Science.gov

Sample records for catchment basin preliminary

  1. Evaluation of soil erosion as a basis of sediment yield in mountainous catchments: a preliminary study in the River Douro Basin (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Reis, Anabela; Martinho Lourenço, José M.; Parker, Andrew; Alencoão, Ana

    2013-04-01

    The River Corgo drains a meso-scale mountainous rural catchment with an area of 295 km2, underlain by crystalline rocks, in a temperate climate, which integrates the transboundary River Douro Basin, in the northeast of Portugal. A geochemical survey on oxic fluvial sediments of the river network shows considerable contents of metals associated to the finer particles (< 63um). The results on the study of the sediment properties indicate that these are essentially detrital in origin, derived from soils and weathering products. Moreover, taking into account the hydrological pattern of the catchment, the seasonal and spatial variability of metal contents associated to the sediments suggests that the control of metal in the sediments by their mineralogical, geochemical and physical properties is governed primarily at the level of the basin soils system, especially in the Wet Period, when the sediments are frequently remobilised (Reis, 2010). Although the soil particles are a common pathway of transport and entrance of metals in the fluvial network by runoff derived erosion, this mechanism is naturally more marked in mountainous catchments. Modelling sediment and adsorbed contaminant transport within catchments can help to identify possible contaminant sources, as well as to estimate the delivered quantities of eroded material and associated contaminants. In catchments with the described morphological features, monitoring the transport of sediments poses some issues concerning: (a) the low mass yield of suspended sediment from river water, under low-flow conditions; (b) the maintenance of the sediment sampler's devices in the streams, in periods of high-flow or storm events. This study describes the preliminary results of a GIS-based mass balance model of overland sediment transport to the River. The erosion, the first step of sediment transport, was estimated by an empirical model - The Universal Soil Loss Equation (USLE). The objective was to construct a GIS based

  2. Are big basins just the sum of small catchments?

    NASA Astrophysics Data System (ADS)

    Shaman, Jeffrey; Stieglitz, Marc; Burns, Doug

    2004-11-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km2.We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes.

  3. Are Big Basins Just the Sum of Small Catchments?

    NASA Astrophysics Data System (ADS)

    Shaman, J.; Stieglitz, M.; Burns, D.

    2005-05-01

    2 Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. We examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3km2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect streamrunoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes.

  4. Are big basins just the sum of small catchments?

    USGS Publications Warehouse

    Shaman, J.; Stieglitz, M.; Burns, D.

    2004-01-01

    Many challenges remain in extending our understanding of how hydrologic processes within small catchments scale to larger river basins. In this study we examine how low-flow runoff varies as a function of basin scale at 11 catchments, many of which are nested, in the 176 km2 Neversink River watershed in the Catskill Mountains of New York. Topography, vegetation, soil and bedrock structure are similar across this river basin, and previous research has demonstrated the importance of deep groundwater springs for maintaining low-flow stream discharge at small scales in the basin. Therefore, we hypothesized that deep groundwater would contribute an increasing amount to low-flow discharge as basin scale increased, resulting in increased runoff. Instead, we find that, above a critical basin size of 8 to 21 km2, low-flow runoff is similar within the Neversink watershed. These findings are broadly consistent with those of a previous study that examined stream chemistry as a function of basin scale for this watershed. However, we find physical evidence of self-similarity among basins greater than 8 km2, whereas the previous study found gradual changes in stream chemistry among basins greater than 3 km 2. We believe that a better understanding of self-similarity and the subsurface flow processes that affect stream runoff will be attained through simultaneous consideration of both chemical and physical evidence. We also suggest that similar analyses of stream runoff in other basins that represent a range of spatial scales, geomorphologies and climate conditions will further elucidate the issue of scaling of hydrologic processes. Copyright ?? 2004 John Wiley & Sons, Ltd.

  5. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect

    Nimz, G. J., LLNL

    1998-06-01

    also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  6. PSYCHIC A process-based model of phosphorus and sediment transfers within agricultural catchments. Part 2. A preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Strömqvist, J.; Collins, A. L.; Davison, P. S.; Lord, E. I.

    2008-02-01

    SummaryThis paper describes the preliminary evaluation of the PSYCHIC catchment scale (Tier 1) model for predicting the mobilisation and delivery of phosphorus (P) and suspended sediment (SS) in the Hampshire Avon (1715 km 2) and Herefordshire Wye (4017 km 2) drainage basins, in the UK, using empirical data. Phosphorus and SS transfers to watercourses in the Wye were predicted to be greater than corresponding delivery in the Avon; SS, 249 vs 33 kg ha -1 yr -1; DP, 2.57 vs 1.26 kg ha -1 yr -1; PP, 2.20 vs 0.56 kg ha -1 yr -1. The spatial pattern of the predicted transfers was relatively uniform across the Wye drainage basin, whilst in the Avon, delivery to watercourses was largely confined to the river corridors and small areas of drained land. Statistical performance in relation to predicted exports of P and SS, using criteria for relative error (RE) and root mean square error (RMSE), reflected the potential shortcomings associated with using longer-term climate data for predicting shorter-term (2002-2004) catchment response and the need to refine calculations of point source contributions and to incorporate additional river basin processes such as channel bank erosion and in-stream geochemical processing. PSYCHIC is therefore best suited to characterising longer-term catchment response.

  7. The "Teflon basin" myth: Snow-soil interactions in mountain catchments in the western US

    NASA Astrophysics Data System (ADS)

    Williams, M. W.; Cowie, R. M.

    2015-12-01

    In much of western North America, snow and snowmelt provide the primary means for storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. A common assumption is that high-elevation catchments in the western United States behave like "Teflon basins" and that water released from seasonal storage in snow packs flows directly into streams with little or no interaction with underlying soils. Here I present information from a variety of catchments in the Colorado Front Range on snowmelt/soil interactions using isotopic, geochemical, nutrient and hydrometric data in 2- and 3- component hydrograph separations, along with end-member mixing analysis (EMMA). For most catchments we measured these parameters in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. We ran EMMA at the catchment scale for catchments that represent the rain-snow transition zone in the montane forest, the seasonally snow covered sub-alpine to alpine transition zone, and a high-elevation alpine zone near the continental divide. In all catchments three end-members were the source waters for about 95% of discharge. Two end-members were the same in all catchments, snow and groundwater. For the alpine catchment talus springs was the third water source, while rain was the third water source in the two lower-elevation catchments. For all three catchments, soil solution plotted with stream waters along or near a line connecting the snow and groundwater end-members. Thus, for seasonally snow-covered catchments from montane to alpine ecosystems, snowmelt infiltrates underlying soils before snowmelt recharges groundwater reservoirs and contributes to surface flows. Seasonally snow-covered catchments are not Teflon basins. Rather, snowmelt infiltrates soils where solute concentrations are changed by biological and geochemical processes.

  8. Catchments Classification: Multivariate Statistical Analysis for Physiographic Similarity in the Niger Basin

    NASA Astrophysics Data System (ADS)

    Chaibou Begou, Jamilatou; Jomaa, Seifeddine; Benabdallah, Sihem; Bazie, Pibgnina; Afouda, Abel; Rode, Michael

    2016-04-01

    The objective of this study was to determine physiographic similarity, as indicator of hydrologic similarity between catchments located in the Bani basin, and to derive the dominant factors controlling each group singularity. We utilized a dataset of 28 catchments described by 16 physical and climatic properties distributed across a wide region with strong environmental gradients. Catchments attributes were first standardized before they underwent an integrated exploratory data analysis composed by Principal Component Analysis (PCA) followed by Hierarchical Clustering. Results showed a clear distribution into 3 major clusters. Two of them were well separated and partitioned into northerly flat and semi-arid catchments, and southerly hilly and humid catchments. This nomenclature came from the interpretation of the main factors, topography, precipitation and latitude, which seem to control the most important variability inside these clusters. Moreover, the group of northerly catchments was designated to be dominated by agricultural land use and ferric luvisols soil type, two additional drivers of similarity. The third cluster was located in the center of the study basin, inside which, none of the descriptors seems to exert a strong control on the similarity. The outcome of this study can help understanding catchment functioning and provide a support for a regionalization of hydrological information.

  9. Recovery from acidification in the Tillingbourne catchment, southern England: catchment description and preliminary results.

    PubMed

    Hill, T J; Skeffington, R A; Whitehead, P G

    2002-01-23

    Measurements of acid deposition and streamwater chemistry made in 1979-1982 and 1999-2000 are compared for a small, acid-sensitive catchment in Southeast England. The location, geology, soils, vegetation and hydrology of the catchment are described. The catchment is located on an acidic cretaceous sandstone with a low permeability clay sub-stratum. Soils are predominantly podzol and gley, with some mesotrophic peat. The catchment is forested. Mean volume-weighted concentrations in precipitation have changed approximately in proportion to emission changes. SO4(2-) has declined by 61%, H+ by 75%, both NO- and NH4+ by 37% and Cl- by 26%. Changes in wet deposition are greater, sulfate deposition declined by 69%, non-marine SO4(2-) by 73%, H+ deposition by 75%, NO3- and NH4+ by 50% and Cl- by 41%. Sulfate deposition in throughfall, a surrogate for total deposition measurement, has declined by 82% and non-marine SO4(2-) by 86%. Some of these changes are due to alterations in the tree cover and location of the collectors. In 1979-1982, the flux of NO3- and NH4+ in throughfall was less than in rainfall, 7.5 compared with 11.3 kg N ha(-1) year(-1), showing that N uptake by the canopy was greater than dry deposition of these species. However, in 1999-2000, the throughfall flux of N was greater than rainfall, 19.6 compared to 5.7 kg N ha year(-1), indicating that canopy uptake is not occurring to the same extent. Surface water was sampled at the same locations in the catchment during the two periods. At the catchment exit, mean pH increased, from 3.93 to 4.21 mg l(-1), and SO4(2-) declined from 20.2 to 16.7 mg l(-1) (18%). The decrease in SO4(2-) is much less than the reduction in deposition, suggesting that the predicted recovery is being delayed by release of sulfur from the soil. In contrast, NO3- concentrations in the catchment waters increased from 0.22 to 0.52 mg N l(-1) (133%) despite the reduction in N deposition. NH4+ concentrations were low during both study periods

  10. Attributes for NHDPlus Catchments (Version 1.1): Basin Characteristics, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents basin characteristics, compiled for every catchment in NHDPlus for the conterminous United States. These characteristics are basin shape index, stream density, sinuosity, mean elevation, mean slope, and number of road-stream crossings. The source data sets are the U.S. Environmental Protection Agency's NHDPlus and the U.S. Census Bureau's TIGER/Line Files. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris

  11. Nonstationarities in Catchment Response According to Basin and Rainfall Characteristics: Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Kim, Jin-Guk; Jung, Il-Won

    2015-04-01

    It must be acknowledged that application of rainfall-runoff models to simulate rainfall-runoff processes are successful in gauged watershed. However, there still remain some issues that will need to be further discussed. In particular, the quantitive representation of nonstationarity issue in basin response (e.g. concentration time, storage coefficient and roughness) along with ungauged watershed needs to be studied. In this regard, this study aims to investigate nonstationarity in basin response so as to potentially provide useful information in simulating runoff processes in ungauged watershed. For this purpose, HEC-1 rainfall-runoff model was mainly utilized. In addition, this study combined HEC-1 model with Bayesian statistical model to estimate uncertainty of the parameters which is called Bayesian HEC-1 (BHEC-1). The proposed rainfall-runofall model is applied to various catchments along with various rainfall patterns to understand nonstationarities in catchment response. Further discussion about the nonstationarity in catchment response and possible regionalization of the parameters for ungauged watershed are discussed. KEYWORDS: Nonstationary, Catchment response, Uncertainty, Bayesian Acknowledgement This research was supported by a Grant (13SCIPA01) from Smart Civil Infrastructure Research Program funded by the Ministry of Land, Infrastructure and Transport (MOLIT) of Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA).

  12. View of former preliminary sedimentation basin, looking east from south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of former preliminary sedimentation basin, looking east from south side of low-lift pumping station. - Robert B. Morse Water Filtration Plant, 10700 and 10701 Columbia Pike, Silver Spring, Montgomery County, MD

  13. A participatory approach for Integrated River Basin Management in the Elbe catchment

    NASA Astrophysics Data System (ADS)

    Nunneri, C.; Hofmann, J.

    2005-02-01

    This paper presents a qualitative analysis of a series of in-depth interviews with governmental and non-governmental institutions (NGOs). Within the EUROCAT 1 project this methodology of participatory approach, aiming to scope the present perceptions about environmental issues and possible strategies for environmental improvement, is applied to the study of the Elbe catchment for the first time. In this frame, an Advisory Board (AB) was created, with the aim of giving insights into conflicting interests in the river catchment and guidelines for river basin management. Focus of the Elbe case study is the issue of nutrient enrichment (from the catchment) and the induced eutrophication of the coastal waters (the German Bight). Specifically, regarding this topic, the possible reduction of eutrophication in the German Bight by a (policy driven) decrease in nutrient inputs from the catchment area is analysed. Different measures for reducing the input of nutrients from the catchment, and ultimately preventing eutrophication of the coastal waters are considered. In this context, the members of the AB were asked about the efficiency and feasibility of different measures and the criteria for choosing 'better' management solutions among the possible ones. Although there is a general agreement about the necessity of reducing nutrient emissions, some members of the AB perceive other environmental issues (e.g. altered morphodynamics) as more relevant than nutrient enrichment. Voluntary cooperation, eco-efficiency and 'trans-sectoral' communication are the key concepts mentioned as being indispensable for integrated management. The (public) acceptance of measures for nutrient reduction have to find its way through compromises and social equity, allowing for win-win solutions among different groups of interests and balanced spatial division of costs and benefits. EUROpean CATchments, Project N° EVK1-CT-2000-00044 ( http://www.iia-cnr.unical.it/EUROCAT/project.htm).

  14. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  15. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  16. Catchment Restoration in the Tweed UNESCO-IHP HELP Basin - Eddleston Water

    NASA Astrophysics Data System (ADS)

    Spray, Christopher

    2013-04-01

    The EU Water Frame Work Directive (WFD) requires member states to work towards the achievement of 'good ecological status' for water bodies, through a 6 year cycle of river basin management plans (RBMPs). Within these RBMPs, states must develop and implement programmes of measures designed to improve the quality of individual water bodies at risk of failing to achieve this status. These RBMPS must not only be focussed on the key causes of failure, but increasingly look to deliver multiple benefits, such as flood risk reduction and improvement to biodiversity from such catchment interventions, and to involve communities and other stakeholders in restoration of their local environment. This paper reports on progress of a detailed study of the restoration of the Eddleston Water, a typical 'failing' water body in Scotland, the monitoring and governance arrangements behind this, and implications for rehabilitation of river systems elsewhere. Within UK rivers, the main causes of failure to achieve good ecological status are historical morphological changes to river courses, diffuse agricultural pollution and invasive non-native species. The Eddleston Water is a 70 sq kms sub-catchment of the Tweed, an UNESCO IHP-HELP basin in the Scottish : English borders, and is currently classified as 'bad' status, due largely to morphological changes to the course and structure of the river over the past 200 years. The main challenge therefor is physical restoration of the river to achieve functional connectivity with the flood plain. At the same time however, the two communities within the catchment suffer from flooding, so a second priority is to intervene within the catchment to reduce the risk of flooding through the use of "natural flood management" measures and, underlying both these two aspects a whole catchment approach to community participation and the achievement of a range of other ecosystem service benefits, including conservation of biodiversity. We report on the

  17. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    PubMed

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area. PMID

  18. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    PubMed

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area.

  19. A preliminary model for predicting heavy metal contaminant loading from an urban catchment.

    PubMed

    Yuan, Y; Hall, K; Oldham, C

    2001-02-01

    The toxicity of heavy metals to biota in urban catchments has been regarded as a very important non-point source pollution issue. Numerous studies on heavy metal pollution in urban receiving waters have found that metal transport by surface runoff is closely correlated to the partitioning of the metal forms between dissolved and particulate phases, where sediment plays an important role in the transport process. Sediment cycling on urban streets, metal binding form, and rainfall character in the catchment area are considered to be the key factors for metal transport. A preliminary model is developed based on these considerations. Starting from classical build-up and wash-off processes for the suspended sediment (SS) on the urban impervious surface, the model links the transport of suspended sediment to the transport of metal species. Monitoring data from a small highway catchment were used in the model development. A total of 47 rain events over 1 year were monitored intensively at short time intervals (5-10 min) for hydrological data, rainfall intensity, and stormwater quality. In developing the model, lead was used for the metal load prediction, as it has been a common fuel additive for urban transportation. Agreement between model results and monitoring data indicates that the model can be used in predicting metal load from impervious urban areas, such as streets and roadways, on a long-term basis.

  20. Determining Spatial Distribution And Air-Water Exchange Of Polycyclic Aromatic Hydrocarbons In Stormwater Runoff Catchment Basins

    NASA Astrophysics Data System (ADS)

    Kasaraneni, V. K.; Schifman, L. A.; Craver, V.; Boving, T. B.

    2014-12-01

    Stormwater runoff is a conduit for several pollutants such as polycyclic aromatic hydrocarbons (PAHs) in to surface and ground water bodies. The control of runoff and pollutants is typically addressed by best management practices (BMPs), such as retention/detention ponds or catchment basins in general. The effectiveness of catchment basins in reducing the volume of runoff and removal of some contaminants has been established. However, very little is known about the fate of the contaminants settled within these structures. In coastal regions and places with shallow groundwater tables accumulation of high concentrations of PAHs in the bottom sediments poses a potential threat for groundwater contamination. The concentrations of PAHs accumulated in the sediments of these catchment basins will primarily depend on the sources of runoff origin and the surrounding land use. Due to the physico-chemical characteristics of PAHs, their transport not only can occur in the liquid and solid phase, but it is also possible that gaseous emissions can be produced from BMP systems. For the purpose of this study, five stormwater catchment basins along the I-95 corridor in Rhode Island were selected based on the stormwater runoff origin and covering (industrial, urban, highway, and commercial) land uses. To study the stratification of PAHs sediment cores one foot were collected and analyzed for 31PAHs (16 EPA parent PAH and 15 methylated PAHs). In order to determine whether the catchment basins are a source of atmospheric pollution polyethylene passive samplers were deployed to determine the freely dissolved PAHs in the water column and gas phase PAHs at the air-water interface. This presentation will describe how PAH fluxes move between three environmental compartments (sediments, water column, atmosphere) within the five stormwater catchment basins. Further, it will be investigated whether these BMP structures can act as contaminant sources rather than sinks and whether BMP

  1. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    NASA Astrophysics Data System (ADS)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated

  2. Implementing Integrated Catchment Management in the upper Limpopo River basin: A situational assessment

    NASA Astrophysics Data System (ADS)

    Mwenge Kahinda, J.; Meissner, R.; Engelbrecht, F. A.

    2016-06-01

    A three-phase study was initiated as a way to promote Integrated Catchment Management approaches in the Limpopo River basin. This paper presents the situational assessment, which should enable De Beers to understand how their Venetia Mine operations are located within a broader and highly dynamic socio-economic and ecohydrological landscape as it pertains to water risks. The second phase, Risk assessment, aims to develop conservation interventions in the identified areas; the third phase will develop mechanisms for implementing water stewardship schemes to mitigate the shared water risks. Analysis of the social-ecological system (hydrological, climatic, ecological, socio-economic and governance systems) of the Limpopo River basin indicates that the institutional arrangement of the Limpopo River basin is neither simple nor effective. The basin is rapidly approaching closure in the sense that almost all of the available supplies of water have already been allocated to existing water users. If the proposed ecological flow requirements were to be met for all of the tributaries, the basin would be 'closed'. On-going and projected land use changes and water resources developments in the upper reaches of the basin, coupled with projected rainfall reductions and temperature increases, and allocation of the flows for the ecological reserve, are likely to further reduce downstream river flows. The coupled increase in temperature and decrease in rainfall is of great concern for everyone in the basin, especially the poorer communities, who rely on rain-fed agriculture for their livelihoods. Increased temperatures also lead to increased evaporation from reservoirs and therefore result in a decrease in water availability. This will lead to increased abstraction of groundwater, especially from alluvial aquifers, and consequently an increase in river transmission losses and a decrease in river flows.

  3. Preliminary design review report for K Basin Dose Reduction Project

    SciTech Connect

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose, originating from radionuclides absorbed in the K East Basin concrete, is to raise the pool water level to provide additional shielding. This report documents a preliminary design review conducted to ensure that design approaches for cleaning/coating basin walls and modifying other basin components were appropriate. The conclusion of this review was that design documents presently conclusion of this review was that design documents presently completed or in process of modification are and acceptable basis for proceeding to complete the design.

  4. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2014-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  5. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazi

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.

    2015-12-01

    This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.

  6. Ecosystem based river basin management planning in critical water catchment in Mongolia

    NASA Astrophysics Data System (ADS)

    Tugjamba, Navchaa; Sereeter, Erdenetuul; Gonchigjav, Sarantuya

    2014-05-01

    Developing the ecosystem based adaptation strategies to maintain water security in critical water catchments in Mongolia would be very significant. It will be base by reducing the vulnerability. "Ecosystem Based adaptation" is quite a new term in Mongolia and the ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way. To strengthen equitable economic development, food security, climate resilience and protection of the environment, the implementation of sustainable river basin management in critical water catchments is challenging in Mongolia. The Ulz river basin is considered one of the critical water catchments due to the temperature has increased by in average 1.30Ñ over the period 1976 to 2011. It is more intense than the global warming rate (0.740C/100 years) and a bit higher than the warming rate over whole Mongolia as well. From long-term observations and measurements it is clear that Ulz River has low water in a period of 1970-1980 and since the end of 1980s and middle of 1990s there were dominated years of the flood. However, under the influence of the global warming, climate changes of Mongolia and continuation of drought years with low water since the end of 1990s until today river water was sharply fallen and dried up. For the last ten years rivers are dried up and annual mean run-off is less by 3-5 times from long term mean value. The Ulz is the transboundary river basin and taking its origin from Ikh and Baga Burd springs on territory of Norovlin soum of Khentii province that flows through Khentii and Dornod provinces to the northeast, crossing the state border it flows in Baruun Tari located in Tari Lake concavity in Russia. Based on the integrative baseline study on the 'The Ulz River Basin Environmental and Socioeconomic condition', ecosystem based river basin management was planned. 'Water demand Calculator 3' (WDC) software was used to

  7. Applicability of LOICZ catchment coast continuum in a major Caribbean basin: The Magdalena River, Colombia

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.

    2008-04-01

    Within the Land Ocean Interactions in the Coastal Zone (LOICZ)-Basins approach, the Magdalena River Project (MRP) is an interdisciplinary research, which aims to improve the scientific understanding of the linkages between the Magdalena drainage basin and its associated coastal environments. The MRP is an outgrowth of the initial regional planning that resulted from the LOICZ South American Basins (SamBas) and Caribbean Basins (CariBas) studies on land use and hydrological changes during approximately the past century in tropical and temperate benchmark river basins. The results of the MRP presented in this article show that the extent of land-cover change and erosion within the catchment has increased over the last 10-20 yr. The overall increasing trends in sediment load on a regional scale may be attributed to a range of anthropogenic influences including: a 40% decrease in forests over a 20-yr period; a 65% increase in agricultural and pasture; poor practices of land use; mining; and increasing rates of urbanization. These increasing trends in sediment load coincide with the overall decline of live coral cover in a 145-km 2 coral reef complex in the Caribbean Sea. In addition, the impacts of heavy sediment loads and freshwater discharges have greatly contributed not only to the total disappearance of coral formations but also to a considerable reduction in abundance of seagrass beds in Cartagena Bay and neighbouring areas. The synthesis and analysis presented in this article are just first steps toward understanding the natural and human-induced factors that have produced the observed patterns of water discharge and sediment load of the Magdalena River into the Caribbean Sea, and to relating these processes to the impact on coastal ecosystems.

  8. Monitoring of metals, organic compounds and coliforms in water catchment points from the Sinos River basin.

    PubMed

    Nascimento, C A; Staggemeier, R; Bianchi, E; Rodrigues, M T; Fabres, R; Soliman, M C; Bortoluzzi, M; Luz, R B; Heinzelmann, L S; Santos, E L; Fleck, J D; Spilki, F R

    2015-05-01

    Unplanned use and occupation of the land without respecting its capacity of assimilation and environmental purification leads to the degradation of the environment and of water used for human consumption. Agricultural areas, industrial plants and urban centres developed without planning and the control of effluent discharges are the main causes of water pollution in river basins that receive all the liquid effluents produced in those places. Over the last decades, environmental management has become part of governmental agendas in search of solutions for the preservation of water quality and the restoration of already degraded resources. This study evaluated the conditions of the main watercourse of the Sinos River basin by monitoring the main physical, chemical and microbiological parameters described in the CONAMA Resolution no. 357/2005.The set of parameters evaluated at five catchment points of water human consumption revealed a river that has different characteristics in each reach, as the upper reach was class 1, whereas the middle and lower reaches of the basin were class 4. Monitoring pointed to households as the main sources of pollutants in those reaches, although metals used in the industrial production of the region were found in the samples analyzed. PMID:26270213

  9. Analysis of annual dissolved-solids loading from selected natural and irrigated catchments in the Upper Colorado River Basin, 1974-2003

    USGS Publications Warehouse

    Kenney, Terry A.; Gerner, Steven J.; Buto, Susan G.

    2012-01-01

    Dissolved-solids loading from 17 natural catchments and 14 irrigated catchments in the Upper Colorado River Basin was examined for the period from 1974 through 2003. In general, dissolved-solids loading increased and decreased concurrently in natural and irrigated catchments but at different magnitudes. Annually, the magnitude of loading in natural catchments changed about 10 percent more, on average, than in irrigated catchments. Measures of variability, or spread, indicate that natural catchments had 35 percent greater annual variability in loading than irrigated catchments. Precipitation and dissolved-solids loads were positively correlated in natural catchments, and a weak positive correlation was determined for irrigated catchments. A weak negative correlation between temperature and dissolved-solids load was determined for both natural and irrigated catchments. In irrigated catchments, the dissolved-solids load response to an above-average precipitation period from 1982 through 1987 generally lagged behind that in the natural catchments. On average, irrigated catchments with reservoir storage had the largest normalized maximum annual loads during the wet period.

  10. Variability of streamflow under climate change: A study for 26 Brazilian large basins and sub-catchments.

    NASA Astrophysics Data System (ADS)

    Isidoro, Jorge; Tiezzi, Rafael

    2016-04-01

    Human activity is entirely dependent on water resources, thus highly vulnerable to the effects of rainfall variability. This work aims to analyse the impact of rainfall variability on streamflow for 26 Brazilian large basins and sub-catchments. Records form 83-years of observations (1931-2013) were compared with the results of simulations for the 2011-2100 (90-year) period. Two rainfall-runoff hydrological models were used for the numerical simulations: Soil Moisture Accounting Procedure-SMAP (process-based) and Stochastic Linear Model-MEL (stochastic). Very significant impacts were found, namely the increase in streamflow in the Southern basins that may reach almost 100%, while in the Northern and Northeastern basins, streamflow may decrease about 90%. These major changes can aggravate the history of flooding in the Southern basins and of droughts in several regions of the North and Northeast basins.

  11. Data mining methods for predicting event runoff coefficients in ungauged basins using static and dynamic catchment characteristics

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Weiler, Markus; Seibert, Simon

    2015-04-01

    Transferring hydrological information into ungauged basin by regionalisation approaches is an ongoing field of research. Usually regionalisation techniques use physical landscape descriptors to transfer either model parameters or hydrological characteristics from a catchment to another. A common problem of these approaches is the high degree of uncertainty associated to their results. One reason is that often solely static (structural) catchment characteristics such as catchment area, physiographic properties or land use data are used for regionalisation. However, it is well known that the hydrological response of a 'natural' system is a complex and a non-linear interaction of its structure, state and forcing. Here it is important to note, that only structure is a static property. State and forcing are highly dynamic when considering the temporal and spatial scale of a rainfall-runoff event. To overcome the limitations associated with 'static' regionalisation techniques we propose a regionalisation technique for event runoff coefficients combining static and dynamic catchment properties. The approach is based on the two data mining algorithms 'random forests' and 'quantile regression forests'. The static catchment characteristics include standard variables such as physiographic properties, land cover and soil data. The dynamic variables include event based properties of the forcing (i.e. rainfall amount, intensity,...) and proxies for the initial state of the catchment (i.e. initial soil moisture). Together with the runoff coefficient these quantities were extracted form hydro-meteorological time series (precipitation, discharge and soil moisture) using an automated rainfall-runoff event detection technique. We tested our method using a set of 60 meso-scale catchments (3.1 to 205,6 km2, covering a range of different geologies and land uses) from Southwest Germany. We randomly separated the catchments in two groups. The first group (30 donor catchments) was used to

  12. Mean Transit Times in Seven Upland Catchments, Otway Basin, Southeast Australia

    NASA Astrophysics Data System (ADS)

    Howcroft, William; Cartwright, Ian; Morgenstern, Uwe

    2016-04-01

    The timescales over which precipitation is transmitted into upland streams (the mean transit times, MTTs) are poorly understood, as are the physical processes and controls that govern the variation in mean transit times. In this study, we use tritium (3H), major ion geochemistry and discharge data to investigate the MTTs in upland streams of the Otway Basin of southeast Australia. Samples were collected under varying discharge conditions from seven catchments of varying size whose land use varies from relatively pristine eucalyptus forest to a mixture of pasture, grazing, and production forestry. This allows the controls on MTTs to be assessed. Tritium activities within the streams varied from 0.20 to 2.35 TU, which are below that of local rainfall (~2.7 TU). The highest tritium activities were generally reported in samples collected during periods of high winter discharge, while the lowest tritium activities were reported in samples collected during low, summer discharge. However, at several of the streams, there appears to be a discharge threshold above which tritium activities do not increase appreciably with increased discharge. In general, streams with larger catchment areas and relatively simple geology have less variable but higher tritium activities. In contrast, the lowest and most variable tritium activities were reported in streams having small catchment areas and a greater complexity in geology. MTTs calculated using an exponential-piston flow model ranged between 8 and 180 years; MTTs calculated using other flow models were generally similar, except where the tritium activities were less than around 1 TU. Major ion concentrations generally increased with a corresponding increase in MTT. However, in those streams having more variable MTTs, the opposite often held true, which most likely reflects the variable contribution to flow by water from different geologic units under differing flow conditions. By contrast, land use does not appear to impart a

  13. Plantation Forestry and Peak Flow Responses in Experimental Catchments and Large River Basins in Chile

    NASA Astrophysics Data System (ADS)

    Iroume, A.; Huber, A.

    2007-05-01

    Land use changes are inextricably linked to water resources and the consequences of such changes are a problem faced by water managers and governments across the world. This particular study considers the impact of changes in plantation forest cover on the hydrological response, with a specific focus on the issue of peak flow conditions and variation. The research still in progress is focused in small catchments and large river basins of Chile. The analysis of the data and the preparation of this document were carried out within the framework of the INCO- CT2004-510739 EPIC FORCE Project. EPIC FORCE aims to improve the integrated management of forest and water resources at the river basin scale through the development of policies based on sound science, focusing on extreme rainfall/snowmelt events. The focus areas are four Latin American countries (Costa Rica, Ecuador, Chile and Argentina.), which represent a range of humid forest and rainfall/snowmelt regimes with major flood and erosion problems and which suffer from a lack of integrated water and forest policies. Much of the controversy surrounding changes in peak flows following forest treatment arises from uncertainty over the response from different sizes of storms; whilst most studies agree that mean peak flow generally increases (even for only a short period) in the post harvesting period, there have been a number of different conclusions regarding influence of forest cover on peak flows from small storms compared with the flows from large events. In Chile, this research is been carried out in experimental catchments (less than 1 km2) and in large river basins (greater than 94 and up to 1,545 km2). Results from La Reina (34.4 ha), where peak flows from the pre-harvesting period (years 1997 to 1999, plantation of Pinus radiata established in 1977 covering the 79.5% of the area) were compared with those from the post- harvesting period (plantation clearcut between end of 1999 and first months of 2000 and

  14. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    NASA Astrophysics Data System (ADS)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  15. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Surficial Geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of surficial geology types in square meters compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999).The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Application of Basin Morphometry Laws in catchments of the south-western quadrangle of south-eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Aisuebeogun, A. O.; Ezekwe, I. C.

    2013-09-01

    The relationship between process and form has been at the core of research in fluvial geomorphology. Form-process relationships of a natural river basin are strongly influenced by its hydrologic and sedimentologic processes as basin morphometric properties of length, shape, and relief, change in response to various hydrologic stimuli from the environment, but usually in line with well established laws. In the four river basins (Orashi, Otamiri, Sombreiro, New Calabar) examined in this study, however, empirical evidence does not conform neatly with theoretical postulates. Remarkable variations are noted in the morphometric properties of the catchments, when compared with established morphometric laws. The most varied in conformity are the Orashi and New Calabar basins, although the Sombreiro and Otamiri catchments also show some level of variation. Prime explanation for the morphometric and topographic non-conformity is caused by the nature of surficial material and the profoundly shallow relief of much of the study area, especially the alluvial flood and deltaic plains to the south and south-west of the study area.

  18. Validation of a simple distributed sediment delivery approach in selected sub-basins of the River Inn catchment area

    NASA Astrophysics Data System (ADS)

    Reid, Lucas; Kittlaus, Steffen; Scherer, Ulrike

    2015-04-01

    For large areas without highly detailed data the empirical Universal Soil Loss Equation (USLE) is widely used to quantify soil loss. The problem though is usually the quantification of actual sediment influx into the rivers. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). But it gets difficult with spatially lumped approaches in large catchment areas where the geographical properties have a wide variance. In this study we developed a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in the catchments. The sediment delivery ratio was determined using an empirical approach considering the slope, morphology and land use properties along the flow path as an estimation of travel time of the eroded particles. The model was tested against suspended solids measurements in selected sub-basins of the River Inn catchment area in Germany and Austria, ranging from the high alpine south to the Molasse basin in the northern part.

  19. Climate change impacts on hydrological extremes (floods, low flows) along catchments in the Scheldt river basin

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Willems, Patrick; Baguis, Pierre; Roulin, Emmanuel; Vansteenkiste, Thomas; Holvoet, Katijn

    2010-05-01

    The potential climate change impacts on hydrological extremes (floods and low flows) have been investigated for rivers in highly urbanized catchments in the Scheldt river basin in Belgium. Results of 31 simulations with 11 Regional Climate Models (RCMs) from the EU PRUDENCE project were statistically analyzed for both the control period 1961-1990 and the scenario period 2071-2100. The more recent ENSEMBLES RCMs were not included because a cursory analysis showed somewhat higher biases for rainfall which was consistent with other detailed findings. The PRUDENCE RCM simulations were transformed into tailored climate change scenarios for rainfall and potential evapotranspiration to facilitate the hydrological impact study. The hydrological impacts were investigated by means of combined hydrological-hydraulic models; both lumped conceptual models, and spatially distributed and detailed physically-based models were considered. The performance of these models in predicting extreme high and low flow statistics has been validated through hydrological time series techniques and statistical extreme value analysis. Given that the hydrological model uncertainty is less than the climate model uncertainty, it was found necessary to apply an ensemble of climate models. The accuracy of the RCM simulations in describing rainfall extremes was assessed for the control period using frequency analysis techniques. The range of projected changes in the daily extremes and the range of projected changes in the number of wet days for rainfall were statistically downscaled (to the hourly time scale) using a quantile perturbation method. The quantile perturbation method is a variant of the quantile mapping technique commonly applied in climate modeling for bias removal. The method essentially extracts the quantile perturbations from the high resolution RCMs and then applies the perturbations to observed series. The use of quantile perturbations is particularly relevant for reflecting the

  20. Geo-referenced modelling of metal concentrations in river basins at the catchment scale

    NASA Astrophysics Data System (ADS)

    Hüffmeyer, N.; Berlekamp, J.; Klasmeier, J.

    2009-04-01

    1. Introduction The European Water Framework Directive demands the good ecological and chemical state of surface waters [1]. This implies the reduction of unwanted metal concentrations in surface waters. To define reasonable environmental target values and to develop promising mitigation strategies a detailed exposure assessment is required. This includes the identification of emission sources and the evaluation of their effect on local and regional surface water concentrations. Point source emissions via municipal or industrial wastewater that collect metal loads from a wide variety of applications and products are important anthropogenic pathways into receiving waters. Natural background and historical influences from ore-mining activities may be another important factor. Non-point emissions occur via surface runoff and erosion from drained land area. Besides deposition metals can be deposited by fertilizer application or the use of metal products such as wires or metal fences. Surface water concentrations vary according to the emission strength of sources located nearby and upstream of the considered location. A direct link between specific emission sources and pathways on the one hand and observed concentrations can hardly be established by monitoring alone. Geo-referenced models such as GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) deliver spatially resolved concentrations in a whole river basin and allow for evaluating the causal relationship between specific emissions and resulting concentrations. This study summarizes the results of investigations for the metals zinc and copper in three German catchments. 2. The model GREAT-ER The geo-referenced model GREAT-ER has originally been developed to simulate and assess chemical burden of European river systems from multiple emission sources [2]. Emission loads from private households and rainwater runoff are individually estimated based on average consumption figures, runoff rates

  1. Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins

    NASA Astrophysics Data System (ADS)

    Chavan, Sagar Rohidas; Srinivas, V. V.

    2015-09-01

    Horton-Strahler (H-S) concept has been extensively used for quantification of characteristics of a stream network since several decades. The quantified values are often sensitive to threshold area specified for initiation of streams to demarcate the network, and to the position of outlet of a catchment. This implies that inferences drawn based on derived characteristics for a stream network are likely to be inconsistent, which is undesirable. To address this, a strategy based on self-similarity properties of channel network was proposed recently by Moussa (2009), which involves estimation of equivalent H-S ratios using catchment shape descriptors that are independent of threshold area. This study investigates effectiveness of the strategy on 42 catchments of various sizes in two Indian river basins (Cauvery and Mahanadi). Effect of digital elevation model (DEM) source on estimates of equivalent H-S ratios and characteristics of Geomorphologic Instantaneous Unit Hydrograph (GIUH) derived based on the same are examined by considering SRTM and ASTER DEMs. Results indicate that self-similarity assumptions are valid for the Indian catchments. Comparison of equivalent GIUH derived for each of the catchments based on real channel network with that derived using different DEM sources indicated differences that could be attributed to DEM-based uncertainty associated with estimates of: (i) equivalent H-S ratios that are functions of the self-similarity properties of channel network, and (ii) equivalent length of highest order stream that depends on self-similarity properties and configuration/characteristics of stream network. This uncertainty cannot be ignored in hydrological studies.

  2. Groundwater vulnerability assessment in Jaworzynka's Valley catchment basin (Tatra Mountains, Poland)

    NASA Astrophysics Data System (ADS)

    Cypel, M.

    2012-04-01

    During the research an attempt was made to assess an intrinsic groundwater vulnerability to contamination in Tatra Mountains (Poland. Assessment of the degree of hazard of permeating pollutions from land surface directly to the ground water table was the main target of the research. The Jaworzynka's Valley in West Tatra Mountains was chosen as the exact research area. Jaworzynka's Valley is a typical karst catchment basin. Location of study area wasn't accidental, because in the north part of the valley there is a well which is being used as drinking water intake for the whole Zakopane City. This is the reason, why the quality of ground water is so important. The method used in this research, entitled KARSTIC, wasn't applied in Poland before. This is a parametric method of groundwater vulnerability assessment. KARSTIC is a modification of much better known DRASTIC method, specialized for specific karst terrain. KARSTIC method created by A. Davis and others (1994), was used for the first time, during a research in the Black Hills Mountains, USA. Research in Jaworzynka's Valley was based on the Black Hills study. In order to apply this method in Tatra Mountains, it was necessary to make a few changes in relation to original area. Applying KARSTIC method consists of successive stages. Schematization of hydrogeological conditions is an inseparable part of KARSTIC method. The first step bases on collecting all of available data such as maps, databases and documentations. Next stage consists of classifying all parameters employed in this method and then assigning a ratings and weights for this parameters. Subsequently it is necessary to use a mathematical formula, named Pollution Potential Index, which presents a ground water vulnerability in each point. The final step is visualization on the ground water vulnerability map. The result of research displays the high vulnerability in close proximity of the drinking water intake. The most vulnerable areas in Jaworzynka

  3. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  4. Daily anomalous high flow (DAHF) of a headwater catchment over the East River basin in South China

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Niu, Jun; Sivakumar, Bellie

    2014-11-01

    This study develops a new method for analyzing the terrestrial hydrologic responses to precipitation through using level-based daily anomalous high flow (DAHF) occurrence in a catchment. The objectives of this study are twofold: (1) to explore the DAHF features over a headwater catchment; and (2) to evaluate the performance of a hydrologic model for DAHF simulation. In this study, DAHF is defined as the daily streamflow on a given day, whose deseasonalised daily streamflow is larger than a given multiplier of the standard deviation (STD) of the long-term deseasonalised streamflow series. Streamflow observations of a headwater catchment over the period of 1952-1972 (i.e., before reservoir operation) at the Longchuan station in the East River basin in South China are studied. The macro-scale Variable Infiltration Capacity (VIC) model is used for streamflow simulation in the catchment, and wavelet analysis is performed to explore the DAHF variability. The study reveals that the percentages of the number of days with the first and second levels of DAHFs are 4.2% and 1%, respectively, for the observed streamflows, while the corresponding percentages for the VIC model-simulated streamflow are 5% and 1.3%, respectively. Application of the Kolmogorov-Smirnov goodness-of-fit test indicates that these two levels of DAHFs can be described by two probability distribution functions, namely the Lognormal distribution and Generalized Extreme Value Type II distribution, respectively. The variability spectrum of the first level DAHF is basically consistent with that of antecedent precipitation, but not for the second level DAHF, as revealed by the wavelet analysis. The VIC model has better performance on the variability simulation of the first level of DAHF.

  5. Tectonic controls of the North Anatolian Fault System (NAFS) on the geomorphic evolution of the alluvial fans and fan catchments in Erzincan pull-apart basin; Turkey

    NASA Astrophysics Data System (ADS)

    Sarp, Gulcan

    2015-02-01

    The Erzincan pull-apart basin is located in the eastern section of the North Anatolian Fault System (NAFS). The tectonic evolution of this basin is mostly controlled by strike slip master faults of the NAFS. This study examines the topography-structure relationships in an effort to evaluate the tectonic signatures in the landscape, paying special attention to recent tectonic activity. In the study, the main focus is on the tectonic controls of the NAFS on the geomorphic evolution of alluvial fans and fan catchments in the Erzincan pull-apart basin. The observations of the amount of tilting of the alluvial fans (β) and its relation with morphometric (Asymmetry Factor (AF), Hypsometric Integral (HI), Fractal analysis of drainage networks (D)) properties of the fan catchments provide valuable information about the tectonic evolution of the basin area. The results of the analyses showed that the alluvial fan and fan catchment morphology in the pull-apart basin are mainly controlled by the ongoing tectonic activity of the NAFS. The fault system in the basin has controlled the accommodation space by causing differential subsidence of the basin, and aggradation processes by causing channel migration, channel incision and tilting the alluvial fans.

  6. Monitoring of fluvial transport in small upland catchments - methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa

    2014-06-01

    In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Base-Flow Index, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean base-flow index expressed as a percent, compiled for every catchment of MRB_E2RF1 catchments of Major River Basins (MRBs, Crawford and others, 2006). Base flow is the component of streamflow that can be attributed to ground-water discharge into streams. The source data set is Base-Flow Index for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. Soil and plant composition in the Noun river catchment basin, Western Cameroon: a contribution to the development of a biogeochemical baseline

    NASA Astrophysics Data System (ADS)

    Njofang, Clémentine; Matschullat, Jörg; Amougou, Akoa; Tchouankoué, Jean Pierre; Heilmeier, Hermann

    2009-02-01

    Soils and selected edible plants of the Noun river catchment basin of western Cameroon were sampled to investigate the distribution of trace elements, based on the preliminary idea of unusual anomalies. Analytical techniques for trace elements included ICP-AES, GF-AAS, and ICP-MS. Further soil analyses comprised the mineralogy and contents of the biogenic elements carbon, nitrogen and sulphur (CNS). The trace element concentrations in the soils reflect those of the lithogeochemical background of the pluto-volcanic rocks of the region. This is consistent with the results from the mineralogical analyses and physicochemical parameters such as pH, taken in the field, which also do not suggest any geochemical anomaly. Most trace elements analyzed in the plants showed concentrations that reflect those of the soils (Al, Fe, Ti, and Rb). However, some trace elements were enriched in the plants as compared to the soils, such as Zn, Cu, Cd, Mo (excluding yam), Ni (peanut), Ba (peanut), Sr (peanut, bean), and B. Trace elements such as As, Cr, V, and Se were not bioavailable for all the analyzed plants. Besides, trace elements such as Cu, Zn, Mo, Fe, Al, Ni, B, Ti, Rb, Cs, and Ba were in the range of phytotoxicity and reached or exceeded human food tolerance level (Cu). The plants with seeds showed a higher absorption of trace elements compared to plants with tubercles.

  9. Validation of soil hydraulic pedotransfer functions at the local and catchment scale for an Indonesian basin

    NASA Astrophysics Data System (ADS)

    Booij, Martijn J.; Oldhoff, Ruben J. J.; Rustanto, Andry

    2016-04-01

    In order to accurately model the hydrological processes in a catchment, information on the soil hydraulic properties is of great importance. These data can be obtained by conducting field work, which is costly and time consuming, or by using pedotransfer functions (PTFs). A PTF is an empirical relationship between easily obtainable soil characteristics and a soil hydraulic parameter. In this study, PTFs for the saturated hydraulic conductivity (Ks) and the available water content (AWC) are investigated. PTFs are area-specific, since for instance tropical soils often have a different composition and hydraulic behaviour compared to temperate soils. Application of temperate soil PTFs on tropical soils might result in poor performance, which is a problem as few tropical soil PTFs are available. The objective of this study is to determine whether Ks and AWC can be accurately approximated using PTFs, by analysing their performance at both the local scale and the catchment scale. Four published PTFs for Ks and AWC are validated on a data set of 91 soil samples collected in the Upper Bengawan Solo catchment on Java, Indonesia. The AWC is predicted very poorly, with Nash-Sutcliffe Efficiency (NSE) values below zero for all selected PTFs. For Ks PTFs better results were found. The Wösten and Rosetta-3 PTFs predict the Ks moderately accurate, with NSE values of 0.28 and 0.39, respectively. New PTFs for both AWC and Ks were developed using multiple linear regression and NSE values of 0.37 (AWC) and 0.55 (Ks) were obtained. Although these values are not very high, they are significantly higher than for the published PTFs. The hydrological SWAT model was set up for the Keduang, a sub-catchment of the Upper Bengawan Solo River, to simulate monthly catchment streamflow. Eleven cases were defined to validate the PTFs at the catchment scale. For the Ks-PTF cases NSE values of around 0.84 were obtained for the validation period. The use of AWC PTFs resulted in slightly lower NSE

  10. Groundwater storage change in the Ngadda Catchment of the Lake Chad Basin using GRACE and ground truth data

    NASA Astrophysics Data System (ADS)

    Skaskevych, A.; Lee, J.

    2013-12-01

    The present study is to analyze groundwater storage variations in the Ngadda Catchment located in the southwestern edge of Lake Chad Basin using Gravity Recovery and Climate Experiment (GRACE) data. We collected monthly total water storage data from GRACE and monthly soil moisture data from Global Land Data Assimilation System (GLDAS) for the period of 2005 - 2009 with the spatial resolution of 1 and 0.25 degrees. We assumed surface water contributions to be negligible in the study area. The estimated groundwater storage changes were compared to the ground truth groundwater depth data collected in 2005 and 2009. The challenge of the present study is sparseness of the ground truth data in space and time. The study area is one of the data poor regions in the world due to the limited accessibility to the area. Different geostatistical techniques such as Kriging, Thiessen polygons, and Bayesian updating were applied to overcome such sparseness and modeling uncertainty under different scales and resolution. The study shows a significant increase of groundwater storage in the Ngadda catchment during the study period. Uncertainty is significant though depending on the size of the model and modeling technique. The study discusses advantages of using remote sensing data in data poor regions and how geostatistical techniques can be applied to deal with modeling uncertainty.

  11. Isotope methods as a tool to characterize nitrate origin and transport in Kocinka catchment (central Poland): preliminary results

    NASA Astrophysics Data System (ADS)

    Zurek, Anna; Wachniew, Przemyslaw; Witczak, Stanislaw; Rozanski, Kazimierz; Kania, Jaroslaw

    2014-05-01

    Kocinka catchment with 258 km2 of surface area is one of the Soils2Sea project (BONUS programme) case studies. One of the main scientific objectives of this project is to analyze how changes in land use and climate may affect the nutrient load to the Baltic Sea. Hydrogeological conditions in the Kocinka catchment are determined by Quaternary glacial till and glacifluvial sands and gravels underlain by karstic-fractured limestones which compose the Upper Jurassic Major Groundwater Basin (MGWB 326), one of four most important groundwater reservoirs in Poland. Pollution with nitrates is the most important threat to groundwater quality in this groundwater body. The concentration of nitrate in some wells, in the southern part of Kocinka catchment where outcrops of Jurassic limestones occur, exceeds the maximum permissible level of 50 mgNO3/L and constantly increases. A prerequisite for measures to reduce NO3 loads to the groundwater body is identification of sources of nitrate pollution. The working hypothesis links the high nitrate concentrations with the leaking sewage system in Czestochowa city and its surroundings but agricultural sources cannot be excluded as 66% of Kocinka catchment area is used agriculturally. A dedicated study employing environmental tracers was launched with the main aim of quantifying the pathways and dynamic of groundwater flow in the aquifer. Tritium was found throughout the system but its concentrations vary considerably. Decrease of tritium contents with depth in the aquifer was observed in one of wells. This points to active recharge and characteristic time scales of groundwater flow in order of years to several decades. To identify the origin of nitrate pollution nitrogen and oxygen isotope ratios of dissolved nitrate was analyzed in a number of wells with high nitrate concentrations. The isotopic composition of dissolved nitrates does not confirm the hypothesis on the decisive role of urban sewage in nitrate pollution. The isotope date

  12. Environmental isotopic and hydrochemical characteristics of groundwater from the Sandspruit Catchment, Berg River Basin, South Africa.

    PubMed

    Naicker, S; Demlie, M

    2014-01-01

    The Sandspruit catchment (a tributary of the Berg River) represents a drainage system, whereby saline groundwater with total dissolved solids (TDS) up to 10,870 mg/l, and electrical conductivity (EC) up to 2,140 mS/m has been documented. The catchment belongs to the winter rainfall region with precipitation seldom exceeding 400 mm/yr, as such, groundwater recharge occurs predominantly from May to August. Recharge estimation using the catchment water-balance method, chloride mass balance method, and qualified guesses produced recharge rates between 8 and 70 mm/yr. To understand the origin, occurrence and dynamics of the saline groundwater, a coupled analysis of major ion hydrochemistry and environmental isotopes (δ(18)O, δ(2)H and (3)H) data supported by conventional hydrogeological information has been undertaken. These spatial and multi-temporal hydrochemical and environmental isotope data provided insight into the origin, mechanisms and spatial evolution of the groundwater salinity. These data also illustrate that the saline groundwater within the catchment can be attributed to the combined effects of evaporation, salt dissolution, and groundwater mixing. The salinity of the groundwater tends to vary seasonally and evolves in the direction of groundwater flow. The stable isotope signatures further indicate two possible mechanisms of recharge; namely, (1) a slow diffuse type modern recharge through a relatively low permeability material as explained by heavy isotope signal and (2) a relatively quick recharge prior to evaporation from a distant high altitude source as explained by the relatively depleted isotopic signal and sub-modern to old tritium values. PMID:24552734

  13. Environmental isotopic and hydrochemical characteristics of groundwater from the Sandspruit Catchment, Berg River Basin, South Africa.

    PubMed

    Naicker, S; Demlie, M

    2014-01-01

    The Sandspruit catchment (a tributary of the Berg River) represents a drainage system, whereby saline groundwater with total dissolved solids (TDS) up to 10,870 mg/l, and electrical conductivity (EC) up to 2,140 mS/m has been documented. The catchment belongs to the winter rainfall region with precipitation seldom exceeding 400 mm/yr, as such, groundwater recharge occurs predominantly from May to August. Recharge estimation using the catchment water-balance method, chloride mass balance method, and qualified guesses produced recharge rates between 8 and 70 mm/yr. To understand the origin, occurrence and dynamics of the saline groundwater, a coupled analysis of major ion hydrochemistry and environmental isotopes (δ(18)O, δ(2)H and (3)H) data supported by conventional hydrogeological information has been undertaken. These spatial and multi-temporal hydrochemical and environmental isotope data provided insight into the origin, mechanisms and spatial evolution of the groundwater salinity. These data also illustrate that the saline groundwater within the catchment can be attributed to the combined effects of evaporation, salt dissolution, and groundwater mixing. The salinity of the groundwater tends to vary seasonally and evolves in the direction of groundwater flow. The stable isotope signatures further indicate two possible mechanisms of recharge; namely, (1) a slow diffuse type modern recharge through a relatively low permeability material as explained by heavy isotope signal and (2) a relatively quick recharge prior to evaporation from a distant high altitude source as explained by the relatively depleted isotopic signal and sub-modern to old tritium values.

