Catchment Systems Engineering: A New Paradigm in Water Management
NASA Astrophysics Data System (ADS)
Quinn, P. F.; Wilkinson, M. E.; Burke, S.; O'Donnell, G. M.; Jonczyk, J.; Barber, N.; Nicholson, A.
2012-04-01
Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Catchment Systems Engineering seeks to describe catchment the function (or role) as the principal driver for evaluating how it should be managed in the future. Catchment Systems Engineering does not seek to re-establish a natural system but rather works with natural processes in order to engineer landscapes to accrue multiple benefits. The approach involves quantifying and assessing catchment change, impacts and most importantly, suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders. This inclusive concept under a Catchment Systems Engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of Catchment Systems Engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management, whilst maintaining economic food production. Examples using soft engineered features such as wetlands, ponds, woody debris dams and infiltration zones will be shown. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Evidence that impacts can be achieved at local catchment scale will be introduced. Catchment Systems Engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving agenda which is facilitated by policy makers and is underpinned by scientific knowledge. http:\\research.ncl.ac.ukproactive
Catchment Engineering: A New Paradigm in Water Management
NASA Astrophysics Data System (ADS)
Quinn, P. F.; Burke, S.; O'Donnell, G. M.; Wilkinson, M.; Jonczyk, J.; Barber, N.; Nicholson, A.; Proactive Team
2011-12-01
Recent catchment initiatives have highlighted the need for new holistic approaches to sustainable water management. Here, a catchment engineering approach seeks to describe catchment 'function' (or role) as the principal driver for evaluating how it should be managed in the future. Catchment engineering does not seek to re-establish a natural system but seeks to work with natural processes in order to engineer landscapes so that multiple benefits accrue. This approach involves quantifying and assessing catchment change and impacts but most importantly suggests an urgent and proactive agenda for future planning. In particular, an interventionist approach to managing hydrological flow pathways across scale is proposed. It is already accepted that future management will require a range of scientific expertise and full engagement with stakeholders, namely the general public and policy makers. This inclusive concept under a catchment engineering agenda forces any consortia to commit to actively changing and perturbing the catchment system and thus learn, in situ, how to manage the environment for collective benefits. The shared cost, the design, the implementation, the evaluation and any subsequent modifications should involve all relevant parties in the consortia. This joint ownership of a 'hands on' interventionist agenda to catchment change is at the core of catchment engineering. In this paper we show a range of catchment engineering projects from the UK that have addressed multi-disciplinary approaches to flooding, pollution and ecosystem management whilst maintaining economic food production. Local scale demonstration activities, led by local champions, have proven to be an effective means of encouraging wider uptake. Catchment engineering is a concept that relies on all relevant parties within a catchment to take responsibility for the water quantity and quality that arises from the catchment. Further, any holistic solution requires a bottom up, problem solving agenda which is facilitated by policy makers and is underpinned by scientific knowledge.
Try This: Construct a Water Catchment
ERIC Educational Resources Information Center
Teaching Science, 2017
2017-01-01
EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article describes a project designed to teach middle school students how to construct a water catchment system. Water…
Restoration of active gully systems following the implementation of bioengineering techniques.
NASA Astrophysics Data System (ADS)
Borja, Pablo; Vanacker, Veerle; Govers, Gerard
2015-04-01
Intensive land use in the central parts of the Andean basin has led to widespread land degradation. The formation of badlands dates back from the 1950s and 1960s. Several studies indicate that human activities have accelerated mountain erosion rates by up to 100 times. In this study, we have evaluated the effects of bio-engineering works aiming to stabilize degraded catchments. Five micro-catchments (0.2 up to 5 ha) have been selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The five micro-catchments differ in vegetation cover and implementation of bio-engineering works. The experimental design consisted of three micro-catchments: (1) DI with conservation works, (2) DF with reforestation by Eucalyptus sp and (3) DT with no conservation works. Two micro-catchments have been monitored in an agricultural area: with (AI) and without (AT) bio-engineering works in the active gullies. Small checkdams were constructed in the gully floors of two of the micro-catchments in the badland area (DI) and the agricultural area (AI). The checkdams are made of wood and tires. Water flow has been measured in every micro-catchment, while sediment traps were constructed to monitor sediment transport. Results show that bio-engineering techniques are effective to stabilize active gullies. Deposition of sediments in manmade dams is strongly dependent on previous rainfall events, as well as gully channel slope, and its vegetation cover. From the experimental data, an I30 max threshold value was determined. Above this threshold value, all micro-catchments are actively contributing sediment to the main river system. The checkdams built with wood and tires have an efficiency of 70%, and were shown to be very effective to stabilize active gullies in bad lands through significant reduction (about 62%) of the amount of sediment exported from the micro-catchments. Key words: degraded soils, erosion, sediment, restoration, reforestation
A Catchment Systems Engineering (CSE) approach to managing intensively farmed land
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg
2014-05-01
Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.
The catchment based approach using catchment system engineering
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark
2015-04-01
The catchment based approach (CaBa) has been championed as a potential mechanism for delivery of environmental directives such as the Water Framework Directive in the UK. However, since its launch in 2013, there has been only limited progress towards achieving sustainable, holistic management, with only a few of examples of good practice ( e.g. from the Tyne Rivers trust). Common issues with developing catchment plans over a national scale include limited data and resources to identify issues and source of those issues, how to systematically identify suitable locations for measures or suites of measures that will have the biggest downstream impact and how to overcome barriers for implementing solutions. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. A significant component of the runoff generation can be managed by targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source, many runoff attenuation features or measures can be co-located to achieve benefits for water quality and biodiversity. A catchment, community-led mitigation measures plan using the CSE approach will be presented from a catchment in Northumberland, Northern England that demonstrate a generic framework for identification of multi-purpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-ditch measures. Progress on the implementation of measures will be reported alongside potential impacts on the runoff regime at both local and catchment scale and costs.
An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments
C. Gabrielli; J.J. McDonnell
2011-01-01
Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine...
Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J
2014-01-15
Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended sediment losses during storm events. © 2013.
Shaping the Future Landscape: Catchment Systems Engineering and the Decision Support Matrix Approach
NASA Astrophysics Data System (ADS)
Hewett, Caspar; Quinn, Paul; Wilkinson, Mark; Wainwright, John
2017-04-01
Land degradation is widely recognised as one of the great environmental challenges facing humanity today, much of which is directly associated with human activity. The negative impacts of climate change and of the way in which we have engineered the landscape through, for example, agriculture intensification and deforestation, need to be addressed. However, the answer is not a simple matter of doing the opposite of current practice. Nor is non-intervention a viable option. There is a need to bring together approaches from the natural and social sciences both to understand the issues and to act to solve real problems. We propose combining a Catchment Systems Engineering (CSE) approach that builds on existing approaches such as Natural Water Retention Measures, Green infrastructure and Nature-Based Solutions with a multi-scale framework for decision support that has been successfully applied to diffuse pollution and flood risk management. The CSE philosophy follows that of Earth Systems Engineering and Management, which aims to engineer and manage complex coupled human-natural systems in a highly integrated, rational manner. CSE is multi-disciplinary, and necessarily involves a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. It offers a rational approach which accepts the fact that we need to engineer and act to improve the functioning of the existing catchment entity on which we rely. The decision support framework proposed draws on physical and mathematical modelling; Participatory Action Research; and demonstration sites at which practical interventions are implemented. It is predicated on the need to work with stakeholders to co-produce knowledge that leads to proactive interventions to reverse the land degradation we observe today while sustaining the agriculture humanity needs. The philosophy behind CSE and examples of where it has been applied successfully are presented. The Decision Support Matrix (DSM) approach is introduced as a way to engage stakeholders at all scales, helping to inform decision making and motivate intervention. Two existing visualization and communication tools produced using the DSM approach are discussed: The FARM (Floods and Agriculture Risk Matrix) and CAVERTI (Communication And Visualizing Erosion-associated Risks to Infrastructure). Such tools can play a central role in encouraging a more holistic engineering approach to managing catchment system function that combines food production with a reversal of land degradation, providing a 'win-win' situation for all.
NASA Astrophysics Data System (ADS)
Borja, P.; Vanacker, V.; Alvarado, D.; Govers, G.
2012-04-01
A better insight in the processes controlling sediment generation, transport and deposition in badlands is necessary to enhance restoration of degraded soils through eco-engineering techniques. In this study, we evaluate the effect of different bio-engineering measures on soil and slope stability. Five micro-catchments (of 0.2 to 5 ha) were selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The micro-catchments differ only by land cover and degree of implementation of soil and water conservation measures. Bio-engineering techniques were used to construct dikes made of fascines of wooden sticks and earth-filled tires in active gully beds, where they are most efficient to reduce water and sediment transport. The experimental design consists of three micro-catchments within highly degraded lands: (DI) micro-catchment with bio-engineering measures concentrated in the active gully beds, (DF) with reforestation of Eucalyptus trees, and (DT) reference situation without any conservation measures. Two micro-catchments were monitored in agricultural lands with (AI) and without (AT) bio-engineering measures in the active gully beds. All catchments were equipped with San Dimas flumes to measure water flow, and sediment traps to monitor sediment export. In the (active) gully beds, various parameters related to gully stability (soil water content, bed elevation, vegetation cover, sedimentation/erosion) were monitored at weekly intervals. First results show that bio-engineering techniques are efficient to stabilize active gully beds through a reduction of the rapid concentration of excess rainfall and the sediment production and transfer. Fascines made of wooden sticks are far more efficient than earth-filled tires. Sediment deposition behind dikes is strongly dependent on precedent rainfall events, and the slope and vegetation cover of the gully floor. The sediment deposited facilitates colonization of the gully floor by native grass and shrub species. Analyses of soil samples indicates that the soil moisture is significantly higher (and the bulk density lower) in the deposition zones within restored gullies compared to the reference situation. During rainfall events, the infiltration in the deposition zones becomes important. The increase in water availability in the gully floor permits grass seeds to germinate and shoot rapidly, which strongly enhances gully stabilization.
Qin, Hua-Peng; Su, Qiong; Khu, Soon-Thiam
2013-01-15
Integrated water environmental management in a rapidly urbanizing area often requires combining social, economic and engineering measures in order to be effective. However, in reality, these measures are often considered independently by different planners, and decisions are made in a hierarchical manner; this has led to problems in environmental pollution control and also an inability to devise innovative solutions due to technological lock-in. In this paper, we use a novel coupled system dynamics and water environmental model (SyDWEM) to simulate the dynamic interactions between the socio-economic system, water infrastructure and receiving water in a rapidly urbanizing catchment in Shenzhen, China. The model is then applied to assess the effects of proposed socio-economic or engineering measures on environmental and development indicators in the catchment for 2011-2020. The results indicate that 1) measures to adjust industry structures have a positive effect on both water quantity and quality in the catchment; 2) measures to increase the labor productivity, the water use efficiency, the water transfer quota or the reclaimed wastewater reuse can alleviate the water shortage, but cannot improve water quality in the river; 3) measures to increase the wastewater treatment rate or the pollutant removal rate can improve water quality in the river, but have no effect on water shortage. Based on the effectiveness of the individual measures, a combination of socio-economic and engineering measures is proposed, which can achieve water environmental sustainability in the study area. Thus, we demonstrate that SyDWEM has the capacity to evaluate the effects of both socio-economic and engineering measures; it also provides a tool for integrated decision making by socio-economic and water infrastructure planners. Copyright © 2012 Elsevier Ltd. All rights reserved.
Simulating Catchment Scale Afforestation for Mitigating Flooding
NASA Astrophysics Data System (ADS)
Barnes, M. S.; Bathurst, J. C.; Quinn, P. F.; Birkinshaw, S.
2016-12-01
After the 2013-14, and the more recent 2015-16, winter floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. However, the role of forests as a natural flood management practice remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. This project aims to improve the understanding of the impacts of upland afforestation on flood risk at the sub-catchment and full catchment scales. This will be achieved through an integrated fieldwork and modelling approach, with the use of a series of process based hydrological models to scale up and examine the effects forestry can have on flooding. Furthermore, there is a need to analyse the extent to which land management practices, catchment system engineering and the installation of runoff attenuation features (RAFs), such as engineered log jams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. Additionally, the proportion of a catchment or riparian reach that would need to be forested in order to achieve a significant impact on reducing downstream flooding will be defined. The consequential impacts of a corresponding reduction in agriculturally productive farmland and the potential decline of water resource availability will also be considered in order to safeguard the UK's food security and satisfy the global demand on water resources.
Catchment systems science and management: from evidence to resilient landscapes
NASA Astrophysics Data System (ADS)
Quinn, Paul
2014-05-01
There is an urgent need to reassess both the scientific understanding and the policy making approaches taken to manage flooding, water scarcity and pollution in intensively utilised catchments. Many European catchments have been heavily modified and natural systems have largely disappeared. However, working with natural processes must still be at the core of any future management strategy. Many catchments have greatly reduced infiltration rates and buffering capacity and this process needs to be reversed. An interventionist and holistic approach to managing water quantity and quality at the catchment scale is urgently required through the active manipulation of natural flow processes. Both quantitative (field experiments and modelling) and qualitative evidence (local knowledge) is required to demonstrate that catchment have become 'unhealthy'. For example, dense networks of low cost instrumentation could provide this multiscale evidence and, coupled with stakeholder knowledge, build a comprehensive understanding of whole system function. Proactive Catchment System Management is an interventionist approach to altering the catchment scale runoff regime through the manipulation of landscape scale hydrological flow pathways. Many of the changes to hydrological processes cannot be detected at the catchment scale as the primary causes of flooding and pollution. Evidence shows it is the land cover and the soil that are paramount to any change. Local evidence shows us that intense agricultural practices reduce the infiltration capacity through soil degradation. The intrinsic buffering capacity has also been lost across the landscape. The emerging hydrological process is one in which the whole system responds too quickly (driven by near surface and overland flow processes). The bulk of the soil matrix is bypassed during storm events and there is little or no buffering capacity in the riparian areas or in headwater catchments. The prospect of lower intensity farming rates is highly unlikely owing to a growing world population and future climates may be driven by more intense rainfall. Together these will increase runoff rates further, generating more erosion, water pollution and floods. A reduction in recharge to the deeper soil and aquifers also increases the chance of droughts as the natural groundwater reservoirs are not replenished. Hence the urgent need to put back the infiltration and buffering capacity for whole catchments. A strategic plan for where, what and how we grow crops and rear animals within catchments is the first step. Example case studies will be presented that provide evidence that intense farming activities can be offset by the creation of soft engineered wetlands, runoff attenuation ponds, buffer strips and high infiltration zones. A fresh look at how our catchments work and an assessment of what is a healthy food and water dynamic for that system is reviewed. Through gathering local evidence of problems and solutions we can demonstrate how healthy catchments should function for the long term.
NASA Astrophysics Data System (ADS)
Twilley, R.
2014-12-01
Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only through rethinking how we manage the Mississippi River not only to provide for navigation and flood control, but also as the critical source of sediments to stabilize degrading wetlands, will restoration be realized in a 100-year project cycle.
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.
2014-12-01
In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.
Dew Point Evaporative Comfort Cooling
2012-11-01
assisting with the installation of the data acquisition system and multiyear performance testing. Fort Carson engineers worked with the project...partners to design and integrate the Coolerado units into five facilities and designed an innovative rain water catchment system for four units at the...Theater. Mountain Energy Partnership provided invaluable assistance with the design and installation of the data acquisition system , as well as data
NASA Astrophysics Data System (ADS)
Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.
2017-07-01
Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.
Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.
2017-01-01
Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651
Catchment-scale environmental controls of sediment-associated contaminant dispersal
NASA Astrophysics Data System (ADS)
Macklin, Mark
2010-05-01
Globally river sediment associated contaminants, most notably heavy metals, radionuclides, Polychlorinated Biphenyls (PCBs), Organochlorine pesticides (OCs) and phosphorous, constitute one the most significant long-term risks to ecosystems and human health. These can impact both urban and rural areas and, because of their prolonged environmental residence times, are major sources of secondary pollution if contaminated soil and sediment are disturbed by human activity or by natural processes such as water or wind erosion. River catchments are also the primary source of sediment-associated contaminants to the coastal zone, and to the ocean, and an understanding of the factors that control contaminated sediment fluxes and delivery in river systems is essential for effective environmental management and protection. In this paper the catchment-scale controls of sediment-associated contaminant dispersal are reviewed, including climate-related variations in flooding regime, land-use change, channel engineering, restoration and flood defence. Drawing on case studies from metal mining impacted catchments in Bolivia (Río Pilcomayo), Spain (Río Guadiamar), Romania (River Tisa) and the UK (River Swale) some improved methodologies for identifying, tracing, modelling and managing contaminated river sediments are proposed that could have more general application in similarly affected river systems worldwide.
Modeling of facade leaching in urban catchments
NASA Astrophysics Data System (ADS)
Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.
2012-12-01
Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.
Impact of macropores and gravel outcrops on phosphorus leaching at the plot scale in silt loam soils
USDA-ARS?s Scientific Manuscript database
In response to increased nutrient loads in surface waters, scientists and engineers need to identify critical nutrient source areas and transport mechanisms within a catchment to protect beneficial uses of aquatic systems in a cost effective manner. It was hypothesized that hydrologic heterogeneitie...
NASA Astrophysics Data System (ADS)
Smith, David; Grand-Clement, Emile; Brazier, Richard
2014-05-01
Replacing Concrete with Natural and Social Engineering: Learning the Lessons of Stakeholder Engagement from South West Water's Upland Catchment Management Programme Smith, D., Grand-Clement, E., Anderson, K., Luscombe, D., G, N., Bratis, Brazier, R.E Peatlands in the South West of the British Isles have been extensively drained for agricultural reclamation and peat cutting. The improvement in food production resulting from this management practice has never clearly been observed. Instead, we are now faced with several detrimental consequences on a whole suite of ecosystem services, such as the delivery of water, water quality, biodiversity and carbon storage. Alongside the direct environmental implications, poor water quality is increasing water treatment costs and will drive significant future investment. As a result, water companies now need to find appropriate solutions to varying water levels and decreasing water quality through catchment management. The Mires Project, the catchment management programme used by South West Water (SWW) is working with a wide range of stakeholders to restore the hydrological functioning of peatlands, and the ecosystem services they provide. This programme is driven by overarching legal requirements (i.e. the water framework directive, Natura 2000), future climate change predictions, corporate responsibility and commercial needs. Post-restoration scientific monitoring is at the heart of the project improving of our understanding of the eco-hydrological and chemical process driving changes in management practice. The challenges faced from the involvement of a wide range of stakeholders will be explored, focusing on the benefits from stakeholder involvement in catchment management and hydrological research, but also considering the difficulties to be overcome. SWW is working with private land-owners, government agencies, local and national park Authorities, community and single interest groups and research institutions to achieve its catchment management objectives. To achieve this it has replaced the traditional water company approach of hard engineering solutions with a mixture of softer natural and social engineering.
The effects of floodplain forest restoration and logjams on flood risk and flood hydrology
NASA Astrophysics Data System (ADS)
Dixon, Simon; Sear, David A.; Sykes, Tim; Odoni, Nicholas
2015-04-01
Flooding is the most common natural catastrophe, accounting for around half of all natural disaster related deaths and causing economic losses in Europe estimated at over € 2bn per year. In addition flooding is expected to increase in magnitude and frequency with climate change, effectively shortening the return period for a given magnitude flood. Increasing the height and extent of hard engineered defences in response to increased risk is both unsustainable and undesirable. Thus alternative approaches to flood mitigation are needed such as harnessing vegetation processes to slow the passage of flood waves and increase local flood storage. However, our understanding of these effects at the catchment scale is limited. In this presentation we demonstrate the effects of two river restoration approaches upon catchment scale flood hydrology. The addition of large wood to river channels during river restoration projects is a popular method of attempting to improve physical and biological conditions in degraded river systems. Projects utilising large wood can involve the installation of engineered logjams (ELJs), the planting and enhancement of riparian forests, or a combination of both. Altering the wood loading of a channel through installation of ELJs and increasing floodplain surface complexity through encouraging mature woodland could be expected to increase the local hydraulic resistance, increasing the timing and duration of overbank events locally and therefore increasing the travel time of a flood wave through a reach. This reach-scale effect has been documented in models and the field; however the impacts of these local changes at a catchment scale remains to be illustrated. Furthermore there is limited knowledge of how changing successional stages of a restored riparian forest through time may affect its influence on hydromorphic processes. We present results of a novel paired numerical modelling study. We model changes in flood hydrology based on a 98km² catchment using OVERFLOW; a simplified hydrological model using a spatially distributed unit hydrograph approach. Restoration scenarios for the hydrological modelling are informed by the development of a new conceptual model of riparian forest succession, including quantitative estimates of deadwood inputs to the system, using a numerical forest growth model. We explore scenarios using ELJs alone as well as managed and unmanaged riparian forest restoration at scales from reach to sub-catchment. We demonstrate that changes to catchment flood hydrology with restoration are highly location dependant and downstream flood peaks can in some cases increase through synchronisation of sub-catchment flood waves. We constrain magnitude estimates for increases and decreases in flood peaks for modelled restoration scenarios and scales. Finally we analyse the potential for using riparian forest restoration as part of an integrated flood risk management strategy, including specific examples of type and extent of restoration which may prove most beneficial.
Quantitative generalizations for catchment sediment yield following forest logging
James C. Bathurst; Andrés Iroumé
2014-01-01
Published data for temperate forests across the world are analyzed to investigate the potential for generalized quantitative expressions of catchment sediment yield impact in the years immediately following logging. Such generalizations would be useful in a variety of forestry and engineering tasks and would aid the spread of knowledge amongst both relevant...
Floods and climate: emerging perspectives for flood risk assessment and management
NASA Astrophysics Data System (ADS)
Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L. M.; Brauer, A.; Cioffi, F.; Delgado, J. M.; Gocht, M.; Guzzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H.-H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P. J.; Weiler, M.; Wilhelm, B.; Nied, M.
2014-07-01
Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.
A bottom up approach for engineering catchments through sustainable runoff management
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Quinn, P. F.; Jonczyk, J.; Burke, S.
