari, Danda P.; Mainali, Janardan; Sachse, Dirk

    2016-10-01

    Fixation of atmospheric CO2 in terrestrial vegetation, and subsequent export and deposition of terrestrial plant organic matter in marine sediments is an important component of the global carbon cycle, yet it is difficult to quantify. This is partly due to the lack of understanding of relevant processes and mechanisms responsible for organic-matter transport throughout a landscape. Here we present a new approach to identify terrestrial plant organic matter source areas, quantify contributions and ascertain the role of ecologic, climatic, and geomorphic controls on plant wax export in the Arun River catchment spanning the world's largest elevation gradient from 205 to 8848 m asl, in eastern Nepal. Our approach takes advantage of the distinct stable hydrogen isotopic composition (expressed as δD values) of plant wax n-alkanes produced along this gradient, transported in river waters and deposited in flood deposits alongside the Arun River and its tributaries. In mainstem-flood deposits, we found that plant wax n-alkanes were mostly derived from the lower elevations constituting only a small fraction (15%) of the catchment. Informed by remote sensing data, we tested four differently weighted isotopic mixing models that quantify sourcing of tributary plant-derived organic matter along the Arun and compare it to our field observations. The weighting parameters included catchment area, net primary productivity (NPP) and annual rainfall amount as well as catchment relief as erosion proxy. When weighted by catchment area the isotopic mixing model could not explain field observations on plant wax δD values along the Arun, which is not surprising because the large arid Tibetan Plateau is not expected to be a major source. Weighting areal contributions by annual rainfall and NPP captured field observations within model prediction errors suggesting that plant productivity may influence source strength. However weighting by a combination of rainfall and catchment relief also captured the observed δD value pattern suggesting dominantly erosive control. We conclude that tributaries at the southern Himalayan front with high rainfall, high productivity, high relief and high erosion rates dominate plant wax exports from the catchment.

  10. Impacts of anthropogenic activities on different hydrological drought characteristics

    NASA Astrophysics Data System (ADS)

    Tijdeman, Erik; Stahl, Kerstin; Bachmair, Sophie

    2015-04-01

    The natural hazard drought can have severe impacts on a variety of sectors and at a variety of scales. Droughts, here defined as below average water availability, occur everywhere. However, the impact of a drought event is not only influenced by its severity but also by the vulnerability of an area to droughts. Research in catchments with natural flow conditions is crucial to gain process understanding about hydrological droughts. However, the locations of catchments with natural flow are often not representative for regions with a socioeconomic sector that is highly vulnerable to droughts. In these more vulnerable areas, human activities like groundwater extraction can intensify hydrological droughts. On the other hand, human activities can also mitigate or limit the magnitude of drought events. The aim of this study is to assess the impact of different anthropogenic influences on streamflow droughts by comparing hydrological drought characteristics between catchments with natural streamflow and with regulated or otherwise altered streamflow. The study is based on a large set of streamflow records from catchments in Germany, the UK and the USA with either known anthropogenic influences or natural streamflow conditions. Different drought characteristics (duration, deficit, frequency and timing of drought events) are computed for the selected stations. The drought characteristics in catchments influenced by various anthropogenic activities are stratified by the characteristics of anthropogenic influence, but also by similar physical and climatological properties. These stratified groups are then compared to drought characteristics in natural catchments with similar properties. Results show both negative and positive impacts of different human activities on droughts. For example, urbanized areas with low flow regulations show hydrological droughts with shorter durations and lower deficit volumes compared to nearby natural catchments, while records downstream of reservoirs show intensified drought characteristics. The differences between droughts in natural and regulated flow regimes, however, appear to be non-linear and variable with the severity of drought events. In conclusion, this study shows systematic impacts of human activities on different drought characteristics and furthermore reveals that management patterns have limits during severe droughts.

  11. Phosphorus transport and retention in a channel draining an urban, tropical catchment with informal settlements

    NASA Astrophysics Data System (ADS)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.

    2014-03-01

    Urban catchments in sub-Saharan Africa (SSA) are increasingly becoming a major source of phosphorus (P) to downstream ecosystems. This is primarily due to large inputs of untreated wastewater to urban drainage channels, especially in informal settlements (or slums). However, the processes governing the fate of P in these catchments are largely unknown. In this study, these processes are investigated. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining a 28 km2 slum-dominated catchment in Kampala, Uganda, and from a tertiary channel draining one of the contributing slum areas (0.54 km2). The samples were analysed for orthophosphate (PO4-P), particulate P (PP), total P (TP), suspended solids (SS) and hydrochemistry. We also collected channel bed and suspended sediments to determine their geo-available metals, sorption characteristics and the dominant phosphorus forms. Our results showed that the catchment exported high fluxes of P (0.3 kg km2 d-1 for PO4-P and 0.95 for TP), which were several orders of magnitude higher than values normally reported in literature. A large proportion of P exported was particulate (56% of TP) and we inferred that most of it was retained along the channel bed. The retained sediment P was predominantly inorganic (> 63% of total sediment P) and consisted of mostly Ca and Fe-bound P, which were present in almost equal proportions. Ca-bound sediment P was attributed to the adsorption of P to calcite because surface water was near saturation with respect to calcite in all the events sampled. Fe-bound sediment P was attributed to the adsorption of P to iron oxides in suspended sediment during runoff events given that surface water was undersaturated with respect to iron phosphates. We also found that the bed sediments were P-saturated and showed a tendency to release P by mineralisation and desorption. During rain events, there was a flushing of PP which we attributed to the resuspension of P-rich bed sediment that accumulated in the channel during low flows. However, first-flush effects were not observed. Our findings provide useful insights into the processes governing the fate and transport of P in urban slum catchments in SSA.

  12. The 2-3 November 2015 flood of the Sió River (NE Iberian Peninsula): a flash flood that turns into a mudflow downstream

    NASA Astrophysics Data System (ADS)

    Carles Balasch Solanes, Josep; Lluís Ruiz-Bellet, Josep; Rodríguez, Rafael; Tuset, Jordi; Castelltort, Xavier; Barriendos, Mariano; Pino, David; Mazón, Jordi

    2016-04-01

    Historical and recent evidence shows that many floods in the interior of Catalonia (NE Iberian Peninsula) usually have such a great sediment load that can even alter the hydraulic behaviour of the flow. This is especially true in catchments with a great proportion of agricultural soils, which are the main source of sediment. The night of 2-3 November 2015 torrential rains fell on the headwaters of the Sió River catchment (508 km2); the subsequent flood caused four deaths and many damages along the stream. The hydrological, hydraulic and sedimentary characteristics of this recent flood have been analysed in order to gain a better insight on the characteristics of the major historical floods in the same catchment. The rainfall height on the headwaters was between 139 and 146 mm in ten hours, with a maximum intensity of about 50 mm·h-1. In the rest of the catchment it rained much less (22-71 mm). The agricultural soils in the headwaters show evidence of intense erosion by laminar and concentrated Hortonian overland flow in their superficial layer (Ap1; 10 cm), which uncovered the more compact underlying layer (Ap2). The peak flow in the headwaters (Oluges) was 90 m3·s-1 (that is, a specific peak flow near 1 m3·s-1·km-2) and it diminished downstream: 40 m3·s-1 in the centre of the catchment (Oluges + 27 km) and 15 m3·s-1 in the outlet (Oluges + 54 km). The suspended sediment load was 10-15% in volume in the headwaters and, judging from recorded images and eyewitnesses, it increased as the flow moved downstream, turning the flash flood into a mudflow. This concentration gain was most probably caused by the flood wave's water loss due to the dryness of the riverbed and translated in an increased viscosity that ultimately altered the hydraulic behaviour of the flow, slowing it down. This process of water loss has been observed in flash floods in dry riverbeds in arid and semiarid areas such as Negev (Israel) and Atacama (Chile). Historical floods in neighbouring catchments (Ondara and Corb Rivers) are known to have had hyperconcetrated flows.

  13. Climatic and Tectonic Controls on Topography in the Northern Basin and Range

    NASA Astrophysics Data System (ADS)

    Foster, D.; Brocklehurst, S. H.; Gawthorpe, R. L.

    2006-12-01

    This study takes advantage of the relatively simple tectonics of the normal fault-bounded Lost River and Lemhi Ranges and the Beaverhead Mountains, eastern Idaho, USA, to assess the roles of climate, erosion, and tectonics in topographic evolution through a combination of digital topographic analyses and field observations. These ranges transect the southern limit of Quaternary glaciation, and drainage basins record a range of glacial extents and histories, allowing for comparisons between climatic and tectonic controls. At a catchment scale, topography is controlled by both the degree of glaciation, and the response of the drainage system to range-front faulting. The range-bounding normal faults are segmented along-strike, and fault uplift rates vary systematically, being greatest at the fault centres. Here catchments predominantly drain normal to the range-front fault, although the trend of some catchments is influenced by pre-existing tectonic fabrics related to Cretaceous (northeast-southwest trending) and early Miocene (northwest-southeast trending) extension. For catchments that drain through fault segment boundaries, one of two general morphologies occurs. Either large drainage basins form, capturing drainage area from neighbouring basins, or, when fault segment boundaries are en echelon, a series of small drainage basins may form as catchments as the inboard- and outboard- footwalls interact and respond to fault linkage. Quaternary glaciation affected all but the southern portions of each of the ranges, most extensively at the north-eastern range flank. Increased extent of glaciation within a catchment results in wider valley floors, steeper valley walls, and greater relief at elevations close to the ELA. Cirque formation occurs preferentially on the north-eastern range flank, where glaciers are sheltered from both solar radiation and snow re-distribution by the prevailing winds. Snow accumulation is promoted in this setting by the increased influx of wind-blown snow from the western side of the range crest, and large moraines extend beyond the eastern range front. For portions of the ranges affected by glaciation, range mean heights decrease along-strike by 1-2m per km to the north-west, similar to the rate of decrease in ELA and in the trend of cirque floor elevations. This suggests that a glacial "buzzsaw" effect controls the range mean heights.

  14. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains.

    PubMed

    Ragettli, Silvan; Immerzeel, Walter W; Pellicciotti, Francesca

    2016-08-16

    Mountain ranges are the world's natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.

  15. Groundwater similarity across a watershed derived from time-warped and flow-corrected time series

    NASA Astrophysics Data System (ADS)

    Rinderer, M.; McGlynn, B. L.; van Meerveld, H. J.

    2017-05-01

    Information about catchment-scale groundwater dynamics is necessary to understand how catchments store and release water and why water quantity and quality varies in streams. However, groundwater level monitoring is often restricted to a limited number of sites. Knowledge of the factors that determine similarity between monitoring sites can be used to predict catchment-scale groundwater storage and connectivity of different runoff source areas. We used distance-based and correlation-based similarity measures to quantify the spatial and temporal differences in shallow groundwater similarity for 51 monitoring sites in a Swiss prealpine catchment. The 41 months long time series were preprocessed using Dynamic Time-Warping and a Flow-corrected Time Transformation to account for small timing differences and bias toward low-flow periods. The mean distance-based groundwater similarity was correlated to topographic indices, such as upslope contributing area, topographic wetness index, and local slope. Correlation-based similarity was less related to landscape position but instead revealed differences between seasons. Analysis of variance and partial Mantel tests showed that landscape position, represented by the topographic wetness index, explained 52% of the variability in mean distance-based groundwater similarity, while spatial distance, represented by the Euclidean distance, explained only 5%. The variability in distance-based similarity and correlation-based similarity between groundwater and streamflow time series was significantly larger for midslope locations than for other landscape positions. This suggests that groundwater dynamics at these midslope sites, which are important to understand runoff source areas and hydrological connectivity at the catchment scale, are most difficult to predict.

  16. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains

    PubMed Central

    Pellicciotti, Francesca

    2016-01-01

    Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority. PMID:27482082

  17. Crop structure in a gully catchment and the development of a loess gully (Lublin Upland, E Poland)

    NASA Astrophysics Data System (ADS)

    Mędrek, Karolina; Rodzik, Jan

    2015-04-01

    The study was conducted in a loess gully catchment with an area of 1.23 km2 and height differences of less than 50 m (213-165 m above sea level), located in Kolonia Celejów in the Nałęczów Plateau. This is one of mesoregions of Lublin Upland. In the investigated catchment, loess cover with a thickness of 10-20 m, accumulated during the Vistulian Glaciation, is dissected by a gully system with a depth of 5-15 m and total length of 7.5 km. The gully system is forested in 30% of its area. Until recently, the remaining part of the catchment under agricultural use has been dominated by conventional farming of cereals, potatoes, and sugar beets. Today, 15% of the non-forested area of the catchment is occupied by housing premises, dirt roads, and fallow land, and 45% by orchards with maintained turf, including berry plantations. This type of land management contributes to the retention of precipitation, and protects the soil from flushing. Approximately 20% of the agricultural land is occupied by conventional crops (cereals and root crops), protecting the soil to a moderate degree. Water runoff in the area does not occur every year. Approximately 20% of the agricultural land is currently occupied by cruciferous vegetables (broccoli and cauliflower), decorative shrubs, and orchards without turf in the first 2 years of use. Water and soil runoff from these crops occurs even several times per year. The majority of the material is retained in the lower part of the field, and the water flows into the gully. The crops in the fields adjacent to the ravine have a direct impact on the development of the gully. If the field is located on a raised headland, the flowing water dissects the edge of the gully, and the eroded material is accumulated on the gully bottom. If the field is located in a valley above the gullyhead, the flowing water dissects the bottom of the gully, and the eroded material is discharged outside the catchment.