  14. Simulating wind-affected snow accumulations at catchment to basin scales

    NASA Astrophysics Data System (ADS)

    Winstral, Adam; Marks, Danny; Gurney, Robert

    2013-05-01

    In non-forested mountain regions, wind plays a dominant role in determining snow accumulation and melt patterns. A new, computationally efficient algorithm for distributing the complex and heterogeneous effects of wind on snow distributions was developed. The distribution algorithm uses terrain structure, vegetation, and wind data to adjust commonly available precipitation data to simulate wind-affected accumulations. This research describes model development and application in three research catchments in the Reynolds Creek Experimental Watershed in southwest Idaho, USA. All three catchments feature highly variable snow distributions driven by wind. The algorithm was used to derive model forcings for Isnobal, a mass and energy balance distributed snow model. Development and initial testing took place in the Reynolds Mountain East catchment (0.36 km2) where R2 values for the wind-affected snow distributions ranged from 0.50 to 0.67 for four observation periods spanning two years. At the Upper Sheep Creek catchment (0.26 km2) R2 values for the wind-affected model were 0.66 and 0.70. These R2 values matched or exceeded previously published cross-validation results from regression-based statistical analyses of snow distributions in similar environments. In both catchments the wind-affected model accurately located large drift zones, snow-scoured slopes, and produced melt patterns consistent with observed streamflow. Models that did not account for wind effects produced relatively homogenous SWE distributions, R2 values approaching 0.0, and melt patterns inconsistent with observed streamflow. The Dobson Creek (14.0 km2) application incorporated elevation effects into the distribution routine and was conducted over a two-dimensional grid of 6.67 × 105 pixels. Comparisons with satellite-derived snow-covered-area again demonstrated that the model did an excellent job locating regions with wind-affected snow accumulations. This final application demonstrated that the

  15. Analysis of catchment behavior using residence time distributions with application to the Thuringian Basin

    NASA Astrophysics Data System (ADS)

    Prykhodko, Vladyslav; Heße, Falk; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2014-05-01

    Residence time distribution (RTD), as presented e.g. by Botter et al., are a novel mathematical framework for a quantitative characterization of hydrological systems. These distributions contain information about water storage, flow pathways and water sources and therefore improve the classical hydrograph methods by allowing both nonlinear as well as time-dependent dynamics. In our study we extend this previous works by applying this theoretical framework on real-world heterogeneous catchments. To that end we use a catchment-scale hydrological model (mHM) and apply the approach of Botter et al. to each spatial grid cell of mHM. To facilitate the coupling we amended Botter's approach by introducing additional fluxes (like runoff from unsaturated zone) and specifying the structure of the groundwater zone. By virtue of this coupling we could then make use of the realistic hydrological fluxes and state variables as provided by mHM. This allowed us to use both observed (precipitation, temperature, soil type etc.) and modeled data sets and asses their impact on the behavior of the resulting RTD's. We extended the aforementioned framework to analyze large catchments by including geomorphic effect due to the actual arrangement of subcatchments around the channel network using the flood routing algorithm of mHM. Additionally we study dependencies of the stochastic characteristics of RTD's on the meteorological and hydrological processes as well as on the morphological structure of the catchment. As a result we gained mean residence times (MRT) of base flow and groundwater flow on the mesoscale (4km x 4km). We compare the spatial distribution of MRT's with land cover and soil moisture maps as well as driving forces like precipitation and temperature. Results showed that land cover is a major predictor for MRT's whereas its impact on the mean evapotranspiration time was much lower. Additionally we determined the temporal evolution of mean travel times by using time series of

  16. Two-step calibration and proxy-basin validation of ensemble rainfall-runoff predictions in a Swedish mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-Francois; Viney, Neil R.; Seibert, Jan; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    (or skill). A proxy-basin validation approach was then performed to simulate ungauged basin conditions. Calibrated parameter sets of one discharge station were used to generate predictions for the other discharge record. Weights and regression coefficients computed in the above mentioned calibration step for each catchment were utilised for the uncalibrated predictions of the other catchment. The two previously defined criteria were also calculated for the newly created ensemble predictions. They were used to investigate the evolution of the quality of the single predictions between members and compiled ensembles. In the same way the evolution of the described uncertainty bounds between members and full set of generated ensembles was addressed. Improvement was achieved by merging single runs in ensembles, even with only 2 members, fulfilling the ensemble approach aim. At the same time, uncertainty bounds of the predictions were always reduced for the ensembles compared to single model calibrations and these bounds included most of the measured discharges. We therefore concluded that the application of multi-model ensembles in hydrology was one way to overcome structural model uncertainty issues.

  17. Attributes for MRB_E2RF1 Catchments by Major Rivers Basins in the Conterminous United States: Total Precipitation, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the catchment-average total precipitation in millimeters multiplied by 100 for 2002, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster data set produced by the Spatial Climate Analysis Service at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Atmospheric (Wet) Deposition of Inorganic Nitrogen, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average atmospheric (wet) deposition, in kilograms per square kilometer, of inorganic nitrogen for the year 2002 compiled for every catchment for MRB_E2RF1 of Major River Basins (MRBs, Crawford and others, 2006). The source data set for wet deposition was from the USGS's raster data set atmospheric (wet) deposition of inorganic nitrogen for 2002 (Gronberg, 2005). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every catchment of MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  19. Seismic Response of a Sedimentary Basin: Preliminary Results from Strong Motion Downhole Array in Taipei Basin

    NASA Astrophysics Data System (ADS)

    Young, B.; Chen, K.; Chiu, J.

    2013-12-01

    The Strong Motion Downhole Array (SMDA) is an array of 32 triggered strong motion broadband seismometers located at eight sites in Taipei Basin. Each site features three to five co-located three-component accelerometers--one at the surface and an additional two to four each down independent boreholes. Located in the center of Taipei Basin is Taipei City and the Taipei metropolitan area, the capital of Taiwan and home to more than 7 million residents. Taipei Basin is in a major seismic hazard area and is prone to frequent large earthquakes producing strong ground motion. This unique three-dimension seismic array presents new frontiers for seismic research in Taiwan and, along with it, new challenges. Frequency-dependent and site-specific amplification of seismic waves from depth to surface has been observed: preliminary results indicate that the top few tens of meters of sediment--not the entire thickness--are responsible for significant frequency-dependent amplification; amplitudes of seismic waves at the surface may be as much as seven times that at depth. Dominant amplification frequencies are interpreted as quarter-wavelength constructive interference between the surface and major interfaces in the sediments. Using surface stations with known orientation as a reference, borehole seismometer orientations in these data--which are unknown, and some of which vary considerably from event to event--have been determined using several methods. After low-pass filtering the strong motion data, iteratively rotating the two horizontal components from an individual borehole station and cross-correlating them with that from a co-located surface station has proven to be very effective. In cases where the iterative cross-correlation method does not provide a good fit, rotating both surface and borehole stations to a common axis of maximum seismic energy provides an alternative approach. The orientation-offset of a borehole station relative to the surface station may be

  20. Preliminary investigations of toxicity in the Georges Bay catchment, Tasmania, Australia

    PubMed Central

    Bleaney, Alison; Hickey, Christopher W.; Stewart, Michael; Scammell, Marcus; Senjen, Rye

    2015-01-01

    North-eastern Tasmania, Australia has been an area of major production for Pacific oysters (Crassostrea gigas) for over 25 years. Since the mid-1990s, increased oyster mortality has been observed. The purpose of the present study was to identify the agent causing aquatic toxicity and to investigate whether there is a chemical and/or toxicological link between river foam and monoculture timber plantation forests of exotic eucalypts (Eucalyptus nitens) present in the catchment area. Foam samples from the George River catchment demonstrated high toxicity to a freshwater cladoceran and larvae of a marine blue mussel species. After filtration to remove most particulates, foam samples also demonstrated a marked reduction in toxicity to blue mussels, which suggested that the toxicity is particle associated. Foam and leaf extracts of E. nitens were then fractionated using HPLC and size exclusion chromatography and the resulting fractions were screened for cladoceran and blue mussel toxicity. Toxicity was detected in fractions common to both the foam and the leaf extracts. This study suggests that there may be a chemical and toxicological relationship between foam and E. nitens leaf components. PMID:25745193

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Basin Characteristics, 2002 Geospatial_Data_Presentation_Form: tabular digital data

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents basin characteristics for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). These characteristics are reach catchment shape index, stream density, sinuosity, mean elevation, mean slope and number of road-stream crossings. The source data sets are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011) and the U.S. Census Bureau's TIGER/Line Files (U.S. Census Bureau,2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  2. Stable Water Isotope Tracing and Model Evaluation in Large Basins: the `` Special Case'' of Semi-Arid Catchments

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.; Airey, P.; McGuffie, K.; Bradd, J.; Stone, D.

    2004-05-01

    The use of stable water isotopes in hydro-climate monitoring and modelling offers a new means of measuring and parameterizing critical processes. Here we review these specifically for the case of semi-arid basins where water resources are essential for potable supply and agriculture around the world. The verity and performance of existing models is examined using observations and simulations of stable water isotopes in rivers, aquifers and their precedent precipitations. Here we report on the Murray-Darling basin in Australia as one example of the `` special case'' of semi-arid catchments and use these data and results to examine evaluation and refinement of models and predictions on three time-scales: (i) minutes to months, (ii) years to decades and (iii) tens to thousands of years. We find that modelled isotopic depletions become increasingly sensitive to parameterized characteristics as the time period is decreased and/or a significant atmospheric circulation disturbance occurs. Minute to monthly isotope fluxes simulated by land surface schemes and river hydrology models allow comparison of the partition of precipitation between transpiration, run-off and open-water evaporation with isotope observations from 2002 and 2003. A range of atmospheric global circulation models (GCMs) simulations of key hydrological parameters over years to decades reveals poor results for the majority (13 in 20). We show that between 1979 and 1996 modelled groundwater is apparently being `tapped' in many of these GCMs at rates required to allow evaporation to greatly exceed precipitation (Ev>>Pr). Analysis of the `` good"'' versus the `` poor'' hydro-climate models reveals that unwitting application of `` poor'' models to current and future hydrological issues in semi-arid basins generates errors of over 100% in predictions. Isotopes demonstrate that in warm semi-arid regions, in contrast to the behaviour in cool temperate zones, groundwater recharge occurs only when rainfall

  3. Preliminary catalog of the sedimentary basins of the United States

    USGS Publications Warehouse

    Coleman, James L.; Cahan, Steven M.

    2012-01-01

    One hundred forty-four sedimentary basins (or groups of basins) in the United States (both onshore and offshore) are identified, located, and briefly described as part of a Geographic Information System (GIS) data base in support of the Geologic Carbon Dioxide Sequestration National Assessment Project (Brennan and others, 2010). This catalog of basins is designed to provide a check list and basic geologic framework for compiling more detailed geologic and reservoir engineering data for this project and other future investigations.

  4. Environmental flows allocation in river basins: Exploring allocation challenges and options in the Great Ruaha River catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Lankford, Bruce A.; Mahoo, Henry F.; Mashauri, Damus A.

    Provision for environmental flows is currently becoming a central issue in the debate of integrated water resources management in river basins. However, the theories, concepts and practical applications are still new in most developing countries with challenging situations arising in complex basins with multiple water uses and users and increasing water demands and conflicts exemplified by the Great Ruaha River catchment in Tanzania. The research has shown that a flow of 0.5-1 m 3/s for Great Ruaha River through the Ruaha National Park is required to sustain the environment in the park during the dry season. But a question is how can this be achieved? This paper reviews the challenges and suggests some options for achieving environmental water allocation in river basins. The following challenges are identified: (a) the concept of environmental flows is still new and not well known, (b) there is limited data and understanding of the hydrologic and ecological linkages, (c) there is insufficient specialist knowledge and legislative support, (d) there are no storage reservoirs for controlled environmental water releases, and (e) there are contradicting policies and institutions on environmental issues. Notwithstanding these challenges, this paper identifies the options towards meeting environmental water allocation and management: (a) conducting purposive training and awareness creation to communities, politicians, government officials and decision makers on environmental flows, (b) capacity building in environmental flows and setting-up multidisciplinary environmental flows team with stakeholders involvement, (c) facilitating the development of effective local institutions supported by legislation, (d) water harvesting and storage and proportional flow structures design to allow water for the environment, and (e) harmonizing policies and reform in water utilization and water rights to accommodate and ensure water for the environment.

  5. Estimation of the relative severity of floods in small ungauged catchments for preliminary observations on flash flood preparedness: a case study in Korea.

    PubMed

    Kim, Eung Seok; Choi, Hyun Il

    2012-04-01

    An increase in the occurrence of sudden local flooding of great volume and short duration has caused significant danger and loss of life and property in Korea as well as many other parts of the World. Since such floods usually accompanied by rapid runoff and debris flow rise quite quickly with little or no advance warning to prevent flood damage, this study presents a new flash flood indexing methodology to promptly provide preliminary observations regarding emergency preparedness and response to flash flood disasters in small ungauged catchments. Flood runoff hydrographs are generated from a rainfall-runoff model for the annual maximum rainfall series of long-term observed data in the two selected small ungauged catchments. The relative flood severity factors quantifying characteristics of flood runoff hydrographs are standardized by the highest recorded maximum value, and then averaged to obtain the flash flood index only for flash flood events in each study catchment. It is expected that the regression equations between the proposed flash flood index and rainfall characteristics can provide the basis database of the preliminary information for forecasting the local flood severity in order to facilitate flash flood preparedness in small ungauged catchments.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Minimum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Maximum Temperature, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Mean Annual R-factor, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average annual R-factor, rainfall-runoff erosivity measure, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data are from Christopher Daly of the Spatial Climate Analysis Service, Oregon State University, and George Taylor of the Oregon Climate Service, Oregon State University (2002). The ERF1_2 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Estimated Mean Annual Natural Groundwater Recharge, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean annual natural groundwater recharge, in millimeters, compiled for every MRB_E2RF1catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Estimated Mean Annual Natural Ground-Water Recharge in the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  10. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: STATSGO Soil Characteristics

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents estimated soil variables compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  11. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Saturation Excess-Overland Flow, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average value of saturation overland flow, in percent of total streamflow, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set is Saturation Overland Flow Estimated by TOPMODEL for the Conterminous United States (Wolock, 2003). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  12. Attributes for MRB_E2RF1 Catchments in Selected Major River Basins of the Conterminous United States: Contact Time, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average contact time, in units of days, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). Contact time, as described in Vitvar and others (2002), is defined as the baseflow residence time in the subsurface. The source data set was the U.S. Geological Survey's (USGS) 1-kilometer grid for the conterminous United States (D.M. Wolock, U.S. Geological Survey, written commun., 2008). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) RF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Precipitation, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; J.W. Brakebill, U.S. Geological Survey, written commun., 2008). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Ammonium (NH4)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of ammonium (NH4) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NH4 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Total Inorganic Nitrogen

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized atmospheric (wet) deposition, in kilograms per square kilometer multiplied by 100, of Total Inorganic Nitrogen for the year 2002 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). Estimates of Total Inorganic Nitrogen deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  16. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Normalized Atmospheric Deposition for 2002, Nitrate (NO3)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the average normalized (wet) deposition, in kilograms per square kilometer multiplied by 100, of Nitrate (NO3) for the year 2002 compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). Estimates of NO3 deposition are based on National Atmospheric Deposition Program (NADP) measurements (B. Larsen, U.S. Geological Survey, written. commun., 2007). De-trending methods applied to the year 2002 are described in Alexander and others, 2001. NADP site selection met the following criteria: stations must have records from 1995 to 2002 and have a minimum of 30 observations. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  17. Preliminary stratigraphic and paleomagnetic results from Neogene basins across the Anatolian Plateau (Turkey).

    NASA Astrophysics Data System (ADS)

    Lucifora, Stella; Cifelli, Francesca; Mazzini, Ilaria; Cosentino, Domenico; Mattei, Massimo; Cipollari, Paola; Gliozzi, Elsa; Palolo Cavinato, Gian

    2010-05-01

    An integrated paleomagnetic and stratigraphic study on Neogene basins across the Anatolian Plateau was carried out. This study is developed within the VAMP (Vertical Anatolian Movement Project), an interdisciplinary project aimed to the recent tectonic evolution of the central Anatolian Plateau. The studied areas are located in southern Turkey (Adana, Mut and Ermenek basins) and in northern Turkey (Kazan, Çankiri, Kastamonu, Boyabat and Sinop basins). For paleomagnetic analyses we sampled 1062 standard cylindrical samples from 13 stratigraphic sections, and 746 samples for paleontological analysis were taken from the same sections. AMS (Anisotropy of Magnetic Susceptibility), magnetic mineralogy and paleomagnetic polarity data are presented together with the results of the integrated stratigraphic analyses. In the Southern Turkey basins preliminary results show the diffuse presence of authigenic iron sulphides, together with magnetite, as main magnetic carriers. In these sections the iron-sulphides Characteristic Natural Magnetization (ChRM) component is characterized by inconsistent polarity record, suggesting that iron-sulphides have a late diagenetic origin. Conversely, magnetite bearing sediments show more reliable results in term of magnetic polarity interpretations. Preliminary stratigraphic and paleomagnetic results from the southern margin of the plateau allow us both to refine the stratigraphy for the late Miocene of the Adana Basin and to better constrain the age of the youngest marine deposits of the Mut and Ermenek basins. In the late Miocene of the Adana Basin evidence of the Messinian salinity crisis led to a new stratigraphic framework specially for the Messinian-Pliocene interval. Thick fluvial conglomerates from the uppermost Messinian deposits of the Adana Basin, which could be linked to the activation of the southern margin of the plateau, allow us to constrain at about 5.4 Ma the uplift of the central Anatolian Plateau. On the other hand, the

  18. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  19. Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Canty, Morton; Kunkel, Ralf; Menz, Gunter; Vereecken, Harry; Wendland, Frank

    2008-05-01

    SummaryHydrological modelling of mesoscale catchments is often adversely affected by a lack of adequate information about specific site conditions. In particular, digital land cover data are available from data sets which were acquired on a European or a national scale. These data sets do not only exhibit a restricted spatial resolution but also a differentiation of crops and impervious areas which is not appropriate to the needs of mesoscale hydrological models. In this paper, the impact of remote sensing data on the reliability of a water balance model is investigated and compared to model results determined on the basis of CORINE (Coordination of Information on the Environment) Land Cover as a reference. The aim is to quantify the improved model performance achieved by an enhanced land cover representation and corresponding model modifications. Making use of medium resolution satellite imagery from SPOT, LANDSAT ETM+ and ASTER, detailed information on land cover, especially agricultural crops and impervious surfaces, was extracted over a 5-year period (2000-2004). Crop-specific evapotranspiration coefficients were derived by using remote sensing data to replace grass reference evapotranspiration necessitated by the use of CORINE land cover for rural areas. For regions classified as settlement or industrial areas, degrees of imperviousness were derived. The data were incorporated into the hydrological model GROWA (large-scale water balance model), which uses an empirical approach combining distributed meteorological data with distributed site parameters to calculate the annual runoff components. Using satellite imagery in combination with runoff data from gauging stations for the years 2000-2004, the actual evapotranspiration calculation in GROWA was methodologically extended by including empirical crop coefficients for actual evapotranspiration calculations. While GROWA originally treated agricultural areas as homogeneous, now a consideration and differentiation

  20. Mn-oxides and sequestration of heavy metals in a suburban catchment basin of the Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Adams, James P.; Kirst, Robert; Kearns, Lance E.; Krekeler, Mark P. S.

    2009-09-01

    The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N 78°19.204°W) were investigated using X-ray diffraction (XRD), Scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) to determine the nature of Mn-oxide coatings and relationship to bound heavy metals. Mn-oxides are poorly crystalline and occur as subhedral to anhedral platy particles and more rarely as euhedral plates. Micronodules are a commonly observed texture. Chemical compositions of coatings are variable with average major constituent concentrations being Mn (33.38 wt%), Fe (11.88 wt%), Si (7.33 wt%), Al (5.03 wt%), and Ba (0.90 wt%). Heavy metals are found in the coatings with Zn being most prevalent, occurring in approximately 58% of analyses with an average concentration of (0.66 wt%). Minor amounts of Co, Ni, Pb, and Cl are observed. Heavy metals and Cl are interpreted as being derived from road pollution. Mn-oxides can serve as a sequestration mechanism for pollution but may also release heavy metals. Field and laboratory observations indicate Mn-oxides occurring on the surface of the clasts can be mechanically mobilized. This is a mechanism for transporting heavy metals into the Chesapeake Bay watershed. Deicing agents may serve as a mechanism to release heavy metals through cation exchange and increased ionic strength. This is the first detailed mineralogical investigation of Mn-oxides and the roles they may play in pollution in the Chesapeake Bay.

  1. How accurately are climatological characteristics and surface water and energy balances represented for the Colombian Caribbean Catchment Basin?

    NASA Astrophysics Data System (ADS)

    Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan

    2013-09-01

    In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while

  2. Measuring fallout radionuclides to constrain the origin and the dynamics of suspended sediment in an agricultural drained catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Foucher, Anthony; Laceby, J. Patrick; Salvador-Blanes, Sébastien; Lefèvre, Irène; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion reaches problematic levels in agricultural areas of Northwestern Europe where tile drains may accelerate sediment transfer to rivers. This supply of large quantities of fine sediment to the river network leads to the degradation of water quality by increasing water turbidity, filling reservoirs and transporting contaminants. Agricultural patterns and landscapes features have been largely modified by human activities during the last century. To investigate erosion and sediment transport in lowland drained areas, a small catchment, the Louroux (24 km²), located in the French Loire River basin was selected. In this catchment, channels have been reshaped and more than 220 tile drains outlets have been installed after World War II. As a result, soil erosion and sediment fluxes strongly increased. Sediment supply needs to be better understood by quantifying the contribution of sources and the residence times of particles within the catchment. To this end, a network of river monitoring stations was installed, and fallout radionuclides (Cs-137, excess Pb-210 and Be-7) were measured in rainwater (n=3), drain tile outlets (n=4), suspended sediment (n=15), soil surface (n=30) and channel bank samples (n=15) between January 2013 and February 2014. Cs-137 concentrations were used to quantify the contribution of surface vs. subsurface sources of sediment. Results show a clear dominance of particles originating from surface sources (99 ± 1%). Be-7 and excess Pb-210 concentrations and calculation of Be-7/excess Pb-210 ratios in rainfall and suspended sediment samples were used to estimate percentages of recently eroded sediment in rivers. The first erosive winter storm mainly exported sediment depleted in Be-7 that likely deposited on the riverbed during the previous months. Then, during the subsequent floods, sediment was directly eroded and exported to the catchment outlet. Our results show the added value of combining spatial and temporal tracers to characterize

  3. Preliminary assessment of the Lago Mercedes discovery, Magallanes Basin, Chile

    SciTech Connect

    Dean, J.S. ); Wilson, J.T.; Mainzer, G.F. ); Escobar, F.; Aguirre, G. )

    1993-02-01

    The Lago Mercedes No. 1 well, spudded January 17, 1991, was positioned to test a seismically defined structural culmination located along a blind thrust near the deep foreland axis of the western magallanes Basin. This fault, which defines the leading edge of Andean-related thrust detachment in the region, is responsible for a trap geometry that is genetically related to, but fundamentally different from the numerous unrooted Tertiary folds in the area. Although the Lower Cretaceous Springhill Formation comprised the primary target, it was anticipated that the geometry of the fold allowed for the possibility of several fractured intervals in the hanging wall, including volcaniclastic rocks of the underlying Jurassic Tobifera [open quotes]basement[close quotes] sequence, recently found to be productive elsewhere on the eastern platform of the basin. During drilling of the well, gas and condensate shows were encountered in numerous horizons. The most surprising of these later proved to be a Permo-Triassic granodiorite underlying the Tobifera. Although relatively widespread on outcrop, this represents the first time a pre-rift intrusive body has been penetrated in the subsurface. All of the hydrocarbon-bearing intervals exhibit minimal matrix porosity but varying degrees of fracturing. Subsequent testing of the well yielded combined flow rates of in excess of 12 MMCFD of rich gas and 1140 BPD of 52 A.P.I. condensate. The most prolific zone corresponds to an intensely fractured and partially weathered interval in the uppermost portion of the intrusive. Additional testing is planned prior to any estimate of recoverable reserves. Nevertheless, this unique accumulation underscored the possibility for nonconventional reservoirs throughout the lightly explored Sub-Andean basin trend, particularly fold-thrust belts which have the potential to [open quotes]create[close quotes] reservoirs and trap geometry simultaneously.

  4. Debris-flow frequency and dynamics of an Alpine catchment during the past 150 years, the Schimbrig drainage basin, Central Switzerland

    NASA Astrophysics Data System (ADS)

    Savi, Sara; Bollschweiler, Michelle; Stoffel, Markus; Schlunegger, Fritz

    2010-05-01

    This paper focuses on links between landsliding and debris-flow activity in a ca. 4 km2-large drainage basin located at the northern foothills of the Central Swiss Alps. Debris-flow frequency of the recent past was reconstructed using dendrogeomorphic methods. In addition, the source area was mapped in detail to assess the spatial distribution of landslides, and to determine the connectivity between hillslopes and the channel network. The geomorphic map indicates that the hillslopes host abundant landslides sourced in Paleogene Flysch and Molasse sandstone-mudstone alternations. Major differences in the landscape architecture between the eastern and western sides were identified. In particular, the eastern segment is characterized by a >300'000 m2 large earth flow (Schimbrig landslide) that is 5-10 m deep. This flow experienced a phase of high slip rates >2m day-1 between September 1994 and May 1995, transferring a total of 350'000 m3 of material. In contrast, the western side is characterized by a network of deeply incised channels (>50 m) bordered by hillslopes that host landslides that generally measure <15'000 m2. On these hillslopes, the downslope transfer of sediment is dominated by soil creep or by rotational and translational slip. The depositional fan at the outlet of the catchment has an approximate size of 50'000 m2. The surface is characterized by levees, lobes and channels and is covered by a conifer forest comprising spruces (Picea abies (L.) Karst.) and firs (Abies alba Mill.). A total of 325 increment cores were sampled from 162 trees obviously influenced by past debris-flow activity. Preliminary analysis of the tree samples indicate that 64% of the tree grew up between 1900 and 2009. 34% of the tree samples showed germination dates between 1800 and 1900, and the remaining 2% of the sampled specimens germinated before 1800. Dendrogeomorphic analyses depict that nearly 50% of the sampled trees were affected by debris-flow activity in the 1990s. This

  5. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Tree Canopy

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set represents tree canopy percentage for the conterminous United States for 2001. The Canopy Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Imperviousness

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  7. Preliminary analysis of ERTS-relayed water resources data in the Delaware River Basin

    NASA Technical Reports Server (NTRS)

    Paulson, R. W.

    1973-01-01

    Preliminary analysis of ERTS-DCS data from water-resources stations in the Delaware River Basin indicates that the Data-Collection System is performing well. Data-Collections Platforms have been successfully interfaced with five stream-gaging station and three ground-water observation wells and are being interfaced with 12 water-quality monitors in the basin. Data are being relayed during four or five ERTS orbital passes per day, which is within the design specifications of the ERTS-DCS.

  8. Selected examples of needs for long term pilot areas in Mediterranean catchments: a mountain traditional agricultural system and a large and regulated hydrographic basin in Southern Spain

    NASA Astrophysics Data System (ADS)

    José Polo, María; Herrero, Javier; Millares, Agustín; José Pérez-Palazón, María; Pimentel, Rafael; Aguilar, Cristina; Jurado, Alicia; Contreras, Eva; Gómez-Beas, Raquel; Carpintero, Miriam; Gulliver, Zacarías

    2015-04-01

    Integrated River Basin Management (IRBM) aims at planning water, land and other natural resources for an equitable and sustainable management, also capable of preserving or restoring freshwater ecosystems. Long term series of significant variables at different scales and a sound knowledge of the river basin processes are needed to establish the current state and past&future evolution of the hydrological system, soil use and vegetation distribution, and their social impacts and feedbacks. This is particularly crucial if future scenario analyses are to be performed to assess decision-making processes and adaptive plans. This work highlights the need for an adequate design and development of process-oriented monitoring systems at the basin scale in a decision-making framework. First, the hydrologic monitoring network of the Guadalfeo River Basin, in the southern face of Sierra Nevada Range (Spain), is shown, in a pilot catchment of 1300 km2 in which snow processes in Mediterranean conditions have been studied over the last ten years with a holistic approach. The network development and the main features of the dataset are described together with their use for different scientific and environmental applications; their benefits for assessing social and economic impact in the rural environment are shown from a study case in which the sustainability of ancient channels fed by snowmelt, in use since the XIIIth century for traditional irrigated crops in the mountainous area, was assessed in a future scenarios analyses. Secondly, the standard flow and water quality monitoring networks in the Guadalquivir River Basin, a large (57400 km2) and highly regulated agricultural catchment in southern Spain, are shown, and their strengths and weaknessess for an IRBM framework are analysed. Sediments and selected pollutants are used to trace soil erosion and agricultural/urban exports throughout the catchment, and the final loads to the river estuary in the Atlantic Ocean are assessed

  9. Hydro-meteorological functioning of the Eastern Andean Tropical Montane Cloud Forests: Insight from a paired catchment study in the Orinoco river basin highlands

    NASA Astrophysics Data System (ADS)

    Ramirez, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Leemans, Rik

    2016-04-01

    Tropical forests regulate large scale precipitation patterns and catchment-scale streamflow, while tropical mountains influence runoff by orographic effects and snowmelt. Along tropical elevation gradients, these climate/ecosystem/hydrological interactions are specific and heterogeneous. These interactions are poorly understood and represented in hydro-meteorological monitoring networks and regional or global earth system models. A typical case are the South American Tropical Montane Cloud Forests (TMCF), whose water balance is strongly driven by fog persistence. This also depends on local and up wind temperature and moisture, and changes in this balance alter the impacts of changes in land use and climate on hydrology. These TMCFs were until 2010 only investigated up to 350km from the coast. Continental TMCFs are largely ignored. This gap is covered by our study area, which is part of the Orinoco river basin highlands and located on the northern Eastern Andes at an altitudinal range of 1550 to 2300m a.s.l. The upwind part of our study area is dominated by lowland savannahs that are flooded seasonally. Because meteorological stations are absent in our study area, we first describe the spatial and seasonal meteorological variability and analyse the corresponding catchment hydrology. Our hydro-meteorological data set is collected at three gauged neighbouring catchments with contrasting TMCF/grassland cover from June 2013 to May 2014 and includes hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and runoff measurements. We compare our results with recent TCMF studies in the eastern Andean highlands in the Amazon basin. The studied elevational range always shows wetter conditions at higher elevations. This indicates a positive relation between elevation and fog or rainfall persistence. Lower elevations are more seasonally variable. Soil moisture data indicate that TMCFs do not use persistently more water than grasslands

  10. A Preliminary Analysis of Disturbance Tracksover the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Karas, S.; Zangvil, A.

    The Mediterranean basin experiences considerable cyclone activity mostly during fall, winter and spring and diminished activity during summer. In this study we present results of synoptic disturbance track analysis for two contrasting winter months and two, near average, summer months over the eastern Mediterranean. The surface and 500hPa disturbance tracks were subjectively analyzed from two points of view. First, looking at tracks of conventionally defined cyclone centers (eddies) based on actual pressure and height distribution and second, looking at tracks of transient cyclonic disturbances (TRADs), defined as centers of negative deviations from the time mean. The second type of analysis demonstrated a considerable increase in the number of detectable tracks. Over the Mediterranean and vicinity the ratio between the number of surface TRAD tracks to cyclone tracks is, about 2, whereas at 500hPa the ratio is much higher, about 5. However, the average life span of transient disturbances was only slightly longer than that of conventional cyclones (mainly at 500hPa). At the surface and at 500hPa about 50% of the cyclone tracks coincided to a certain extent with TRAD tracks. In summer, when conventional analysis over the eastern Mediterranean yields mostly quasi-stationary low pressure centers associated with the Persian Gulf Trough, we detected clear signs of transient disturbances. Some interpretations of the differences between cyclones and TRADs in terms of weather in the eastern Mediterranean are also made.

  11. Lower Permian Dry Mountain trough, eastern Nevada: preliminary basin analysis

    SciTech Connect

    Schwarz, D.L.; Snyder, W.S.; Spinosa, C.

    1987-08-01

    The Lower Permian Dry Mountain trough (DMT) is one of several basins that developed during the Late Pennsylvanian to Permian along the western edge of the North American continent. A tectonic mechanism has been suggested for the subsidence of the DMT, possibly due to reactivation of the Antler orogenic belt during the waning stages of Ancestral Rocky Mountain deformation. The DMT records marked subsidence with the appearance during the Artinskian (latest Wolfcampian) of a deeper water facies that consists of thin-bedded silty micrites and micritic mudstones rich in radiolarians and sponge spicules, characterized by a relative abundance of ammonoids, and rarer conodonts and Nereites ichnofacies trace fossils. Taxa recovered from a distinctive concretionary horizon at various locations provide an Artinskian datum on which to palinspastically reconstruct the DMT paleogeography. These taxa include ammonoids: Uraloceras, Medlicottia, Marathonites, Crimites, Metalegoceras, properrinitids; and conodonts: Neogondolella bisselli, Sweetognathus whitei, S. behnkeni, and Diplognathodus stevensi. The western margin facies of the DMT consists of Permian Carbon Ridge/Garden Valley Formations. Here, lowermost black Artinskianage euxinic micrites, considered a potential source rock for petroleum generation, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by a thick, eastwardly prograding conglomerate wedge. Seismic profiles across Diamond Valley indicate a 3.0-4.6-km thick Tertiary sequence above the Paleozoic strata.

  12. Calculation of Sediment yield at the S 7-4 catchment of the Shirindareh Watershed of Iran using the River Basins model

    NASA Astrophysics Data System (ADS)

    Spalevic, Velibor; Barovic, Goran; Vujacic, Dusko; Mijanovic, Dragica; Curovic, Milic; Tanaskovik, Vjekoslav; Behzadfar, Morteza

    2016-04-01

    Soil erosion is driven by complex processes involving detachment of material caused by raindrops and flow tractions, which is further transported by the wind or by the water flow. The region of Shirindareh Watershed of Iran is particularly prone to erosion because it is subject to long dry periods followed by heavy erosive rainfalls, falling on steep slopes with soils prone to erosion. The identification of areas that are vulnerable to those processes is needed for improving our knowledge about the extent of the areas affected and for developing measures to control the problem. In our opinion, models can be very supportive tools for understanding of the soil erosion and sediment transport at the watershed scale. This study aims to illustrate the possibility in computing the runoff and sediment yield at the catchment scale using the River Basins model of Spalevic, which is based on the Erosion Potential Method of Garilovic. We apply the mode in the S 7-4 catchment of the Shirindareh Watershed of Iran using the computer graphic model, which allowed the quantification of the environmental effects of erosion and the land use measures applied at the studied area. Model calculations showed that the calculated peak discharge from the river basin was 61 m3 s-1 for the incidence of 100 years and the net soil loss was 5806 m3 per year, specific 159 m3km-2 per year. According to Gavrilovic this amount of soil loss indicates very weak erosion category. The method we used in this study can also be of interest for soil erosion modelling in other basins. The proper implementation of best management practices and control measures are crucial for protecting land resources in the Shirindareh Watershed and the other river basins with similar physical - geographical conditions.

  13. Permian Basin, Texas: Volume 1, Text: Final preliminary design report

    SciTech Connect

    Not Available

    1988-01-01

    This report is a description of the preliminary design for an Exploratory Shaft Facility (ESF) at the proposed 49 acre site located 21 miles north of Hereford, Texas in Deaf Smith County. Department of Energy must conduct in situ testing at depth to ascertain the engineering and environmental suitability of the site for further consideration for nuclear waste repository development. The ESF includes the construction of two 12-ft diameter engineered shafts for accessing the bedded salt horizon to conduct in situ tests to ascertain if the site should be considered a candidate site for the first High Level Nuclear Waste Repository. This report includes pertinent engineering drawings for two shafts and all support facilities necessary for shaft construction and testing program operation. Shafts will be constructed by conventional drill-and-blast methods employing ground freezing prior to shaft construction to stabilize the existing groundwater and soil conditions at the site. A watertight liner and seal system will be employed to prevent intermingling of aquifers and provide a stable shaft throughout its design life. 38 refs., 37 figs., 14 tabs.

  14. Las Vegas Basin Seismic Response Project: Preliminary Results From Seismic Refraction Experiments, Las Vegas, NV.

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Harder, S. H.; Kaip, G.; Luke, B.; Buck, B. J.; Hanson, A. D.

    2002-12-01

    NW/SE trending step in the basin floor across which the basement drops from 2 to 4 km in depth. In addition, the profiles cross several Quaternary fault scarps, which have recently been identified as tectonic in origin. Preliminary analyses of the seismic refraction data indicate that the basin has an average P-wave velocity of 4.5 km/s and is in agreement with the estimated basin depths from isostatic gravity studies (2 to 5 km depth). Both tomographic inversion and forward modeling techniques are being used to analyze these data. These data will be used to produce a velocity model of the basin and image the basin/bedrock contact. In addition, these data will be integrated into a community model, which is being produced by the Las Vegas Basin Seismic Response working group to further assess the site response of the basin.

  15. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: NLCD 2001 Land Use and Land Cover

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of land use and land cover from the National Land Cover Dataset 2001 (LaMotte, 2008), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set represents land use and land cover for the conterminous United States for 2001. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering the South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5) and the Pacific Northwest (MRB7) river basins.

  16. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  17. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  18. Preliminary assessment of tree mortality near F- and H-area seepage basins

    SciTech Connect

    Loehle, C; Gladden, J

    1988-01-28

    A preliminary assessment was conducted to evaluate factors that may have been responsible for the vegetation damage that has occurred in groundwater seeps downslope from the F- and H-area seepage basins. The factors that were considered included altered hydrology, toxicity from hazardous chemical constituents associated with seepage basin operation, and toxicity from non-hazardous constituents associated with basin operation. It was concluded that the observed damage was not likely to have resulted from altered hydrologic conditions or hazardous constituents associated with basin operation. Insufficient information is currently available to determine definitively which of the non-hazardous constituents, alone or in concert, were responsible for the observed vegetation damage. The most likely explanation, however, is that elevated Na, pH, and conductivity is outcropping seep water are responsible for tree mortality. All three of these factors will return to ambient levels over a period of several years when basin operation ceases. Faster remediation can be achieved using lime at the seep line.

  19. Baseflow and stormflow metal fluxes from two small agricultural catchments in the Coastal Plain of the Chesapeake Bay Basin, United States

    USGS Publications Warehouse

    Miller, C.V.; Foster, G.D.; Majedi, B.F.

    2003-01-01

    Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.

  20. Preliminary investigation of oil and source rock organic geochemistry from selected Tertiary basins of Thailand

    NASA Astrophysics Data System (ADS)

    Lawwongngam, Kulwadee; Philp, R. P.

    Selected samples of crude oils and extracts from source rocks obtained from six Thailand Tertiary basins of the central plain and of the Gulf of Thailand regions were examined for geochemical properties and molecular compositions. Analyses were performed using GC, CGCMS and carbon isotope mass spectrometry. Though these results should be viewed as preliminary, the results are significant in terms of a regional understanding of the petroleum geochemistry of Thailand. Results from bulk geochemical properties and biomarker assemblages characterize derivatives of organic sources deposited in lacustrine environments. The organic matter is mainly derived from algae with varying amounts of higher plant material. However, an observed variation in the pristane/phytane ratios among the samples may imply differences in depositional oxicity. On the other hand, basinal differences in sedimentation rates, or in the oxygen concentration of the varying waters and/or sediment pore-waters resulted in spatial heterogeneities in the quantity and degree of preservation of the organic matter. In addition, a degree of physical separation between these paleo-lacustrine environments is indicated by differences in paleosalinity, e.g. the hypersaline biomarker, gammacerane, which is restricted to samples from the offshore Gulf of Thailand basins. Maturity parameters for these Tertiary oils and source rock extracts were determined using biomarker analyses of T s/T m, 22S/22S + 22R C 31 hopane, C 30 moretane/hopane, 20R/20S + 20R C 29 sterane, and aromatic compounds. Though the samples demonstrate an overall relatively low level of maturity as specified by the biomarker index, a degree of individual basinal variability is also distinguishable. The observed differences in the maturity values indicate regional heterogeneity among the basin thermal histories, suggesting differences in geothermal gradients and/or in the basin subsidence rates.

  1. Drainage architecture and sediment routing in erosive catchments within the Ebro Eiver sedimentary basin (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castelltort, Xavier; Colombo, Ferran; Carles Balasch Solanes, Josep

    2016-04-01

    The Ebro Basin (EB) is the result of filling a foreland basin located between active mountain ranges during the Paleogene compressive phases, and later affected by phases of distension in the Neogene. The arrangement of filler material is monocline in the eastern margin and in the contact with the Catalan Coastal Range (CCR). This has repercussions on the model of emptying the erosive basins and in the drainage that took place in the margins of the original sedimentary basin. One can speak of a drainage architecture and sediment routing associated to a monocline erosive basin model. The monocline topography in the original margin of EB encouraged the formation of a string of erosive basins around the contact with CCR, which are the result of headward erosion towards the center of the EB of the rivers draining the CCR towards the Valencia Trough. At the time, the transition from the EB in its initial condition of endorheic to exorheic was through one of these monocline erosive basins. The erosive basins emptied by means of two vectors. On the one hand, growth in surface of the basin by deepening anaclinal streams through resistant beds of monocline stratigraphic succession that empty and link small depressions that increase laterally on the less resistant lithologic member. Moreover, the new drainage system entrenches as the exit point of the basin does, thanks to gradients created by distensional movements of the Neogene Valencia Trough. Growth and entrenchment model of river basins, as well as, sedimentary deposits and landforms generated by these processes are described and analyzed.

  2. Scale-dependence effects of landscape on seasonal water quality in Xitiaoxi catchment of Taihu Basin, China.

    PubMed

    Lv, Huihua; Xu, Youpeng; Han, Longfei; Zhou, Feng

    2015-01-01

    Further understanding the mechanisms of landscape-water interactions is of great importance to water quality management in the Xitiaoxi catchment. Pearson's correlation analysis, stepwise multiple regression and redundancy analysis were adopted in this study to investigate the relation between water quality and landscape at the sub-catchment and 200 m riparian zone scales during dry and wet seasons. Landscape was characterized by natural environmental factors, land use patterns and four selected landscape configuration metrics. The obtained results indicated that land use categories of urban and forest were dominant landscape attributes, which influenced water quality. Natural environment and landscape configuration were overwhelmed due to land management activities and hydrologic conditions. In general, the landscape of the 200 m riparian zone appeared to have slightly greater influence on water than did the sub-catchment, and water quality was slightly better explained by all landscape attributes in the wet season than in the dry season. The results suggested that management efforts aimed at maintaining and restoring river water quality should currently focus on the protection of riparian zones and the development of an updated long-term continuous data set and higher resolution digital maps to discuss the minimum width of the riparian zone necessary to protect water quality. PMID:25607670

  3. Mass balance and decontamination times of Polycyclic Aromatic Hydrocarbons in rural nested catchments of an early industrialized region (Seine River basin, France).

    PubMed

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-02-01

    Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in soils and their subsequent release in rivers constitute a major environmental and public health problem in industrialized countries. In the Seine River basin (France), some PAHs exceed the target concentrations, and the objectives of good chemical status required by the European Water Framework Directive might not be achieved. This investigation was conducted in an upstream subcatchment where atmospheric fallout (n=42), soil (n=33), river water (n=26) and sediment (n=101) samples were collected during one entire hydrological year. PAH concentrations in atmospheric fallout appeared to vary seasonally and to depend on the distance to urban areas. They varied between 60 ng·L(-1) (in a remote site during autumn) and 2,380 ng·L(-1) (in a built-up area during winter). PAH stocks in soils of the catchment were estimated based on land use, as mean PAH concentrations varied between 110 ng·g(-1) under woodland and 2,120 ng·g(-1) in built-up areas. They ranged from 12 to 220 kg·km(-2). PAH contamination in the aqueous phase of rivers remained homogeneous across the catchment (72 ± 38 ng·L(-1)). In contrast, contamination of suspended solid was heterogeneous depending on hydrological conditions and population density in the drainage area. Moreover, PAH concentrations appeared to be higher in sediment (230-9,210 ng·g(-1)) than in the nearby soils. Annual mass balance calculation conducted at the catchment scale showed that current PAH losses were mainly due to dissipation (biodegradation, photo-oxidation and volatilization) within the catchments (about 80%) whereas exports due to soil erosion and riverine transport appeared to be of minor importance. Based on the calculated fluxes, PAHs appeared to have long decontamination times in soils (40 to 1,850 years) thereby compromising the achievement of legislative targets. Overall, the study highlighted the major role of legacy contamination that supplied the bulk of

  4. Preliminary evaluation of nominal drainage basin volume as a potentially useful morphometric parameter for small mountain basins

    SciTech Connect

    Keaton, J.R.

    1985-01-01

    Morphometric basin parameters have been used in quantitative geomorphic assessments since Horton's Hydrophysical Approach in 1945. A relationship between basin form and dominant process in small mountain basins in the western United States would be valuable for use in differentiating basins which produce deep-seated landslides from those which produce debris flows from debris slides. Drainage basin volume seems like it should be a parameter directly related to the dominant process operating in a basin. Consequently, it may be a potentially useful morphometric parameter. Nominal drainage basin volume is herein defined as the volume creates by the basin topography and linear projection of topographic contours across the basin. Incremental volume is computed from area encompassed by topographic contours and projections and the contour interval using the formula for the volume of the frustrum of a cone. Seven basins in the Wasatch Range and five in the Wasatch Plateau of Utah show strong relationship of log Basin Area to log Basin Volume (r/sup 2/ = 0.97). The relationship between average Basin Slope and log Basin Volume was poorer (r/sup 2/ = 0.78) than between Basin Slope and log Basin Area (r/sup 2/ = 0.87). This suggests that basin area may be a more useful parameter than basin volume, especially since area is more easily measured.

  5. SUGAR CANE GROWING AND CATTLE GRAZING AS DRIVERS TO WETLAND DEGRADATION IN UGANDA: A case of upper river Ruizi and Iguluibi catchments Lake Victoria basin

    NASA Astrophysics Data System (ADS)

    Nakiyemba Were, Alice; Isabirye, Moses; Mathijs, Erik; Deckers, Jozef; Poesen, Jean

    2010-05-01

    Introduction: This study was conducted with in the framework of the VLIR-OI project with the aim of making contributions to the Diagnosis and Remediation of Land Degradation Processes in the Riparian Zone of Lake Victoria Uganda in view of reducing sediment pollution of the Lake Waters with a special focus on the upper river Ruiz and Iguluibi catchments. The study seeks to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in light of the current farming systems and practices and their contributions to land degradation and pollution of the Lake Victoria waters. Vegetation especially wetlands improves the resistance to erosion. The removal of riparian vegetation tends to accelerate surface erosion as a result of human activities. Increased erosion with in the catchments due to clearing of wetlands for sugarcane growing and cattle grazing has caused adverse increased sedimentation, degraded the water quality, and reduced the water productivity of the Lake Victoria Basin. Methods: We conducted a qualitative and quantitative study to investigate Sugarcane growing and cattle grazing as drivers to wetland degradation in Uganda in light of the current farming systems and practices and their socio-economic contributions to wetland degradation and pollution of the Lake Victoria waters. Focus group discussions, key informant interviews, semi structured interviews and observations were undertaken with the relevant stakeholders in the community. Results: Findings reveal that in Iguluibi catchment, sugarcane growing is now a major activity indicating land use change since the 1990s. Community members said when planting sugarcane all vegetations including all trees are cut leaving the land bare to allow the tractor to clear the land for cultivation. This has left the land bare without any natural vegetation with increased erosion hence eventually loss of soil fertility and increased sediment pollution to the Lake Victoria waters. As a result of

  6. Crop yield risk analysis and mitigation of smallholder farmers at quaternary catchment level: Case study of B72A in Olifants river basin, South Africa

    NASA Astrophysics Data System (ADS)

    Magombeyi, Manuel S.; Taigbenu, Akpofure E.

    Currently, Sub-Sahara is experiencing increased frequency of disasters either as floods or droughts which depletes the scarce resources available to sustain increasing populations. Success in preventing food shortages in the African continent can only be achieved by understanding the vulnerability and risk of the majority of smallholder farmers under rainfed and supplementary irrigation coupled with appropriate interventions. Increased frequency of floods, droughts and dry spells pose an increasing threat to the smallholder farmers’ food security and water resources availability in B72A quaternary catchment of the Olifants river basin in South Africa. This paper links maize crop yield risk and smallholder farmer vulnerability arising from droughts by applying a set of interdisciplinary indicators (physical and socio-economic) encompassing gender and institutional vulnerabilities. For the study area, the return period of droughts and dry spells was 2 years. The growing season for maize crop was 121 days on average. Soil water deficit during critical growth stages may reduce potential yields by up to 62%, depending on the length and severity of the moisture deficit. To minimize grain yield loss and avoid total crop failures from intra-seasonal dry spells, farmers applied supplementary irrigation either from river water or rainwater harvested into small reservoirs. Institutional vulnerability was evidenced by disjointed water management institutions with lack of comprehension of roles of higher level institutions by lower level ones. Women are most hit by droughts as they derived more than 90% of their family income from agriculture activities. An enhanced understanding of the vulnerability and risk exposure will assist in developing technologies and policies that conform to the current livelihood strategies of smallholder, resource-constrained farmers. Development of such knowledge base for a catchment opens avenues for computational modeling of the impacts of

  7. SPATIAL VARIABILITY OF DRY SPELLS A spatial and temporal rainfall analysis of the Pangani basin and Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Fischer, B. M. C.; Savenije, H. H. G. H. H. G.

    2009-04-01

    Rainfall and soil moisture are key parameters for food production and which are spatial and temporal variable. In a ever growing world the stress on water for food production increases. Farmers especially in semi arid regions with rain fed agriculture are more often forced to make away from "A" locations where water is available to water scares "B" or worse locations. Obliged by availability of arable land, tradition, customs, natural 6th sense or farmers cleverness. To improve agricultural yields a better water resource planning ,supported by system knowledge, is needed. This study describes a Markov bases dry spell tool which can fulfil in this need. By making use of Markov properties of rainfall, the temporal variability has been analysed. Plotting the derived seasonal transition probabilities vs. the rainfall amount a spatial variable power function could be derived. The spatial and temporal knowledge of rainfall was combined in the Markov based dry spell tool. For a given probability the tool provides a dry spell map. The dry spell tool is a powerful tool to assess vulnerability of dry spells based on meteorological data. The meteorological dry spell in combination with the agricultural dry spell length or critical dry spell length, which is determined by soil and vegetation characteristics, risk maps of an area to the vulnerability of dry spells could be made. The tool was applied in a case study in the Makanya catchment and showed: Compared to the lower middle part of the catchment, high altitude parts of the catchment receive higher amounts of rainfall, have shorter meteorological dry spells and are more resilient to dry spells due to their soil and vegetation characteristics. As a result one can state that farmers living in mountainous areas are blessed by their location. They receive more rain and have lower probability of long dry spells, higher probability of crop success and a higher probability of high yields, in contrast to the farmers in the valley

  8. Preliminary use of compound-specific stable isotope (CSSI) technique to identify and apportion sediment origin in a small Austrian catchment

    NASA Astrophysics Data System (ADS)

    Mabit, Lionel; Gibbs, Max; Chen, Xu; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Eder, Alexander; Strauss, Peter; Alewell, Christine

    2015-04-01

    , preliminary results highlighted that about 50-55% of the sediment located in the deposition area originated from the main grassed waterway of the catchment.

  9. Preliminary assessment of channel stability and bed-material transport in the Coquille River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Coquille River basin, which encompasses 2,745 km2 (square kilometers) of the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that:

  10. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    SciTech Connect

    Thackston, J.W.; Mangarella, P.A.; Preslo, L.M.

    1986-05-01

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies.

  11. Preliminary Simulations of CO2 Transport in the Dolostone Formations in the Ordos Basin, China

    SciTech Connect

    Hao, Y; Wolery, T; Carroll, S

    2009-04-30

    This report summarizes preliminary 2-D reactive-transport simulations on the injection, storage and transport of supercritical CO{sub 2} in dolostone formations in the Ordos Basin in China. The purpose of the simulations was to evaluate the role that basin heterogeneity, permeability, CO{sub 2} flux, and geochemical reactions between the carbonate geology and the CO{sub 2} equilibrated brines have on the evolution of porosity and permeability in the storage reservoir. The 2-D simulation of CO{sub 2} injection at 10{sup 3} ton/year corresponds to CO{sub 2} injection at a rate of 3 x 10{sup 5} ton/year in a 3-D, low permeable rock. An average permeability of 10 md was used in the simulation and reflects the upper range of permeability reported for the Ordos Basin Majiagou Group. Transport and distribution of CO{sub 2} between in the gas, aqueous, and solid phases were followed during a 10-year injection phase and a 10-year post injection phase. Our results show that CO{sub 2} flux and the spatial distribution of reservoir permeability will dictate the transport of CO{sub 2} in the injection and post injection phases. The injection rate of supercritical CO{sub 2} into low permeable reservoirs may need to be adjusted to avoid over pressure and mechanical damage to the reservoir. Although it should be noted that 3-D simulations are needed to more accurately model pressure build-up in the injection phase. There is negligible change in porosity and permeability due to carbonate mineral dissolution or anhydrite precipitation because a very small amount of carbonate dissolution is required to reach equilibrium with respect these phases. Injected CO{sub 2} is stored largely in supercritical and dissolved phases. During the injection phase, CO{sub 2} is transport driven by pressure build up and CO{sub 2} buoyancy.

  12. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Application (Phosphorus and Nitrogen) for Fertilizer and Manure Applied to Crops (Cropsplit), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated amount of phosphorus and nitrogen fertilizers applied to selected crops for the year 2002, compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set is based on 2002 fertilizer data (Ruddy and others, 2006) and tabulated by crop type per county (Alexander and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for MRB_E2RF1 catchments for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Nutrient Inputs from Fertilizer and Manure, Nitrogen and Phosphorus (N&P), 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. From the Highest to the Deepest: A River-Sea Dispersal System that Links A Mountainous Catchment to the Deep-Sea Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Hsu, R. T.