2010-12-01
There is no doubt that our catchments are under great stress. There have been many accounts around the world of severe flood events and water quality issues within channels. As a result of these, ecological habitats in rivers are also under pressure. Within the United Kingdom, all these issues have been identified as key target areas for policy. Traditionally this has been managed by a policy driven top down approach which is usually ineffective. A one ‘size fits all’ attitude often does not work. This paper presents a case study in northern England whereby a bottom up approach is applied to multipurpose managing of catchments at the source (in the order of 1-10km2). This includes simultaneous tackling of water quality, flooding and ecological issues by creating sustainable runoff management solutions such as storage ponds, wetlands, beaver dams and willow riparian features. In order to identify the prevailing issues in a specific catchment, full and transparent stakeholder engagement is essential, with everybody who has a vested interest in the catchment being involved from the beginning. These problems can then be dealt with through the use of a novel catchment management toolkit, which is transferable to similar scale catchments. However, evidence collected on the ground also allows for upscaling of the toolkit. The process gathers the scientific evidence about the effectiveness of existing or new measures, which can really change the catchment functions. Still, we need to get better at communicating the science to policy makers and policy therefore must facilitate a bottom up approach to land and water management. We show a test site for this approach in the Belford burn catchment (6km2), northern England. This catchment has problems with flooding and water quality. Increased sediment loads are affecting the nearby estuary which is an important ecological zone and numerous floods have affected the local village. A catchment engineering toolkit has been developed that puts in place novel measures to tackle diffuse pollution and reduce flood risk whilst collecting the science needed to influence the policy about these measures. This has been possible through four key practices: full stakeholder engagement, a problem solving agenda set in place, a bottom up approach to solving problems, and the collection of the appropriate science to support the benefits. Hands on, multi-objective work is the most cost effective way to manage catchments. Tackling water quality issues and controlling fast pathway runoff at the source in partnership with farmers and local landowners has proved to be the key to success. Tackling issues in sub-catchments can lead to solving problems at the catchment scale.
Human impacts on fluvial systems - A small-catchment case study
NASA Astrophysics Data System (ADS)
Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth
2010-05-01
Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.
The Scale Effects of Engineered Inlets in Urban Hydrologic Processes
NASA Astrophysics Data System (ADS)
Shevade, L.; Montalto, F. A.
2017-12-01
Runoff from urban surfaces is typically captured by engineered inlets for conveyance to receiving water bodies or treatment plants. Normative hydrologic and hydraulic (H&H) modeling tools generally assume 100% efficient inlets, though observations by the authors suggest this assumption is invalid. The discrepancy is key since the more efficiently the inlet, the more linearly hydrologic processes scale with catchment area. Using several years of remote sensing, the observed efficiencies of urban green infrastructure (GI) facility inlets in New York City are presented, as a function of the morphological and climatological properties of their catchments and events. The rainfall-runoff response is modeled with EPA to assess the degree of inaccuracy that the assumption of efficient inlets introduces in block and neighborhood-scale simulations. Next, an algorithm is presented that incorporates inlet efficiency into SWMM and the improved predictive skill evaluated using Nash-Sutcliffe and root-mean-square error (RMSE). The results are used to evaluate the extent to which decentralized green stormwater management facilities positioned at the low points of urban catchments ought to be designed with larger capacities than their counterparts located further upslope.
NASA Astrophysics Data System (ADS)
Stangl, Johannes; Sass, Oliver; Schneider, Josef; Harb, Gabriele
2013-04-01
Sediment transport in river systems, being the output of geomorphic processes in the catchment, is a recurrent problem for geomorphological sediment budget studies, natural hazard assessment and river engineering. Sediment budgets of alpine catchments are likely to be modified by changing total precipitation and the probability of heavy precipitation events in the context of climate change, even if projections of precipitation change for Austria and the entire Alpine region are still very uncertain. Effective sediment management requires profound knowledge on the sediment cascade in the head-waters. However, bedload measurements at alpine rivers or torrents are rare; in Styria, they are altogether missing. Due to a three hour heavy rainfall event on 07-Jul 2011, which caused cata-strophic flooding with massive damage in the city of Oberwölz and its surrounding, we chose the catchment area of the Schöttlbach in the upper Mur river valley in Styria (Austria) as our study area. In the framework of the ClimCatch project, we intend to develop a conceptual model of coupled and decoupled sediment routing to quantify the most prominent sediment fluxes and sediment sinks, combining up-to-date geomorphological and river engineering techniques. Repeated Airborne Laser Scans will provide an overview of ongoing processes, diachronous TLS surveys (cut-and-fill analysis), ground-penetrating radar and 2D-geoelectric surveys should quantity the most important mass fluxes on the slopes and in the channels and derive a quantitative sediment budget, including the volume of temporary sediment stores. Besides quantifying slope processes, sediment sinks and total sediment output, the sediment trans-port in the torrents is of particular interest. We use sediment impact sensors (SIS) which were in-stalled in several river sections in the main stretch of the Schöttlbach and in its tributaries. The SIS mainly consists of two parts connected by a coated cable, the steel shell with the sensor mounted in the riverbed and the logger-case nearby the river. The number of clast impacts is recorded through an acceleration sensor installed underneath a steel plate. This type of sensor was developed by Richardson et al. and later applied e.g. by Raven et al. and Rickenmann & Fritschi. However, this device does not supply volumetric information of sediment flux. For data on sediment volumes we are monitoring the sediment retention dam at the outlet of the Schöttlbach using repeated TLS sur-veys. Our measurements focus on the representative sub-catchments and will deliver values on the in- and output of river sections. Tests and calibration are carried out in an artificial channel at the Water Engineering laboratory of the TU Graz; the sensors are sensitive enough to record impacts of parti-cles > 5 mm. Further calibrations are carried out in the field using mobile basket samplers. The SIS were installed in winter 2012/13. First results allow us to derive the start of sediment transport in dependence of precipitation or water level, respectively. ClimCatch should find out where the sediments of the Schöttlbach catchment actually derive from, which geomorphic processes are the most important in our study area and which catchment areas are significant for the overall sediment output.
Which catchment characteristics control the temporal dependence structure of daily river flows?
NASA Astrophysics Data System (ADS)
Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim
2014-05-01
A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete daily river flow record.
Tangen, Brian; Wiltermuth, Mark T.
2018-01-01
Use of agricultural subsurface drainage systems in the Prairie Pothole Region of North America continues to increase, prompting concerns over potential negative effects to the Region's vital wetlands. The U.S. Fish and Wildlife Service protects a large number of wetlands through conservation easements that often utilize standard lateral setback distances to provide buffers between wetlands and drainage systems. Because of a lack of information pertaining to the efficacy of these setback distances for protecting wetlands, information is required to support the decision making for placement of subsurface drainage systems adjacent to wetlands. We used qualitative graphical analyses and data comparisons to identify characteristics of subsurface drainage systems and wetland catchments that could be considered when assessing setback distances. We also compared setback distances with catchment slope lengths to determine if they typically exclude drainage systems from the catchment. We demonstrated that depth of a subsurface drainage system is a key factor for determining drainage setback distances. Drainage systems located closer to the surface (shallow) typically could be associated with shorter lateral setback distances compared with deeper systems. Subsurface drainage systems would be allowed within a wetland's catchment for 44–59% of catchments associated with wetland conservation easements in North Dakota. More specifically, results suggest that drainage setback distances generally would exclude drainage systems from catchments of the smaller wetlands that typically have shorter slopes in the adjacent upland contributing area. For larger wetlands, however, considerable areas of the catchment would be vulnerable to drainage that may affect wetland hydrology. U.S. Fish and Wildlife Service easements are associated with > 2,000 km2 of wetlands in North Dakota, demonstrating great potential to protect these systems from drainage depending on policies for installing subsurface drainage systems on these lands. The length of slope of individual catchments and depth of subsurface drainage systems could be considered when prescribing drainage setback distances and assessing potential effects to wetland hydrology. Moreover, because of uncertainties associated with the efficacy of standard drainage setback distances, exclusion of subsurface drainage systems from wetland catchments would be ideal when the goal is to protect wetlands.
Uncertainty Assessment of Synthetic Design Hydrographs for Gauged and Ungauged Catchments
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Sikorska, Anna E.; Furrer, Reinhard; Favre, Anne-Catherine
2018-03-01
Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape are essential for engineering tasks involving storage. Such design hydrographs are inherently uncertain as are classical flood estimates focusing on peak discharge only. Various sources of uncertainty contribute to the total uncertainty of synthetic design hydrographs for gauged and ungauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty due to the choice of a regionalization method. A quantification of the uncertainties associated with flood estimates is essential for reliable decision making and allows for the identification of important uncertainty sources. We therefore propose an uncertainty assessment framework for the quantification of the uncertainty associated with synthetic design hydrographs. The framework is based on bootstrap simulations and consists of three levels of complexity. On the first level, we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of regionalizing them to ungauged catchments but independently from the construction uncertainty. On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged catchments, jointly considering construction and regionalization uncertainty. We find that the most important sources of uncertainty in design hydrograph construction are the record length and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in ungauged catchments depends on the catchment properties and is not negligible in our case.
NASA Astrophysics Data System (ADS)
Yuan, Yanbin; Zhou, You; Zhu, Yaqiong; Yuan, Xiaohui; Sælthun, N. R.
2007-11-01
Based on digital technology, flood routing simulation system development is an important component of "digital catchment". Taking QingJiang catchment as a pilot case, in-depth analysis on informatization of Qingjiang catchment management being the basis, aiming at catchment data's multi-source, - dimension, -element, -subject, -layer and -class feature, the study brings the design thought and method of "subject-point-source database" (SPSD) to design system structure in order to realize the unified management of catchments data in great quantity. Using the thought of integrated spatial information technology for reference, integrating hierarchical structure development model of digital catchment is established. The model is general framework of the flood routing simulation system analysis, design and realization. In order to satisfy the demands of flood routing three-dimensional simulation system, the object-oriented spatial data model are designed. We can analyze space-time self-adapting relation between flood routing and catchments topography, express grid data of terrain by using non-directed graph, apply breadth first search arithmetic, set up search method for the purpose of dynamically searching stream channel on the basis of simulated three-dimensional terrain. The system prototype is therefore realized. Simulation results have demonstrated that the proposed approach is feasible and effective in the application.
Environmental care in agricultural catchments: Toward the communicative catchment
NASA Astrophysics Data System (ADS)
Martin, Peter
1991-11-01
Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.
NASA Astrophysics Data System (ADS)
Tamang, Sagar Kumar; Song, Wenjun; Fang, Xing; Vasconcelos, Jose; Anderson, J. Brian
2018-06-01
Estimating sediment deposition in a stream, a standard procedure for dealing with aggradation problem is complicated in an ungauged catchment due to the absence of necessary flow data. A serious aggradation problem within an ungauged catchment in Alabama, USA, blocked the conveyance of a bridge, reducing the clearance under the bridge from several feet to a couple of inches. A study of historical aerial imageries showed deforestation in the catchment by a significant amount over a period consistent with the first identification of the problem. To further diagnose the aggradation problem, due to the lack of any gauging stations, local rainfall, flow, and sediment measurements were attempted. However, due to the difficulty of installing an area-velocity sensor in an actively aggrading stream, the parameter transfer process for a hydrologic model was adopted to understand/estimate streamflow. Simulated discharge combined with erosion parameters of MUSLE (modified universal soil loss equation) helped in the estimation of sediment yield of the catchment. Sediment yield for the catchment showed a significant increase in recent years. A two-dimensional hydraulic model was developed at the bridge site to examine potential engineering strategies to wash sediments off and mitigate further aggradation. This study is to quantify the increase of sediment yield in an ungauged catchment due to land cover changes and other contributing factors and develop strategies and recommendations for preventing future aggradation in the vicinity of the bridge.
The Hydrological Response of Snowmelt Dominated Catchments to Climate Change
NASA Astrophysics Data System (ADS)
Arrigoni, A. S.; Moore, J. N.
2007-12-01
Hydrological systems dominated by snowmelt discharge contribute greater than half the freshwater resource available to the western United States. Globally, the contribution of mountain discharge to total runoff is twice the expected for their geographical coverage. Therefore, snowmelt dominated mountain catchments have proportionally a more prominent role than other systems to our freshwater resource. A changing climate, or even a more variable climate, could have a significant impact on these systems, and consequently on our freshwater resource. Ergo, a better understanding of how changes and variations in climate will influence mountain catchments is a necessity for improving future water management under predicted/proposed climate change. The research presented here is a first order analysis to improve our understanding of these systems by monitoring and analyzing high mountain catchments along the entirety of the Mission Mountain Front, Montana USA. The Mission Mountain Range is an ideal location for conducting this research as it runs directly north to south with elevations progressively increasing from 7600 feet in the northern section, to over 9700 feet at the southern end. The lower elevation catchments will be used as surrogates for variable climate change, while the high elevation catchments will be used as surrogates for a more stable, cooler, climate regime. We use a combination of USGS and Tribal stream gauges, as well as stage gauge loggers in the headwaters of the catchments, SNOTEL datasets, and weather station datasets. This information is used to determine if, how, and why the snowmelt hydrographs vary between catchments, within the catchments between the upper and lower segments, and the dominant driver or drivers of the hydrograph form in relation to changing climatic variables such as temperature and precipitation. This research will improve current comprehension of how mountain catchments respond to climatic variables, and additionally will expand upon the current understanding of general catchment hydrology.
NASA Astrophysics Data System (ADS)
Wilkinson, M.; Quinn, P. F.; Jonczyk, J.
2010-12-01
The increased risk from flooding continues to be of concern to governments all around the world and flood protection is becoming more of a challenge. In the UK, climate change projections indicate more extremes within the weather systems. In addition, there is an increased demand for using land in urban areas beside channels. These developments both put pressure on our flood defences and there is a need for new solutions to managing flood risk. There is currently support within the England and Wales Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features (referred to here as Runoff Attenuation Features, or RAFs). However the effectiveness of RAFs are not known at the catchment scale since they have only really been trailed at the plot scale. These types of mitigation measure can offer benefits to water quality and create ecological habitats. The village of Belford, situated in the Belford Burn catchment (6km2), northern England, has suffered from numerous flood events. In addition, the catchment suffers from water quality issues within the channel and high sediment loads are having an impact on the ecology of the nearby estuary. There was a desire by the Local Environment Agency Flood Levy team to deliver an alternative catchment-based solution to the problem. With funding from the Northumbria Regional Flood Defence Committee, the Environment Agency North East Local Levy team and Newcastle University have created a partnership to address the flood problem trailing soft engineered RAF’s at the catchment scale. The partnership project, “Belford proactive flood solutions” is testing novel techniques in reducing flood risk in small sub-catchments for the Environment Agency. The project provides the information needed to understand whether the multi-functional mitigation measures are working at the sub-catchment scale. Data suggest that the mitigation measures present have delayed the overall travel time of the flood peak in the catchment by 33%. The current maximum flood storage capacity of all the features stands at around 15,000 m3. The evidence also suggests that a dam like in-stream mitigation measure can significantly reduce sediment load. Other benefits of some mitigation features include large increase in the population of water voles over the past two years. The scheme also acts as a demonstration site for interested stakeholders where they can learn about this approach to flood risk management and see the multipurpose benefits. As the project has progressed and lessons have been learnt, it has been possible to develop a runoff management toolkit for implementing these mitigation measures in other catchments of similar size. Already, the local Environment Agency has utilised the tools and recently applied similar mitigation measures to other catchments. On-going modelling exercises in the project are using the data to explore the up-scaling of the features to larger catchments.
Monitoring of initial patterns and structures in an artificial catchment
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang; Gerwin, Werner; Biemelt, Detlef; Fischer, Anton
2010-05-01
To combine process-oriented research on initial development of ecosystems with interactions and co-development of spatial patterns and structures the Transregional Collaborative Research Centre (SFB/TRR) 38 (www.tu-cottbus.de/sfb_trr) was established as an initiative of three universities (BTU Cottbus, TU Munich and ETH Zurich). The objective of the SFB/TRR 38 is to enhance our understanding of structure genesis in ecosystems and of process dynamics as well as their interactions during the initial development phase. The aim is to integrate these feedback mechanisms in the analysis of water and element budgets at the catchment scale and to implement them into models. To allow the clear definition of starting conditions at ´point zeró and to be able to integrate spatially distributed processes and patterns to larger units, an artificial catchment was constructed in the mining area of Lusatia/Germany as the main research site (Gerwin et al. 2009a). With an area of about 6 ha, this catchment ´Chicken Creeḱ is to our knowledge the largest artificial catchment worldwide. It was constructed as a 2-4 m layer of post-glacial sandy to loamy sediments overlying a 1-2 m layer of Tertiary clay that forms a shallow pan and seals the whole catchment at the base. No further measures of restoration like planting, amelioration or fertilization were carried out to allow natural succession and undisturbed development. Due to the artificial construction, boundary conditions of this site are clearly defined including well documented inner structures as compared to natural catchments. It is assumed that the interaction of patterns and processes during initial development will proceed from simpler to more complex states of the systems and that different stages along this phase can be identified at the catchment level. Changes within the catchment are intensively monitored since 2005, when construction finished (Gerwin et al. 2009b), including intensive on-site measurements and micro-drone based aerial images. Starting from relatively homogenous site conditions the catchment rapidly developed new structures and patterns due to soil erosion, sediment transport, stream formation, vegetation cover and succession, groundwater table rise and surface crust formation resulting in an increasing differentiation of subareas and site characteristics. Some of these structures and patterns formed as a result of the interaction of abiotic and biotic processes during initial development, some were influenced by structures caused by the construction process itself, and others were affected by single accidental events, e.g. the occurrence of high intensity thunderstorms. References Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009a) The artificial catchment "Chicken Creek" (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796. Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2009b) Ecological monitoring at the artificial watershed Chicken Creek (Germany). Physics and chemistry of the earth (in review).
TUM Critical Zone Observatory, Germany
NASA Astrophysics Data System (ADS)
Völkel, Jörg; Eden, Marie
2014-05-01
Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.
1996-03-01
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.
NASA Astrophysics Data System (ADS)
Penot, David; Paquet, Emmanuel; Lang, Michel
2014-05-01
SCHADEX is a probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design [Paquet et al., 2013]. SCHADEX is based on a semi-continuous rainfall-runoff simulation process. The method has been built around two models: a Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation [Garavaglia et al., 2010] and the MORDOR hydrological model. To use SCHADEX in ungauged context, rainfall distribution and hydrological model must be regionalized. The regionalization of the MEWP rainfall distribution can be managed with SPAZM, a daily rainfall interpolator [Gottardi et al., 2012] which provides reasonable estimates of point and areal rainfall up to hight quantiles. The main issue remains to regionalize MORDOR which is heavily parametrized. A much more simple model has been considered: the SCS model. It is a well known model for event simulation [USDA SCS, 1985; Beven, 2003] and it relies on only one parameter. Then, the idea is to use the SCS model instead of MORDOR within a simplified stochastic simulation scheme to produce a distribution of flood volume from an exhaustive crossing between rainy events and catchment saturation hazards. The presentation details this process and its capacity to generate a runoff distribution based on catchment areal rainfall distribution. The simulation method depends on a unique parameter Smax, the maximum initial loss of the catchment. Then an initial loss S (between zero and Smax) can be drawn to account for the variability of catchment state (between dry and saturated). The distribution of initial loss (or conversely, of catchment saturation, as modeled by MORDOR) seems closely linked to the catchment's regime, therefore easily to regionalize. The simulation takes into account a snow contribution for snow driven catchments, and an antecedent runoff. The presentation shows the results of this stochastic procedure applied on 80 French catchments and its capacity to represent the asymptotic behaviour of the runoff distribution. References: K. J. Beven. Rainfall-Runoff modelling The Primer, British Library, 2003. F. Garavaglia, J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. Introducing a rainfall compound distribution model based on weather patterns sub-sampling. Hydrology and Earth System Sciences, 14(6):951-964, 2010. F. Gottardi, C. Obled, J. Gailhard, and E. Paquet. Statistical reanalysis of precipitation fields based on ground network data and weather patterns : Application over french mountains. Journal of Hydrology, 432-433:154-167, 2012. ISSN 0022-1694. E. Paquet, F. Garavaglia, R Garçon, and J. Gailhard. The schadex method : a semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 2013. USDA SCS, National Engineering Handbook, Supplement A, Section 4, Chapter 10. Whashington DC, 1985.
NASA Astrophysics Data System (ADS)
Babaei, Sahar; Ghazavi, Reza; Erfanian, Mahdi
2018-06-01
Urban runoff increased due to augment of impervious surfaces. In order to flood mitigation during rainy season, determination of critical urban sub-catchments is very important for urban planners. Due to lack of information, adopting a simulation approach is one of the practical ways to identify the surcharged junctions and critical sub-catchments. Occurrence of destructive floods in the rainy seasons indicates the inappropriateness of the urban drainage system in Urmia. The main aims of this study were to estimate the surface runoff of urban sub-catchments using SWMM, to evaluate the accuracy of the drainage system of the study urban area and to prioritize sub-catchments using PROMETHEE II approach and SWMM. In the present study, the occurrence of rainfall event of the Urmia city (West Azerbaijan province, Iran) used for estimation of runoff depth. The study area was divided into 22 sub-catchments. For calibration and validation of model parameters, 3 rainfall events and their related runoff were measured. According to sensitivity analysis CN was the most sensitive parameter for model calibration. Amount of surcharged conduits and junctions indicates that the drainage system of the study area has not enough capacity for converting of the runoff and. For 10 year return period, depth of channels should increase by 20% for prevention of flooding in these sub-catchments. Sub-catchments were prioritized using PROMETHEE II approach and its results were compared with SWMM simulation outcomes. Based on SWMM simulation, S11, S7, S18, S16 and S1 sub-catchments are more critical sub-catchments respectively, while according to PROMETHEE method, S1, S11, S16, S14 and S18 are determined as the critical areas.
Defining the sources of low-flow phosphorus transfers in complex catchments.
Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T
2007-08-15
Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination.
Impact of climate change on low flow characteristics in a small catchment of central Poland
NASA Astrophysics Data System (ADS)
Banasik, K.; Kaznowska, E.