  18. Hydrogeomorphological and water quality impacts of oil palm conversion and logging in Sabah, Malaysian Borneo: a multi-catchment approach

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Nainar, Anand; Bidin, Kawi; Higton, Sam; Annammala, Kogilavani; Blake, William; Luke, Sarah; Murphy, Laura; Perryman, Emily; Wall, Katy; Hanapi, Jamil

    2016-04-01

    The last three decades have seen a combination of logging and land-use change across most of the rainforest tropics. This has involved conversion to oil palm across large parts of SE Asia. Although much is now known about the hydrological and sediment transport impacts of logging, relatively little is known about how impacts of oil palm conversion compare with those of logging. Furthermore little is known about the impacts of both on river morphology and water quality. This paper reports some findings of the first phase of a ten-year large-scale manipulative multi-catchment experiment (part of the SAFE - Stability of Altered Forest Ecosystems - Project), based in the upper part of the Brantian Catchment in Sabah, Malaysian Borneo; the project is designed to assess the degree to which adverse impacts of oil palm conversion (on erosion, downstream channel change, water quality and river ecology) might be reduced by retaining buffer zones of riparian forest of varying width from zero to 120 metres. Ten 2 km2 catchments of contrasting land use history have been instrumented since 2011 to record discharge, turbidity, conductivity and water temperature at 5-minute intervals. These comprise 6 repeat-logged catchments being subjected in 2015-16 to conversion to oil palm with varying riparian forest widths; a repeat-logged 'control' catchment; an old regrowth catchment; an oil palm catchment; and a primary forest catchment. In addition, (1) monthly water samples from the catchments have been analysed for nitrates and phosphates, (2) channel cross-sectional change along each stream has been monitored at six-monthly intervals and (3) supplementary surveys have been made of downstream bankfull channel cross-sectional size and water chemistry at a wider range of catchment sites, and (4) sediment cores have been taken and contemporary deposition monitored at a hierarchical network of sites in the large Brantian catchment for geochemical analysis and dating to establish the history of sedimentation and inferred changes in upstream sediment sources. Effects on river ecology were also assessed. This paper summarises the key findings to date, focussing on differences in suspended sediment dynamics, downstream bankfull channel size and shape, and pollution between oil palm catchments, and catchments under post-logging and primary rainforest.

  19. The relative influence of climate and catchment properties on hydrological drought

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Laaha, Gregor; Koffler, Daniel

    2014-05-01

    Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a high elevation, steep slopes, a high percentage of crystalline rock, bare rock and glacier. The conclusion of our research is that it is not straightforward to separate the effects of climate and catchment properties on drought, since they are interrelated. This is especially true for mountainous regions where temperature and precipitation are strongly dependent on altitude. We did however see that the duration of drought is more related to catchment storage (catchment properties) and the severity of drought (represented by the drought deficit) is more related to catchment wetness (climate). Van Loon, A.F., and Van Lanen, H.A.J.: A process-based typology of hydrological drought, Hydrology and Earth System Science, 16, p. 1915-1946, doi: 10.5194/hess-16-1915-2012, 2012

  20. Revisiting regional flood frequency analysis in Slovakia: the region-of-influence method vs. traditional regional approaches

    NASA Astrophysics Data System (ADS)

    Gaál, Ladislav; Kohnová, Silvia; Szolgay, Ján.

    2010-05-01

    During the last 10-15 years, the Slovak hydrologists and water resources managers have been devoting considerable efforts to develop statistical tools for modelling probabilities of flood occurrence in a regional context. Initially, these models followed concepts to regional flood frequency analysis that were based on fixed regions, later the Hosking and Wallis's (HW; 1997) theory was adopted and modified. Nevertheless, it turned out to be that delineating homogeneous regions using these approaches is not a straightforward task, mostly due to the complex orography of the country. In this poster we aim at revisiting flood frequency analyses so far accomplished for Slovakia by adopting one of the pooling approaches, i.e. the region-of-influence (ROI) approach (Burn, 1990). In the ROI approach, unique pooling groups of similar sites are defined for each site under study. The similarity of sites is defined through Euclidean distance in the space of site attributes that had also proved applicability in former cluster analyses: catchment area, afforested area, hydrogeological catchment index and the mean annual precipitation. The homogeneity of the proposed pooling groups is evaluated by the built-in homogeneity test by Lu and Stedinger (1992). Two alternatives of the ROI approach are examined: in the first one the target size of the pooling groups is adjusted to the target return period T of the estimated flood quantiles, while in the other one, the target size is fixed, regardless of the target T. The statistical models of the ROI approach are inter-compared by the conventional regionalization approach based on the HW methodology where the parameters of flood frequency distributions were derived by means of L-moment statistics and a regional formula for the estimation of the index flood was derived by multiple regression methods using physiographic and climatic catchment characteristics. The inter-comparison of different frequency models is evaluated by means of the root mean square error of data from Monte Carlo simulations. The analysis is based on the annual peak discharges from 168 small and mid-sized catchments from Slovakia. The study is supported by the Grant Agency of AS CR under project B300420801; the Slovak Research and Development Agency under the contract No. APVV-0443-07 and the Slovak VEGA Grant Agency under the project No. 1/0103/10. Burn, D.H., 1990: Evaluation of regional flood frequency analysis with a region of influence approach. Water Resources Research, 26(10), 2257-2265. Hosking, J.R.M., Wallis, J.R., 1997: Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge. Lu, L.-H., Stedinger, J.R., 1992: Sampling variance of normalized GEV/PWM quantile estimators and a regional homogeneity test. Journal of Hydrology, 138(1-2), 223-245.

  1. Sensitivity of effective rainfall amount to land use description using GIS tool. Case of a small mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, S.; Tournoud, M. G.; Cernesson, F.

    Distributed modelling in hydrology assess catchment subdivision to take into account physic characteristics. In this paper, we test the effect of land use aggregation scheme on catchment hydrological response. Evolution of intra-subcatchment land use is studied using statistic and entropy methods. The SCS-CN method is used to calculate effective rainfall which is here assimilated to hydrological response. Our purpose is to determine the existence of a critical threshold-area appropriate for the application of hydrological modelling. Land use aggregation effects on effective rainfall is assessed on small mediterranean catchment. The results show that land use aggregation and land use classification type have significant effects on hydrological modelling and in particular on effective rainfall modelling.

  2. Hillslope characterization in terms of geophysical units based on the joint interpretation of electrical resistivity and seismic velocity data

    NASA Astrophysics Data System (ADS)

    Feskova, Tatiana; Dietrich, Peter

    2015-04-01

    Hydrological conditions in a catchment depend on many factors such as climatic, geological, geomorphological, biological and human, which interact with each other and influence water balance in a catchment. This interaction leads to the subordination in the landscape structure, namely the weak elements subordinate to the powerful elements. Thereby, geological and geomorphological factors play an essential role in catchment development and organization. A hillslope consequently can be allocated to one class of the representative units because the important flow processes run at the hillslope. Moreover, a hillslope can be subdivided into stratigraphic subsurface units and significant hillslope areas based on the lithological change of contrasting interfaces. The knowledge of subsurface structures is necessary to understand and predicate complex hydrological processes in a catchment. Geophysical techniques provide a good opportunity to explore the subsurface. A complete geophysical investigation of subsurface in a catchment with difficult environmental conditions never will be achieved because of large time effort in the field, equipment logistic, and ambiguity in the data interpretation. The case study demonstrates how a catchment can be investigated using geophysical methods in an effective manner in terms of characterization of representative units with respect to a functional role in the catchment. This case study aims to develop combined resistivity and seismic velocity hillslope subsurface models for the distinction of representative functional units. In order to identify the contrasting interfaces of the hillslope, to localize significant hillslope areas, and to address the ambiguity in the geophysical data interpretation, the case study combined resistivity surveys (vertical electrical soundings and electrical resistivity tomography) with refraction seismic method, and conducted these measurements at one single profile along the hillslope transect and perpendicular to this transect. The measurements along the hillslope transect deliver the two-dimensional hillslope section of resistivity and seismic velocity distribution with contrasting stratigraphic interfaces, whereas the measurements perpendicular to the hillslope transect obtained from vertical electrical soundings survey localize significant hillslope areas indicating existence of two-dimensional features in the subsurface. To demonstrate the suitability of the suggested approach, resistivity and refraction seismic measurements were carried out at the forested gently inclined hillslope in the Weierbach catchment, which belongs to the hydrological observatory Attert Basin locating in the mid-western part of the Grand-Duchy of Luxembourg. This hillslope is characterized by Pleistocene periglacial slope deposits, which plays an important role in the ecosystem functioning. The obtained resistivity and seismic hillslope models of the Weierbech catchment complement well one another. The hillslope models identify three significant hillslope areas along the hillslope called as elementary functional units, and four electrical vertical stratigraphic units and two seismic vertical stratigraphic units that agree with lithological stratigraphy of this study site. In conclusions, the suggested geophysical approach is suitable to characterise a hillslope as the representative unit only at a single transect in the efficient manner in contrast to the expensive 3D-measurements.

  3. 10Be erosion rates controlled by normal fault activity through incision and landslide occurrence

    NASA Astrophysics Data System (ADS)

    Roda-Boluda, Duna; D'Arcy, Mitch; Whittaker, Alex; Gheorghiu, Delia; Rodes, Angel

    2017-04-01

    Quantifying erosion rates, and how they compare to rock uplift rates, is fundamental for understanding the evolution of relief and the associated sediment fluxes. The competing effects of rock uplift and erosion are clearly captured by river incision and landsliding, but linking these four important landscape processes remains a major challenge. We address these questions using field data from southern Italy, and quantify the geomorphic response to tectonic forcing. We present 15 new 10Be catchment-averaged erosion rates, collected from catchments along five active normal faults with excellent slip rate constraints. We find that erosion rates are strongly controlled by fault slip rates and that this relationship is mediated by the degree of catchment incision and landslide activity. We find that 10Be samples from low-relief, unincised areas above knickpoints yield consistent erosion rates of ˜ 0.12 mm/yr, while samples collected below knickpoints have erosion rates of ˜ 0.2 - 1.0 mm/yr. This comparison allows us to quantify the impact that transient incisional response has on erosion rates. We demonstrate that in this area incision is associated with frequent, shallow landsliding, and we show that the volumes of landslides stored in the catchments are highly correlated with 10Be-derived sediment flux estimates, suggesting that landslides are likely to be a major contributor to erosional fluxes. Despite widespread landsliding, CRN samples from the studied catchments do provide reliable estimates of catchment-averaged erosion rates, as these are consistent with fault throw patterns and rates. We suggest that this is because landslides are frequent, small and shallow, and are stored on the hillslopes for up to ˜ 103 yrs, representing the integrated record of landsliding over several seismic cycles; and test this hypothesis using a numerical model of landsliding and CRN dynamics. Our results show that adequate CRN mixing can occur through runoff as landslides are stored on the hillslopes, as long as landslide recurrence intervals are short, which is supported by the erosion rate magnitudes and previous landslide studies in the area. This study contributes to our understanding of erosion and sediment supply in tectonically-active areas, and offers novel insights into the use of CRN to infer erosion rates in areas of intense landslide activity.

  4. Water and Sediment Output Evaluation Using Cellular Automata on Alpine Catchment: Soana, Italy - Test Case

    NASA Astrophysics Data System (ADS)

    Pasculli, Antonio; Audisio, Chiara; Sciarra, Nicola

    2017-12-01

    In the alpine contest, the estimation of the rainfall (inflow) and the discharge (outflow) data are very important in order to, at least, analyse historical time series at catchment scale; determine the hydrological maximum and minimum estimate flood and drought frequency. Hydrological researches become a precious source of information for various human activities, in particular for land use management and planning. Many rainfall- runoff models have been proposed to reflect steady, gradually-varied flow condition inside a catchment. In these last years, the application of Reduced Complexity Models (RCM) has been representing an excellent alternative resource for evaluating the hydrological response of catchments, within a period of time up to decades. Hence, this paper is aimed at the discussion of the application of the research code CAESAR, based on cellular automaton (CA) approach, in order to evaluate the water and the sediment outputs from an alpine catchment (Soana, Italy), selected as test case. The comparison between the predicted numerical results, developed through parametric analysis, and the available measured data are discussed. Finally, the analysis of a numerical estimate of the sediment budget over ten years is presented. The necessity of a fast, but reliable numerical support when the measured data are not so easily accessible, as in Alpine catchments, is highlighted.