    2013-12-01

    Gaoping River (GPR) is a small mountainous river whose source area is located in the southern Central Range of Taiwan, about 3900 m above sea level. It has an average gradient of 1:150. Both the chemical and physical weathering rates for the GPR catchment are higher than the world average. Approximately 1 km seaward from the mouth of the GPR is the head of the Gaoping Submarine Canyon (GPSC). GPR annually discharges 35 Mt of sediment into the sea, most of which enters the GPSC. The GPSC owes its existence to tectonic processes related to the collision of the Philippine Plate and the Eurasia Plate. The canyon extents from the mouth of GPR, cutting through the Gaoping shelf and slope, and merges into the northeastern Manila Trench over a distance of about 260 km in water depth over 3000 m. It is a major conduit for the transport of terrestrial sediment to the South China Sea (SCS) and the landward transport of particles of marine origin in the SCS. The thickness of the tidally-dominated benthic nepheloid layer (BNL) in the GPSC can exceed 200 m, in which the temperature, flow, and suspended sediment concentration show distinctive tidal oscillations. Both semidiruanl barotropic and baroclinic tides are important in the canyon. In the GRSC the normal transport of suspended sediment associated with tidal propagation from offshore is up-canyon yet episodic sediment transports associated with episodic gravity-driven events are down-canyon. Typhoon-induced river floods often ignite turbidity currents (TCs) in the GPSC. Therefore, hperpycnal river plume and the ensuing TCs form an effective pathway to transport large amount of terrestrial sediment and carbon (fresh and aged) to the SCS basin. However, due to the extensive disturbance in the GPR catchment by typhoon-related deep erosion of hillslopes and incision of river channels, the ';fresh' flood sediment exported by GPR during and immediately after typhoons contains old sediment as defined by the absence of 7Be

  15. Video monitoring in the Gadria debris flow catchment: preliminary results of large scale particle image velocimetry (LSPIV)

    NASA Astrophysics Data System (ADS)

    Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo

    2015-04-01

    Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image

  16. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  17. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  18. Quantification of water and sediment yield from small catchment in open mining areas: experience and results from Poro nickel mining basin in New Caledonia

    NASA Astrophysics Data System (ADS)

    Mathys, Nicolle; Allenbach, Michel; Wottling, Geoffroy; Carpentier, Laureen; Freydier, Perrine; Navarrot, Lucie

    2014-05-01

    Water management in mining environments is a major challenge of the mining projects. In New Caledonia large areas have been excavated for Nickel mining since the end of the 19th century. In the past, the bad management of the water and coarse sediments left scars in the landscape and management problems in the channel reaches downstream. Nowadays, open mining techniques no longer yield coarse material out of the mining areas but the management of water and fine sediment remains a difficult question as the suspended sediments reach the very fragile environment of the lagoon. In addition, in many areas, it threatens human activities in the downstream rivers. In order to quantify and understand the formation of runoff, erosion and sediment transport in small mining watersheds the "Hydromine" project was initiated in 2008 by the New Caledonia government (DAVAR) with the collaboration of the University of New Caledonia (UNC) and later with the scientific support of Irstea Grenoble. The questions addressed by this project are: - What is the response (water and sediments) of a mining watershed to a rainfall input? - What factors control this response? - What are the processes involved? And which are dominant in the various hydrometeorological situations? - What are the characteristics of the transported materials? - What is the efficiency of mitigation works in the mining area? Two small embedded catchments (0.09 and 0.30 km²) are monitored for measuring rainfall, runoff and fine sediment transport in the mining area of Poro, East cost of New Caledonia. Elevation ranges from 197 to 366 m.a.s.l. The slope are steep (36 % in average but locally up to 130%) and the vegetation cover is very low (20% for the larger basin, 0% for the headwater basin). Rainfall-runoff and discharge-sediment concentration (SSC) relationship were analysed at the event and annual time scale. As a result, we pointed out the main factors that influence the response of the basins to a rainfall event

  19. Constraining back-arc basin formation in the eastern Coral Sea: preliminary results from the ECOSAT voyage

    NASA Astrophysics Data System (ADS)

    Seton, M.; Williams, S.; Mortimer, N. N.; Meffre, S.; Moore, J.; Micklethwaite, S.; Zahirovic, S.

    2013-12-01

    The eastern Coral Sea region is an underexplored area at the northeastern corner of the Australian plate, where long-lived interaction between the Pacific and Australian plate boundaries has resulted in an intricate assemblage of deep oceanic basins and ridges, continental fragments and volcanic products. A paucity of marine geophysical and geological data from this complex region has resulted in the lack of a clear conceptual framework to describe its formation, ultimately affecting our understanding of the connection between the plate boundaries of the SW Pacific and SE Asia. In particular, the tectonic relationship between two back-arc basins, the Santa Cruz and d'Entrecasteaux Basins, and the South Rennell Trough, has yet to be resolved. In October-November, 2012, we collected 6,200 km of marine magnetic, 6,800 km of gravity and over 13,600 km2 of swath bathymetry data from the eastern Coral Sea onboard the RV Southern Surveyor. A complementary dredging program yielded useful samples from 14 seafloor sites. Our preliminary geochemical interpretation of the dredge samples obtained from the South Rennell Trough reveal volcanic rocks resembling MORB or BABB-type basalts, similar in composition to the recently re-analysed and dated ORSTOM dredges from the area that yielded ~28 Ma MORB-like basalts. Swath bathymetry profiles from the Santa Cruz Basin reveal that the South Rennell Trough extends into this basin, with seafloor spreading fabric being parallel to the trough. Preliminary analysis of the three full and four partial new magnetic anomaly profiles across the Santa Cruz Basin, coupled with limited existing profiles, reveals that the basin may have formed between Chrons 13-18 (~32-38 Ma), with an extinct spreading ridge along the inferred continuation of the South Rennell Trough, consistent with ORSTOM age dates. Our results suggest that the South Rennell Trough is an extinct southwestward propagating spreading ridge, which may have initiated along a pre

  20. A comparative analysis of groundwater recharge estimates from three major methods: An analysis of subsurface recharge in the Nabogo sub-catchment of the White Volta Basin, Northern Ghana

    NASA Astrophysics Data System (ADS)

    Fynn, O. F.; Yidana, S. M.; Alo, C. A.; Mensah, F. O.

    2013-12-01

    Groundwater recharge in the Nabogo sub-catchment of the White Volta Basin is assessed using three main methods: the water table fluctuations method, baseflow recession method, and chloride mass balance approach. The objective is to quantify the relative proportions of direct vertical infiltration and percolation of rainwater in the area and subsurface flows in determining the total groundwater recharge in the basin. Groundwater resources development for commercial irrigation activities is an essential aspect of the livelihoods of communities living within the catchments of the Volta Basin. A comprehensive assessment of the recharge component of groundwater budgets in the basin is critical towards determining optimal abstraction rates in order to ensure resource sustainability and ecological integrity. This will form the basis for quantifying abstraction rates that are permissible to support large scale irrigation activities in the basin. The presence and thickness of the clay layer in the unsaturated zone serves to limit vertical infiltration of rainwater, and thus reduce vertical groundwater recharge in the area. In this study, the chloride mass balance technique, supported by the analysis of stable isotope signatures, has been used to estimate the vertical groundwater recharge and its spatial pattern of distribution in the area. The water table fluctuations technique and base flow recession method are then used to estimate total groundwater recharge in the basin. It is then possible to quantify the relative contributions of subsurface flows in the groundwater recharge in the basin. Temporal variations in groundwater recharge in the area are examined from time series of estimates from the baseflow recession technique. The results will assist in assessing the short term impacts of rainfall variability on groundwater budgets in the area.

  1. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    SciTech Connect

    Harmsen, S.C.

    1994-06-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy`s Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC.

  2. Preliminary Crater Retention Ages for an Expanded Inventory of Large Lunar Basins

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2012-01-01

    Based on LOLA topography and a new crustal thickness model, the number of candidate lunar basins greater than 300 km in diameter is at least a factor 2 larger than the traditional number based on photogeology alone, and may be as high as 95. Preliminary N(50) crater retention ages for this population of candidate basins shows two distinct peaks. Frey [1] suggested, based on Clementine-era topography (ULCN2005) and a crustal thickness model based on Lunar Prospector data [2], that there could be as many as 98 lunar basins greater than 300 km diameter. Many of the weaker cases have not stood up to recent testing [3,4,5] using LOLA data and a newer crustal thickness model based on Kaguya gravity data and LOLA topography data [6]. As described in companion abstracts [4,5], we have deleted from the earlier inventory 1 more named feature (Sikorsky- Rittenhouse; LOLA data show that its diameter is actually less than 300 km), 11 Quasi-Circular Depressions (QCDs) identified in the ULCN topography, and 11 Circular Thin Areas (CTAs) found in the earlier crustal thickness model [2]. We did this by repeating the scoring exercise originally done in [1] but with the new data [4,5]. Topographic Expression (TE) and Crustal Thickness Expression (CTE) scores were determined for each candidate on a scale of 0 to 5 (5 being a strong, circular signature, 0 for those with no discernible circular topographic or crustal thickness signature). These scores are added together to produce a Summary Score which has a range of 0 to 10. We eliminated all candidates with a Summary Score less than 3, as well as other cases where, for example, the TE went to zero because what looked like a single large circular QCD in the lower resolution ULCN data was in fact a cluster of smaller deep impacts readily apparent in the newer higher resolution LOLA data. This process reduced the original inventory from 98 to 75 candidates.

  3. A preliminary assessment of the spatial sources of contemporary suspended sediment in the Ohio River basin, United States, using water quality data from the NASQAN programme in a source tracing procedure

    USGS Publications Warehouse

    Zhang, Y.-S.; Collins, A.L.; Horowitz, A.J.

    2012-01-01

    Reliable information on catchment scale suspended sediment sources is required to inform the design of management strategies for helping abate the numerous environmental issues associated with enhanced sediment mobilization and off-site loadings. Since sediment fingerprinting techniques avoid many of the logistical constraints associated with using more traditional indirect measurement methods at catchment scale, such approaches have been increasingly reported in the international literature and typically use data sets collected specifically for sediment source apportionment purposes. There remains scope for investigating the potential for using geochemical data sets assembled by routine monitoring programmes to fingerprint sediment provenance. In the United States, routine water quality samples are collected as part of the US Geological Survey's revised National Stream Quality Accounting Network programme. Accordingly, the geochemistry data generated from these samples over a 10-year period (1996-2006) were used as the basis for a fingerprinting exercise to assess the key tributary sub-catchment spatial sources of contemporary suspended sediment transported by the Ohio River. Uncertainty associated with the spatial source estimates was quantified using a Monte Carlo approach in conjunction with mass balance modelling. Relative frequency weighted means were used as an alternative way of summarizing the spatial source contributions, thereby avoiding the need to use confidence limits. The results should be interpreted in the context of the routine, but infrequent nature, of the suspended sediment samples used to assemble geochemistry as a basis for the sourcing exercise. Nonetheless, the study demonstrates how routine monitoring samples can be used to provide some preliminary information on sediment provenance in large drainage basins. ?? 2011 John Wiley & Sons, Ltd.

  4. Impact of altitudinal variability on streamflows in mountainous catchments under changing climate (Upper Indus Basin), Himalayas Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, K. M.; Yaseen, M.

    2014-12-01

    Pakistan's economy is based on agriculture that is highly dependent on water resources originating in the mountain sources of the Upper Indus Basin (UIB). Various rivers i.e. Chitral, Swat, Kabul, Hunza, Gilgit, Astore, Shigar, Shyok & tributaries contribute water to main Indus River. The elevation of UIB ranges from 254 m to 8570 m a.m.s.l. Changes in climate and related hydrological impacts vary in space and time as affected by local climatic and topographic settings. So, the objective of this study was to assess the climate change and related hydrological impacts resulting from altitudinal variability. Trend analyses were performed by applying Mann-Kendall and Sen's method was applied to estimate slope time series that indicates changes in river flows. The results of this study indicate that maximum temperature in annual, winter, spring and autumn seasons has increased with increased in altitude while annual, winter and autumn minimum temperature has decreased with increased in altitude for the period (1961-2011). Moreover, annual, winter, summer and autumn precipitation has been decreased. The impact of altitudinal variability under changing climate yields that annual and seasonal streamflows in River Indus (at Kharmong, Alam Br. and Khairabad), Sawat (at Kalam) and Kabul (at Nowshera) have decreased whereas in River Shoyk (9%), Shigar (7%) and Indus at Kachura (5%) have been increased. However, annual runoff in Gilgit (1%) and Hunza River (18%) has increased by increasing 2 % annual temperature. A seasonal correlation coefficient between temperature and streamflow has the positive correlation in most of the sub-basins of UIB for both spring and summer. With increased 1 oC temperature in spring yields increased streamflow for rives Gilgit, Chitral, Astore, Shoyk, Shigar, Indus at Kachura & Kharmong and Hunza with percentage of 19, 5, 11, 15, 9, 7, 1 and 12 respectively. The prevailing trends and variability, caused by climate change, have an effect on the flows

  5. Statistical downscaling and projection of future temperature and precipitation change in middle catchment of Sutlej River Basin, India

    NASA Astrophysics Data System (ADS)

    Singh, Dharmaveer; Jain, Sanjay K.; Gupta, R. D.

    2015-06-01

    Ensembles of two Global Climate Models (GCMs), CGCM3 and HadCM3, are used to project future maximum temperature ( T Max), minimum temperature ( T Min) and precipitation in a part of Sutlej River Basin, northwestern Himalayan region, India. Large scale atmospheric variables of CGCM3 and HadCM3 under different emission scenarios and the National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis datasets are downscaled using Statistical Downscaling Model (SDSM). Variability and changes in T Max, T Min and precipitation under scenarios A1B and A2 of CGCM3 model and A2 and B2 of HadCM3 model are presented for future periods: 2020s, 2050s and 2080s. The study reveals rise in annual average T Max, T Min and precipitation under scenarios A1B and A2 for CGCM3 model as well as under A2 and B2 scenarios for HadCM3 model in 2020s, 2050s and 2080s. Increase in mean monthly T Min is also observed for all months of the year under all scenarios of both the models. This is followed by decrease in T Max during June, July August and September. However, the model projects rise in precipitation in months of July, August and September under A1B and A2 scenarios of CGCM3 model and A2 and B2 of HadCM3 model for future periods.

  6. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.

    PubMed

    Manickum, T; John, W; Terry, S; Hodgson, K

    2014-11-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment.

  7. Preliminary study on the radiological and physicochemical quality of the Umgeni Water catchments and drinking water sources in KwaZulu-Natal, South Africa.

    PubMed

    Manickum, T; John, W; Terry, S; Hodgson, K

    2014-11-01

    Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. PMID:25151527

  8. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  9. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    NASA Astrophysics Data System (ADS)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  10. Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperate zone watersheds: Carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basins

    NASA Astrophysics Data System (ADS)

    Szramek, Kathryn; McIntosh, Jennifer C.; Williams, Erika L.; Kanduc, Tjasa; Ogrinc, Nives; Walter, Lynn M.

    2007-04-01

    Calcite and dolomite solubilities in open weathering environments are proportional to pCO2 and inversely proportional to temperature, and dolomite solubility is progressively greater than calcite below 25°C. The continent-scale weathering budget reveals the significance of the Northern Hemisphere (NH) to globally integrated riverine fluxes of Ca2+, Mg2+, and HCO3-. The NH contributes 70% of the global HCO3- flux while only 54% of the riverine discharge. We present results of a comparative hydrogeochemical study of carbonate mineral equilibria and weathering fluxes in two NH carbonate-rich river basins. Surface water geochemistry and discharge were determined for headwater streams in Michigan and Slovenia within the St. Lawrence and Danube river basins. Michigan watersheds are established atop carbonate-bearing glacial drift deposits derived from erosion of Paleozoic strata with thick soil horizons (100-300 cm). Slovenia watersheds drain Mesozoic bedrock carbonates in alpine and dinaric karst environments with thin soil horizons (0-70 cm). Carbonate weathering intensity is a parameter that normalizes river runoff and HCO3- concentration to catchment area (meq HCO3- km-2 s-1), summing calcite and dolomite contributions, and is used to gauge the effects of climate, land use, and soil thickness on organic-inorganic carbon processing rates. Importantly, Michigan riverine discharge is one-tenth of Slovenian rivers, providing the opportunity to evaluate the kinetics of carbonate mineral equilibration. The study rivers are HCO3- - Ca2+ - Mg2+ waters, supersaturated for calcite at pCO2 values in excess of the atmosphere. As discharge varies, HCO3- concentrations differ by less than 20% for any location, and Mg2+/Ca2+ remains relatively fixed for Michigan (0.5) and Slovenia streams (0.4), requiring that dolomite dissolution exceed calcite on a mole basis. The ability of calcite and dolomite dissolution to keep pace with increased discharge indicates carbonate weathering is

  11. Groundwater recharge processes in the Nasia sub-catchment of the White Volta Basin: Analysis of porewater characteristics in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Addai, Millicent Obeng; Yidana, Sandow Mark; Chegbeleh, Larry-Pax; Adomako, Dickson; Banoeng-Yakubo, Bruce

    2016-10-01

    Vertical infiltration of precipitation has been examined in this study for the purpose of evaluating groundwater recharge processes in parts of the Nasia sub-catchment of the White Volta Basin. As recharge is an essential component in the detailed assessment of groundwater resources potential in a basin, evaluating its processes is vital in determining the spatial and temporal variability of the resource. Stable isotope data of precipitation, groundwater, surface water and porewater in the area suggest that the local precipitation is largely enriched compared to global meteoric water. This is consistent with the prevailing local conditions in the region and ties in with observations in other parts of the sub-region. The groundwater and porewater data indicate that prior to, and in the process of infiltration and final percolation into the saturated zone, rainwater undergoes evaporative enrichment such that the finally recharged water plots along an evaporation line with a much shallower gradient and intercept compared to the global meteoric water line and the local meteoric water line. The isotope data further suggest that through the shallow unsaturated zone, a significant fraction of the initial precipitation would have been evaporated by a depth of 3.0 m. Evaporation rates in the range of 38-49% have been estimated for the depth range of 0-3.0 m based on the porewater stable isotope data. Details of the procedures and implications of high evaporation rates within such shallower depths are presented and discussed. Groundwater recharge rates estimated from the chloride mass balance technique report values in the range of 73.26 mm/yr (390 Mm3/yr)-109.89 mm/yr (585.27 Mm3/yr), with an average of 94 mm/yr (500.6 Mm3/yr). These translate into 6.6-10.9% of annual precipitation. Based on the current population trends and per capita water demand of 50 L per capita per day, this study finds that the estimated recharge rates exceed the demand 59 times. This suggests

  12. The effects of soil properties on the turbidity of catchment soils from the Yongdam dam basin in Korea.

    PubMed

    Hur, Jin; Jung, Myung Chae

    2009-06-01

    Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals-quartz, microcline, albite, and muscovite-with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil

  13. Preliminary Measurements Of N2O Partial Pressures In Rivers of Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Oliveira, C. B.; Rasera, M. F.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Cunha, H. B.; Gomes, B. M.

    2006-12-01

    The concentrations of nitrous oxide (N2O), an important component of the greenhouse effect and with a long residence time in the atmosphere, have significantly increased in this century. The reasons for this atmospheric increase in N2O are still partially unexplained. This uncertainty is worse in relation to aquatic environments. Here we report on preliminary measurements of N2O partial pressures in rivers of the Amazon basin. The study areas are in the state of Rondonia (rivers Ji Parana, Urupa, Comemoracao and Pimenta Bueno) and Amazonas (rivers Solimoes and Negro). The rivers were sampled from October 2005 to April 2006, using with immersion pumps, lowered in the middle of the channel to 60% of total depth. Water was pumped directly into a 1 l plastic bottle, which was overflown three times before closing. Using syringes, 60 ml of N2 were injected into the bottle, simultaenously to the withdrawn of 60 ml of sample. N2O was extracted into these 60 ml of N2 by shaking vigorously for 2 minutes. With the same syringes, the gas was taken from the bottles and injected into sealed evacuated 25 ml vials. Atmospheric samples were taken from one meter above the water column and stored the same way. N2O partial pressures were determined on a Shimadzu GC-14 Green House Gas Analyzer. All rivers showed little variations in N2O partial pressures. Average values in the rivers of Rondonia were around 0.41 ± 0.07 μ atm (n=46), whereas the Solimoes and Negro rivers, in the state of Amazonas, showed values around 0.43 ± 0.08 μ atm (n=131). Atmospheric averages were approximately 0.34 ± 0.04 μ atm (n=58) and 0.32 ± 0.03 μ atm (n=134) in the states of Rondonia and Amazonas, respectively. This means that, although these waters are supersatured in CO2, making evasive fluxes of this gas an important component of the C cycle in this basin, the same does not occur in the N cycle. Small differences in partial pressures of N2O between water and air will result in small fluxes of

  14. Preliminary results of high resolution magneto-biostratigraphy of continental sequences in Chapala Basin, Southwestern Mexico

    NASA Astrophysics Data System (ADS)

    Mendez Cardenas, D. L.; Benammi, M.

    2007-05-01

    Chapala Lake is south from Guadalajara, Jalisco State (Southwestern Mexico). Belongs to a series of Pliocenic lakes along the Mexican Volcanic Belt. It is localized in the Chapala rift, and the entire area is controlled by the tectonic setting of the Colima, Tepic and Chapala rifts, constituting the triple junction rift-rift-rift. The deposits studied belong to volcanosedimentary sequences, composed by lacustrine and fluvial associations alternated with units of ash and pumice. The faunistic component reported consists at least of 27 mammals species, and the sediments were there're in have to work with special attention for seek rodents by handpicking. Probably these rodents will be the clue to determine the deposits correlation. Core demagnetization shows that they are low-coercivity magnetic minerals like magnetite or Ti-magnetite. It was verified that the characteristic magnetization corresponds to MNRp and the inversion test resulted good. Rodents are represented by Geomynae, Sigmondontinae and Sciurinae. The Geomynae family is the most common, and the faunistic association indicates Blancan age. This also allows a correlation with the polarity pattern in the GSS between 3,6 and 2,6 Ma. Actually, is known that this kind of studies in continental sequences supported with paleontological record of vertebrates could give us a more precised calibration of the age of such deposits. Allowing better understanding of the evolution of these mammals and their path trough geological record. This work shows the preliminary results of rodents palaeontology and high resolution magneto-stratigraphy in the units from to Chapala Basin.

  15. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    NASA Astrophysics Data System (ADS)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  16. Coevolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeo; Troch, Peter A.

    2016-03-01

    Present-day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment coevolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.225 to 82.2 Ma) in Japan. We derived indices of landscape properties (drainage density and slope-area relationship) as well as hydrological response (annual water balance, baseflow index, and flow-duration curves) and examined their relation with catchment age and climate (through the aridity index). We found a significant correlation between drainage density and baseflow index with age, but not with climate. The intra-annual flow variability was also significantly related to catchments age. Younger catchments tended to have lower peak flows and higher low flows, while older catchments exhibited more flashy runoff. The decrease in baseflow with catchment age is consistent with the existing hypothesis that in volcanic landscapes the major flow pathways change over time from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in a set of similar, but younger volcanic catchments in the Oregon Cascades, in which drainage density increased with age. In that case, older catchments were thought to show more landscape incision due to increasing near-surface lateral flow paths. Our results suggests two competing hypotheses on the evolution of drainage density in mature catchments. One is that as catchments continue to age, the hydrologically active channels retreat

  17. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the

  18. Sediments in urban river basins: identification of sediment sources within the Lago Paranoá catchment, Brasilia DF, Brazil - using the fingerprint approach.

    PubMed

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2014-01-01

    The development of effective sediment management strategies is a key requirement in tropical areas with fast urban development, like Brasilia DF, Brazil, because of the limited resources available. Accurate identification and management of sediment sources areas, however, is hampered by the dearth of reliable information on the primary sources of sediment. Few studies have attempted to quantify the source of sediment within fast urbanizing, mixed used, tropical catchments. In this study, statistically verified composite fingerprints and a multivariate mixing model have been used to identify the main land use specific sources of sediment deposited in the artificial Lago Paranoá, Central Brazil. Because of the variability of urban land use types within the Lago Paranoá sub-catchments, the fingerprinting approach was additionally undertaking for the Riacho Fundo sub-catchment. The main contributions from individual source types (i.e. surface materials from residential areas, constructions sites, road deposited sediment, cultivated areas, pasture, farm tracks, woodland and natural gullies) varied between the whole catchment and the Riacho Fundo sub-catchment, reflecting the different proportions of land uses. The sediments deposited in the silting zones of the Lago Paranoá originate largely from urban sources (85 ± 4%). Areas with (semi-) natural vegetation and natural gullies contribute 10 ± 2% of the sediment yield. Agricultural sites have only a minor sediment contribution of about 5 ± 4% within the whole catchment. Within the Riacho Fundo sub-catchment there is a significant contribution from urban (53 ± 4%) source, such as residential areas with semi-detached housings (42 ± 3%) with unpaved roads (12 ± 3%) and construction sites (20 ± 3%) and agricultural areas (31 ± 2%). The relative contribution from land use specific sources to the sediment deposition in the silting zone of the Lago Paranoá demonstrated that most of the sediment is derived from

  19. Implications for Fault and Basin Geometry in the Central California Coast Ranges from Preliminary Gravity and Magnetic Data

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Jachens, R. C.; Graymer, R. W.; Wentworth, C. M.

    2008-12-01

    Preliminary aeromagnetic and newly processed gravity data help define block-bounding faults and deep sedimentary basins in the central California Coast Ranges, ranging from the Hosgri fault east to the San Andreas fault and from Monterey Bay south to Pt. Conception. Interpretation of these data results in an improved framework for seismic hazard and groundwater studies. Aeromagnetic data include a new survey with a flight-line spacing of 800 m at a nominal 300 m above ground and covering 15,000 km2. More than 11,500 gravity measurements, reprocessed with terrain corrections calculated from 30-m DEMs, form a roughly 2-km grid over most of the study area. Combined potential-field data and existing geologic mapping, delineate major fault-bounded blocks in the central California Coast Ranges. Main block-bounding faults from west to east include the San Gregorio- Hosgri, San Luis-Willmar-Santa Maria River-Little Pine, Oceanic-West Huasna, Nacimiento, Rinconada-South Cuyama, San Juan-Chimineas-Morales, and San Andreas faults. Most of these faults have evidence of Quaternary activity. Gravity gradients indicate that the reach of the San Andreas fault bounding the Gabilan Range and the northern extension of the Rinconada fault bounding the Santa Lucia Range dip steeply southwestward and have a reverse component of slip. Magnetic and microseismicity data suggest that the northern reach of the Hosgri fault dips eastward. The potential-field data also delineate several deep sedimentary basins, such as the 3-4 km deep Cuyama basin, the Santa Maria basin, and several basins along and possibly offset by the Rinconada fault. Gravity data show that the main west-northwest-striking faults bounding the Cuyama basin dip away from the basin, indicating compression adjacent to the big bend in the San Andreas fault. Prominent gravity and magnetic highs northeast of the San Andreas fault immediately east of Cuyama Valley suggest that there the San Andreas fault dips southwest. Such dip

  20. Inferring the effect of catchment complexity on mesoscale hydrologic response

    NASA Astrophysics Data System (ADS)

    FröHlich, Holger L.; Breuer, Lutz; Vaché, Kellie B.; Frede, Hans-Georg

    2008-09-01

    The effect of catchment complexity on hydrologic and hydrochemical catchment response was characterized in the mesoscale Dill catchment (692 km2), Germany. This analysis was developed using multivariate daily stream concentration and discharge data at the basin outlet, in connection with less frequently sampled catchment-wide end-member chemistries. The link between catchment-wide runoff sources and basin output was observed through a combination of concentration-discharge (C-Q) analysis and multivariate end-member projection. Subsurface stormflow, various groundwater and wastewater sources, as well as urban surface runoff emerged in catchment output chemistry. Despite the identification of multiple sources, several runoff sources observed within the catchment failed to display consistent links with the output chemistry. This failure to associate known source chemistry with outlet chemistry may have resulted from a lack of hydraulic connectivity between sources and basin outlet, from different arrival times of subbasin-scale runoff contributions, and also from an overlap of source chemistries that subsumed discrete runoff sources in catchment output. This combination of catchment heterogeneity and complexity simply suggests that the internal spatial organization of the catchment impeded the application of lumped mixing calculations at the 692 km2 outlet. Given these challenges, we suggest that in mesoscale catchment research, the potential effects of spatial organization should be included in any interpretation of highly integrated response signals, or when using those signals to evaluate numerical rainfall-runoff models.

  1. Preliminary potential-field constraints on the geometry of the San Fernando basin, Southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Griscom, Andrew; Jachens, R.C.; Hildenbrand, T.G.

    2000-01-01

    Gravity and magnetic data provide new insights on the structural underpinnings of the San Fernando Basin region, which may be important to ground motion models. Gravity data indicate that a deep basin (>5 km) underlies the northern part of the San Fernando Valley; this deep basin is required to explain the lowest gravity values over the Mission Hills thrust fault. Gravity modeling, constrained by well data and density information, shows that the basin may reach a thickness of 8 km, coinciding with the upper termination of the 1994 Northridge earthquake mainshock rupture. The basin is deeper than previous estimates by 2 to 4 km; this estimate is the result of high densities for the gravels of the Pliocene-Pleisocene Saugus Formation. The geometry of the southern margin of the deep basin is not well-constrained by the gravity data, but may dip to the south. Recently acquired seismic data along the LARSE (Los Angeles Regional Seismic Experiment) II profile may provide constraints to determine the location and attitude of the basin edge. Gravity and aeromagnetic models across the eastern margin of the San Fernando Valley indicate that the Verdugo fault may dip to the southwest along its southern extent and therefore have a normal fault geometry whereas it clearly has a thrust fault geometry along its northern strand.

  2. Preliminary Stratigraphic Cross Sections of Oil Shale in the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Dyni, John R.

    2008-01-01

    Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.

  3. Preliminary bathymetry of Shoup Basin and late Holocene changes of Shoup Glacier, Alaska

    USGS Publications Warehouse

    Post, Austin; Viens, R.J.

    2000-01-01

    Shoup Glacier is a retreating, tidewater-calving glacier in northeast Prince William Sound, Alaska. Historical records, vegetation distribution, and sediment depth in Shoup Bay indicate that the glacier reached a late Holocene maximum at the mouth of Shoup Bay prior to 1750. When first observed around 1900, the terminus was stable on a series of shallow, bedrock obstructions between Shoup Bay and Shoup Basin, 2 miles from the late Holocene maximum. Shoup Glacier receded into tidewater in 1957 and in the following 33 years retreated 1.3 miles to expose Shoup Basin, a deep (more than 350 feet) basin with virtually no sediment accumulation. Shoup Glacier is expected to stabilize at the head of Shoup Basin shortly after the year 2000 and will not readvance if present climatic conditions continue.

  4. Potential impacts of climate change on tropospheric ozone in California: a preliminary episodic modeling assessment of the Los Angeles basin and the Sacramento valley

    SciTech Connect

    Taha, Haider

    2001-01-01

    In this preliminary and relatively short modeling effort, an initial assessment is made for the potential air quality implications of climate change in California. The focus is mainly on the effects of changes in temperature and related meteorological and emission factors on ozone formation. Photochemical modeling is performed for two areas in the state: the Los Angeles Basin and the Sacramento Valley.

  5. Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect

    Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

    2006-03-17

    The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

  6. Preliminary data report for the San Juan Basin-Crownpoint surveillance study

    USGS Publications Warehouse

    Frenzel, Peter F.; Craigg, Steven D.; Padgett, Elizabeth T.

    1981-01-01

    Geohydrologic data that may be used to predict the effects of mining on Navajo water resources in the San Juan structural basin are reported as well as the current availability of data from other government agencies. Emphasis is on the vicinity of Crownpoint, New Mexico. (USGS)

  7. Preliminary interpretation of industry two-dimensional seismic data from Susitna Basin, south-central Alaska

    USGS Publications Warehouse

    Lewis, Kristen A.; Potter, Christopher J.; Shah, Anjana K.; Stanley, Richard G.; Haeussler, Peter J.; Saltus, Richard W.

    2015-07-30

    The eastern seismic lines show evidence of numerous short-wavelength antiforms that appear to correspond to a series of northeast-trending lineations observed in aeromagnetic data, which have been interpreted as being due to folding of Paleogene volcanic strata. The eastern side of the basin is also cut by a number of reverse faults and thrust faults, the majority of which strike north-south. The western side of the Susitna Basin is cut by a series of regional reverse faults and is characterized by synformal structures in two fault blocks between the Kahiltna River and Skwentna faults. These synforms are progressively deeper to the west in the footwalls of the east-vergent Skwentna and northeast-vergent Beluga Mountain reverse faults. Although the seismic data are limited to the south, we interpret a potential regional south-southeast-directed reverse fault striking east-northeast on the east side of the basin that may cross the entire southern portion of the basin.

  8. A preliminary report of the geohydrology of the Mississippi Salt-Dome Basin

    USGS Publications Warehouse

    Spiers, C.A.; Gandl, L.A.

    1980-01-01

    The U.S. Department of Energy is investigating the suitability of salt domes in the Mississippi salt-dome basin as repositories for storing radioactive wastes. The Department of Energy has requested that the U.S. Geological Survey describe the groundwater hydrology of the Mississippi salt-dome basin, giving special attention to direction and rate of movement of water. In this first part of a continuing investigation the data obtained from one year of extensive literature search and data compilation are summarized. The regional groundwater hydrology in the salt-dome basin is defined with respect to (1) groundwater flow, (2) facies changes, (3) geological structure, (4) recharge and discharge, (5) freshwater-saltwater relations, and (6) identification of localities where additional data are needed. From the 50 piercement-type salt domes in the Mississippi salt-dome basin three domes (Richton, Cypress Creek, and Lampton) were selected for more intensive study. To further evaluate the geohydrology of Richton, Lampton, and Cypress Creek domes as possible sites for storage of radioactive waste, an intensive geohydrologic study based on a comprehensive test drilling program near the domes is planned. (USGS)

  9. A preliminary study of the distribution of selected trace metals in the Besut River basin, Terengganu, Malaysia.

    PubMed

    Suratman, S; Hang, H C; Shazili, N A M; Mohd Tahir, N

    2009-01-01

    This paper presents a preliminary result carried out in the Besut River basin, Terengganu, Malaysia to determine the selected trace metal concentrations. Concentrations of dissolved Pb, Cu, and Fe during the present study were in the range of 3.3-8.3 microg/L Pb, 0.1-0.3 microg/L Cu, and 1.1-12.3 microg/L Fe. For the particulate fraction concentrations of Pb, Cu, and Fe ranged from 1.0 to 3.6 microg/L, 0.3 to 2.8 microg/L, and 114 to 1,537 microg/L, respectively. The concentrations of metals in this study area, in general, were lower than those reported for other study areas. Higher metal concentrations measured in the wet monsoon season suggest that the input was mainly due to terrestrial runoff. PMID:18665317

  10. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  11. Magnetostratigraphy of Mesozoic shallow-water carbonates: Preliminary results from the Middle Jurassic of the Paris basin

    SciTech Connect

    Aissaoui, D.M.; Kirschvink, J.L. )

    1991-03-01

    The use of sedimentary paleomagnetism has enhanced greatly our understanding of the timing of deposition and diagenesis of Cenozoic platform and reefal carbonates. Its application to similar but older deposits will have direct implications for economic exploration and development. The authors report here preliminary paleomagnetic results from the Middle Jurassic limestones of the Paris basin (France). The samples consist mainly of bioclastic and oolitic limestones deposited in ancient counterpart of the shallow-water environments of the Bahama platform. The Jurassic samples are stable to progressive, incremental demagnetization and exhibit magnetization patterns identical to Cenozoic rocks from the Bahama platform or Mururoa Atoll. The natural remanent magnetization of these limestones is weak and comprised between 7.7 x 10{sup {minus}9} to 1.8 x 10{sup {minus}8} AM{sup 2}/kg. Magnetic components of both normal and reversed polarity are observed. Paired isothermal remanent magnetization (IRM) and alternating field demagnetization experiments show that most of the remanence is lost between 20 and 45 mT, which is typical of single-domain biogenic magnetite or maghemite. The ratio of IRM at H{sub RG} to the saturation IRM ranges from 35 to 42% indicating a moderate to low interparticle interaction. This is confirmed by the anhysteretic remanent magnetization as compared with intact, freeze-dried cells of magnetotactic bacteria and chiton teeth. Magnetic minerals extracted from the Jurassic samples are examined to further confirm the occurrence of SD magnetite within the Middle Jurassic limestones of the Paris basin. The preliminary results suggest that the strata should be good for the paleomagnetic investigation of Mesozoic shallow-water carbonates.

  12. Preliminary report on the ground-water resources of the Klamath River basin, Oregon

    USGS Publications Warehouse

    Newcomb, Reuben Clair; Hart, D.H.

    1958-01-01

    The Klamath River basin, including the adjacent Lost River basin, includes about 5,500 square miles of plateaus, mountain-slopes and valley plains in south-central Oregon. The valley plains range in altitude from about 4,100 feet in the south to more than 4,500 feet at the northern end; the mountain and plateau lands rise to an average altitude of 6,000 feet at the drainage divide, some peaks rising above 9,000 feet. The western quarter of the basin is on the eastern slope of the Cascade Range and the remainder consists of plateaus, mountains, and valleys of the basin-and-range type. The rocks of the Klamath River basin range in age from Recent to Mesozoic. At the southwest side of the basin in Oregon, pre-Tertiary metamorphic, igneous, and sedimentary rocks, which form extensive areas farther west, are overlain by sedimentary rocks of Eocene age and volcanic rocks of Eocene and Oligocene age. These early Tertiary rocks dip east toward the central part of the Klamath River basin. The complex volcanic rocks of high Cascades include three units: the lowest unit consists of a sequence of basaltic lava flows about 800 feet thick; the medial unit is composed of volcanic-sedimentary and sedimentary rocksthe Yonna formation200 to 2,000 feet thick; the uppermost unit is a sequence of basaltic lava flows commonly about 200 feet thick. These rocks dip east from the Cascade Range and are the main bedrock formations beneath most of the basin. Extensive pumice deposits, which emanated from ancestral Mount Mazama, cover large areas in the northwestern part of the basin. The basin has an overall synclinal structure open to the south at the California boundary where it continues as the Klamath Lake basin in California. The older rocks dip into the basin in monoclinal fashion from the adjoining drainage basins. The rocks are broken along rudely rectangular nets of closely spaced normal faults, the most prominent set of which trends northwest. The network of fault displacements

  13. Preliminary groundwater flow model of the basin-fill aquifers in Detrital, Hualapai, and Sacramento Valleys, Mohave County, northwestern Arizona

    USGS Publications Warehouse

    Tillman, Fred D; Garner, Bradley D.; Truini, Margot

    2013-01-01

    Preliminary numerical models were developed to simulate groundwater flow in the basin-fill alluvium in Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona. The purpose of this exercise was to gather and evaluate available information and data, to test natural‑recharge concepts, and to indicate directions for improving future regional groundwater models of the study area. Both steady-state and transient models were developed with a single layer incorporating vertically averaged hydraulic properties over the model layer. Boundary conditions for the models were constant-head cells along the northern and western edges of the study area, corresponding to the location of the Colorado River, and no-flow boundaries along the bedrock ridges that bound the rest of the study area, except for specified flow where Truxton Wash enters the southern end of Hualapai Valley. Steady-state conditions were simulated for the pre-1935 period, before the construction of Hoover Dam in the northwestern part of the model area. Two recharge scenarios were investigated using the steady-state model—one in which natural aquifer recharge occurs directly in places where water is available from precipitation, and another in which natural aquifer recharge from precipitation occurs in the basin-fill alluvium that drains areas of available water. A transient model with 31 stress periods was constructed to simulate groundwater flow for the period 1935–2010. The transient model incorporates changing Colorado River, Lake Mead, and Lake Mohave water levels and includes time-varying groundwater withdrawals and aquifer recharge. Both the steady-state and transient models were calibrated to available water-level observations in basin-fill alluvium, and simulations approximate observed water-level trends throughout most of the study area.

  14. Methodological issues and preliminary results from a combined sediment fingerprinting and radioisotope dating approach to explore changes in sediment sources with land-use change in the Brantian Catchment, Borneo.

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Higton, Sam; Marshall, Jake; Bidin, Kawi; Blake, William; Nainar, Anand

    2015-04-01

    area due to the prevalence of steep, incised channels without even narrow floodplains. Preliminary results are reported from (1) a field visit to investigate potential sampling sites in July 2014 and (2) initial analysis of a sediment core at a promising lateral bench site. Marked down-profile geochemistry changes of the core indicate a history of phases of high deposition and lateral growth of the channel caused by mobilisation of sediment linked to logging and clearance upstream. Recent channel bed degradation suggests the system has been adjusting a decline in sediment supply with forest recovery since logging in 2005, but a renewed sedimentation phase heralded by > 10 cm deposition at the site in a flood in July 2014 appears to have started linked to partial forest clearance for oil palm. These preliminary results support the ability of a combined fingerprinting and dating approach to reflect the spatial history of land-use change in a catchment undergoing disturbance. Walsh R. P. D. , Bidin K., Blake W.H., Chappell N.A., Clarke M.A., Douglas I., Ghazali R., Sayer A.M., Suhaimi J., Tych W. & Annammala K.V. (2011) Long-term responses of rainforest erosional systems at different spatial scales to selective logging and climatic change. Philosophical Transactions of the Royal Society B, 366, 3340-3353.

  15. Preliminary study of solar ponds for salinity control in the Colorado River Basin. Technical report

    SciTech Connect

    Boegli, W.J.; Dahl, M.M.; Remmers, H.E.

    1982-12-01

    In this study, the Bureau of Reclamation investigates the technical and economic benefits of using solar salt-gradient ponds in the Colorado River Basin to provide salinity control and to produce project power and freshwater. It was assumed that the saline water needed for pond construction would be transported to one of two dry lakebeds in the Basin(Danby Dry Lake in southern California or Sevier Dry Lake in western Utah) as part of a salinity control/coal transport project. The ponds would be used to generate electric power that could be integrated with the Bureau's power grid or used in combination with thermal energy from the ponds to power commercially available desalination systems to produce freshwater. Economic benefits were compiled for two methods of concentrating the necessary brine for the ponds--one representing stage construction using collected brine only and the other using salt at the site to produce the concentrated brine.

  16. Incorporating flood event analyses and catchment structures into model development

    NASA Astrophysics Data System (ADS)

    Oppel, Henning; Schumann, Andreas

    2016-04-01

    The space-time variability in catchment response results from several hydrological processes which differ in their relevance in an event-specific way. An approach to characterise this variance consists in comparisons between flood events in a catchment and between flood responses of several sub-basins in such an event. In analytical frameworks the impact of space and time variability of rainfall on runoff generation due to rainfall excess can be characterised. Moreover the effect of hillslope and channel network routing on runoff timing can be specified. Hence, a modelling approach is needed to specify the runoff generation and formation. Knowing the space-time variability of rainfall and the (spatial averaged) response of a catchment it seems worthwhile to develop new models based on event and catchment analyses. The consideration of spatial order and the distribution of catchment characteristics in their spatial variability and interaction with the space-time variability of rainfall provides additional knowledge about hydrological processes at the basin scale. For this purpose a new procedure to characterise the spatial heterogeneity of catchments characteristics in their succession along the flow distance (differentiated between river network and hillslopes) was developed. It was applied to study of flood responses at a set of nested catchments in a river basin in eastern Germany. In this study the highest observed rainfall-runoff events were analysed, beginning at the catchment outlet and moving upstream. With regard to the spatial heterogeneities of catchment characteristics, sub-basins were separated by new algorithms to attribute runoff-generation, hillslope and river network processes. With this procedure the cumulative runoff response at the outlet can be decomposed and individual runoff features can be assigned to individual aspects of the catchment. Through comparative analysis between the sub-catchments and the assigned effects on runoff dynamics new

  17. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  18. Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada

    SciTech Connect

    Phelps, G.A.; Graham, S.E.

    2002-10-01

    The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

  19. Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Graham, Scott E.

    2002-01-01

    The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.

  20. Hydrological dynamics of a Mediterranean catchment in a global change context. (Romanyac catchment, Cap de Creus, Girona, Spain)

    NASA Astrophysics Data System (ADS)

    Latron, J.; Pardini, G.; Gispert, M.; Llorens, P.

    2009-04-01

    Mediterranean regions are characterized by unevenly distributed water resources, and consequently a more precise knowledge of the main hydrological processes and their variability and changes is crucial for a better management of water resources. However, the lack of hydrological information and data in most areas of the Mediterranean basin greatly difficult the analyses of changes in water resources at relevant scales. In this context, the Soil Science Unit GRCT48 from the University of Girona is conducting an integrated study of hydrological response, soil erosion and soil degradation processes in fragile Mediterranean areas undergoing changes in use and management. The study area is located in the Cap de Creus Peninsula (NE Spain), where land abandonment has been the outstanding characteristic over the last decades. The area is covered by terraced soils, most of them abandoned, and stands for a representative Mediterranean environment. Current land cover is a mosaic of areas with different shrubs according to wildfire occurrence. Residual patches of cork and pine trees are also present as well as small extensions of pastures. Finally some localized areas of vineyards and olive trees are still cultivated. The approach is based on the complementary use of plot and catchment scales to assess the effect of land cover and land use change on physical, chemical and biological parameters of soil quality and on rainfall-runoff-erosion relationships. Along the study period, observed rainfall-runoff response at the plot scale was highly variable among sites but also for a given environment, depending on antecedent wetness conditions and rainfall characteristics. Overall, surface runoff responses were low in all environments. Soil loss associated to rainfall-runoff events showed very large variations among sites, and also for a given site, between the different rainfall events. At the catchment scale, preliminary results obtained from the monitoring, of three catchments of

  1. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G

    2012-08-15

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO(3)(-)/Cl(-)) ratios for the shallow groundwater indicates that prior to using BAM, NO(3)(-) concentrations were substantially influenced by nitrification or variations in NO(3)(-) input. In contrast, for the new basin utilizing BAM, NO(3)(-)/Cl(-) ratios indicate minor nitrification and NO(3)(-) losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO(3)(-) losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO(4)(3-)) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO(4)(3-)/Cl(-) ratios for shallow

  2. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  3. High frequency sampling of stable water isotopes for assessing runoff generation processes in a mesoscale urbanized catchment

    NASA Astrophysics Data System (ADS)

    Wrede, Sebastian; Fenicia, Fabrizio; Kurtenbach, Andreas; Keßler, Sabine; Bierl, Reinhard

    2013-04-01

    Experimental hydrology critically relies on tracer techniques to decipher and uncover runoff generation processes. Although tracer measurements contributed significantly to a better understanding of catchment functioning, their potential is not yet fully exploited. The temporal resolution of tracer measurements is typically relatively coarse, and applications are confined to a few locations. Additionally, experimental hydrology has focused primarily on pristine catchments, and the influence of anthropogenic effects remains largely unexplored. High frequency sampling of multiple tracers may therefore substantially enhance our understanding of hydrological processes and the impact of anthropogenic effects and enable a better protection and management of water resources and water quality. In this preliminary study we aim to assess runoff generation processes using geochemical and isotopic tracer techniques in the mesoscale Olewiger Bach catchment (24 km²) that is located in the low mountain ranges of the city of Trier, southwest Germany. The catchment is mainly characterized by quartzite and Devonian schist, overlain by fluvial sediments. Mixed land use prevails in the southern part of the basin, while the northern lower reaches are mainly urbanized. Several waste water treatment plants, separate sewer and stormwater management systems are present in parts of the catchment and contribute to the discharge of the main river. Tracer techniques employed in this ongoing study are twofold. A long term sampling of stable water isotopes (oxygen-18 and deuterium) was initiated in order to allow inferences about mean residence times of water in different catchment compartments, while event-based sampling using a multi-tracer approach was used to identify different runoff components and associated water pathways. Special attention is given to the observation of in-channel processes by assessing the dynamics of dissolved and particulate geochemical tracers and stable water

  4. Preliminary Classification of Water Areas Within the Atchafalaya Basin Floodway System by Using Landsat Imagery

    USGS Publications Warehouse

    Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

    2008-01-01

    The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

  5. Geology of the Ahuas area in the Mosquitia basin of Honduras: Preliminary report

    SciTech Connect

    Mills, R.A.; Barton, R.

    1996-10-01

    Following a 36-fold seismic survey that covered 460 km, two exploratory wells were drilled between July 1991 and August 1993 in the Ahuas area, on the Patuca tectonic belt, in the Mosquitia savannah in northeastern Honduras. The Embarcadero 1 well encountered only dense, barren, gray and red siliciclastics and some phyllite at total depth. The RaitiTara 1 well also drilled mostly barren, but less dense, red beds that included some Upper Cretaceous limestone conglomerate in the lower section. We did not find source or reservoir rocks in either well, nor did we find hydrocarbon shows. The absence of Lower Cretaceous limestone in both wells is significant because more than 1500 m of limestone are exposed 35-50 km southwest in the Colon Mountains. The lithology of the clastics in the Embarcadero well is similar to Middle and Upper Jurassic formations in central Honduras. The lithology of the softer red beds in the Raiti-Tara well suggests they are Tertiary fill in a pull-apart basin. The Mosquitia basin, including the Ahuas area, probably was on the seaward side of the Chortis block (once part of Mexico) and received only Jurassic sediments until it was elevated by arc magmatism in the Early Cretaceous. However, thick Lower Cretaceous platform carbonates were deposited some distance inland. Lateral forces in the early Late Cretaceous caused the outer edge of Chortis to break up, carrying the Colon carbonate block up to 50 km northwest by sinistral fault movement. Later, antithetic dextral displacement offset the various blocks and created pull-apart basins that filled with Tertiary sediments. In the early Paleocene, compression from a spreading center to the southeast ruptured the Jurassic rocks, creating a decollement and later thrusting. No complete petroleum system seems to exist along the axis of the uplifted Patuca tectonic belt largely because of the lack of organic-rich source rocks and the presence of complicated young structures.

  6. Rhaetian extensional tectonics in the Slovenian Basin (Southern Alps): Preliminary results of an outcrop study

    NASA Astrophysics Data System (ADS)

    Oprčkal, P.; Gale, L.; Kolar-Jurkovšek, T.; Rožič, B.

    2012-04-01

    A Late Triassic palaeogeographic position of the Slovenian Basin on the passive continental margin of the Neotethys Ocean to the East and later the Alpine Tethys to the West, implements that its evolution intimately depended on the events in these two areas of extension. Recent research of the "Bača dolomite", the typical Norian-Rhaetian lithologic unit of the Slovenian Basin, resulted in recognition of four extensional tectonic events (Gale et al., this volume). The Lower and Middle Norian tectonic pulses can be recognized throughout the basin. A weakened tectonic activity was recognized in the Rhaetian, followed by more pronounced, but spatially restricted tectonics at the Triassic-Jurassic boundary. Extensional tectonics was attributed to the diminishing rifting in the Neotethys area and to the incipient opening of the Alpine Tethys (Gale et al., this volume). The ongoing fieldwork in the vicinity of Škofja Loka (central Slovenia) resulted in the discovery of palaeofaults in the small-sized quarry that directly evidences the Late Triassic extensional tectonics. Based on superposition, the observed section of the "Bača dolomite" is of the Rhaetian age. The discovery is particularly important because it represents the first direct documentation of the Late Triassic down-faulting in the region. The lowest strata exposed consist of highly bituminous bedded dolostones with scour structures and several meters of mud-supported dolo-breccias. Breccias were downthrown along a normal fault and the created accommodation space filled with bedded dolostone. After complete leveling of topography, another differentiation took place, during which a new normal fault originated, whereas the pre-existing fault was reactivated in an antithetic sense. Thin-bedded dolostones were deposited during slowly abiding movements. The final cessation of tectonics is marked by a uniform deposition of massive dolostone, entirely overlying the fault-dissected sediments.

  7. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  8. Preliminary study on avian fauna of the Krishna River basin Sangli District, Western Maharashtra, India.

    PubMed

    Kumbar, Suresh M; Ghadage, Abhijit B

    2014-11-01

    The present study on avifaunal diversity carried out for three years at the Krishna River Basin, Sangli District revealed a total of 126 species of birds belonging to 30 families, of which 91 species were resident, 16 migratory, 12 resident and local migratory and 7 species were resident and migratory. Among the migrant birds, Rosy Starling Sturnus roseus was dominant in the study area. Commonly recorded resident bird species were, Red vented bulbul, Jungle crow, House sparrow, Common myna, Brahminy myna, Rock pigeon, Spotted dove, Rose ringed parakeet, Indian robin, White-browed fantail-flycatcher and Small sunbird. Most of the families had one or two species, whereas Muscicapidae family alone had 16 species. Forty one species of waterfowls were recorded in this small landscape. Out of 126 bird species, 38 were insectivorous, 28 piscivorous, 25 omnivorous, 19 carnivorous, 9 granivorous, 5 frugivorous and 2 species were nectar sucker and insectivorous. These results suggest that richness of avifauna in the Krishna River Basin, Western Maharashtra might be due to large aquatic ground, varied vegetations and favourable environmental conditions.

  9. Preliminary study on avian fauna of the Krishna River basin Sangli District, Western Maharashtra, India.

    PubMed

    Kumbar, Suresh M; Ghadage, Abhijit B

    2014-11-01

    The present study on avifaunal diversity carried out for three years at the Krishna River Basin, Sangli District revealed a total of 126 species of birds belonging to 30 families, of which 91 species were resident, 16 migratory, 12 resident and local migratory and 7 species were resident and migratory. Among the migrant birds, Rosy Starling Sturnus roseus was dominant in the study area. Commonly recorded resident bird species were, Red vented bulbul, Jungle crow, House sparrow, Common myna, Brahminy myna, Rock pigeon, Spotted dove, Rose ringed parakeet, Indian robin, White-browed fantail-flycatcher and Small sunbird. Most of the families had one or two species, whereas Muscicapidae family alone had 16 species. Forty one species of waterfowls were recorded in this small landscape. Out of 126 bird species, 38 were insectivorous, 28 piscivorous, 25 omnivorous, 19 carnivorous, 9 granivorous, 5 frugivorous and 2 species were nectar sucker and insectivorous. These results suggest that richness of avifauna in the Krishna River Basin, Western Maharashtra might be due to large aquatic ground, varied vegetations and favourable environmental conditions. PMID:25522499

  10. Preliminary study of the hydrologic response of an urban drainage basin at two different scales

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Ferreira, António; Coelho, Celeste; de Lima João, Pedroso

    2010-05-01

    Predicted changes in climate and urban sprawl areas are expected to cause significant modification in rainfall pattern and hydrological regimes. Urbanization can alter the hydrologic response by increasing streamflow, reducing time of concentration, altering soil moisture levels and increasing overland flow, thereby increasing the size, frequency and speed of peak flow responses. However, despite the profusion of works, effective methodologies to investigate the impacts of potential land-use change on how spatial variability of soil moisture and precipitation affect runoff production at a range of scales and on different land uses remain largely undeveloped. This has important implications for flood prediction accuracy. The main aim of this work is to assess the hydrological response and to understand the influence of different land uses. The study is based on a small urban drainage basin (7 Km2), undergoing rapid urbanization, located in central Portugal: Ribeira dos Covões. It considers a combined approach of field survey and data acquisition to access spatiotemporal dynamics and land uses contributions to surface hydrology, based on drainage basins and small plot scales. At drainage basin scale, the study is based on three years rainfall and stream flow data analysis (collected through an automatic water level recorder and rain gauges). Rainfall-runoff relationship was assessed over the time and isolated events were studied. To understand land uses on the hydrology, rainfall simulations were conducted at the small plot scale (0.25 m2) during a dry period, in forested and deforested areas, agricultural areas, including tilled and abandoned areas, as well as built-up areas (21 experiments with 1 hour duration, with a rain intensity of 43±3 mm h-1). During the experiments hydrophobicity was monitored (Molarity of an Ethanol Droplet technique), soil moisture content was assessed every minute, and runoff volume was measured every 5 minutes. This work has shown the

  11. Magnetic Fabric of the Itararé Group, Paraná Basin Brazil: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Raposo, M. B.; Bilardello, D.; Santos, P. R.