2016-12-01
The Zagozdzonka catchment (left tributary of Vistula River) is a small lowland agricultural catchment, located in central Poland, about 100 km south of Warsaw. Hydrological investigations of the Zagozdzonka River at Plachty (N51°26'43.8''; E21°27'35.6''), have been carried out by the Department of River Engineering of Warsaw University of Life Science (WULS) since 1962. The catchment area is 82.4 km2 at the Plachty river gauging station. Annual data of temperature, annual and seasonal rainfall and runoff characteristics, as well as annual N-day (1-, 2-, 3-, 7-, 14- and 30-day) low flow from the catchment of the period of 53-year (1963-2015) were analysed. Mann-Kendall test was used for trend analysis. Analysis has revealed a long term decrease in annual discharge and in all of the analysed N-day low flows from the catchment, as well as a corresponding increase in annul temperature (1.61ºC/50 years) for this area of Poland. No trend was detected for annual precipitation nor summer/winter half year precipitation. There was little land use change in the catchment but remarkable increase of crop yields from the arable land in this region of Poland in the last 50 years, due to fertilisation. So the long term decrease of annual discharge and N-day low flows is assumed to be effect of higher evapotranspiration. The decrease of water resources in summer periods may cause problems when more intensive agriculture practice is planned (and water for irrigation is needed).
Jacobson, Carol R
2011-06-01
Urbanisation produces numerous changes in the natural environments it replaces. The impacts include habitat fragmentation and changes to both the quality and quantity of the stormwater runoff, and result in changes to hydrological systems. This review integrates research in relatively diverse areas to examine how the impacts of urban imperviousness on hydrological systems can be quantified and modelled. It examines the nature of reported impacts of urbanisation on hydrological systems over four decades, including the effects of changes in imperviousness within catchments, and some inconsistencies in studies of the impacts of urbanisation. The distribution of imperviousness within urban areas is important in understanding the impacts of urbanisation and quantification requires detailed characterisation of urban areas. As a result most mapping of urban areas uses remote sensing techniques and this review examines a range of techniques using medium and high resolution imagery, including spectral unmixing. The third section examines the ways in which scientists and hydrological and environmental engineers model and quantify water flows in urban areas, the nature of hydrological models and methods for their calibration. The final section examines additional factors which influence the impact of impervious surfaces and some uncertainties that exist in current knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McIntyre, N.; Keir, G.
2014-12-01
Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.
NASA Astrophysics Data System (ADS)
Engeland, K.; Steinsland, I.
2012-04-01
This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.
Streamflow variation of forest covered catchments
NASA Astrophysics Data System (ADS)
Gribovszki, Z.; Kalicz, P.; Kucsara, M.
2003-04-01
Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).
NASA Astrophysics Data System (ADS)
Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.
1996-02-01
Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.
NASA Astrophysics Data System (ADS)
Pastorek, Jaroslav; Fencl, Martin; Stránský, David; Rieckermann, Jörg; Bareš, Vojtěch
2017-04-01
Reliable and representative rainfall data are crucial for urban runoff modelling. However, traditional precipitation measurement devices often fail to provide sufficient information about the spatial variability of rainfall, especially when heavy storm events (determining design of urban stormwater systems) are considered. Commercial microwave links (CMLs), typically very dense in urban areas, allow for indirect precipitation detection with desired spatial and temporal resolution. Fencl et al. (2016) recognised the high bias in quantitative precipitation estimates (QPEs) from CMLs which significantly limits their usability and, in order to reduce the bias, suggested a novel method for adjusting the QPEs to existing rain gauge networks. Studies evaluating the potential of CMLs for rainfall detection so far focused primarily on direct comparison of the QPEs from CMLs to ground observations. In contrast, this investigation evaluates the suitability of these innovative rainfall data for stormwater runoff modelling on a case study of a small ungauged (in long-term perspective) urban catchment in Prague-Letňany, Czech Republic (Fencl et al., 2016). We compare the runoff measured at the outlet from the catchment with the outputs of a rainfall-runoff model operated using (i) CML data adjusted by distant rain gauges, (ii) rainfall data from the distant gauges alone and (iii) data from a single temporary rain gauge located directly in the catchment, as it is common practice in drainage engineering. Uncertainties of the simulated runoff are analysed using the Bayesian method for uncertainty evaluation incorporating a statistical bias description as formulated by Del Giudice et al. (2013). Our results show that adjusted CML data are able to yield reliable runoff modelling results, primarily for rainfall events with convective character. Performance statistics, most significantly the timing of maximal discharge, reach better (less uncertain) values with the adjusted CML data than with the distant rain gauges. When the relative error of the volume discharged during the maximum flow period is concerned, the adjusted CMLs perform even better than the rain gauge in the catchment. This seem to be very promising, especially for urban catchments with sparse rain gauge networks. References: Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., and Rieckermann, J. 2013. Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences 17, 4209-4225. Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V. 2016. Gauge-Adjusted Rainfall Estimates from Commercial Microwave Links, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016- 397, in review. Acknowledgements to the Czech Science Foundation projects No. 14-22978S and No. 17-16389S.
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Julian, Maurice
1999-12-01
Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific research. A necessary future step in bettering the engineering solutions implemented to contain natural hazards or to harness water and sediment resources is that of fine-scale analysis of source-to-sink sediment transfer processes, of sediment budgets, of time-scales of storage in stream channels, and, finally, of high-magnitude hydrometeorological forcing events in this area. The way all these aspects have been modulated by engineering practices and socioeconomic development should also be an important part of such an analysis.
Hydroeconomic DSS for optimal hydrology-oriented forest management in semiarid areas
NASA Astrophysics Data System (ADS)
Garcia-Prats, A.; del Campo, A.; Pulido-Velazquez, M.
2016-12-01
In semiarid regions like the Mediterranean, managing the upper-catchment forests for water provision goals (hydrology-oriented silviculture) offers a strategy to increase the resilience of catchments to droughts and lower precipitation and higher evapotranspiration due to climate change. Understanding the effects of forest management on vegetation water use and groundwater recharge is particularly important in those regions. Despite the essential role that forests play in the water cycle on the provision of water resources, this contribution is often neither quantified nor explicitly valued. The aim of this work is to develop a novel decision support system (DSS) based on hydro-economic modelling, for assessing and designing the optimal integrated forest and water management for forested catchments. Hydro-economic modelling may support the design of economically efficient strategies integrating the hydrologic, engineering, environmental and economic aspects of water resources systems within a coherent framework. The optimization model explicitly integrates changes in water yield (increase n groundwater recharge) induced by the management of forest density, and the value of the additional water provided to the system. This latter component could serve as an indicator for the design of a "payment for environmental services" scheme in which groundwater beneficiaries could contribute towards funding and promoting efficient forest management operations. Besides, revenues from timber logging are also articulated in the modelling. The case study was an Aleppo pine forest in south-western Valencia province (Spain), using a typical 100-year rotation horizon. The model determines the optimal schedule of thinning interventions in the stands in order to maximize the total net benefits in the system (timber and water). Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs were modelled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. This research reveal the potential of integrated water and forest policies and encourage their application by governments and policy makers.
Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals.
Macintosh, K A; Jordan, P; Cassidy, R; Arnscheidt, J; Ward, C
2011-12-15
Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TPL(-1) (0.018 mg TRPL(-1)) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km(-2) to 4.6 km(-2) and 13.8 km(-2) to 17.2 km(-2) and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Twohig, Sarah; Pattison, Ian; Sander, Graham
2017-04-01
Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been subjected to field validation as part of a wider research project which provides an indication of the robustness of widespread models as effective management tools.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen
2013-04-01
Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.
Advances in the regionalization approach: geostatistical techniques for estimating flood quantiles
NASA Astrophysics Data System (ADS)
Chiarello, Valentina; Caporali, Enrica; Matthies, Hermann G.
2015-04-01
The knowledge of peak flow discharges and associated floods is of primary importance in engineering practice for planning of water resources and risk assessment. Streamflow characteristics are usually estimated starting from measurements of river discharges at stream gauging stations. However, the lack of observations at site of interest as well as the measurement inaccuracies, bring inevitably to the necessity of developing predictive models. Regional analysis is a classical approach to estimate river flow characteristics at sites where little or no data exists. Specific techniques are needed to regionalize the hydrological variables over the considered area. Top-kriging or topological kriging, is a kriging interpolation procedure that takes into account the geometric organization and structure of hydrographic network, the catchment area and the nested nature of catchments. The continuous processes in space defined for the point variables are represented by a variogram. In Top-kriging, the measurements are not point values but are defined over a non-zero catchment area. Top-kriging is applied here over the geographical space of Tuscany Region, in Central Italy. The analysis is carried out on the discharge data of 57 consistent runoff gauges, recorded from 1923 to 2014. Top-kriging give also an estimation of the prediction uncertainty in addition to the prediction itself. The results are validated using a cross-validation procedure implemented in the package rtop of the open source statistical environment R The results are compared through different error measurement methods. Top-kriging seems to perform better in nested catchments and larger scale catchments but no for headwater or where there is a high variability for neighbouring catchments.
Material-balance assessment of the New Albany-Chesterian petroleum system of the Illinois basin
Lewan, M.D.; Henry, M.E.; Higley, D.K.; Pitman, Janet K.
2002-01-01
The New Albany-Chesterian petroleum system of the Illinois basin is a well-constrained system from which petroleum charges and losses were quantified through a material-balance assessment. This petroleum system has nearly 90,000 wells penetrating the Chesterian section, a single New Albany Shale source rock accounting for more than 99% of the produced oil, well-established stratigraphic and structural frameworks, and accessible source rock samples at various maturity levels. A hydrogen index (HI) map based on Rock-Eval analyses of source rock samples of New Albany Shale defines the pod of active source rock and extent of oil generation. Based on a buoyancy-drive model, the system was divided into seven secondary-migration catchments. Each catchment contains a part of the active pod of source rock from which it derives a petroleum charge, and this charge is confined to carrier beds and reservoirs within these catchments as accountable petroleum, petroleum losses, or undiscovered petroleum. A well-constrained catchment with no apparent erosional or leakage losses is used to determine an actual petroleum charge from accountable petroleum and residual migration losses. This actual petroleum charge is used to calibrate the other catchments in which erosional petroleum losses have occurred. Petroleum charges determined by laboratory pyrolysis are exaggerated relative to the actual petroleum charge. Rock-Eval charges are exaggerated by a factor of 4-14, and hydrouspyrolysis charges are exaggerated by a factor of 1.7. The actual petroleum charge provides a more meaningful material balance and more realistic estimates of petroleum losses and remaining undiscovered petroleum. The total petroleum charge determined for the New Albany-Chesterian system is 78 billion bbl, of which 11.4 billion bbl occur as a accountable in place petroleum, 9 billion bbl occur as residual migration losses, and 57.6 billion bbl occur as erosional losses. Of the erosional losses, 40 billion bbl were lost from two catchments that have highly faulted and extensively eroded sections. Anomalies in the relationship between erosional losses and degree of erosion suggest there is potential for undiscovered petroleum in one of the catchments. These results demonstrate that a material-balance assessment of migration catchments provides a useful means to evaluate and rank areas within a petroleum system. The article provides methodologies for obtaining more realistic petroleum charges and losses that can be applied to less data-rich petroleum systems.
Is Fractal 1/f Scaling in Stream Chemistry Universal?
NASA Astrophysics Data System (ADS)
Hrachowitz, M.
2016-12-01
Stream water chemistry data from catchments worldwide suggest that catchments act as filters that transform white noise, i.e. random input signals such as in precipitation, into 1/fαnoise whose slope in a power spectrum typically ranges between -0.5>α> -1.5. This previously lead to the hypothesis that catchments act as fractal filters, i.e. a slope of α=-1 may be a universal and intrinsic property of catchments. That would have considerable implications on the predictability of stream water chemistry, as both, temporal short- and long-range interdependence control the system response. While short memories and thus flatter slopes with α closer to 0 indicate poor short term but good long-term predictability, steeper slopes (α <<-1) indicate the opposite. In fractal systems, i.e. α=-1, this therefore leads to inherent problems of predicting both, short and long-term response patterns. The hypothesis of catchments acting as fractal filters remains to be tested more profoundly. It is not yet clear, if observed inter-catchment variations in α need to be interpreted as noise in the signal or if the variations underlie a systematic pattern and can be explained by some characteristic of catchment function. Here we will test the hypothesis that the spectral slope of stream water chemistry is not necessarily α=-1 and that catchments therefore do not inherently act as fractal filters. Further, it will be tested if closer links between the variations in spectral slope and hydrological function of catchments can be identified. The combined data-analysis and modelling study uses hydrochemical data (i.e. Cl-) from a wide range of catchments worldwide. The study catchments are physically contrasting, from distinct climate zones, and with distinct landscapes and vegetation. To identify patterns in the variations of α, firstly the power spectra of observed stream chemistry are compared with physical catchment characteristics using methods such as cluster analysis. In a subsequent step, the stream water dynamics of the study catchments are modelled using integrated catchment-scale models. Catchments for which the observed spectral signature can be meaningfully reproduced by the model, are used for further analysis, relating the modelled flux and state dynamics to variations in α, to explore links between flow processes α.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.
A Global Classification System for Catchment Hydrology
NASA Astrophysics Data System (ADS)
Woods, R. A.
2004-05-01
It is a shocking state of affairs - there is no underpinning scientific taxonomy of catchments. There are widely used global classification systems for climate, river morphology, lakes and wetlands, but for river catchments there exists only a plethora of inconsistent, incomplete regional schemes. By proceeding without a common taxonomy for catchments, freshwater science has missed one of its key developmental stages, and has leapt from definition of phenomena to experiments, theories and models, without the theoretical framework of a classification. I propose the development of a global hierarchical classification system for physical aspects of river catchments, to help underpin physical science in the freshwater environment and provide a solid foundation for classification of river ecosystems. Such a classification scheme can open completely new vistas in hydrology: for example it will be possible to (i) rationally transfer experimental knowledge of hydrological processes between basins anywhere in the world, provided they belong to the same class; (ii) perform meaningful meta-analyses in order to reconcile studies that show inconsistent results (iii) generate new testable hypotheses which involve locations worldwide.
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Pham, H. V.; Bachmann, M.; Tague, C.; Adam, J. C.
2017-12-01
The Yakima River Basin (YRB) is one of the most important agricultural basins in Washington State with annual revenues in excess of $3.2 billion. This intensively irrigated basin is, however, one of the state's most climatically sensitive water resources system as it heavily relies on winter snowpack and limited reservoir storage. Water shortages and drought are expected to be more frequent with climate change, population growth and increasing agricultural demand. This could result in significant impacts on the groundwater system and subsequently the Yakima River. The goal of this study is to assess how soil and geologic characteristics affect catchment recharge and groundwater flow across three catchments within the YRB using a coupled framework including a physically based hydro-ecological model, the Regional Hydro-Ecologic Simulation System (RHESSys) and a groundwater model, MODFLOW. Soil and geologic-related parameters were randomly sampled to use within the Distributed Evaluation of Local Sensitivity Analysis (DELSA) framework to explore their roles in governing catchment recharge and groundwater flow to climate perturbation. Preliminarily results show that catchment recharge is most sensitive to variation in soil transmissivity in two catchments. However, in the other catchment, recharge is more influenced by soil field capacity and bypass recharge. Recharge is also more sensitive to geologic related parameters in catchments where a portion of its flow comes from deep groundwater. When including the effect of climate perturbations, the sensitivity of recharge responses to soil and geologic characteristics varies with temperature and precipitation change. On the other hand, horizontal hydraulic conductivity is the dominant factor that controls groundwater flow responses in catchments with low permeability soil; alternatively, specific storage (and, to some extent, vertical anisotropy) are important in catchments with more conductive soil. The modeling framework developed in this study will be used to investigate the impacts of both climate and drought-relief supplemental pumping on potential recharge, groundwater and streamflow changes in the YRB.
Is fractal 1/f scaling in stream chemistry universal?
NASA Astrophysics Data System (ADS)
Hrachowitz, Markus
2016-04-01
Stream water chemistry data from catchments worldwide suggest that catchments act as filters that transform white noise, i.e. random, input signals such as in precipitation, into 1/f^α noise whose slope in a power spectrum typically ranges between -0.5>α>-1.5. This previously lead to the hypothesis that catchments act as fractal filters. In other words, it was posed that considering uncertainty, a slope of α=-1 may be a universal and intrinsic property of catchments. Such fractal scaling characteristics would have considerable implications on the predictability of stream water chemistry, as both, temporal short- and long-range interdependence and memory control the system response. While short memories and thus flatter slopes with α closer to 0 indicate poor short term but good long-term predictability, steeper slopes with values of α <<-1 indicate the opposite. In fractal systems, i.e. where α=-1, this therefore leads to inherent problems of robustly predicting both, short and long-term response patterns. The hypothesis of catchments acting as fractal filters (α=-1), however, remains to be tested more profoundly. It is, for example, not yet clear, if the observed inter-catchment variations in α indeed need to be interpreted as uncertainty and noise in the signal or if the variations underlie a systematic pattern and can be explained by some characteristic of catchment function, as was recently suggested in a modelling study based two experimental catchments (Hrachowitz et al., 2015). Here we will therefore further test the hypothesis that the spectral slope of stream water chemistry is not necessarily α=-1 and that catchments therefore do not inherently act as fractal filters. Further, it will be tested if closer links between the variations in spectral slope and hydrological function of catchments can be identified. The combined data-analysis and modelling study uses hydrochemical data (i.e. Cl- and O-18) from a wide range of catchments worldwide to allow a robust inter-comparison of response characteristics. The high number of study catchments is chosen to represent physically contrasting catchments in distinct climate zones, distinct landscape types and with distinct vegetation patterns. To identify potential patterns in the variations of α, firstly the power spectra of the observed stream chemistry in the study catchments are compared with physical catchment characteristics using statistical methods such as cluster analysis. In a subsequent step, the stream water dynamics of the study catchments are modeled using integrated catchment-scale conceptual models. Catchments for which the observed spectral signature can be meaningfully reproduced by the model, are used for further analysis, relating the model-internal flux and state dynamics to variations in α, to explore if systematic links between different flow processes and a can be established.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert
2017-04-01
It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to an elevated density of the preferential flow paths, imply a less non-linear system behavior. This is because they avoid persistence of very dry states system states by facilitating recharge of the soil moisture stock. Based on the proposed approach we compare dynamics of four distinctly different catchments in their respective state space and demonstrate the feasibility of the approach to explain differences and similarities in their rainfall runoff regimes.
NASA Astrophysics Data System (ADS)
Leong, W. K.; Lai, S. H.
2017-06-01
Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.
Ellis, Sherman R.
1978-01-01
Urban storm-runoff data, collected from 1975 to 1977, on three catchment areas in the Denver, Colo., metropolitan area are presented. The catchment are predominantly a single-family residential catchment area in Littleton, a multifamily residential and commercial catchment area in Lakewood, and a high-density residential and commercial catchment area in Denver. Precipitation, rainfall-runoff, snowmelt-runoff, water-quality (common constituents, nutrients, biochemical oxygen demand, coliform bacteria, and solids, trace elements, and pesticides), and catchment-area data are necessary to use the U.S. Environmental Protection Agency 's Storm Water Management Model II. The urban storm-runoff data may be used by planning, water-management, and environmental-protection agencies to assess the impact of urban storm runoff on the hydrologic system. (Woodard-USGS)
Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.
2003-01-01
The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.
Influence of vegetation on water isotope partitioning across different northern headwater catchments
NASA Astrophysics Data System (ADS)
Gabor, R. S.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; Mitchell, C. P. J.; McNamara, J. P.; Soulsby, C.
2014-12-01
The hydrology of high latitude catchments is sensitive to small changes in temperature, and likely to be impacted by changes in climate. Vegetation water usage can play a large role in catchment hydrologic pathways, affecting how water is stored, released, and partitioned within a landscape. Thus a better understanding of how vegetation impacts water partitioning in northern catchments can help us understand how climate change will impact high-latitude hydrology. As part of the VeWa project, five catchments were chosen between 44oN and 64oN in Europe and North America, to compare the role of vegetation in the movement of water across northern landscapes. These catchments vary in aspect as well as extent of snowpack and their vegetative landscapes include heather moorland, coniferous and deciduous forests, mixed grass, and tundra landscapes. Importantly, all the catchments have records of stable isotopes in different waters of the system. An initial comparison of the water isotopes in these catchments demonstrates variation between the catchments, with the lower latitude sites showing more fractionation suggestive of evapotranspiration. While all catchments show a depletion of heavy isotopes in the spring, the depletion is most evident in catchments with a heavier snowpack. The vegetative growing season during the summer months shows the greatest impact of evapotranspiration on isotopes, indicating that an increased summer in a warmer climate would likely alter water partitioning and storage dynamics in these regions.
NASA Astrophysics Data System (ADS)
Wałęga, Andrzej; Młyński, Dariusz; Wachulec, Katarzyna
2017-12-01
The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980-2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area. The study analyses confirmed that asymptotic functions properly described P-CNobs relationship for the entire range of precipitation variability. In the case of high rainfalls, CNobs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CNobs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.
Storage as a Metric of Catchment Comparison
McNamara, J.P.; Tetzlaff, D.; Bishop, K.; Soulsby, C.; Seyfried, M.; Peters, N.E.; Aulenbach, Brent T.; Hooper, R.
2011-01-01
The volume of water stored within a catchment, and its partitioning among groundwater, soil moisture, snowpack, vegetation, and surface water are the variables that ultimately characterize the state of the hydrologic system. Accordingly, storage may provide useful metrics for catchment comparison. Unfortunately, measuring and predicting the amount of water present in a catchment is seldom done; tracking the dynamics of these stores is even rarer. Storage moderates fluxes and exerts critical controls on a wide range of hydrologic and biologic functions of a catchment. While understanding runoff generation and other processes by which catchments release water will always be central to hydrologic science, it is equally essential to understand how catchments retain water. We have initiated a catchment comparison exercise to begin assessing the value of viewing catchments from the storage perspective. The exercise is based on existing data from five watersheds, no common experimental design, and no integrated modelling efforts. Rather, storage was estimated independently for each site. This briefing presents some initial results of the exercise, poses questions about the definitions and importance of storage and the storage perspective, and suggests future directions for ongoing activities. ?? 2011 John Wiley & Sons, Ltd.