  5. (dis)connectivity in Catchment-Scale Sediment Cascades: Forecasting Responses in Sediment Flux Associated with Various Forms of Environmental Change

    NASA Astrophysics Data System (ADS)

    Fryirs, K.

    2010-12-01

    Fluvial systems are key elements that drive Earth surface change because they convey most of the global fluxes of water and sediment from land to oceans. Fluvial fluxes of water and sediment also drive a significant proportion of the terrestrial biochemical cycling of carbon, nutrients and pollutants. Understanding the internal dynamics of the sediment cascade is therefore critical to forecasting how environmental change, whether driven by extrinsic climate change, or intrinsic human-disturbance, might affect biochemical fluxes. To understand the internal dynamics of sediment flux requires a framework that can incorporate the various processes involved in the movement of sediment from the source area through the basin system to the outlet, and can take account of spatial variability within the system and the timeframes over which these processes operate. Traditionally a sediment budget approach has been used to quantify the sediment being supplied, transported and stored in various parts of catchments. In more recent years, a more sophisticated approach to analysis of catchment linkages and (dis)connectivity has been developed that incorporates both spatial and temporal variability in the operation of the sediment cascade. This framework is based on an understanding of longitudinal, lateral and vertical linkages in sediment flux in catchments, and where blockages occur to disrupt these linkages. These blockages have been termed buffers, barriers and blankets (Fryirs et al 2007). Depending on the position of these blockages, and their sediment residence time, various parts of catchment may be actively contributing sediment to the catchment sediment cascade and be switched on, or inactive and switched off. The degree of spatial connectivity determines the effective catchment area. The breaching capacity of buffers, barriers and blankets determines the effective timescale over which certain parts of a catchment are switched on. The sediment residence time and thresholds of stability dictate the timeframe over which certain parts of catchments are actively contributing sediment to the cascade. The manifestation of geomorphic change, and response times to disturbance can be modeled within such a framework. The notion that certain sediment sources and transport mechanisms may be switched on or switched off under various climate change scenarios can also be examined using this framework. Fryirs, K., Brierley, G. J., Preston, N. J. and Kasai, M. 2007. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 49-67

  6. Sensitivity of alpine watersheds to global change

    NASA Astrophysics Data System (ADS)

    Zierl, B.; Bugmann, H.

    2003-04-01

    Mountains provide society with a wide range of goods and services, so-called mountain ecosystem services. Besides many others, these services include the most precious element for life on earth: fresh water. Global change imposes significant environmental pressure on mountain watersheds. Climate change is predicted to modify water availability as well as shift its seasonality. In fact, the continued capacity of mountain regions to provide fresh water to society is threatened by the impact of environmental and social changes. We use RHESSys (Regional HydroEcological Simulation System) to analyse the impact of climate as well as land use change (e.g. afforestation or deforestation) on hydrological processes in mountain catchments using sophisticated climate and land use scenarios. RHESSys combines distributed flow modelling based on TOPMODEL with an ecophysiological canopy model based on BIOME-BGC and a climate interpolation scheme based on MTCLIM. It is a spatially distributed daily time step model designed to solve the coupled cycles of water, carbon, and nitrogen in mountain catchments. The model is applied to various mountain catchments in the alpine area. Dynamic hydrological and ecological properties such as river discharge, seasonality of discharge, peak flows, snow cover processes, soil moisture, and the feedback of a changing biosphere on hydrology are simulated under current as well as under changed environmental conditions. Results of these studies will be presented and discussed. This project is part of an over overarching EU-project called ATEAM (acronym for Advanced Terrestrial Ecosystem Analysis and Modelling) assessing the vulnerability of European ecosystem services.

  7. Assessing pesticide exposure of the aquatic environment in tropical catchments

    NASA Astrophysics Data System (ADS)

    Weiss, Frederik; Zurbrügg, Christian; Eggen, Rik; Castillo, Luisa; Ruepert, Clemens; Stamm, Christian

    2015-04-01

    Today, pesticides are intensively used in agriculture across the globe. Worldwide about 2.4×106 tons of pesticides are used annually on 1.6×109 ha of arable land. This yields a global average use of pesticides of 1.53 kg ha-1 year-1. Available data suggest that the use in the agricultural sector will continue to grow. Recently it was estimated that within the last decade, the world pesticide market increased by 93% and the Brazilian market alone by 190%. Though pesticides are intensively used in many low and middle income countries (LAMICs), scientifically sound data of amounts and types of pesticide use and the resulting impact on water quality are lacking in many of these countries. Therefore it is highly relevant to: i) identify risk areas where pesticides affect environmental health, ii) understand the environmental behavior of pesticides in vulnerable tropical ecosystems; and iii) develop possible mitigation options to reduce their exposure to ecosystems and humans. Here we present a project that will focus on assessing pesticide exposure of the aquatic environment and humans in tropical catchments of LAMICs. A catchment in the Zarcero province in Costa Rica will be the test case. Pesticide exposure will be assessed by passive sampling. In order to cover a broad range of compounds of possible use, two sampling devices will be used: SDB membranes for collecting polar compounds and silicon sheets for accumulating apolar pesticides. Extracts will be subsequently analysed by GC-MSMS and LC-HRMS.

  8. Multi-scale hydrometeorological observation and modelling for flash flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-09-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2), where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2), where the river routing and flooding processes become important. These observations are part of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) enhanced observation period (EOP), which will last 4 years (2012-2015). In terms of hydrological modelling, the objective is to set up regional-scale models, while addressing small and generally ungauged catchments, which represent the scale of interest for flood risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set-up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes on various scales.

  9. Multi-scale hydrometeorological observation and modelling for flash-flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, I.; Ayral, P.-A.; Bouvier, C.; Branger, F.; Delrieu, G.; Le Coz, J.; Nord, G.; Vandervaere, J.-P.; Anquetin, S.; Adamovic, M.; Andrieu, J.; Batiot, C.; Boudevillain, B.; Brunet, P.; Carreau, J.; Confoland, A.; Didon-Lescot, J.-F.; Domergue, J.-M.; Douvinet, J.; Dramais, G.; Freydier, R.; Gérard, S.; Huza, J.; Leblois, E.; Le Bourgeois, O.; Le Boursicaud, R.; Marchand, P.; Martin, P.; Nottale, L.; Patris, N.; Renard, B.; Seidel, J.-L.; Taupin, J.-D.; Vannier, O.; Vincendon, B.; Wijbrans, A.

    2014-02-01

    This paper presents a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km2. The approach is based on the monitoring of nested spatial scales: (1) the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; (2) the small to medium catchment scale (1-100 km2) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; (3) the larger scale (100-1000 km2) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper first presents the rationale behind the experimental set up and the instrumentation itself. Second, we discuss the associated modelling strategy. Results illustrate the potential of the approach in advancing our understanding of flash flood processes at various scales.

  10. Spatial and temporal variation of residence time and storage volume of subsurface water evaluated by multi-tracers approach in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi

    2015-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.

  11. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  12. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment.

    PubMed

    Hashemi, Fatemeh; Olesen, Jørgen E; Dalgaard, Tommy; Børgesen, Christen D

    2016-12-15

    Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns within stream or river catchments have considerable influence on nutrient transport, transformation and retention processes that all eventually affect loadings to vulnerable aquatic environments. Therefore, in order to address options to reduce nutrient loadings, quantitative assessment of their effects in real catchments need to be undertaken. This involves setting up scenarios of the possible nutrient load reduction measures and quantifying their impacts via modelling. Over the recent two decades there has been a great increase in the use of scenario-based analyses of strategies to combat excessive nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic conditions, with a large focus on measures targeting land cover/use and land management for reducing the source load of N and P in the landscape. Some of the studies considered how to manage the flows of nutrients, or how changes in the landscape may be used to influence both flows and transformation processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions and climatic conditions. Most of the studies used existing catchment models such as SWAT and INCA, and the choice of the models may also have influenced the setup of the scenarios. The use of stakeholders for designing scenarios and for communication of results does not seem to be a widespread practice, and it would be recommendable for future scenario studies to have a more in-depth involvement of stakeholders for the elaboration and interpretation of scenarios, in particular to enhance their relevance for farm and catchment management and to foster better policies and incentives. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Simulating land use changes in the Upper Narew catchment using the RegCM model

    NASA Astrophysics Data System (ADS)

    Liszewska, Malgorzata; Osuch, Marzena; Romanowicz, Renata

    2010-05-01

    Catchment hydrology is influenced by climate forcing in the form of precipitation, temperature, evapotranspiration and human interactions such as land use and water management practices. The difficulty in separating different causes of change in a hydrological regime results from the complexity of interactions between those three factors and catchment responses and the uncertainty and scarcity of available observations. This paper describes an application of a regional climate model to simulate the variability in precipitation, temperature, evaporation and discharge under different land use parameterizations, using the Upper Narew catchment (north-east Poland) as a case study. We use RegCM3 model, developed at the International Centre for Theoretical Physics, Trieste, Italy. The model's dynamic core is based on the hydrostatic version of the NCAR/PSU Mesoscale Model version 5 (primitive equations, hydrostatic, compressible, sigma-vertical coordinate). The physical input includes radiation transfer, large-scale and convective precipitation, Planetary Boundary Layer, biosphere. The RegCM3 model has options to interface with a variety of re-analyses and GCM boundary conditions, and can thus be used for scenario assessments. The variability of hydrological conditions in response to regional climate model projections is modeled using an integrated Data Based Mechanistic (DBM) rainfall-flow/flow-routing model of the Upper River Narew catchment. The modelling tool developed is formulated in the MATLAB-SIMULINK language. The basic system structure includes rainfall-flow and flow routing modules, based on a Stochastic Transfer Function (STF) approach combined with a nonlinear transformation of rainfall into effective rainfall. We analyse the signal resulting from modified land use in a given region. 10 month-long runs have been performed from February to November for the period of 1991-2000 based on the NCEP re-analyses. The land use data have been taken from the GLCC dataset and the Corine Land Cover programme (http://dataservice.eea.europa.eu/, GIOS, Poland). Simulations taking into account land use modifications in the catchment are compared with the reference simulations under no change in land use in the region. In the second part of the paper we discuss the application of the RegCM3 model in two climate change scenarios (SRES A2 and B1). The study is a contribution to the LUWR programme (http://luwr.igf.edu.pl).

  14. Ge/Si Ratios Record the Impact of Forest Conversion to Cropland on Soil Chemical Weathering Processes and Solutes Export to Rivers

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Marino, Y.; Opfergelt, S.; Derry, L. A.; Robinet, J.; Delmelle, P.

    2016-12-01

    Soil weathering processes influence solute fluxes to rivers, playing a major role in global biogeochemical cycles. Land use change such as forest conversion to cropland enhances soil erosion, which mobilizes solutes and exposes new mineral surfaces to weathering processes, changing soil weathering degree. However, the impact of forest conversion to cropland on soil weathering degree and solute fluxes exported from soils to rivers remain poorly quantified. This study assesses the soil weathering degree and uses a geochemical tracer of weathering, Ge/Si ratio, to provide new insights on the impact of soil weathering processes under anthropogenic forcing on the transfer of solutes to rivers. A subtropical site was studied in Rio Grande do Sul (Brazil). This area is characterized by mean annual rainfall of 1800 mm, with strong rain events mobilizing high sediment load. A forested catchment is considered as the reference and compared to a catchment cultivated for the past 100 years (similar lithology and climate). Bedrock, soil, soil pore water and stream water (during base flow and rain events) samples were analysed for their chemical and mineralogical compositions and Ge/Si ratios (combined isotope dilution, HR-ICP-MS and hydride generation). Chemical and mineralogical analyses highlight that forest conversion to cropland decreases the soil weathering degree on steep slopes. Ge/Si ratios (μmol/mol) are comparable in bulk soils between the forested (2.33 ± 0.50) and the cultivated catchment (2.61 ± 0.62), but differ in soil pore waters between forest (0.47 ± 0.16) and culture (0.73 ± 0.15) indicating differences on soil weathering processes. The response of Ge/Si ratios in stream waters to a rain event differs between forest and culture, highlighting a larger contribution from soil pore waters to stream waters under culture. Altogether, our data support that land use history has an impact on the present day soil weathering processes and on the solute export to rivers.