    2012-12-01

    The late Paleozoic Itararé Group and equivalent beds in the Paraná Basin of Brazil extend into Paraguay, Argentina, and Uruguay. The Itararé Group contains the most extensive lithological record of Gondwana glaciation in the world. The succession has a maximum subsurface thickness of around 1400 m and extends over a total area greater than 1 million km2. The lower boundary of the Itararé Group is nonconformable with Precambrian to early Paleozoic crystalline basement and with Devonian strata of the Furnas and Ponta Grossa Formations, which together constitute the base of the Gondwana supersequence of the Paraná Basin. This boundary encompasses a hiatus that is loosely estimated in 45 Ma. The upper contact with the overlying Rio Bonito Formation is described as conformable to partially erosional. We performed our study on 13 sites from sedimentary rocks (sandstones and siltites) from the Itararé beds in the Brazilian portion of the Paraná Basin (mainly in São Paulo State). Magnetic fabrics were determined on oriented cylindrical specimens (2.54 cm x 2.2 cm) using the anisotropy of low-field magnetic susceptibility (AMS). Rock-magnetic analyses reveal that magnetite is the main magnetic mineral. In one of the sampled site, however, the ferromagnetic minerals are both magnetite and hematite. Regarding the eingenvector orientations, the sites usually gave good results. The analysis at the individual-site scale defines three AMS fabric types. The first type (7 sites) shows Kmin perpendicular to the bedding plane while Kmax and Kint are scattered within the bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of undeformed sediments. The second type (5 sites) shows good clustering of the AMS principal axes with Kmin still sub-perpendicular to the bedding plane. The third type, pertaining to an intensely folded site previously interpreted as slumped, is characterized in geographic coordinates by well

  12. Modeling the impact of development and management options on future water resource use in the Nyangores sub-catchment of the Mara Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Omonge, Paul; Herrnegger, Mathew; Fürst, Josef; Olang, Luke

    2016-04-01

    Despite the increasing water insecurity consequent of competing uses, the Nyangores sub-catchment of Kenya is yet to develop an inclusive water use and allocation plan for its water resource systems. As a step towards achieving this, this contribution employed the Water Evaluation and Planning (WEAP) system to evaluate selected policy based water development and management options for future planning purposes. Major water resources of the region were mapped and quantified to establish the current demand versus supply status. To define a reference scenario for subsequent model projections, additional data on urban and rural water consumption, water demand for crop types, daily water use for existing factories and industries were also collated through a rigorous fieldwork procedure. The model was calibrated using the parameter estimation tool (PEST) and validated against observed streamflow data, and subsequently used to simulate feasible management options. Due to lack of up-to-date data for the current year, the year 2000 was selected as the base year for the scenario simulations up to the year 2030, which has been set by the country for realizing most flagship development projects. From the results obtained, the current annual water demand within the sub-catchment is estimated to be around 27.2 million m3 of which 24% is being met through improved and protected water sources including springs, wells and boreholes, while 76% is met through informal and unprotected sources which are insufficient to cater for future increases in demand. Under the reference scenario, the WEAP model predicted an annual total inadequate supply of 8.1 million m3 mostly in the dry season by the year 2030. The current annual unmet water demand is 1.3 million m3 and is noteworthy in the dry seasons of December through February at the irrigation demand site. The monthly unmet domestic demand under High Population Growth (HPG) was projected to be 1.06 million m3 by the year 2030. However

  13. Origins of streamflow in a crystalline basement catchment in a sub-humid Sudanian zone: The Donga basin (Benin, West Africa): Inter-annual variability of water budget

    NASA Astrophysics Data System (ADS)

    Séguis, L.; Kamagaté, B.; Favreau, G.; Descloitres, M.; Seidel, J.-L.; Galle, S.; Peugeot, C.; Gosset, M.; Le Barbé, L.; Malinur, F.; Van Exter, S.; Arjounin, M.; Boubkraoui, S.; Wubda, M.

    2011-05-01

    SummaryDuring the last quarter of the 20th century, West Africa underwent a particularly intense and generalized drought. During this period, the biggest drops in streamflow were observed in the Sudanian zone rather than in the Sahelian zone, but the reasons are still poorly understood. In 2000, a meso-scale hydrological observatory was set up in the sub-humid Sudanian zone of the Upper Ouémé Valley (Benin). Three embedded catchments of 12-586 km 2 located on a crystalline bedrock were intensively instrumented to document the different terms of the water budget and to identify the main streamflow generating processes and base-flow mechanisms at different scales. Geophysical, hydrological and geochemical data were collected throughout the catchments from 2002 to 2006. Crossing these data helped define their hydrological functioning. The region has seasonal streamflow, and the permanent groundwater in the weathered mantle does not drain to rivers, instead, seasonal perched groundwaters are the major contributor to annual streamflow. The perched groundwaters are mainly located in seasonally waterlogged sandy layers in the headwater bottom-lands called bas-fonds in French-speaking West Africa of 1st order streams. During the period 2003-2006, regolith groundwater recharge ranged between 10% and 15% of the annual rainfall depth. Depletion of permanent groundwater during the dry season is probably explained by local evapotranspiration which was seen not to be limited to gallery forests. During the 4-year study period, a reduction of 20% in annual rainfall led to a 50% reduction in streamflow. This reduction was observed in the two components of the flow: direct runoff and drainage of perched groundwater. Thanks to the comprehensive dataset obtained, the results obtained for the Donga experimental catchment are now being extrapolated to the whole upper Ouémé valley, which can be considered as representative of sub-humid Sudanian rivers flowing on a crystalline

  14. Preliminary spectral and geologic analysis of Landsat-4 Thematic Mapper data, Wind River Basin area, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Lang, H. R.; Paylor, E. D.; Alley, R. E.

    1985-01-01

    A Landsat-4 Thematic Mapper (TM) image of the Wind River Basin area in Wyoming is currently under analysis for stratigraphic and structural mapping and for assessment of spectral and spatial characteristics using visible, near infrared, and short wavelength infrared bands. To estimate the equivalent Lambertian surface reflectance, TM radiance data were calibrated to remove atmospheric and instrumental effects. Reflectance measurements for homogeneous natural and cultural targets were acquired about one year after data acquisition. Calibration data obtained during the analysis were used to calculate new gains and offsets to improve scanner response for earth science applications. It is shown that the principal component images calculated from the TM data were the result of linear transformations of ground reflectance. In images prepared from this transform, the separation of spectral classes was independent of systematic atmospheric and instrumental factors. Several examples of the processed images are provided.

  15. Preliminary results of imaging spectroscopy of the Humorum Basin region of the moon

    NASA Technical Reports Server (NTRS)

    Lucey, P. G.; Bruno, B. C.; Hawke, B. R.

    1991-01-01

    Imaging spectroscopy of the lunar surface was carried out using a CCD spectrograph employed as an imaging spectrometer at the University of Hawaii 2.24-m telescope at Mauna Kea Observatory. A portion of the Humorum multiringed impact basin was observed, yielding an imaging spectroscopic dataset consisting of approximately 400,000 spectra covering the wavelength region 0.7-0.98 microns at a spectral resolution of 200 (lambda/Delta-lambda). Results of this analysis included (1) identifying craters and other explosures of highland material within the bounds of Mare Humorum, (2) identifying craters in the highlands adjacents to Mare Humorum that excavate buried mare basalt, and (3) identifying two spectral units in the highlands that likely represent compositional units. The region is shown to be extremely diverse spectrally and demonstrates the ability of imaging spectroscopy to enable a qualitative improvement in the ability to identify and map compositional units.

  16. Luminescence Dating of Marine Terrace Sediments Between Trabzon and Rize, Eastern Black Sea Basin: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Softa, Mustafa; Spencer, Joel Q. G.; Emre, Tahir; Sözbilir, Hasan; Turan, Mehmet

    2016-04-01

    Quaternary marine terraces in the coastal region of Pontides in Northeastern Turkey are valuable archives of past sea level change. Until recently, dates of raised marine terraces undeciphered in the coastal region between Trabzon and Rize because of chronologic limitations. In this paper was to determine ages of the terrace deposits by applying optically stimulated luminescence (OSL) dating methods using single aliquot regenerative dose (SAR) techniques on quartz minerals from extracted marine terraces. Several samples were collected from three orders of Quaternary marine terraces which are reproducible at all sampling location in between cities of Trabzon and Rize, Turkey, coastal of Eastern Pontides, at the front of the thrust system. The terrace deposits mainly consist of clays, silts, sands and gravels. The sediments in these deposits are mainly derived from basaltic, andesitic, and limestone geology, and have elipsoid, square and flat shapes. The terrace deposits have heights ranging from 1 to 17 meters and increases in height and thickness from west to east. Initial OSL results from 1 mm and 3 mm quartz aliquots demonstrate good luminescence characteristics. Preliminary equivalent dose analysis results ranging from 17.6 Gy to 79.6 Gy have been calculated using the Central Age Model (CAM) and Minimum Age Model (MAM). According to ages obtained from three separate terrace is ~8 ka, ~42 ka and ~78 ka, respectively. Results of marine terrace sediments indicate this region has three sedimentation periods and coastal region of Pontides has been remarkably tectonically active since latest Pleistocene to earlier Holocene. This study will present preliminary OSL dating results obtained from samples of Quaternary marine terrace formation. Keywords: optically stimulated luminescence (OSL) dating, single grain, marine terraces, Eastern Pontides.

  17. Managing the impact of gold panning activities within the context of integrated water resources management planning in the Lower Manyame Sub-Catchment, Zambezi Basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Zwane, Nonhlanhla; Love, David; Hoko, Zvikomborero; Shoko, Dennis

    Riverbed alluvial gold panning activities are a cause for degradation of river channels and banks as well as water resources, particularly through accelerated erosion and siltation, in many areas of Zimbabwe. The lower Manyame sub-catchment located in the Northern part of the country is one such area. This study analysed the implications of cross-sectoral coordination of the management of panning and its impacts. This is within the context of conflicts of interests and responsibilities. A situational analysis of different stakeholders from sectors that included mining, environment, water, local government and water users who were located next to identified panning sites, as well as panners was carried out. Selected sites along the Dande River were observed to assess the environmental effects. The study determined that all stakeholder groups perceived siltation and river bank degradation as the most severe effect of panning on water resources, yet there were divergent views with regards to coordination of panning management. The Water Act of 1998 does not give enough power to management institutions including the Lower Manyame Sub-catchment Council to protect water resources from the impacts of panning, despite the fact that the activities affect the water resource base. The Mines and Minerals Act of 1996 remains the most powerful legislation, while mining sector activities adversely affect environmental resources. Furthermore, complexities were caused by differences in the definition of water resources management boundaries as compared to the overall environmental resources management boundaries according to the Environmental Management Act (EMA) of 2000, and by separate yet parallel water and environmental planning processes. Environmental sector institutions according to the EMA are well linked to local government functions and resource management is administrative, enhancing efficient coordination.

  18. CHARIS - The Contribution to High Asian Runoff from Ice and Snow, Preliminary results from the Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Barrett, A. P.; Brodzik, M.; Fetterer, F. M.; Hashmey, D.; Horodyskyj, U. N.; Khalsa, S.; Racoviteanu, A.; Raup, B. H.; Williams, M. W.; Wilson, A.

    2013-12-01

    results with local sub-basin studies based on energy balance modeling approaches. We are also evaluating the accuracy of the melt model results using isotopic and geochemical tracers to identify and quantify the sources of water (ice melt, snow melt, rainfall and ground water) flowing into selected rivers representing the major hydro-climates of the study area. Preliminary results are presented for the Upper Indus Basin, and the Hunza sub-basin, for the period 2000-2012.

  19. The relationship between diagenesis and physical properties of sediments in the Shikoku Basin; Preliminary Results

    NASA Astrophysics Data System (ADS)

    Lee, Gwang Soo; Kim, Gil Young; Kyo Seo, Young; Henry, Pierre; Kanamatsu, Toshiya; Kyaw Thu, Moe; 333 Scientists, Expedition

    2013-04-01

    Integrated Ocean Drilling Program (IODP) Site C0011 is located on the northwest flank of the Kashinosaki Knoll which is the crest of bathymetric high in the Shikoku Basin. In this site, the physical properties of sediment were measured to provide high-resolution data on the bulk physical properties and their downhole variations. All physical property (moisture and density, gamma ray attenuation density, magnetic susceptibility, P-wave velocity, thermal conductivity, vane shear, and electrical resistivity) measurements were made after cores had been imaged by X-ray CT and had equilibrated to room temperature (about 20 °C). From the surface to 50 mbsf, bulk density generally increases and porosity decreases along the downhole. The trend reverses between 50 and 80 mbsf and then remains relatively constant until 240 mbsf. A sharp increase in bulk density (decrease in porosity) occurs between 240 and 270 mbsf, after which a steady consolidation trend continues to the base of the borehole. The dramatic change of physical properties in this section was estimated to be caused by sediment diagenesis which is cementation by the opal-A and opal-CT transformation, because the sediment texture observing from core description and CT scan is unconverted in this section. In the result of sediment texture analysis for total 128 subsamples of Holes C0011C and C0011D, the sediment texture does not show the features related to the change of the physical property between 240 and 270 mbsf, except relatively high mean grain size and sand contents at 235 mbsf. In the quantitative analysis of opal contents for 11 subsamples of Holes C0011C and C0011D, using X-ray diffraction (XRD) and computer software based on Rietveld quantification method, the contents of clay mineral and opal-A are high and also unconverted in all samples, whereas the contents of opal-CT are few. The result of quantitative analysis of opal contents using XRD does not support the sediment diagenesis caused by the opal

  20. Preliminary results of polarization signatures for glacial moraines in the Mono Basin, Eastern Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Forster, Richard R.; Fox, Andrew N.; Isacks, Bryan

    1992-01-01

    The valleys of the Mono Basin contain several sets of lateral and terminal moraines representing multiple stages of glaciation. The semi-arid climate with slow weathering rates preserved sequences of nested younger moraines within older ones. There is a well established relative chronology and recently exposure dating provided a new set of numerical dates. The moraines span the late Wisconsin (11-25 ka) to the Illinoian (130-190 ka) glaciations. The Mono Basin area was used as a 'calibration site' to establish remote dating techniques for eventual transfer to the more inaccessible but geomorphically and climatically similar moraines of the South American Andes Mountains. Planned polarimetric synthetic aperture radar (SAR) imagery acquired by JPL AIRSAR (South American Campaign) and SIR-C (Andes super-site) are analyzed to establish chronologies of previously undated moraine sequences in a study of Pleistocene climatic change in the Southern Hemisphere. The dry climate and sparse vegetation is also favorable for correlation of ground surface roughness with radar polarization signature. The slow weathering processes acting over thousands of years reduce the size, frequency, and angularity of surface boulders while increasing soil development on the moraines. Field observations based on this hypothesis result in relative ages consistent with those inferred from nested position within the valley. Younger moraines, therefore, will appear rougher than the older smoother moraines at scales measurable at AIRSAR wavelengths. Previously documented effects of ground surface roughness on polarization signatures suggest that analysis of moraine polarization signatures can be useful for relative dating. The technique may be extended to predict numerical ages. The data set reported were acquired on 8 Sep. 1989 with the JPL Airborne SAR (AIRSAR) collecting polarimetric imagery at C- (5.6 cm), L- (24 cm), and P-band (68 cm) with a flight-line parallel to the strike of the mountains

  1. Development and preliminary application of a method to assess river ecological status in the Hai River Basin, north China.

    PubMed

    Shan, Baoqing; Ding, Yuekui; Zhao, Yu

    2016-01-01

    The river ecosystem in the Hai River Basin (HRB), an important economic region in China, is seriously degraded. With the aim of river restoration in the HRB, we developed a method to assess the river's ecological status and conducted a preliminary application of the method. The established method was a predictive model, which used macroinvertebrates as indicator organisms. The river's ecological status was determined by calculating the ratio of observed to expected values (O/E). The method included ecoregionalization according to natural factors, and the selection of reference sites based on combinations of habitat quality and macroinvertebrate community. Macroinvertebrate taxa included Insecta, Crustacea, Gastropoda, and Oligochaeta, with 39 families and 95 genera identified in the HRB. The HRB communities were dominated by pollution tolerant taxa, such as Lymnaeidae, Chironomus, Limnodrilus, Glyptotendipes, and Tubifex. The average Shannon-Wiener index was 1.40±0.5, indicating a low biodiversity. In the river length of 3.31×10(4) km, 55% of the sites were designated poor, with a bad ecological status. Among nine secondary river systems, Luan and Zi-ya had the best and worst river conditions, respectively. Only 17 reference site groups were selected for river management in the 41 ecoregions examined. This study lays the foundation for river restoration and related research in the HRB, and we anticipate further developments of this novel method. PMID:26899653

  2. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    USGS Publications Warehouse

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  3. Preliminary report on the clay mineralogy of the Upper Devonian Shales in the southern and middle Appalachian Basin

    USGS Publications Warehouse

    Hosterman, John W.; Loferski, Patricia J.

    1978-01-01

    The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.

  4. Monitoring of wild fish health at selected sites in the Great Lakes Basin: methods and preliminary results

    USGS Publications Warehouse

    Blazer, Vicki; Mazik, Patricia M.; Iwanowicz, Luke R.; Braham, Ryan; Hahn, Cassidy; Walsh, Heather L.; Sperry, Adam

    2014-01-01

    During fall 2010 and spring 2011, a total of 119 brown bullhead (Ameiurus nebulosus), 136 white sucker (Catostomus commersoni), 73 smallmouth bass (Micropterus dolomieu), and 59 largemouth bass (M. salmoides) were collected from seven Great Lakes Basin Areas of Concern and one Reference Site. Comprehensive fish health assessments were conducted in order to document potential adverse affects from exposure to complex chemical mixtures. Fish were necropsied on site, blood samples obtained, pieces of liver, spleen, kidney, gill and any abnormalities placed in fixative for histopathology. Liver samples were saved for gene expression analysis and otoliths were removed for aging. A suite of fish health indicators was developed and implemented for site comparisons and to document seasonal effects and species differences in response to environmental conditions. Organism level (grossly visible lesions, condition factor), tissue level (microscopic pathology, organosomatic indices, micronuclei, and other nuclear abnormalities), plasma factors (reproductive steroid hormones, vitellogenin), and molecular (gene expression) indicators were included. This report describes the methods and preliminary results.

  5. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Yin, Yeshi; Cheng, Gong; Lei, Fang; Yang, Xi; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-11-01

    Preliminary characterization of the microbial phylogeny and metabolic potential of a deep-sea sediment sample from the Qiongdongnan Basin, South China Sea, was carried out using a metagenomic library approach. An effective and rapid method of DNA isolation, purification, and library construction was used resulting in approximately 200,000 clones with an average insert size of about 36 kb. End sequencing of 600 individual clones from the fosmid library generated 1,051 sequences with an average sequence length of 619 bp. Phylogenetic ascription indicated that this library was dominated by Bacteria, predominantly Proteobacteria, though Planctomycetes were also relatively abundant. Sulfate-reducing and anaerobic ammonium-oxidizing bacteria, which play important roles in the cycling of sedimentary nutrients, were abundant in the library. Cluster of orthologous groups category analysis showed that most of the genes contained in the end sequences were related to metabolism, and with cellular processes and signaling. Functional groups assigned by SEED (subsystems-based annotations) highlighted the existence of 'one-carbon' metabolism within this community as well as identifying functional genes involved in methanogenesis. Furthermore, diverse genes involved in the biodegradation of xenobiotics were found using Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis. PMID:20514504

  6. First ediacaran fauna occurrence in northeastern Brazil (jaibaras basin, ?ediacaran-cambrian): preliminary results and regional correlation.

    PubMed

    Barroso, Francisco R G; Viana, Maria Somália S; de Lima Filho, Mario F; Agostinho, Sonia M O

    2014-09-01

    This study reports the first known occurrence of the Ediacaran fauna in northeastern Brazil (at Pacujá Municipality, northwestern state of Ceará) and presents preliminary interpretations of its significance. Regional correlation indicates that the fossils originated in the Jaibaras Basin and that they may represent a new geological system. The depositional environment can be attributed to a fluviomarine system. Nine Ediacaran species can be identified, including members of pandemic groups (e.g., Charniodiscus arboreus Glaessner, 1959; ?Charniodiscus concentricus Ford, 1958; Cyclomedusa davidi Sprigg, 1947; Ediacaria flindersi Sprigg, 1947; and Medusinites asteroides Sprigg, 1949) and endemic groups (e.g., Kimberella quadrata Glaessner & Wade, 1966; Palaeophragmodictya reticulata Gehling & Rigby, 1996; Parvancorina minchami Glaessner, 1958; and Pectinifrons abyssalis Bamforth, Narbonne, Anderson, 2008). Three ichnogenera are also present: Arenicolites Salter, 1857; Palaeophycus Hall, 1987; and Planolites Nicholson, 1873. The relative age of the deposits is between ?Ediacaran and Cambrian, and the fauna resembles the White Sea Assemblage. The bioturbation presents typical unbranched Ediacaran ichnogenera with little depth in the substrate. This previously unknown occurrence of the Ediacaran fauna reinforces the importance of the state of Ceará to Brazilian and global palaeontology.

  7. Preliminary report on coal resources of the Wyodak-Anderson coal zone, Powder River Basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.

    1998-01-01

    The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.

  8. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Yin, Yeshi; Cheng, Gong; Lei, Fang; Yang, Xi; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-11-01

    Preliminary characterization of the microbial phylogeny and metabolic potential of a deep-sea sediment sample from the Qiongdongnan Basin, South China Sea, was carried out using a metagenomic library approach. An effective and rapid method of DNA isolation, purification, and library construction was used resulting in approximately 200,000 clones with an average insert size of about 36 kb. End sequencing of 600 individual clones from the fosmid library generated 1,051 sequences with an average sequence length of 619 bp. Phylogenetic ascription indicated that this library was dominated by Bacteria, predominantly Proteobacteria, though Planctomycetes were also relatively abundant. Sulfate-reducing and anaerobic ammonium-oxidizing bacteria, which play important roles in the cycling of sedimentary nutrients, were abundant in the library. Cluster of orthologous groups category analysis showed that most of the genes contained in the end sequences were related to metabolism, and with cellular processes and signaling. Functional groups assigned by SEED (subsystems-based annotations) highlighted the existence of 'one-carbon' metabolism within this community as well as identifying functional genes involved in methanogenesis. Furthermore, diverse genes involved in the biodegradation of xenobiotics were found using Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis.

  9. Channel erosion and sediment transport in Pheasant Branch basin near Middleton, Wisconsin; a preliminary report

    USGS Publications Warehouse

    Grant, R. Stephen; Goddard, Gerald

    1980-01-01

    The purpose of this 5-year study is to (1) evaluate the sediment transport, streamflow characteristics, and stream-channel morphology, (2) relate the above to land-use practices; and (3) evaluate the effect that changes in land-use practices will have on Pheasant Branch basin near Middleton, Wis. This report presents findings of sediment transport, streamflow characteristics, and stream-channel morphology from the first year of the study and documents historical erosion. The study is being conducted by the U.S. Geological Survey in cooperation with the city of Middleton and the Wisconsin Geological and Natural History Survey. Pheasant Branch, a tributary to Lake Mendota, drains 23.1 square miles of glacial drift. Channel erosion is severe within Middleton, requiring extensive use of erosion-control structures. Occasionally, channel dredging near the mouth and into Lake Mendota is required for boating. Comparison of stream-channel surveys of 1971 and 1977 shows the lowest part of the channel lowered 3 to 4 feet at some sites in the urban reach from U.S. Highway 12 downstream to Century Avenue. Downstream from Century Avenue, channel width increased from about 35 to 48 feet and channel cross-section area increased about 86 percent. A survey of Pheasant Branch in 1971 provided data for quantification of stream-channel changes since that time. Six erosion-control structures previously installed appear to have had some benefit in controlling head cutting in the channel. (USGS).

  10. Preliminary Paleomagnetic Results From Tertiary Rocks of Sedimentary Basins in Northern Vietnam and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Z.; Le, K.; Zhao, Y.; Hoang, V.; Phan, D.

    2013-12-01

    The South China Sea (SCS) is a classical representative of western Pacific marginal seas and contains records of Cenozoic tectonic events of SE Asia. The SCS has been at the center stage of many first-order tectonic and paleoclimatic events since the Mesozoic. One clear way to evaluate the relationship between tectonic uplift and climate is to study the resulting changes in marginal sea strata. To this end, we will conduct an integrated paleomagnetic and stratigraphic investigation on Tertiary strata from Phu Tho and Yen Bai provinces, northern Vietnam to help understand the causal linkages among geological and tectonic events and their consequences related to the SCS evolution. We will collect paleomagnetic samples at sections where the most continuous, complete, and best preserved Eocene-Miocene successions. Standard paleomagnetic field tests, such as the fold, reversal, and conglomerate tests will be used to determine the relative age of the magnetization. In addition to detailed thermal and alternating field demagnetization and analysis, selected samples will also be subjected to several rock magnetic analyses to identify magnetic carriers in the rocks. In particular, the hysteresis parameters Jrs/Js and Hcr /Hc ratios will enable us to apply techniques for detecting low-temperature remagnetization of sedimentary rocks. Preliminary finding of this ongoing project will be presented.

  11. Impact of Urbanization on Stormwater Runoff from a Small Urban Catchment: Gdańsk Małomiejska Basin Case Study

    NASA Astrophysics Data System (ADS)

    Olechnowicz, Borys; Weinerowska-Bords, Katarzyna

    2014-12-01

    This paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.

  12. Preliminary assessment of water quality in the alluvial aquifer of the Puerco River basin, Northeastern Arizona

    USGS Publications Warehouse

    Webb, R.H.; Rink, G.R.; Radtke, D.B.

    1987-01-01

    The quality of groundwater in the alluvial aquifer of the Puerco River basin, northeastern Arizona, was evaluated in order to assess potential contamination from uranium mining and milling operations in New Mexico. A total of 14 wells and 1 spring were sampled to determine if a contaminant plume of radionuclides or trace elements is present. The water is characterized by high dissolved solids with a median of 698 mg/l and high concentrations of alkalinity, sodium, and sulfate. Except for iron, manganese, and strontium, the concentrations of trace elements generally are below the applicable EPA and State of Arizona maximum contaminant levels. Gross alpha activity has a median of 27 picocuries/l and ranges from 4 to 42 picocuries/l. Uranium, which accounts for most of the gross alpha activity, has a median concentration of 19 micrograms/l and ranges from 1 to 38 micrograms/l. Twenty percent to 84% of the gross alpha activity was derived from other undetermined radionuclides. Other radionuclides, including radium-226 and radium-228, generally are not present in activities > 5 picocuries/l in the water. Statistical analysis of the water quality data suggest that no contaminant plume can be defined on the basis of samples from existing wells. The contamination in the alluvial aquifer apparently does not change in the downstream direction along the Puerco River. The geochemistry of radionuclides indicates that most radionuclides from the uranium-decay series are immobile or only slightly mobile, whereas uranium will not precipitate out of solution but may be removed by sorption in the alluvial aquifer. (Author 's abstract)

  13. Establishment of a hydrological monitoring network in a tropical African catchment: An integrated participatory approach

    NASA Astrophysics Data System (ADS)

    Gomani, M. C.; Dietrich, O.; Lischeid, G.; Mahoo, H.; Mahay, F.; Mbilinyi, B.; Sarmett, J.

    Sound decision making for water resources management has to be based on good knowledge of the dominant hydrological processes of a catchment. This information can only be obtained through establishing suitable hydrological monitoring networks. Research catchments are typically established without involving the key stakeholders, which results in instruments being installed at inappropriate places as well as at high risk of theft and vandalism. This paper presents an integrated participatory approach for establishing a hydrological monitoring network. We propose a framework with six steps beginning with (i) inception of idea; (ii) stakeholder identification; (iii) defining the scope of the network; (iv) installation; (v) monitoring; and (vi) feedback mechanism integrated within the participatory framework. The approach is illustrated using an example of the Ngerengere catchment in Tanzania. In applying the approach, the concept of establishing the Ngerengere catchment monitoring network was initiated in 2008 within the Resilient Agro-landscapes to Climate Change in Tanzania (ReACCT) research program. The main stakeholders included: local communities; Sokoine University of Agriculture; Wami Ruvu Basin Water Office and the ReACCT Research team. The scope of the network was based on expert experience in similar projects and lessons learnt from literature review of similar projects from elsewhere integrated with local expert knowledge. The installations involved reconnaissance surveys, detailed surveys, and expert consultations to identify best sites. First, a Digital Elevation Model, land use, and soil maps were used to identify potential monitoring sites. Local and expert knowledge was collected on flow regimes, indicators of shallow groundwater plant species, precipitation pattern, vegetation, and soil types. This information was integrated and used to select sites for installation of an automatic weather station, automatic rain gauges, river flow gauging stations

  14. Using self-organizing maps to infill missing data in hydro-meteorological time series from the Logone catchment, Lake Chad basin.

    PubMed

    Nkiaka, E; Nawaz, N R; Lovett, J C

    2016-07-01

    Hydro-meteorological data is an important asset that can enhance management of water resources. But existing data often contains gaps, leading to uncertainties and so compromising their use. Although many methods exist for infilling data gaps in hydro-meteorological time series, many of these methods require inputs from neighbouring stations, which are often not available, while other methods are computationally demanding. Computing techniques such as artificial intelligence can be used to address this challenge. Self-organizing maps (SOMs), which are a type of artificial neural network, were used for infilling gaps in a hydro-meteorological time series in a Sudano-Sahel catchment. The coefficients of determination obtained were all above 0.75 and 0.65 while the average topographic error was 0.008 and 0.02 for rainfall and river discharge time series, respectively. These results further indicate that SOMs are a robust and efficient method for infilling missing gaps in hydro-meteorological time series. PMID:27282595

  15. A preliminary assessment of sources of nitrate in springwaters, Suwannee River basin, Florida

    USGS Publications Warehouse

    Katz, B.G.; Hornsby, H.D.

    1998-01-01

    A cooperative study between the Suwannee River Water Management District (SRWMD) and the U.S. Geological Survey (USGS) is evaluating sources of nitrate in water from selected springs and zones in the Upper Floridan aquifer in the Suwannee River Basin. A multi-tracer approach, which consists of the analysis of water samples for naturally occurring chemical and isotopic indicators, is being used to better understand sources and chronology of nitrate contamination in the middle Suwannee River region. In July and August 1997, water samples were collected and analyzed from six springs and two wells for major ions, nutrients, and dissolved organic carbon. These water samples also were analyzed for environmental isotopes [18O/16O, D/H, 13C/12C, 15N/14N] to determine sources of water and nitrate. Chlorofluorocarbons (CCl3F, CCl2F2, and C2Cl3F3) and tritium (3H) were analyzed to assess the apparent ages (residence time) of springwaters and water from the Upper Floridan aquifer. Delta 15N-NO3 values in water from the six springs range from 3.94 per mil (Little River Springs) to 8.39 per mil (Lafayette Blue Spring). The range of values indicates that nitrate in the sampled springwaters most likely originates from a mixture of inorganic (fertilizers) and organic (animal wastes) sources, although the higher delta 15N-NO3 value for Lafayette Blue Spring indicates that an organic source of nitrogen is likely at this site. Water samples from the two wells sampled in Lafayette County have high delta 15N-NO3 values of 10.98 and 12.1 per mil, indicating the likelihood of an organic source of nitrate. These two wells are located near dairy and poultry farms, where leachate from animal wastes may contribute nitrate to ground water. Based on analysis of chlorofluorocarbons in ground water, the mean residence time of water in springs ranges from about 12 to 25 years. Chlorofluorocarbons-modeled recharge dates for water samples from the two shallow zones in the Upper Floridan aquifer

  16. Catchment Classification: Connecting Climate, Structure and Function

    NASA Astrophysics Data System (ADS)

    Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.

    2010-12-01

    Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).

  17. Runoff Responses to Forest Thinning at Plot and Catchment Scales in a Headwater Catchment Draining Japanese Cypress Forest

    EPA Science Inventory

    We examined the effect of forest thinning on runoff generation at plot and catchment scales in headwater basins draining a Japanese cypress (Chamaecyparis obtusa) forest. We removed 58.3% of the stems (corresponding to 43.2% of the basal area) in the treated headwater basin (catc...

  18. Co-evolution of volcanic catchments in Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Troch, P. A. A.

    2015-12-01

    Present day landscapes have evolved over time through interactions between the prevailing climates and geological settings. Understanding the linkage between spatial patterns of landforms, soils, and vegetation in landscapes and their hydrological response is critical to make quantitative predictions in ungaged basins. Catchment co-evolution is a theoretical framework that seeks to formulate hypotheses about the mechanisms and conditions that determine the historical development of catchments and how such evolution affects their hydrological response. In this study, we selected 14 volcanic catchments of different ages (from 0.22 to 82Ma) in Japan. We derived indices of landscape properties (drainage density) as well as hydrological response (annual water balance, baseow index, and flow duration curves) and examined their relation with catchment age and climate (through the aridity index). We found signicant correlation between drainage density and baseow index with age, but not with climate. The age of the catchments was also signicantly related to intra-annual flow variability. Younger catchments tend to have lower peak flows and higher low flows, while older catchments exhibit more flashy runoff. The decrease of baseflow with catchment age confirms previous studies that hypothesized that in volcanic landscapes the major flow pathways have changed over time, from deep groundwater flow to shallow subsurface flow. The drainage density of our catchments decreased with age, contrary to previous findings in similar volcanic catchments but of signicant younger age than the ones explored here. In these younger catchments, an increase in drainage density with age was observed, and it was hypothesized that this was because of more landscape incision due to increasing near-surface lateral flow paths in more mature catchments. Our results suggest that as catchments further evolve, hydrologically active channels retreat as less recharge leads to lower average aquifer levels

  19. The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ10Be, 26Al and 21Ne in sediment of the Po river catchment

    NASA Astrophysics Data System (ADS)

    Wittmann, Hella; Malusà, Marco G.; Resentini, Alberto; Garzanti, Eduardo; Niedermann, Samuel

    2016-10-01

    We analyze the source-to-sink variations of in situ10Be, 26Al and 21Ne concentrations in modern sediment of the Po river catchment, from Alpine, Apennine, floodplain, and delta samples, in order to investigate how the cosmogenic record of orogenic erosion is transmitted across a fast-subsiding foreland basin. The in situ10Be concentrations in the analyzed samples range from ∼ 0.8 ×104 at /gQTZ to ∼ 6.5 ×104 at /gQTZ. The 10Be-derived denudation rates range from 0.1 to 1.5 mm/yr in the Alpine source areas and from 0.3 to 0.5 mm/yr in the Apenninic source areas. The highest 10Be-derived denudation rates are found in the western Central Alps (1.5 mm/yr). From these data, we constrain a sediment flux leaving the Alpine and the Apenninic source areas (>27 Mt/yr and ca. 5 Mt/yr, respectively) that is notably higher than the estimates of sediment export provided by gauging (∼10 Mt/yr at the Po delta). We observe a high variability in 10Be concentrations and 10Be-derived denudation rates in the source areas. In the Po Plain, little variability is observed, and at the same time, the area-weighed 10Be concentration of (2.29 ± 1.57) ×104 at /gQTZ (±1 SD of the dataset) from both the Alps and the Apennines is poorly modified (by tributary input) in sediment of the Po Plain ((2.68 ± 0.78 , ± 1 SD) ×104 at /gQTZ). The buffering effect of the Po floodplain largely removes scatter in 10Be signals. We test for several potential perturbations of the cosmogenic nuclide record during source to sink transfer in the Po basin. We find that sediment trapping in deep glacial lakes or behind dams does not significantly change the 10Be-mountain record. For example, similar 10Be concentrations are measured upstream and downstream of the postglacial Lake Maggiore, suggesting that denudation rates prior to lake formation were similar to today's. On the scale of the entire basin, the 10Be concentration of basins with major dams is similar to those without major dams. A potential

  20. A multi-proxy lake core record from Lago Lungo, Rieti Basin, Lazio, Italy and its relation to human activities in the catchment during the last century

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Tunno, Irene; Mensing, Scott; Piovesan, Gianluca

    2016-04-01

    The lakes of the Rieti Basin have experienced extensive human modification dating back to pre-Roman times, yet lake archives indicate that the most profound changes to the aquatic ecosystem have occurred during the last century. Analysis of the upper ˜120 cm segment of a sediment core from Lago Lungo, dating back to ˜1830 CE, show changes in water quality and hydrologic inflow largely attributed to 20th century reclamation and land use activities. Lago Lungo is a shallow, small, eutrophic, hard water lake situated in an intermontaine alluvial plain ˜90 km NE of Rome. It is one of several remnant lakes in a poorly drained wetland area fed by numerous springs. Reclamation activities over the last century have substantially altered the drainage network affecting water delivery to the lakes and their connectivity. There are 3 interesting signals in the core. First, small Stephanodiscus species, associated with hypereutrophic conditions, appear after 1950, peak ˜1990, and may be attributed to increased use of chemical fertilizers and intensification of local agriculture. Elemental proxies from scanning XRF data (abundances of Ti, Si/Ti, and Ca) are consistent with increased eutrophication starting ˜1950. A decline in Stephanodicsus after 1990 reflects some improvement to the water quality following the lake's incorporation into a nature preserve and creation of a narrow vegetation buffer. Intermittent water quality measurements from 1982 onward corroborate the changes in trophic status interpreted from the core record. Second, a large change in the core stratigraphy, elemental geochemistry, and diatom composition occurs ˜1940 and is associated with several major reclamation efforts, including the rerouting of the Santa Susanna channel, which redirected large volumes of artesian inflows away from the lakes and estuarine system. Upstream, dams on the Turano and Salto rivers were also constructed, further affecting hydrological inflows into the basin. From ˜1900

  1. Impact and sustainability of low-head drip irrigation kits, in the semi-arid Gwanda and Beitbridge Districts, Mzingwane Catchment, Limpopo Basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Moyo, Richard; Love, David; Mul, Marloes; Mupangwa, Walter; Twomlow, Steve

    Resource-poor smallholder farmers in the semi-arid Gwanda and Beitbridge districts face food insecurity on an annual basis due to a combination of poor and erratic rainfall (average 500 mm/a and 345 mm/a, respectively, for the period 1970-2003) and technologies inappropriate to their resource status. This impacts on both household livelihoods and food security. In an attempt to improve food security in the catchment a number of drip kit distribution programmes have been initiated since 2003 as part of an on-going global initiative aimed at 2 million poor households per year. A number of recent studies have assessed the technical performance of the drip kits in-lab and in-field. In early 2005 a study was undertaken to assess the impacts and sustainability of the drip kit programme. Representatives of the NGOs, local government, traditional leadership and agricultural extension officers were interviewed. Focus group discussions with beneficiaries and other villagers were held at village level. A survey of 114 households was then conducted in two districts, using a questionnaire developed from the output of the interviews and focus group discussions. The results from the study showed that the NGOs did not specifically target the distribution of the drip kits to poor members of the community (defined for the purpose of the study as those not owning cattle). Poor households made up 54% of the beneficiaries. This poor targeting of vulnerable households could have been a result of conditions set by some implementing NGOs that beneficiaries must have an assured water source. On the other hand, only 2% of the beneficiaries had used the kit to produce the expected 5 harvests over the 2 years, owing to problems related to water shortage, access to water and also pests and diseases. About 51% of the respondents had produced at least 3 harvests and 86% produced at least 2 harvests. Due to water shortages during the dry season 61% of production with the drip kit occurred during

  2. Preliminary analysis of the role of lake basin morphology on the modern diatom flora in the Ruby Mountains and East Humboldt Range, Nevada, USA

    USGS Publications Warehouse

    Starratt, Scott W.

    2014-01-01

    As paleolimnologists, we often look at the world through a 5-cm-diameter hole in the bottom of a lake, and although a number of studies have shown that a single core in the deepest part of a lake does not necessarily reflect the entire diatom flora, time and money often limit our ability to collect more than one core from a given site. This preliminary study is part of a multidisciplinary research project to understand Holocene climate variability in alpine regions of the Great Basin, and ultimately, to compare these high elevation records to the better studied pluvial records from adjacent valleys, in this case, the Ruby Valley.

  3. Diatoms as a fingerprint of sub-catchment contributions to meso-scale catchment runoff

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Wetzel, Carlos E.; Martinez-Carreras, Nuria; Ector, Luc; Pfister, Laurent

    2014-05-01

    In recent years, calls were made for new eco-hydrological approaches to improve understanding of hydrological processes. Recently diatoms, one of the most common and diverse algal groups that can be easily transported by flowing water due to their small size (~10-200 µm), were used to detect the onset and cessation of surface runoff to small headwater streams and constrain isotopic and hydro-chemical hydrograph separation methods. While the method showed its potential in the hillslope-riparian zone-stream continuum of headwater catchments, the behavior of diatoms and their use for hydrological process research in meso-scale catchments remains uncertain. Diatoms can be a valuable support for isotope and hydro-chemical tracer methods when these become ambiguous with increasing scale. Distribution and abundance of diatom species is controlled by various environmental factors (pH, soil type, moisture conditions, exposition to sunlight, etc.). We therefore hypothesize that species abundance and composition can be used as a proxy for source areas. This presentation evaluates the potential for diatoms to trace source-areas in the nested meso-scale Attert River basin (250 km2, Luxembourg, Europe). We sampled diatom populations in streamwater during one flood event in Fall 2011 in 6 sub-catchments and the basin outlet - 17 to 28 samples/catchment for the different sampling locations. Diatoms were classified and counted in every individual sample. In total more than 400 diatom species were detected. Ordination analysis revealed a clear distinction between communities sampled in different sub-catchments. The species composition at the catchment outlet reflects a mixing of the diatom composition originating from different sub-catchments. This data suggests that diatoms indeed can reflect the geographic origin of stream water at the catchment outlet. The centroids of the ordination analysis might be linked to the physiographic characteristics (geology and land use) of the

  4. PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE

    SciTech Connect

    Millings, M.

    2013-09-16

    A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study

  5. Concentration and mineralogical residence of elements in rich oil shales of the Green River Formation, Piceance Creek basin, Colorado, and the Uinta Basin, Utah - A preliminary report

    USGS Publications Warehouse

    Desborough, G.A.; Pitman, J.K.; Huffman, C.

    1976-01-01

    Ten samples from drillcore of two rich oil-shale beds from the Parachute Creek Member of the Eocene Green River Formation, Piceance Creek basin, Colorado, and Uinta Basin, Utah, were analyzed for 37 major, minor, and trace elements. For 23 of these elements, principal mineralogical residence is established or suggested and such studies may provide data which are useful for predicting the kinds and amounts of elements and compounds that might be released into the environment by oil-shale mining operations. ?? 1976.

  6. Controls on Water Storage, Mixing and Release in a Nested Catchment Set-up with Clean and Mixed Physiographic Characteristics

    NASA Astrophysics Data System (ADS)

    Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.

    2015-12-01

    With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year

  7. Modeling of facade leaching in urban catchments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  8. Preliminary assessment of channel stability and bed-material transport in the Rogue River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary assessment of bed-material transport, vertical and lateral channel changes, and existing datasets for the Rogue River basin, which encompasses 13,390 square kilometers (km2) along the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that: * The Rogue River in its lowermost 178.5 kilometers (km) alternates between confined and unconfined segments, and is predominately alluvial along its lowermost 44 km. The study area on the mainstem Rogue River can be divided into five reaches based on topography, hydrology, and tidal influence. The largely confined, active channel flows over bedrock and coarse bed material composed chiefly of boulders and cobbles in the Grants Pass (river kilometers [RKM] 178.5-152.8), Merlin (RKM 152.8-132.7), and Galice Reaches (RKM 132.7-43.9). Within these confined reaches, the channel contains few bars and has stable planforms except for locally wider segments such as the Brushy Chutes area in the Merlin Reach. Conversely, the active channel flows over predominately alluvial material and contains nearly continuous gravel bars in the Lobster Creek Reach (RKM 43.9-6.7). The channel in the Tidal Reach (RKM 6.7-0) is also alluvial, but tidally affected and unconfined until RKM 2. The Lobster Creek and Tidal Reaches contain some of the most extensive bar deposits within the Rogue River study area. * For the 56.6-km-long segment of the Applegate River included in this study, the river was divided into two reaches based on topography. In the Upper Applegate River Reach (RKM 56.6-41.6), the confined, active channel flows over alluvium and bedrock and has few bars. In the Lower Applegate River Reach (RKM 41.6-0), the active channel alternates between confined and unconfined segments, flows predominantly over alluvium, shifts laterally in unconfined sections, and contains more numerous and larger bars. * The 6.5-km segment of the lower

  9. Preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for samples from Upper and Lower Cretaceous strata, Maverick Basin, south Texas

    USGS Publications Warehouse

    Hackley, Paul C.; Dennen, Kristin O.; Gesserman, Rachel M.; Ridgley, Jennie L.

    2009-01-01

    The Lower Cretaceous Pearsall Formation, a regionally occurring limestone and shale interval of 500-600-ft maximum thickness (Rose, 1986), is being evaluated as part of an ongoing U.S. Geological Survey (USGS) assessment of undiscovered hydrocarbon resources in onshore Lower Cretaceous strata of the northern Gulf of Mexico. The purpose of this report is to release preliminary vitrinite and bitumen reflectance, total organic carbon, and pyrolysis data for Pearsall Formation, Glen Rose Formation, Hosston Formation, Austin Group, and Eagle Ford Group samples from the Maverick Basin in south Texas in order to aid in the characterization of these strata in this area. The preliminary nature of this report and the data contained herein reflect that the assessment and characterization of these samples is a work currently in progress. Pearsall Formation subdivisions are, in ascending stratigraphic order, the Pine Island Shale, James Limestone, and Bexar Shale Members (Loucks, 2002). The Lower Cretaceous Glen Rose Formation is also part of the USGS Lower Cretaceous assessment and produces oil in the Maverick Basin (Loucks and Kerans, 2003). The Hosston Formation was assessed by the USGS for undiscovered oil and gas resources in 2006 (Dyman and Condon, 2006), but not in south Texas. The Upper Cretaceous Austin Group is being assessed as part of the USGS assessment of undiscovered hydrocarbon resources in the Upper Cretaceous strata of the northern Gulf of Mexico and, along with the Upper Cretaceous Eagle Ford Group, is considered to be an important source rock in the Smackover-Austin-Eagleford Total Petroleum System (Condon and Dyman, 2006). Both the Austin Group and the Eagle Ford Group are present in the Maverick Basin in south Texas (Rose, 1986).

  10. The contribution of sea-level rise to flooding in large river catchments

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.

    2012-12-01

    Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood

  11. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken

    2013-04-01

    floods. Furthermore, many events are missed, since flash floods can occur very locally. In this study, we try to evaluate the results on observations collected by witnesses on 'real' ungauged catchments. The proposed method consists to use an historical data-base of flood damages reports. These data have been collected by local authorities (RTM). Finally, 139 ungauged locations were considered, where we simulated discharges for the entire 1997-2006 period. The comparison of these modelled discharges with the occurrence of an observed discharge makes it possible to determine a local 'modelled' discharge threshold above it most of the damages are observed. The pertinence of this threshold (and consequently of the model used for the simulation) is assessed by considering classical contingency statistics: probability of detection (POD), false alarm rate (FAR) and critical success index (CSI). The main advantage of this historical approach is the availability of many events in the database on very small catchments (50% less than 20 km²). The preliminary results show that on gauged basins, the base flow and the snowmelt added modules improve the performance of the AIGA method when locally calibrated. But when results are applied on real ungauged catchments, improvements become less obvious, with a small advantage for neighbour's method. These results shows the difficulty arising with ungauged catchments, specially when target catchments are smaller than the gauged 'parents'. It also illustrates the interest of the damages database used as 'proxy' data to investigate the model performances at smaller scales. This work has been done in the framework of the RHYTMME project, with the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  12. Preliminary thermal-maturity map of the Cameo and Fairfield or equivalent coal zone in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Nuccio, Vito F.; Johnson, Ronald C.

    1983-01-01

    This map was prepared in cooperation with the U.S. Department of Energy's Western Gas Sands Project and was constructed to show the thermal maturity of the Upper Cretaceous Mesaverde Formation (or Group) in the Piceance Creek Basin. The ability of a source rock to generate oil and gas is directly related to its kerogen content and thermal maturity; hence, thermal maturity is commonly used as an exploration tool. This publication consists of two parts: a coal rank map for the basinwide Cameo and Fairfield or equivalent coal zone and three cross sections showing the variation in a coal rank for the entire Mesaverde. Structure contours on the map show the top of the Rollins Sandstone Member of the Mesaverde Formation and its equivalent the Trout Creek Sandstone Member of the Iles Formation of the Mesaverde Group, which immediately underlie the Cameo and Fairfield zone. The structure contours show the fairly strong correlation between structure and coal rank in the basin, suggesting that maximum overburden was the key factor in determining the coal ranks. Even in the southern part of the basin where extensive plutonism occurred during the Oligocene, coal ranks still generally follow structure; indicating that the plutons had little affect on the coals. On the cross sections both the top of the Rollins and Trout Creek, and the top of the Mesaverde Formation/Group are shown. A complete analysis of the entire Mesaverde in the basin would require more information than is presently available.

  13. Preliminary results of preimpoundment water-quality studies in the Tioga River Basin, Pennsylvania and New York

    USGS Publications Warehouse

    Ward, Janice R.

    1976-01-01

    Relationships between selected water-quality parameters have been developed for the sampling stations throughout the basin. Downstream trends were also examined. The relationships will be further refined and implemented in predictive water-quality models as more data are collected.

  14. Collaborative Adaptation Planning for Water Security: Preliminary Lessons, Challenges, and the Way Forward for Maipo Basin Adaptation Plan, Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Scott, C. A.; Bonelli, S.; Bustos, E.; Meza, F. J.

    2014-12-01

    The Maipo basin holds 40% of Chile's total population and almost half of the country's Gross Domestic Product. The basin is located in the semiarid central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements and economic activities including agriculture. In 2012 we started a research project to create a climate variability and climate change adaptation plan for the basin. The pillars of the plan are co-produced by researchers and a Scenario Building Team (SBT) with membership of relevant water and land use stakeholders (including from civil society, public and private sectors) in the basin. Following similar experiences in other regions in the world that have faced the challenges of dealing with long term planning under uncertainty, the project has divided the task of developing the plan into a series of interconnected elements. A critical first component is to work on the desired vision(s) of the basin for the future. In this regards, the "water security" concept has been chosen as a framework that accommodates all objectives of the SBT members. Understanding and quantifying the uncertainties that could affect the future water security of the basin is another critical aspect of the plan. Near and long term climate scenarios are one dimension of these uncertainties that are combined with base development uncertainties such as urban growth scenarios. A third component constructs the models/tools that allows the assessment of impacts on water security that could arise under these scenarios. The final critical component relates to the development of the adaptation measures that could avoid the negative impacts and/or capture the potential opportunities. After two years in the development of the adaptation plan a series of results has been

  15. Towards catchment classification in data-scarce regions

    DOE PAGESBeta

    Auerbach, Daniel A.; Buchanan, Brian P.; Alexiades, Alex V.; Anderson, Elizabeth P.; Encalada, Andrea C.; Larson, Erin I.; McManamay, Ryan A.; Poe, Gregory L.; Walter, M. Todd; Flecker, Alexander S.

    2016-01-29

    Assessing spatial variation in hydrologic processes can help to inform freshwater management and advance ecological understanding, yet many areas lack sufficient flow records on which to base classifications. Seeking to address this challenge, we apply concepts developed in data-rich settings to public, global data in order to demonstrate a broadly replicable approach to characterizing hydrologic variation. The proposed approach groups the basins associated with reaches in a river network according to key environmental drivers of hydrologic conditions. This initial study examines Colorado (USA), where long-term streamflow records permit comparison to previously distinguished flow regime types, and the Republic of Ecuador,more » where data limitations preclude such analysis. The flow regime types assigned to gages in Colorado corresponded reasonably well to the classes distinguished from environmental features. The divisions in Ecuador reflected major known biophysical gradients while also providing a higher resolution supplement to an existing depiction of freshwater ecoregions. Although freshwater policy and management decisions occur amidst uncertainty and imperfect knowledge, this classification framework offers a rigorous and transferrable means to distinguish catchments in data-scarce regions. The maps and attributes of the resulting ecohydrologic classes offer a departure point for additional study and data collection programs such as the placement of stations in under-monitored classes, and the divisions may serve as a preliminary template with which to structure conservation efforts such as environmental flow assessments.« less

  16. A detailed study on Catchment delineation for Urban areas

    NASA Astrophysics Data System (ADS)

    Sharma, B.; B M, A.; Lohani, B.; Jain, A.

    2015-12-01

    Urban flood modelling is carried out for predicting, analysing and planning of floods in urban areas. Catchment information is an important input for urban flood modelling. Automatic catchment delineation at gully gratings for urban areas using appropriate software packages/methods along with an appropriate set of input data and parameters is still a research challenge. Considering the above, the aim of this study is to (i) identify the best suitable software for automatic catchment delineation by considering gully grating as outlet (ii) understand the effect of resolution of DEM on catchments delineated (iii) understand whether to consider DEM or DSM for catchment delineation (iv) study the effect of grid based and TIN based DEM. In this study catchment delineation has been investigated considering IIT Kanpur as a study site. LiDAR data are used to generate DEM/DSM of the study area. A comparative study of catchment delineation has been carried out between ArcHydro 10.1, BASINS 4.1, ArcSWAT, WMS 7.1, and HEC-GeoHMS approaches. Catchments have been delineated for different drainage threshold areas using gully grating points as outlets and their effects have been compared for the aforementioned software. In order to understand the effect of resolution of data, DEMs of 1m and 5m resolution have been generated and compared against each other. Effects of building ridge lines and their contribution to catchment delineation has been studied by generating a DSM of 1m resolution, and comparing the results with catchments delineated using 1m DEM. In order to assess the effects of the types of DEM over catchment delineation, a grid based DEM and TIN based DEM are compared against each other using WMS 7.1 software. The results for the catchment delineation using various software illustrate that ArcHydro 10.1 performs better than any other aforementioned software. Also, it is noted that varied drainage threshold area parameters, resolutions of DEM, selection of DEM

  17. Preliminary study of the uranium potential of the northern part of the Durham Triassic Basin, North Carolina

    SciTech Connect

    Harris, W.B.; Thayer, P.A.