Standardised survey method for identifying catchment risks to water quality.
Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A
2016-06-01
This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.
Helmers, Matthew J.; Liebman, Matt; James, David E.; Kolka, Randall K.; O’Neal, Matthew E.; Tomer, Mark D.; Tyndall, John C.; Asbjornsen, Heidi; Drobney, Pauline; Neal, Jeri; Van Ryswyk, Gary; Witte, Chris
2017-01-01
Loss of biodiversity and degradation of ecosystem services from agricultural lands remain important challenges in the United States despite decades of spending on natural resource management. To date, conservation investment has emphasized engineering practices or vegetative strategies centered on monocultural plantings of nonnative plants, largely excluding native species from cropland. In a catchment-scale experiment, we quantified the multiple effects of integrating strips of native prairie species amid corn and soybean crops, with prairie strips arranged to arrest run-off on slopes. Replacing 10% of cropland with prairie strips increased biodiversity and ecosystem services with minimal impacts on crop production. Compared with catchments containing only crops, integrating prairie strips into cropland led to greater catchment-level insect taxa richness (2.6-fold), pollinator abundance (3.5-fold), native bird species richness (2.1-fold), and abundance of bird species of greatest conservation need (2.1-fold). Use of prairie strips also reduced total water runoff from catchments by 37%, resulting in retention of 20 times more soil and 4.3 times more phosphorus. Corn and soybean yields for catchments with prairie strips decreased only by the amount of the area taken out of crop production. Social survey results indicated demand among both farming and nonfarming populations for the environmental outcomes produced by prairie strips. If federal and state policies were aligned to promote prairie strips, the practice would be applicable to 3.9 million ha of cropland in Iowa alone. PMID:28973922
NASA Astrophysics Data System (ADS)
Watson, Andrew; Miller, Jodie; Fleischer, Melanie; de Clercq, Willem
2018-03-01
Wetlands are conservation priorities worldwide, due to their high biodiversity and productivity, but are under threat from agricultural and climate change stresses. To improve the water management practices and resource allocation in these complex systems, a modelling approach has been developed to estimate potential recharge for data poor catchments using rainfall data and basic assumptions regarding soil and aquifer properties. The Verlorenvlei estuarine lake (RAMSAR #525) on the west coast of South Africa is a data poor catchment where rainfall records have been supplemented with farmer's rainfall records. The catchment has multiple competing users. To determine the ecological reserve for the wetlands, the spatial and temporal distribution of recharge had to be well constrained using the J2000 rainfall/runoff model. The majority of rainfall occurs in the mountains (±650 mm/yr) and considerably less in the valley (±280 mm/yr). Percolation was modelled as ∼3.6% of rainfall in the driest parts of the catchment, ∼10% of rainfall in the moderately wet parts of the catchment and ∼8.4% but up to 28.9% of rainfall in the wettest parts of the catchment. The model results are representative of rainfall and water level measurements in the catchment, and compare well with water table fluctuation technique, although estimates are dissimilar to previous estimates within the catchment. This is most likely due to the daily timestep nature of the model, in comparison to other yearly average methods. These results go some way in understanding the fact that although most semi-arid catchments have very low yearly recharge estimates, they are still capable of sustaining high biodiversity levels. This demonstrates the importance of incorporating shorter term recharge event modeling for improving recharge estimates.
NASA Astrophysics Data System (ADS)
Wolosoff, S. E.; Duncan, J.; Endreny, T.
2001-05-01
The Croton water supply system, responsible for supplying approximately 10% of New York City's water, provides an opportunity for exploration into the impacts of significant terrestrial flow path alteration upon receiving water quality. Natural flow paths are altered during residential development in order to allow for construction at a given location, reductions in water table elevation in low lying areas and to provide drainage of increased overland flow volumes. Runoff conducted through an artificial drainage system, is prevented from being attenuated by the natural environment, thus the pollutant removal capacity inherent in most natural catchments is often limited to areas where flow paths are not altered by development. By contrasting the impacts of flow path alterations in two small catchments in the Croton system, with different densities of residential development, we can begin to identify appropriate limits to the re-routing of runoff in catchments draining into surface water supplies. The Stormwater and Wastewater Management Model (SWMM) will be used as a tool to predict the runoff quantity and quality generated from two small residential catchments and to simulate the potential benefits of changes to the existing drainage system design, which may improve water quality due to longer residence times.
Modelling metaldehyde in catchments: a River Thames case-study.
Lu, Q; Whitehead, P G; Bussi, G; Futter, M N; Nizzetto, L
2017-04-19
The application of metaldehyde to agricultural catchment areas to control slugs and snails has caused severe problems for drinking water supply in recent years. In the River Thames catchment, metaldehyde has been detected at levels well above the EU and UK drinking water standards of 0.1 μg l -1 at many sites across the catchment between 2008 and 2015. Metaldehyde is applied in autumn and winter, leading to its increased concentrations in surface waters. It is shown that a process-based hydro-biogeochemical transport model (INCA-contaminants) can be used to simulate metaldehyde transport in catchments from areas of application to the aquatic environment. Simulations indicate that high concentrations in the river system are a direct consequence of excessive application rates. A simple application control strategy for metaldehyde in the Thames catchment based on model results is presented.
NASA Astrophysics Data System (ADS)
Burt, T.; Worrall, F.
2008-12-01
A 35-year record of nitrate concentration for the Slapton Wood stream, a small agricultural catchment in south west England, is presented. The study reconsiders earlier work in order to assess whether upward trends have been maintained and how controls on catchment nitrate processes have altered. The study has shown that: (i) the catchment has reached a new position of equilibrium and increases in nitrate concentration have levelled off; (ii) the occurrence of severe droughts means that records of less than a decade are misleading and only longer records can illustrate changes of system state; (iii) the change of state observed in the catchment is illustrated in the switching of long-term memory effects from a negative to a positive annual memory; (iv) a significant long-term impulsivity relationship with rainfall becomes insignificant over the course of the study period. The study shows the importance of long records in exposing changes in state in catchment systems and understanding the time constants of a range of driving processes. The study by its very nature also demonstrates the importance of maintaining long-term monitoring programmes.
Dale, Allan P; Vella, Karen; Gooch, Margaret; Potts, Ruth; Pressey, Robert L; Brodie, Jon; Eberhard, Rachel
2017-10-04
Water quality outcomes affecting Australia's Great Barrier Reef (GBR) are governed by multi-level and multi-party decision-making that influences forested and agricultural landscapes. With international concern about the GBR's declining ecological health, this paper identifies and focuses on implementation failure (primarily at catchment scale) as a systemic risk within the overall GBR governance system. There has been limited integrated analysis of the full suite of governance subdomains that often envelop defined policies, programs and delivery activities that influence water quality in the GBR. We consider how the implementation of separate purpose-specific policies and programs at catchment scale operate against well-known, robust design concepts for integrated catchment governance. We find design concerns within ten important governance subdomains that operate within GBR catchments. At a whole-of-GBR scale, we find a weak policy focus on strengthening these delivery-oriented subdomains and on effort integration across these subdomains within catchments. These governance problems when combined may contribute to failure in the implementation of major national, state and local government policies focused on improving water quality in the GBR, a lesson relevant to landscapes globally.
Investigating low flow process controls, through complex modelling, in a UK chalk catchment
NASA Astrophysics Data System (ADS)
Lubega Musuuza, Jude; Wagener, Thorsten; Coxon, Gemma; Freer, Jim; Woods, Ross; Howden, Nicholas
2017-04-01
The typical streamflow response of Chalk catchments is dominated by groundwater contributions due the high degree of groundwater recharge through preferential flow pathways. The groundwater store attenuates the precipitation signal, which causes a delay between the corresponding high and low extremes in the precipitation and the stream flow signals. Streamflow responses can therefore be quite out of phase with the precipitation input to a Chalk catchment. Therefore characterising such catchment systems, including modelling approaches, clearly need to reproduce these percolation and groundwater dominated pathways to capture these dominant flow pathways. The simulation of low flow conditions for chalk catchments in numerical models is especially difficult due to the complex interactions between various processes that may not be adequately represented or resolved in the models. Periods of low stream flows are particularly important due to competing water uses in the summer, including agriculture and water supply. In this study we apply and evaluate the physically-based Pennstate Integrated Hydrologic Model (PIHM) to the River Kennet, a sub-catchment of the Thames Basin, to demonstrate how the simulations of a chalk catchment are improved by a physically-based system representation. We also use an ensemble of simulations to investigate the sensitivity of various hydrologic signatures (relevant to low flows and droughts) to the different parameters in the model, thereby inferring the levels of control exerted by the processes that the parameters represent.
Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C
2018-01-15
Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Palumbo, Manuela; Ascione, Alessandra; Santangelo, Nicoletta; Santo, Antonio
2017-04-01
We present the first results of an analysis of flood hazard in ungauged mountain catchments that are associated with intensely urbanized alluvial fans. Assessment of hydrological hazard has been based on the integration of rainfall/runoff modelling of drainage basins with geomorphological analysis and mapping. Some small and steep, ungauged mountain catchments located in various areas of the southern Apennines, in southern Italy, have been chosen as test sites. In the last centuries, the selected basins have been subject to heavy and intense precipitation events, which have caused flash floods with serious damages in the correlated alluvial fan areas. Available spatial information (regional technical maps, DEMs, land use maps, geological/lithological maps, orthophotos) and an automated GIS-based procedure (ArcGis tools and ArcHydro tools) have been used to extract morphological, hydrological and hydraulic parameters. Such parameters have been used to run the HEC (Hydrologic Engineering Center of the US Army Corps of Engineers) software (GeoHMS, GeoRAS, HMS and RAS) based on rainfall-runoff models, which have allowed the hydrological and hydraulic simulations. As the floods occurred in the studied catchments have been debris flows dominated, the solid load simulation has been also performed. In order to validate the simulations, we have compared results of the modelling with the effects produced by past floods. Such effects have been quantified through estimations of both the sediment volumes within each catchment that have the potential to be mobilised (pre-event) during a sediment transfer event, and the volume of sediments delivered by the debris flows at basins' outlets (post-event). The post-event sediment volume has been quantified through post-event surveys and Lidar data. Evaluation of the pre-event sediment volumes in single catchments has been based on mapping of sediment storages that may constitute source zones of bed load transport and debris flows. For such an approach has been used a methodology that consists of the application of a process-based geomorphological mapping, based on data derived from GIS analysis using high-resolution DEMs, field measurements and aerial photograph interpretations. Our integrated approach, which allows quantification of the flow rate and a semi-quantitative assessment of sediment that can be mobilized during hydro-meteorological events, is applied for the first time to torrential catchmenmts of the southern Apennines and may significantly contribute to previsional studies aimed at risk mitigation in the study region.
Chloride imbalance in rivers from landscapes undergoing hydrological change
NASA Astrophysics Data System (ADS)
Cartwright, I.; Gilfedder, B.; Hofmann, H.
2012-12-01
There has been much research into the sources of solutes in river systems; however, there has been little emphasis on determining whether medium or large catchments are in long-term chemical balance (i.e., whether the flux of solutes into a catchment is balanced by the export from that catchment). Where surface water and groundwater catchments coincide, the mass balance of a conservative solute (X) is: P*X(P) = SW*X(SW) - GW*X(GW) - ΔST*X(ST) where P, SW, and GW, are precipitation, surface water outflows, and groundwater outflows (in m3/year). ΔST accounts for changes to water held in storage in soils, groundwater, or surface water bodies. X is the concentration of solute X in the various stores (mg/m3). Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to volumes of solutes held in storage are less well known and it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e. where SW*X(SW) > P*X(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of the water in the various stores. We use this approach to assess the chemical balance in several regional-scale catchments (areas up to 15,000 km2) in Victoria, southeast Australia. Rivers from many of these catchments are saline (Total Dissolved Solids, TDS, contents >1000 mg/L). Groundwater in this area is also saline (TDS contents locally up to 100,000 mg/L). Major ion geochemistry indicates that the source of Cl in all catchments dominantly from rainfall and the major geochemical process controlling the salinity of surface water and groundwater is evapotranspiration. Cl concentrations and EC values are well correlated allowing a continual record of Cl fluxes to be estimated from long-term (up to 25 years) sub-daily discharge and EC records. The records span several drought and high rainfall periods allowing variation in individual years to be accounted for. Many of the rivers in southeast Victoria export significantly higher volumes of Cl than is delivered via rainfall (up to ~2700%) with average annual fluxes of up to ~200 kg/ha/year. These catchments are not in chemical balance and are net exporters of solutes. Two scenarios may explain the high rates of Cl export in individual catchments. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems have been re-established. Evapotranspiration within these lakes and wetlands produced high Cl loads in shallow groundwater and soil water that is currently being exported via the river systems. Additionally, in many catchments land-clearing over the last 200 years resulted in increased recharge that has resulted in a rise of the regional water table. In turn this has increased the baseflow component to the rivers and Cl from the groundwater that has relatively long residence time is being exported. In both cases, the catchments are adjusting to a new hydrological balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, Kelly
2005-01-01
We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less
NASA Astrophysics Data System (ADS)
de Winnaar, G.; Jewitt, G. P. W.; Horan, M.
Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.
NASA Astrophysics Data System (ADS)
Bogner, Christina; Hauhs, Michael; Lange, Holger
2016-04-01
Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (< 50 cm) with the bedrock partly visible at the surface. In G1 (irrigated area approximately 1000 m2), tracer experiments were conducted under a roof between 1993 and 2003 during steady state flow conditions. In contrast, in F4 (irrigated area approximately 500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.
Jan Seibert; Jeffrey J. McDonnell; Richard D. Woodsmith
2010-01-01
Wildfire is an important disturbance affecting hydrological processes through alteration of vegetation cover and soil characteristics. The effects of fire on hydrological systems at the catchment scale are not well known, largely because site specific data from both before and after wildfire are rare. In this study a modelling approach was employed for change detection...
NASA Astrophysics Data System (ADS)
Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei
2016-04-01
Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat and valley slopes within the catchment are used to identify behavioural models. The process of converting qualitative information into quantitative constraints forces us to evaluate the assumptions behind our perceptual understanding in order to derive robust constraints, and therefore fairly reject models and avoid type II errors. Likewise, consideration needs to be given to the commensurability problem when mapping perceptual understanding to constrain model states.
Nguyen, Hong Hanh; Recknagel, Friedrich; Meyer, Wayne; Frizenschaf, Jacqueline; Shrestha, Manoj Kumar
2017-11-01
Sustainable management of drinking water reservoirs requires taking into account the potential effects of their catchments' development. This study is an attempt to estimate the daily patterns of nutrients transport in the catchment - reservoir systems through the application of the ensemble of complementary models SWAT-SALMO. SWAT quantifies flow, nitrate and phosphate loadings originating in catchments before entering downstream reservoirs meanwhile SALMO determines phosphate, nitrate, and chlorophyll-a concentrations within the reservoirs. The study applies to the semi-arid Millbrook catchment-reservoir system that supplies drinking water to north-eastern suburbs of Adelaide, South Australia. The catchment hosts viti- and horticultural land uses. The warm-monomictic, mesotrophic reservoir is artificially aerated in summer. After validating the simulation results for both Millbrook catchment and reservoir, a comprehensive scenario analysis has been conducted to reveal cascading effects of altered management practices, land uses and climate conditions on water quality in the reservoir. Results suggest that the effect on reservoir condition in summer would be severe, most likely resulting in chlorophyll-a concentrations of greater than 40 μg/l if the artificial destratification was not applied from early summer. A 50% curbing of water diversion from an external pipeline to the catchment will slightly limit chlorophyll-a concentrations by 1.22% as an effect of reduced inflow phosphate loads. The simulation of prospective land use scenarios converting 50% of present pasture in the Millbrook catchment into residential and orchards areas indicates an increase of summer chlorophyll-a concentrations by 9.5-107.9%, respectively in the reservoir. Global warming scenarios based on the high emission simulated by SWAT-SALMO did result in earlier growth of chlorophyll-a but overall the effects on water quality in the Millbrook reservoir was not significant. However scenarios combining global warming and land use changes resulted in significant eutrophication effects in the reservoir, especially in the unmanaged condition with stratification in summer. This study has demonstrated that complementary model ensembles like SWAT-SALMO allow to comprehend more realistically cascading effects of distinct catchment processes on internal reservoir's processes, and facilitate integrated management scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fryirs, K.
2010-12-01
Fluvial systems are key elements that drive Earth surface change because they convey most of the global fluxes of water and sediment from land to oceans. Fluvial fluxes of water and sediment also drive a significant proportion of the terrestrial biochemical cycling of carbon, nutrients and pollutants. Understanding the internal dynamics of the sediment cascade is therefore critical to forecasting how environmental change, whether driven by extrinsic climate change, or intrinsic human-disturbance, might affect biochemical fluxes. To understand the internal dynamics of sediment flux requires a framework that can incorporate the various processes involved in the movement of sediment from the source area through the basin system to the outlet, and can take account of spatial variability within the system and the timeframes over which these processes operate. Traditionally a sediment budget approach has been used to quantify the sediment being supplied, transported and stored in various parts of catchments. In more recent years, a more sophisticated approach to analysis of catchment linkages and (dis)connectivity has been developed that incorporates both spatial and temporal variability in the operation of the sediment cascade. This framework is based on an understanding of longitudinal, lateral and vertical linkages in sediment flux in catchments, and where blockages occur to disrupt these linkages. These blockages have been termed buffers, barriers and blankets (Fryirs et al 2007). Depending on the position of these blockages, and their sediment residence time, various parts of catchment may be actively contributing sediment to the catchment sediment cascade and be switched on, or inactive and switched off. The degree of spatial connectivity determines the effective catchment area. The breaching capacity of buffers, barriers and blankets determines the effective timescale over which certain parts of a catchment are switched on. The sediment residence time and thresholds of stability dictate the timeframe over which certain parts of catchments are actively contributing sediment to the cascade. The manifestation of geomorphic change, and response times to disturbance can be modeled within such a framework. The notion that certain sediment sources and transport mechanisms may be switched on or switched off under various climate change scenarios can also be examined using this framework. Fryirs, K., Brierley, G. J., Preston, N. J. and Kasai, M. 2007. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 49-67
Blanket peatland restoration leads to reduced storm runoff from headwater systems
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Allott, Tim; Evans, Martin; Pilkington, Mike
2016-04-01
This paper presents data on the impact of largescale peatland restoration on catchment runoff from peatlands in northern England. The blanket peatlands of the Pennine hills are important sources of water supply and form the headwaters of major river systems. These peatlands are severely eroded with extensive gullying and bare peat resulting from the impacts of industrial pollution, overgrazing, wildfire and climatic change over the last millennium. In the last decade there has been a major programme of peatland restoration through re-vegetation and blocking of drainage lines in these systems. The Making Space for Water project has collected hydrological data from five micro-catchments(two restoration treatments, a bare peat control, a vegetated control and a previously restored site) over a four year period. This has allowed for both Before-After-Control-Intervention and Space for Time analysis of the impact of restoration on downstream runoff. Catchments became wetter following re-vegetation, water tables rose by 35 mm and overland flow production increased by 18%. Storm-flow lag times in restored catchments increased by up to 267 %, while peak storm discharge decreased by up to 37%. There were no statistically significant changes in percentage runoff, indicating limited changes to within-storm catchment storage. Natural flood management solutions are typically focussed around one of two main mechanisms, either enhanced storage of water in catchments or measures which slow transmission of water to channels and within channels. Upland peatlands are often mischaracterised as sponges and assumed to mitigate downstream runoff through additional storage. The results of this study suggest that whilst restoration of upland peatlands can lead to significant reductions in peak discharge, and has potential to contribute to natural flood risk management, the mechanism is an increase in catchment roughness and an associated decrease in flow velocities.
Simplifying impact of urban development on sewer systems.
Kleidorfer, Manfred; Sitzenfrei, Robert; Rauch, Wolfgang
2014-01-01
Linking urban development and urban drainage models is a more and more popular approach when impacts of pavement of urban areas on sewer system performance are evaluated. As such an approach is a difficult task, this is not a feasible procedure for everyday engineering practice. We propose an alternative method, based on a developed simple near-quadratic relationship, which directly translates change (increase or decrease) of paved area into a change in the return period (RP) of the design rainfall event or design rainfall intensity. This formula is simple to use and compatible with existing design guidelines. A further advantage is that the calculated design RP can also be used to communicate the impact of a change in impervious areas to stakeholders or the public community. The method is developed using a set of 250 virtual and two real-world case studies and hydrodynamic simulations. It is validated on a small catchment for which we compare system performance and redesigned pipe diameters. Of course such a simplification contains different uncertainties. But these uncertainties have to be seen in the context of overall uncertainties when trying to predict city development into the future. Hence it still is a significant advantage compared to today's engineering practice.
Framework for measuring sustainable development in catchment systems.
Walmsley, Jay J
2002-02-01
Integrated catchment management represents an approach to managing the resources of a catchment by integrating environmental, economic, and social issues. It is aimed at deriving sustainable benefits for future generations, while protecting natural resources, particularly water, and minimizing possible adverse social, economic, and environmental consequences. Indicators of sustainable development, which summarize information for use in decision-making, are invaluable when trying to assess the diverse, interacting components of catchment processes and resource management actions. The Driving-Forces--Pressure--State--Impact--Response (DPSIR) indicator framework is useful for identifying and developing indicators of sustainable development for catchment management. Driving forces have been identified as the natural conditions occurring in a catchment and the level of development and economic activity. Pressures include the natural and anthropogenic supply of water, water demand, and water pollution. State indicators can be split into those of quantity and those of quality. Impacts include those that affect the ecosystems directly and those that impact the use value of the resource. It core indicators are identified within each of the categories given in the framework, most major catchment-based management issues can be evaluated. This framework is applied to identify key issues in catchment management in South Africa, and develop a set of indicators for evaluating catchments throughout the country.