  15. Simulating Lake-Groundwater Interactions During Decadal Climate Cycles: Accounting For Variable Lake Area In The Watershed

    NASA Astrophysics Data System (ADS)

    Virdi, M. L.; Lee, T. M.

    2009-12-01

    The volume and extent of a lake within the topo-bathymetry of a watershed can change substantially during wetter and drier climate cycles, altering the interaction of the lake with the groundwater flow system. Lake Starr and other seepage lakes in the permeable sandhills of central Florida are vulnerable to climate changes as they rely exclusively on rainfall and groundwater for inflows in a setting where annual rainfall and recharge vary widely. The groundwater inflow typically arrives from a small catchment area bordering the lake. The sinkhole origin of these lakes combined with groundwater pumping from underlying aquifers further complicate groundwater interactions. Understanding the lake-groundwater interactions and their effects on lake stage over multi-decadal climate cycles is needed to manage groundwater pumping and public expectation about future lake levels. The interdependence between climate, recharge, changing lake area and the groundwater catchment pose unique challenges to simulating lake-groundwater interactions. During the 10-year study period, Lake Starr stage fluctuated more than 13 feet and the lake surface area receded and expanded from 96 acres to 148 acres over drier and wetter years that included hurricanes, two El Nino events and a La Nina event. The recently developed Unsaturated Zone Flow (UZF1) and Lake (LAK7) packages for MODFLOW-2005 were used to simulate the changing lake sizes and the extent of the groundwater catchment contributing flow to the lake. The lake area was discretized to occupy the largest surface area at the highest observed stage and then allowed to change size. Lake cells convert to land cells and receive infiltration as receding lake area exposes the underlying unsaturated zone to rainfall and recharge. The unique model conceptualization also made it possible to capture the dynamic size of the groundwater catchment contributing to lake inflows, as the surface area and volume of the lake changed during the study period. Groundwater flows simulated using daily time steps over a 10-year period were used to describe the relationship between climate, the size of the groundwater catchment, and the relative importance of groundwater inflow to the lake water budget. Modeling approaches used in this study should be applicable to other surface-water bodies such as wetlands and playa lakes. Lake Starr watershed (depressions from sinkholes)

  16. Temporal change of SF6 age in spring during rainstorms in a forested headwater catchment, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Sato, Yutaro; Nagano, Kosuke

    2017-04-01

    Time variant water age in catchments can fundamentally describe catchment function, controlling rainfall-runoff generation, groundwater flow pathway, and water storage. We observed sulfur hexafluoride concentration in the stream and groundwater with 1 - 2 hours interval during rainstorm events in order to reveal temporal variations of rainfall-runoff water age. Target's spring is perennial in a forested headwater catchment with an area of 0.045 square km, Fukushima, Japan. The observed hydrological data and tracer data of water in the catchment (stable isotopic compositions, inorganic solute concentrations) were used for clarifying rainfall-runoff processes related to water age variances. The storm hydrograph and groundwater table clearly responded to rainfall especially with more than 30 mm per day throughout the monitoring period (May 2015 - October 2016). Large variations of SF6 age in spring ranging from zero to 14 years were found in the short period during rainstorms. In particular, the SF6 age in spring was evidently old when the runoff was over 2 mm per day. At the high runoff condition, the SF6 age in spring positively correlated with discharge rate: the spring age became older as the discharge rate increased. With regard to spatial distributions of SF6 age in groundwater, the old groundwater age (9 - 13 years) in the shallow subsurface area along the valley was confirmed after heavy rainfall. This groundwater age was similar age to the deep groundwater at no-rainfall conditions. In addition, inorganic solute concentrations such as chloride ion, sodium ion, and silica in spring water showed dominant levels in the deep and ridge groundwater. All facts suggest that the old groundwater, stored in the ridge or deeper subsurface area, replaced the shallow groundwater in the vicinity of the spring due to heavy rainfall, then it contributed to the spring discharge. Therefore, rainstorm events play important roles as triggers for discharging older water stored in the catchment, causing dynamic changes of groundwater flow system.

  17. Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment.

    PubMed

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2018-01-01

    A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hydro-economic modelling in mining catchments

    NASA Astrophysics Data System (ADS)

    Ossa Moreno, J. S.; McIntyre, N.; Rivera, D.; Smart, J. C. R.

    2017-12-01

    Hydro-economic models are gaining momentum because of their capacity to model both the physical processes related to water supply, and socio-economic factors determining water demand. This is particularly valuable in the midst of the large uncertainty upon future climate conditions and social trends. Agriculture, urban uses and environmental flows have received a lot of attention from researchers, as these tend to be the main consumers of water in most catchments. Mine water demand, although very important in several small and medium-sized catchments worldwide, has received less attention and only few models have attempted to reproduce its dynamics with other users. This paper describes an on-going project that addresses this gap, by developing a hydro-economic model in the upper Aconcagua River in Chile. This is a mountain catchment with large scale mining and hydro-power users at high altitudes, and irrigation areas in a downstream valley. Relevant obstacles to the model included the lack of input climate data, which is a common feature in several mining areas, the complex hydrological processes in the area and the difficulty of quantifying the value of water used by mines. A semi-distributed model developed within the Water Evaluation and Planning System (WEAP), was calibrated to reproduce water supply, and this was complemented with an analysis of the value of water for mining based on two methods; water markets and an analysis of its production processes. Agriculture and other users were included through methods commonly used in similar models. The outputs help understanding the value of water in the catchment, and its sensitivity to changes in climate variables, market prices, environmental regulations and changes in the production of minerals, crops and energy. The results of the project highlight the importance of merging hydrology and socio-economic calculations in mining regions, in order to better understand trade-offs and cost of opportunity of using water for an economic activity with high revenues, averse to water risks and with potentially large catchment impacts.

  19. GIS-based modeling of debris flow processes in an Alpine catchment, Antholz valley, Italy

    NASA Astrophysics Data System (ADS)

    Sandmeier, Christine; Damm, Bodo; Terhorst, Birgit

    2010-05-01

    Debris flows are frequent natural hazards in mountain regions, which seriously can threat human lives and economic values. In the European Alps the occurrence of debris flows might even increase with respect to climate change, including permafrost degradation, glacier retreat and variable precipitation patterns. Thus, detailed understanding of process parameters and spatial distribution of debris flows is necessary to take appropriate protection measures for risk assessment. In this context, numerical models have been developed and applied successfully for simulation and prediction of debris-flow hazards and related process areas. In our study a GIS-based model is applied in an alpine catchment to address the following questions: Where are potential initiating areas of debris flows? How much material can be mobilized? What is the influence of topography and precipitation? The study area is located in the Antholz valley in the eastern Alps of Northern Italy. The investigated catchment of the Klammbach creek comprises 6.5 km² and is divided into two sub-catchments. Geologically it is dominated by metamorphic rock and altitudes range between 1310 and 3270 m. In summer 2005 a debris flow of more than 100000 m³ took place, originating from a steep, sparsely vegetated debris cone in the western part of the catchment. According to a regional study, the lower permafrost boundary in this area has risen by 250 m. In a first step, during a field survey, geomorphological mapping was performed, several channel cross-sections were measured and sediment samples were taken. Using mapping results and aerial images, a geomorphological map was created. In further steps, results from the field work, the geomorphological map and existing digital data sets, including a digital elevation model with 2.5 m resolution, are used to derive input data for the modeling of debris flow processes. The model framework ‘r.debrisflow' based on GRASS GIS is applied (Mergili, 2008*), as it is capable of simulating the potential spatial patterns of debris flow deposition, as well as their initiation and movement. Furthermore it is a freely available and opensource software and can thus be improved and extended. ‘r.debrisflow' couples a hydraulic, a slope stability, a sediment transport and a debris flow runout model, which are combined differently in 6 simulation modes. In a first step, model parameters are calibrated using the runout only mode with known parameters of the 2005 debris flow. Finally, the full mode will be used to evaluate the debris-flow potential of the whole catchment. First results from the geomorphological mapping reveal numerous surface forms, like levees, debris flow lobes or scars that indicate past and recent debris flow activity in the area. In both sub-catchments, there are large areas of unconsolidated, sparsely or unvegetated sediments, surrounded by high rock walls, which conduct precipitation rapidly into the debris. The two sub-catchments, however, have different topographic characteristics, which can be analyzed with the model in more detail. In a next step, the potential starting areas of future debris flows shall be identified and the potential amount of mobilized material shall be estimated by the model. *Mergili, M. (2008): Integrated modelling of debris flows with Open Source GIS. Ph.D. thesis. University of Innsbruck. http://www.uibk.ac.at/geographie/personal/mergili/dissertation.pdf

  20. Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes

    NASA Astrophysics Data System (ADS)

    Simião-Ferreira, Juliana; Nogueira, Denis Silva; Santos, Anna Claudia; De Marco, Paulo; Angelini, Ronaldo

    2018-04-01

    The multiple scale of stream networks spatial organization reflects the hierarchical arrangement of streams habitats with increasingly levels of complexity from sub-catchments until entire hydrographic basins. Through these multiple spatial scales, local stream habitats form nested subsets of increasingly landscape scale and habitat size with varying contributions of both alpha and beta diversity for the regional diversity. Here, we aimed to test the relative importance of multiple nested hierarchical levels of spatial scales while determining alpha and beta diversity of caddisflies in regions with different levels of landscape degradation in a core Cerrado area in Brazil. We used quantitative environmental variables to test the hypothesis that landscape homogenization affects the contribution of alpha and beta diversity of caddisflies to regional diversity. We found that the contribution of alpha and beta diversity for gamma diversity varied according to landscape degradation. Sub-catchments with more intense agriculture had lower diversity at multiple levels, markedly alpha and beta diversities. We have also found that environmental predictors mainly associated with water quality, channel size, and habitat integrity (lower scores indicate stream degradation) were related to community dissimilarity at the catchment scale. For an effective management of the headwater biodiversity of caddisfly, towards the conservation of these catchments, heterogeneous streams with more pristine riparian vegetation found within the river basin need to be preserved in protected areas. Additionally, in the most degraded areas the restoration of riparian vegetation and size increase of protected areas will be needed to accomplish such effort.

  1. Insights from a Systematic Search for Information on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveillance Systems.

    PubMed

    Duintjer Tebbens, Radboud J; Zimmermann, Marita; Pallansch, Mark A; Thompson, Kimberly M

    2017-12-01

    Poliovirus surveillance plays a critical role in achieving and certifying eradication and will play a key role in the polio endgame. Environmental surveillance can provide an opportunity to detect circulating polioviruses prior to the observation of any acute flaccid paralysis cases. We completed a systematic review of peer-reviewed publications on environmental surveillance for polio including the search terms "environmental surveillance" or "sewage," and "polio," "poliovirus," or "poliomyelitis," and compared characteristics of the resulting studies. The review included 146 studies representing 101 environmental surveillance activities from 48 countries published between 1975 and 2016. Studies reported taking samples from sewage treatment facilities, surface waters, and various other environmental sources, although they generally did not present sufficient details to thoroughly evaluate the sewage systems and catchment areas. When reported, catchment areas varied from 50 to over 7.3 million people (median of 500,000 for the 25% of activities that reported catchment areas, notably with 60% of the studies not reporting this information and 16% reporting insufficient information to estimate the catchment area population size). While numerous studies reported the ability of environmental surveillance to detect polioviruses in the absence of clinical cases, the review revealed very limited information about the costs and limited information to support quantitative population effectiveness of conducting environmental surveillance. This review motivates future studies to better characterize poliovirus environmental surveillance systems and the potential value of information that they may provide in the polio endgame.

  2. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

    NASA Astrophysics Data System (ADS)

    Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik

    2013-04-01

    SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.

  3. Spatiotemporal variability of water and energy fluxes: TERENO- prealpine hydrometeorological data analysis and inverse modeling with GEOtop and PEST

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Kunstmann, H.; Laux, P.; Mauder, M.

    2016-12-01

    In mountainous and prealpine regions echohydrological processes exhibit rapid changes within short distances due to the complex orography and strong elevation gradients. Water- and energy fluxes between the land surface and the atmosphere are crucial drivers for nearly all ecosystem processes. The aim of this research is to analyze the variability of surface water- and energy fluxes by both comprehensive observational hydrometeorological data analysis and process-based high resolution hydrological modeling for a mountainous and prealpine region in Germany. We particularly focus on the closure of the observed energy balance and on the added value of energy flux observations for parameter estimation in our hydrological model (GEOtop) by inverse modeling using PEST. Our study area is the catchment of the river Rott (55 km2), being part of the TERENO prealpine observatory in Southern Germany, and we focus particularly on the observations during the summer episode May to July 2013. We present the coupling of GEOtop and the parameter estimation tool PEST, which is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. Estimation of the surface energy partitioning during the data analysis process revealed that the latent heat flux was considered as the main consumer of available energy. The relative imbalance was largest during nocturnal periods. An energy imbalance was observed at the eddy-covariance site Fendt due to either underestimated turbulent fluxes or overestimated available energy. The calculation of the simulated energy and water balances for the entire catchment indicated that 78% of net radiation leaves the catchment as latent heat flux, 17% as sensible heat, and 5% enters the soil in the form of soil heat flux. 45% of the catchment aggregated precipitation leaves the catchment as discharge and 55% as evaporation. Using the developed GEOtop-PEST interface, the hydrological model is calibrated by comparing simulated and observed discharge, soil moisture and -temperature, sensible-, latent-, and soil heat fluxes. A reasonable quality of fit could be achieved. Uncertainty- and covariance analyses are performed, allowing the derivation of confidence intervals for all estimated parameters.