    1981-09-01

    This report presents results of a four-channel spectrometric survey of the northern part of the Durham Triassic basin and adjacent Piedmont, North Carolina. Gamma-ray spectrometric measurements were obtained at 112 localities from 136 different lithologies. The nominal sampling density in the Durham Basin is one site per 2 mi/sup 2/. Surface radiometric surveys reveal no anomalous radioactivity in the northern part of the Durham Basin. Uranium concentrations in Triassic rocks are from 0.6 to 9.7 ppM and average 2.9 ppM. Mudrocks contain from 1.3 to 9.7 ppM, and the average is 4.5 ppM. Sandstones contain from 0.6 to 8.8 ppM, and the average is 2.5 ppM. Fanglomerates contain the lowest concentrations of uranium, from 1.4 to 2.0 ppM, for an average of 1.8 ppM. Uranium/thorium ratios average 0.27 for Triassic rocks and are from 0.04 to 1.85. The mean log uranium/log thorium for Triassic rocks is 0.37. Mudrock has the highest average uranium/thorium ratio (0.32), and the range is 0.09 to 0.66. Sandstones have an average uranium/thorium ratio of 0.26, and the range is 0.04 to 1.85. Fanglomerates have the lowest range uranium/thorium ratio (0.19), and the range is 0.12 to 0.19. On the basis of surface radiometric surveys and geologic studies, it is believed that sedimentary strata in the northern part of the Durham Basin are poor targets for further uranium exploration. This conclusion is based on the lack of favorable characteristics commonly present in fluvial uranium deposits. Among these are: (1) carbonaceous material is absent in Triassic rocks of the northern basin, (2) indicators of a reduzate facies in sandstones are not present, and (3) no tuffaceous beds are associated with sediments in the northern Durham Basin.

  18. How old is upland catchment water?

    NASA Astrophysics Data System (ADS)

    Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe; Gilfedder, Benjamin

    2014-05-01

    Understanding the dynamics of water supply catchments is an essential part of water management. Upland catchments provide a continuous, reliable source of high quality water not only for some of the world's biggest cities, but also for agriculture and industry. Headwater streams control river flow in lowland agricultural basins as the majority of river discharge emerges from upland catchments. Many rivers are perennial and flow throughout the year, even during droughts. However, it is still unclear how reliable and continuous upland catchment water resources really are. Despite many efforts in upland catchment research, there is still little known about where the water is stored and how long it takes to travel through upper catchments. Resolving these questions is crucial to ensure that this resource is protected from changing land use and to estimate potential impacts from a changing climate. Previous research in this important area has been limited by existing measurement techniques. Knowledge to date has relied heavily on the use of variation in stable isotope signals to estimate the age and origin of water from upland catchments. The problem with relying on these measures is that as the water residence time increases, the variation in the stable isotope signal decreases. After a maximum period of four years, no variation can be detected This means that to date, the residence time in upland catchments is likely to have been vastly underestimated. Consequently, the proportion of water flow out of upland river catchments to the total river flow is also underestimated. Tritium (3H) combines directly with water molecules and enters the flow paths with the infiltrating water. Its half-life (12.32 years) makes it ideal to describe residence times in upper catchment reservoirs as it can theoretically measure water up to about 150 years old. The bomb pulse peak in the southern hemisphere was several orders of magnitude lower than in the northern hemisphere. Hence the

  19. Preliminary assessment of climatic change during late Wisconsin time, southern Great Basin and vicinity, Arizona, California, and Nevada

    SciTech Connect

    Spaulding, W.G.; Robinson, S.W.; Paillet, L.

    1984-12-31

    Concentration and relative abundance of plant macrofossils illustrate compositional variations in samples from the Eleana Range-2 packrat midden. Nine macrofossil assemblages spanning 6500 radiocarbon years record local vegetational changes in the southern Great Basin of Nevada during the last one-half of the late Wisconsin glacial age. The vegetation of the Eleana Range-2 site, on a south-facing slope at 1810 meters altitude, was characterized by limber pine and steppe shrubs, from before 17,100 radiocarbon years before present to shortly after 13,200 radiocarbon years before present. Changes toward a more xerophytic plant association at the site began by 16,000 radiocarbon years before present, culminating in a major change to pinyon-juniper woodland between 13,200 and 11,700 radiocarbon years before present. The climatic reconstruction for the late full glacial episode (17,000 to 15,000 radiocarbon years before present) that is proposed to account for limber pine-shrub vegetation in the Eleana Range is characterized by increased winter precipitation, and very little summer rainfall. A major warming trend occurred between about 16,000 and 12,000 radiocarbon years before present and was largely concordant with major dessication of closed lakes in the southern Great Basin. A period of wetter conditions in the southern Great Basin during the latest Wisconsin may have incorporated increased precipitation during both the summer and winter, and lower temperatures during the winter, relative to the present. 93 references, 5 figures, 6 tables.

  20. River basin administration

    NASA Astrophysics Data System (ADS)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  1. Preliminary report on investigation of salt springs and seeps in a portion of the Permian Basin in Texas

    USGS Publications Warehouse

    Stevens, P.R.; Hardt, W.F.

    1965-01-01

    The Permian Basin (fig. 1) comprises a large area in the southern midcontinent region and includes major portions of Texas, New Mexico, Oklahoma, and Kansas. Within this basin brine springs and seeps discharge more than 20,000 tons per day of sodium chloride (common table salt). This brine contaminates many streams greatly impairing the utility of their waters. The water in some streams is of such poor quality it cannot be used for municipal and industrial purposes and for irrigation. Nor is the problem limited to the Permian Basin. The contaminated streams leaving the Permian Basin bring salty water to downstream areas of Arkansas and Louisiana, as well as to other parts of Texas, New Mexico, Oklahoma, and Kansas. In no comparable area of the interior United States are natural sources of salt water so widespread or deleterious to the fresh water supply of so large a segment of the nation's population and industry. The Brazos River traverses the eastern part of the Permian Basin, and is potentially one of the principal sources of water in Texas. It carries an average daily load of 1,650 tons of sodium chloride (common table salt) into Possum Kingdom Reservoir, about 110 miles west of Dallas. More than 85 percent of this salt is contributed by the Salt Fork Brazos River, and more than one-half originates from Springs and seeps in Croton and Salt Croton Creeks, tributaries to the Salt Fork Brazos River. The undesirably high chloride content of the water impounded in Possum Kingdom Reservoir limits the utility of this water, although it is used for irrigation and by some industries. Understanding of the origin and hydrology of the natural brine is fundamental to consideration of engineering measures to control the flow of salt water to streams, or to general plans to alleviate the situation in any way that includes altering the brine-discharge system. Previous investigations of natural brine features have been directed toward describing the local details of

  2. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  3. Evolution of Lake Chad Basin hydrology during the mid-Holocene: A preliminary approach from lake to climate modelling

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Schuster, Mathieu; Ramstein, Gilles; Krinnezr, Gerhard; Girard, Jean-Francois; Vignaud, Patrick; Brunet, Michel

    2008-03-01

    During the mid-Holocene (6000 yr Before Present, hereafter yr BP) the Chad Basin was occupied by a large endoreic lake, called Lake Mega-Chad. The existence of this lake at that time seems linked to increased monsoonal moisture supply to the Sahel and the Sahara, which in turn was probably ultimately caused by variations in the orbital forcing and higher temperature gradients between ocean and continent. This study provides a synthesis of several works carried out on the Lake Chad Basin and analyses the results of a simulation of the mid-Holocene climate with an Atmosphere General Circulation Model (LMDZ for Laboratoire de Météorologie Dynamique, IPSL Paris), with emphasis on the possible conditions leading to the existence of Lake Mega-Chad. The aim is to define the best diagnostics to understand which mechanisms lead to the existence of the large lake. This paper is the first step of an ongoing work that intends to understand the environmental conditions that this part of Africa experienced during the Upper Miocene (ca. 7 Ma BP), an epoch that was contemporaneous with the first known hominids. Indeed, early hominids of Lake Chad Basin, Australopithecus bahrelghazali [ Brunet, M., et al., 1995. The first australopithecine 2500 kilometers west of the Rift-Valley (Chad). Nature, 378(6554): 273-275] and Sahelanthropus tchadensis [Brunet, M., et al., 2002. A new hominid from the Upper Miocene of Chad, central Africa. Nature, 418(6894): 145-151; Brunet, M., et al., 2005. New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434(7034): 752-755] are systematically associated with wet episodes that are documented for 7 Ma BP [Vignaud, P., et al., 2002. Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418(6894): 152-155] and testified by extended lacustrine deposits (diatomites, pelites, various aquatic fauna). Because the mid-Holocene was the last such mega-lake episode, our aim here is to assess the

  4. Regional magnetic and gravity features of the Gibson Dome area and surrounding region, Paradox Basin, Utah : a preliminary report

    USGS Publications Warehouse

    Hildenbrand, T.G.; Kucks, R.P.

    1983-01-01

    Analyses of regional gravity and magnetic anomaly maps have been carried out to assist in the evaluation of the Gibson Dome area as a possible repository site for high-level radioactive waste. Derivative, wavelength-filtered, and trend maps were compiled to aid in properly locating major geophysical trends corresponding to faults, folds, and lithologic boundaries. The anomaly maps indicate that Paradox Basin is characterized by a heterogeneous Precambrian basement, essentially a metamorphic complex of gneisses and schist intruded by granitic rocks and mafic to ultramafic bodies. Interpreted Precambrian structures trend predominantly northwest and northeast although east-west trending features are evident. Prominent gravity lows define the salt anticlines. Structural and lithologic trends in the Gibson Dome area are closely examined. Of greatest interest is a series of circular magnetic highs trending west-northwest into the Gibson Dome area. Further study of the exact definition and geologic significance of this series of anomalies is warranted.

  5. New thermo-mechanical fluid flow modeling of multiscale deformations in the Levant basin: formulation, verification, and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz

    2015-04-01

    The Levant has been repeatedly devastated by numerous earthquakes since prehistorical time, as recorded in historical documents, archaeological ruins, and sedimentary archives. In order to understand the role of the dynamics of the water bodies in triggering the deformations in the Levant basin, a new theoretical thermo-mechanical model is constructed and extended by including a fluid flow component. The latter is modeled on a basis of two-way poroelastic coupling with momentum equation. This coupling is essential to capture the fluid flow evolution induced by dynamic water loading and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, fluid flow, etc., have been extensively verified and presented. Results of the initial sensitivity analysis addressing the relative importance of each process in earthquakes triggering are discussed. The rich archives of pre-instrumental destructive earthquakes will set constraints for future modeling under the present formulation.

  6. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use. PMID:25395322

  7. Modeling relationships between catchment attributes and river water quality in southern catchments of the Caspian Sea.

    PubMed

    Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab

    2015-04-01

    Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.

  8. A preliminary study of the calcite beef found in the Cretaceous Jinju Formation, Gyeongsang Basin, South Korea

    NASA Astrophysics Data System (ADS)

    Ha, S.; Chae, Y. U.; Son, M.; Jeong, G. Y.; Paik, I. S.; Lim, H. S.

    2015-12-01

    The term "beef" refers to fibrous minerals in bedding-parallel veins, where the fibers are approximately perpendicular to the vein margins (Cobbold et al., 2013). It mostly appears within organic-rich black shale layers in sedimentary basin. Although the veins can consist of white gangue minerals, such as calcite, gypsum, or quartz, the commonest mineral in the fibers is calcite. According to the worldwide localities of calcite beef compiled by Cobbold et al (2012), they concentrated in some areas, especially around the Atlantic Ocean. However, they have been rarely reported in the western Pacific margin, except Australia and New Zealand. Recently, calcite beefs have been found in the Cretaceous Jinju Formation, Gyeongsang Basin, Korea. As far as we know, this is the first report of calcite beef in Korea. The lacustrine Jinju Formation is about 1,200 m thick, and made up mainly of lacustrine dark grey to black mudstones. In the study area, calcite beefs were commonly found in the organic-rich black shale layers. The vein thickness is anywhere between a few millimeters to maximum 3 centimeters, and their length ranges from a few centimeters to several tens of meters. The interval between successive veins is from a few centimeters to about 1 meter. Most of them occur parallel to the bedding planes, although some of them are developed along fault planes or within deformed layers. In case of relatively thick beefs, the center of veins often shows a dark grey to black central median line, defined by fine-grained calcite grains, fluid inclusion lines, or wall rock particles. Based on the orientation of fibrous calcite, they can be divided into two types: straight and sigmoidal types. The fibrous calcites are thought to have been symmetrically grown from the median lines to top and bottom of wall rock. The formation mechanism of horizontal fractures, and the formation temperature of beefs in the study area remain as a matter to be studied further.

  9. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  10. Development and Application of a Simple Hydrogeomorphic Model for Headwater Catchments

    EPA Science Inventory

    We developed a catchment model based on a hydrogeomorphic concept that simulates discharge from channel-riparian complexes, zero-order basins (ZOB, basins ZB and FA), and hillslopes. Multitank models simulate ZOB and hillslope hydrological response, while kinematic wave models pr...

  11. Preliminary Modelling of the Effect of Impurity in CO2 Streams on the Storage Capacity and the Plume Migration in Pohang Basin, Korea

    NASA Astrophysics Data System (ADS)

    Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae

    2015-04-01

    Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also

  12. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical

  13. Structure of the Palomares margin from preliminary results of the TOPOMED-GASSIS seismic survey (Algero-Balearic basin, Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Giaconia, F.; Guzman Vendrell, M.; Booth-Rea, G.; Ranero, C. R.; Grácia, E.; Lo Iacono, C.

    2012-04-01

    We present two deep seismic reflection lines acquired during the TOPOMED-GASSIS seismic survey across the Palomares margin at the northwestern side of the Algero-Balearic basin. Simultaneously 3.5 kHz multi parametric echo-sounder profiles and bathymetric data were acquired, in order to obtain information of the most recent sedimentary/tectonic records, to relate tectonic structure with seafloor features and find out a possible tectonic control on them. The deep seismic reflection and the 3.5 kHz multi parametric echo-sounder profiles evidence anticlines and synclines affecting the Quaternary sediments. The southeastern limbs of the anticlines are cut by reverse faults suggesting a fault propagation origin for the folds. The recent to present character of these structures is confirmed by the congruence between structural and bathymetric highs and lows. Indeed, the submarine channels that cut across the margin are deflected by the folds flowing parallel to the major synclines, although cutting and incising into one of the anticlines. The folds have a N40-50°E orientation oblique to the Palomares active N20°E sinistral strike-slip fault zone. The data obtained from the TOPOMED-GASSIS seismic survey highlight the presence of contractive structures along the Palomares margin oriented perpendicular to the present NW-SE shortening stress field and according with the present GPS geodetic displacements. This preliminary result depicts a contractive Palomares margin where NW-SE shortening is accommodated by Quaternary NE-SW folds and thrusts. In the coastline and on land the shortening is also accommodated by reverse faults that cut both limbs of the Sierra Cabrera anticline. These faults and folds accommodate the sinistral displacement of the more northerly striking Palomares fault zone. Thus, the Palomares fault zone probably terminates close to the coast line to the south of the Vera basin by merging into these more northeasterly oriented structures. These folds

  14. Exhumation of the Magallanes foreland basin, Patagonian Andes, Chile (51 °S): Preliminary results from apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    Fosdick, J. C.; Romans, B. W.; Hubbard, S. M.

    2006-12-01

    Deformation of the Magallanes foreland basin and the development and subsequent exhumation of the adjacent fold-and-thrust belt are integral processes that have influenced the modern structure, physiography, and climate of southern Patagonia. Despite recent work documenting these processes, fundamental aspects of the evolution of the Southern Andes remain ambiguous. In this study, apatite (U-Th)/He thermochronology documents the youngest stage in the thermal history of the deformed Magallanes basin. As a regional reconnaissance pilot-study, we conducted replicate, single grain apatite analyses to evaluate the timing and nature of the most recent thrust-related and/or erosional denudation of the dissected fold-thrust belt. Preliminary cooling ages broadly distributed from the Upper Cretaceous to Lower Tertiary Magallanes foreland basin deposits of the Cerro Toro, Tres Pasos, and Dorotea formations near 51 ° S indicate Late Miocene regional cooling through temperatures < ~40 ° C. A sample from the base of the Cerro Toro Formation yields a weighted mean cooling age of 7.55 ± 0.8 Ma. Approximately 40 km north of this locality, the (U-Th)/He cooling age of the overlying Tres Pasos Formation is 8.73 ± 0.81 Ma. Farther east, two samples from the base of the overlying Dorotea Formation document cooling ca. 5.5 Ma. These data document the youngest component of unroofing along the eastern-most part of the fold-and-thrust belt to within ~ 1-1.5 km of the Earth's surface. Here, Neogene shortening is accommodated by gentle folding. Additional thermochronologic constraints are necessary to develop a complete thermal history of these strata, including constraints on cooling rate, magnitude, and exhumational process. To better distinguish between the effects of Miocene thrust-related uplift, erosion, and regional heating on these cooling ages, additional sample coverage using a range of thermochronometers will be employed (specifically, across foreland strata incorporated into

  15. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T.; Davidson, Casie L.; Bromhal, Grant

    2013-01-30

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO2 storage sites is essential before large scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO2 storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO2 sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO2 storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO2 mitigation in China for many decades.

  16. Preliminary neotectonic shortening rates across the eastern Foothills of the Colombian Andes: Examples from the Yopal region of the Llanos basin

    NASA Astrophysics Data System (ADS)

    Taylor, M. H.; Mora, A.; Gosse, J.; Stockli, D. F.; Mocek, B.

    2009-12-01

    We present neotectonic field mapping and structural controls from seismic profiles to estimate the style and rate of recent shortening across the eastern foothills of the Colombian Andes in the region of the Llanos basin. The primary active structures include the east-directed Guicarimo thrust fault that folds Paleogene, Neogene and Quaternary sediments, and the east-directed Yopal thrust fault - both structures are seismically active and are considered to sole at depth into a common decollement. Uplifted, folded and entrenched Quaternary sediments are cut by the Yopal thrust fault with resulting entrenchment mainly occurring across folds and faults suggesting entrenchment is likely tectonically controlled. Seismic data indicates that the subsurface geometry of the Yopal thrust fault is listric and transitions from a flat on flat relationship in the hinterland to a hangingwall ramp on footwall ramp in the foreland. We measure the abundance of terrestrial cosmogenic nuclides in uplifted strath terraces where the fault is parallel to bedding in the upper plate to estimate preliminary rates of shortening across the active thrust front.

  17. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO{sub 2} storage in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Wang, Ying; Dahowski, Robert T; Davidson, Casie L; Bromhal, Grant S

    2013-01-01

    Development of a reliable, broadly applicable framework for the identification and suitability evaluation of potential CO{sub 2} storage sites is essential before large-scale deployment of carbon dioxide capture and geological storage (CCS) can commence. In this study, a sub-basin scale evaluation framework was developed to assess the suitability of potential onshore deep saline aquifers for CO{sub 2} storage in China. The methodology, developed in consultation with experts from the academia and the petroleum industry in China, is based on a multi-criteria analysis (MCA) framework that considers four objectives: (1) storage optimization, in terms of storage capacity and injectivity; (2) risk minimization and storage security; (3) environmental restrictions regarding surface and subsurface use; and (4) economic considerations. The framework is designed to provide insights into both the suitability of potential aquifer storage sites as well as the priority for early deployment of CCS with existing CO{sub 2} sources. Preliminary application of the framework, conducted using GIS-based evaluation tools revealed that 18% of onshore aquifer sites with a combined CO{sub 2} storage capacity of 746 gigatons are considered to exhibit very high suitability, and 11% of onshore aquifer sites with a total capacity of 290 gigatons exhibit very high priority opportunities for implementation. These onshore aquifer sites may provide promising opportunities for early large-scale CCS deployment and contribute to CO{sub 2} mitigation in China for many decades.

  18. Dynamic processes in the mountain catchment

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei

    2015-04-01

    The process of the river cftchment foundation and the mechanisms being in the basis of its development are not clear at present. Principal phenomena determining the dynamics of formation of the river catchment are under our study in this paper for the case of the mountain basin as an example. The methodology of this monitoring includes the space image recognition and computer data processing of the images for the Maliy Caucasus Mountains. Mountain river catchment formation on the slope of the ridge can be considered as a self-organizing staged process of its evolution passing through several non-equilibrium but steady-state conditions. We consider a system of tributaries in the mountain river catchment as a system of cracks, which are formed on the slope of the mountain massif. In other words, the formation of river networks should be the result of development of several processes, among of which the mechanisms of crack development should play a dominant role. The principal results, discussed in the present report, can be formulated as follow. (1) The mountain catchment (litho-watershed) formation takes place under conditions of the confined states of a mountain massif: on the one hand it is bounded by the surface of the slope; but on the other hand, - by a primary cracks density occurrence (as a spatial distribution 3D-crack net). (2) The development in time of the river catchment takes place by several stages. Each stage specifies a definite energetic state of the system in the mountain massif. (3) The overhead river streams arise not only due to surface water, but and namely due to rising of water from underground water horizons over the watercourse cracks penetrating deeply into the underground. (4) The 3D-river catchment structure results in concept in behavior of the unit as an open nonlinear dynamic system with a spatially distributed feedback. The energetic (endogen) processes of formation, rising and bifurcation for cracks are the consequence of relaxation

  19. Preliminary paleogeographic reconstruction of the Illinois basin during deposition of the Mississippian Aux Vases Formation: Implications for hydrocarbon recovery

    SciTech Connect

    Cole, R.D. )

    1991-03-01

    Extensive outcrop investigation and selective subsurface study allow definition of Illinois basin paleogeography during deposition of the Mississippian (Valmeyeran-Meramecian) Aux Vases Formation. The results incorporate an integrated approach utilizing field observations and petrographic analysis, wireline logs, subsurface maps, and cores. The Aux Vases Formation depositional system has been determined to be composed of subtidal to intertidal facies. Depositional facies in outcrop are based on rock body geometries, sedimentary structure assemblages, paleocurrent analysis, paleontology of body and trace fossils, facies relationships, and petrography. Depositional facies determined from subsurface data are based on correlation of lithologic interpretations from wireline logs, sand body geometries form isopach maps, and petrography. Specific depositional facies observed in outcrop and core and inferred from wireline logs and isopach maps are offshore bars and tidal channel complexes, extensive subtidal to lower intertidal, ripple-laminated, fine-grained quartzose sandstone. Carbonate facies occur as subtidal grainstones at or near the base of a sequence, or as high energy deposits which have been tidally reworked. This depositional system produces reservoir heterogeneities that complicate efficient hydrocarbon recovery. This diverse facies architecture is modified by tectonic and diagenetic overprinting, further segregating potential producing zones. To significantly improve recovery efficiency, predictions regarding compartmentalization can be used prior to designing a drilling program, an infill drilling program, or an application of enhanced recovery techniques.

  20. Creating a catchment perspective for river restoration

    NASA Astrophysics Data System (ADS)

    Benda, L.; Miller, D.; Barquín, J.

    2011-03-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we coupled general principles of hydro-geomorphic processes with computer tools to characterize the fluvial landscape. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to topography, valley morphology, river network structure, and fan and terrace landforms. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  1. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the

  2. A methodological comparison of catchment storages in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Staudinger, Maria; Stölzle, Michael; Seeger, Stefan; Seibert, Jan; Stahl, Kerstin

    2015-04-01

    One of the most important functions of catchments is the temporary storage of water, which directly influences runoff dynamics, rainfall-runoff transformation, partitioning of evaporation and runoff fluxes, and accessibility of water to plants. Generally, a large catchment storage is considered beneficial and in particular increases the transit times and hence the buffer functioning related to water quality. Many different methods have been developed to assess catchment storage, however, there are hardly any direct comparisons of several of these methods. One challenge is the definition of water storage, while some methods allow estimation of the entire water storage in a catchment, other methods quantify only the dynamic storage. In addition, most studies focused more on lowland catchments with rain-dominated runoff regimes and observed groundwater fluctuations. Furthermore, these studies often focus on one or two catchments, but do not consider the influence of different climates on the relevance of water storage in the catchment. We applied a range of different methods to assess catchment storage characteristics in 18 catchments in the Swiss Alps, ranging from 500 to 2000m of mean elevation and hence from rainfall- to snowmelt dominated runoff regimes. The first method use only discharge information during recession periods and with varying approaches to extract discharge and storage changes between high flow and low flow, the dynamic catchment storage can be derived. In the next methods the conceptual hydrological model HBV is calibrated to the runoff dynamics and the dynamic and total catchment storages of the different compartments are being evaluated. The last methods are based on stable water isotope data analysis. We use the model TRANSEP to derive the dynamic storage as well as the total water storage of the catchment based on the transit times using several years of fortnightly isotope data in streamflow. The results show that the derived catchment

  3. Catchment controls on solute export

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Schmidt, Christian; Selle, Benny; Fleckenstein, Jan H.

    2015-12-01

    Dynamics of solute export from catchments can be classified in terms of chemostatic and chemodynamic export regimes by an analysis of concentration-discharge relationships. Previous studies hypothesized that distinct export regimes emerge from the presence of solute mass stores within the catchment and their connectivity to the stream. However, so far a direct link of solute export to identifiable catchment characteristics is missing. Here we investigate long-term time series of stream water quality and quantity of nine neighboring catchments in Central Germany ranging from relatively pristine mountain catchments to agriculturally dominated lowland catchments, spanning large gradients in land use, geology, and climatic conditions. Given the strong collinearity of catchment characteristics we used partial least square regression analysis to quantify the predictive power of these characteristics for median concentrations and the metrics of export regime. We can show that median concentrations and metrics of the export regimes of major ions and nutrients can indeed be inferred from catchment characteristics. Strongest predictors for median concentrations were the share of arable land, discharge per area, runoff coefficient and available water capacity in the root zone of the catchments. The available water capacity in the root zone, the share of arable land being artificially drained and the topographic gradient were found to be the most relevant predictors for the metrics of export regime. These catchment characteristics can represent the size of solute mass store such as the fraction of arable land being a measure for the store of nitrate. On the other hand, catchment characteristics can be a measure for the connectivity of these solute stores to the stream such as the fraction of tile drained land in the catchments. This study demonstrates the potential of data-driven, top down analyses using simple metrics to classify and better understand dominant controls of

  4. The anthropic catchment-ecosystem concept: an Irish example

    SciTech Connect

    Phillips-Howard, K.D.

    1985-06-01

    The catchment-ecosystem concept is adapted to investigate the nutrient-budget of the highly-modified Colebrooke drainage basin in Northern Ireland. Anthropogenic inputs, mainly manures and fertilizers, account for 86% of the nitrogen and 96% of the phosphorus added to the catchment. These inputs greatly exceed the streamflow outputs, thereby indicating that the flow of nutrients is dominated by agriculture. This is explained by the transformation of traditional mixed farming into more intensive livestock production and is linked to policies encouraging increased agricultural production, amalgamation of farms, afforestation, rural depopulation, and urbanization. Substantial increases in the N and P output of the catchment and further eutrophication of the recipient lake, Lough Erne, are predicted without the implementation of policies to reduce agricultural nutrient losses.

  5. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin.

    PubMed

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2013-05-01

    One of the largest urban agglomerations in Brazil is the capital Brasilia and its surrounding area. Due to fast urban sprawl and accelerated land use changes, available water supplies are near their limits. The water supply depends largely on surface water collected in reservoirs. There are increasing concerns regarding water shortages due to sediment aggradations, and of water quality due to geochemical modification of sediments from human activities. The concentration of 18 chemical elements and five sediment properties was analyzed from different potential land-based sediment sources and deposited alluvial sediment within the Lago Paranoà catchment. The goal of this study was to assess the distribution of chemical elements and geochemical/physical properties of potential sediment sources in the Lago Paranoá catchment. Principal component analysis and hierarchical cluster analysis were used to investigate the influence of different land use types on the geochemistry of sediments. Geochemical fingerprints of anthropogenic activities were developed based on the results of the cluster analysis grouping. The anthropogenic input of land use specific geochemical elements was examined and quantified by the calculation of enrichment factors using the local geological background as reference. Through comparison of the geochemical signature of potential sediment sources and alluvial sediments of the Lago Paranoá and sub-catchments, the relative contribution of land use specific sediment sources to the sediment deposition of the main water reservoir were estimated. The existing findings suggest a strong relationship between land use and quantifiable features of sediment geochemistry and indicate that urban land use had the greatest responsibility for recent silting in the Lago Paranoá. This assessment helps to characterize the role of human activities in mixed-used watersheds on sediment properties, and provides essential information to guide management responses

  6. Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: a study on anthropogenic introduced chemical elements in an urban river basin.

    PubMed

    Franz, C; Makeschin, F; Weiß, H; Lorz, C

    2013-05-01

    One of the largest urban agglomerations in Brazil is the capital Brasilia and its surrounding area. Due to fast urban sprawl and accelerated land use changes, available water supplies are near their limits. The water supply depends largely on surface water collected in reservoirs. There are increasing concerns regarding water shortages due to sediment aggradations, and of water quality due to geochemical modification of sediments from human activities. The concentration of 18 chemical elements and five sediment properties was analyzed from different potential land-based sediment sources and deposited alluvial sediment within the Lago Paranoà catchment. The goal of this study was to assess the distribution of chemical elements and geochemical/physical properties of potential sediment sources in the Lago Paranoá catchment. Principal component analysis and hierarchical cluster analysis were used to investigate the influence of different land use types on the geochemistry of sediments. Geochemical fingerprints of anthropogenic activities were developed based on the results of the cluster analysis grouping. The anthropogenic input of land use specific geochemical elements was examined and quantified by the calculation of enrichment factors using the local geological background as reference. Through comparison of the geochemical signature of potential sediment sources and alluvial sediments of the Lago Paranoá and sub-catchments, the relative contribution of land use specific sediment sources to the sediment deposition of the main water reservoir were estimated. The existing findings suggest a strong relationship between land use and quantifiable features of sediment geochemistry and indicate that urban land use had the greatest responsibility for recent silting in the Lago Paranoá. This assessment helps to characterize the role of human activities in mixed-used watersheds on sediment properties, and provides essential information to guide management responses

  7. Equitable water allocation in a heavily committed international catchment area: the case of the Komati Catchment

    NASA Astrophysics Data System (ADS)

    Nkomo, Sakhiwe; van der Zaag, Pieter

    This paper investigates water availability and use in the Komati catchment. The Komati catchment is shared by Swaziland and South Africa and forms part of the Incomati basin, with Mozambique as the third riparian country. In 2002 the three countries reached agreement about how the scarce water should be allocated, based on the principle of equitable and sustainable utilization, as stipulated by the SADC Protocol. The Komati catchment has five main water uses: afforestation, irrigation, the environment, urban/industrial/mining (UIM), and interbasin water transfers (for industrial use). In addition, South Africa and Swaziland have committed themselves to satisfy a certain cross border flow to downstream Mozambique. Frequently, debate has arisen between users and riparian countries on the direction that water resources development has taken in the catchment. Downstream farmers have often complained about interbasin transfers taking place in the upstream portions of the catchment. There has also been animosity about effecting environmental flow releases. A relatively simple, spreadsheet-based water resources model (Waflex) was developed to analyse water availability and use under current and future scenarios. The results were then compared to results obtained from another model that was used in a joint study by Mozambique, South Africa and Swaziland. The Waflex model showed a high degree of consistency with the one used for comparison, especially in terms of trends. It was found that the recent completion of two new dams has improved water supply to irrigation in the two countries. Future water demands will result in appreciable shortages for irrigation and domestic use. The agreed maximum development levels will soon outstrip the ability of the catchment’s supply. The paper shows that a combination of measures will be required to ensure equitable and sustainable water utilisation in the Komati catchment. These will have to be agreed by the riparian countries

  8. Effects Of Land Cover Change On The Hydrologic Regime Of Kabompo River Basin, Zambia

    NASA Astrophysics Data System (ADS)

    Kampata, J. M.; Rientjes, T. H. M.; Timmermans, J.

    2013-12-01

    Over the past decades, the Kabompo River Basin in Zambia is affected by deforestation and land degradation as a consequence of intensified agriculture and mining. Changes presumably have affected the hydrological catchment behaviour and related seasonal flow regimes. Impact assessments are unknown for the basin. In this study multi-decadal time series of rainfall and stream flow were evaluated by trend analysis, change point detection methods and analysis on high and low flow exceedance probabilities. Results are combined with satellite based land cover observations for 1984, 1994, 2001 and 2009. Unsupervised classification of the Landsat images indicate pronounced land cover changes. Preliminary results of this study show that i) precipitation time series are not directly affected by climate change and ii) changes in stream flow can be linked to changes in land cover.

  9. Ensemble approach for hydrological forecasting in ungauged catchments

    NASA Astrophysics Data System (ADS)

    Randrianasolo, Annie; Ramos, Maria-Helena; Andreassian, Vazken

    2013-04-01

    This study focuses on the application of ensemble approaches to forecast flows in ungauged catchments. The aim is to study the best strategy to search for information in gauged "donor" basins and to transfer it to the ungauged site. We investigate what information is needed to set up a rainfall-runoff model and to perform forecast updating in real time. These two components of a flood forecasting system are thus decoupled in our approach. The methodology adopted integrates the scenarios of regional transfer of information and the scenarios of ensemble weather forecasting together in a forecasting system. The approach of ensemble forecasting is thus generalised to the particular case of hydrological forecasting in ungauged basins. The study is based on 211 catchments in France and on an archive of about 4.5 years of ensemble forecasts of rainfall, which are used for hydrological modelling on a daily time step. Flow forecasts are evaluated with special attention paid to the attributes of reliability and accuracy of the forecasts. The results show that forecast reliability in ungauged sites can be improved by using several sets of parameters from neighbour catchments, while forecast accuracy is improved with the transfer of updating information from gauged neighbour catchments.

  10. Preliminary analysis of water discharge and suspended sediment data from the Columbia River Basin: shifting rating curves and diminishing sediment loads

    NASA Astrophysics Data System (ADS)

    MacGregor, K. R.; Gelfenbaum, G.; Rubin, D.

    2003-12-01

    Significant erosion along the coastlines of southwestern Washington in the last decade has motivated increased studies of sediment sources, sinks, and transport dynamics in the region. A key question is whether a reduction in sediment supply is responsible for the recent shift from a depositional regime. Because the Columbia River is the major fluvial system in the littoral cell, it is important to quantify sediment flux from the Columbia River to the coastal environment. We examine historical records of water discharge and suspended sediment transport along the Columbia main stem and in three subbasins in an attempt to quantify changes in total sediment transport and total load, and examine possible shifts in sediment sources over time. Suspended sediment data from the main stem near Vancouver, WA demonstrate a 3 to 5 fold downward shift in the rating curve in the last 90 years. The same trend is visible in data from the Snake River, with a decrease of almost an order of magnitude in sediment transport since the 1950's. Grain size data from the Kootenai River show a clear fining trend in the suspended load. The John Day River is the only long-term record we examined with no change in the rating curve over time; it is also the largest undammed river in the basin. Calculations of sediment load in the main stem were made using actual water discharge, estimated discharge (assuming no dams), and calculated `virgin' flow (Naik and Jay, in review). Preliminary results suggest that changes in the hydrograph (assuming a uniform rating curve) would diminish sediment transport to the coast by up to 20% over the last century; changes in the rating curve are responsible for at least that change, possibly more.

  11. Changes in runoff generation due to conversion of catchment vegetation

    NASA Astrophysics Data System (ADS)

    Vilhar, Urša; Kestnar, Klemen; Šraj, Mojca

    2015-04-01

    In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from Norway spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with changes in runoff generation. In this study, the effect of forest management on the runoff in mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Two small forested experimental catchments of Oplotnica River on Pohorje were compared with similar size and shape but different share of Norway spruce Picea abies (L. Karst) and European beech Fagus sylvatica (L.). Measured stream flows, throughfall, stemflow and the mixture of forests were compared in the period 2008 till 2013 for both catchments. Hydrological models in the HEC-HMS program were built for both catchmenta, calibrated and validated using measured data. Precipitation losses were estimated by the Soil Conservation Service (SCS) method, while precipitation was converted into surface runoff using the SCS synthetic unit hydrograph procedure. The measured seasonal throughfall and stream flow was lower in the catchment with higher share of spruce in the mixed spruce-beech forest. Modeled precipitation losses in the river basins were 92% and 95% of total precipitation, respectively. The results indicate higher interception, infiltration and accumulation of precipitation in the catchment with higher share of spruce in the mixed spruce-beech forest. Forest management practices should aim towards decreased surface runoff in alpine catchments. Therefore implementation of hydrology-oriented sylvicultural measures via a more accurate prediction of the impacts of tree species conversion on runoff generation in this type of alpine catchments is discussed.

  12. Preliminary assessment of channel stability and bed-material transport in the Tillamook Bay tributaries and Nehalem River basin, northwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; Keith, Mackenzie K.; O'Connor, Jim E.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Tillamook (drainage area 156 square kilometers [km2]), Trask (451 km2), Wilson (500 km2), Kilchis (169 km2), Miami (94 km2), and Nehalem (2,207 km2) Rivers along the northwestern Oregon coast. This study, conducted in coopera-tion with the U.S. Army Corps of Engineers and Oregon Department of State Lands to inform permitting decisions regarding instream gravel mining, revealed that: * Study areas along the six rivers can be divided into reaches based on tidal influence and topography. The fluvial (nontidal or dominated by riverine processes) reaches vary in length (2.4-9.3 kilometer [km]), gradient (0.0011-0.0075 meter of elevation change per meter of channel length [m/m]), and bed-material composition (a mixture of alluvium and intermittent bedrock outcrops to predominately alluvium). In fluvial reaches, unit bar area (square meter of bar area per meter of channel length [m2/m]) as mapped from 2009 photographs ranged from 7.1 m2/m on the Tillamook River to 27.9 m2/m on the Miami River. * In tidal reaches, all six rivers flow over alluvial deposits, but have varying gradients (0.0001-0.0013 m/m) and lengths affected by tide (1.3-24.6 km). The Miami River has the steepest and shortest tidal reach and the Nehalem River has the flattest and longest tidal reach. Bars in the tidal reaches are generally composed of sand and mud. Unit bar area was greatest in the Tidal Nehalem Reach, where extensive mud flats flank the lower channel. * Background factors such as valley and channel confinement, basin geology, channel slope, and tidal extent control the spatial variation in the accumulation and texture of bed material. Presently, the Upper Fluvial Wilson and Miami Reaches and Fluvial Nehalem Reach have the greatest abundance of gravel bars, likely owing to local bed-material sources in combination with decreasing channel gradient and

  13. Modeling of matters removal from swampy catchment

    NASA Astrophysics Data System (ADS)

    Inishev, N. G.; Inisheva, L. I.

    2010-05-01

    This work shows the results of fixed study of geochemical conditions in the system of landscape oligotrophic profile at Vasyugan mire spurs, and also we make an approach to processes modelling of compounds removal from swampy catchment. During investigation of symbolic model of chemical matters removal from the surface of a catchment basin and their movement along the channel network it was taken into account that removal of chemical elements during the period of spring flood and rain high waters occur mainly with overland flow. During calculation of dissolved matters movement the following admissions take place: 1. The problem is solved at one-dimension set-up. Concentration of investigated components is taken as averaged one along the flow cross section or effective area of slope cross-section for overland runoff, i.e. it changes only lengthways and in time. 2. It is considered that dissolved matters spread due to movement of water and together with its particles. 3. Processes of water self-clarification are not considered. The model is calculated on the basis of discharge of the investigated ingredient, i.e. matter mass moving through the given flow cross-section into time unit. This is the peculiarity of the model. Matter removal together with water flow is determined if necessary. Everyday impurity consumptions and its concentration can be estimated at the outlet at the moment of time according to convolution integral. Estimation of overland runoff and water inflow into the channel network is based on the mathematic model of outflow formation from peatland areas which considers basic processes carrying out at catchment and basin channel network. Stored moisture estimation of snow cover is taken according to snow survey data before snow melting. Everyday water supply to the surface of water collection was determined according to the results of snow melt intensity estimation by the methods of temperature coefficient and water yield from snow (A.G. Kovzel). All

  14. A preliminary investigation of the structure of southern Yucca Flat, Massachusetts Mountain, and CP basin, Nevada Test Site, Nevada, based on geophysical modeling.

    SciTech Connect

    Geoffrey A. Phelps; Leigh Justet; Barry C. Moring, and Carter W. Roberts

    2006-03-17

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  15. A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

    2006-01-01

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  16. River nutrient loads and catchment size

    USGS Publications Warehouse

    Smith, S.V.; Swaney, D.P.; Buddemeier, R.W.; Scarsbrook, M.R.; Weatherhead, M.A.; Humborg, Christoph; Eriksson, H.; Hannerz, F.

    2005-01-01

    We have used a total of 496 sample sites to calibrate a simple regression model for calculating dissolved inorganic nutrient fluxes via runoff to the ocean. The regression uses the logarithms of runoff and human population as the independent variables and estimates the logarithms of dissolved inorganic nitrogen and phosphorus loading with R 2 values near 0.8. This predictive capability is about the same as has been derived for total nutrient loading with process-based models requiring more detailed information on independent variables. We conclude that population and runoff are robust proxies for the more detailed application, landscape modification, and in-stream processing estimated by more process-based models. The regression model has then been applied to a demonstration data set of 1353 river catchments draining to the sea from the North American continent south of the Canadian border. The geographic extents of these basins were extracted from a 1-km digital elevation model for North America, and both runoff and population were estimated for each basin. Most of the basins (72% of the total) are smaller than 103 km2, and both runoff and population density are higher and more variable among small basins than among larger ones.While total load to the ocean can probably be adequately estimated from large systems only, analysis of the geographic distribution of nutrient loading requires consideration of the small basins, which can exhibit significant hydrologic and demographic heterogeneity between systems over their range even within the same geographic region. High-resolution regional and local analysis is necessary for environmental assessment and management. ?? Springer 2005.

  17. Environmental care in agricultural catchments: Toward the communicative catchment

    NASA Astrophysics Data System (ADS)

    Martin, Peter

    1991-11-01

    Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.

  18. Predicting hydrologic response through a hierarchical catchment knowledgebase: A Bayes empirical Bayes approach

    NASA Astrophysics Data System (ADS)

    Smith, Tyler; Marshall, Lucy; Sharma, Ashish

    2014-02-01

    Making useful Predictions in Ungauged Basins is an incredibly difficult task given the limitations of hydrologic models to represent physical processes appropriately across the heterogeneity within and among different catchments. Here, we introduce a new method for this challenge, Bayes empirical Bayes, that allows for the statistical pooling of information from multiple donor catchments and provides the ability to transfer parametric distributions rather than single parameter sets to the ungauged catchment. Further, the methodology provides an efficient framework with which to formally assess predictive uncertainty at the ungauged catchment. We investigated the utility of the methodology under both synthetic and real data conditions, and with respect to its sensitivity to the number and quality of the donor catchments used. This study highlighted the ability of the hierarchical Bayes empirical Bayes approach to produce expected outcomes in both the synthetic and real data applications. The method was found to be sensitive to the quality (hydrologic similarity) of the donor catchments used. Results were less sensitive to the number of donor catchments, but indicated that predictive uncertainty was best constrained with larger numbers of donor catchments (but still adequate with fewer donors).

  19. Calibration at regional scale for rainfall-runoff modeling in ungauged catchments.

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Montanari, A.; Toth, E.; Parajka, J.; Blöschl, G.

    2012-04-01

    The objective of this study is to explore one possible solution to optimise the parameters of rainfall-runoff models in ungauged catchments. We propose a cross-calibration procedure based on the adoption, for selected pairs of catchments, of a unique, space- invariant parameter set, which can be identified by using information that refers to gauged catchments in the same region. A basin in turn in the study region is selected and identified as target catchment and treated as ungauged. We will refer to all the remaining catchments in the same region as the donors. The R-R model is calibrated on each donor in turn, therefore identifying the donor which provides the most reliable parameter set. Then, a similarity measure is elaborated to assist in the selection of the most performing donor catchment, therefore proposing a quantitative criteria to identify the most appropriate information to be used in ungauged conditions. The similarity measure, which depends on geomorphoclimatic behaviours, can be used to identify more than one donor catchment in the case one needs to increase the consistency of the available data-base. We want to analyse the trade-off between assuming the parameters homogeneous in space and adding new information as the cross-calibration evolves. The analysis is performed by referring to the case study of a set of 7 catchments located in Northern Italy.

  20. Classification of Lebanese catchments according to their structural and functional characteristics

    NASA Astrophysics Data System (ADS)

    Merheb, Mohammad; Abdallah, Chadi; Moussa, Roger; Baghdadi, Nicolas

    2013-04-01

    Although a global catchment classification scheme is yet to be established, grouping of catchments according to their hydrologic similarities based upon catchment structure and function is an important tool for modeling guidance, generalization, transferability, prediction in un-gauged basins and anthropogenic global change impacts. The purpose of this study is to create a typology of a set of 17 catchments in Lebanon according to their hydrologic similarities using structural (landform, topography, geology, land use, climate, etc.) and functional (magnitude, duration, frequency, rate of change, climate, etc.) hydrological indices. These indices could be derived from widely available hydrologic and landscapes data. Correlations were performed over pairs of indices and only those showing little or no positive correlation were kept for analysis. To further reduce the number of variables, PCA (Principal Component Analysis) was carried out between structural and functional hydrological indices; as variables, and their correspondingbasins respectively. Only variables strongly associated with one or more of the three principal axes were retained. Furthermore, a stepwise linear regression was used to define relationship between multiple structural indices and each individual functional characteristic for each basin. Herein, two classification approaches has been followed. (1) Classification according to functional index: for each index, basins showing similar regression relationships were grouped together, thus resulting in different catchment classifications from one index to another. One can use one or another of these different classifications according to the problematic that have been raised. (2) A global classification approach where catchments representing similar regressions in more than half of their functional indices were gathered in one class. This latter approach permits the regrouping of catchments that have the maximum of similarities in term of their

  1. Defining prior probabilities for hydrologic model structures in UK catchments

    NASA Astrophysics Data System (ADS)

    Clements, Michiel; Pianosi, Francesca; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Booij, Martijn

    2014-05-01

    The selection of a model structure is an essential part of the hydrological modelling process. Recently flexible modeling frameworks have been proposed where hybrid model structures can be obtained by mixing together components from a suite of existing hydrological models. When sufficient and reliable data are available, this framework can be successfully utilised to identify the most appropriate structure, and associated optimal parameters, for a given catchment by maximizing the different models ability to reproduce the desired range of flow behaviour. In this study, we use a flexible modelling framework to address a rather different question: can the most appropriate model structure be inferred a priori (i.e without using flow observations) from catchment characteristics like topography, geology, land use, and climate? Furthermore and more generally, can we define priori probabilities of different model structures as a function of catchment characteristics? To address these questions we propose a two-step methodology and demonstrate it by application to a national database of meteo-hydrological data and catchment characteristics for 89 catchments across the UK. In the first step, each catchment is associated with its most appropriate model structure. We consider six possible structures obtained by combining two soil moisture accounting components widely used in the UK (Penman and PDM) and three different flow routing modules (linear, parallel, leaky). We measure the suitability of a model structure by the probability of finding behavioural parameterizations for that model structure when applied to the catchment under study. In the second step, we use regression analysis to establish a relation between selected model structures and the catchment characteristics. Specifically, we apply Classification And Regression Trees (CART) and show that three catchment characteristics, the Base Flow Index, the Runoff Coefficient and the mean Drainage Path Slope, can be used

  2. Preliminary report on the geology, geophysics and hydrology of USBM/AEC Colorado core hole No. 2, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, J.R.; Carroll, R.D.; Welder, F.A.

    1967-01-01

    Approximately 1,400 feet of continuous core was taken .between 800-2,214 feet in depth from USBM/AEC Colorado core hole No. 2. The drill, site is located in the Piceance Creek basin, Rio Blanco County, Colorado. From ground surface the drill hole penetrated 1,120 feet of the Evacuation Creek Member and 1,094 feet of oil shale in the Parachute Creek Member of the Green River Formation. Oil shale yielding more than 20 gallons per ton occurs between 1,260-2,214 feet in depth. A gas explosion near the bottom of the hole resulted in abandonment of the exploratory hole which was still in oil shale. The top of the nahcolite zone is at 1,693 feet. Below this depth the core contains common to abundant amounts of sodium bicarbonate salt intermixed with oil shale. The core is divided into seven structural zones that reflect changes in joint intensity, core loss and broken core due to natural causes. The zone of poor core recovery is in the Interval between 1,300-1,450 feet. Results of preliminary geophysical log analyses indicate that oil yields determined by Fischer assay compare favorably with yields determined by geophysical log analyses. There is strong evidence that analyses of complete core data from Colorado core holes No. 1 and No. 2 reveal a reliable relationship between geophysical log response and oil yield. The quality of the logs is poor in the rich shale section and the possibility of repeating the logging program should be considered. Observations during drilling, coring, and hydrologic testing of USBM/AEC Colorado core hole No. 2 reveal that the Parachute Creek Member of the Green River Formation is the principal aquifer water in the Parachute Creek Member is under artesian pressure. The upper part of the aquifer has a higher hydrostatic head than, and is hydrologically separated from the lower part of the aquifer. The transmissibility of the aquifer is about 3500 gpd per foot. The maximum water yield of the core hole during testing was about 500 gpm. Chemical

  3. Calcareous nannofossils of the Toarcian-Aalenian transition in the São Gião section (Lusitanian Basin, Portugal): preliminary results

    NASA Astrophysics Data System (ADS)

    Cortesão, André; Henriques, Maria Helena

    2016-04-01

    This work presents preliminary results regarding the composition of the calcareous nannofossils assemblages' recorded in the Lower-Middle Jurassic transition of the São Gião section, located in the northern Lusitanian Basin (Central Portugal). The section is a 45 m-thick monotonous alternation of marl and marly limestone (the Póvoa da Lomba Formation) ranging from the Upper Toarcian to the Lower Aalenian, and it corresponds to an expanded section showing exceptional exposure conditions. The continuous record of ammonites has enabled the recognition of the Aalensis Zone (Mactra and Aalensis subzones) and the Opalinum Zone (Opalinum and Comptum subzones). The abundant and very diverse benthic foraminiferal record accurately calibrated with the ammonite record has allowed the recognition of the Astacolus dorbignyi Zone. For the study of the calcareous nannofossil record, four samples were collected (one for each ammonite subzone) and processed; the smear slides were analyzed in a Leica DM750P polarizing microscope, using a 1000 X magnification. The nannfossil assemblages of the São Gião section are dominated by representatives of the genera Lotharingius and Discorhabdus, whereas Carinolithus and Schizosphaerella are subordinated. Other genera also represented in the analysed assemblages include Crepidolithus and Thoracosphaera. As noticed for the ammonite and for the benthic foraminiferal record, throughout the Upper Toarcian - Lower Aalenian record for the São Gião section no drastic changes in the number of originations and extinctions of nannofossil genera between ammonite biozones was detected. The main faunal change is the increase in the relative abundance of the genera Carinolithus in the Comptum Subzone, and the concomitant reduction of the relative abundance of Discorhabdus, but Lotharingius representatives remain dominant during the whole Upper Toarcian - Lower Aalenian transition. Further developments on this study will contribute to elaborate an

  4. Comparison of subsurface connectivity in Alpine headwater catchments

    NASA Astrophysics Data System (ADS)

    Zuecco, Giulia; Rinderer, Michael; van Meerveld, Ilja; Penna, Daniele; Borga, Marco

    2016-04-01

    . The temporal changes in the area of the catchment that was connected to the stream reflected the streamflow dynamics for all catchments. Subsurface connectivity increased during rainfall events but there was a short delay compared to streamflow, suggesting that other processes (e.g. direct channel precipitation, runoff from near stream saturated areas) contributed to streamflow at the beginning of the event. Groundwater levels declined later and slower than streamflow, resulting in complex but mainly anti-clockwise hysteretic relations between streamflow and the area that was connected to the stream. Threshold-like relations between maximum connectivity and total stormflow and between maximum connectivity and the sum of total rainfall plus antecedent rainfall were more evident for the dolomitic catchments, where the riparian zone is characterized by a groundwater table near the soil surface. A sudden increase in connectivity for these catchments could represent the connection of hillslopes to the stream. These preliminary results suggest that the delayed increase in subsurface connectivity relative to streamflow is likely not affected by the presence of a riparian zone. However, further analyses are needed to determine if the climate and/or morphology of the catchments affect the observed relations between maximum connectivity and total stormflow. Keywords: subsurface connectivity; headwater catchments; groundwater; graph theory; hysteresis.

  5. Runoff predictions in ungauged catchments in southeast Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Fapeng; Zhang, Yongqiang; Xu, Zongxue; Liu, Changming; Zhou, Yanchun; Liu, Wenfeng

    2014-04-01

    The Tibetan Plateau (TP) plays a key role on both hydrology and climate for southern and eastern Asia. Improving runoff predictions in ungauged catchments in the TP is critical for surface water hydrology and water resources management in this region. However, a detailed runoff prediction study in this region has not been reported yet. To fill the gap, this study evaluates two regionalization approaches, spatial proximity and physical similarity, for predicting runoff using two rainfall-runoff models (SIMHYD and GR4J). These models are driven by meteorological inputs from eight large non-nested catchments (4000-50,000 km2) in the Yarlung Tsangpo River basin located in southeast TP. For each catchment, the two models are calibrated using data from the first two-thirds of the observation period and validated over the remaining period. The calibrated and validated Nash-Sutcliffe Efficiency of monthly runoff (NSE) varies from 0.73 to 0.93 for the SIMHYD model, and are similar to or slightly better than those obtained for the GR4J model. The incorporation of snowfall-snowmelt processes into the rainfall-runoff models does not noticeably improve the runoff predictions in the study area. The main reason is that monthly runoff is dominated by summer precipitation and snowfall in winter accounts for a small percentage (less than 14%). The results from both models show that the spatial proximity approach marginally outperforms the physical similarity approach and both approaches are better than random selection of a donor catchment. This is consistent with recent regionalization studies carried out in Europe and Australia. The study suggests that conceptual rainfall-runoff models are powerful and simple tools for monthly runoff predictions in large catchments in southeast TP, and incorporation of more catchments into regionalization can further improve prediction skills.

  6. The catchment based approach using catchment system engineering

    NASA Astrophysics Data System (ADS)

    Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark

    2015-04-01

    The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.

  7. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.

    PubMed

    Hayakawa, A; Shimizu, M; Woli, K P; Kuramochi, K; Hatano, R

    2006-01-01

    We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments. PMID:16510707

  8. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.

    PubMed

    Hayakawa, A; Shimizu, M; Woli, K P; Kuramochi, K; Hatano, R

    2006-01-01

    We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.

  9. Influence of network properties on routing within a catchment

    NASA Astrophysics Data System (ADS)

    Åkesson (Née Gustafsson), A.; Wörman, A.; Lindstrom, G.