NASA Astrophysics Data System (ADS)
Nyberg, B.; Helland-Hansen, W.
2017-12-01
Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help the geoscientific community to contribute further to our quantitative understanding of source-to-sink systems and its allogenic and autogenic controls, geomorphological characteristics, terrestrial sediment transit times and the anthropogenic impact on those systems.
Ferguson, Christobel M; Croke, Barry F W; Beatson, Peter J; Ashbolt, Nicholas J; Deere, Daniel A
2007-06-01
In drinking water catchments, reduction of pathogen loads delivered to reservoirs is an important priority for the management of raw source water quality. To assist with the evaluation of management options, a process-based mathematical model (pathogen catchment budgets - PCB) is developed to predict Cryptosporidium, Giardia and E. coli loads generated within and exported from drinking water catchments. The model quantifies the key processes affecting the generation and transport of microorganisms from humans and animals using land use and flow data, and catchment specific information including point sources such as sewage treatment plants and on-site systems. The resultant pathogen catchment budgets (PCB) can be used to prioritize the implementation of control measures for the reduction of pathogen risks to drinking water. The model is applied in the Wingecarribee catchment and used to rank those sub-catchments that would contribute the highest pathogen loads in dry weather, and in intermediate and large wet weather events. A sensitivity analysis of the model identifies that pathogen excretion rates from animals and humans, and manure mobilization rates are significant factors determining the output of the model and thus warrant further investigation.
Identifying Threshold Concepts: Case Study of an Open Catchment Hydraulics Course
ERIC Educational Resources Information Center
Knight, D. B.; Callaghan, D. P.; Baldock, T. E.; Meyer, J. H. F.
2014-01-01
The Threshold Concept Framework is used to initiate a dialogue on an empirically supported pedagogy that focuses on students' conceptual understanding required for solving application-based problems. The present paper uses a triangulation approach to identify the threshold concept in a third-year undergraduate civil engineering course on open…
NASA Astrophysics Data System (ADS)
Gowing, John; Dominguez, Isabel
2013-04-01
In rural catchments of developing countries water-related diseases, due to land use patterns (agriculture and livestock), microbial pollution, inadequate sanitation systems, access to water of poor quality, and lack of institutional support are common problems which disproportionally affect poor and vulnerable people. This research aims at developing a system dynamic model to improve the understanding of the macro and micro factors that influence human health and environmental health in rural micro-catchments in Valle del Cauca, Colombia. In this catchment livelihoods for most people depend on agriculture, particularly coffee. The research uses a mediated modeling approach, in which different stakeholders in modeling sessions, develop a STELLA model that allows them to identify relations between the economic, social and environmental factors and driving forces over the performance of their system. Stakeholders jointly develop the model structure in sessions facilitated by the researcher and the data required is gathered using secondary information from the different relevant institutions and primary information from field surveys that cover socioeconomic and environmental aspects that has not been previously collected by any institution or organization (i.e. household survey, stream water survey, and drinking water survey). Representation and understanding of their system will allow the stakeholders to test the effect of different management strategies in the micro-catchment and their associated socioeconomic, environmental and human health outcomes.
Understanding fine sediment and phosphorous delivery in upland catchments
NASA Astrophysics Data System (ADS)
Perks, M. T.; Reaney, S. M.
2013-12-01
The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (< 2 mm) and associated pollutants (such as phosphorous). Most recent Environment Agency (EA) data reveals that 60% of monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring station at the 12.5 km2 outlet provides flow, turbidity, total phosphorous (TP), total reactive phosphorous (TRP), conductivity, temperature and pH measurements at 15-minute intervals. Within this catchment, two additional monitoring stations along adjacent tributaries with catchment areas of 2.3 km2 and 3.8 km2 provide continuous flow and turbidity data with soluble reactive phosphorous and TP collected during storms. Collection and analysis of this data over two full hydrological years has proved effective in; a) producing load estimates; b) producing better assessments of the magnitude and duration of aquatic organisms exposure to detrimental levels of suspended sediment and phosphorous; c) exploring the processes responsible for the delivery and transfer of fine sediment and phosphorous to and from the channel and; d) enhancing our understanding and prediction of the fluvial sediment system. The process understanding achieved using this monitoring framework has facilitated the production of a mitigation plan for the Morland catchment. Following this plan, a range of measures are currently being implemented to reduce the movement of diffuse pollutants across the hillslopes and channels whilst in-stream monitoring continues. The adopted mitigation measures may act as a trial for other upland catchments facing similar pressures.
NASA Astrophysics Data System (ADS)
Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel
2017-04-01
Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.
F. Worrall; Wayne T. Swank; T. P. Burt
2003-01-01
This study uses time series analysis to examine long-term stream water nitrate concentration records from a pair of forested catchments at the Coweeta Hydrologic Laboratory, North Carolina, USA. Monthly average concentrations were available from 1970 through 1997 for two forested catchments, one of which was clear-felled in 1977 and the other maintained as a control....
NASA Astrophysics Data System (ADS)
Campbell, J. M.; Jordan, P.; Arnscheidt, J.
2015-01-01
This study reports the use of high-resolution water quality monitoring to assess the influence of changes in land use management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the issue of agricultural soil P management and subsequent diffuse transfers at high river flows over a 5-year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STSs) and mitigation efforts - a key concern for catchment management. Results showed an inconsistent response to soil P management over 5 years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STSs) and also to gauge their effectiveness.
NASA Astrophysics Data System (ADS)
Campbell, J. M.; Jordan, P.; Arnscheidt, J.
2014-09-01
This study reports the use of high resolution water quality monitoring to assess the influence of changes in landuse management on total phosphorus (TP) transfers in two 5 km2 agricultural sub-catchments. Specifically, the work investigates the "wicked problem" of agricultural soil P management and subsequent diffuse transfers at high river flows over a five year timescale. The work also investigates the phenomenon of low flow P pollution from septic tank systems (STS) and mitigation efforts - here termed the "filthy issue" of rural catchment management. Results showed an inconsistent response to soil P management over five years with one catchment showing a convergence to optimum P concentrations and the other an overall increase. Both catchments indicated an overall increase in P concentration in defined high flow ranges. Low flow P concentration showed little change or higher P concentrations in defined low flow ranges despite replacement of defective systems and this is possibly due to a number of confounding reasons including increased housing densities due to new-builds. The work indicates fractured responses to catchment management advice and mitigation and that the short to medium term may be an insufficient time to expect the full implementation of policies (here defined as convergence to optimum soil P concentration and mitigation of STS) and also to gauge their effectiveness.
Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework
NASA Astrophysics Data System (ADS)
Gilvear, David J.
1999-12-01
River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.
West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.
2001-01-01
Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.
NASA Astrophysics Data System (ADS)
Rodriguez, Nicolas B.; McGuire, Kevin J.; Klaus, Julian
2017-04-01
Transit time distributions, residence time distributions and StorAge Selection functions are fundamental integrated descriptors of water storage, mixing, and release in catchments. In this contribution, we determined these time-variant functions in four neighboring forested catchments in H.J. Andrews Experimental Forest, Oregon, USA by employing a two year time series of 18O in precipitation and discharge. Previous studies in these catchments assumed stationary, exponentially distributed transit times, and complete mixing/random sampling to explore the influence of various catchment properties on the mean transit time. Here we relaxed such assumptions to relate transit time dynamics and the variability of StoreAge Selection functions to catchment characteristics, catchment storage, and meteorological forcing seasonality. Conceptual models of the catchments, consisting of two reservoirs combined in series-parallel, were calibrated to discharge and stable isotope tracer data. We assumed randomly sampled/fully mixed conditions for each reservoir, which resulted in an incompletely mixed system overall. Based on the results we solved the Master Equation, which describes the dynamics of water ages in storage and in catchment outflows Consistent between all catchments, we found that transit times were generally shorter during wet periods, indicating the contribution of shallow storage (soil, saprolite) to discharge. During extended dry periods, transit times increased significantly indicating the contribution of deeper storage (bedrock) to discharge. Our work indicated that the strong seasonality of precipitation impacted transit times by leading to a dynamic selection of stored water ages, whereas catchment size was not a control on transit times. In general this work showed the usefulness of using time-variant transit times with conceptual models and confirmed the existence of the catchment age mixing behaviors emerging from other similar studies.
NASA Astrophysics Data System (ADS)
Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.
2006-05-01
Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.
Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion
Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.
2014-01-01
Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.
Safeguarding the provision of ecosystem services in catchment systems.
Everard, Mark
2013-04-01
A narrow technocentric focus on a few favored ecosystem services (generally provisioning services) has led to ecosystem degradation globally, including catchment systems and their capacities to support human well-being. Increasing recognition of the multiple benefits provided by ecosystems is slowly being translated into policy and some areas of practice, although there remains a significant shortfall in the incorporation of a systemic perspective into operation management and decision-making tools. Nevertheless, a range of ecosystem-based solutions to issues as diverse as flooding and green space provision in the urban environment offers hope for improving habitat and optimization of beneficial services. The value of catchment ecosystem processes and their associated services is also being increasingly recognized and internalized by the water industry, improving water quality and quantity through catchment land management rather than at greater expense in the treatment costs of contaminated water abstracted lower in catchments. Parallel recognition of the value of working with natural processes, rather than "defending" built assets when catchment hydrology is adversely affected by unsympathetic upstream development, is being progressively incorporated into flood risk management policy. This focus on wider catchment processes also yields a range of cobenefits for fishery, wildlife, amenity, flood risk, and other interests, which may be optimized if multiple stakeholders and their diverse value systems are included in decision-making processes. Ecosystem services, particularly implemented as a central element of the ecosystem approach, provide an integrated framework for building in these different perspectives and values, many of them formerly excluded, into commercial and resource management decision-making processes, thereby making tractable the integrative aspirations of sustainable development. This can help redress deeply entrenched inherited assumptions, habits, and vested interests, replacing them in many management situations with wider recognition of the multiple values of ecosystems and their services. Global interest in taking an ecosystem approach is promoting novel scientific and policy thinking, yet there is a shortfall in its translation into practical management tools. Professional associations may have key roles to play in breaking down barriers to the "mainstreaming" of systemic perspectives into common practice, particularly through joining u different sectors of society essential to their implementation and ongoing adaptive management. Copyright © 2012 SETAC.
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Hofmann, Harald; Gilfedder, Ben
2013-04-01
Understanding whether catchments are in chemical mass balance is important in understand long-term groundwater-surface water interactions. The mass balance of a conservative solute such as Cl in a catchment is: P*Cl(P) = SW*Cl(SW) + GW*Cl(GW) + dST*Cl(ST) where P, SW, and GW, are net precipitation, surface water outflows, and groundwater outflows and dST accounts for changes to water held in storage, primarily in the groundwater system. Cl() is the concentration of Cl in the various water components. Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to water in storage are less well known meaning that it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e., if SW*Cl(SW) > P*Cl(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of water in storage. We apply this technique to several regional-scale catchments (areas up to 15,000 km2) from Victoria, southeast Australia. Cl/Br ratios indicate that the Cl in groundwater and surface water in this region is derived from evapotranspiration of rainfall. Rivers from several catchments in Victoria are saline (Cl >500 mg/L) due mainly to groundwater inflows. Cl concentrations and EC values are well correlated allowing a long-term (up to 25 years) continual record of Cl fluxes to be estimated from sub-daily river discharge and EC data. Many of the rivers export significantly higher volumes of Cl than is delivered via rainfall (up to 1800%). Two scenarios may explain this chemical imbalance. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems re-established. Evapotranspiration and repeated recharge-discharge cycles within these lakes and wetlands produced shallow groundwater with high Cl concentrations that is currently being exported via the re-established river systems. Secondly, in many catchments land-clearing over the last 200 years has resulted in lower evapotranspiration rates and increased recharge. The increased recharge has resulted in a rise of regional water tables and increased baseflow to the rivers. As a consequence, Cl from the groundwater that has relatively long residence time is now being exported. In both cases, the catchments are adjusting to a new hydrological balance and the Cl mass balance indicates that the present patterns of groundwater-surface water interaction are transitory. Both scenarios involve a decrease in evapotranspiration in the catchments that results in groundwater salinities decreasing. Thus, over time, the Cl concentrations in these rivers will decrease as fresher groundwater increasingly forms the baseflow to the rivers and the catchments will tend toward chemical balance; the timescale of change however may be several ka.
NASA Astrophysics Data System (ADS)
Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Ochoa-Rodriguez, Susana; Willems, Patrick; Ichiba, Abdellah; Wang, Lipen; Pina, Rui; Van Assel, Johan; Bruni, Guendalina; Murla Tuyls, Damian; ten Veldhuis, Marie-Claire
2017-04-01
Land use distribution and sewer system geometry exhibit complex scale dependent patterns in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. Such features are well grasped with fractal tools, which are based scale invariance and intrinsically designed to characterise and quantify the space filled by a geometrical set exhibiting complex and tortuous patterns. Fractal tools have been widely used in hydrology but seldom in the specific context of urban hydrology. In this paper, they are used to analyse surface and sewer data from 10 urban or peri-urban catchments located in 5 European countries in the framework of the NWE Interreg RainGain project (www.raingain.eu). The aim was to characterise urban catchment properties accounting for the complexity and inhomogeneity typical of urban water systems. Sewer system density and imperviousness (roads or buildings), represented in rasterized maps of 2 m x 2 m pixels, were analysed to quantify their fractal dimension, characteristic of scaling invariance. It appears that both sewer density and imperviousness exhibit scale invariant features that can be characterized with the help of fractal dimensions ranging from 1.6 to 2, depending on the catchment. In a given area, consistent results were found for the two geometrical features, yielding a robust and innovative way of quantifying the level of urbanization. The representation of imperviousness in operational semi-distributed hydrological models for these catchments was also investigated by computing fractal dimensions of the geometrical sets made up of the sub-catchments with coefficients of imperviousness greater than a range of thresholds. It enables to quantify how well spatial structures of imperviousness are represented in the urban hydrological models.
NASA Astrophysics Data System (ADS)
Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.
2016-12-01
Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.
Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.
2015-01-01
Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the GHG balance of wetland systems.
Zielhofer, Christoph; Leitholdt, Eva; Werther, Lukas; Stele, Andreas; Bussmann, Jens; Linzen, Sven; Schneider, Michael; Meyer, Cornelius; Berg-Hobohm, Stefanie; Ettel, Peter
2014-01-01
The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water. PMID:25251589
Zielhofer, Christoph; Leitholdt, Eva; Werther, Lukas; Stele, Andreas; Bussmann, Jens; Linzen, Sven; Schneider, Michael; Meyer, Cornelius; Berg-Hobohm, Stefanie; Ettel, Peter
2014-01-01
The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
NASA Astrophysics Data System (ADS)
Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project
2010-12-01
Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal Watershed Experiment.
Volumetric runoff coefficients for experimental rural catchments in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Taguas, Encarnación V.; Molina, Cecilio; Nadal-Romero, Estela; Ayuso, José L.; Casalí, Javier; Cid, Patricio; Dafonte, Jorge; Duarte, Antonio C.; Farguell, Joaquim; Giménez, Rafael; Giráldez, Juan V.; Gómez, Helena; Gómez, Jose A.; González-Hidalgo, J. Carlos; Keizer, J. Jacob; Lucía, Ana; Mateos, Luciano; Rodríguez-Blanco, M. Luz; Schnabel, Sussane; Serrano-Muela, M. Pilar
2015-04-01
Analysis of runoff and peaks therein is essential for designing hydraulic infrastructures and for assessing the hydrological implications of likely scenarios of climate and/or land-use change. Different methods are available to calculate runoff coefficients. For instance, the runoff coefficient of a catchment can be described either as the ratio of total depth of runoff to total depth of rainfall or as the ratio of peak flow to rainfall intensity for the time of concentration (Dhakal et al. 2012). If the first definition is considered, runoff coefficients represent the global effect of different features and states of catchments and its determination requires a suitable analysis according to the objectives pursued (Chow et al., 1988). In this work, rainfall-runoff data and physical attributes from small rural catchments located in the Iberian Peninsula (Portugal and Spain) were examined in order to compare the representative values of runoff coefficients using three different approaches: i) statistical analysis of rainfall-runoff data and their quantiles (Dhakal et al., 2012); ii) probabilistic runoff coefficients from the rank-ordered pairs of observed rainfall-runoff data and their relationships with rainfall depths (Schaake et al., 1967); iii) finally, a multiple linear model based on geomorphological attributes. These catchments exhibit great variety with respect to their natural settings, such as climate, topography and lithology. We present a preliminary analysis of the rainfall-runoff relationships as well as their variability in a complex context such as the Iberian Peninsula where contrasted environmental systems coexist. We also discuss reference parameters representing runoff coefficients commonly included into hydrological models. This study is conceived as the first step to explore further working protocols and modeling gaps in a very susceptible area to the climate change such as the Iberian Peninsula's, where the analysis of runoff coefficients is crucial for designing appropriate decision making tools for water management. REFERENCES Chow V.T., Maidment D.R. and Mays, L.W. 1988. Applied Hydrology. MCGraw Hill, Nueva York. Dhakal, N., Fang, X., Cleveland, T., Thompson, D., Asquith, W., and Marzen, L. (2012). "Estimation of Volumetric Runoff Coefficients for Texas Watersheds Using Land-Use and Rainfall-Runoff Data." Journal of Irrigation and Drainage Engineering, 1(2012):43-54. Schaake JC, Geyer JC,Knapp JW. 1967. Experimental examination of the rational method. J. Hydr.Div. 93(6),353-70
Nonparametric methods for drought severity estimation at ungauged sites
NASA Astrophysics Data System (ADS)
Sadri, S.; Burn, D. H.
2012-12-01
The objective in frequency analysis is, given extreme events such as drought severity or duration, to estimate the relationship between that event and the associated return periods at a catchment. Neural networks and other artificial intelligence approaches in function estimation and regression analysis are relatively new techniques in engineering, providing an attractive alternative to traditional statistical models. There are, however, few applications of neural networks and support vector machines in the area of severity quantile estimation for drought frequency analysis. In this paper, we compare three methods for this task: multiple linear regression, radial basis function neural networks, and least squares support vector regression (LS-SVR). The area selected for this study includes 32 catchments in the Canadian Prairies. From each catchment drought severities are extracted and fitted to a Pearson type III distribution, which act as observed values. For each method-duration pair, we use a jackknife algorithm to produce estimated values at each site. The results from these three approaches are compared and analyzed, and it is found that LS-SVR provides the best quantile estimates and extrapolating capacity.
NASA Astrophysics Data System (ADS)
Mason, Cody C.; Romans, Brian W.
2018-06-01
Environmental changes within erosional catchments of sediment routing systems are predicted to modulate sediment transfer dynamics. However, empirical and numerical models that predict such phenomena are difficult to test in natural systems over multi-millennial timescales. Tectonic boundary conditions and climate history in the Panamint Range, California, are relatively well-constrained by existing low-temperature thermochronology and regional multi-proxy paleoclimate studies, respectively. Catchment-fan systems present there minimize sediment storage and recycling, offering an excellent natural laboratory to test models of climate-sedimentary dynamics. We used stratigraphic characterization and cosmogenic radionuclides (CRNs; 26Al and 10Be) in the Pleasant Canyon complex (PCC), a linked catchment-fan system, to examine the effects of Pleistocene high-magnitude, high-frequency climate change on CRN-derived denudation rates and sediment flux in a high-relief, unglaciated catchment-fan system. Calculated 26Al/10Be burial ages from 13 samples collected in an ∼180 m thick outcropping stratigraphic succession range from ca. 1.55 ± 0.22 Ma in basal strata, to ca. 0.36 ± 0.18-0.52 ± 0.20 Ma within the uppermost part of the succession. The mean long-term CRN-derived paleodenudation rate, 36 ± 8 mm/kyr (1σ), is higher than the modern rate of 24 ± 0.6 mm/kyr from Pleasant Canyon, and paleodenudation rates during the middle Pleistocene display some high-frequency variability in the high end (up to 54 ± 10 mm/kyr). The highest CRN-derived denudation rates are associated with stratigraphic evidence for increased precipitation during glacial-pluvial events after the middle Pleistocene transition (post ca. 0.75 Ma), suggesting 100 kyr Milankovitch periodicity could drive the observed variability. We investigated the potential for non-equilibrium sedimentary processes, i.e. increased landslides or sediment storage/recycling, to influence apparent paleodenudation rates; end-member mixing models suggest that a mixture of >50% low-CRN-concentration sediment from landslides is required to produce the largest observed increase in paleodenudation rate. The overall pattern of CRN-derived burial ages, paleodenudation rates, and stratigraphic facies suggests Milankovitch timescale climate transitions drive variability in catchment denudation rates and sediment flux, or alternatively that climate transitions affect sedimentary process regimes that result in measurable variability of CRN concentrations in unglaciated catchment-fan systems.
An evaluation of Dynamic TOPMODEL in natural and human-impacted catchments for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, Gemma; Freer, Jim; Lane, Rosanna; Musuuza, Jude; Woods, Ross; Wagener, Thorsten; Howden, Nicholas
2017-04-01
Models of catchment hydrology are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow simulations and predictions. However, simulating low flows is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of anthropogenic modifications such as surface and ground water abstractions during low flow periods. These processes are typically not well represented in commonly used hydrological models due to knowledge, data and model limitations. Hence, a better understanding of the natural and human processes that occur during low flows, how these are represented within models and how they could be improved is required to be able to provide robust and reliable predictions of future drought events. The aim of this study is to assess the skill of dynamic TOPMODEL during low flows for both natural and human-impacted catchments. Dynamic TOPMODEL was chosen for this study as it is able to explicitly characterise connectivity and fluxes across landscapes using hydrological response units (HRU's) while still maintaining flexibility in how spatially complex the model is configured and what specific functions (i.e. abstractions or groundwater stores) are represented. We apply dynamic TOPMODEL across the River Thames catchment using daily time series of observed rainfall and potential evapotranspiration data for the period 1999 - 2014, covering two major droughts in the Thames catchment. Significantly, to assess the impact of abstractions on low flows across the Thames catchment, we incorporate functions to characterise over 3,500 monthly surface water and ground water abstractions covering the simulation period into dynamic TOPMODEL. We evaluate dynamic TOPMODEL at over 90 gauging stations across the Thames catchment against multiple signatures of catchment low-flow behaviour in a 'limits of acceptability' GLUE framework. We investigate differences in model performance between signatures, different low flow periods and for natural and human impacted catchments to better understand the ability of dynamic TOPMODEL to represent low flows in space and time. Finally, we discuss future developments of dynamic TOPMODEL to improve low flow simulation and the implications of these results for modelling hydrological extremes in natural and human impacted catchments across the UK and the world.