  4. An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Pe rsian Gulf and Oman Sea

    NASA Astrophysics Data System (ADS)

    Mafi-Gholami, Davood; Mahmoudi, Beytollah; Zenner, Eric K.

    2017-12-01

    Relating the changes of mangrove forests to spatially explicit reductions in rainfall amounts and increases in drought occurrences is a prerequisite for improving the effectiveness and success of mangrove forest conservation programs. To this end, we investigated the relationship between drought events (quantified using the Standardized Precipitation Index [SPI]) and changes in area and canopy cover of mangrove forests on the northern coast of the Persian Gulf and the Oman Sea using satellite imagery and long-term annual rainfall data over a period of 30 years (1986-2016). Statistical analyses revealed 1998 as the year marking the most significant change-point in the mean annual rainfall values in the catchments and mangroves, after which average SPI values consistently remained at lower levels. In the period of 1998-2016, decreases in the mean annual rainfall and increases in the severity of droughts differed spatially and were greater in the catchments and mangroves on the coasts of the Oman Sea than the coasts of the Persian Gulf. These spatially explicit results were closely mirrored by the mangrove response, with differential in reductions in mangrove areas and canopy cover that corresponded closely with the spatial distribution of drought intensities in the different parts of the coasts, with correlation coefficients ≥0.89 for the different coastal regions.

  5. Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area)

    NASA Astrophysics Data System (ADS)

    Marko, K.; Zulkarnain, F.; Kusratmoko, E.

    2016-11-01

    Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.

  6. Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Tweed, Sarah O.; Leblanc, Marc; Webb, John A.; Lubczynski, Maciek W.

    2007-02-01

    Identifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface-water and groundwater resource management, and ecosystem protection. In this study, a synergistic approach has been developed, which applies a combination of remote sensing and geographic information system (GIS) techniques to map groundwater recharge and discharge areas. This approach is applied to an unconfined basalt aquifer, in a salinity and drought prone region of southeastern Australia. The basalt aquifer covers ~11,500 km2 in an agriculturally intensive region. A review of local hydrogeological processes allowed a series of surface and subsurface indicators of groundwater recharge and discharge areas to be established. Various remote sensing and GIS techniques were then used to map these surface indicators including: terrain analysis, monitoring of vegetation activity, and mapping of infiltration capacity. All regions where groundwater is not discharging to the surface were considered potential recharge areas. This approach, applied systematically across a catchment, provides a framework for mapping recharge and discharge areas. A key component in assigning surface and subsurface indicators is the relevance to the dominant recharge and discharge processes occurring and the use of appropriate remote sensing and GIS techniques with the capacity to identify these processes.

  7. Groundwater Variability in a Sandstone Catchment and Linkages with Large-scale Climatic Circulatio

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Lavers, D. A.; Bradley, C.

    2015-12-01

    Groundwater is a crucial water resource that sustains river ecosystems and provides public water supply. Furthermore, during periods of prolonged high rainfall, groundwater-dominated catchments can be subject to protracted flooding. Climate change and associated projected increases in the frequency and intensity of hydrological extremes have implications for groundwater levels. This study builds on previous research undertaken on a Chalk catchment by investigating groundwater variability in a UK sandstone catchment: the Tern in Shropshire. In contrast to the Chalk, sandstone is characterised by a more lagged response to precipitation inputs; and, as such, it is important to determine the groundwater behaviour and its links with the large-scale climatic circulation to improve process understanding of recharge, groundwater level and river flow responses to hydroclimatological drivers. Precipitation, river discharge and groundwater levels for borehole sites in the Tern basin over 1974-2010 are analysed as the target variables; and we use monthly gridded reanalysis data from the Twentieth Century Reanalysis Project (20CR). First, groundwater variability is evaluated and associations with precipitation / discharge are explored using monthly concurrent and lagged correlation analyses. Second, gridded 20CR reanalysis data are used in composite and correlation analyses to identify the regions of strongest climate-groundwater association. Results show that reasonably strong climate-groundwater connections exist in the Tern basin, with a several months lag. These lags are associated primarily with the time taken for recharge waters to percolate through to the groundwater table. The uncovered patterns improve knowledge of large-scale climate forcing of groundwater variability and may provide a basis to inform seasonal prediction of groundwater levels, which would be useful for strategic water resource planning.

  8. The hydrological modeling in terms of determining the potential European beaver effect

    NASA Astrophysics Data System (ADS)

    Szostak, Marta; Jagodzińska, Jadwiga

    2017-06-01

    The objective of the paper was the hydrological analysis, in terms of categorizing main watercourses (based on coupled catchments) and marking areas covered by potential impact of the occurrence and activities of the European beaver Castor fiber. At the analysed area - the Forest District Głogów Małopolski there is a population of about 200 beavers in that Forest District. Damage inflicted by beavers was detected on 33.0 ha of the Forest District, while in the area of 13.9 ha the damage was small (below 10%). The monitoring of the beavers' behaviour and the analysis of their influence on hydrology of the area became an important element of using geoinformationtools in the management of forest areas. ArcHydro ArcGIS Esri module was applied, as an integrated set of tools for hydrographical analysis and modelling. Further steps of the procedure are hydrologic analyses such as: marking river networks on the DTM, filling holes, making maps of the flow direction, making the map of the accumulation flow, defining and segmentation of streams, marking elementary basins, marking coupled basins, making dams in the places, where beavers occur and localization of the area with a visible impact of damming. The result of the study includes maps prepared for the Forest District: the map of main rivers and their basins, categories of watercourses and compartments particularly threatened by beaver's foraging.

  9. A dual stable-isotope approach to analyse the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Cayuela, Carles; Sánchez-Costa, Elisenda; Gallart, Francesc; Latron, Jérôme

    2017-04-01

    This work uses a dual isotope-based approach (18O, 2H) to examine the mixing of water in the soil and the linkages between tree water fluxes and soil water pools in a Mediterranean mountain catchment (Vallcebre Research Catchments, NE Spain, 42° 12'N, 1° 49'E). Since May 2015, water-isotopes have been monitored in rainfall, throughfall and stemflow below a Scots pine stand and in stream water at the Can Vila (0.56 km2) catchment outlet. Moreover, fortnightly (From May to December 2015) soil samples (10, 20, 30, 50 and 100 cm), xylem samples (3 Scots pines) and mobile soil water samples in low-suction lysimeters (20, 50 and 100 cm) and in a piezometer (150-300 cm deep) were collected at the same stand. Water from soil and xylem samples was extracted by cryogenic vacuum distillation and isotope analyses were obtained by infrared spectroscopy. All this information has been combined with continuous measurement of meteorological, soil moisture and water potential, piezometric levels and hydrological variables at the stand and catchment scales. Stable isotopes ratios of bound soil water fell below the local meteoric water line (LMWL), with more evaporative enrichment in the shallow horizons. On the contrary, mobile soil water (low suction lysimeters) and groundwater fell along the LMWL, well mixed with stream water. The differences observed between these two water pools remained similar during the whole study period. Stable isotopes ratios indicate that Scots pine trees use shallow bound soil water during the whole study period. No marked changes in depth of water uptake were observed, presumably due to the availability of water in the shallow horizons, even during the summer months.

  10. Looking beyond general metrics for model comparison - lessons from an international model intercomparison study

    NASA Astrophysics Data System (ADS)

    de Boer-Euser, Tanja; Bouaziz, Laurène; De Niel, Jan; Brauer, Claudia; Dewals, Benjamin; Drogue, Gilles; Fenicia, Fabrizio; Grelier, Benjamin; Nossent, Jiri; Pereira, Fernando; Savenije, Hubert; Thirel, Guillaume; Willems, Patrick

    2017-01-01

    International collaboration between research institutes and universities is a promising way to reach consensus on hydrological model development. Although model comparison studies are very valuable for international cooperation, they do often not lead to very clear new insights regarding the relevance of the modelled processes. We hypothesise that this is partly caused by model complexity and the comparison methods used, which focus too much on a good overall performance instead of focusing on a variety of specific events. In this study, we use an approach that focuses on the evaluation of specific events and characteristics. Eight international research groups calibrated their hourly model on the Ourthe catchment in Belgium and carried out a validation in time for the Ourthe catchment and a validation in space for nested and neighbouring catchments. The same protocol was followed for each model and an ensemble of best-performing parameter sets was selected. Although the models showed similar performances based on general metrics (i.e. the Nash-Sutcliffe efficiency), clear differences could be observed for specific events. We analysed the hydrographs of these specific events and conducted three types of statistical analyses on the entire time series: cumulative discharges, empirical extreme value distribution of the peak flows and flow duration curves for low flows. The results illustrate the relevance of including a very quick flow reservoir preceding the root zone storage to model peaks during low flows and including a slow reservoir in parallel with the fast reservoir to model the recession for the studied catchments. This intercomparison enhanced the understanding of the hydrological functioning of the catchment, in particular for low flows, and enabled to identify present knowledge gaps for other parts of the hydrograph. Above all, it helped to evaluate each model against a set of alternative models.

  11. Where to locate a tree plantation within a low rainfall catchment to minimise impacts on groundwater resources

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; Webb, J. A.; Jacobsen, G. E.; Chisari, R.; Dresel, P. E.

    2014-08-01

    Despite the fact that there are many studies that consider the impacts of plantation forestry on water resources, and others that explore the spatial heterogeneity of groundwater recharge in dry regions, there is little marriage of the two subjects in forestry management guidelines and legislation. Here we carry out an in-depth analysis of the groundwater and surface water regime in a low rainfall, high evapotranspiration paired catchment study to examine the impact of reforestation, using water table fluctuations and chloride mass balance methods to estimate groundwater recharge. Recharge estimations using the chloride mass balance method were shown to be more likely representative of groundwater recharge regimes prior to the planting of the trees, and most likely prior to widespread land clearance by European settlers. These estimations were complicated by large amounts of recharge occurring as a result of runoff and streamflow in the lower parts of the catchment. Water table fluctuation method estimations of recharge verified that groundwater recharge occurs predominantly in the lowland areas of the study catchment. This leads to the conclusion that spatial variations in recharge are important considerations for locating tree plantations with respect to conserving water resources for downstream users. For dry regions, this means planting trees in the upland parts of the catchments, as recharge is shown to occur predominantly in the lowland areas.

  12. Controls of sediment transfers, sedimentary budgets and relief development in cold environments: Results from four catchment systems in Iceland, Swedish Lapland and Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.