    2009-12-01

    This study concerns how river network characteristics (topology and geomorpholpogy) and their stage dependency can be used as means to parameterize hydrological compartment models, such as e.g. HBV. By increasing the coupling to physical properties, the performance of these models versus data is expected to be improved - especially regarding hydrological extremes. By the use of particle-tracking routing routines, distributions of flow distances and flow times through a catchment are expressed as functions of channel morphology, topology and stage. By analyzing these effects separately and together, we conclude that the transit time for water is strongly non-linearly related to stage and correlated with geomorphology as well as network topology. A primary effect is due to the change in hydraulics in parts of the river network were flooding occurs during high flows. The impact of network effects and stage on water transit times in different subcatchments are analysed. The preliminary results show that topological properties are highly responsible for the appearance of the response functions. The controlling factors are mapped in different catchments, on different areal scale and during different conditions (stages). A case study is also reported for Ronne catchment, Sweden (about 1900 km2). By relating the distributions of transit times to generalised properties of the sub-catchments, we can theoretically transfer information from one catchment to another. A later phase of this research will be to make a similar study in River Ljusnan (20 000 km2) to conclude how these generalised channel network and hydraulic characteristics can be used to bridge temporal and spatial scales in hydrology. By the increased use of GIS applications (and the continuous augmentation of this type of data), generalised channel network data of this kind can easily be obtained, even for remote catchments of little previous hydrological monitoring.

  10. Runoff Production in the Upper Rio Chagres Catchment, Panama

    NASA Astrophysics Data System (ADS)

    Niezialek, J. M.; Ogden, F. L.

    2003-12-01

    Runoff production in watersheds in the seasonal tropics is governed by a number of factors. The mountainous 414 sq. km upper Rio Chagres watershed offers a unique opportunity to better understand the runoff production mechanisms in seasonal tropical catchments through data analysis and modeling. The upper Rio Chagres catchment provides the majority of inflows to the Panama Canal, has been monitored for over 60 years as part of canal operations. Discharge data are available at both the catchment outlet (Chico gaging station) and an internal catchment location (Rio Piedras gaging station). There are also seven tipping bucket recording rain gages in and around the catchment. Analysis of runoff data reveals anomalously-high runoff production efficiencies early in the wet season. Furthermore, the existence of two quasi-stable base flow regimes during the wet season imply critical threshold storages. Initial field studies have shown that the soils are water repellent during the dry season. Runoff data from the 80 sq. km Rio Piedras subcatchment reveal ephemeral flows throughout the wet season, indicating significant heterogeneity in runoff production and deep groundwater circulation. Preliminary hydrologic modeling is performed with the Sacramento Soil Moisture Accounting Model (SAC-SMA), calibrated using data from 1988 and verified using data from 1989. Further modeling on the flood of 28-31 December, 2000 is also performed. Modeling using the distributed parameter GSSHA model combined with the Sacramento groundwater module allows simulation of distributed runoff. However, the role of interception by the triple-layer tropical canopy and the magnitude of evapotranspiration are uncertain. New data collection is proposed in the Rio Chagres catchment to help quantify interception and evapotranspiration. This instrumentation will include measurements of rainfall above the canopy, cloud stripping, stemflow, throughfall, soil moisture, groundwater, interflow

  11. Longterm Measurements of Bedload-Transport in alpine Catchments

    NASA Astrophysics Data System (ADS)

    Achleitner, Stefan; Kammerlander, Johannes; Eichner, Bernhard; Schöber, Johannes; Chiari, Michael

    2016-04-01

    In recent years the necessity of predicting the long-term behavior of sediment transport has increased. On the one hand, the effects of technical measures (e.g. retaining measures, hydropower, etc.) in the natural system are to be evaluated. On the other hand long term ecological studies that are strongly linked to the sediment budgets and its variation are more and more evolving. The ACRP Project DevoBeta-CC addresses the dynamics of long term sediment transport dynamics and its temporal altering. The focus is put on smaller tributary catchments enabling the model development. In total the data from ten catchments connected to the hydropower station Kaunertal (Tyrol/Austria) and eleven catchments linked to the power plant group Sellrain-Silz (Tyrol/Austria) are available. The considered catchments vary regarding their characteristics such as size (3 km³ to 27 km²), glaciation (0 % to 53 %), mean catchment slope (53 % to 92 %) and mean channel gradient (4 % to 49 %). The main data basis are records from the water intake structures operated (partly since 1965) by the TIWAG (Tiroler Wasserkraft AG). The sedimentation dynamics and operational flushings of the connected settling basins are used to measure the transported sediments. Since 1985 even high resolution data (15min intervals) are available. At selected catchments, the operationally recorded data (flushings, load membrane measurements,...) are verified within measuring campaigns using bed load traps upstream. Further, the sedimentation dynamics and grain size distributions in the settling basins are evaluated. Therefor two water intakes were put temporally out of operation, allowing an improved measurement of settled volumes by means of terrestrial surveying. Uncertainty assessments reveal an overall accuracy of estimated annual bed load volumes lower than a factor of two. Additionally, the data set enables to address sediment transport at a sub-annual basis, hence, the presented data set is unique regarding

  12. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    NASA Astrophysics Data System (ADS)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  13. Source and transport factors influencing storm phosphorus losses in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; kelly-quinn, Mary; Wall, David; Murphy, Paul; Melland, Alice

    2014-05-01

    The relative risk of diffuse phosphorus (P) loss from agricultural land was assessed in a well-drained arable catchment and a poorly-drained grassland catchment and in two nested basins within each catchment. This research investigated the relative control of hydrology and soil P on P losses between basins. Quick flow (QF) P losses (defined here as both concentrations and loads), monitored in stream flow during four storm events, were compared with a dynamic metric of transport risk (QF magnitude) and a static metric of critical source area (CSA) risk (extent of highly-connected poorly-drained soils with excess plant-available soil P). The potential for static transport metrics of soil connectivity and soil drainage class, to predict relative QF magnitudes and P losses between basins was also investigated. In basins with similar CSA risk but with contrasting QF magnitudes, mean TRP (total molybdate-reactive P) losses were consistently higher in the basins which had the highest QF magnitudes. This suggests that basin hydrology, rather than hydrology of high-P soils only, determined relative TRP losses between hydrologically contrasting basins. Furthermore, static transport metrics of soil connectivity and soil drainage class reliably discerned relative QF magnitudes and TRP losses between these basins. However, for two of the storm events (both occurring during the hydrologically active season), PP (particulate P) concentrations were frequently higher in basins which had the lowest QF magnitudes and may be attributed to a higher proportion of bare soil in these basins at these times as a result of their predominantly arable nature. In basins with similar hydrology, relative TRP and PP losses did not reflect trends in CSA risk or QF magnitude. The dynamics of TRP and PP losses and QF magnitude between these basins varied across storms, thus could not be predicted using static metrics. Where differences in hydrological dynamics were large, storm TRP losses were well

  14. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    NASA Astrophysics Data System (ADS)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (δ7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  15. Keeping it simple: a conceptual model of DOC dynamics in a subarctic alpine catchment

    NASA Astrophysics Data System (ADS)

    Lessels, J. S.; Tetzlaff, D.; Carey, S. K.; Soulsby, C.

    2013-12-01

    Understanding hydrological processes in subarctic alpine catchments characterised with discontinuous permafrost is important in order to understand carbon exports. Subarctic catchments have large storages of carbon in organic and permafrost soils. Active layer depth is one of the largest controlling factors of the release of dissolved organic carbon (DOC) due to its control on runoff pathways. Therefore, any change of this depth will affect the amount of DOC mobilised from these catchments. Simple low parameterised conceptual models offer the ability to characterise hydrological processes and linked DOC dynamics without introducing many of the uncertainties linked to high parameterised models. Lumped models can also be used to identify sources of DOC within catchments. Here, we investigate hydrological sources, flow pathways and consequently DOC dynamics in the Granger Basin, Canada, a subarctic alpine catchment using data collected from 2001 to 2008. The catchment is distinguished by aspect dependant discontinuous permafrost and seasonal frost, compounded further by differences in soil and vegetation types. Applying a simple low parameterised conceptual model allowed identification of the dominant flow paths of the main hydrological response units. The results showed that it was necessary to include active layer dynamics combined with aspect to represent the hydrological and DOC dynamics. The model provides information on the effect of climatic conditions on DOC releases. By identifying the key flow paths and relating these to spring freshet DOC exports over multiple years it is possible to gain an insight of the how climatic changes might affect hydrological processes within subarctic catchments.

  16. Towards a generalized catchment flood processes simulation system with distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    High resolution distributed hydrological model is regarded as to have the potential to finely simulate the catchment hydrological processes, but challenges still exist. This paper, presented a generalized catchment flood processes simulation system with Liuxihe Model, a physically-based distributed hydrological model proposed mainly for catchment flood forecasting, which is a process-based hydrological model. In this system, several cutting edge technologies have been employed, such as the supercomputing technology, PSO algorithm for parameter optimization, cloud computation, GIS and software engineering, and it is deployed on a high performance computer with free public accesses. The model structure setting up data used in this system is the open access database, so it could be used for catchments world widely. With the application of parallel computation algorithm, the model spatial resolution could be as fine as up to 100 m grid, while maintaining high computation efficiency, and could be used in large scale catchments. With the utilization of parameter optimization method, the model performance cold be improved largely. The flood events of several catchments in southern China with different drainage sizes have been simulated by this system, and the results show that this system has strong capability in simulating catchment flood events even in large river basins.

  17. Catchment-scale biogeography of riverine bacterioplankton

    PubMed Central

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-01-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  18. Catchment-scale biogeography of riverine bacterioplankton.

    PubMed

    Read, Daniel S; Gweon, Hyun S; Bowes, Michael J; Newbold, Lindsay K; Field, Dawn; Bailey, Mark J; Griffiths, Robert I

    2015-02-01

    Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river. PMID:25238398

  19. Groundwater Resources Evolution in Degrading Permafrost Environments: A Small Catchment-Scale Study in Northern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Molson, John; Lemieux, Jean-Michel; Fortier, Richard; Therrien, Rene; Ouellet, Michel; Barth, Johannes; van Geldern, Robert; Cochand, Marion; Sottas, Jonathan; Murray, Renaud; Banville, David

    2015-04-01

    A two square kilometre catchment in a discontinuous permafrost zone near the Inuit community of Umiujaq on the eastern shore of Hudson Bay in Northern Quebec, Canada, is being investigated to determine the impact of permafrost degradation on groundwater resources. The catchment, which became deglaciated about 7500 years ago, lies in a valley which includes about 30-40 m of glacial-fluvial and marine Quaternary sediments. Permafrost mounds at the site extend from a few meters below ground surface to depths of about 10-30 m. Instrumentation has been installed to measure groundwater levels and temperature, as well as groundwater and surface water geochemistry, isotope signatures (including δ18O and 3H) and stream flow. Preliminary groundwater isotope data reflect depleted δ18O signals that differ from expected values for local groundwater, possibly representing permafrost thaw. In addition, stable water isotopes indicate evaporation from shallow thermokarst lakes. Meteorological conditions including air temperatures, precipitation and snowpack are also being monitored. Near-surface geophysical surveys using electrical resistivity tomography (ERT), induced polarization tomography (IPT), georadar and seismic refraction tomography have been carried out to characterize the catchment and to build a 3D geological site model. A numerical model of coupled groundwater flow and heat transport, including thermal advection, conduction, freeze-thaw and latent heat, is being developed for the site to help develop the conceptual model and to assess future impacts of permafrost degradation due to climate warming. The model (Heatflow/3D) includes nonlinear functions for the temperature-dependent unfrozen moisture content and relative permeability, and has been tested against analytical solutions and using benchmarks developed by the INTERFROST modelling consortium. A conceptual 2D vertical-plane model including several permafrost mounds along a 1 km section shows dynamic seasonal

  20. The role of topography on catchment-scale water residence time

    USGS Publications Warehouse

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined-topographic controls on residence time for seven catchments (0.085-62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment-scale, water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 =-0:91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment-scale transport. Results from this study may provide a framework for describing scale-invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first-order control on base flow residence time. Copyright 2005 by the American Geophysical Union.

  1. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  2. Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming

    SciTech Connect

    Fouch, T.D.; Keefer, W.R.; Finn, T.M.

    1993-12-31

    The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

  3. Interferometric SAR observations of the Pine Island Glacier catchment area

    NASA Astrophysics Data System (ADS)

    Stenoien, Mark Daniel

    The catchment area of Pine Island Glacier, in West Antarctica, is mapped using satellite-radar interferometry and satellite-radar altimetery. The synthetic-aperture radar signal-processing algorithm implemented for this task uses precise (post-processed) orbit-ephemerides and a radar-altimeter digital-elevation-model to generate terrain-corrected and geolocated complex-imagery. The interferometric signal-processing algorithm implemented uses the same precise orbit-ephemerides and digital-elevation-model, together with synthetic-aperture-radar data collected from ascending- and descending-orbit passes to generate geometrically-corrected maps of true ice-surface motion. Satellite radar-altimeter data are used to create a digital elevation-model of the Pine Island Glacier catchment area via a unique algorithm that slope-corrects and grids the topographic estimates in a single step. The application of these tools reveals a system of tributaries channeling ice from the basin-like catchment area into the fast-flowing outlet glacier. None of the 7 tributaries mapped show a clear "onset" region, where sliding begins suddenly to dominate internal deformation as the predominant mode of ice motion; rather there is a gradual increase in ice speed, along with a gradual decrease in driving stress, along the axis of each tributary. Overall, however, regions of high (low) driving stress are closely associated with regions of large (small) surface slope, but show little correlation with the configuration of the tributaries. Furthermore, an estimate of the mass-balance of the observed portions of the Pine Island Glacier catchment area suggests that the northern and eastern slopes of the catchment area are gaining mass, while the southern slope is losing mass, making the net-balance for the observed area not distinguishable from zero.

  4. On the trail of 'hidden streamflow' in Luxembourgish catchments

    NASA Astrophysics Data System (ADS)

    Stewart, Michael; Pfister, Laurent; Morgenstern, Uwe; Martinez-Carreras, Nuria; Gourdol, Laurent; Klaus, Julian; McDonnell, Jeffrey

    2014-05-01

    Tritium measurements are being carried out in well-studied catchments in the Attert sub-basin of the Alzette River in Luxembourg to investigate transit times of baseflow from the various lithologies in the area. Rock-types vary from sandstone with high permeability to marl and schist with low permeabilities. In contrast to other methods, tritium reveals the full spectrum of ages present in streams including 'hidden streamflow' (i.e. water older than that measurable by stable isotope or conservative tracer methods) Stewart et al. (2012). In principle, it can also provide ages for individual samples and therefore reveal variations in age with flow if measurements are accurate enough. However, difficulties arise in determining the tritium input function and from ambiguous age solutions due to the past input of thermonuclear tritium. Previous and concurrent geochemical and stable isotope studies are providing complementary information about the systems (e.g. geological controls on catchment storage, mixing potential, isotopic signatures in streamflow) Pfister et al. (2014). Results to date are showing that old water with mean transit times of about 18 years flow from catchments dominated by sandstone at medium to low flows. These streams also have very homogeneous δD values at such flows showing large storages and mixing potentials. On the other hand, catchments dominated by marl and schist show varying mean transit times ranging from 2 to 20 years depending on flows, although data is limited. The δD values of these streams are scattered and have a decreasing trend with streamflow showing event and seasonal rainfall influence, and thus small storage capacities and mixing potentials. It appears that 'hidden streamflow' is alive and well, and living in Luxembourg! Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Stewart, M.K., Morgenstern, U., McDonnell, J.J., Pfister, L. 2012: The 'hidden

  5. Spatial and temporal patterns of off-slope sediment delivery for small catchments subject to shallow landslides within the Waipaoa catchment, New Zealand

    NASA Astrophysics Data System (ADS)

    Jones, Katie E.; Preston, Nicholas J.

    2012-03-01

    The Waipaoa catchment in New Zealand has one of the highest measured specific suspended sediment yields measured in New Zealand compared to basins of comparable size. A significant source of this sediment is from shallow landslides which are often triggered on a regional scale during large magnitude storm events, defined as ~ 200 mm rainfall within 72 h. The first step of this sediment cascade is removal of landslide material from the slope and into the fluvial system when the debris tail is in physical contact and hence considered connected. The difference between the volume of sediment liberated in the event and the volume remaining on the slope immediately following the event is termed the off-slope sediment delivery ratio. This value ranged from 0.12 to 0.28 for small sub-catchments within the Waipaoa catchment depending on catchment morphology, landslide and triggering event characteristics. In the Waipaoa catchment a decrease in the catchment sediment delivery ratio is observed as the sub-catchment size increased. A human induced process which may affect off-slope sediment delivery is regolith exhaustion, as scars move further upslope in response to removal of preferred weathered material during previous events on the lower sections of slope. However, it appears that temporal scar migration away from the channels is not prevalent. Therefore, the hypothesis that hillslope relaxation since deforestation is prevalent in this setting is considered null. Rather the temporal pattern to sediment delivery ratios supports the context of evolving catchment in response to deforestation in the Terrain Event Resistance Model.

  6. Hydrochemical responses among nested catchments of the Sleepers River Research Watershed.

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Kendall, C.

    2005-12-01

    We are probing chemical and isotopic tracers of dissolved organic carbon (DOC) and nitrate over both space and time to determine how stream nutrient dynamics change with increasing basin size and differ with flow conditions. At the Sleepers River Research Watershed in northeastern Vermont, USA, 20 to 30 nested sub-basins that ranged in size from 3 to 11,000 ha were sampled repeatedly under baseflow conditions. These synoptic surveys showed a pattern of heterogeneity in headwaters that converged to a consistent response at larger basin sizes and is consistent with findings of other studies. In addition to characterizing spatial patterns under baseflow, we sampled rainfall and snowmelt events over a gradient of basin sizes to investigate scaling responses under different flow conditions. During high flow events, DOC and nitrate flushing responses varied among different basins where high-frequency event samples were collected. While the DOC and nitrate concentration patterns were similar at four headwater basins, the concentration responses of larger basins were markedly different in that the concentration patterns, flushing duration, and maximum concentrations were attenuated from headwaters to the largest basin. We are using these data to explore how flow paths and solute mixing aggregate. Overall, these results highlight the complexities of understanding spatial scaling issues in catchments and underscore the need to consider event responses of hydrology and chemistry among catchments.

  7. Transit times of water particles in the vadose zone across catchment states and catchments functional units

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Weiler, Markus

    2014-05-01

    Understanding the water movement in the vadose zone and its associated transport of solutes are of major interest to reduce nutrient leaching, pollution transport or other risks to water quality. Soil physical models are widely used to asses such transport processes, while the site specific parameterization of these models remains challenging. Inverse modeling is a common method to adjust the soil physical parameters in a way that the observed water movement or soil water dynamics are reproduced by the simulation. We have shown that the pore water stable isotope concentration can serve as an additional fitting target to simulate the solute transport and water balance in the unsaturated zone. In the presented study, the Mualem- van Genuchten parameters for the Richards equation and diffusivity parameter for the convection-dispersion equation have been parameterized using the inverse model approach with Hydrus-1D for 46 experimental sites of different land use, topography, pedology and geology in the Attert basin in Luxembourg. With the best parameter set we simulated the transport of a conservative solute that was introduced via a pulse input at different points in time. Thus, the transit times in the upper 2 m of the soil for different catchment states could be inferred for each location. It has been shown that the time a particle needs to pass the -2 m depth plane highly varies from the systems state and the systems forcing during and after infiltration of that particle. Differences in transit times among the study sites within the Attert basin were investigated with regards to its governing factors to test the concept of functional units. The study shows the potential of pore water stable isotope concentration for residence times and transport analyses in the unsaturated zone leading to a better understanding of the time variable subsurface processes across the catchment.

  8. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  9. Using isotope, hydrochemical methods and energy-balance modelling to estimate contribution of different components to flow forming process in a high-altitude catchment (Dzhancuat river basin case study)

    NASA Astrophysics Data System (ADS)

    Rets, Ekaterina; Loshakova, Nadezhda; Chizhova, Julia; Kireeva, Maria; Frolova, Natalia; Tokarev, Igor; Budantseva, Nadine; Vasilchuk, Yurij

    2016-04-01

    A multicomponent structure of sources of river runoff formation is characteristic of high-altitude territories: ice and firn melting; seasonal snow melting on glacier covered and non-glacier area of a watershed; liquid precipitation; underground waters. In addition, each of these components can run off the watershed surface in different ways. Use of isotopic, hydrochemical methods and energy balance modelling provides possibility to estimate contribution of different components to river runoff that is an essential to understand the mechanism of flow formation in mountainious areas. A study was carried out for Dzhancuat river basin that was chosen as representative for North Caucasus in course of the International Hydrological Decade. Complex glaciological, hydrological and meteorological observation have been carried in the basin since 1965. In years 2013-2015 the program also included daily collecting of water samples on natural stable isotopes on the Dzhancuat river gauging station, and sampling water nourishment sources (ice, snow, firn, liquid precipitation) within the study area. More then 800 water samples were collected. Application of an energy balance model of snow and ice melt with distributed parameters provided an opportunity to identify Dzhancuat river runoff respond to glaciers melt regime and seasonal redistribution of melt water. The diurnal amplitude of oscillation of the Dzhakuat river runoff in the days without precipitation is formed by melting at almost snow-free areas of the Dzhancuat glacier tongues. Snowmelt water from the non-glacierized part contributes to the formation of the next day runoff. A wave of snow and firn melt in upper zones of glacier flattens considerably during filtration through snow and run-off over the surface and in the body of the glacier. This determines a general significant inertia of the Dzhacuat river runoff. Some part of melt water is stored into natural regulating reservoirs of the watershed that supply the

  10. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability

  11. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  12. Preliminary results of organic geochemical and stable isotope analyses of Newark supergroup rocks in the Hartford and Newark basins, Eastern U.S.

    USGS Publications Warehouse

    Pratt, L.M.; Vuletich, A.K.; Shaw, C.A.

    1986-01-01

    Preliminary stage-discharge relations (limit curves) have been defined for Aliceville Lock and Dam covering the period February 1980 to May 1983 (Nelson and Ming, 1983). Subsequent data collected at the dam indicates a need for a revision to the preliminary curves. Due to channel instability in the vicinity, periodic review and possible update will be needed to keep the curves current. Using 48 data points defined by the flood of December 1983, the curves have been updated and are shown in this 1985 report. (USGS)

  13. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K.

    2013-03-01

    Catchment hydrologic partitioning, regional vegetation composition and soil properties are strongly affected by climate, but the effects of climate-vegetation-soil interactions on river basin water balance are still poorly understood. Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different parameterizations) are subjected to the 12 different climate forcings, resulting in 144 10-yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P = φ (EP/P); E: evaporation, P: precipitation, EP: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls perched aquifer storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer aquifer storage release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis

  14. A water and sediment budget for a Mediterranean mountainous catchment (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Tuset, Jordi; Vericat, Damià; Batalla, Ramon J.

    2016-04-01

    Sediment transport in Mediterranean mountainous catchments is highly variable influenced principally by sediment availability, which in turn is controlled by the temporal and spatial variability of rainfall, runoff and land uses. In this paper we present the water and sediment budget of the Ribera Salada, a Mediterranean forest catchment located in the Catalan Pre-Pyrenees (NE Iberian Peninsula). The river drains an area of 224 km2. The data acquisition design is composed by five nested experimental sub-catchments. Each monitoring station registers discharge and suspended sediment transport continuously. Here we present the data obtained between 2012 and 2013, two contrasted hydrological years. These data allows to analyse the contribution of each sub-catchment to the total water and suspended sediment yield of the catchment at multiple temporal scales. Annual water yield in the catchment outlet varied between 15 and 31 hm3 y-1. Maximum peak flow in the outlet of the basin was 60.9 m3 s-1; equivalent to a specific discharge of 0.28 m3 s-1 km2. Results indicate that, hydrologically, the catchment can divided in two areas with contrasted regimes. The upper part of catchment is the wettest zone, where the water yield of each sub-catchment is in directly and positive correlated to its area. In contrast, the bottom of the valley has an ephemeral hydrological regime that only supplies water during important rainfall events. Annual suspended sediment load at the catchment outlet oscillated between 615 and 3415 t y-1, with an average value of 2015 t y-1 (i.e. 9.3 t km‑2 y‑1). In contrast to the water yield, most of the suspended sediment load (i.e. 80%) is supplied from the driest part of the catchment where sediment availability is greater and there is a greater connectivity between sediment sources and the channel network. The humid part of the catchment only yielded the 20% of the sediment load, where, as in the case of the water yield, sediment yield is directly

  15. Legacy Contaminantion in UK catchments since the mid-19th century

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.; Worrall, F.; Noacco, V.; Wagener, T.

    2014-12-01

    We present data from UK catchments to characterise impacts of industrial and agricultural development of UK river catchments since the mid-19th century. We draw heavily on the world's longest continuous water quality monitoring programme in the Thames River Basin (1868-date) and discuss the implications of both agricultural development, social and industrial change, and the impact of legislation on coupled land and water resource systems. Our review draws on both data and model analysis over a 145-year period and explores how a multitude of inter-linked drivers affects process-function and practical water resource management decision-support. Our work uncovers key drivers, catchment responses and emergent challenges for process science and regulation, with particular emphasis on the technical challenge for catchment scientists to provide both insight and workable solutions to maintain food and water security in intensively management river basins. We discuss issues of appropriate methods for both data capture and subsequent analyses to support short- and long-term decision making, and particularly considers the importance of advanced techniques to clarify uncertainties in extrapolation of short-term observations to inform long-term goals. We speculate as to future trajectories of catchment responses to current pressures, and potential pitfalls to immediate concerns that may often be at odds with overall requirements for continued use of natural resources in the future.

  16. Rainfall/runoff processes in a small peri-urban catchment in the Andes mountains. The Rumihurcu Quebrada, Quito (Ecuador)

    NASA Astrophysics Data System (ADS)

    Perrin, J. L.; Bouvier, C.; Janeau, J. L.; Ménez, G.; Cruz, F.

    2001-04-01

    Situated at the foot of the Pichincha volcano, the city of Quito is frequently subjected to hydroclimatic hazards. In 1995 an 11·2 km2 watershed, located in the vicinity of the city, was equipped with eight rain gauges and two flow gauges to better understand the local rainfall/runoff transformation processes. Rainfall simulation experiments were carried out on more than 40 one-square-metre plots to measure infiltration point-processes. The high density of measurement devices allowed us to identify the origin and nature of the various contributions to runoff for the different physiographic units of the watershed: urban area from an altitude of 2800 to 3200 m; farmland, pasture and forested land, and finally páramo above 3900 m. Runoff occurs mainly in the lower part of the basin and is caused by urbanization; however, the natural soils of this area can also produce Hortonian runoff, which is predominant in a few events. This contribution can be studied through rainfall simulation experiments. In the upper natural zone, the younger and more permeable soils generate less runoff on the slopes. However, almost permanently saturated contributing areas, which are located in the bottom of the quebradas, may generate flood events, the size of which depends on the extent of the area concerned. Variations in the runoff coefficients are related first to the baseflow and second to the amount of rainfall in the previous 24 h. This analysis, which underlines the complexity of a small, peri-urban, volcanic catchment, is a necessary preliminary to runoff modelling in an area where very few experiments have been carried out on small catchments.

  17. Morphotectonic interpretation of the Makuyuni catchment in Northern Tanzania using DEM and SAR data

    NASA Astrophysics Data System (ADS)

    Flores-Prieto, Elio; Quénéhervé, Geraldine; Bachofer, Felix; Shahzad, Faisal; Maerker, Michael

    2015-11-01

    Landscapes in the East African Rift System are formed by complex effects of the active continental extension zone. These effects are caused by the Somalian micro-plate's eastward drift away from the Nubian plate, as well as by volcanic, erosional and depositional processes. Tectonic processes in this region have significantly contributed to the formation of the current drainage systems and landforms. This study focuses on the morphotectonics of the Makuyuni catchment with an analysis of topography, drainage networks, stream longitudinal profiles and lineaments. This analysis reveals a morphostructural control with an N-S trend for the uplifted Masai Block, as well as tectonic deformation in the Makuyuni catchment area (NE of Lake Manyara). Whereas basin asymmetry analysis shows basin tilting associated with active faulting and uplifting near the Essimingor volcanic cone, in this catchment the steepness and concavity indices, coupled with lineaments obtained from interpretations of Synthetic Aperture Radar satellite scenes, show an uplifting along micro-faults. Hypsometry curves reveal that subcatchments on the right side of the Makuyuni River are in a mature equilibrium phase, whereas those at the left side are in a younger stage of maturity. An investigation of base level and statistical moments of the hypsometric curves provides evidences for the spatial distribution of gully erosion phenomena. Such erosion processes are due to tectonic deformation in the northern parts of the Makuyuni catchment. These results of regional tectonic instability suggest that tectonic processes are a significant factor for the current landscape evolution in the Lake Manyara basin.

  18. What causes similarity in catchments?

    NASA Astrophysics Data System (ADS)

    Savenije, Hubert

    2014-05-01

    One of the biggest issues in hydrology is how to handle the heterogeneity of catchment properties at different scales. But is this really such a big issue? Is this problem not merely the consequence of how we conceptualise and how we model catchments? Is there not far more similarity than we observe. Maybe we are not looking at the right things or at the right scale to see the similarity. The identity of catchments is largely determined by: the landscape, the ecosystem living on the landscape, and the geology, in that order. Soils, which are often seen as a crucial aspect of hydrological behaviour, are far less important, as will be demonstrated. The main determinants of hydrological behaviour are: the landscape composition, the rooting depth and the phenology. These determinants are a consequence of landscape and ecosystem evolution, which, in turn, are the manifestations of entropy production. There are striking similarities between catchments. The different runoff processes from hillslopes are linked and similar in different environments (McDonnell, 2013). Wetlands behave similarly all over the world. The key is to classify landscapes and to link the ecosystems living on them to climate. The ecosystem then is the main controller of hydrological behaviour. Besides phenology, the rooting depth is key in determining runoff behaviour. Both are strongly linked to climate and much less to soil properties. An example is given of how rooting depth is determined by climate, and how rooting depth can be predicted without calibration, providing a strong constraints on the prediction of rainfall partitioning and catchment runoff.

  19. Preliminary digital model of ground-water flow in the Madison Group, Powder River Basin and adjacent areas, Wyoming, Montana, South Dakota, North Dakota, and Nebraska

    USGS Publications Warehouse

    Konikow, L.F.

    1976-01-01

    A digital simulation model was used to analyze regional ground-water flow in the Madison Group aquifer in the Powder River Basin in Montana and Wyoming and adjacent areas. Most recharge to the aquifer originates in or near the outcrop areas of the Madison in the Bighorn Mountains and Black Hills, and most discharge occurs through springs and wells. Flow through the aquifer in the modeled areas was approximately 200 cubic feet per second. The aquifer can probably sustain increased ground-water withdrawals of up to several tens of cubic feet per second, but these withdrawals probably would significantly lower the potentiometric surface in the Madison aquifer in a large part of the basin. (Woodard-USGS)

  20. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  1. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    PubMed

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process. PMID:24532209

  2. Impact of Drainage Basin Geology and Geomorphology on Detrital Thermochronometric Data from Modern River Sands: A Case Study in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Coutand, I.; Whipp, D. M., Jr.; Bookhagen, B.; Grujic, D.

    2015-12-01

    Detrital thermochronology has become an important tool to quantify the erosional history of mountainous regions. Despite an increasing number of studies utilizing detrital records, it remains unclear how the record of spatially variable erosion of upstream drainage basins is preserved in the thermochronologic signal contained in the sediments. This important spatiotemporal problem is a first-order unknown that limits the interpretation of the geological significance of the detrital signal. To improve our understanding of detrital records in terms of spatiotemporal erosion rates, we use a three-step approach to study modern fluvial sediments from the Bhutan Himalaya. First, based on a preferred tectonomorphic scenario extracted by inversion of in situ multi-thermochronological ages, we predict apatite fission-track (AFT) age distributions in 18 catchments using the Pecube software. Second, we compare AFT age distributions from modern sand bars collected at each catchment outlet to distributions extracted from Monte Carlo sampling of the predicted catchment ages. We find that observed and predicted age distributions are statistically equivalent for only ~75% of the catchments. Third, we calculate predicted detrital age distributions by scaling the prevalence of ages in the catchment in proportion to topographic and climatic metrics (e.g., local relief, steepness index, specific stream power weighted by precipitation rate) or landslide-driven erosion to quantify their effects and relationships to the observed detrital AFT age distributions. Preliminary results suggest erosion in proportion to the topographic metrics cannot reproduce the observed age distributions, but bedrock landsliding may provide sufficient age variability to reproduce the observations. Ongoing work is determining whether variable target mineral concentrations in bedrock geological units or non-uniform sediment sourcing from moraine- or glacier-covered regions can reproduce the observed ages.

  3. Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment, Greenland

    NASA Astrophysics Data System (ADS)

    Cooper, M. A.; Michaelides, K.; Siegert, M. J.; Bamber, J. L.

    2016-06-01

    Subglacial topography exerts strong controls on glacier dynamics, influencing the orientation and velocity of ice flow, as well as modulating the distribution of basal waters and sediment. Bed geometry can also provide a long-term record of geomorphic processes, allowing insight into landscape evolution, the origin of which may predate ice sheet inception. Here we present evidence from ice-penetrating radar data for a large dendritic drainage network, radiating inland from Jakobshavn Isbræ, Greenland's largest outlet glacier. The size of the drainage basin is ˜450,000 km2 and accounts for about 20% of the total land area of Greenland. Topographic and basin morphometric analyses of an isostatically uplifted (ice-free) bedrock topography suggests that this catchment predates ice sheet initiation and has likely been instrumental in controlling the location and form of the Jakobshavn ice stream, and ice flow from the deep interior to the margin, now and over several glacial cycles.

  4. Sediment sources and its transport pathways in the Kharaa catchment, northern Mongolia

    NASA Astrophysics Data System (ADS)

    Theuring, P.; Rode, M.

    2012-04-01

    Soil erosion and its subsequent transport towards and within rivers is complex, dependent on many catchment properties, hydrology and land use. However, little is known about the sources and fate of suspended sediment (SS) in the 15.000km2 Kharaa study catchment in Mongolia. This study focuses therefore on a qualitative identification of sediment sources and the quantification of the suspended sediment transport in the catchment. Geochemical sediment source fingerprinting in combination with isotope fingerprinting is used to identify and localize the most important sediment source areas in the catchment and assess their contribution to the suspended sediment load. More than 1000 grab samples from 22 river junctions of the outlet of each sub basin into the main tributary were taken in the period from 2009 to 2011. Their fine sediment fractions (<10μm) have been analysed for major elements (e.g. Si, Al, Mg) and trace elements (e.g. Ba, Pb, Sr,) using ICP-MS. The contribution of each sub basin to the SS in the main tributary has then been calculated using mixing model analysis. Additionally, isotope fingerprinting was used to assess the importance and contribution of surface, stream bank and gully erosion on total sediment load of the catchment. Biannual samples of 12 topsoil eroding surface reference sites, 4 stream banks and 4 suspended sediment samples were analysed for the atmospheric fallout radionuclides Cs-137, Pb-210 and Be-7 using gamma ray spectrometry. The sediment budget of the catchment was calculated with the help of the regional catchment scale sediment budget model (SedNet. Results suggest that only a small part of the catchment contributes considerably to the total sediment load and that gully and bank erosion might be the dominating sources in the catchment that lead to fine sediment intrusion and ecosystem degradation in the riverbed in the midstream regions. Also there seems to be a difference in erosion behaviour between spring and fall, with a

  5. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K.

    2013-06-01

    release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungauged basins.

  6. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G. A.; Sivapalan, M.; Sawicz, K. A.; Wagener, T.

    2013-12-01

    release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis reveals that climates that give rise to more (less) E/P are associated with catchments that have vegetation with less (more) efficient water use parameters. In particular, the climates with tendency to produce more E/P have catchments that have lower % root fraction and less light use efficiency. Our results suggest that their exists strong interactions between climate, vegetation and soil properties that lead to specific hydrologic partitioning at the catchment scale. This co-evolution of catchment vegetation and soils with climate needs to be further explored to improve our capabilities to predict hydrologic partitioning in ungaged basins.

  7. Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2015-10-01

    Runoff in forested tropical catchments has been frequently described in the literature as dominated by the rapid translation of rainfall to runoff through surface and shallow subsurface pathways. However, studies examining runoff generation in tropical catchments with highly permeable soils have received little attention, particularly in tropical dry forests. We present a study focused on identifying the dominant flowpaths, water sources and stream water residence times in a tropical dry forest catchment near the Pacific coast of central Mexico. During the wet season, pre-event water contributions to stormflow ranged from 72% to 97%, with the concentrations of calcium, magnesium, sodium and potassium closely coupling the geochemistry of baseflow and groundwater from the narrow riparian/near-stream zone. Baseflow from the intermittent stream showed a strongly damped isotopic signature and a mean baseflow residence time of 52-110 days was estimated. These findings all suggest that instead of the surface and near-surface subsurface lateral pathways observed over many tropical catchments, runoff is generated through vertical flow processes and the displacement and discharge of stored water from the saturated zone. As the wet season progressed, contributions from the saturated zone persisted; however, the stormflow and baseflow geochemistry suggests that the contributing area of the catchment increased. Our results show that during the early part of the wet season, runoff originated primarily from the headwater portion of the catchment. As the wet season progressed and catchment wetness increased, connectivity among sub-basin was improved, resulting in runoff contributions from across the entire catchment.

  8. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  9. Hydrogeomorphic paradigm of stormflow generation in headwater catchments

    NASA Astrophysics Data System (ADS)

    Sidle, Roy C.

    2015-04-01

    Over the past century, different paradigms have emerged to explain the processes of stormflow generation in steep, vegetated headwater catchments. These headwaters are important source areas of flood waters, sediments, nutrients, and biota that affect larger basins and coastal waters. Headwater systems exhibit unique and complex hydrogeomorphic processes from hillslopes to stream channels as well as linkages to downstream reaches. Through the 1960's, stormflow generation was largely attributed to Hortonian overland flow mechanisms. While numerous studies indicated the significance of saturated and unsaturated subsurface flow, it was not until the mid-1960's that the variable source area concept of streamflow generation emerged invoking a dynamic riparian source area that shrinks and expands in response to precipitation and fluctuating water tables. However, this concept does not specify flow mechanisms or pathways functioning at different spatial scales within the catchment. Based on extensive studies in nested, headwater catchment components in Japan, a conceptual hydrogeomorphic model has been developed to more explicitly explain stormflow pathways and response. The conceptual model recognizes the close coupling of hillslope and channel hydrological processes and the unique contributions of geomorphic features such as riparian corridors, geomorphic hollows, and linear hillslopes. During the driest conditions, catchment water yield is very low and runoff occurs as saturated overland flow from the narrow riparian corridors and via direct channel interception. For slightly wetter conditions, subsurface flow from the soil matrix augments stormflow. As wetness increases, two significant non-linear hydrologic responses occur: (1) response from geomorphic hollows (zero-order basins) after a threshold of shallow groundwater accumulates; and (2) self-organization and expansion of preferential flow pathways that facilitate significant amounts of subsurface drainage. The

  10. Factors controlling mercury transport in an upland forested catchment

    USGS Publications Warehouse

    Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.

    1998-01-01

    Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.

  11. Creating a catchment scale perspective for river restoration

    NASA Astrophysics Data System (ADS)

    Benda, L.; Miller, D.; Barquín, J.

    2011-09-01

    One of the major challenges in river restoration is to identify the natural fluvial landscape in catchments with a long history of river control. Intensive land use on valley floors often predates the earliest remote sensing: levees, dikes, dams, and other structures alter valley-floor morphology, river channels and flow regimes. Consequently, morphological patterns indicative of the fluvial landscape including multiple channels, extensive floodplains, wetlands, and fluvial-riparian and tributary-confluence dynamics can be obscured, and information to develop appropriate and cost effective river restoration strategies can be unavailable. This is the case in the Pas River catchment in northern Spain (650 km2), in which land use and development have obscured the natural fluvial landscape in many parts of the basin. To address this issue we used computer tools to examine the spatial patterns of fluvial landscapes that are associated with five domains of hydro-geomorphic processes and landforms. Using a 5-m digital elevation model, valley-floor surfaces were mapped according to elevation above the channel and proximity to key geomorphic processes. The predicted fluvial landscape is patchily distributed according to hillslope and valley topography, river network structure, and channel elevation profiles. The vast majority of the fluvial landscape in the main segments of the Pas River catchment is presently masked by human infrastructure, with only 15% not impacted by river control structures and development. The reconstructed fluvial landscape provides a catchment scale context to support restoration planning, in which areas of potential ecological productivity and diversity could be targeted for in-channel, floodplain and riparian restoration projects.

  12. Preliminary hydrogeologic framework of the Silurian and Devonian carbonate aquifer system in the Midwestern Basins and Arches Region of Indiana, Ohio, Michigan, and Illinois

    SciTech Connect

    Casey, G.D. )

    1992-01-01

    The aquifer and confining units have been identified; data on the thickness, extent, and structural configuration of these units have been collected; and thickness and structure-contour maps have been generated. Hydrologic information for the confining units and the aquifer also has been compiled. Where present, the confining unit that caps the carbonate aquifer consists of shales of Middle and Upper Devonian age and Lower Mississippian age, however, these units have been eroded from a large part of the study area. The regional carbonate aquifer consists of Silurian and Devonian limestones and dolomites. The rocks that comprise the aquifer in Indiana and northwestern Illinois are grouped into four major stratigraphic units: Brassfield and Sexton Creek Limestones or the Cataract Formation, the Salamonie Dolomite, the Salina Group, and the Detroit River and Traverse Formations or the Muscatatuck Group. In Ohio and southern Michigan the aquifer is grouped into ten stratigraphic units: Brassfield Limestone and Cataract Formation, the Dayton Limestone, the Rochester Shale equivalent, the Lockport Dolomite, the Salina Formation, the Hillsboro Sandstone, the Detroit River Group, the Columbus Limestone, the Delaware Limestone, and the Traverse Formation. The thickness of the carbonate aquifer increases from the contact with the outcropping Ordovician shales in the south-central part of the study area from the contact into the Appalachian Foreland Structural Basin from 0 ft at the contact to more than 700 ft at the eastern boundary of the study area, to more than 1,000 ft beneath Lake Erie and greater than 1,200 ft in southeastern Michigan. At the edge of the Michigan Intercontinental Structural Basin in western Ohio and eastern Indiana, the thickness ranges from 700 to 900 ft. and from 200 ft to 300 ft in south-central Indiana along the northeastern edge of the Illinois Intercontinental Structural Basin.

  13. Preliminary study of land-plant biomarkers in marine sediments of Alfonso basin and its relationship with the climate of the last 3.5 ka

    NASA Astrophysics Data System (ADS)

    Ricaurte-Villota, Constanza; Gonzalez-Yajimovich, Oscar; Betancourt-Portela, Julian

    2014-05-01

    This study used biomarkers such as n-alkanes, especially focused on the long chain n-alkanes and some diagnostic indexes derived from abundance, to elucidate molecular changes in the contribution of organic matter to the sediments, especially terrestrial vegetation surrounding continental areas around of Alfonso basin in response to climate change, particularly changes in the hydrological cycle. The results show that in general the n-alkanes of organic matter (OM) of Alfonso basin sediments are composed of a mixture of waxes derived from phytoplankton and terrestrial plants, with a greater contribution from phytoplankton compare to terrestrial vegetation, in the oldest part of the record, associated with a marine productivity increased period favored by rainfall. Maximum abundance of C29, and high values of C27/C31 ratio indicate leaves from trees as a source wax, probably succulents plants characteristic of arid zones, with C3 as one of their metabolic pathway, identified from mean ACL values around 29.5. The low CPI index indicates contamination and microbial communities as a possible source of long chain n-alkanes, probably due to anoxic bottom conditions in Alfonso basin favor the development of these communities. Finally, it is suggested no change in the community, at least for the last ~ 3.5 ka BP, but increased cover vegetation (biomass) in southern California during periods of increased rainfall (from ~ 3.5 to ~ 1.7 ka BP). The ability of terrestrial plant communities to adapt for longer periods before being replaced by other species, when faced with gradual changes rather than rapid climate change is reflected in a few changes in its composition.

  14. Monitoring and modeling of cold region hydrological processes in a high mountain river basin in the upstream area of the Heihe River Basin of China

    NASA Astrophysics Data System (ADS)

    Li, X.; Che, T.; Li, H.; Jin, R.; Liu, S.; Huang, C.

    2015-12-01

    We provide an overview of a high mountain river basin observing system in the Qilian Mountains of China. Mountain cryosphere is very sensitive to climate change, however, monitoring and modeling of cryospheric process and its interaction with hydrology and ecology needs to be further strengthened. We establish a multi-scale high mountain river basin observing system in the upstream area of the Heihe River Basin, Qilian Mountains of China. This system consists of flux towers on alpine tundra, alpine meadow and alpine steppes, a network of automatic meteorological stations, a wireless sensor network of soil moisture, soil temperature, snow depth, and precipitation, and two super observatories for monitoring snow and frozen soil, respectively. Super-high resolution (1 meter) DEMs of four experiment sub-watersheds (each about 20-40 km2) within this river basin were obtained via airborne LiDAR remote sensing.We introduce the data obtained since 2012 and present some preliminary modeling and data assimilation results. The results show that runoff, precipitation, snowmelt, and glacier melt keep increasing in the upstream area of the Heihe River Basin due to a warming climate. The ratio of snowmelt in total runoff has increased and the onset of snowmelt has gone ahead. The contribution of glacier melt to total runoff has almost doubled in the past decade. Frozen soil melt advances in time as well, and it may also contributes to the increase of the portion of baseflow in total runoff.This observatory has joined the International Network for Alpine Research Catchment Hydrology (NARCH) and will work as a unique site to monitor cryospheric and hydroclimatological changes in very high mountains.

  15. What happens when catchments get excited? Exploring the link between hydrologic states and responses across spatial scales

    NASA Astrophysics Data System (ADS)

    Wrede, S.; Lyon, S. W.; Martinez-Carreras, N.; Pfister, L.; Uhlenbrook, S.

    2010-12-01

    Investigating relationships between dynamic hydrologic states and associated hydrologic responses of catchments is essential for a better understanding and conceptualization of hydrologic functioning and classification across spatial scales. Nevertheless, the question of “What happens when catchments get excited?” still remains unanswered for most catchments to date. This is especially true with regard to underlying landscape controls and how their relative importance can shift given the state of the various storages in a catchment. To help answering this question, we combined hydrometric and tracer approaches with landscape analysis in 24 nested catchments in Luxembourg, Europe with contrasting bedrock geology ranging from 0.5 to 1091 km2. In our study we discerned two major hydrological states (dry and wet) for each basin according to slope changes in double mass curves of cumulated discharge and precipitation. For each of these states the long-term (i.e. interannual) response of catchment behavior was characterized using conventional runoff signatures, such as master recession curves and average lag time between rainfall and runoff response. We found significantly different hydrologic responses for different hydrologic states of the catchments. These are typified by faster flow recessions, but longer average lag times during wet states and slower flow recessions, but shorter lag times during dry states. Dominating landscape controls on hydrological responses differed during these distinct hydrologic states and were identified as variables related to geology (percentage of impervious bedrock area) and soils (average soil depth), indicating different controls on hydrologic processes under different hydrologic states. Clustering of biweekly conductivity and silica stream water concentration data of the catchments further illustrated the dominant control of the geology on stream chemistry and revealed similar patterns during different hydrologic states. Our

  16. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  17. Analyzing runoff processes through conceptual hydrological modelling in the Upper Blue Nile basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, M.; Verhoest, N. E. C.; Pauwels, V. R. N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J.

    2014-05-01

    Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data scarce regions of the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall-runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile basin, the Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile basin) were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel Abay) and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics well the rainfall-runoff process in the Upper Blue Nile basin and brings a useful result

  18. Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dessie, M.; Verhoest, N. E. C.; Pauwels, V. R. N.; Admasu, T.; Poesen, J.; Adgo, E.; Deckers, J.; Nyssen, J.

    2014-12-01

    Understanding runoff processes in a basin is of paramount importance for the effective planning and management of water resources, in particular in data-scarce regions such as the Upper Blue Nile. Hydrological models representing the underlying hydrological processes can predict river discharges from ungauged catchments and allow for an understanding of the rainfall-runoff processes in those catchments. In this paper, such a conceptual process-based hydrological model is developed and applied to the upper Gumara and Gilgel Abay catchments (both located within the Upper Blue Nile Basin, the Lake Tana sub-basin) to study the runoff mechanisms and rainfall-runoff processes in the basin. Topography is considered as a proxy for the variability of most of the catchment characteristics. We divided the catchments into different runoff production areas using topographic criteria. Impermeable surfaces (rock outcrops and hard soil pans, common in the Upper Blue Nile Basin) were considered separately in the conceptual model. Based on model results, it can be inferred that about 65% of the runoff appears in the form of interflow in the Gumara study catchment, and baseflow constitutes the larger proportion of runoff (44-48%) in the Gilgel Abay catchment. Direct runoff represents a smaller fraction of the runoff in both catchments (18-19% for the Gumara, and 20% for the Gilgel Abay) and most of this direct runoff is generated through infiltration excess runoff mechanism from the impermeable rocks or hard soil pans. The study reveals that the hillslopes are recharge areas (sources of interflow and deep percolation) and direct runoff as saturated excess flow prevails from the flat slope areas. Overall, the model study suggests that identifying the catchments into different runoff production areas based on topography and including the impermeable rocky areas separately in the modeling process mimics the rainfall-runoff process in the Upper Blue Nile Basin well and yields a useful

  19. How tritium illuminates catchment structure

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Morgenstern, U.; McDonnell, J.

    2012-04-01

    Streams contain water which has taken widely-varying times to pass through catchments, and the distribution of ages is likely to change with the flow. Part of the water has 'runoff' straight to the stream with little delay, other parts are more delayed and some has taken years (in some cases decades) to traverse the deeper regolith or bedrock of the catchment. This work aims to establish the significance of the last component, which is important because it can cause catchments to have long memories of contaminant inputs (e.g. nitrate). Results of tritium studies on streams world-wide were accessed from the scientific literature. Most of the studies assumed that there were just two age-components present in the streams (i.e. young and old). The mean ages and proportions of the components were found by fitting simulations to tritium data. It was found that the old component in streams was substantial (average was 50% of the annual runoff) and had considerable age (average mean age was 10 years) (Stewart et al., 2010). Use of oxygen-18 or chloride variations to estimate streamflow mean age usually does not reveal the age or size of this old component, because these methods cannot detect water older than about four years. Consequently, the use of tritium has shown that substantial parts of streamflow in headwater catchments are older than expected, and that deep groundwater plays an active and sometimes even a dominant role in runoff generation. Difficulties with interpretation of tritium in streams in recent years due to interference from tritium due to nuclear weapons testing are becoming less serious, because very accurate tritium measurements can be made and there is now little bomb-tritium remaining in the atmosphere. Mean ages can often be estimated from single tritium measurements in the Southern Hemisphere, because there was much less bomb-tritium in the atmosphere. This may also be possible for some locations in the Northern Hemisphere. Age determination on

  20. Forest management for water: a hydro-ecological modeling exercise of headwater catchments in the mixed-conifer belt of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Saksa, P. C.; Bales, R. C.; Ray, R. L.

    2011-12-01

    Hydro-ecological modeling provides a cost-effective method for evaluating the effects of vegetation change on water cycling within a catchment. In mountain watersheds, change in forest vegetation not only has direct effects on transpiration rates, but also energy exchanges that influence patterns of snow ablation. In this study, treatment scenarios were implemented using the Regional Hydro-Ecological Simulation System (RHESSys) to estimate impacts on key elements of the hydrologic cycle affected by forest harvesting - snowpack accumulation, ablation, transpiration, and streamflow. Twelve headwater catchments (0.5 - 2.6 km2, 1460 - 2450m) in the mixed-conifer zone of the central Sierra Nevada, within the Sierra and Tahoe National Forests, were included for analysis. These research sites are part of the Sierra Nevada Adaptive Management Project (SNAMP), located in the headwaters of the American and Merced Rivers, and the Southern Sierra Critical Zone Observatory (CZO) in the Kings River basin. Two methods of forest harvesting were simulated in the study watersheds: 1) uniform canopy thinning, through reduction of Leaf Area Index (LAI) values and 2) strip-cut treatments, suggested as the best method for retaining snowpack. Results from this study compare the influence of vegetation on water cycle dynamics through the two harvesting treatments, initial vegetation densities, and individual catchment size. Model simulations for pre-treatment snow depth, soil moisture, and streamflow were validated with SNAMP and CZO in-situ measurements. Preliminary results show that a linear reduction of forest canopy reduces transpiration accordingly, but produces a non-linear increase in streamflow. Peak discharges also increased, occurring earlier in the spring and having more pronounced effects in the smaller catchments. Based on these results, harvesting thresholds required for obtaining increases in water yield are evaluated. Investigating the impact of forest management on these

  1. 10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Bartley, Rebecca; Chappell, John; Austin, Jenet M.; Fifield, Keith; Tims, Stephen G.; Thompson, Chris J.; Furuichi, Takahisa

    2015-07-01

    Terrestrial cosmogenic nuclides (TCNs) such as Beryllium-10 (10Be) are now routinely used to reconstruct erosional rates over tens of thousands of years at increasingly large basin scales (> 100,000 km2). In Australia, however, the approach and its assumptions have not been systematically tested within a single, large drainage basin. This study measures 10Be concentrations in river sediments from the Burdekin catchment, one of Australia's largest coastal catchments, to determine long-term (> 10,000 years), time-integrated rates of sediment generation and denudation. A nested-sampling design was used to test for effects of increasing catchment scale on nuclide concentrations with upstream catchment areas ranging from 4 to 130,000 km2. Beryllium-10 concentrations in sediment samples collected from the upstream headwater tributaries and mid-stream locations range from 1.8 to 2.89 × 105 atoms g- 1 and data confirm that nuclide concentrations are well and rapidly mixed downstream. Sediment from the same tributaries consistently yielded 10Be concentrations in the range of their upstream samples. Overall, no decrease in 10Be concentrations can be observed at the range of catchment scales measured here. The mean denudation rate for all river sediment samples throughout the Fanning subcatchment (1100 km2) is 18.47 m Ma- 1, which compares with the estimate at the end of the Burdekin catchment (130,000 km2) of 16.22 m Ma- 1. Nuclide concentrations in the lower gradient western and southern catchments show a higher degree of variability, and several complications emerged as a result of the contrasting geomorphic processes and settings. This study confirms the ability of TCNs to determine long-term denudation rates in Australia and highlights some important considerations in the model assumptions that may affect the accuracy of limited sampling in large, low-gradient catchments with long storage times.

  2. IRECCSEM: Evaluating Clare Basin potential for onshore carbon sequestration using magnetotelluric data (Preliminary results). New approaches applied for processing, modeling and interpretation

    NASA Astrophysics Data System (ADS)

    Campanya i Llovet, J.; Ogaya, X.; Jones, A. G.; Rath, V.