Mayaud, C; Wagner, T; Benischke, R; Birk, S
2014-04-16
The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems.
Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.
2014-01-01
Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the synthetic system allow to deduce that similar aquifer properties are relevant in both systems. In particular, the heterogeneity of aquifer parameters appears to be a controlling factor. Moreover, the location of the overflow connecting the sub-catchments of the two springs is found to be of primary importance, regarding the occurrence of inter-catchment flow. This further supports our current understanding of an overflow zone located in the upper part of the Lurbach karst aquifer. Thus, time series analysis of single events can potentially be used to characterize transient inter-catchment flow behavior of karst systems. PMID:24748687
Connectivity of surface flow and sediments in a small upland catchment
NASA Astrophysics Data System (ADS)
Lexartza-Artza, I.; Wainwright, J.
2009-04-01
The study of connectivity can help understand complex systems in which different factors interact to influence water-transfer pathways across the landscape. Changes in the catchment can affect connectivity, which in turn can have significant effects on catchment processes and network structure. Furthermore, the potential negative effects of the transfer of nutrients, pollutants and sediments by water from land to water bodies make it necessary to improve our understanding of connectivity. This need is reinforced by increasing demands of legislation such as the Water Framework Directive for effective Integrated Catchment Management in which whole systems are considered rather than their individual parts separately. Thus, connectivity can potentially be a useful concept to assess more effectively the effects that changes can have in complex systems, and could provide useful knowledge for decision makers. Field-based approaches to connectivity, needed to gain a useful understanding of real systems, need to include both the structural and functional aspects of connectivity, as the interaction between function and structure has to be understood to examine the complexity of the relationships between factors influencing pathways and transfer processes. This has to be taken into consideration, therefore, when designing and carrying studies to assess connectivity of flow networks that can provide context-specific data necessary to inform modelling approaches. The Ingbirchworth Catchment, in the uplands of the River Don, England, is used to assess the feedbacks between the different factors influencing transfer networks and the spatial and temporal variability in dynamic and non-linear process responses across the landscape. An especial focus has been given to land-use change, as one of the variables that might have a considerable influence on runoff generation and pathways. This 8.5 km2 catchment shares many characteristics with many others in the River Don uplands, including the presence of small reservoirs that regulate the flow, a number of which have experienced pollution problems. A range of agricultural uses create a patchwork landscape in this area that is part of the Catchment Sensitive Farming programme. Using a nested approach, a baseline structure on which to develop a context-specific field approach and to acquire the data necessary to assess connectivity in the system has been followed. An initial and then iterative description of the catchment structure and characteristics has been carried, together with a study of the catchment history and sedimentation record. These allow the definition of the relevant landscape units, identification of elements that might influence connectivity and inference of potential past changes of flow pathways. Through event monitoring at different landscape settings and scales, both structural and functional aspects are considered together and the variability and changes in the flow network are shown. The knowledge obtained is being used to assess the roles of the identified elements in relation to connectivity and to recognize the interactions and feedbacks between different system components.
Terêncio, D P S; Sanches Fernandes, L F; Cortes, R M V; Moura, J P; Pacheco, F A L
2018-02-01
Rainwater harvesting (RWH) is used to support small-scale agriculture and handle seasonal water availability, especially in regions where populations are scattered or the costs to develop surface or groundwater resources are high. However, questions may arise as whether this technique can support larger-scale irrigation projects and in complement help the struggle against wildfires in agro-forested watersheds. The issue is relevant because harvested rainwater in catchments is usually accumulated in small-capacity reservoirs created by small-height dams. In this study, a RWH site allocation method was improved from a previous model, by introducing the dam wall height as evaluation parameter. The studied watershed (Sabor River basin) is mostly located in the Northeast of Portugal. This is a rural watershed where agriculture and forestry uses are dominant and where ecologically relevant regions (e.g., Montezinho natural park) need to be protected from wildfires. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The height parameter was set to 3m because this value is a reference to detention basins that hold sustainability values (e.g., landscape integration, environmental protection), but the irrigation capacity under these settings was smaller than 10ha in 50% of cases, while continuous arable lands in the Sabor basin cover on average 222ha. Besides, the number of sub-catchments capable to irrigate the average arable land was solely 7. When the dam wall height increased to 6 and 12m, the irrigation capacity increased to 46 and 124 sub-catchments, respectively, meaning that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James
2017-04-01
In mountainous catchments with seasonal snowpacks, river discharge in downstream valleys is largely sustained by snowmelt in spring and summer. Future climate warming will likely reduce snow volumes and lead to earlier and faster snowmelt in such catchments. This, in turn, may increase the risk of summer low flows and hydrological droughts. Improved runoff predictions are thus required in order to adapt water management to future climatic conditions and to assure the availability of fresh water throughout the year. However, a detailed understanding of the hydrological processes is crucial to obtain robust predictions of river streamflow. This in turn requires fingerprinting source areas of streamflow, tracing water flow pathways, and measuring timescales of catchment storage, using tracers such as stable water isotopes (18O, 2H). For this reason, we have established an isotope sampling network in the Alptal, a snowmelt-dominated catchment (46.4 km2) in Central-Switzerland, as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Precipitation and snow cores are analyzed for their isotopic signature at daily or weekly intervals. Three-week bulk samples of precipitation are also collected on a transect along the Alptal valley bottom, and along an elevational transect perpendicular to the Alptal valley axis. Streamwater samples are taken at the catchment outlet as well as in two small nested sub-catchments (< 2 km2). In order to catch the isotopic signature of naturally-occurring snowmelt, a fully automatic snow lysimeter system was developed, which also facilitates real-time monitoring of snowmelt events, system status and environmental conditions (air and soil temperature). Three lysimeter systems were installed within the catchment, in one forested site and two open field sites at different elevations, and have been operational since November 2016. We will present the isotope time series from our regular sampling network, as well as initial results from our snowmelt lysimeter sites. Our data set will allow for detailed hydrograph separation based on stable water isotopes and geochemical components, which we use to identify source areas and to quantify snowmelt contributions to streamflow.
Assessment of an ensemble seasonal streamflow forecasting system for Australia
NASA Astrophysics Data System (ADS)
Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin
2017-11-01
Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called forecast guided stochastic scenarios
(FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.
Conceptual modelling of E. coli in urban stormwater drains, creeks and rivers
NASA Astrophysics Data System (ADS)
Jovanovic, Dusan; Hathaway, Jon; Coleman, Rhys; Deletic, Ana; McCarthy, David T.
2017-12-01
Accurate estimation of faecal microorganism levels in water systems, such as stormwater drains, creeks and rivers, is needed for appropriate assessment of impacts on receiving water bodies and the risks to human health. The underlying hypothesis for this work is that a single conceptual model (the MicroOrganism Prediction in Urban Stormwater model - i.e. MOPUS) can adequately simulate microbial dynamics over a variety of water systems and wide range of scales; something which has not been previously tested. Additionally, the application of radar precipitation data for improvement of the model performance at these scales via more accurate areal averaged rainfall intensities was tested. Six comprehensive Escherichia coli (E. coli) datasets collected from five catchments in south-eastern Australia and one catchment in Raleigh, USA, were used to calibrate the model. The MOPUS rainfall-runoff model performed well at all scales (Nash-Sutcliffe E for instantaneous flow rates between 0.70 and 0.93). Sensitivity analysis showed that wet weather urban stormwater flows can be modelled with only three of the five rainfall runoff model parameters: routing coefficient (K), effective imperviousness (IMP) and time of concentration (TOC). The model's performance for representing instantaneous E. coli fluctuations ranged from 0.17 to 0.45 in catchments drained via pipe or open creek, and was the highest for a large riverine catchment (0.64); performing similarly, if not better, than other microbial models in literature. The model could also capture the variability in event mean concentrations (E = 0.17-0.57) and event loads (E = 0.32-0.97) at all scales. Application of weather radar-derived rainfall inputs caused lower overall performance compared to using gauged rainfall inputs in representing both flow and E. coli levels in urban drain catchments, with the performance improving with increasing catchment size and being comparable to the models that use gauged rainfall inputs at the large riverine catchment. These results demonstrate the potential of the MOPUS model and its ability to be applied to a wide range of catchment scales, including large riverine systems.
Whitehead, P G; Leckie, H; Rankinen, K; Butterfield, D; Futter, M N; Bussi, G
2016-12-01
Pathogens are an ongoing issue for catchment water management and quantifying their transport, loss and potential impacts at key locations, such as water abstractions for public supply and bathing sites, is an important aspect of catchment and coastal management. The Integrated Catchment Model (INCA) has been adapted to model the sources and sinks of pathogens and to capture the dominant dynamics and processes controlling pathogens in catchments. The model simulates the stores of pathogens in soils, sediments, rivers and groundwaters and can account for diffuse inputs of pathogens from agriculture, urban areas or atmospheric deposition. The model also allows for point source discharges from intensive livestock units or from sewage treatment works or any industrial input to river systems. Model equations are presented and the new pathogens model has been applied to the River Thames in order to assess total coliform (TC) responses under current and projected future land use. A Monte Carlo sensitivity analysis indicates that the input coliform estimates from agricultural sources and decay rates are the crucial parameters controlling pathogen behaviour. Whilst there are a number of uncertainties associated with the model that should be accounted for, INCA-Pathogens potentially provides a useful tool to inform policy decisions and manage pathogen loading in river systems. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Knöll, Paul; Scheytt, Traugott
2018-03-01
A dye tracer experiment was conducted between the rivers Lauchert and Danube near Sigmaringen (Swabian Alb, southern Germany). After a flood event in the River Lauchert, it was suspected that flood water infiltrated into the karst system and drained towards springs in the Danube Valley. A potential connection of the two rivers is provided by the margin of a tectonic graben crossing the valleys. The aim of the tracer experiment was to gain insight into the dominant groundwater flow direction as well as to study a possible preferential connection between the Lauchert surface catchment area and springs in the Danube Valley. After introducing sodium-fluorescein into the unsaturated zone, six springs in the Danube Valley and the River Lauchert itself were observed. Tracer breakthrough at three springs showed that these springs are fed by groundwater originating in the Lauchert surface catchment. Adjacent springs were not affected by the experiment, indicating a rather sharp divide between separate spring catchments. Analyses of tracer breakthrough curves suggest that springs with a tracer occurrence are fed by the same conduit system. It was possible to show that spring catchments in Sigmaringen reach significantly into the Lauchert surface catchment. As a consequence, a drinking-water supplier has changed its supply strategy. The results also help to explain significant differences between flood damage in the central and lower courses of the River Lauchert.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjorn; Steinsland, Ingelin
2014-05-01
This study introduces a methodology for the construction of probabilistic inflow forecasts for multiple catchments and lead times, and investigates criterions for evaluation of multi-variate forecasts. A post-processing approach is used, and a Gaussian model is applied for transformed variables. The post processing model has two main components, the mean model and the dependency model. The mean model is used to estimate the marginal distributions for forecasted inflow for each catchment and lead time, whereas the dependency models was used to estimate the full multivariate distribution of forecasts, i.e. co-variances between catchments and lead times. In operational situations, it is a straightforward task to use the models to sample inflow ensembles which inherit the dependencies between catchments and lead times. The methodology was tested and demonstrated in the river systems linked to the Ulla-Førre hydropower complex in southern Norway, where simultaneous probabilistic forecasts for five catchments and ten lead times were constructed. The methodology exhibits sufficient flexibility to utilize deterministic flow forecasts from a numerical hydrological model as well as statistical forecasts such as persistent forecasts and sliding window climatology forecasts. It also deals with variation in the relative weights of these forecasts with both catchment and lead time. When evaluating predictive performance in original space using cross validation, the case study found that it is important to include the persistent forecast for the initial lead times and the hydrological forecast for medium-term lead times. Sliding window climatology forecasts become more important for the latest lead times. Furthermore, operationally important features in this case study such as heteroscedasticity, lead time varying between lead time dependency and lead time varying between catchment dependency are captured. Two criterions were used for evaluating the added value of the dependency model. The first one was the Energy score (ES) that is a multi-dimensional generalization of continuous rank probability score (CRPS). ES was calculated for all lead-times and catchments together, for each catchment across all lead times and for each lead time across all catchments. The second criterion was to use CRPS for forecasted inflows accumulated over several lead times and catchments. The results showed that ES was not very sensitive to correct covariance structure, whereas CRPS for accumulated flows where more suitable for evaluating the dependency model. This indicates that it is more appropriate to evaluate relevant univariate variables that depends on the dependency structure then to evaluate the multivariate forecast directly.
NASA Astrophysics Data System (ADS)
Ratnayake, A. S.
2011-12-01
The most of the primary civilizations of the world emerged in or near river valleys or floodplains. The river channels and floodplains are single hydrologic and geomorphic system. The failure to appreciate the integral connection between floodplains and channel underlies many socioeconomic and environmental problems in river management today. However it is a difficult task of collecting reliable field hydrological data. Under such situations either synthetic or statistically generated data were used for hydraulic engineering designing and flood modeling. The fundamentals of precipitation-runoff relationship through synthetic unit hydrograph for Gin River basin were prepared using the method of the Flood Studies Report of the National Environmental Research Council, United Kingdom (1975). The Triangular Irregular Network model was constructed using Geographic Information System (GIS) to determine hazard prone zones. The 1:10,000 and 1:50,000 topography maps and field excursions were also used for initial site selection of mini-hydro power units and determine flooding area. The turbines output power generations were calculated using the parameters of net head and efficiency of turbine. The peak discharge achieves within 4.74 hours from the onset of the rainstorm and 11.95 hours time takes to reach its normal discharge conditions of Gin River basin. Stream frequency of Gin River is 4.56 (Junctions/ km2) while the channel slope is 7.90 (m/km). The regional coefficient on the catchment is 0.00296. Higher stream frequency and gentle channel slope were recognized as the flood triggering factors of Gin River basin and other parameters such as basins catchment area, main stream length, standard average annual rainfall and soil do not show any significant variations with other catchments of Sri Lanka. The flood management process, including control of flood disaster, prepared for a flood, and minimize it impacts are complicated in human population encroached and modified floodplains. Thus modern GIS technology has been productively executed to prepare hazard maps based on the flood modeling and also it would be further utilized for disaster preparedness and mitigation activities. Five suitable hydraulic heads were recognized for mini-hydro power sites and it would be the most economical and applicable flood controlling hydraulic engineering structure considering all morphologic, climatic, environmental and socioeconomic proxies of the study area. Mini-hydro power sites also utilized as clean, eco friendly and reliable energy source (8630.0 kW). Finally Francis Turbine can be employed as the most efficiency turbine for the selected sites bearing in mind of both technical and economical parameters.
A Flash Flood Study on the Small Montaneous River Catchments in Western Romania
NASA Astrophysics Data System (ADS)
Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël
2013-04-01
The present study focuses on flash flood modeling on several mountaneous catchments situated in Western Romania by the use of two methodologies, when rainfall and catchment characteristics are known. Hence, the Soil Conservation Service (SCS) Method and the Rational Method will be employed for the generation of the 1%, 2% and 10% historical flash flood hydrographs on the basis of data spanning from 1989-2009. The SCS Method has been applied on the three gauged catchments in the study area: Petris, Troas and Monorostia making use of the existing interconnection between GIS and the rainfall-runoff models. The DEM, soil data and land use preprocessing in GIS allowed a determination of the hydrologic parameters needed for the rainfall-runoff model, with special emphasis on determining the time of concentration, Lag time and the weighted Curve Number according to Antecedent Moisture Conditions II, adapted for the Romanian territory. HEC-HMS rainfall-runoff model (Hydrologic Engineering Center- Hydrologic Modeling System) facilitates the historical 1%, 2% and 10% flash flood hydrograph generation for the three afore mentioned watersheds. The model is calibrated against measured streamflow data from the three existing gauging stations. The results show a good match between the resulted hydrographs and the observed hydrographs under the form of the Peak Weighted Error RMS values. The hydrographs generated by surface runoff on the ungauged catchments in the area is based on an automation of a workflow in GIS, built with ArcGIS Model Builder graphical interface, as a large part of the functions needed were available as ArcGIS tools. The several components of this model calculate: the runoff depth in mm, the runoff coefficient, the travel time and finally the discharge module which is an application of the rational method, allowing the discharge computation for every cell within the catchment. The result consists of discharges for each isochrones that will be subsequently interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".
NASA Astrophysics Data System (ADS)
Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.
2017-12-01
Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. Since sub-daily streamflow information is unavailable for most small basins in China, one of the main challenges is finding appropriate parameter values for simulating flash floods in ungauged catchments. In this study, we use decision tree learning to explore parameter set transferability between different catchments. For this purpose, the physically-based, semi-distributed rainfall-runoff model PRMS-OMS is set up for 35 catchments in ten Chinese provinces. Hourly data from more than 800 storm runoff events are used to calibrate the model and evaluate the performance of parameter set transfers between catchments. For each catchment, 58 catchment attributes are extracted from several data sets available for whole China. We then use a data mining technique (decision tree learning) to identify catchment similarities that can be related to good transfer performance. Finally, we use the splitting rules of decision trees for finding suitable donor catchments for ungauged target catchments. We show that decision tree learning allows to optimally utilize the information content of available catchment descriptors and outperforms regionalization based on a conventional measure of physiographic-climatic similarity by 15%-20%. Similar performance can be achieved with a regionalization method based on spatial proximity, but decision trees offer flexible rules for selecting suitable donor catchments, not relying on the vicinity of gauged catchments. This flexibility makes the method particularly suitable for implementation in sparsely gauged environments. We evaluate the probability to detect flood events exceeding a given return period, considering measured discharge and PRMS-OMS simulated flows with regionalized parameters. Overall, the probability of detection of an event with a return period of 10 years is 62%. 44% of all 10-year flood peaks can be detected with a timing error of 2 hours or less. These results indicate that the modeling system can provide useful information about the timing and magnitude of flood events at ungauged sites.
Jato-Espino, Daniel; Charlesworth, Susanne M; Bayon, Joseba R; Warwick, Frank
2016-01-21
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall-runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.
Jato-Espino, Daniel; Charlesworth, Susanne M.; Bayon, Joseba R.; Warwick, Frank
2016-01-01
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall–runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network. PMID:26805864
A GIS-based methodology for selecting stormwater disconnection opportunities.
Moore, S L; Stovin, V R; Wall, M; Ashley, R M
2012-01-01
The purpose of this paper is to introduce a geographic information system (GIS)-based decision support tool that assists the user to select not only areas where (retrofit) sustainable drainage systems (SuDS) could be implemented within a large catchment (>100 ha), but also to allow discrimination between suitable SuDS techniques based on their likely feasibility and effectiveness. The tool is applied to a case study catchment within London, UK, with the aim of increasing receiving water quality by reducing combined sewer overflow (CSO) spill frequency and volume. The key benefit of the tool presented is to allow rapid assessment of the retrofit SuDS potential of large catchments. It is not intended to replace detailed site investigations, but may help to direct attention to sites that have the greatest potential for retrofit SuDS implementation. Preliminary InfoWorks CS modelling of 'global disconnections' within the case study catchment, e.g. the removal of 50% of the total impervious area, showed that CSO spill volume could be reduced by 55 to 78% during a typical year. Using the disconnection hierarchy developed by the authors, the feasibility of retrofit SuDS deployment within the case study catchment is assessed, and the implications discussed.
The ethics of socio-ecohydrological catchment management: towards hydrosolidarity
NASA Astrophysics Data System (ADS)
Falkenmark, M.; Folke, Carl
This paper attempts to clarify key biophysical issues and the problems involved in the ethics of socio-ecohydrological catchment management. The issue in managing complex systems is to live with unavoidable change while securing the capacity of the ecohydrological system of the catchment to sustain vital ecological goods and services, aquatic as well as terrestrial, on which humanity depends ultimately. Catchment management oriented to sustainability has to be based on ethical principles: human rights, international conventions, sustaining crucial ecological goods and services, and protecting ecosystem resilience, all of which have water linkages. Many weaknesses have to be identified, assessed and mitigated to improve the tools by which the ethical issues can be addressed and solved:
The new ethics have to incorporate principles that, on a catchment basis, allow for proper attention to the hungry and poor, upstream and downstream, to descendants, and to sites and habitats that need to be protected.
Kistemann, T; Dangendorf, F; Exner, M
2001-03-01
The main tributaries of three drinking water reservoirs of Northrhine-Westfalia (Germany) were monitored within a 14-month period mainly for bacterial and parasitic contamination. In this context a detailed geo-ecological characterisation within the differing catchment areas was carried out to reveal a reliable informational basis for tracing back the origin of microbial loads present in the watercourses. To realise a microbial risk assessing geo-ecological information system (MRA-GIS), a Geographical Information System (GIS) has been implemented for the study areas. The results of the microbiological investigations of the watercourses showed an input of pathogens into all three of the tributaries. It could be demonstrated that the use of MRA-GIS database and some GIS-techniques substantially support the spatial analysis of the microbial contamination patterns. From the hygienic point of view, it is of the utmost importance to protect catchment areas of surface water reservoirs from microbial contamination stemming from human activities and animal sources. This constitutes essential part of the multi-barrier concept which stresses the importance of reducing diffuse and point pollution in catchment areas of water resources intended for human consumption. MRA-GIS proves to be helpful to manage multi-barrier water protection in catchment areas and ideally assists the application of the HACCP concept on drinking water production.
Landscape structure and climate influences on hydrologic response
NASA Astrophysics Data System (ADS)
Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.
2011-12-01
Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.