    2012-04-01

    By the combined, longer-term and quantitative recording of relevant denudative slope processes and stream work in four selected catchment systems in sub-arctic oceanic Eastern Iceland (Hrafndalur and Austdalur), arctic-oceanic Swedish Lapland (Latnjavagge) and sub-arctic oceanic Finnish Lapland (Kidisjoki), information on the absolute and relative importance of the different denudative processes is collected. Direct comparison of the four catchment geo-systems (the catchment sizes range from 7 km2 to 23 km2) allows conclusions on major controls of sediment transfers, sedimentary budgets and relief development in theses cold climate environments. To allow direct comparison of the different processes, all mass transfers are calculated as tonnes multiplied by meter per year, i.e. as the product of the annually transferred mass and the corresponding transport distance. Ranking the different processes according to their annual mass transfers shows that stream work dominates over slope denudation. For Hrafndalur (Eastern Iceland) the following order of denudative processes is found after nine years of process studies (2001 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Creep processes, (7) Avalanches, (8) Debris flows, (9) Translation slides, (10) Deflation. Compared to that, in Austdalur the following ranking is given after fourten years of process studies (1996 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Mechanical fluvial slope denudation (slope wash), (4) Chemical slope denudation, (5) Avalanches, (6) Rock falls plus boulder falls, (7) Creep processes, (8) Debris flows, (9) Deflation, (10) Translation slides. In the Latnjavagge catchment (Swedish Lapland) the ranking is (eleven-years period of studies, 1999 - 2010): (1) Fluvial solute transport, (2) Fluvial suspended sediment plus bedload transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Avalanches, (7) Creep processes and solifluction, (8) Slush flows, (9) Debris flows, (10) Translation slides, (11) Deflation. In Kidisjoki (Finnish Lapland) the order of processes, as determined after a nine-years period (2001 - 2010) of geomorphic process studies, is: (1) Fluvial solute transport, (2) Chemical slope denudation, (3) Fluvial suspended sediment plus bedload transport, (4) Mechanical fluvial slope denudation, (5) Creep processes, (6) Avalanches and slush flows, (7) Debris flows and slides, (8) Rock and boulder falls, (9) Deflation. As a result, in all four selected cold climate study areas the intensity of contemporary denudative processes and mass transfers is altogether rather low, which is in opposition to the earlier postulated oppinion of a generally high intensity of geomorphic processes in cold climate environments. A direct comparison of the annual mass transfers summarises that there are differences between process intensities and the relative importance of different denudative processes within the four study areas. The major controls of these detected differences are: (i) Climate: The higher annual precipitation along with the larger number of extreme rainfall events and the higher frequency of snowmelt and rainfall generated peak runoff events in Eastern Iceland as compared to Swedish Lapland and Finnish Lapland lead to higher mass transfers, (ii) Lithology: The low resistance of rhyolites in Hrafndalur causes especially high weathering rates and connected mass transfers in this catchment. Due to the lower resistance of the rhyolites as compared to the basalts found in Austdalur Postglacial modification of the glacially formed relief is clearly further advanced in Hrafndalur as compared to Austdalur, (iii) Relief: The greater steepness of the Icelandic catchments leads to higher mass transfers here as compared to Latnjavagge and Kidisjoki, (iv) Vegetation cover: The significant disturbance of the vegetation cover by human impacts in Easter Iceland causes higher mass transfers (slope wash) whereas restricted sediment availability is a main reason for lower mass transfers in Swedish Lapland and Finnish Lapland. The applied catchment-based approach seems to be effective for analysing sediment budgets and trends of Postglacial relief development in selected study areas with given environmental settings. Direct comparison of investigated catchments will improve possibilities to model relief development as well as possible effects of projected climate change in cold climate environments.

  13. Lessons learned for applying a paired-catchment approach in drought analysis

    NASA Astrophysics Data System (ADS)

    Van Loon, Anne; Rangecroft, Sally; Coxon, Gemma; Agustín Breña Naranjo, José; Van Ogtrop, Floris; Croghan, Danny; Van Lanen, Henny

    2017-04-01

    Ongoing research is looking to quantify the human impact on hydrological drought using observed data. One potentially suitable method is the paired-catchment approach. Paired catchments have been successfully used for quantifying the impact of human actions (e.g. forest treatment and wildfires) on various components of a catchment's water balance. However, it is unclear whether this method could successfully be applied to drought. In this study, we used a paired-catchment approach to quantify the effects of reservoirs, groundwater abstraction and urbanisation on hydrological drought in the UK, Mexico, and Australia. Following recommendations in literature, we undertook a thorough catchment selection and identified catchments of similar size, climate, geology, and topography. One catchment of the pair was affected by either reservoirs, groundwater abstraction or urbanisation. For the selected catchment pairs, we standardised streamflow time series to catchment area, calculated a drought threshold from the natural catchment and applied it to the human-influenced catchment. The underlying assumption being that the differences in drought severity between catchments can then be attributed to the anthropogenic activity. In some catchments we had local knowledge about human influences, and therefore we could compare our paired-catchment results with hydrological model scenarios. However, we experienced that detailed data on human influences usually are not well recorded. The results showed us that it is important to account for variation in average annual precipitation between the paired catchments to be able to transfer the drought threshold of the natural catchment to the human-influenced catchment. This can be achieved by scaling the discharge by the difference in annual average precipitation. We also found that the temporal distribution of precipitation is important, because if meteorological droughts differ between the paired catchments, this may mask changes caused by human activities. This issue can generally be overcome by selecting adjacent or nearby catchments. Finally, we found that geology is much more important for paired-catchment analysis of drought than we anticipated based upon the experiences in flood research. For example, in two of the UK pairs, we could not use the results due to differences in geology overruling the human influence. We learned that in the selection of catchments for drought analysis, (hydro)geology should be considered in even more detail. Taking these aspects into account, we concluded that the paired-catchment approach works for evaluating the effects of reservoirs and groundwater abstraction on streamflow drought, but is more challenging for urbanisation. The reasons are more problems in catchment selection, lack of results, and complexity of processes making attribution more difficult. Urbanisation is not a simple land cover change influencing only infiltration and runoff, but it involves all kinds of indirect effects, such as artificial inputs (drainage, sewage return flows) that are very important during low flow periods. For this we would suggest starting in small, well-measured urban catchments, of which all artificial inputs are known. We believe that with the careful selection criteria and accounting for variations in climate and landscape, there is scope for using a paired-catchment approach in hydrological drought research.

  14. Identifying fine sediment sources to alleviate flood risk caused by fine sediments through catchment connectivity analysis

    NASA Astrophysics Data System (ADS)

    Twohig, Sarah; Pattison, Ian; Sander, Graham

    2017-04-01

    Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been subjected to field validation as part of a wider research project which provides an indication of the robustness of widespread models as effective management tools.

  15. On the forecast of runoff based on the harmonic analysis of time series of precipitation in the catchment area

    NASA Astrophysics Data System (ADS)

    Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.

    2018-01-01

    It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.

  16. Where does boreal stream DOC come from? - Quantifying the contribution from different landscape compartments using stable C isotope ratios.

    NASA Astrophysics Data System (ADS)

    Brink Bylund, J.; Bastviken, D.; Morth, C.; Laudon, H.; Giesler, R.; Buffam, I.

    2007-12-01

    Stable carbon isotope (δ13C) ratios are frequently used as a source tracer of e.g. organic matter (OM) produced in terrestrial versus aquatic environments. To our knowledge there has been no previous attempt to quantify the relative contribution of dissolved organic carbon (DOC) from various landscape compartments in catchments of different sizes. Here, we test to what extent δ13C values can be used also to quantify the relative contribution of DOC from wetlands/riparian zones along streams, and off stream forest habitats, respectively. We present data on spatial and temporal variability of DOC concentrations and δ13C-DOC values, during the year of 2005 in Krycklan catchment, a boreal stream network in northern Sweden. Ten stream sites, ranging from order 1 to 4, were monitored in sub catchments with different wetland coverage. Spatial variation of DOC concentration showed a weak but statistically significant relationship with wetland area, with higher concentration with increasing percent of wetland in the drainage area. During base flow the difference in δ13C-DOC values was significantly different between forest (-27.5‰) and wetland (-28.1‰). This spatial pattern disappears during spring peak flow when higher discharge flushing upper soil layer and the riparian zone on DOC in the catchments. A simple mixing model using DOC and δ13C-DOC showed that stream water DOC could be describe as a mixture of DOC coming from forest (deep) groundwater and wetland/riparian zone water. The result indicates that during spring peak flow almost all stream DOC (84-100%) is derived from wetlands and riparian zones. The wetland/riparian water dominates the stream DOC flux at all hydrological events, except for two sites, one forest dominated and one mixed catchment, where the forest groundwater dominated the DOC transport during base flow. Although the total wetland area in Krycklan catchment only represent 8.3%, it contributed, together with riparian zones, to as much as 83% of the yearly DOC transport. This study shows that there is a great potential in using stable carbon isotopes to quantify the relative contribution of DOC from various landscape compartments in catchments. Quantitative patterns are crucial for several reasons. It is for example necessary in predicting the response to global warming which will result in a changed hydrology and shifts in the relative area of the landscape compartments in boreal environments. KEY WORDS carbon isotopes; dissolved organic carbon; streams; boreal; landscape compartments; wetland; groundwater

  17. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    The analysis of the slope-area relationship in bedrock streams is a common way for discriminating the channel from the hillslope domain and associated landscape processes. Spatial variations of these domains are important indicators of landscape change. In fluvial catchments, this relationship is a function of contributing drainage area, channel slope and the threshold drainage area for fluvial erosion. The resulting pattern is related to climate, tectonic and underlying bedrock. These factors may become secondary in catchments affected by glacial erosion, as it is the case in many mid- to high-latitude mountain belts. The perturbation (i.e. the destruction) of an initial steady state fluvial bedrock morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. Topographic change is associated with a decrease and fragmentation of the channel network and an extension of the hillslope domain. In case of glacially conditioned catchments discrimination of the two domains remains problematic and a discrimination inconsistent. A definition is therefore highly needed considering that (i) a spatial shift in the domains affect the process and rate of erosion and (ii) topographic classifications of alpine catchments often base on channel and hillslope parameters (i.e.channel or hillslope relief). Here we propose a novel numerical approach to topographically define channel heads from digital topography in glacially conditioned mountain range catchments in order to discriminate the channel from the hillslope domain. We analyzed the topography of the southern European Central Alps, a region which (i) has been glaciated multiple times during the Quaternary, shows (ii) little lithological variations, is (iii) home of very low erodible rocks and is (iv) known as a region were tectonic processes have largely ceased. The region shows a distinct increase of mean elevation from the major overdeepend valleys near the Foreland to the alpine main divide at around 4000 m.a.s.l. within a distance of only 150 km. To define channel heads we first analyzed the variations to fine-scale topography of catchments by calculating the plan curvature at low topographic wavelengths. Higher elevated catchments more frequently impacted by glacial erosion show a higher degree in topographic flattening than catchments with a lower mean elevation where rougher fluvial (steady state) channels dominate. We found that this process of glacial destruction of fine-scale topography can well be analyzed by extracting the plan curvature from a DEM (1-30 m resolution). We furthermore found that the plan curvature frequency depends on the mean elevation of a catchment. Accordingly, the correlation between mean elevation of basins and the related density of pixels with a certain curvature is highly controlled by the used curvature threshold (e.g. used range of curvature pixels). A statistically derived optimum of the negative plan curvature was taken to define a threshold for the concavity of channels. The resulting fragmented network of channel segments was then fully integrated by utilizing a steepest descent algorithm. The upstream-most point of this fully integrated network was then defined as channel head. Our approach offers not only a consistent method to derive (i) hillslope and channel parameters in formerly glaciated catchments but also to (ii) measure the degree in glacial conditioning and therefore (iii) separating non-glacial from glacial catchments.

  18. Post-accidental riverine dispersion of sediments contaminated by radionuclides: confrontation of lessons learnt from Chernobyl and Fukushima case studies in catchments from Russia (1986-2009) and Japan (2011-2012)

    NASA Astrophysics Data System (ADS)

    Evrard, Olivier; Belyaev, Vladimir; Onda, Yuichi; Chartin, Caroline; Patin, Jeremy; Lefèvre, Irène; Ayrault, Sophie; Ivanova, Nadezda; Bonté, Philippe; Golosov, Valentin

    2013-04-01

    Chernobyl (1986) and Fukushima (2011) nuclear power plant accidents led to the release of important quantities of radionuclides (e.g., Cs-134; Cs-137) into the environment, and to the formation of severe contamination plumes (with initial Cs-137 activities exceeding typically 400 kBq m-2) on soils of the regions exposed to the radioactive fallout. This leads to important consequences for agriculture in strongly contaminated areas where the most affected fields should not be cultivated anymore during long periods of time, depending on the half life of the emitted radionuclides. Furthermore, sediment transfer in rivers can lead to the dispersion of radioactive contamination into larger areas over time. In this paper, we propose a methodology to trace and model radioactive contamination in river catchments over the short (2 yrs) and the longer term (25 yr) after major nuclear power plant accidents. This methodology is established and confronted to two case studies. The most recent study was conducted in the coastal catchments of the Rivers Nitta, Mano and Ota (ca. 600 km²) draining the main part of the radioactive pollution plume that deposited across Fukushima Prefecture. Three field campaigns were conducted to sample riverbed sediment along those rivers after the summer typhoons and the spring snowmelt (i.e., in Nov 2011, April 2012 and Nov 2012). Based on their analysis in gamma spectrometry, we show the rapid dispersion of the inland contamination and its progressive export by coastal rivers to the Pacific Ocean. This is confirmed by measurements of the Ag-110m: Cs-137 ratio. Analysis of sediment sequences that accumulated in reservoirs of the region provides additional information on the magnitude on sediment transfers in those areas. This rapid dispersion of radioactive contamination in Japan is confronted to lessons learnt from a case study conducted in the Plava River catchment (ca. 2000 km²) located in the so-called "Plavsk contamination hotspot", in western Russia. We used the Landsoil expert-based erosion model, 137Cs inventory profiles and alluvial sediment core analyses to understand and quantify contaminated sediment transfer across the cultivated catchment since 1986. Our results show that soil redistribution in the fields was dominant, and that sediment eroded from cropland mostly re-deposited in dry valleys during the heaviest storms. Overall, only 15 to 25% of material eroded from the hillslopes was delivered to the river valleys. Accumulation of contaminated sediment in dry valley systems therefore constitutes a major problem 25 years after Chernobyl accident. In conclusion, we show how the experience acquired after the Chernobyl accident contributed to facilitate the urgent analysis of sediment transfers across Fukushima Prefecture, where the possible measurement of relatively short-lived radionuclides (Ag-110m, Cs-134) provided a way to conduct a rapid quantitative assessment of contaminated sediment sources and exports.