    2014-12-01

    The IRECCSEM project (www.ireccsem.ie) is a Science Foundation Ireland Investigator Project that is funded to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic data with existing geophysical and geological data. The main goals of the project are to determine porosity-permeability values of the potential reservoir formation as well as to evaluate the integrity of the seal formation. During the Summer of 2014 a magnetotelluric (MT) survey was carried out at the Clare basin (Ireland). A total of 140 sites were acquired including audiomagnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. The nominal space between sites is 0.6 km for AMT sites, 1.2 km for BBMT sites and 8 km for LMT sites. To evaluate the potential for carbon sequestration of the Clare basin three advances on geophysical methodology related to electromagnetic techniques were applied. First of all, processing of the MT data was improved following the recently published ELICIT methodology. Secondly, during the inversion process, the electrical resistivity distribution of the subsurface was constrained combining three different tensor relationships: Impedances (Z), induction arrows (TIP) and multi-site horizontal magnetic transfer-functions (HMT). Results from synthetic models were used to evaluate the sensitivity and properties of each tensor relationship. Finally, a computer code was developed, which employs a stabilized least squares approach to estimate the cementation exponent in the generalized Archie law formulated by Glover (2010). This allows relating MT-derived electrical resistivity models to porosity distributions. The final aim of this procedure is to generalize the porosity - permeability values measured in the boreholes to regional scales. This methodology will contribute to the evaluation of possible sequestration targets in the study area.

  3. Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia

    NASA Astrophysics Data System (ADS)

    Bernardi, Tony

    2014-05-01

    Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI

  4. Nutrient sources in a Mediterranean catchment and their improvement for water quality management

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    Changes in land-use or management strategies may affect water outflow, sediment and nutrients loads. Thus, there is an increasing demand for quantitative information at the catchment scale that would help decision makers or planners to take appropriate decisions. The characterisation of water status, the description of pollution sources impact, the establishment of monitoring programs and the implementation of river basin management plans require an analysis of the current basin status and estimates of the relative significance of the different sources of pollution. Particularly, in this study the Soil and Water Assessment Tool (SWAT2000) model was considered since it is an integrated hydrological model that simulates both the qualitative as well as quantitative terms of hydrological balances. It is a spatially distributed hydrological model that operates on a daily time step at catchment scale developed by the Agricultural Research Service at the U.S. Department of Agriculture. Its purpose is to simulate water sediment and chemical yields on large river basins and possible impacts of land use, climate changes and watershed management. Integrated hydrological models are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the European Water Directive. Actually, they can help in evaluating current water resources, identify pollution sources, evaluate alternative management policies. More specifically, the analysis has been applied to the Oreto catchment (77 Km2), an agricultural and urbanised catchment located in Sicily (Italy). Residential, commercial, farm and industrial settlements cover almost the entire area. The climate is Mediterranean with hot dry summer and rainy winter season. The hydrological response of this basin is dominated by long dry seasons and following wetting-up periods, during which even large inputs of rainfall may produce little or no response at the basin outlet

  5. Sediment yield estimation in mountain catchments of the Camastra reservoir, southern Italy: a comparison among different empirical methods

    NASA Astrophysics Data System (ADS)

    Lazzari, Maurizio; Danese, Maria; Gioia, Dario; Piccarreta, Marco

    2013-04-01

    Sedimentary budget estimation is an important topic for both scientific and social community, because it is crucial to understand both dynamics of orogenic belts and many practical problems, such as soil conservation and sediment accumulation in reservoir. Estimations of sediment yield or denudation rates in southern-central Italy are generally obtained by simple empirical relationships based on statistical regression between geomorphic parameters of the drainage network and the measured suspended sediment yield at the outlet of several drainage basins or through the use of models based on sediment delivery ratio or on soil loss equations. In this work, we perform a study of catchment dynamics and an estimation of sedimentary yield for several mountain catchments of the central-western sector of the Basilicata region, southern Italy. Sediment yield estimation has been obtained through both an indirect estimation of suspended sediment yield based on the Tu index (mean annual suspension sediment yield, Ciccacci et al., 1980) and the application of the Rusle (Renard et al., 1997) and the USPED (Mitasova et al., 1996) empirical methods. The preliminary results indicate a reliable difference between the RUSLE and USPED methods and the estimation based on the Tu index; a critical data analysis of results has been carried out considering also the present-day spatial distribution of erosion, transport and depositional processes in relation to the maps obtained from the application of those different empirical methods. The studied catchments drain an artificial reservoir (i.e. the Camastra dam), where a detailed evaluation of the amount of historical sediment storage has been collected. Sediment yield estimation obtained by means of the empirical methods have been compared and checked with historical data of sediment accumulation measured in the artificial reservoir of the Camastra dam. The validation of such estimations of sediment yield at the scale of large catchments

  6. Effects of urban stormwater infrastructure on frequency, magnitude and scaling characteristics of runoff, and their implications for the transport of particulate material in arid catchments

    NASA Astrophysics Data System (ADS)

    Turnbull, L.; Hale, R. L.; Earl, S.; Grimm, N. B.; Childers, D. L.

    2011-12-01

    Over recent decades urbanization has occurred rapidly, particularly in the arid and semi-arid southwestern USA. Major changes in ecosystem structure occur during urbanization, including changes in land cover and drainage networks. Changes in the connectivity of hydrological flow paths result from the construction of stormwater infrastructure, which in some instances increases flow connectivity and in others decrease it. In this study we investigate the effects of urbanization, specifically different types of stormwater infrastructure, on the frequency, magnitude and scaling characteristics of runoff in urban catchments. We evaluate consequences of these runoff characteristics for hydrologically mediated transport of particulate material and nutrient transport within urban catchments. A series of nested catchments was instrumented to monitor flow and water quality in the Indian Bend Wash catchment, Scottsdale, AZ. Catchments range in area from 6 to >17,000 ha and are predominantly residential. At the smallest spatial scales, catchments of comparable size represent different types of stormwater infrastructure, allowing us to isolate the effects of specific types of stormwater infrastructure on flow dynamics and material transport. Stormwater infrastructure in larger catchments (> 100 ha) is heterogeneous, allowing us to investigate the scaling characteristics of runoff and material transport. Results show that catchments with highly connected stormwater infrastructure (such as pipes) generate runoff in response to very low rainfall amounts, contributing to frequent flushing of particulate materials. The combination of high flow velocities and frequent flushing renders material transport within these catchments supply limited. In contrast, in catchments with disconnected stormwater infrastructure (such as retention basins), more rainfall is required to generate a runoff response at the catchment outlet, and runoff is less flashy than in highly connected catchments

  7. Identifying critical source areas for phosphorus loss in Ireland using field and catchment scale ranking schemes

    NASA Astrophysics Data System (ADS)

    Hughes, K. J.; Magette, W. L.; Kurz, I.

    2005-03-01

    Phosphorus (P) in agricultural runoff is a major pollutant in many of Ireland's surface waters. Identification of areas that are at a high risk for P loss to surface waters is a critical component of river basin management. Two P ranking schemes (PRS's) were developed for Ireland, based on multi-criteria analysis approaches proposed in both the US and Europe, to predict the relative likelihood of P loss at both the field and catchment scales. The Field PRS was evaluated by comparing predicted rankings of potential P loss and transport against measured edge-of-field Dissolved Reactive P (DRP) loss for three fields with varying soil P levels. Qualitatively, results indicated that the Field PRS rankings corresponded to the magnitudes of measured P loss for the field sites, as well as to a reasoned evaluation of the relative likelihood that the fields would lose P that would subsequently make its way to surface water. The Catchment PRS was evaluated on a total of 31 catchments and sub-catchments by comparing predicted rankings of potential P loss and transport against measured in-stream median Molybdate Reactive P (MRP). Rankings of the relative likelihood of P loss and transport predicted by the Catchment PRS were positively correlated with median in-stream MRP ( r=0.51, P<0.05). Although the data available for these evaluations were limited, especially at field scale, and further research may identify the opportunity for modifications, both field and catchment scale P ranking schemes demonstrated a potential for identifying critical P source areas within catchments dominated by grass-based agricultural production systems, such as those in Ireland.

  8. Winter streamflow analysis in frozen, alpine catchments to quantify groundwater contribution and properties

    NASA Astrophysics Data System (ADS)

    Stoelzle, Michael; Weiler, Markus

    2016-04-01

    contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.

  9. The hydrological regime of a forested tropical Andean catchment

    NASA Astrophysics Data System (ADS)

    Clark, K. E.; Torres, M. A.; West, A. J.; Hilton, R. G.; New, M.; Horwath, A. B.; Fisher, J. B.; Rapp, J. M.; Robles Caceres, A.; Malhi, Y.

    2014-12-01

    The hydrology of tropical mountain catchments plays a central role in ecological function, geochemical and biogeochemical cycles, erosion and sediment production, and water supply in globally important environments. There have been few studies quantifying the seasonal and annual water budgets in the montane tropics, particularly in cloud forests. We investigated the water balance and hydrologic regime of the Kosñipata catchment (basin area: 164.4 km2) over the period 2010-2011. The catchment spans over 2500 m in elevation in the eastern Peruvian Andes and is dominated by tropical montane cloud forest with some high-elevation puna grasslands. Catchment-wide rainfall was 3112 ± 414 mm yr-1, calculated by calibrating Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall with rainfall data from nine meteorological stations in the catchment. Cloud water input to streamflow was 316 ± 116 mm yr-1 (9.2% of total inputs), calculated from an isotopic mixing model using deuterium excess (Dxs) and δD of waters. Field streamflow was measured in 2010 by recording height and calibrating to discharge. River run-off was estimated to be 2796 ± 126 mm yr-1. Actual evapotranspiration (AET) was 688 ± 138 mm yr-1, determined using the Priestley and Taylor-Jet Propulsion Laboratory (PT-JPL) model. The overall water budget was balanced within 1.6 ± 13.7%. Relationships between monthly rainfall and river run-off follow an anticlockwise hysteresis through the year, with a persistence of high run-off after the end of the wet season. The size of the soil and shallow groundwater reservoir is most likely insufficient to explain sustained dry-season flow. Thus, the observed hysteresis in rainfall-run-off relationships is best explained by sustained groundwater flow in the dry season, which is consistent with the water isotope results that suggest persistent wet-season sources to streamflow throughout the year. These results demonstrate the importance of transient groundwater storage in

  10. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    SciTech Connect

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  11. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.

    PubMed

    Salvia-Castellví, Mercè; Iffly, Jean François; Borght, Paul Vander; Hoffmann, Lucien

    2005-05-15

    Nutrient enrichment of freshwaters continues to be one of the most serious problems facing the management of surface waters. Effective remediation/conservation measures require accurate qualitative and quantitative knowledge of nutrient sources, transport mechanisms, transformations and annual dynamics of different nitrogen (N) and phosphorus (P) forms. In this paper, nitrate (NO3-N), soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations and loads are presented for two adjacent rural basins of 306 km2 and 424 km2, and for five sub-basins differing in size (between 1 km2 and 33 km2), land use (extent of forest cover between 20% and 93%) and household pressure (from 0 to 40 people/km2) with the aim of studying the influence of land use and catchment size on nutrient exports. The studied catchments are all situated on Devonian schistous substrates in the Ardennes region (Belgium-Luxembourg), and therefore have similar hydrological regimes. As the study period could not be the same for all basins, annual export coefficients were corrected with the 25 years normalized discharge of the Sure River: two regression analyses (for dry and humid periods) relating monthly nutrient loads to monthly runoff were used to determine correction factors to be applied to each parameter and each basin. This procedure allows for the comparing annual export coefficients from basins sampled in different years. Results show a marked seasonal response and a large variability of NO3-N export loads between forested (4 kg N ha-1 year-1), agricultural (27-33 kg N ha-1 year-1) and mixed catchments (17-22 kg N ha-1 year-1). For SRP and TP, no significant agricultural impact was found. Land and bank erosion control the total P massflow in the studied catchments (0.4-1.3 kg P ha-1 year-1), which is mostly in a particulate form, detached and transported during storm events. Soluble reactive P fluxes ranged between 10% and 30% of the TP mass, depending on the importance of point

  12. An uncertainty assessment of discharge projections for eight Swiss catchments

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Rössler, Ole; Köplin, Nina; Bernhard, Luzi; Bosshard, Thomas; Weingartner, Rolf; Seibert, Jan

    2013-04-01

    from the emission scenarios in ENSEMBLES simulations and preliminary results suggest that this uncertainty is dominant by the end of the century for the majority of the catchments. Furthermore, in contrast to similar studies on uncertainty quantification that focus on a single catchment or geographic region, our setting demonstrates that the respective contribution of the different sources of uncertainty varies with catchment properties.

  13. Storage as a Metric of Catchment Comparison

    USGS Publications Warehouse

    McNamara, J.P.; Tetzlaff, D.; Bishop, K.; Soulsby, C.; Seyfried, M.; Peters, N.E.; Aulenbach, Brent T.; Hooper, R.

    2011-01-01

    The volume of water stored within a catchment, and its partitioning among groundwater, soil moisture, snowpack, vegetation, and surface water are the variables that ultimately characterize the state of the hydrologic system. Accordingly, storage may provide useful metrics for catchment comparison. Unfortunately, measuring and predicting the amount of water present in a catchment is seldom done; tracking the dynamics of these stores is even rarer. Storage moderates fluxes and exerts critical controls on a wide range of hydrologic and biologic functions of a catchment. While understanding runoff generation and other processes by which catchments release water will always be central to hydrologic science, it is equally essential to understand how catchments retain water. We have initiated a catchment comparison exercise to begin assessing the value of viewing catchments from the storage perspective. The exercise is based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts. Rather, storage was estimated independently for each site. This briefing presents some initial results of the exercise, poses questions about the definitions and importance of storage and the storage perspective, and suggests future directions for ongoing activities. ?? 2011 John Wiley & Sons, Ltd.

  14. Geomorphological characterization of endorheic basins in northern Chile

    NASA Astrophysics Data System (ADS)

    Dorsaz, J.; Gironas, J. A.; Escauriaza, C. R.; Rinaldo, A.

    2011-12-01

    Quantitative geomorphology regroups a large number of interesting tools to characterize natural basins across scales. The application of these tools to several river basins allows the description and comparison of geomorphological properties at different spatial scales as oppose to more traditional descriptors that are typically applied at a single scale, meaning the catchment scale. Most of the recent research using these quantitative geomorphological tools has focused on open catchments and no specific attention has been given to endorheic basins, and the possibility of having particular features that distinguish them from exorheic catchments. The main objective of our study is to characterize endorheic basins and investigate whether these special geomorphological features can be identified. Because scaling invariance is a widely observed and relatively well quantified property of open basins, it provides a suitable tool to characterize differences between the geomorphology of closed and open basins. Our investigation focuses on three closed basins located in northern Chile which describe well the diversity in the geomorphology and geology of this arid region. Results show that endhoreic basins exhibit different slope-area and flow paths sinuosity regimes compared to those observed in open basins. These differences are in agreement with the particular self-similar behavior across spatial scales of the Euclidean length of subcatchments, as well as the Hack's law and Horton's ratios. These regimes imply different physical processes inside the channel network regardless of the basin area, and they seem to be related to the endorheic character of these basins. The analysis of the probability density functions of contributing areas and lengths to the lower region shows that the hypothesis of self-similarity can also be applied to closed basins. Theoretical expressions for these distributions were derived and validated by the data. Future research will focus on (1

  15. Multiscale investigations in a mesoscale catchment - hydrological modelling in the Gera catchment

    NASA Astrophysics Data System (ADS)

    Krause, P.; Bäse, F.; Bende-Michl, U.; Fink, M.; Flügel, W.; Pfennig, B.

    2006-09-01

    The application of the hydrological process-oriented model J2000 (J2K) is part of a cooperation project between the Thuringian Environmental Agency (Thüringer Landesanstalt für Umwelt und Geologie - TLUG) and the Department of Geoinformatics of the Friedrich-Schiller-University Jena focussing on the implementation of the EU water framework directive (WFD). In the first project phase J2K was parametrised and calibrated for a mesoscale catchment to quantify if it can be used as hydrological part of a multi-objective tool-box needed for the implementation of the WFD. The main objectives for that pilot study were:

    1. The development and application of a suitable distribution concept which provide the spatial data basis for various tasks and which reflects the specific physiogeographical variability and heterogeneity of river basins adequately. This distribution concept should consider the following constraints: The absolute number of spatial entities, which forms the basis for any distributive modelling should be as small as possible, but the spatial distributed factors, which controls quantitative and qualitative hydrological processes should not be generalised to much. The distribution concept of hydrological response units HRUs (Flügel, 1995) was selected and enhanced by a topological routing scheme (Staudenrausch, 2001) for the simulation of lateral flow processes.
    2. J2K should be calibrated for one subbasin of the pilot watershed only. Then the parameter set should be used on the other subbasins (referred as transfer basins) to investigate and quantify the transferability of a calibrated model and potential spatial dependencies of its parameter set. In addition, potential structural problems in the process description should be identified by the transfer to basins which show a different process dominance as the one which was used for calibration does.
    3. Model calibration and selection of efficiency criteria for the quantification of the model

    4. Selenium and mining in the Powder River Basin, Wyoming: Phase III - a preliminary survey of selenium concentrations in deer mice (Peromyscus maniculatus) livers

      SciTech Connect

      Raisbeck, M.L.; Vance, G.F.; Steward, D.G.

      1995-09-01

      Samples of liver tissue from deer mice trapped on not-yet-mined areas and reclaimed areas at five surface coal mines in the Powder River Basin of northeastern Wyoming were analyzed for selenium. The overall mean concentration of selenium in wet weight liver tissue was 1.685 ppm. The mean value from not-yet-mined areas was 1.437 ppm; the mean value from reclaimed areas was 1.910 ppm (significant at p<0.1016). When one not-yet-mined outlier was removed, significance rose to p<0.0004. Mine-to-mine comparison of samples stratified by type (that is, by not-yet-mined or reclaimed), showed average tissue concentrations from the reclaimed area of Mine 1 were also higher (p<0.0143) then not-yet-mined area samples at Mine 1. No statistically significant differences were found between mines for samples from not-yet-mined areas, and no statistically significant differences were found between Mines 2, 3, 4, and 5 for samples from reclaimed areas. Multiple analysis of variance using the factors: site (mine) and type (not-yet-mined or reclaimed) was not significantly significant (p<0.2115). Simple linear regression showed that selenium concentrations in dry tissue could easily be predicted from wet tissue selenium (r2=0.9775), demonstrating that percent water in the samples was relatively constant. Animal body weight in general was not a predictor for either wet or dry tissue selenium concentrations, but was related to body weight at the higher tissue concentrations of selenium encountered in samples from the reclaimed area at Mine 1. Mouse body weights at Mine 1 were higher on the reclaimed area than mouse body weights from the not-yet-mined area.

    5. Field observations of vertical temperature/humidity structure in the Cerdanya Basin -Spanish Pyrenees: Preliminary results and comparison with model forecasts

      NASA Astrophysics Data System (ADS)

      Miró, Josep Ramon; Pepin, Nick

      2016-04-01

      The Cerdanya basin is located in the north-eastern Pyrenees and measures 15 km wide and 40 km long. It is unique in that its north-east to south-west orientation contrasts with most other Pyrenean valleys which run north-south. The upper portion has its valley bottom averaging around 1000 m asl, with the surrounding mountain ranges rising to well over 2000 m asl. To the west (downstream) the Segre flows into a narrow gorge which provides a constriction for any down-valley flow. This topography encourages intense temperature inversions through cold air ponding, decoupling the valley atmosphere from the regional circulation, especially in winter. Prediction of minimum temperatures is a challenge. A network of 40 temperature sensors was installed in 2012 to collect hourly temperatures throughout the cold pool. A transect was also installed in Conflent to the north-east as a comparison, since previous research has shown that the vertical temperature and humidity profiles are less influenced by cold air drainage in this valley system. The sensor data is validated against AWS observations at two contrasting locations. Using two years of data (2012-2014), through calculation of hourly lapse rates in various elevation bands we show frequent inversions developing up to 1450 m, and sometimes extending much higher than this, concentrating in winter. Accumulated potential temperature deficit is shown to be much higher in Cerdanya than in Conflent, and increases in the lower atmospheric layers. Case studies of two intense episodes in December 2012 and January 2013 show that model simulations, despite being able to simulate broad mechanisms of the CAP formation and thermal winds, underestimate the amount of cooling, particularly in incised valley locations.

    6. Geohydrology, water quality, and preliminary simulations of ground-water flow of the alluvial aquifer in the Upper Black Squirrel Creek basin, El Paso County, Colorado

      USGS Publications Warehouse

      Buckles, D.R.; Watts, K.R.

      1988-01-01

      The upper Black Squirrel Creek basin in eastern El Paso County, Colorado, is underlain by an alluvial aquifer and four bedrock aquifers. Groundwater pumpage from the alluvial aquifer has increased since the mid-1950's, and water level declines have been substantial; the bedrock aquifers virtually are undeveloped. Groundwater pumpage for domestic, stock, agricultural, and municipal uses have exceeded recharge for the past 25 years. The present extent of the effect of pumpage on the alluvial aquifer was evaluated, and a groundwater flow model was used to simulate the future effect of continued pumpage on the aquifer. Measured water level declines from 1974 through 1984 were as much as 30 ft in an area north of Ellicott, Colorado. On the basis of the simulations, water level declines from October 1984 to April 1999 north of Ellicott might be as much as 20 to 30 ft and as much as 1 to 10 ft in most of the aquifer. The groundwater flow models provided a means of evaluating the importance of groundwater evapotranspiration at various stages of aquifer development. Simulated groundwater evapotranspiration was about 43% of the outflow from the aquifer during predevelopment stages but was less than 3% of the outflow from the aquifer during late-development stages. Analyses of 36 groundwater samples collected during 1984 indicated that concentrations of dissolved nitrite plus nitrate as nitrogen generally were large. Samples from 5 of the 36 wells had concentrations of dissolved nitrite plus nitrate as nitrogen that exceeded drinking water standards. Water from the alluvial aquifer generally is of suitable quality for most uses. (USGS)

    7. Potential of using WATCH forcing data to model a low land river basin of the upper Murray-Darling basin in Australia

      NASA Astrophysics Data System (ADS)

      Kundu, D.; Van Ogtrop, F. F.; Vervoort, R. W.

      2014-12-01

      Scattered station based climate data is often not sufficient to describe the dynamics of the catchment processes and efficiently manage the water resources. Therefore, a lot of focus has been to identify alternative distributed data sources, such as; remotely sensed data or global re-analysis data. Hence, this study uses the Water and Global Change (WATCH) forcing data, based on 40 years ECMWF Re-Analysis (ERA-40), to model a semi-arid low land flood plain river basin in a data sparse region. The semi-distributed Soil Water Assessment Tool (SWAT) was used to model the river basin (Warrego, 52140.6 square km) located in the upper Murray-Darling basin in Eastern Australia. Multi station model calibration was achieved using the Sequential Uncertainty Fitting -2 (SUFI-2) algorithm with the Nash Sutcliffe Efficiency (NSE) as the goal function against monthly observed flow data. Modelling of a low land river system is highly challenging, due to topographic heterogeneity, nonlinear climatic behavior and sparse observed flow data with extended periods of zero flows. Preliminary simulation results indicate a NSE of 0.26 to 0.86 for the calibration period and 0.04 to 0.47 for the validation period. Furthermore, the volume fraction explained by the model ranged from 0.69 to 2.71 in the validation period. While the unsatisfactory results may be attributed to the SWAT modelling framework, which struggles with modelling flow in flat flood plains, the study does reveal the potential to use remotely sensed data in low land river basins with little or no climate data.

    8. Collaborative knowledge in catchment research networks

      NASA Astrophysics Data System (ADS)

      Macleod, Christopher Kit

      2015-04-01

      There is a need to improve the production, sharing and use of collaborative knowledge of catchment systems through networks of researchers, policy makers and practitioners. This requires greater levels of systems based integrative research. In parallel to the growing realization that greater levels of collaborative knowledge in scientific research networks are required, a digital revolution has been taking place. This has been driven primarily by the emergence of distributed networks of computers and standards-based interoperability. The objective of this paper is to present the status and research needs for greater levels of systems based integrative research for the production, sharing and use of collaborative knowledge in catchment research networks. To enable increased levels of integrative research depends on development and application of digital technologies to improve collection, use and sharing of data and devise new knowledge infrastructures. This paper focuses on the requirements for catchment observatories that integrate existing and novel physical, social and digital networks of knowledge infrastructures. To support this focus, I present three leading international examples of collaborative networks of catchment researchers and their development of catchment observatories. In particular, the digital infrastructures they have developed to support collaborative knowledge in catchment research networks. These examples are from North America (NSF funded CUAHSI HIS) and from Europe (UK NERC funded EVOp and the German Helmholtz Association Centers funded TERENO/TEODOOR). These exemplars all supported advancing collaborative knowledge in catchment research networks through the development of catchment observatories. I will conclude by discussing the future research directions required for greater levels of production, sharing and use of collaborative knowledge in catchment research networks based on catchment systems science.

  1. Attributes for NHDPlus Catchments (Version 1.1): Level 3 Nutrient Ecoregions, 2002

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of each level 3 nutrient ecoregion in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from the 2002 version of the U.S. Environmental Protection Agency's (USEPA) Aggregations of Level III Ecoregions for National Nutrient Assessment & Management Strategy (USEPA, 2002). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins

  2. Attributes for NHDPlus catchments (Version 1.1) for the conterminous United States: STATSGO soil characteristics

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents estimated soil variables compiled for every catchment of NHDPlus for the conterminous United States. The variables included are cation exchange capacity, percent calcium carbonate, slope, water-table depth, soil thickness, hydrologic soil group, soil erodibility (k-factor), permeability, average water capacity, bulk density, percent organic material, percent clay, percent sand, and percent silt. The source data set is the State Soil ( STATSGO ) Geographic Database (Wolock, 1997). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee

  3. Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: surficial geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of surficial geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Digital data set describing surficial geology in the conterminous US" (Clawges and Price, 1999). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River

  4. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Physiographic Provinces

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This dataset represents the area of each physiographic province (Fenneman and Johnson, 1946) in square meters, compiled for every catchment of NHDPlus for the conterminous United States. The source data are from Fenneman and Johnson's Physiographic Provinces of the United States, which is based on 8 major divisions, 25 provinces, and 86 sections representing distinctive areas having common topography, rock type and structure, and geologic and geomorphic history (Fenneman and Johnson, 1946). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins

  5. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Bedrock Geology

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of bedrock geology types in square meters compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the "Geology of the Conterminous United States at 1:2,500,000 Scale--A Digital Representation of the 1974 P.B. King and H.M. Beikman Map" (Schuben and others, 1994). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus

  6. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Level 3 Ecoregions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the estimated area of level 3 ecological landscape regions (ecoregions), as defined by Omernik (1987), compiled for every catchment of NHDPlus for the conterminous United States. The source data set is Level III Ecoregions of the Continental United States (U.S. Environmental Protection Agency, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4

  7. Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every catchment of NHDPlus for the conterminous United States. The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris

  8. Attributes for NHDplus Catchments (Version 1.1) for the Conterminous United States: Population Density, 2000

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMottem, Andrew E.

    2010-01-01

    This data set represents the average population density, in number of people per square kilometer multiplied by 10 for the year 2000, compiled for every catchment of NHDPlus for the conterminous United States. The source data set is the 2000 Population Density by Block Group for the Conterminous United States (Hitt, 2003). The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5

  9. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2013-02-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during

  10. Hydrothermal deposits in the Southern Trough of Guaymas Basin, Gulf of California: Observations and Preliminary Results from the 2003 MBARI Dive Program

    NASA Astrophysics Data System (ADS)

    Stakes, D. S.; Tivey, M. K.; Koski, R. A.; Ortego-Osorio, A.; Preston, C. M.; McCulloch, M. T.; Nakamura, K.; Seewald, J.; Wheat, C. G.

    2003-12-01

    During Leg 2 of the 2003 MBARI expedition to the Gulf of California, the ROV Tiburon completed eight dives to active vent fields in the Southern Trough of Guaymas Basin. Six venting areas were investigated in detail. Tiburon operations included (1) sampling mineral deposits that range from mini-chimneys a few centimeters high to 10-meter-tall sulfide-carbonate structures with wide flanges; (2) collection of 90C to 303C methane, carbon dioxide, and hydrogen-rich vent fluids in gas-tight samplers and plume-laden particulates in Niskin samplers; 3) collection of warm (up to 83C) hydrocarbon-rich sediment push cores; 4) long-term monitoring of three vent sites using thermocouple arrays (see adjacent Tivey et al poster) and osmotically-driven fluid samplers. Seventy days later, the ROV returned to recover the thermocouple arrays and ingrown chimneys. At the lowest temperature sites, fluid (up to 90C) discharged from orifices in sediment surrounded by white to yellow microbial mats. Combined Eh-ISUS (InSitu Ultraviolet Spectrophotometer) sensors mounted on Tiburon identified local increases in bisulfide and decreases in the oxidation/reduction potential (a proxy for methane and hydrogen sulfide) associated with these sites. Massive barite chimneys recovered from the margins of moderate-temperature vent sites are permeated with oil. Chimneys from higher temperature sites, in contrast, lack the liquid hydrocarbon component, and are largely composed of calcium carbonate with lesser anhydrite, amorphous silica, barite, pyrrhotite, Mg-silicate, galena, sphalerite, and chalcopyrite. Mineral precipitation at the southernmost site (Toadstool) is characterized by the formation of carbonate-rich flanges directly above a substrate of altered diatomaceous sediment. The upper sediment crust lies above a stockwork of calcite veins. High-temperature structures at Rebecca's Roost and Broken Mushroom have pagoda-like carbonate-rich flanges trapping pools of hydrothermal fluids that

  11. Catchment similarity and classification in areas of high hydrologic gradients: the case of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Dussaillant, A.; Buytaert, W.; Maturana, O.; Arias, M.

    2009-04-01

    The Baker River Basin is located in Patagonia, Southern South America, with a total drainage area of 26,726 km2 (second-largest river basin in Chile). The Baker River has the highest mean annual discharge rate of all Chilean rivers (1,133 m3/s), and flows out of Bertrand Lake, which in turn receives the draining waters from the General Carrera Lake (surface area of about 1800 km2, Latin America's second largest). Geology and climate gradients are even more extreme than in the rest of the country, from mountain to sea, and sometimes having mean annual rainfalls change from 8000 mm to 400 mm in less than 60 km. Bigger basins, like the Baker, have Eastern sub-basins with even a semi-arid character, whereas Western sub-catchments drain from ice fields. Thus, flow regimes may have very diverse characters in combination. And regarding sediment, although many rivers are born in lakes (many bi-national), they have important profile slopes and plenty of sediment available (partly due to glacial deposits). In spite of this huge natural variability, there is scant data due to low resources and remoteness: few meteorological and flow stations (having few decades or much shorter data series), and lack of stations in Western areas, linked to mountainous terrain, glaciers, and the ice fields. Nevertheless, decisions are being made with what seems extremely limited hydro-meteorological, streamflow, and in general, river data. In fact, Chile is currently in a crossroad due to mega projects being planned in Aysén, Chilean Patagonia (at least 5 hydropower dams producing more than 2000 MW). We characterize streamflows for ungauged basins, such as floods, mean annual flows, and flow duration curves, which can then be used related to a more sustainable design and operation of dams for hydropower. Relations extracted from gauged catchments to their geomorphologic characteristics and indices will be used to transfer those relations to ungauged catchments.

  12. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2012-09-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of southeastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within both wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from the basin was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low- to moderate flood events. The construction of a

  13. Parsimonious hydrological modeling of urban sewer and river catchments

    NASA Astrophysics Data System (ADS)

    Coutu, Sylvain; Del Giudice, Dario; Rossi, Luca; Barry, D. A.

    2012-09-01

    SummaryA parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the “flashy” response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in the impervious surface storage. In addition, the model assumes that water discharged from several CSOs (combined sewer overflows) can be accounted for using a single, characteristic CSO. The model was calibrated on, and validated for, the Vidy Bay WWTP, which receives effluent from Lausanne, Switzerland (population about 200,000), as well as for an overlapping urban river basin. The results indicate that a relatively simple approach is suitable for predicting the responses of interacting engineered and natural hydrosystems.

  14. Impact of earthquake-triggered landslides on catchment sediment yield

    NASA Astrophysics Data System (ADS)

    Vanmaercke, M.; Obreja, F.; Poesen, J.

    2015-03-01

    This study explores the role of seismic activity in explaining spatial and temporal variation in sediment export from the Siret basin in Romania. Based on long-term (>30 years) sediment export measurements for 38 subcatchments, we found that spatial variation in sediment yield (SY) is strongly correlated to the degree of seismic activity and catchment lithology. Combined, these factors explain 80% of the variation in SY. To investigate the role of earthquake-triggered landslides in explaining these correlations, we studied the temporal variability in sediment concentrations before and after the 7.4 Mw earthquake of 1977 for ten subcatchments. Despite the fact that this earthquake triggered many landslides, only one subcatchment showed a clear (3-fold) increase in sediment concentration per unit discharge after the earthquake. This shows that, although prolonged seismic activity strongly controls average SY, individual earthquakes do not necessarily affect sediment export at short timescales.

  15. Use of modeling to protect, plan, and manage water resources in catchment areas.

    PubMed

    Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves

    2016-08-01

    The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another

  16. Use of modeling to protect, plan, and manage water resources in catchment areas.

    PubMed

    Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves

    2016-08-01

    The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another

  17. Data-based information gain on the response behaviour of hydrological models at catchment scale

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2013-04-01

    A data-based approach is presented to analyse the response behaviour of hydrological models at the catchment scale. The approach starts with a number of sequential time series processing steps, applied to available rainfall, ETo and river flow observation series. These include separation of the high frequency (e.g., hourly, daily) river flow series into subflows, split of the series in nearly independent quick and slow flow hydrograph periods, and the extraction of nearly independent peak and low flows. Quick-, inter- and slow-subflow recession behaviour, sub-responses to rainfall and soil water storage are derived from the time series data. This data-based information on the catchment response behaviour can be applied on the basis of: - Model-structure identification and case-specific construction of lumped conceptual models for gauged catchments; or diagnostic evaluation of existing model structures; - Intercomparison of runoff responses for gauged catchments in a river basin, in order to identify similarity or significant differences between stations or between time periods, and relate these differences to spatial differences or temporal changes in catchment characteristics; - (based on the evaluation of the temporal changes in previous point:) Detection of temporal changes/trends and identification of its causes: climate trends, or land use changes; - Identification of asymptotic properties of the rainfall-runoff behaviour towards extreme peak or low flow conditions (for a given catchment) or towards extreme catchment conditions (for regionalization, ungauged basin prediction purposes); hence evaluating the performance of the model in making extrapolations beyond the range of available stations' data; - (based on the evaluation in previous point:) Evaluation of the usefulness of the model for making extrapolations to more extreme climate conditions projected by for instance climate models. Examples are provided for river basins in Belgium, Ethiopia, Kenya

  18. Doing hydrology backwards in tropical humid catchments

    NASA Astrophysics Data System (ADS)

    Real Rangel, R.; Brena-Naranjo, J. A.; Pedrozo-Acuña, A.

    2015-12-01

    Top-down approaches in hydrology offer the possibility to predict water fluxes at the catchment scale based on the interpretation of the observed hydrological response at the catchment itself. Doing hydrology backwards (inferring precipitation and evapotranspiration rates at the catchment scale from streamflow measurements, see Kirchner (2009)) can be a useful methodology for estimating water fluxes at the catchment and regional scales. Previous studies using this inverse modeling approach have been performed in regions (UK, Switzerland, France, Eastern US) where energy-limited (in winter and early spring) and water-limited conditions (in summer) prevail during a large period of the year. However, such approach has not been tested in regions characterized by a quasi-constant supply of water and energy (e.g. humid tropics). The objective of this work is to infer annual rates of precipitation and evapotranspiration over the last decade in 10 catchments located in Mexico's tropical humid regions. Hourly discharge measurements during recession periods were analyzed and parameters for the nonlinear storage-discharge relationship of each catchment were derived. Results showed large variability in both catchment-scale precipitation and evapotranspiration rates among the selected study sites. Finally, a comparison was done between such estimates and those obtained from remotely-sensed data (TRMM for precipitation and MOD16 for evapotranspiration).

  19. Catchment water storage: Models vs Measurements

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary

    2016-04-01

    Recent years have seen a great deal of progress in development of hydrological models that can simulate both the dynamic streamflow response and the hydrochemical flux response of a catchment. In general terms, streamflow response is driven by water deficit in the catchment, whereas hydrochemical response is driven by water storage. Therefore, models that can simultaneously predict both responses must succeed in representing these two related, but different, quantities. This presentation will consider how much information we can gain from field studies to quantify the joint deficit/storage state of a catchment. In particular, examples from two New Zealand experimental catchments in lowland and high country locations will be used to link typical measurements available with the information required by hydrological - hydrochemical models. I will then use the example catchments to assess how well the structure of a typical hydrological-hydrochemical model is supported by field measurements. In particular, can we quantify catchment storage and link this to flow response? Can we incorporate our knowledge of plant water use into such a model, including timing and depth of water withdrawn by the plant? What can field measurements tell us about spatial variability in hydrological-hydrochemical response and can this be represented in the model? I will conclude by discussing what we can learn from field data about the major challenges ahead in catchment storage modelling.

  20. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for

  1. Quantifying denudation rates in Mediterranean margin catchments: the Gulf of Lion and East-Corsica case-study

    NASA Astrophysics Data System (ADS)

    Molliex, S.; Rabineau, M.; Jouet, G.; Bourles, D. L.; Freslon, N.; Leroux, E.; Moreau, J.; Aslanian, D.; Vella, C.

    2013-12-01

    Margins are the place of transfer, deposit and erosion of sediments whose geometries are controlled by sea-level fluctuations, vertical movements and sedimentary fluxes. Surface processes (sedimentation, denudation) and deep-sea dynamic are also intimately linked. Due to the numerous data acquired over the last 10 years, the Gulf of Lion and East-Corsica margins could be considered as privileged studied areas to understand the relationships between denudation, sedimentation and associated vertical displacements. The quantification of denudation rates on these margins catchments, using offshore and onshore data aims to improve the understanding of the temporal and spatial evolution of denudation processes in their sedimentation and geodynamic evolution in a large basin (Gulf of Lion) and in a small confined basin (Golo margin; East-Corsica) during the Quaternary. The Gulf of Lion is the northern passive margin of the Liguro-provençal basin, in western Mediterranean Sea. During the Quaternary, it receives sediments from catchments draining several structural domains, as Alps, Pyrenees and Massif Central, for a drainage area of about 120,000 km^2. The East-Corsica corresponds to the western passive margin of the Tyrrhenian basin. The main catchment (Golo River) size is about 100 times smaller than the Gulf of Lion and is composed by two main structural units: Hercynian granites in the upstream part and Alpine schists in the downstream part. In this study, we quantified Quaternary denudation rates using four independent methods: i) estimation of eroded volumes using DEMs; ii) compilation of present-day sediment load fluxes; iii) determination of catchment-scale cosmogenic denudation rate by measuring 10Be concentrations in sands at the catchment outlets or buried in boreholes; iv) quantification of sediment volumes deposited offshore. Our results show a good consistence between the four methods. The Inner Alps present the highest values of denudation (~ 700 m

  2. PRELIMINARY PALEOMAGNETIC RESULTS FROM OUTFLOW EOCENE-OLIGOCENE ASH FLOW TUFFS FROM THE WESTERN MARGIN OF THE SAN LUIS BASIN: IMPLICATION FOR THE KINEMATIC EVOLUTION OF THE RIO GRANDE RIFT

    NASA Astrophysics Data System (ADS)

    Mason, S. N.; Geissman, J. W.; Sussman, A. J.

    2009-12-01

    In the Rio Grande rift (RGR), a late Cenozoic continental rift from central Colorado to southern New Mexico, hanging wall margins typically contain en echelon normal fault systems with intervening areas of typically complex structure, called relay zones. Relay zones transfer displacement through complex strain patterns and eventual linkage of faults and hold clues as to how fault zones initiate and grow. The western margin of the RGR at the latitude of the San Luis basin (SLB) exposes laterally continuous Eocene-Oligocene volcanic rocks, well-correlated by 40Ar/39Ar data, and well-preserved rift structures. Ash flow tuffs are usually excellent recorders of the instantaneous geomagnetic field and five ash flow tuffs (ca. 32.3 to 27.3 Ma; including the Saguache Creek, La Jara Canyon, Masonic Park, Fish Canyon, and Carpenter Ridge tuffs) have been sampled in spatial detail along west to east transects of the eastern San Juan volcanic field to the westernmost margin of the RGR at the SLB. Data obtained from our sampling approach will yield a comprehensive definition of relative vertical-axis rotations across the area and will be used to assess the timing of RGR fault linkages. Preliminary paleomagnetic data from the Masonic Park tuff (ca. 28.2 Ma) suggest up to ~17° clockwise rotation between sample locations on the Colorado Plateau and locations to the east, nearest the western margin of the RGR. Preliminary data from the Fish Canyon tuff (ca. 27.8 Ma) show a ~12° clockwise rotation. The relative clockwise vertical-axis rotation of sampling sites in both ash flow tuffs nearest the RGR margin suggests that relay zone development with attending vertical-axis rotation played an important role in the opening of the northern RGR. Our data set is not sufficiently robust at present to test the hypothesis that rotation was taking place concurrently with eruption of these large-volume ash flow tuffs in the early Oligocene, but it is a possibility and if so, the RGR at the

  3. Catchment characterisation through Streamflow Component mixing Approach

    NASA Astrophysics Data System (ADS)

    Rusjan, Simon

    2013-04-01

    A simple dynamical system approach was implemented in order to analyse, explain and simulate streamflow fluxes in diverse seasonal hydrological conditions. The study was implemented within 42 km2 forested Padež stream catchment in SW part of Slovenia, which is characterized by flushing, almost torrential hydrological response conditioned by flysch geological settings of low hydraulic conductivity. The hydrological characteristics of the studied catchment at first sight do not comply with the hydrological catchment storage framework in which original concept of the catchment as a simple dynamical system was developed. In the studied catchment, the streamflow formation is not controlled solely by subsurface catchment storage but is strongly influenced also by rainfall runoff that bypasses the subsurface catchment storage mechanism. Therefore, two components of the streamflow were identified, described by separate sensitivity functions and combined through simple two component mixing model which enabled us simulation of the streamflow in highly contrasting seasonal hydrological settings. According to the simulation results, the Padež stream catchment behaves primarily like a storage-dependent system under conditions of low antecedent catchment wetness and low to moderate rainfall intensities (up to 5 mm/h) when subsurface storage sensitivity function generally managed to simulate streamflows with exception of hydrograph peak formation. When rainfall intensities increase (exceed approximately 5 mm/h), secondary streamflow formation mechanism described by subsurface storage bypassing sensitivity function becomes initiated and causes fast hydrograph formation with steeply rising and falling limbs. In order to be able to implement the modelling concept for streamflow predictions, the rainfall losses in growth period, most probably associated with interception losses not covered under the potential evapotranspiration calculation, would have to be more thoroughly analysed

  4. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  5. Integrated flow and temperature modeling at the catchment scale

    NASA Astrophysics Data System (ADS)

    Loinaz, Maria C.; Davidsen, Hasse Kampp; Butts, Michael; Bauer-Gottwein, Peter

    2013-07-01

    Changes in natural stream temperature levels can be detrimental to the health of aquatic ecosystems. Water use and land management directly affect the distribution of diffuse heat sources and thermal loads to streams, while riparian vegetation and geomorphology play a critical role in how thermal loads are buffered. In many areas, groundwater flow is a significant contribution to river flow, particularly during low flows and therefore has a strong influence on stream temperature levels and dynamics. However, previous stream temperature models do not properly simulate how surface water-groundwater dynamics affect stream temperature. A coupled surface water-groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream, the Silver Creek Basin in Idaho, where stream temperature affects the populations of fish and other aquatic organisms. The model calibration highlights the importance of spatially distributed flow dynamics in the catchment to accurately predict stream temperatures. The results also show the value of including temperature data in an integrated flow model calibration because temperature data provide additional constraints on the flow sources and volumes. Simulations show that a reduction of 10% in the groundwater flow to the Silver Creek Basin can cause average and maximum temperature increases in Silver Creek over 0.3 °C and 1.5 °C, respectively. In spring-fed systems like Silver Creek, it is clearly not feasible to separate river habitat restoration from upstream catchment and groundwater management.

  6. Improved simulation of groundwater - surface water interaction in catchment models

    NASA Astrophysics Data System (ADS)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  7. Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.

    PubMed

    Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

    2015-04-01

    During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358 km2-2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137 ton km(-2) y(-1) versus 34-37 ton km(-2) y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands

  8. Impact of papyrus wetland encroachment on spatial and temporal variabilities of stream flow and sediment export from wet tropical catchments.

    PubMed

    Ryken, N; Vanmaercke, M; Wanyama, J; Isabirye, M; Vanonckelen, S; Deckers, J; Poesen, J

    2015-04-01

    During the past decades, land use change in the Lake Victoria basin has significantly increased the sediment fluxes to the lake. These sediments as well as their associated nutrients and pollutants affect the food and water security of millions of people in one of Africa's most densely populated regions. Adequate catchment management strategies, based on a thorough understanding of the factors controlling runoff and sediment discharge are therefore crucial. Nonetheless, studies on the magnitude and dynamics of runoff and sediment discharge are very scarce for the Lake Victoria basin and the African Rift region. We therefore conducted runoff discharge and sediment export measurements in the Upper Rwizi, a catchment in Southwest Uganda, which is representative for the Lake Victoria basin. Land use in this catchment is characterized by grazing area on the high plateaus, banana cropping on the slopes and Cyperus papyrus L. wetlands in the valley bottoms. Due to an increasing population pressure, these papyrus wetlands are currently encroached and transformed into pasture and cropland. Seven subcatchments (358 km2-2120 km2), with different degrees of wetland encroachment, were monitored during the hydrological year June 2009-May 2010. Our results indicate that, due to their strong buffering capacity, papyrus wetlands have a first-order control on runoff and sediment discharge. Subcatchments with intact wetlands have a slower rainfall-runoff response, smaller peak runoff discharges, lower rainfall-runoff ratios and significantly smaller suspended sediment concentrations. This is also reflected in the measured annual area-specific suspended sediment yields (SYs): subcatchments with encroached papyrus swamps have SY values that are about three times larger compared to catchments with intact papyrus vegetation (respectively 106-137 ton km(-2) y(-1) versus 34-37 ton km(-2) y(-1)). We therefore argue that protecting and (where possible) rehabilitating these papyrus wetlands

  9. SWAT model application in a data scarce tropical complex catchment in Tanzania

    NASA Astrophysics Data System (ADS)

    Ndomba, Preksedis; Mtalo, Felix; Killingtveit, Aanund

    This study intended to validate the Soil and Water Assessment Tool (SWAT) model in data scarce environment in a complex tropical catchment in the Pangani River Basin located in northeast Tanzania. The validation process involved the model initialization, calibration, verification and sensitivity analysis. Both manual and auto-calibration procedures were used to facilitate the comparison of the results with past studies in the same catchment. For this study, some model parameters including Soil depth (SOL_Z) and Saturated hydraulic conductivity (SOL_K) were assumed uniform within the study catchment and were therefore lumped comprising the huge computation resource requirement of the SWAT model. Results indicated that the same set of important parameters was identified with or without the use of observed flows data. Some of the parameters had physical interpretation and could therefore relate directly to hydrological controlling factors within the catchment. Despite swapping ranking importance of parameters, these results suggest the suitability of the SWAT model for identifying hydrological controlling factors/parameters in ungauged catchments. Results of calibration and validation at the daily timescale gave moderately satisfactory Nash-Sutcliffe Coefficient of Efficiency (CE) of 54.6% for calibration and 68% for validation while simulated and observed mean annual flow discharges gave an Index of Volumetric Fit (IVF) of 100%. The study further indicated the improvement of model estimation when more reliable spatial representation of rainfall was used. Although in this study SWAT model has performed satisfactorily in data poor and complex catchment, the authors recommend a wider validation effort of the model before it is adopted for operational purpose.

  10. Hydrologic Transit Times in Tropical Montane Watersheds: Catchment Scale and Landscape Influences

    NASA Astrophysics Data System (ADS)

    Munoz Villers, L. E.; Geissert Kientz, D. R.; Holwerda, F.; McDonnell, J.

    2015-12-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths and storages present in catchments. However, in the tropics little work has been carried out on MTT, despite its usefulness for providing important information about watershed hydrological functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs and related to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow MTT for nested watersheds (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). To estimate MTTs, we used a 2 year record of bi-weekly isotopic composition of precipitation and stream baseflow data. Land use/cover and topographic parameters were derived from GIS analysis. Soil profile hydraulic properties and permeability at the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Estimates of baseflow MTT ranged between 1.2 and 2.7 years across the 12 study catchments. Major differences in MTTs were found at the small (0.1-1.5 km2) and at the large scales (14-34 km2), related mostly to catchment slope and morphology and, to much lesser extent, to land cover. Interestingly, longest stream MTTs were found in the cloud forest headwater catchments. Overall, MTTs were mainly controlled by depth to bedrock associated with topography, and permeability at the soil-bedrock interface. Mid and ridge hillslope positions appeared to be the main contributing areas for catchment recharge and runoff. The present study is the first step towards to understand the hydrology and subsurface processes across scales in this tropical environment, with the aim to support decisions for local and regional management water supply under increasing land use and climate change pressures.

  11. Integration of sewer system maps in topographically based sub-basin delineation in suburban areas

    NASA Astrophysics Data System (ADS)

    Jankowfsky, Sonja; Branger, Flora; Braud, Isabelle; Rodriguez, Fabrice

    2010-05-01

    Due to the increase of urbanization, suburban areas experience a fast change in land use. The impact of such modifications on the watershed hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the possibility to take into account land use change, and more particularly to consider urbanized areas and anthropogenic features such as roads or ditches and their impact on the hydrological cycle. A detailed definition of the hydrographical drainage network and a corresponding delineation of sub-basins is therefore necessary as input to distributed models. Sub-basins in natural catchments are usually delineated using standard GIS based terrain analysis. The drainage network in urbanised watersheds is often modified, due to sewer systems, ditches, retention basins, etc.. Therefore, its delineation is not only determined by topography. The simple application of terrain analysis algorithms to delineate sub-basins in suburban areas can consequently lead to erroneous sub-basin borders. This study presents an improved approach for sub-basin delineation in suburban areas. It applies to small catchments connected to a sewage plant, located outside the catchment boundary. The approach assumes that subsurface flow follows topography. The method requires a digital elevation model (DEM), maps of land use, cadastre, sewer system and the location of measurement stations and retention basins. Firstly, the topographic catchment border must be defined for the concerning flow measurement station. Standard GIS based algorithms, like the d8-flow direction algorithm (O'Callaghan and Mark, 1984) can be applied using a high resolution DEM. Secondly, the artificial catchment outlets have to be determined. Each catchment has one natural outlet - the measurement station on the river- but it can have several artificial outlets towards a sewage station. Once the outlets are determined, a first approximation of the "theoretical maximal contributing area

  12. The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments

    USGS Publications Warehouse

    Brooks, P.D.; McKnight, Diane M.; Bencala, K.E.

    1999-01-01

    Dissolved organic carbon (DOC) from terrestrial sources forms the major component of the annual carbon budget in many headwater streams. In high-elevation catchments in the Rocky Mountains, DOC originates in the upper soil horizons and is flushed to the stream primarily during spring snowmelt. To identify controls on the size of the mobile soil DOC pool available to be transported during the annual melt event, we measured soil DOC production across a range of vegetation communities and soil types together with catchment DOC export in paired watersheds in Summit County, Colorado. Both surface water DOC concentrations and watershed DOC export were lower in areas where pyrite weathering resulted in lower soil pH. Similarly, the amount of DOC leached from organic soils was significantly smaller (p < 0.01) at sites having low soil p H. Scaling point source measurements of DOC production and leaching to the two basins and assuming only vegetated areas contribute to DOC production, we calculated that the amount of mobile DOC available to be leached to surface water during melt was 20.3 g C m-2 in the circumneutral basin and 17.8 g C m-2 in the catchment characterized by pyrite weathering. The significant (r2 = 0.91 and p < 0.05), linear relationship between overwinter CO2 flux and the amount of DOC leached from upper soil horizons during snowmelt suggests that the mechanism for the difference in production of mobile DOC was heterotrophic processing of soil carbon in snow-covered soil. Furthermore, this strong relationship between over-winter heterotrophic activity and the size of the mobile DOC pool present in a range of soil and vegetation types provides a likely mechanism for explaining the interannual variability of DOC export observed in high-elevation catchments.

  13. Ensemble modeling of flows in ungaged catchments

    NASA Astrophysics Data System (ADS)

    McIntyre, N.; Wheater, H.; Lee, H.; Young, A.; Wagener, T.

    2005-12-01

    The established approach to rainfall-runoff model regionalisation is regression of model parameters (MPs) against numeric catchment descriptors (CDs). We argue that, due to its fundamental limitations, further refinement of the regression method is not the optimum way forward, and we introduce an alternative method based on weighed averaging and ensemble modelling. The new method consists of the following basic steps: 1) A sample of successful models is identified for each of a number of `donor' gaged catchments. 2) Each model is assigned a weight based on how well it has performed. 3) This weight is updated based on the similarity of the associated catchment to the `target' ungaged catchment. 4) All models with non-zero weight are applied to the target catchment, to produce an ensemble time-series and a weighted average prediction. The theoretical advantage is that MP interactions are not neglected or linearized to facilitate regression. The practical attraction is the ease with which all sources of uncertainty (e.g. data, CD, equifinality, model structure) can be integrated into the pool of models and the weighting scheme. A case study of daily data from 127 non-urban UK catchments is presented. A single conceptual model structure is used (a five-parameter probability distributed model) so that, in this case, differences in models are defined only by the MP sets. Each of the 127 catchments is, in turn, considered to be ungaged, so that candidate models can be drawn from up to 126 donor catchments. Relative weights are proportional to a quantitative measure of donor-target catchment similarity. Various schemes for defining catchment similarity are applied, based on CDs relating mainly to soil type, catchment size and climate. Using the models of the ten most similar catchments provided the best weighted average simulations, both in terms of NSE and a low-flow objective function. Using this scheme, in 90% of low-permeability catchments the prediction NSE was within

  14. Pseudo Paired Catchments Analysis to Assess the Impact of Urbanization on Catchment Hydrology

    NASA Astrophysics Data System (ADS)

    Salavati, B.; Oudin, L.; Furusho, C.; Ribstein, P.