NASA Astrophysics Data System (ADS)
Stange, Kurt Martin; Midtkandal, Ivar; Petter Nystuen, Johan; Sohbati, Reza; Murray, Andrew Sean; Spiegel, Cornelia; Kuss, Jochen
2017-04-01
Intramontane basins are typical features of every mountain chain. These topographic depressions function as sediment traps during the syn- and postorogenic evolution of a range. Hence, studying their sedimentary archives and morphogenetic development may deliver important insights into the dynamics and magnitudes of erosion-sedimentation processes in mountain catchments and their susceptibility towards changing environmental conditions. Aiming at quantifying Quaternary catchment erosion rates in the Southern Pyrenees and determining the timing and driving parameters of basin excavation stages, this research project focusses on a number of adjacent watersheds in the Valle de la Fueva in Aragon, Spain. Besides providing a comprehensive OSL and 10Be-supported catchment erosion model, potential relationships of intense late stage erosion phases with watershed capture, base level changes and climatic controls are addressed. The Valle de la Fueva comprises a number of sub-catchments of the Ainsa depression - an Eocene sedimentary basin situated in the southern Pyrenean fold and thrust belt (SPFZ) which is recognized as a prime analogue for reservoir geometries and turbidite systems. The Valle de la Fueva is a highly erodible catchment, typical for the SPFZ with its shallow and deep marine strata, conglomerates and synorogenic debris. Preliminary observations revealed systems of "cut-in-fill" alluvial terraces and residual erosion surfaces - i.e. pediments and glacis that are strongly dissected by gullies and barrancos. Basin outlet canyons are deeply entrenched into the Los Molinos thrust front and represent dramatic landscape features that are relevant to the base level and opening history of the Valle de la Fueva catchments. Combining digital terrain analysis with field surveys and exposure/burial dating, first results revealed differences in stream profile gradation and incision magnitudes among several sub-catchments. Since they share a common base level, the main river Cinca, non-uniform excavation across the five sub-catchments can be assumed. Whether river capture, lithological or structural controls caused unequal propagation of erosion across the catchments is currently under investigation. Preliminary terrace exposure ages point to extensive sediment aggradation during latest MIS 2, implying that profound landscape rejuvenation and severe erosion took place in (Early) Holocene times. Since it is established that, during Pleistocene, the Valle de la Fueva was a non-glaciated catchment, discharge of the local rivers and the (mainly seasonal) creeks should directly reflect precipitation levels across the structurally confined basin. New TCN exposure and OSL burial data will enable a detailed chronology for glacis and terrace systems, hence, allowing to calculate erosion rates and sediment budgets, and to infer discharge (and precipitation) levels for the last major climate transition. This data will be most valuable for understanding the nature and rates of glacis and terrace formation in Europe, and in temperate mountain ranges elsewhere. New, field-derived precipitation estimates (MIS 2-MIS 1), in turn, can help to significantly improve the setup of numerical landscape evolution models (e.g., stream power models) which are of great importance to modern Earth system sciences, and the quantification of surface processes in particular.
Brierley, Gary; Fryirs, Kirstie
2009-06-01
Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to 'fight the site.'
NASA Astrophysics Data System (ADS)
Mazurkiewicz, Karolina; Skotnicki, Marcin
2018-02-01
The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.
Mouri, Goro; Oki, Taikan
2010-01-01
Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.
NASA Astrophysics Data System (ADS)
Wiegand, B. A.; Schwendenmann, L.
2013-04-01
SummaryA comparative study of Sr and Ca isotopes was conducted to assess solute sources and effects of biogeochemical processes on surface water and groundwater in four small tropical catchments located at La Selva Biological Station, Costa Rica. Variable concentrations of dissolved Sr2+ and Ca2+ in the catchments are related to mixing of waters from different origin. Three catchments are influenced by high-solute bedrock groundwater, while another catchment is primarily supplied by local recharge. 87Sr/86Sr ratios were employed to discriminate contributions from mineral weathering and atmospheric sources. Solutes in bedrock groundwater have a predominant geogenic origin, whereas local recharge is characterized by low-solute inputs from rainwater and minor in situ weathering releases from nutrient-depleted soils. Bedrock groundwater contributes more than 60% of dissolved Sr2+ to surface discharge in the Salto, Saltito, and Arboleda catchments, whereas the Taconazo catchment receives more than 95% of dissolved Sr2+ from rainwater. δ44/40Ca values of dissolved Ca2+ vary greatly in the catchments, mainly as a result of heterogeneous Ca isotope compositions of the contributing sources. Based on differences in δ44/40Ca values, two distinct bedrock groundwaters discharging at the Salto and the Arboleda catchments are suggested. Effects of biological processes in the plant-soil system on solute generation in the catchments are indicated by variable Ca/Sr ratios. However, these effects cannot clearly be assessed by Ca isotopes due to the strong heterogeneity of δ44/40Ca values of Ca2+ sources and high Ca2+ concentrations in bedrock groundwater.
The combined effects of topography and vegetation on catchment connectivity
NASA Astrophysics Data System (ADS)
Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.
2012-12-01
The deconvolution of whole catchment runoff response into its temporally dynamic source areas is a grand challenge in hydrology. The extent to which the intersection of static and dynamic catchment characteristics (e.g. topography and vegetation) influences water redistribution within a catchment and the hydrologic connectivity of hillslopes to the riparian and stream system is largely unknown. Over time, patterns of catchment storage shift and, because of threshold connectivity behavior, catchment areas become disconnected from the stream network. We developed a simple but spatially distributed modeling framework that explicitly incorporates static (topography) and dynamic (vegetation) catchment structure to document the evolution of catchment connectivity over the course of a water year. We employed directly measured eddy-covariance evapotranspiration data co-located within a highly instrumented (>150 recording groundwater wells) and gauged catchment to parse the effect of current and zero vegetation scenarios on the temporal evolution of hydrologic connectivity. In the absence of vegetation, and thus in the absence of evapotranspiration, modeled absolute connectivity was 4.5% greater during peak flow and 3.9% greater during late summer baseflow when compared to the actual vegetation scenario. The most significant differences in connected catchment area between current and zero vegetation (14.9%) occurred during the recession period in early July, when water and energy availability were at an optimum. However, the greatest relative difference in connected area occurs during the late summer baseflow period when the absence of evapotranspiration results in a connected area approximately 500% greater than when vegetation is present, while the relative increase during peak flow is just 6%. Changes in connected areas ultimately lead to propose a biologically modified geomorphic width function. This biogeomorphic width function is the result of lateral water redistribution driven by topography and water uptake by vegetation.
NASA Astrophysics Data System (ADS)
Campbell, Julie; Jordan, Phil
2013-04-01
Monitoring the efficacy of phosphorus (P) mitigation measures for both diffuse and point sources is difficult due to sample resolution and processes related to seasonality and hydrology. High-resolution monitoring by bankside analysers has increased in catchment studies, capturing the variation of P signals in flowing water from multiple sources and hydrological dependencies. However, while these high-resolution data can offer new insights into P patterns related to process, there is no theory on how these data should be used to investigate catchment change influences on stream P chemistry over time. Here we demonstrate the analysis of a five-year sub-hourly dataset of total P spanning a period of voluntary and mandatory mitigation measures to reduce soil P in high status fields and also replacement of defective septic systems. These two mitigation measures were deemed to have influences on both diffuse, storm dependent P transfers during high flows, and point, storm-independent P transfers during low flows. The data were gathered by Hach-Lange Phosphax systems linked to hydrometric stations in two 5km2 rural catchments (in the Irish border region) so that P concentration and discharge were measured synchronously. A series of ranked percentile high flow and low flow discharge ranges (e.g. Q5-Q10 and Q90-Q95, respectively) were determined for the five year period and, in each year, the P concentration data were extracted, which corresponded to these ranges. Each discharge percentile range was associated with several hundred mean hourly total P concentrations in each year and were compared using ANOVA to determine the magnitude and significance of change on a year-by-year basis. Over the five year period, the high flow analysis indicated that diffuse stream P concentrations had increased in both catchments (0.152 to 0.280 mg l-1, and 0.228 to 0.391 mg l-1), despite efforts to reduce soil P status. Subsequently, it was shown that the potency of high flow P transfers increased if the catchments had been exposed to low-level but persistent wetting (not related to the magnitude of annual rainfall). The low flow analysis also indicated that, despite septic system mitigation, P concentrations either increased (0.120 to 0.148 mg l-1), or showed no change (0.136 mg l-1) over the five years. These storm-independent signals were linked to an increased septic system density (through single house building) in the catchments despite mitigation of some existing defective systems. The results have utility for catchment managers expecting to see changes from large investments in mitigation policies. For example, successes or failures due to poor planning, low uptake or, possibly more importantly, the influences of hydrological change between years. The study also demonstrates the utility of high resolution data capture of nutrient hydrochemistry - as a tool to detect changes in complex catchments - in addition to furthering process understanding.
NASA Astrophysics Data System (ADS)
Khadka, Mitra B.; Martin, Jonathan B.; Jin, Jin
2014-05-01
Assessing the origin, transformation and transport of terrestrially derived carbon in river systems is critical to regional and global carbon cycles, particularly in carbonate terrains, which represent the largest carbon reservoir on the earth’s surface. For this reason, we evaluated sources, cycling, and fluxes of dissolved organic and inorganic carbon (DOC and DIC) and riverine CO2 degassing to the atmosphere in the Santa Fe River in north-central Florida, a sub-tropical river that flows across two distinct hydrogeological settings of a region dominated by carbonate karst. One setting occurs in the upper river catchment, where the carbonate Floridan aquifer is confined by the siliciclastic Hawthorn Group, while the other setting occurs in the lower catchment where the river flows across the unconfined Floridan aquifer. The upper catchment is characterized by DOC-rich and DIC-poor water and the DIC has more variable and lower δ13C values compared to the lower catchment. The river in the upper catchment degasses more CO2 to the atmosphere (1156 g C m-2 yr-1) than in the lower catchment (402 g C m-2 yr-1) because soil respired carbon and organic matter decomposition increase dissolved CO2 concentration, much of which is consumed during carbonate dissolution reactions in the lower catchment. The CO2 flux from the water surface to the atmosphere during a flood event is three times greater than during base flow, suggesting that excess precipitation flushes soil organic carbon to the river through interflow and enhances the loss of terrestrial carbon via river water to the atmosphere. Our values of CO2 fluxes to the atmosphere lie within the range of fluxes from the world’s rivers, but fluxes from the carbonate dominated region are at the low end, while fluxes from the siliciclastic region are at the high end. These results indicate that catchment lithologies, particularly whether carbonate or siliciclastic, as well as flow, are critical to carbon budgets in rivers and thus are linked to the global carbon cycle.
Field-based study of connectivity in an agricultural catchment
NASA Astrophysics Data System (ADS)
Lexartza-Artza, I.; Wainwright, J.
2009-12-01
Field-based studies of hydrological connectivity can provide context-specific knowledge that might both help understand dynamic complex systems and contribute to other synthetic or modelling approaches. The importance of such an understanding of catchment processes and also of the knowledge of catchment connections with water bodies and the changes of concentration with scale for Integrated Catchment Management has been increasingly emphasized. To provide a holistic understanding, approaches to the study of connectivity need to include both structural and functional aspects of the system and must consider the processes taking place within and across different temporal and spatial scales. A semi-quantitative nested approach has been used to investigate connectivity and study the interactions and feedbacks between the factors influencing transfer processes in the Ingbirchworth Catchment, in the uplands of the River Don, England. A series of reconnaissance techniques have been combined with monitoring of aspects such as rainfall, runoff, sediment transfer and soil-moisture distribution from plot to catchment scale and with consideration of linkages between land and water bodies. The temporal aspect has also been considered, with a special focus on the temporal distribution of events and the influence of longer term catchment changes such as those in land use and management practices. A variability of responses has been observed in relation to the characteristics of events, land use and scale of observation, with elements traditionally considered as limiting or enhancing connectivity responding differently under changing conditions. Sediment redistribution, reshaping of structure and consequent reinforcing loops can be observed across all land uses and landscape units, but the relevance it terms of effective connectivity of highly connected patches varies as the scale is increased. The knowledge acquired can contribute to recognise emerging processes significant for active land-water connection and thus provide useful knowledge for decision making.
Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
NASA Astrophysics Data System (ADS)
Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik
2013-04-01
SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.
NASA Astrophysics Data System (ADS)
Wu, S.; Zhao, J.; Wang, H.
2017-12-01
This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.
A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.
Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B
2018-06-15
Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.
Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model
NASA Astrophysics Data System (ADS)
Slaughter, Andrew R.; Mantel, Sukhmani K.
2018-04-01
The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of the two models were compared to the available observed data, with the initial focus within WQSAM on a simulation of instream total dissolved solids (TDS) and nutrient concentrations. The WEAP model was able to adequately simulate flow in the Buffalo River catchment, with consideration of human inputs and outputs. WQSAM was adapted to successfully take as input the flow output of the WEAP model, and the simulations of nutrients by WQSAM provided a good representation of the variability of observed nutrient concentrations in the catchment. This study showed that the WQSAM model is able to accept flow inputs from the WEAP model, and that this approach is able to provide satisfactory estimates of both flow and water quality for a small, semi-arid and impacted catchment. It is hoped that this research will encourage the application of WQSAM to an increased number of catchments within southern Africa and beyond.
NASA Astrophysics Data System (ADS)
Hauffe, Corina; Schwarze, Robert; Röhm, Patric; Müller, Ruben; Dröge, Werner; Gurova, Anastasia; Winkler, Peter; Baldy, Agnes
2016-04-01
Changes in weather and climate lead to increasing discussions about reasons and possible future impacts on the hydrological cycle. The question of a changed distribution of water also concerns the federal state of Saxony in the eastern part of Germany. Especially with a look at the different and increased requirements for water authorities, water economy and the public. To define and prepare these future requirements estimations of the future development of the natural water resources are necessary. Therefore data, information, and forecast concerning the development of the several components of the water balance are needed. And to make the obtained information easily available for experts and the public, tools like the internet have to be used. Under these frame conditions the water balance portal Saxony (www.wasserhaushaltsportal.sachsen.de) was developed within the project KliWES. The overall approach of the project was devided into the so-called „3 pillars".The first pillar focused on the evaluation of the status quo water balance from 1951-2005 by using a complex area-wide analysis of measured data. Also it contained the generating of a database and the development of a physically based parameter model. Furthermore an extensive model evaluation has been conducted with a number of objective assessment criteria, to select an appropriate model for the project. The second pillar included the calibration of the water balance model and the impact study of climate and land use change (1961-2100) on the water balance of Saxonian catchments. In this context 13 climate scenarios and three land use scenarios were simulated. The web presence of these two pillars represents a classical information service, which provides finalized results at the spatial resolution of sub-catchments using GIS-based webpages. The third pillar focused on the development of an interactive expert system. It allows the user (public, officials and consulting engineers) to simulate the water balance with user defined catchment parameters for catchments in Saxony under recent climatic und climate change conditions.
The relative influence of climate and catchment properties on hydrological drought
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Laaha, Gregor; Koffler, Daniel
2014-05-01
Studying hydrological drought (a below-normal water availability in groundwater, lakes and streams) is important to society and the ecosystem, but can also reveal interesting information about catchment functioning. This information can later be used for predicting drought in ungauged basins and to inform water management decisions. In this study, we used an extensive Austrian dataset of discharge measurements in clusters of catchments and combine this dataset with thematic information on climate and catchment properties. Our aim was to study the relative effects of climate and catchment characteristics on drought duration and deficit and on hydrological drought typology. Because the climate of the region is roughly uniform, our hypothesis was that the effect of differences of catchment properties would stand out. From time series of precipitation and discharge we identified droughts with the widely-used threshold level approach, defining a drought when a variable falls below a pre-defined threshold representing the regime. Drought characteristics that were analysed are drought duration and deficit. We also applied the typology of Van Loon & Van Lanen (2012). To explain differences in drought characteristics between catchments we did a correlation analysis with climate and catchment characteristics, based on Pearson correlation. We found very interesting patterns in the correlations of drought characteristics with climate and catchment properties: 1) Droughts with long duration (mean and maximum) and composite droughts are related to catchments with a high BFI (high baseflow) and a high percentage of shallow groundwater tables. 2) The deficit (mean and maximum) of both meteorological droughts and hydrological droughts is strongly related to catchment humidity, in this case quantified by average annual precipitation. 3) The hydrological drought types that are related to snow, i.e. cold snow season drought and snow melt drought, occur in catchments that are have a high elevation, steep slopes, a high percentage of crystalline rock, bare rock and glacier. The conclusion of our research is that it is not straightforward to separate the effects of climate and catchment properties on drought, since they are interrelated. This is especially true for mountainous regions where temperature and precipitation are strongly dependent on altitude. We did however see that the duration of drought is more related to catchment storage (catchment properties) and the severity of drought (represented by the drought deficit) is more related to catchment wetness (climate). Van Loon, A.F., and Van Lanen, H.A.J.: A process-based typology of hydrological drought, Hydrology and Earth System Science, 16, p. 1915-1946, doi: 10.5194/hess-16-1915-2012, 2012
NASA Astrophysics Data System (ADS)
Badar, Bazigha; Romshoo, Shakil A.; Khan, M. A.
2013-04-01
In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.
Land Management, River Restoration and the Water Framework Directive
NASA Astrophysics Data System (ADS)
Smith, Ben; Clifford, Nicholas
2014-05-01
The influence of catchment land-use on river ecosystems is well established, with negative changes in hydrology, sediment supply and pollutants causing widespread degradation in modified catchments across Europe. The strength of relationship found between different land-use types and impacts on river systems varies from study to study as a result of issues around data quality, scale, study design and the interaction of stressors at multiple scales. Analysis of large-scale datasets can provide important information about the way that catchments pressures affect WFD objectives at a national scale. Comparisons of relationships between land-use and WFD status in different types of catchment within the UK allow an assessment of catchment sensitivity and analysis of the catchment characteristics which influence these relationships. The results suggest prioritising catchments at or near land-use thresholds, or targeting waterbodies with limited land-use pressures but which are failing to achieve GES or GEP. This paper uses UK datasets on land cover and WFD waterbody status to examine how catchment land-use impacts on WFD status and to evaluate opportunities to achieve Good Ecological Status or Good Ecological Potential. Agricultural and urban land-use are shown to have different types of relationship with respect to the likelihood of achieving Good Ecological Status, and with clear threshold effects apparent for urban land-use in the catchment. Broad-scale analysis shows the influence of different sized buffer strips in mitigating the negative effects of different types of land-cover, and reinforces the positive effects of riparian woodland on river ecosystems and their potential under the WFD.
NASA Astrophysics Data System (ADS)
Johnes, P.
2013-12-01
Nutrient enrichment of waters from land-based and atmospheric sources presents a significant management challenge, requiring effective stakeholder engagement and policy development, properly underpinned by robust scientific evidence. The challenge is complex, raising significant questions about the specific sources, apportionment and pathways that determine nutrient enrichment and the key priorities for effective management and policy intervention. This paper presents outputs from 4 major UK research programmes: the Defra Demonstration Test Catchments programme (DTC), the Environment Agency's Catchment Sensitive Farming monitoring and evaluation programme (CSF), Natural Resources Wales Welsh Catchment Initiative (WCI) and the NERC Environmental Virtual Observatory programme (EVOp). Funded to meet this challenge, they are delivering new understanding of the rates and sources of pollutant fluxes from land to water, their impacts on ecosystem goods and services, and likely trends under future climate and land use change from field to national scale. DTC, a 12m investment by the UK Government, has set up long-term, high resolution research platforms equipped with novel telemetered sensor networks to monitor stream ecosystem responses to on-farm mitigation measures at a representative scale for catchment management. Ecosystem structural and functional responses and bulk hydrochemistry are also being monitored using standard protocols. CSF has set up long-term, enhanced monitoring in 8 priority catchments, with monthly monitoring in a further 72 English catchments and 6 Welsh priority catchments, to identify shifts in pollutant flux to waters resulting from mitigation measures in priority areas and farming sectors. CSF and WCI have contributed to >50 million of targeted farm improvements to date, representing a significant shift in farming practice. Each programme has generated detailed evidence on stream ecosystem responses to targeted mitigation. However, to provide effective underpinning for policy the major challenge has been to upscale this knowledge beyond these data-rich systems and identify the dominant contributing areas and priorities for management intervention to control nutrient flux and ecological impacts in data-poor systems which are located downstream from existing monitoring infrastructure or are in unmonitored catchments in remote locations. EVOp has directly addressed this challenge, developing a cloud computing enabled National Biogeochemical Modelling Framework to support ensemble modelling, knowledge capture and transfer from DTC, CSF, WCI and data-rich research catchments. This platform provides opportunities for further development of national biogeochemical modelling capability, allowing upscaled predictions from plot to catchment and national scale, enabling knowledge transfer from data-rich to data-poor areas. This paper presents initial findings from these research platforms, identifying the key priorities for action emerging from our national scale scenario analysis, and future research directions to further improve understanding, prediction and management capability in nutrient enriched waters and their catchments under changing climate and land use.
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Hu, Yuzhu; Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph
2016-04-01
The constructed Hühnerwasser ("Chicken Creek") catchment is an ecohydrological system in an initial state of development. The catchment with an area of 6 ha was built up from quaternary sediments in the post-mining landscape of Lusatia in Eastern Germany and serves as a critical zone observatory for detecting ecosystem transition. The soil substrate is characterized as sands to loamy sands with low carbonate contents but significant amounts of gypsum in the sediments of the catchment. The catchment undergoes a strong transition from an abiotic system in the initial years to a system with growing influence of biota. Concerning the hydrology, a regime shift from surface runoff to groundwater flow dominated processes is significant. It is of interest, whether the catchment transition is also reflected by hydrogeochemical indicators. We assume gypsum dissolution as dominant process at the catchment scale. In order to investigate the hydrogeochemical evolution of the catchment we analysed electric conductivity, calcium and sulphate concentrations and pH-values of biweekly composite samples from 2007-2013 of the atmospheric deposition, of runoff and soil water. The two observation points in the flowing water represent surface runoff and groundwater discharge respectively. Soil water has been analysed at four soil pits in three depths. The monitoring data were provided by the Research Platform Chicken Creek (https://www.tu-cottbus.de/projekte/en/oekosysteme/startseite.html). From the macroscopic data analysis we found an exponential decay of the electric conductivity, calcium and sulphate concentrations in the flowing waters and some of the soil pits. In the flowing water, the decrease slope of the electric conductivity and the calcium and sulphate concentrations is almost identical. The calcium / sulphate molar ratio as an indicator of gypsum dissolution is almost equal to one up to 2010, afterwards more calcium than sulphate is released. The pH-values in the flowing and soil water are generally higher than in the atmospheric deposition, they do show variabilites but no trend behaviour. The time series analyses showed that the interannual variability of the hydrogeochemical properties is less pronounced in the first years of ecosystem development than in the later years. This leads to the conclusion, that in the first years, gypsum dissolution is the major source for calcium and sulphate in the soil and the flowing waters. The increasing interannual variability and changes in the calcium / sulphate ratio in the later years might be interpreted as hydrogeochemical response to the development of vegetation and acidification due to the development of the rhizosphere.