  19. Climate-driven trends in the occurrence of major floods across North America and Europe

    NASA Astrophysics Data System (ADS)

    Hodgkins, Glenn A.; Whitfield, Paul H.; Burn, Donald H.; Hannaford, Jamie; Renard, Benjamin; Stahl, Kerstin; Fleig, Anne K.; Madsen, Henrik; Mediero, Luis; Korhonen, Johanna; Murphy, Conor; Crochet, Philippe; Wilson, Donna

    2016-04-01

    Every year river floods cause enormous damage around the world. Recent major floods in North America and Europe, for example, have received much press, with some concluding that these floods are more frequent in recent years as a result of anthropogenic warming. There has been considerable scientific effort invested in establishing whether observed flood records show evidence of trends or variability in flood frequency, and to determine whether these patterns can be linked to climatic changes. However, the river catchments used in many published studies are influenced by direct human alteration such as reservoir regulation and urbanisation, which can confound the interpretation of climate-driven variability. Furthermore, a majority of previous studies have analysed changes in low magnitude floods, such as the annual peak flow, at a national scale. Few studies are known that have analysed changes in large floods (greater than 25-year floods) on a continental scale. To fill this research gap, we present a study analysing flood flows from reference hydrologic networks (RHNs) or RHN-like gauges across a large study domain embracing North America and much of Europe. RHNs comprise gauging stations with minimally disturbed catchment conditions, which have a near-natural flow regime and provide good quality data; RHN analyses thus allow hydro-climatic variability to be distinguished from direct artificial disturbances or data inhomogeneities. One of the key innovations in this study is the definition of an RHN-like network consisting of 1204 catchments on a continental scale. The network incorporates existing, well-established RHNs in Canada, the US, the UK, Ireland and Norway, alongside RHN-like catchments from Europe (France, Switzerland, Iceland, Denmark, Sweden, Finland, Spain), which have been incorporated in the network following a major effort to ensure RHN-like status of candidate gauges through consultation with local experts. As the aim of the study is to examine long-term variability in the number of major floods, annual exceedances of 25-, 50-, and 100-year floods during the last 50 - 80 years are estimated for all study gauges across North America and Europe, and for smaller groups of gauges defined by catchment size, location, climate, flood threshold, and period of record. Trends are computed using logistic regression techniques, supported by a suite of methods used to test the assumptions used in the analysis. We also analyse relationships between major flood occurrence and atmosphere/ocean indices (the AMO, NAO, PDO and SOI). Our analysis finds no compelling evidence for consistent changes over time in major-flood occurrence across North America and Europe, indicating that generalizations about major-flood occurrence trends across large domains or a diversity of catchment types are ungrounded. There are in fact more significant relationships between major-flood occurrence and the AMO than between flood occurrence and time. Flood occurrence overall (based on data from all 1204 gauges in our study) increased from 1961 to 2010 but not significantly, driven primarily by European increases. Non-significant increases were also found overall from 1931 to 2010 (322 gauges) but driven primarily by North American increases. Flood occurrence increased and decreased (including some significant changes) for the various sub-groups of gauges. Overall this study demonstrates that past changes in major-flood occurrence are highly complex and future changes will be likewise. International hydrologic networks containing minimally altered catchments will play a key role in understanding these complexities.

  20. Topographic Controls on Hillslope-Riparian Water Table Continuity in a set of Nested Catchments, Northern Rocky Mountains, Montana

    NASA Astrophysics Data System (ADS)

    Jencso, K. G.; McGlynn, B. L.; Gooseff, M. N.; Wondzell, S. M.; Bencala, K. E.; Payn, R. A.

    2007-12-01

    Understanding how hillslope and riparian water table dynamics influence catchment scale hydrologic response remains a challenge. In steep headwater catchments with shallow soils, topographic convergence and divergence (upslope accumulated area-UAA) is a hypothesized first-order control on the distribution of soil water and groundwater. To test the relationship between UAA and the longevity of hillslope-riparian-stream shallow groundwater connectivity, we quantified water table continuity based on 80+ recording wells distributed across 24 hillslope-riparian-stream cross-sections. Cross-section upstream catchment areas ranged in size from 0.41 to 17.2 km2, within the Tenderfoot Creek Experimental Forest (U.S. Forest Service), northern Rocky Mountains, Montana, USA. We quantified toe-slope UAA and the topographic index (TI = ln a/tanβ) with a Multiple-D- Infinity (area routing in multiple infinite downslope directions) flow accumulation algorithm analysis of 1, 3, 10, and 30m ALSM derived DEMs. Indices derived from the 10m DEM best characterized subsurface flow accumulation, highlighting the balance between the process of interest, topographic complexity, and optimal grid scale representation. Across the 24 transects, toe-slope UAA ranged from 600-40,000 m2, the TI ranged from 5-16, and riparian widths were between 0-60m. Patterns in shallow groundwater table fluctuations suggest hydrologic dynamics reflective of hillslope-riparian landscape setting. Specifically, correlations were observed between longevity of hillslope-riparian water table continuity and the size of the UAA (r2=0.84) and its topographic index (r2=.86). These observations highlight the temporal component of topographic-hydrologic relationships important for understanding threshold mediated hydrologic variables. We are working to quantify the characteristics and spatial distribution of hillslope-riparian sequences and their water table dynamics to temporally link runoff source areas to whole catchment hydrologic response.

  1. Hydrological regime shift in a constructed catchment: Effect of vegetation encroachment on surface runoff

    NASA Astrophysics Data System (ADS)

    Hinz, C.; Caviedes-Voullieme, D.; Andezhath Mohanan, A.; Brueck, Y.; Zaplata, M.

    2017-12-01

    The Hühnerwasser catchment (Chicken Creek) was constructed to provide discharge for a small stream in the post-mining landscape of Lusatia, Germany. It has an area of 6 ha and quaternary sands with a thickness of 2-4 m were dumped on to a clay liner to prevent deep drainage. After completion of the construction the catchment was left to develop on its own without intervention and has been monitored since 2005. The upper part of the catchment discharges water and sediment into the lower part forming an alluvial fan. Below the alluvial fan is a pond receiving all surface and subsurface water from the upper catchment. After the formation of the drainage network vegetation started growing and surface runoff decreased until the water balance was dominated by evapotranspiration. This regime shift and the rate at which it happened depends on the vegetation encroachment into the rills and the interrill areas. Based on the hypothesis that vegetation will increase surface roughness and infiltration behavior, aerial photos were used to map rills and vegetation within and outside the rills for the last 10 years to obtain a time series of change. Observational evidence clearly shows that vegetation encroaches from the bottom, from the interrill areas as well as from the top. The rills themselves did not change their topology, however, the width of the erosion rills and gully increased at the bottom. For a subcatchment area a high resolution a physical based numerical model of overland flow was developed to explicitly assess the importance of increasing roughness and infiltration capacity for surface runoff. For the purpose of analyzing the effect of rainfall variability a rainfall generator was developed to carry out large sets of simulations. The simulations provide a means to assess how the roughness/infiltration feedback affects the rate of regime shift for a set of parameters that are consistent with the observed hydrological behavior of the drainage network.

  2. Development of a large-sample catchment-scale hydro-meteorological, land cover and physical dataset for Chile

    NASA Astrophysics Data System (ADS)

    Alvarez-Garreton, C. D.; Mendoza, P. A.; Zambrano-Bigiarini, M.; Galleguillos, M. H.; Boisier, J. P.; Lara, A.; Cortés, G.; Garreaud, R.; McPhee, J. P.; Addor, N.; Puelma, C.

    2017-12-01

    We provide the first catchment-based hydrometeorological, vegetation and physical data set over 531 catchments in Chile (17.8 S - 55.0 S). We compiled publicly available streamflow records at daily time steps for the period 1980-2015, and generated basin-averaged time series of the following hydrometeorological variables: 1) daily precipitation coming from three different gridded sources (re-analysis and satellite-based); 2) daily maximum and minimum temperature; 3) 8-days potential evapotranspiration (PET) based on MODIS imagery and daily PET based on Hargreaves formula; and 4) daily snow water equivalent. Additionally, catchments are characterized by their main physical (area, mean elevation, mean slope) and land cover characteristics. We synthetized these datasets with several indices characterizing the spatial distribution of climatic, hydrological, topographic and vegetation attributes. The new catchment-based dataset is unprecedented in the region and provides information that can be used in a myriad of applications, including catchment classification and regionalization studies, impacts of different land cover types on catchment response, characterization of drought history and projections, climate change impacts on hydrological processes, etc. Derived practical applications include water management and allocation strategies, decision making and adaptation planning to climate change. This data set will be publicly available and we encourage the community to use it.

  3. Regionalization of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.; Sultan, Yisak A.

    2013-04-01

    When area distributed hydrological models are to be calibrated or updated, fewer calibration parameters is of a considerable advantage. Based on, among others, Kirchner, we have developed a simple non-threshold response model for drainage in natural catchments, to be used in the gridded hydrological model ENKI. The new response model takes only the hydrogram into account, it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. The method is based on the assumption that in catchments where precipitation, evaporation and snowmelt is neglect able, the discharge is entirely determined by the amount of stored water. It can then be characterized as a simple first-order nonlinear dynamical system, where the governing equations can be found directly from measured stream flow fluctuations. This means that the response in the catchment can be modelled by using hydrogram data where all data from periods with rain, snowmelt or evaporation is left out, and adjust these series to a two or three parameter equation. A large number of discharge series from catchments in different regions in Norway are analyzed, and parameters found for all the series. By combining the computed parameters and known catchments characteristics, we try to regionalize the parameters. Then the parameters in the response routine can easily be found also for ungauged catchments, from maps or data bases.

  4. Simulation of quantity and quality of storm runoff for urban catchments in Fresno, California

    USGS Publications Warehouse

    Guay, J.R.; Smith, P.E.

    1988-01-01

    Rainfall-runoff models were developed for a multiple-dwelling residential catchment (2 applications), a single-dwelling residential catchment, and a commercial catchment in Fresno, California, using the U.S. Geological Survey Distributed Routing Rainfall-Runoff Model (DR3M-II). A runoff-quality model also was developed at the commercial catchment using the Survey 's Multiple-Event Urban Runoff Quality model (DR3M-qual). The purpose of this study was: (1) to demonstrate the capabilites of the two models for use in designing storm drains, estimating the frequency of storm runoff loads, and evaluating the effectiveness of street sweeping on an urban drainage catchment; and (2) to determine the simulation accuracies of these models. Simulation errors of the two models were summarized as the median absolute deviation in percent (mad) between measured and simulated values. Calibration and verification mad errors for runoff volumes and peak discharges ranged from 14 to 20%. The estimated annual storm-runoff loads, in pounds/acre of effective impervious area, that could occur once every hundred years at the commercial catchment was 95 for dissolved solids, 1.6 for the dissolved nitrite plus nitrate, 0.31 for total recoverable lead, and 120 for suspended sediment. Calibration and verification mad errors for the above constituents ranged from 11 to 54%. (USGS)

  5. Spatio-temporal patterns of nutrient fluxes as a function of hydrologic variability, land cover and fires in coastal California catchments

    NASA Astrophysics Data System (ADS)

    Aguilera, R.; Melack, J. M.; Goodridge, B. M.

    2016-12-01

    Given the projections of increased urbanization of coastal areas and severity of extreme events related to hydrological variability and wildfires, a better understanding of material export within and from streams under a wide range of environmental conditions remains a fundamental concern. In semiarid regions, ecosystem processes can be hydrologically decoupled for more than 6 months per year, and abrupt shifts from dry-to-wet soil conditions can produce pulsed biogeochemical signals, such as elevated hydrologic export. In our study in the coastal catchments along the Santa Barbara Channel, California, the intensive sampling throughout storm hydrographs required by the episodic nature of runoff, the multi-year periods that include years with very low precipitation and others with large events, the sequence of fires in several watersheds, and the variety of land uses and land covers represented, allowed a multivariate analysis of factors influencing nutrient fluxes in semiarid catchments. Nutrient flux estimates were obtained for 21 sites ranging from 3 to 14 years of sampling (between water years 2002-2015). Annual nitrogen fluxes (NH4, NO3 and DON) per unit area (mol ha-1 y-1) for each site varied over six orders of magnitude. Phosphate fluxes exhibited a single-order-of-magnitude difference among the catchments. Highest annual fluxes were observed in 2005, a wet year, for all nutrients and across sites. Nutrient fluxes following wildfire events within our study period in 13 sites (10-80% burned upstream catchment area) were also among the highest observed, particularly in the case of ammonium. During water years 2012-2015, drought conditions and the subsequent decrease in storm runoff were associated with the lowest fluxes for all nutrients.