    2014-12-01

    Paired catchments analysis provides a robust approach to assess the impact of land use changes on catchment's hydrological response. This approach is limited by the availability of data for two neighbor catchments with and without land use changes under similar climate conditions. Thus, hydrological modelling approaches are also very popular since they do not depend on data of a reference catchment. In the present study, 70 urbanized and non-urbanized paired catchments were selected in the United States. Unit housing density maps over the 1940-2010 time period were used to reconstruct historic impervious area extents with aproximatly the same resolution as the National Land Cover Database (NLCD) maps. Two approaches were compared to assess the impact of urbanization on catchment-scale hydrology: the classical paired catchments approach using observed flow time series and an alternative paired catchments approach involving hydrological modeling that allows to simulate a virtual control catchment. To this aim, the GR4J model, a conceptual daily 4-parameter hydrological model, was used. The parameters of the model calibrated on the pre urbanization period were used to predict the streamflow that would have occurred in the urban catchment if the urbanization had not taken place. Then, classical statistical methods involving ANCOVA were used to detect the significance and to quantify the change on the hydrological responses due to land use changes. Results show that the two approaches lead to similar conclusions on the impact of urbanization on catchment hydrology. Thus, the modelling approach provides a relevant alternative for case studies where data of reference catchments are not available.

  15. Hydrologic predictions on ungauged catchments using deterministic distributed modelling system

    NASA Astrophysics Data System (ADS)

    Tachecí, Pavel; Kimlová, Martina

    2010-05-01

    There is a need for warning system giving prediction of flash-flood risk conditions with sufficient advance even in source areas and in small tributaries catchments. New approach is based on combination of numerical weather prediction (NWP) model, radar or rain gauge data with distributed hydrologic mathematical model of particular area. Set of newly developed tools, customized for particular use in the Czech Hydrometeorological Institute (CHMI) environment enhance import of data and presentation of results. This forecast system focuses on hydrological modelling of running water balance in spatially distributed manner. Its computation is repeated day-to-day. Six models of particular basins (800 - 4000 km2), representing different conditions across the Czech Republic territory were calibrated and validated successfully. The Sázava river basin model (4.000 km2) is used for regular testing operation in CHMI Forecast centre since October 2007. Basic size of grid cells used in models is 300x300 m, basic time step of forecast is 1 day, but can be refined according to the input data. Water balance is computed using simplified 2-layer method for unsaturated zone, 2D approximation of Boussinesq equation for saturated zone, diffusion equation for overland flow and 1D kinematic equation for river flow (MIKE 11 model). The whole process of input data processing, model simulation and result generation may be run automatically or in step-by step mode via simple graphical user interface. Three types of input data are supported: •time series (temperature and precipitation) measured at observation stations and stored in CHMI database •radar data products (precipitation intensity field) •results of ALADIN weather forecast model (temperature and precipitation field). For forecast purposes, reference evapotranspiration is approximated according relationship to air temperature for every computational grid cell. The user may choose area (catchment) to be processed and period of

  16. Modelling hydrology and water quality in a Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    In this study the SWAT model has been used in order to analyse and quantify pollution dynamics at basin scale depending on concentrated and diffuse sources. Nowadays, the receiving water bodies quality safeguarding is of growing importance due to the promulgation of recent laws as well as the growing sensitivity regarding the environment issues by the scientific and practitioner committee. Recently the EU 2000/60 (Water Framework Directive) makes the analysis of receiving water bodies even more complex by integrating the pollution in urban areas in a framework of the pollution sources at catchment scale. and making necessary further integration of environmental impacts associated with discharges concentrates civilian and productive with the widespread pollution linked mainly to agriculture and zoo-technical activities. The complexity of natural systems and the large number of polluting sources and variables to be monitored requires the adoption of models able to get a better view of the whole system in a simplified way without neglecting the most important physical phenomena. Particularly, in this study the SWAT model was considered since it is an integrated hydrological model that are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the WFD. In addition, the SWAT model is interfaced with the ARC-VIEW software which allows easy pre-and post processing of the spatially distributed input data, driving the rainfall-runoff process. The model has been applied to the experimental Nocella catchment located in Sicily (Italy), with an area of about 50 km2. The river receives wastewater and stormwater from two urban areas drained by combined sewers. The study demonstrates that the analysis of water quality in partially urbanised natural basins is complex depending on variable polluting contributions of the different parts of the system depending on specific polluting compounds. The model was

  17. Modelling fate and transport of glyphosate and AMPA in the Meuse catchment to assess the contribution of different pollution sources

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Seuntjens, Piet

    2013-04-01

    Large river basins have multiple sources of pesticides and usually the pollution sources are spread over the entire catchment. The cumulative effect of pesticides entering the river system in upstream areas and the formation of persistent degradation products can compromise downstream water use e.g. raw water quality for drinking water abstractions. For assessments at catchment scale pesticide fluxes coming from different sources and sub basins need to be taken into account. To improve management strategies, a sound understanding of the sources, emission routes, transport, environmental fate and conversion of pesticides is needed. In the Netherlands, the Meuse river basin is an important source for drinking water production. The river suffers from elevated concentrations of glyphosate and aminomethylphosphonic acid (AMPA). For AMPA it is rather unclear to what extent the pollution is related to glyphosate degradation and what is the contribution of other sources, especial phosphonates in domestic and industrial waste water. Based on the available monitoring data only it is difficult to distinguish between AMPA sources in such a large river basin. This hampers interpretation and decision making for water quality management in the Meuse catchment. Here, application of water quality models is very useful to obtain complementary information and insights. Modelling allows accounting for temporal and spatial variability in discharge and concentrations as well as distinguishing the contribution from conversion processes. In this study, a model for the river Meuse was developed and applied to assess the contribution of tributary and transnational influxes, glyphosate degradation and other sources to the AMPA pollution.

  18. A Catchment-Based Hydrologic and Routing Modeling System with explicit river channels

    NASA Astrophysics Data System (ADS)

    Goteti, Gopi; Famiglietti, James S.; Asante, Kwabena

    2008-07-01

    In this paper, we present a macroscale hydrologic modeling system with an explicit representation of storage and movement of water in river channels and floodplains. The overall modeling system, called the Catchment-Based Hydrologic and Routing Modeling System (CHARMS), is composed of a land surface model and a river routing model that operate on a network of hydrologic catchments (or watersheds). The land surface model in CHARMS is based on the National Center for Atmospheric Research Community Land Model. The river routing model in CHARMS generates river discharge by transporting runoff generated by the catchment-based CLM through the river network. The routing model uses information on channel cross-section geometry, derived from the 90 m Shuttle Radar Topography Mission digital elevation model, to simulate river discharge and the associated flow depth and inundation width. CHARMS was implemented over the Wabash River basin in the central United States (drainage area 72282 km2), and simulated streamflow was validated using daily observations. Simulated flow depth and inundation extent generally followed seasonal variations in observed flooding and droughts. Limitations of some of the assumptions and scaling factors used in this study and the issues that need to be addressed for a continental- or global-scale implementation of CHARMS are discussed. This paper serves as the foundation for a catchment-based, global land surface modeling framework that could incorporate spatiotemporal variations in surface water bodies, as well as satellite measurements of these variations.

  19. An intercomparison and verification of outputs of several climate models on representative Mediterranean catchments

    NASA Astrophysics Data System (ADS)

    Deidda, R.; Caroletti, G. N.; Luccarini, V.; Marrocu, M.; Puliga, M.; Pusceddu, G.; Speranza, A.

    2012-04-01

    Within the framework of the FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins: Reducing Uncertainty and Quantifying Risk through an Integrated Monitoring and Modeling System), we present here the results of a systematic analysis aimed at the evaluation of the performances of several climate models in providing reliable variables for hydrological modelling in representative catchments of the Mediterranean area. Specifically, we consider the outputs of regional and global climate models available through the open access data projects IPCC, PRUDENCE and ENSEMBLES. In order to extract and to keep updated the variables of interest on specific target hydrological catchments we developed an interface based on a software that synchronises a local database with the output of several climatic models. The performances of precipitation and temperature fields on the 7 Mediterranean catchments of interest for CLIMB project activities are evaluated using the E-OBS gridded dataset. Comparisons and evaluations of performances in reproducing both the hydrological cycle and the extremes at the catchment scale are presented and discussed.

  20. Chloride circulation in a lowland catchment and the formulation of transport by travel time distributions

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Velde, Ype; Zee, Sjoerd E. A. T. M.; Rinaldo, Andrea; Botter, Gianluca

    2013-08-01

    Travel times are fundamental catchment descriptors that blend key information about storage, geochemistry, flow pathways and sources of water into a coherent mathematical framework. Here we analyze travel time distributions (TTDs) (and related attributes) estimated on the basis of the extensive hydrochemical information available for the Hupsel Brook lowland catchment in the Netherlands. The relevance of the work is perceived to lie in the general importance of characterizing nonstationary TTDs to capture catchment transport properties, here chloride flux concentrations at the basin outlet. The relative roles of evapotranspiration, water storage dynamics, hydrologic pathways and mass sources/sinks are discussed. Different hydrochemical models are tested and ranked, providing compelling examples of the improved process understanding achieved through coupled calibration of flow and transport processes. The ability of the model to reproduce measured flux concentrations is shown to lie mostly in the description of nonstationarities of TTDs at multiple time scales, including short-term fluctuations induced by soil moisture dynamics in the root zone and long-term seasonal dynamics. Our results prove reliable and suggest, for instance, that drastically reducing fertilization loads for one or more years would not result in significant permanent decreases in average solute concentrations in the Hupsel runoff because of the long memory shown by the system. Through comparison of field and theoretical evidence, our results highlight, unambiguously, the basic transport mechanisms operating in the catchment at hand, with a view to general applications.

  1. Understanding Pesticide Behaviour At The Catchment Scale

    NASA Astrophysics Data System (ADS)

    Kannan, N.; White, S. M.; Worrall, F.; Pendlington, D.; Groves, S.

    Pesticides in stream flow at the outlet of a 142ha catchment in Eastern England (Col- worth, Bedfordshire), have been monitored since October 1999. About 50% of the total catchment is directly controlled within one farm and a rotation of wheat, oil seed rape, grass, linseed, beans and peas is grown. The data from this catchment are being used to investigate the performance of the USDA SWAT contaminant transport pack- age at the catchment scale. Three years of stream flow and climate data are available with a useful set of pesticide application and detection data. Following calibration and validation of the hydrology of the catchment, pesticide modelling was carried out for tebuconazole, terbutryn, and terbuthylazine. This paper reports on the results of a sen- sitivity analysis of the model, and the final calibrated pesticide component. Analysis of the results obtained show that the timing and decay of predicted pesticide concen- trations are correct. It is therefore recommended that SWAT can be used as a tool to understand pesticide behaviour at the catchment scale.

  2. Scaling the flood regime with the soil hydraulic properties of the catchment

    NASA Astrophysics Data System (ADS)

    Peña Rojas, Luis Eduardo; Francés García, Félix; Barrios Peña, Miguel

    2015-04-01

    The spatial land cover distribution and soil type affect the hydraulic properties of soils, facilitating or retarding the infiltration rate and the response of a catchment during flooding events. This research analyzes: 1) the effect of land cover use in different time periods as a source of annual maximum flood records nonstationarity; 2) the scalability of the relationship between soil hydraulic properties of the catchment (initial abstractions, upper soil capillary storage and vertical and horizontal hydraulic conductivity) and the flood regime. The study was conducted in Combeima River basin in Colombia - South America and it was modelled the changes in the land uses registered in 1991, 2000, 2002 and 2007, using distributed hydrological modelling and nonparametric tests. The results showed that changes in land use affect hydraulic properties of soil and it has influence on the magnitude of flood peaks. What is a new finding is that this behavior is scalable with the soil hydraulic properties of the catchment flood moments have a simple scaling behavior and the peaks flow increases with higher values of capillary soil storage, whereas higher values, the peaks decreased. Finally it was applied Generalized Extreme Values and it was found scalable behavior in the parameters of the probability distribution function. The results allowed us to find a relationship between soil hydraulic properties and the behavior of flood regime in the basin studied.

  3. Controls on diurnal streamflow cycles in a high altitude catchment in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Mutzner, R.; Weijs, S. V.; Tarolli, P.; Calaf, M.; Oldroyd, H. J.; Parlange, M. B.

    2014-12-01

    The study of streamflow diurnal cycles is of primary importance to understand hydrological processes happening at various spatial scales. In high altitude alpine catchments, streamflow diurnal cycles are typically dominated by snow or icemelt. During a field campaign in the summer 2012 in a small catchment in the Swiss Alps (Val Ferret catchment, draining area of 20.4 km2, mean altitude of 2423 m above sea level (asl), ranging from 1773 m to 3206 m asl, glaciarized area: 2%), we observed streamflow diurnal cycles throughout the season in two monitored sub-basins of the watershed. To study in detail the diurnal cycles, we make use of a wireless network of meteorological stations, time-lapse photography, a fully equipped energy-balance station and water electrical conductivity monitored at the gauging stations. In the first sub-basin, we observed a transition from a snowmelt to an evapotranspiration induced diurnal streamflow cycle. In the second sub-basin, we observed a snowmelt/icemelt dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between icemelt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign. The amplitude of the icemelt cycle decreased exponentially during the season and was larger than of the amplitude of the evapotranspiration cycle which was relatively constant during the season. A conceptual model was applied to estimate the effect of evapotranspiration on the diurnal streamflow cycle in the icemelt dominated sub-basin. The model makes use of the latent heat measured at the energy balance station, the streamflow loss due to evapotranspiration and the computation of active evapotranspiration areas. Our study suggests that evapotranspiration from the riparian area damps the icemelt-diurnal streamflow cycle resulting in a possible underestimation of glacier mass changes.

  4. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Teuling, Adriaan; van Berkum, Sonja; Torfs, Paul; Uijlenhoet, Remko

    2014-05-01

    In many rainfall-runoff models at least some calibration of model parameters has to take place. Especially for ungauged or poorly gauged basins this can be problematic, because there is little or no data available for calibration. A possible solution to overcome the problems caused by data scarcity is to set up a measurement campaign for a short time period. With the employed approach based on the theory of Kirchner (2009), a model was developed and applied to the Rietholzbach catchment in Switzerland (Teuling et al., 2010, Seneviratne et al., 2012), with only two parameters. These two parameters describe a unique storage-discharge relation. The model is constructed such that the parameters can be determined not only with automatic calibration, but also by recession analysis and a priori from Boussinesq theory. The automatic calibration and the recession analysis have been fed with different selections of the full data record as well as with the full data record itself. For Boussinesq theory, catchment characteristics were given as required input. In the end, a comparison of the performance of the three different methods was made, and a comparison on the amount of data that is required by each of the three parameter identification methods. Melsen, L.A., Teuling, A.J., van Berkum, S.W., Torfs, P.J.J.F., Uijlenhoet, R. (2013) Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification, Water Resour. Res., under review References Kirchner, J.W. (2009), Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward, Water Resour. Res. 45:W02429. Seneviratne, S.I., I. Lehner, J. Gurtz, A.J. Teuling, H Lang, U. Moser, D. Grebner, L. Menzel, K. Schro, T. Vitvar, and M. Zappa (2012), Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event, Water Resour. Res. 48:W06526. Teuling, A. J., I. Lehner, J. W. Kirchner

  5. A detailed model for simulation of catchment scale subsurface hydrologic processes

    NASA Technical Reports Server (NTRS)

    Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    A catchment scale numerical model is developed based on the three-dimensional transient Richards equation describing fluid flow in variably saturated porous media. The model is designed to take advantage of digital elevation data bases and of information extracted from these data bases by topographic analysis. The practical application of the model is demonstrated in simulations of a small subcatchment of the Konza Prairie reserve near Manhattan, Kansas. In a preliminary investigation of computational issues related to model resolution, we obtain satisfactory numerical results using large aspect ratios, suggesting that horizontal grid dimensions may not be unreasonably constrained by the typically much smaller vertical length scale of a catchment and by vertical discretization requirements. Additional tests are needed to examine the effects of numerical constraints and parameter heterogeneity in determining acceptable grid aspect ratios. In other simulations we attempt to match the observed streamflow response of the catchment, and we point out the small contribution of the streamflow component to the overall water balance of the catchment.

  6. Landslide triggering rainfall thresholds estimation using hydrological modelling of catchments in the Ialomita Subcarpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Busuioc, Aristita; Burcea, Sorin; Sandric, Ionut

    2016-04-01

    This work focuses on the hydro-meteorological analysis for landslide triggering rainfall thresholds estimation in the Ialomita Subcarpathians. This specific area is a complex geological and geomorphic unit in Romania, affected by landslides that produce numerous damages to the infrastructure every few years (1997, 1998, 2005, 2006, 2010, 2012 and 2014). Semi-distributed ModClark hydrological model implemented in HEC HMS software that integrates radar rainfall data, was used to investigate hydrological conditions within the catchment responsible for the occurrence of landslides during the main rainfall events. Statistical analysis of the main hydro-meteorological variables during the landslide events that occurred between 2005 and 2014 was carried out in order to identify preliminary rainfall thresholds for landslides in the Ialomita Subcarpathians. Moreover, according to the environmental catchment characteristics, different hydrological behaviors could be identified based on the spatially distributed rainfall estimates from weather radar data. Two hydrological regimes in the catchments were distinguished: one dominated by direct flow that explains the landslides that occurred due to slope undercutting and one characterized by high soil water storage during prolonged rainfall and therefore where subsurface runoff is significant. The hydrological precipitation-discharge modelling of the catchment in the Ialomita Subcarpathians, in which landslides occurred, helped understanding the landslide triggering and as such can be of added value for landslide research.

  7. Development of regionalisation procedures using a multi-model approach for flow simulation in an ungauged catchment

    NASA Astrophysics Data System (ADS)

    Goswami, M.; O'Connor, K. M.; Bhattarai, K. P.

    2007-02-01

    SummaryFlow simulation in ungauged catchments is presently regarded as one of the most challenging tasks in surface water hydrology. Many of the ungauged catchments are located in the headwaters of rivers in mountainous regions of the world having enormous potential for sustainable water resource development. However, due to inaccessibility, rugged and inhospitable terrain, and historical lack of foresight concerning the need to have these headwaters adequately gauged, their potential is not readily realizable. Many downstream sites also suffer from non-availability of site-specific data as even in countries having extensive networks of gauged stations data may not be available at sites where these are most needed. As predictive tools for water resources, water quality, natural hazard mitigation and water availability assessment are generally data-driven, the lack of adequate hydrometric records poses difficult problems for planners, engineers, managers, and stake-holders alike. In this study, a methodology is developed for flow simulation in ungauged catchments using a regionalisation and multi-model approach involving a suite of rainfall-runoff models and combination techniques. Daily observed hydrometeorological data for 12 French catchments are used for illustrating the procedures. Following a preliminary investigation of the regional homogeneity of that group of catchments, three regional flow simulation techniques are applied. Although all 12 catchments are gauged, initially each catchment is successively considered as being ungauged for the purpose of flow simulation in that catchment, their actual discharges being subsequently used for evaluating the performance of the flow estimation procedures for the catchment. The Nash-Sutcliffe efficiency index ( R2) is used for assessing and ranking the relative performances of the regionalisation-model couples to identify the most appropriate couple for the region. The final step of applying that couple to a truly

  8. Radar altimetry assimilation in catchment-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, P.; Michailovsky, C. I. B.

    2012-04-01

    Satellite-borne radar altimeters provide time series of river and lake levels with global coverage and moderate temporal resolution. Current missions can detect rivers down to a minimum width of about 100m, depending on local conditions around the virtual station. Water level time series from space-borne radar altimeters are an important source of information in ungauged or poorly gauged basins. However, many water resources management applications require information on river discharge. Water levels can be converted into river discharge by means of a rating curve, if sufficient and accurate information on channel geometry, slope and roughness is available. Alternatively, altimetric river levels can be assimilated into catchment-scale hydrological models. The updated models can subsequently be used to produce improved discharge estimates. In this study, a Muskingum routing model for a river network is updated using multiple radar altimetry time series. The routing model is forced with runoff produced by lumped-parameter rainfall-runoff models in each subcatchment. Runoff is uncertain because of errors in the precipitation forcing, structural errors in the rainfall-runoff model as well as uncertain rainfall-runoff model parameters. Altimetric measurements are translated into river reach storage based on river geometry. The Muskingum routing model is forced with a runoff ensemble and storages in the river reaches are updated using a Kalman filter approach. The approach is applied to the Zambezi and Brahmaputra river basins. Assimilation of radar altimetry significantly improves the capability of the models to simulate river discharge.

  9. Simulation of the reduction of runoff and sediment load resulting from the Gain for Green Program in the Jialingjiang catchment, upper region of the Yangtze River, China.

    PubMed

    Hayashi, Seiji; Murakami, Shogo; Xu, Kai-Qin; Watanabe, Masataka

    2015-02-01

    A distributed catchment hydrologic model (Hydrological Simulation Program--FORTRAN; HSPF) with improved sediment production processes was used to evaluate the effect of restoration of cultivated land to forest on the reduction of runoff and sediment load in the Jialingjiang basin, which forms part of the Yangtze River basin, China. The simulation results showed that restoration to forest reduced sediment production even in the case of minimum restoration at a threshold catchment slope of 25°, as advocated in the "Gain for Green Program " planned by the Chinese government, even though reduction of the peak flow rate in the river channel was small. The increase in forest area resulting from lowering of the threshold catchment slope reduced sediment production further. PMID:25463578

  10. Efforts to Unravel the Cause of Shrinkage of Lake Chad: Development of Hydrologic Real-time Observatory Network in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Lee, J.; Ichoku, C. M.; Bolten, J. D.; Policelli, F. S.; Djimadoumngar, K. N.; Abdullahi, S. I.; Bila, M. D.; Djoret, D.; Ibrahim, G.; Selker, J. S.; Hochreutener, R.; Annor, F. O.

    2015-12-01

    Lake Chad, the fourth largest lake in Africa, is well known as a shrinking lake due to adverse impact of climate change and increased population during drought periods in the 1980s and 1990s. While the shrinkage of the Lake has been studied broadly using remote sensing data, the main cause of shrinkage is still uncertain due to limited availability of ground-truth data. Lack of infrastructure, insecure site conditions, vandalism, and limited site accessibility make it difficult to establish a real-time monitoring network in many parts of Africa including the Lake Chad Basin. For a better understanding of how the Lake responds to the change of weather patterns and other hydrologic processes such as runoff, groundwater flow, and evapotranspiration, a real-time monitoring network is essential in the region. In early 2015, a team from NASA, the Lake Chad Basin Commission, and the University of Missouri - Kansas City set up a hydrologic real-time observatory network in the Chari-Logone catchment, the main feeder of water to the Lake, to monitor meteorological conditions, soil moisture, and groundwater. The TAHMO (Trans-African Hydro-Meteorological Observatory) weather stations were adopted to monitor rainfall, relative humidity, solar radiation, wind speed, and temperature. The present study shows preliminary analysis of the correlations between meteorological and hydrological parameters from real-time monitoring data in the Chari-Logone catchment. We also discuss the importance of partnership with local government and community involvement for data collection and share for sustainable hydrological research in the Lake Chad Basin.

  11. Factors influencing water transit times in snowmelt-dominated, headwater catchments of the western U.S.

    NASA Astrophysics Data System (ADS)

    Clow, D. W.; Mast, A.

    2015-12-01

    In catchments, water transit times (TTs) refer to the elapsed time between entry of water at the ground surface and exit of water at the catchment outlet. Transit times are an important characteristic of catchments in that they reflect the time available for interaction between water, soil, and biota within the system. Thus, they exert a strong influence on hydrologic resilience to drought and climate change, and on the sensitivity of aquatic ecosystems to atmospheric pollutants. Transit times may vary spatially due to variations in basin characteristics, such as slope, size, and amount and type of soil and vegetation; however, the relative influence of these factors on TTs is poorly known. In this study, we estimate mean transit times (MTTs) for 11 snowmelt-dominated, headwater catchments in the western U.S. using the convolution integral approach, which relies on differences in the magnitude of seasonal variability in δ18O in precipitation and stream water to estimate MTTs. Seasonal variability in δ18O was calculated based on analyses of precipitation and stream water samples collected at weekly to monthly intervals. Results indicate that MTTs ranged from 0.6 to 2.1 years, and were positively influenced by percent of the catchment covered by forest (r2 = 0.56; p = 0.008), and negatively influenced by barren terrain (e.g., bedrock; r2 = 0.48; p = 0.019). MTTs showed a weak negative relation to mean basin slope (r2 = 0.31; p = 0.076) and no relation to basin size or elevation. These results illustrate the importance of soil as a key factor influencing MTTs, with basin slope acting as a secondary influence. Heavily forested basins tend to have deep, well-developed soils with substantial water storage capacity; these soils help maintain baseflow during drought conditions, providing hydrologic resilience to the system, and they are an important location for geochemical and biological processes that neutralize acidity and assimilate atmospherically deposited nitrogen

  12. Transit time estimation using tritium and stable isotopes in a Mediterranean mountain catchment

    NASA Astrophysics Data System (ADS)

    Roig-Planasdemunt, Maria; Stewart, Mike; Latron, Jérôme; Llorens, Pilar; Morgenstern, Uwe

    2015-04-01

    Water resources of Mediterranean regions mainly depend on runoff generated in mountain areas. Therefore, study of the time water spends travelling through Mediterranean mountains is important for water resources management as it reflects the ability of catchments to retain and release water. Natural isotopes (tritium and stable isotopes) have been used in different environments to quantify the ages of water within catchments. However, there are relatively few studies of water transit times in Mediterranean mountain regions. Additionally, tritium dating is more common in Southern Hemisphere streams because they were less affected by tritium produced mainly in the North Hemisphere by nuclear weapons testing in the 1950s and 60s. With the aim of improving knowledge of the hydrological catchment functioning of Mediterranean mountain areas, this work estimates water transit times in spring water, groundwater and stream water using tritium and stable isotope (δ18O and δ2H) measurements in the Vallcebre Research Catchments (NE Spain, 42° 12'N, 1° 49'E). Tritium measurements from a previous study carried out in 1996-1998 (Herrmann et al., 1999) were supplemented by new samples collected on 3 November 2013. Difficulties with the age interpretation of the tritium measurements arise from the determination of the tritium input function, the different accuracies of the tritium measurements and the ambiguous ages resulting from past input of tritium from nuclear testing to the atmosphere. Water stable isotope samples were collected in rainfall, spring water, groundwater and streamwater at baseflow conditions every 15 days over a 27 month period. Detailed distributed hydrometric measurements (precipitation, potential evapotranspiration, discharge and water table level) were obtained during the same period. Preliminary results using δ18O, δ2H and tritium show that mean transit times in the Cal Rodó catchment (4.2 km2) ranged between 1.3 and 11.6 years. The lowest mean

  13. Influence of (relict) rock glaciers on the discharge behavior of alpine catchments applying a rainfall-runoff model - example of the Niedere Tauern Range (Austria)

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Winkler, Gerfried

    2014-05-01

    Debris accumulations and / or extensive surface weathering within a stream catchment are said to have a possible buffer action concerning flood propagation and might therefore be of interest in geological hazard assessments. Moreover, these deposits might act as (important) groundwater storage components and should therefore be of interest for water management purposes especially during periods of droughts. Although this is plausible, the actual quantification of these "phenomena" is scarce. Here we investigate a number of catchments in the Niedere Tauern Range (Austria) concerning the contribution of relict rock glaciers (and other debris accumulation) in regard to the runoff behavior. Rainfall-runoff models are applied for various (sub-) catchments with different amounts of rock glacier (or debris) coverage. In a first step, the hydrologic modeling is kept simple using a parsimonious lumped-parameter rainfall-runoff model on a daily time step. The variation in model parameter values from (sub-) catchment to (sub-) catchment should ideally correlate with the various degrees of relict rock glacier / debris coverages if their influence is significant. If so, their physical relevance could be helpful to on the one hand aid in catchment characterization and application in neighboring ungauged catchments, and on the other hand to evaluate future changes in the forcing climatic parameters (such as temperature and precipitation) and in the debris accumulations itself on the discharge behavior of alpine catchments. Preliminary results show that catchments with a difference in relict rock glacier coverage but similar other catchment characteristics show differences in the discharge behavior which becomes noticeable in the storage- or routing-related parameters of the model. Analyses of a single catchment including strongly rock glacier influenced sub-catchments indicate a significant storage capacity for the rock glacier itself compared to the average storage capacity of

  14. Comparison of New Airborne Gravity Results and GRACE Anomalies in the Thwaites Glacier Catchment of the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.

    2005-12-01

    on the gravity data are discussed. The combination of GPS-derived horizontal accelerations with meter-mounted accelerometer measurements allows for the direct calculation of platform leveling errors, including leakage of the horizontal accelerations into the measured vertical gravity. We examine the magnitude and significance of platform leveling errors in relation to the overall survey resolution. Power spectral analysis of the gravity illuminates differences in the anomaly detection threshold over thick ice like that near Byrd Subglacial Basin versus over thin ice like that near the Thwaites Glacier grounding line. Filtering requirements for this situation are discussed. A preliminary free-air gravity map for the Thwaites Glacier catchment is presented along with error analysis and initial structural interpretations. The interpretations of the airborne regional gravity will be compared to GRACE static gravity anomalies over the same area of the catchment.

  15. Hydrograph transposition to ungauged basin accounting for spatio-temporal rainfall variability

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Cudennec, Christophe

    2013-04-01

    Lack of measurements is one of the main issues in hydrological modelling. However, neighbours and nested gauged catchment are precious sources of information to understand the catchment behaviours within one region. Extracting the maximum of information from those points of measurements, that could be then transposed to ungauged catchment, is still a great challenge. We propose a methodology to transpose hydrological information from gauged catchments to ungauged ones, in order to simulate streamflow hydrographs. It uses geomorphology-based hydrological modelling, which is particularly well adapted to ungauged basins thanks to its robustness, generality and flexibility. We develop a geomorphology-based model on the gauged catchment which has been built in order to capture the main behaviour of the basin. Its transfer function considers the different dynamics of the catchment through the combination of velocities and width functions. Moreover, the explicit structure of the model enables to easily create a map of isochrone areas describing the time to the outlet. Therefore, spatially distributed rainfall can then be split into those isochrone areas, permitting the transfer function to deal with spatio-temporal variability of rainfall. Once the model calibrated, using a particle swarm optimisation algorithm, its transfer function is inversed to assess the net rainfall time series. In this way, we obtained a standardized variable which is used to estimate discharge in ungauged basin. Therefore, net rainfall time series is transposed and convoluted on the ungauged catchment using its own transfer function. Spatio-temporal rainfall variability between basins is considered through a correction of this net rainfall time series. This correction is based on differences between mean gross rainfall observation among those two catchments. This methodology is applied on pairs of basins among 6 gauged basins (from 5km² to 316km²) located in Brittany, France. For the benefit of

  16. Model‐based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments

    PubMed Central

    Wagener, Thorsten; McGlynn, Brian

    2015-01-01

    Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197

  17. An Open-Source Approach for Catchment's Physiographic Characterization

    NASA Astrophysics Data System (ADS)

    Di Leo, M.; Di Stefano, M.

    2013-12-01

    A water catchment's hydrologic response is intimately linked to its morphological shape, which is a signature on the landscape of the particular climate conditions that generated the hydrographic basin over time. Furthermore, geomorphologic structures influence hydrologic regimes and land cover (vegetation). For these reasons, a basin's characterization is a fundamental element in hydrological studies. Physiographic descriptors have been extracted manually for long time, but currently Geographic Information System (GIS) tools ease such task by offering a powerful instrument for hydrologists to save time and improve accuracy of result. Here we present a program combining the flexibility of the Python programming language with the reliability of GRASS GIS, which automatically performing the catchment's physiographic characterization. GRASS (Geographic Resource Analysis Support System) is a Free and Open Source GIS, that today can look back on 30 years of successful development in geospatial data management and analysis, image processing, graphics and maps production, spatial modeling and visualization. The recent development of new hydrologic tools, coupled with the tremendous boost in the existing flow routing algorithms, reduced the computational time and made GRASS a complete toolset for hydrological analysis even for large datasets. The tool presented here is a module called r.basin, based on GRASS' traditional nomenclature, where the "r" stands for "raster", and it is available for GRASS version 6.x and more recently for GRASS 7. As input it uses a Digital Elevation Model and the coordinates of the outlet, and, powered by the recently developed r.stream.* hydrological tools, it performs the flow calculation, delimits the basin's boundaries and extracts the drainage network, returning the flow direction and accumulation, the distance to outlet and the hill slopes length maps. Based on those maps, it calculates hydrologically meaningful shape factors and

  18. Estimating emissions of PFOS and PFOA to the Danube River catchment and evaluating them using a catchment-scale chemical transport and fate model.

    PubMed

    Lindim, C; Cousins, I T; vanGils, J

    2015-12-01

    Novel approaches for estimating the emissions of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to surface waters are explored. The Danube River catchment is used to investigate emissions contributing to riverine loads of PFOS and PFOA and to verify the accuracy of estimates using a catchment-scale dynamic fugacity-based chemical transport and fate model (STREAM-EU; Spatially and Temporally Resolved Exposure Assessment Model for European basins). Model accuracy evaluation performed by comparing STREAM-EU predicted concentrations and monitoring data for the Danube and its tributaries shows that the best estimates for PFOS and PFOA emissions in the Danube region are obtained by considering the combined contributions of human population, wealth (based on local gross domestic product (GDP)) and wastewater treatment. Human population alone cannot explain the levels of PFOS and PFOA found in the Danube catchment waters. Introducing wealth distribution information in the form of local GDPs improves emission estimates markedly, likely by better representing emissions resulting from consumer trends, industrial and commercial sources. For compounds such as PFOS and PFOA, whose main sink and transport media is the aquatic compartment, a major source to freshwater are wastewater treatment plants. Introducing wastewater treatment information in the emission estimations also further improves emission estimates. PMID:26367703

  19. Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change

    NASA Astrophysics Data System (ADS)

    Ruelland, D.; Ardoin-Bardin, S.; Collet, L.; Roucou, P.

    2012-03-01

    SummaryThis paper assesses the future variability of water resources in the short, medium and long terms over a large Sudano-Sahelian catchment in West Africa. Flow simulations were performed with a daily conceptual model. A period of nearly 50 years (1952-2000) was chosen to capture long-term hydro-climatic variability. Calibration and validation were performed on the basis of a multi-objective function that aggregates a variety of goodness-of-fit indices. The climate models HadCM3 and MPI-M under SRES-A2 were used to provide future climate scenarios over the catchment. Outputs from these models were used to generate daily rainfall and temperature series for the 21st century according to: (i) the unbias and delta methods application and (ii) spatial and temporal downscaling. A temperature-based formula was used to calculate present and future potential evapotranspiration (PET). The daily rainfall and PET series were introduced into the calibrated and validated hydrological model to simulate future discharge. The model correctly reproduces the observed discharge at the basin outlet. The Nash-Sutcliffe efficiency criterion is over 89% for both calibration and validation periods, and the volume error between simulation and observation is close to null for the overall considered period. With regard to future climate, the results show clear trends of reduced rainfall over the catchment. This rainfall deficit, together with a continuing increase in potential evapotranspiration, suggests that runoff from the basin could be substantially reduced, especially in the long term (60-65%), compared to the 1961-1990 reference period. As a result, the long-term hydrological simulations show that the catchment discharge could decrease to the same levels as those observed during the severe drought of the 1980s.

  20. Partitioning of catchment water budget and its implications for ecosystem carbon exchange

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, J.; Lee, K.-S.; Kim, S.

    2010-06-01

    Spatially averaged annual carbon budget is one of the key information needed to understand ecosystem response and feedback to climate change. Water availability is a primary constraint of carbon uptake in many ecosystems and therefore the estimation of ecosystem water use may serve as an alternative to quantify Gross Primary Productivity (GPP). To examine this concept, we estimated a long-term steady state water budget for the Han River basin (~26 000 km2) in Korea and examined its application for catchment scale carbon exchange. For this, the catchment scale evapotranspiration (ET) was derived from the long term precipitation (P) and discharge (Q) data. Then, using stable isotope data of P and Q along with other hydrometeorological information, ET was partitioned into evaporation from soil and water surfaces (ES), evaporation from intercepted rainfall (EI, and transpiration (T). ES was identified as a minor component of ET in the study areas regardless of the catchment scales. The annual T, estimated from ET after accounting for EI and ES for the Han River basin from 1966 to 2007, was 22~31% of annual P and the proportion decreased with increasing P. Assuming that T further constrains the catchment scale GPP in terms of water use efficiency (WUE), we examined the possibility of using T as a relative measure for the strength and temporal changes of carbon uptake capacity. The proposed relationship would provide a simple and practical way to assess the spatial distribution of ecosystem GPP, provided the WUE estimates in terms of GPP/T at ecosystem scale could be obtained. For carbon and water tracking toward a sustainable Asia, ascertaining such a spatiotemporally representative WUE and their variability is a requisite facing the flux measurement and modeling communities.

  1. Flash flood modelling for ungauged catchments

    NASA Astrophysics Data System (ADS)

    Garambois, P.-A.; Roux, H.; Larnier, K.; Dartus, D.

    2012-04-01

    Flash flood is a very intense and quick hydrologic response of a catchment to rainfall. This phenomenon has a high spatial-temporal variability as its generating storm, often hitting small catchments (few km2). Data collected by (Gaume et al. 2009) about 500 flash floods over the last 50 years showed that they could occur everywhere in Europe and more often in the Mediterranean regions, Alpine regions and continental Europe. Given the small spatial-temporal scales and high variability of flash floods, their prediction remains a hard exercise as the necessary data are often scarce. Flash flood prediction on ungauged catchments is one of the challenges of hydrological modelling as defined by (Sivapalan et al. 2003). Several studies have been headed up with the MARINE model (Modélisation de l'Anticipation du Ruissellement et des Inondations pour des évèNements Extrêmes) for the Gard region (France), (Roux et al. 2011), (Castaings et al. 2009). This physically based spatially distributed rainfall runoff model is dedicated to flash flood prediction. The study aims at finding a methodology for flash flood prediction at ungauged locations in the Cévennes-Vivarais region in particular. The regionalization method is based on multiple calibrations on gauged catchments in order to extract model structures (model + parameter values) for each catchment. Several mathematical methods (multiple regressions, transfer functions, krigging…) will then be tested to calculate a regional parameter set. The study also investigates the usability of additional hydrologic indices at different time scales to constrain model predictions from parameters obtained using these indices, and this independently of the model considered. These hydrologic indices gather information on hydrograph shape or catchment dynamic for instance. Results explaining global catchments behaviour are expected that way. The spatial-temporal variability of storms is also described through indices and linked with

  2. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  3. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff-erosion model in the Mamuaba catchment, Brazil.

    PubMed

    Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo

    2013-11-01

    This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.

  4. Catchment biophysical drivers of streamflow characteristics

    NASA Astrophysics Data System (ADS)

    Trancoso, R.

    2015-12-01

    The characteristics of streamflow reflect the co-evolution of climate, soils, topography and vegetation of catchments. Hydrological metrics or signatures can represent the long-term behaviour and integrate the influence of all the streamflow drivers. Although this sort of relationship has been developed in regional studies exploring prediction of Flow Duration Curves and other streamflow metrics, little is known about the controls of other key streamflow characteristics especially in continent scale. This study aims to understand how catchment biophysical variables control key hydrological metrics such as baseflow index, elasticity of streamflow to rainfall variability and intermittency in continent scale and regionally. We used a set of catchment biophysical variables to model key streamflow signatures using multivariate power-law and beta regressions in 355 catchments located along the eastern Australian seaboard. Streamflow signatures were derived from daily streamflow time series data from 1980 to 2013. We tested 52 catchment biophysical characteristics related to climate, soil, topography, geography, geomorphology, vegetation and land-cover as predictors of the streamflow signatures. The prediction R-squared ranged from 63 to 72% when relationships are built in continent scale, but can be greater than 80% when regressions are regionalised. The interpretation of the modelled relationships offers new insights regarding the controls of flow characteristics.

  5. Response of paleofloods to climate variability in alpine catchments of different size reconstructed from floodplain sediments. Similarities or differences?

    NASA Astrophysics Data System (ADS)

    Schulte, Lothar; Carvalho, Filipe; Llorca, Jaime; Monterrubio, Glòria; Peña, Juan Carlos; Cabrera-Medina, Paula; Gómez-Bolea, Antonio; Sánchez-García, Carlos

    2016-04-01

    Continuous palaeohydrological time series are generally attributed to lake sediments rather than to those of fluvial sediments. However, most of the alpine lakes analysed are fed by small catchments (few km2). Recent studies show the high potential of flood reconstruction form sedimentary floodplain proxies of mid-size catchments (hundreds of km2) when calibrated by historical sources or other markers. Despite of different catchment sizes, flood pulses achieved from lake and flood plain sediments coincides in some cases. Nevertheless, these correlations must not be taken for granted, because catchment response can be strongly influenced by local physiographic and climatic parameters such as the unequal spatial distribution of precipitation caused by summer thunderstorms and advective rainfall events. To contribute to this discussion, our study investigate new proxy data of three cores retrieved from a small basin in the Bernese Alps, fed by the alluvial fans of Eistlenbach (4 km2) and Farnigraben (2 km2) which were compared with the floodplain records from the nearby Aare (596 km2) and Lütschine (379 km2) catchments. Following the same methodology developed previously in the other alpine basins, a 3200-yr long flood series were reconstructed from sedimentary and geochemical data applying XRF-core scan techniques, conventional XRF, LOI and grain size analysis. Flood pulses were identified by 30 flood layers, and a higher number of Zr/Ti, Sr/Ti, Ca/Ti peaks and Factor 1 scores. Modern flood signals were calibrated by historical sources, maps, aerial photographs and instrumental data. Not all events were recorded by coarse-grained beds because of the spatial variations of alluvial fan channels and their connectivity to the small distal basin. Recurrence intervals of the tipping points of the fan channel oscillation are traced by key changes of sedimentation rates and facies. However, geochemical proxies correlate not only very close with the historical local data

  6. Estimating gully erosion contribution to large catchment sediment yield rate in Tanzania

    NASA Astrophysics Data System (ADS)

    Ndomba, Preksedis Marco; Mtalo, Felix; Killingtveit, Aanund

    The objective of this paper is to report on the issues and proposed approaches in estimating the contribution of gully erosion to sediment yield at large catchment. The case study is the upstream of Pangani River Basin (PRB) located in the North Eastern part of Tanzania. Little has been done by other researchers to study and/or extrapolate gully erosion results from plot or field scale to large catchment. In this study multi-temporal aerial photos at selected sampling sites were used to estimate gully size and morphology changes over time. The laboratory aerial photo interpretation results were groundtruthed. A data mining tool, Cubist, was used to develop predictive gully density stepwise regression models using aerial photos and environment variables. The delivery ratio was applied to estimate the sediment yield rate. The spatial variations of gully density were mapped under Arc View GIS Environment. Gully erosion sediment yield contribution was estimated as a ratio between gully erosion sediment yield and total sediment yield at the catchment outlet. The general observation is that gullies are localized features and not continuous spatially and mostly located on some mountains’ foot slopes. The estimated sediment yield rate from gullies erosion is 6800 t/year, which is about 1.6% of the long-term total catchment sediment yield rate. The result is comparable to other study findings in the same catchment. In order to improve the result larger scale aerial photos and high resolution spatial data on soil-textural class and saturated hydraulic conductivity - are recommended.

  7. Overland flow and sediment transport in an agricultural lowland catchments: a focus on tile drain export

    NASA Astrophysics Data System (ADS)

    Vandromme, Rosalie; Grangeon, Thomas; Cerdan, Olivier; Manière, Louis; Salvador Blanes, Sébastien; Foucher, Anthony; Chapalain, Marion; Evrard, Olivier; Le Gall, Marion

    2016-04-01

    Rural landscapes have been extensively modified by human activities in Western Europe since the beginning of the 20th century in order to intensify agricultural production. Cultivated areas often expanded at the expense of grassland and wetlands located in lowland areas (de Groot et al., 2002). Therefore, large modifications were made to the agricultural landscapes: stream redesign, land consolidation, removal of hedges, and installation of tile drainage networks to drain the hydromorphic soils. These changes modified sediment processes and resulted in large morphological alterations (e.g. channel bed incision, deposition of fine sediment, channel bank erosion). Accordingly, these alterations threaten water quality and prevent to meet the requirements of the European directives. Improving water quality requires a clear understanding of the hydrosedimentary dynamics in these lowland cultivated catchments. However, few studies were conducted in drained environments. To fill this research gap, a pilot study was started in cultivated catchment of the Loire River basin, France, where tile drain densities are very high (> 1.5 km/km²). Six hydro-sedimentary monitoring stations were installed in the Louroux catchment (24 km²). One of them was specifically dedicated to measuring water/sediment fluxes from tile drains. Water level and turbidity were continuously monitored and sediments were sampled during floods and low stage periods. Samples were measured for particle size distribution, and sediment tracing studies are currently being developed to quantify the contribution of potential sources (e.g. surface vs subsurface, lithologies) to river sediment. Hydro-sedimentary fluxes were quantified and modelled for some selected events. The catchment hydrosedimentary fluxes and their properties were shown to be impacted by tile drain sediment transport, especially regarding particle size distribution, with the dominant export of very fine particles (< 2 μm) from tile drains

  8. Sound management of sediment yields at the catchment scale by small detention ponds

    NASA Astrophysics Data System (ADS)

    Sikorska, A. E.; Wasilewicz, M.; Banasik, K.

    2012-04-01

    Keywords: small detention pond, sediment deposits, reservoir silting, urban catchment Globally observed land use and climate changes have a clear impact on the sediment yields deriving from the catchment. Released sediments may originate from different point and non-point sources. Thereby it is difficult to manage and reduce sediment loads directly at the source without undertaking detailed and expensive monitoring programs. Small detention ponds are therefore frequently used water management systems in urban settlements to improve water quality at the catchment scale. Such ponds located at the outlet of small basins allow reducing sediment loads downstream. Additionally, they capture sediment-associated contaminants as heavy metals, nutrients and micropollutants. On the other hand, a sedimentation within the pond may be a severe problem because it decreases over the time its retention capacity. This is especially significant for small detention ponds, where the siltation rate is high. These ponds can loose their total capacity already after few years of their exploitation when no dredging operations are considered. Unfortunately, maintenance costs of small ponds are expensive and usually not taken into account when planning and constructing such ponds. Consequently, many small detention ponds become inefficient after an entire use of their capacity. Therefore careful planning of maintenance options is essential to keep an effectiveness of such ponds on the expected level. Within presented here study we addressed the problem of silting small detention ponds and we assessed an applicability of such ponds to manage sediment yields discharged from small urban catchments. To this end, a periodic measurement of deposited sediments within a small detention pond (1.35 ha, 5 years old, Warsaw, Poland) has been undertaken. This pond receives a polluted runoff from a small urbanized basin (30 km2), for which no routine sediment measurement exists. The spatial sediment

  9. Controls on River Longitudinal Profiles: Waipaoa River Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Livingston, D. M.; Gomez, B.

    2006-12-01

    In a regional sense, rivers adjust their gradient to discharge and the character of the rock or sediment that forms the channel boundary. Accordingly, as J.T. Hack demonstrated, rivers of the same size flowing across similar substrates tend to have similar profiles. The neighboring 222 km2 Mangatu and 239 km2 Upper Waipaoa catchments in the headwaters of the Waipaoa River basin, New Zealand, offer an ideal setting in which to examine the interaction of these and other variables on river longitudinal profiles. These two catchments are not only under laid by similar lithologies, but also have been subjected to a similar climatic regime and have experienced a similar rate of uplift during the past ~15 kyr. There is also little difference in total-relief, drainage density and the frequency distribution of slope angles between the two catchments, or in the median size of sediment present along the main stream channels. Yet, despite these similarities, the longitudinal profiles of the Mangatu and Upper Waipaoa rivers are quite different, and the upper reaches of the main stream in latter catchment are ~100-m lower than adjacent reaches along the neighboring Mangatu River. We attribute the difference in the longitudinal profiles to the way in which discharge increases in a downstream direction along the two rivers. Simply put, in the Mangatu catchment drainage area increases much more slowly with main stream channel length than it does in the Upper Waipaoa catchment. In the absence of obvious differences in the regional environment, the observed difference between the longitudinal profiles of similar sized rivers in neighboring basins serves to emphasize that the distribution of energy in the stream-channel system is dependent on the structure of the drainage network, and that an orderly empirical relationship between drainage basin area and the length of the main stream channel may not always apply.

  10. A simple hydrologic model for rapid prediction of runoff from ungauged coastal catchments

    NASA Astrophysics Data System (ADS)

    Wan, Yongshan; Konyha, Kenneth

    2015-09-01

    We developed a lumped conceptual rainfall-runoff model for rapid prediction of runoff generated in the unique hydrological setting with flat terrain, sandy soils, high groundwater table, and a dense drainage canal network in south Florida. The model is conceptualized as rainfall and evapotranspiration filling and emptying the root zone and excess rainfall recharging three storage zones. Outflows from these storage zones, routed with parallel arrangement of three linear reservoirs, represent different flow components of catchment runoff, i.e., slow drainage (shallow subsurface flow), medium drainage (interflow and saturation excess overland flow), and fast drainage (direct runoff from impervious urban areas or from water table management in agricultural land). The model is parsimonious with eight model parameters along with two optional water management parameters. A regionalization study was conducted through model parameterization to achieve target hydrological behavior of typical land uses, which are the most significant basin descriptor affecting catchment hydrology in south Florida. Cross validation with 16 gauged basins dominated by urban, agricultural, and natural lands, respectively, indicated that the model provides an effective tool for rapid prediction of runoff in ungauged basins using the regionalized model parameters. A case study is presented, involving application of the model to support real-time adaptive management to hydrological operations for protection of estuarine ecosystems.

  11. Understanding Polycyclic Aromatic Hydrocarbon transfers at the catchment scale combining chemical and fallout radionuclides analyses

    NASA Astrophysics Data System (ADS)

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2013-04-01

    Contamination of river water and sediment constitutes a major environmental issue for industrialized countries. Polycyclic Aromatic Hydrocarbons (PAHs) are a group of persistent organic pollutants characterized by two or more fused rings. In recent years, studies dealing with PAHs have grown in number. Some PAHs present indeed a high risk for environment and human health because of their carcinogenic and mutagenic properties. However, most of these studies focused on measuring PAH concentration in the different compartments of the environment (air, soil, sediment, water, etc.) In this context, there remains a lack of understanding regarding the various processes responsible for PAH transfers from one environmental compartment to another. Our study aims to quantify PAHs transfers at the catchment scale by combining chemical analysis with gamma spectrometry. Air, soil, river water and sediment samples (n=820) were collected in two upstream sub-catchments of the Seine River basin (France) during one year. Chemical analyses were carried out to determine PAHs concentrations in all samples. Furthermore, measurement of fallout radionuclides (Beryllium-7, Lead-210, Caesium-137) in both rainfall and river sediment provided a way to discriminate between freshly eroded sediment vs. resuspension of older material that previously deposited on the riverbed. This information is crucial to estimate PAH residence time and transfer velocities in the Seine River basin. The results show that the PAH behaviour varies from one subcatchment to the next. PAH transfers depend indeed on both the characteristics of the catchment (e.g. topography, presence of drained cropland in catchments) and the local anthropogenic pressures. A significant increase in atmospheric deposition of PAHs is observed during winter due to a larger number of sources (household heating). The 14-month study has also highlighted the seasonal variations of PAH fluxes, which are mainly related to the hydrological

  12. A tentative of Holocene sediment budget for the Seulles catchment (western France)

    NASA Astrophysics Data System (ADS)

    Viel, Vincent; Lespez, Laurent; Delahaye, Daniel; Le Gouee, Patrick

    2010-05-01

    Geomorphological and paleoenvironmental researches on Holocene sedimentation in the valleys of Normandy provide evidence for fluvial system changes related to climate and human activities in the Paris basin. Alluvial and colluvial deposits are important as archives of past environments changes. They can be used to construct the temporal frameworks for historical erosion and to give an indication of the past erosion processes. Few studies attempts to make long-term soil erosion and sediment storage in the valley bottom in North-western France. This work put into forward results of a research on Holocene sediment budget. This study focuses in the Seulles catchment (430 km²), located in Normandy at the junction between the Armorican massif (upstream part) and the sedimentary Paris Basin (downstream part). In order to reconstruct the Holocene sediment budget, different approaches were used to quantify sediment deposit within the floodplain, soil erosion rates and colluvial deposition. To characterize and quantify the sediment storage into the valley bottoms, 32 partial or complete cross-sections, regularly placed along the valley bottom, were established. These field investigations allow to evaluate the global bulk of fluvial sediment storage into the catchment. In a second step, the assessment of dry bulk densities permits to convert volumetric data into weight. To establish the chronology of the alluvial filling, 6 drilling cores were realized on selected cross-sections to sample organic material content for AMS radiocarbon dating. In total, 38 dates were obtained at the catchment scale and numerous are in process. In the same way, we evaluated Holocene slope erosion and sediment storage using soils profiles descriptions determined from auger coring transects of two small catchments (15 Km²). Results demonstrate the existence until 2500 BP of two morpho-sedimentary units (a model related to sediments dynamics into the catchment and a second one related to the

  13. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    NASA Astrophysics Data System (ADS)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  14. Before and after integrated catchment management in a headwater catchment: changes in water quality.

    PubMed

    Hughes, Andrew O; Quinn, John M

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures. PMID:25228091

  15. Before and after integrated catchment management in a headwater catchment: changes in water quality.

    PubMed

    Hughes, Andrew O; Quinn, John M

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  16. Seasonal variability of suspended sediment transport in the Seine river catchment area (France)

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Baati, Selma; Ayrault, Sophie; Bonte, Philippe; Evrard, Olivier; Kissel, Catherine

    2010-05-01

    This study consists in an innovative application of environmental physico-chemical techniques on fluvial sediments with the aim to trace the seasonal changes in suspended sediment transport of the complex Seine river catchment area in northern France. The aim of this project is to develop a detailed understanding for the discrimination of naturally triggered and anthropogenic induced processes and their temporal changes with weather conditions. With a focus on the heavy metal fraction, we determine the regional distribution of the suspended material and search for environmental fingerprints demonstrating the influence of fluvial transport mechanisms, changes in concentration related to discharge variations or different sediment sources, and in-situ alteration caused by variations in the geochemical conditions (oxy-redox, pH, Eh, etc.). To achieve these goals, we apply a combination of straightforward rock magnetic hysteresis measurements (performed using an AGM2900 at the LSCE) and advanced scanning electron microscopy analyses (SEM). This interdisciplinary approach allows refining the detailed analysis of sediment trap samples, originating from Tessier et al. (2003), as recently shown by Franke et al. (2009). In our preliminary results, we observe a general increase in magnetic concentrations from summer to winter conditions, coupled with a magneto-mineralogic change to rather reduced metallic mineral phases. However, each riversection of the Seine system shows its specific trend