  6. Water Management in the Klodnica Catchment in 2000-2010

    NASA Astrophysics Data System (ADS)

    Drąg, Magdalena

    2012-01-01

    The article takes up an attempt to present the changes that has occurred in the water management at the beginning of the 21st century in the area of Silesian Voivoideship. Communes situated within the boundaries of Klodnica catchment, closed by the section of Gliwice, were analysed as an example of water management in the area which undergoes a strong anthropopression. Klodnica catchment is an area where all the elements of the geographical environment were transformed, but it was the water environment that was changed most visibly. At the beginning of the 21st century, there were a lot of changes conducted in Poland, not only political, but also in the economic and legal sectors. Owing to these factors, the following changes appeared: water consumption, the structure of distribution of water among different branches of economy and the water and sewage system infrastructure. The effect of these changes is the decrease in water consumption and sewage discharge as well as upgrading the technologies of its treatment (Absalon 2007). W artykule podjęto próbę przedstawienia zmian jakie zaszły w gospodarowaniu wodą na początku XXI wieku na obszarze województwa śląskiego. Szczegółowej analizie poddano gminy znajdujące się w granicach zlewni Kłodnicy zamkniętej przekrojem Gliwice, jako przykład gospodarowania wodą na obszarze podlegającym silnej antropopresji. Zlewnia Kłodnicy jest to teren, gdzie wszystkie elementy środowiska geograficznego zostały przekształcone, lecz najbardziej widocznym zmianom uległo środowisko wodne. Wraz z początkiem XXI wieku w Polsce wprowadzono wiele zmian i to nie tylko politycznych, ale także w sektorze ekonomicznym i prawnym. Dzięki tym czynnikom pojawiły się zmiany: zużycia wody, struktury jej rozdziału na poszczególne gałęzie gospodarki oraz infrastruktury wodociągowej i kanalizacyjnej. Efektem tych zmian jest zmniejszenie zużycia wody oraz zrzutu ścieków, a także unowocześnianie technologii ich oczyszczania (Absalon 2007).

  7. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and hydrothermally altered rhyolitic tuff, with an intrusion of Paleozoic sandstone. Smectite content was generally greater in areas underlain by the tuff and likely represent a combination of both diagenic smectite formed by hydrothermal alteration of volcanic glass and authigenic smectites formed in the soils via chemical weathering.

  8. How young water fractions can delineate travel time distributions in contrasting catchments

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Zink, Matthias; Merz, Ralf

    2017-04-01

    Travel time distributions (TTDs) are crucial descriptors of flow and transport processes in catchments. Tracking fluxes of environmental tracers such as stable water isotopes offers a practicable method to determine TTDs. The mean transit time (MTT) is the most commonly reported statistic of TTDs; however, MTT assessments are prone to large aggregation biases resulting from spatial heterogeneity and non-stationarity in real-world catchments. Recently, the young water fraction (Fyw) has been introduced as a more robust statistic that can be derived from seasonal tracer cycles. In this study, we aimed at improving the assessment of TTDs by using Fyw as additional information in lumped isotope models. First, we calculated Fyw from monthly δ18O-samples for 24 contrasting sub-catchments in a meso-scale catchment (3300 km2). Fyw ranged from 0.01 to 0.27 (mean= 0.11) and was not significantly correlated with catchment characteristics (e.g., mean slope, catchment area, and baseflow index) apart from the dominant soil type. Second, assuming gamma-shaped TTDs, we determined time-invariant TTDs for each sub-catchment by optimization of lumped isotope models using the convolution integral method. Whereas multiple optimization runs for the same sub-catchment showed a wide range of TTD parameters, the use of Fyw as additional information allowed constraining this range and thus improving the assessment of MTTs. Hence, the best model fit to observed isotope data might not be the desired solution, as the resulting TTD might define a young water fraction non-consistent with the tracer-cycle based Fyw. Given that the latter is a robust descriptor of fast-flow contribution, isotope models should instead aim at accurately describing both Fyw and the isotope time series in order to improve our understanding of flow and transport in catchments.

  9. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  10. Effect of Land Use, Seasonality, and Hydrometeorological Conditions on the K+ Concentration-Discharge Relationship During Different Types of Floods in Carpathian Foothills Catchments (Poland).

    PubMed

    Siwek, Joanna P; Żelazny, Mirosław; Siwek, Janusz; Szymański, Wojciech

    2017-01-01

    The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K + ) concentration and discharge during different types of floods-short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K + concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K + out of the soil in the summer. In the stream draining woodland catchment, higher K + concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K + hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K + in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.

  11. Defining the sources of low-flow phosphorus transfers in complex catchments.

    PubMed

    Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T

    2007-08-15

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination.

  12. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.

  13. Temporal Variability of Suspended Sediment Load, Dissolved Load, and Bedload for Two Small Oak Forested Catchments with Contrasting Disturbance Levels in the Lesser Himalaya of North-West India

    NASA Astrophysics Data System (ADS)

    Qazi, N. U. Q.; Rai, S. P.; Bruijnzeel, L. A.

    2014-12-01

    Sediment transfer from mountainous areas to lowland areas is one of the most important geomorphological processes globally with the bulk of the sediment yield from such areas typically deriving from mass wastage processes. This study presents monthly, seasonal and annual variations in sediment transport (both suspended load and bed load) as well as dissolved loads over three consecutive water years (2008-2011) for two small forested watersheds with contrasting levels of forest disturbance in the Lesser Himalaya of Northwest India. Seasonal and annual suspended sediment yields were strongly influenced by amounts of rainfall and stream flow and showed a 23-fold range between wet and dry years. Of the annual load, some 92% was produced on average during the monsoon season (June-September). Sediment production by the disturbed forest catchment was 2.6-fold (suspended sediment) to 5.9-fold (bed load) higher than that for the well-stocked forest catchment. By contrast, dissolved loads varied much less between years, seasons (although minimal during the dry summer season), and degree of forest disturbance. Total mechanical denudation rates were 1.2 times and 4.7 times larger than chemical denudation rates for the little disturbed and the heavily disturbed forest catchment, respectively whereas overall denudation rates were estimated at 0.59 and 1.05 mm per 1000 years, respectively.

  14. Land Use Change and Land Degradation in Southeastern Mediterranean Spain

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  15. Land use change and land degradation in southeastern Mediterranean Spain.

    PubMed

    Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva

    2007-07-01

    The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall "recuperating" trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.

  16. Density and population estimate of gibbons (Hylobates albibarbis) in the Sabangau catchment, Central Kalimantan, Indonesia.

    PubMed

    Cheyne, Susan M; Thompson, Claire J H; Phillips, Abigail C; Hill, Robyn M C; Limin, Suwido H

    2008-01-01

    We demonstrate that although auditory sampling is a useful tool, this method alone will not provide a truly accurate indication of population size, density and distribution of gibbons in an area. If auditory sampling alone is employed, we show that data collection must take place over a sufficient period to account for variation in calling patterns across seasons. The population of Hylobates albibarbis in the Sabangau catchment, Central Kalimantan, Indonesia, was surveyed from July to December 2005 using methods established previously. In addition, auditory sampling was complemented by detailed behavioural data on six habituated groups within the study area. Here we compare results from this study to those of a 1-month study conducted in 2004. The total population of the Sabangau catchment is estimated to be about in the tens of thousands, though numbers, distribution and density for the different forest subtypes vary considerably. We propose that future density surveys of gibbons must include data from all forest subtypes where gibbons are found and that extrapolating from one forest subtype is likely to yield inaccurate density and population estimates. We also propose that auditory census be carried out by using at least three listening posts (LP) in order to increase the area sampled and the chances of hearing groups. Our results suggest that the Sabangau catchment contains one of the largest remaining contiguous populations of Bornean agile gibbon.

  17. Geochemical prospecting for Cu mineralization in an arid terrain-central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Fatehi, Moslem; Shahrestani, Shahed; Pournik, Peyman

    2014-12-01

    Geochemical sampling and data processing were implemented for prospecting Cu mineralization through catchment basin approach in central Iran, Yazd province, over drainage systems in order to determine areas of interest for the detailed exploration program. The target zone, inside an area called Kalout-e-Ashrafa in Yazd province-Iran, was characterized by the collection of 107 stream sediment samples. Catchment basin modeling was conducted based on digital elevation model (DEM) and geological map of the study area. Samples were studied by univariate and multivariate statistical techniques of exploratory data analysis, classical statistical analysis and cluster analysis. The results showed that only Cu had anomalous behavior and it did not exhibit a considerable correlation with other elements. Geochemical maps were prepared for Cu and anomalous zones and separated for potential copper mineralization. It was concluded that due to especial geomorphological and geographical characteristics (smooth topography, negligible annual precipitation and insufficient thickness of silicified Cu-bearing outcrops of the area), low concentrations of Cu would be expected for the delineation of promising zones in similar trains. Using cluster analysis showed that there was a strong correlation between Ag, Sr and S. Calcium and Pb present moderate correlation with Cu. Additionally, there was a strong correlation between Zn and Li, thereby indicating a meaningful correlation with Fe, P, Ti and Mg. Aluminum, Sc and V had a correlation with Be and K. Applying threshold value according to MAD (median absolute deviation) helped us to distinguish anomalous catchments more properly. Finally, there was a significant kind of conformity among anomalous catchment basins and silicified veins and veinlets (as validating index) at the central part of the area.

  18. The hydrologic and fluvial processes in urban and agricultural atchments (Kielce, Poland)

    NASA Astrophysics Data System (ADS)

    Ciupa, T.

    2003-04-01

    The aim of the study is to elucidate the bahavior of river-beds system in conditions of environmental stress, and particularly in the urbanized landscape in the Kielce vicinity (Central Poland). Two neighboring catchments were selected for the study, both located in the urbanized landscape, namely those of Silnica and Sufraganiec streams. These catchments have similar surfaces nevertheless they differ each other in the area of land use patterns. Silnica catchment embraces mainly build-up area however the Sufraganiec one consists largely of open agricultural spaces and woodland. Quite different situation has been noticed along the middle and lower part of Silnica, that is to say in the urbanized area. The high water waves last there for no more than one hour but their heights are much more greater. Water infiltration in these areas is strongly limited due to the fact that the area is mostly paved. Below the Kielce storage reservoir, the Silnica river constitutes the mere drain channel. Decrease in water velocity below the city center as well as an unnaturally huge charge of the transported matter is the reason that the materials from the city is accumulated in form of sand banks, shoals and oxbows. These forms are seasonally covered with vegetation that additionally intercepts the matters transported during high water stages. Intensity of human induced changes in river beds and fluvial processes shows to be proportional to the level of modification in the urbanized landscape. Silnica catchment has been modified mainly due to the growth of paved surfaces and the drainage network development. As a consequence, the surface runoff has been accelerated and the energy of fluvial processes enlarged.

  19. Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapá State, Brazil).

    PubMed

    Fostier, A H; Forti, M C; Guimarães, J R; Melfi, A J; Boulet, R; Espirito Santo, C M; Krug, F J

    2000-10-09

    Mercury (Hg total) fluxes were calculated for rainwater, throughfall and stream water in a small catchment located in the northeastern region of the Brazilian Amazon (Serra do Navio, Amapá State), whose upper part is covered by a natural rainforest and lower part was altered due to deforestation and activities related to manganese mining. The catchment area is 200 km from the nearest gold mining (garimpo). Minimum and maximum Hg concentrations were measured monthly from October 1996 to September 1997 and were 3.5-23.4 ng l(-1) for rainwater, 16.5-82.7 ng l(-1) for throughfall (March-August 1997) and 1.2-6.1 and 4.2-18.8 ng l(-1) for stream water, in natural and disturbed areas, respectively. In the natural area, the inputs were 18.2 microg m 2 year(-1) in rainwater and 72 microg m(-2) year(-1) in throughfall. This enrichment was attributed to dry deposition. The stream output of 2.9 microg m(-2) year(-1) indicates that Hg is being recycled within the forest as other chemical species or is being retained by the soil system, as confirmed by the cumulative Hg burden in the 0-10 cm surface layer, which was 36480 microg m(-2). When the disturbed area of the catchment was included, the stream output was 9.3 microg m(-2), clearly indicating the impact of the deforestation of the lower part of the basin on the release of mercury. The Hg burden in the disturbed area was 7560 microg m(-2) for the 0-10 cm surface layer.

  20. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed.

Top