Integration of sewer system maps in topographically based sub-basin delineation in suburban areas
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Branger, Flora; Braud, Isabelle; Rodriguez, Fabrice
2010-05-01
Due to the increase of urbanization, suburban areas experience a fast change in land use. The impact of such modifications on the watershed hydrological cycle must be quantified. To achieve this goal, distributed hydrological models offer the possibility to take into account land use change, and more particularly to consider urbanized areas and anthropogenic features such as roads or ditches and their impact on the hydrological cycle. A detailed definition of the hydrographical drainage network and a corresponding delineation of sub-basins is therefore necessary as input to distributed models. Sub-basins in natural catchments are usually delineated using standard GIS based terrain analysis. The drainage network in urbanised watersheds is often modified, due to sewer systems, ditches, retention basins, etc.. Therefore, its delineation is not only determined by topography. The simple application of terrain analysis algorithms to delineate sub-basins in suburban areas can consequently lead to erroneous sub-basin borders. This study presents an improved approach for sub-basin delineation in suburban areas. It applies to small catchments connected to a sewage plant, located outside the catchment boundary. The approach assumes that subsurface flow follows topography. The method requires a digital elevation model (DEM), maps of land use, cadastre, sewer system and the location of measurement stations and retention basins. Firstly, the topographic catchment border must be defined for the concerning flow measurement station. Standard GIS based algorithms, like the d8-flow direction algorithm (O'Callaghan and Mark, 1984) can be applied using a high resolution DEM. Secondly, the artificial catchment outlets have to be determined. Each catchment has one natural outlet - the measurement station on the river- but it can have several artificial outlets towards a sewage station. Once the outlets are determined, a first approximation of the "theoretical maximal contributing area" can be made. It encompasses the whole connected sewer system and the topographic catchment boundary. The area of interest is therefore defined. The next step is the determination of the extended drainage network, consisting of the natural river, ditches, combined and separated sewer systems and retention basins. This requires a detailed analysis of sewer system data, field work (mapping of ditches and inlets into the natural river). Contacts with local authorities are also required to keep up-to-date about recent changes. Pure wastewater and drinking water pipes are not integrated in the drainage network. In order to have a unique drainage network for the model, choices might have to be made in case of several coexisting drainage pipes. The urban sub-basins are then delineated with the help of a cadastral map (Rodriguez et al., 2003) or an aerial photography. Each cadastral unit is connected to the closest drainage pipe, following the principle of proximity and gravity. The assembly of all cadastral units connected to one network reach represents one urban sub-basin. The sub-basins in the rural part are calculated using the d8 flow direction and watershed delineation algorithm with "stream burning" (Hutchinson, 1989). One sub-basin is delineated for each reach of the extended drainage network. Some manual corrections of the calculated sub-basins are necessary. Finally, the urban and rural sub-basins are merged by subtraction of the urban area from the rural area and subsequent union of both maps. This method was applied to the Chaudanne catchment, a sub-basin of the Yzeron catchment (ca. 4 km2) in the suburban region of Lyon city, France. The method leads to a 30 % extended catchment area, as compared to the topographic catchment area. For each river inlet the sub-basin area could be determined, as well as for each retention basin. This information can be directly used for the dimensioning of retention basins, pipe diameters, etc.
Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments
NASA Astrophysics Data System (ADS)
Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles
2016-03-01
Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.
NASA Astrophysics Data System (ADS)
Ragettli, S.; Zhou, J.; Wang, H.; Liu, C.; Guo, L.
2017-12-01
Flash floods in small mountain catchments are one of the most frequent causes of loss of life and property from natural hazards in China. Hydrological models can be a useful tool for the anticipation of these events and the issuing of timely warnings. One of the main challenges of setting up such a system is finding appropriate model parameter values for ungauged catchments. Previous studies have shown that the transfer of parameter sets from hydrologically similar gauged catchments is one of the best performing regionalization methods. However, a remaining key issue is the identification of suitable descriptors of similarity. In this study, we use decision tree learning to explore parameter set transferability in the full space of catchment descriptors. For this purpose, a semi-distributed rainfall-runoff model is set up for 35 catchments in ten Chinese provinces. Hourly runoff data from in total 858 storm events are used to calibrate the model and to evaluate the performance of parameter set transfers between catchments. We then present a novel technique that uses the splitting rules of classification and regression trees (CART) for finding suitable donor catchments for ungauged target catchments. The ability of the model to detect flood events in assumed ungauged catchments is evaluated in series of leave-one-out tests. We show that CART analysis increases the probability of detection of 10-year flood events in comparison to a conventional measure of physiographic-climatic similarity by up to 20%. Decision tree learning can outperform other regionalization approaches because it generates rules that optimally consider spatial proximity and physical similarity. Spatial proximity can be used as a selection criteria but is skipped in the case where no similar gauged catchments are in the vicinity. We conclude that the CART regionalization concept is particularly suitable for implementation in sparsely gauged and topographically complex environments where a proximity-based regionalization concept is not applicable.
A 125 year long record of DOC flux from a major temperate catchment: land-use vs. climate control?
NASA Astrophysics Data System (ADS)
Clay, G.; Worrall, F.; Howden, N. K.; Burt, T. P.
2010-12-01
Our understanding of the controls upon carbon biogeochemistry has always been limited by lack of long term observational data at the same time as having long term monitoring of possible environmental drivers. For the River Thames catchment in the UK (9998 km2) records of DOM have been kept since 1868 and DOM flux since 1882. In addition to riverflow being monitored in the catchment there has also been monitoring of climate, land-use and population back to at least 1868. The Thames catchment is a mixed agricultural urban catchment dominated by mineral soils where groundwater plays a significant part in the catchments flow system. During the period of the record the catchment has undergone urbanisation, climate warming but has also undergone large-scale land use change associated with World War II and agricultural intensification in the 1960s. The importance of these combinations of pressures are explored in the time series through a range of time series techniques and the results show: i) That DOC flux in the catchment is now at historic low levels, with the maximum flux being 35 ktonnes C/yr (3.5 tonnes/km2/yr) in 1915 and the lowest flux being 2 ktonnes C/yr (0.2 tonnes/km2/yr) in 1997. ii) The trend in the DOC flux is explained by changes in flow, which appear associated with both with groundwater storage in the catchment and with changes in land-use. iii) The significant decline in the DOC flux appears to be due to the transition in the catchment from dominated from pasture to an arable land use. iv) The decline of DOC flux with temperature would suggest that DOC mineralisation reaction has a higher Q10 than the DOC production. v) Declining DOC flux from mineral soils catchments would offset increases in DOC flux from organic soils but would also represent a shift in carbon losses from fluvial to being direct to the atmosphere.
Regionalization of response routine parameters
NASA Astrophysics Data System (ADS)
Tøfte, Lena S.; Sultan, Yisak A.
2013-04-01
When area distributed hydrological models are to be calibrated or updated, fewer calibration parameters is of a considerable advantage. Based on, among others, Kirchner, we have developed a simple non-threshold response model for drainage in natural catchments, to be used in the gridded hydrological model ENKI. The new response model takes only the hydrogram into account, it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. The method is based on the assumption that in catchments where precipitation, evaporation and snowmelt is neglect able, the discharge is entirely determined by the amount of stored water. It can then be characterized as a simple first-order nonlinear dynamical system, where the governing equations can be found directly from measured stream flow fluctuations. This means that the response in the catchment can be modelled by using hydrogram data where all data from periods with rain, snowmelt or evaporation is left out, and adjust these series to a two or three parameter equation. A large number of discharge series from catchments in different regions in Norway are analyzed, and parameters found for all the series. By combining the computed parameters and known catchments characteristics, we try to regionalize the parameters. Then the parameters in the response routine can easily be found also for ungauged catchments, from maps or data bases.
Stormflow generation: a meta-analysis of field studies and research catchments
NASA Astrophysics Data System (ADS)
Barthold, Frauke; Elsenbeer, Helmut
2014-05-01
Runoff characteristics are expressions of runoff generation mechanisms. In this study, we want to test the hypothesis if storm hydrographs of catchments with prevailing near-surface flow paths are dominated by new water. We aim to test this hypothesis using published data from the scientific literature. We developed a classification system based on three runoff characteristics: (1) hydrograph response (HR: slowly or quickly), (2) the temporal source of water that dominates the hydrograph (TS: pre-event vs. event water) and (3) the flow paths that the water takes until it is released to the stream (FP: subsurface vs. surface flow paths). We then performed a literature survey to collect information on these runoff characteristics for small, forested headwater catchments that served as study areas in runoff generation studies and assigned each study catchment to one of the 8 classes. For this purpose, we designed a procedure to objectively diagnose the predominant conceptual model of storm flow generation in each catchment and assess its temporal and spatial relevance for the catchment. Finally, we performed an explorative analysis of the classified research catchments and summarized field evidence. Our literature survey yielded a sample of 22 research catchments that fell within our defined criteria (small, naturally forested catchments which served as study areas in stormflow generation studies). We applied our classification procedure to all of these catchments. Among them were 14 catchments for which our meta-analysis yielded a complete set of stormflow characteristics resulting in one of the 8 model concepts and were assigned into our classification scheme. Of the 14 classified research catchments, 10 were dominated by subsurface flow paths while 4 were dominated by overland flow. The data also indicate that the spatial and temporal relevance is high for catchments with subsurface flow paths while often weak for surface flow paths dominated catchments. The catalogue of catchments supports our hypothesis; however, it is afflicted with a relative high degree of uncertainty. Two theories exist that may explain the imbalance between surface and subsurface dominated catchments: (1) the selection of research sites for stormflow generation studies was guided by the leading research question in hydrology, i.e. to address the "old water paradox", and (2) catchments with prevailing subsurface flow paths are much more common in nature. In a next step, the proposed catalogue of research catchments allows correlation of environmental characteristics with runoff characteristics to address questions of catchment organization and similarity. However, the successful application and relevance of such an approach depends on the range of conceptual models for which field support exist. Our results prompt us to highlight future research needs: (1) in order to cover a broader range of combinations of runoff characteristics a careful selection of research sites is necessary and (2) propose guidelines for field studies in order achieve higher comparability of resulting conceptual models of research sites and increase the spatial and temporal relevance of the dominant conceptual model.
Empirical relations between large wood transport and catchment characteristics
NASA Astrophysics Data System (ADS)
Steeb, Nicolas; Rickenmann, Dieter; Rickli, Christian; Badoux, Alexandre
2017-04-01
The transport of vast amounts of large wood (LW) in water courses can considerably aggravate hazardous situations during flood events, and often strongly affects resulting flood damage. Large wood recruitment and transport are controlled by various factors which are difficult to assess and the prediction of transported LW volumes is difficult. Such information are, however, important for engineers and river managers to adequately dimension retention structures or to identify critical stream cross-sections. In this context, empirical formulas have been developed to estimate the volume of transported LW during a flood event (Rickenmann, 1997; Steeb et al., 2017). The data base of existing empirical wood load equations is, however, limited. The objective of the present study is to test and refine existing empirical equations, and to derive new relationships to reveal trends in wood loading. Data have been collected for flood events with LW occurrence in Swiss catchments of various sizes. This extended data set allows us to derive statistically more significant results. LW volumes were found to be related to catchment and transport characteristics, such as catchment size, forested area, forested stream length, water discharge, sediment load, or Melton ratio. Both the potential wood load and the fraction that is effectively mobilized during a flood event (effective wood load) are estimated. The difference of potential and effective wood load allows us to derive typical reduction coefficients that can be used to refine spatially explicit GIS models for potential LW recruitment.
NASA Astrophysics Data System (ADS)
Ueckert, Martina; Baumann, Thomas
2014-05-01
In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.
NASA Astrophysics Data System (ADS)
Formetta, Giuseppe; Stewart, Elizabeth; Bell, Victoria; Reynard, Nick
2017-04-01
Estimation of peak discharge for an assigned return period is a crucial issue in engineering hydrology. It is required for designing and managing hydraulic infrastructure such as dams, reservoirs and bridges. In the UK, the Flood Estimation Handbook (FEH) recommends the use of the index flood method to estimate the design flood as the product of a local scale factor (the index flood, IF) and a dimensionless regional growth factor (GF). For gauged catchments the IF is usually estimated as the median annual maximum flood (QMED), while for ungauged catchments it is computed through multiple linear regression models based on a set of morpho-climatic indices of the basin. The GF is estimated by fitting the annual maxima with the generalised logistic distribution (GL) using two methods depending on the record length and the target return period: single-site or pooled analysis. The single site-analysis estimates the GF from the annual maxima of the subject site alone; the pooled analysis uses data from a set of catchments hydrologically similar to the subject site. In this work estimates of floods up to 100-year return period obtained from the FEH approach are compared to those obtained using Grid-to-Grid, a continuous physically-based hydrological model. The model converts rainfall and potential evapotranspiration into river flows by modelling surface/sub-surface runoff, lateral water movements, and snow-pack. It is configured on a 1km2 grid resolution and it uses spatial datasets of topography, soil, and land cover. It was set up in Great Britain and has been evaluated for the period 1960-2014 in forward-mode (i.e. without parameter calibration) using daily meteorological forcing data. The modelled floods with a given return period (5,10, 30, 50, and 100 years) were computed from the modelled discharge annual maxima and compared to the FEH estimates for 100 catchments in Great Britain. Preliminary results suggest that there is a good agreement between modelled and measured floods with a correlation coefficient that ranges from 0.8 for low return periods to 0.65 for the highest. It is shown that model performance is robust and independent of catchment features such as area and mean annual rainfall. The promising results for Great Britain support the aspiration that continuous simulation from large-scale hydrological models, supported by the increasing availability of global weather, climate and hydrological products, could be used to develop robust methods to help engineers estimate design floods in regions with limited gauge data or affected by environmental change.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Watson, Helen; Stutter, Marc
2014-05-01
Over the past decade economic losses from floods have greatly increased, with sediment related impacts as a key feature of such events. Impacts include changes in river channel course, scour of river banks, sedimentation of infrastructure (e.g. bridges), and deposition of sand and gravel on farmland. Sediment deposition can in turn reduce conveyance capacity and lead to further increased flood risk. The EU Water Framework Directive and Floods Directive highlights that sustainable approaches to flood risk reduction should be used alongside and, where possible, replace traditional structural flood defences and activities that address sediment problems. Natural Flood Management(NFM) is promoted as a method that can reduce flood risk and manage sediment by incorporating natural hydrological and morphological processes. As such, NFM measures are designed to use these fluvial processes to manage the sources and pathways of flood waters and sediments. Techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes. Here we aim to assess the effectiveness of novel flood mitigation measures for reducing flood risk and capturing coarse sediment in rapidly responding headwater catchments. We present preliminary research findings from a densely instrumented research site (Bowmont catchment, Scotland (85km2)) which regularly experiences flood events with associated coarse sediment problems. NFM measures have been installed to capture course sediment and to store water more effectively on the flood plains during these flood events. For example, novel engineered wooden structures ('bar apex log jams') constructed in the river corridor are designed to trap sediment and log bank protection structures have been installed to stop bank erosion. Within a tributary catchment of the Bowmont (0.7km2), new flow restrictors have been installed on a headwater stream to slow the flow whilst collecting coarse sediment. These were designed to have a minimal impact on upland farming practices. In addition, tree planting is also occurring in the catchment for example, within gulley, on the riparian zone and hedgerow belts perpendicular to slopes. During a recent large event, the majority of 40 bar apex structures collected coarse sediment. However, only five were associated with high deposition and modification of the spatial pattern of deposition, which highlighted the importance both of structure design and location of these features to maximise their sediment trapping effectiveness and longevity.
Prioritization of catchments based on soil erosion using remote sensing and GIS.
Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K
2015-06-01
Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.
NASA Astrophysics Data System (ADS)
Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.
2004-11-01
Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Welton, Phil; Kerr, Peter; Quinn, Paul; Jonczyk, Jennine
2010-05-01
From 2000 to 2009 there have been a high number of flood events throughout Northern Europe. Meanwhile, there is a demand for land in which to construct homes and businesses on, which is encroaching on land which is prone to flooding. Nevertheless, flood defences usually protect us from this hazard. However, the severity of floods and this demand for land has increased the number of homes which have been flooded in the past ten years. Public spending on flood defences can only go so far which targets the large populations first. Small villages and communities, where in many cases normal flood defences are not cost effective, tend to wait longer for flood mitigation strategies. The Belford Burn (Northumberland, UK) catchment is a small rural catchment that drains an area of 6 km2. It flows through the village of Belford. There is a history of flooding in Belford, with records of flood events dating back to 1877. Normal flood defences are not suitable for this catchment as it failed the Environment Agency (EA) cost benefit criteria for support. There was a desire by the local EA Flood Levy Team and the Northumbria Regional Flood Defence Committee at the Environment Agency to deliver an alternative catchment-based solution to the problem. The EA North East Flood Levy team and Newcastle University have created a partnership to address the flood problem using soft engineered runoff management features. Farm Integrated Runoff Management (FIRM) plans manage flow paths directly by storing slowing and filtering runoff at source on farms. The features are multipurpose addressing water quality, trapping sediment, creating new habitats and storing and attenuating flood flow. Background rainfall and stream stage data have been collected since November 2007. Work on the first mitigation features commenced in July 2008. Since that date five flood events have occurred in the catchment. Two of these flood events caused widespread damage in other areas of the county. However, in Belford only two houses were flooded. Data from the catchment and mitigation features showed that the defence measures resulted in an increase in travel time of the peak and attenuated high flows which would have usually travelled quickly down the channel to the village. For example, the pilot feature appears to have increased the travel time of a flood peak at the top of the catchment from 20 minutes to 35 minutes over a 1 km stretch of channel. There are currently ten active mitigation features present in the catchment. More features are planned for construction this year. Early data from the catchment indicates that the runoff attenuation features are having an impact on reducing flood flows in the channel and also slowing down the flood peak. At the same time the multi-purpose aspects of the features are apparent.
USDA-ARS?s Scientific Manuscript database
Surface water and groundwater contamination by herbicides and fertilizers continues to be a major water quality problem in central Missouri. The purpose of this study was to examine spatial variability of water quality among three different headwater catchments – Goodwater Creek Experimental Watersh...
NASA Astrophysics Data System (ADS)
Harris, B.; McDougall, K.; Barry, M.
2012-07-01
Digital Elevation Models (DEMs) allow for the efficient and consistent creation of waterways and catchment boundaries over large areas. Studies of waterway delineation from DEMs are usually undertaken over small or single catchment areas due to the nature of the problems being investigated. Improvements in Geographic Information Systems (GIS) techniques, software, hardware and data allow for analysis of larger data sets and also facilitate a consistent tool for the creation and analysis of waterways over extensive areas. However, rarely are they developed over large regional areas because of the lack of available raw data sets and the amount of work required to create the underlying DEMs. This paper examines definition of waterways and catchments over an area of approximately 25,000 km2 to establish the optimal DEM scale required for waterway delineation over large regional projects. The comparative study analysed multi-scale DEMs over two test areas (Wivenhoe catchment, 543 km2 and a detailed 13 km2 within the Wivenhoe catchment) including various data types, scales, quality, and variable catchment input parameters. Historic and available DEM data was compared to high resolution Lidar based DEMs to assess variations in the formation of stream networks. The results identified that, particularly in areas of high elevation change, DEMs at 20 m cell size created from broad scale 1:25,000 data (combined with more detailed data or manual delineation in flat areas) are adequate for the creation of waterways and catchments at a regional scale.
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Kilsby, Chris; Fowler, Hayley
2014-05-01
The impact of climate change on hydrological systems requires further quantification in order to inform water management. This study intends to conduct such analysis using hydrological models. Such models are of varying forms, of which conceptual, lumped parameter models and physically-based models are two important types. The majority of hydrological studies use conceptual models calibrated against measured river flow time series in order to represent catchment behaviour. This method often shows impressive results for specific problems in gauged catchments. However, the results may not be robust under non-stationary conditions such as climate change, as physical processes and relationships amenable to change are not accounted for explicitly. Moreover, conceptual models are less readily applicable to ungauged catchments, in which hydrological predictions are also required. As such, the physically based, spatially distributed model SHETRAN is used in this study to develop a robust and reliable framework for modelling historic and future behaviour of gauged and ungauged catchments across the whole of Great Britain. In order to achieve this, a large array of data completely covering Great Britain for the period 1960-2006 has been collated and efficiently stored ready for model input. The data processed include a DEM, rainfall, PE and maps of geology, soil and land cover. A desire to make the modelling system easy for others to work with led to the development of a user-friendly graphical interface. This allows non-experts to set up and run a catchment model in a few seconds, a process that can normally take weeks or months. The quality and reliability of the extensive dataset for modelling hydrological processes has also been evaluated. One aspect of this has been an assessment of error and uncertainty in rainfall input data, as well as the effects of temporal resolution in precipitation inputs on model calibration. SHETRAN has been updated to accept gridded rainfall inputs, and UKCP09 gridded daily rainfall data has been disaggregated using hourly records to analyse the implications of using realistic sub-daily variability. Furthermore, the development of a comprehensive dataset and computationally efficient means of setting up and running catchment models has allowed for examination of how a robust parameter scheme may be derived. This analysis has been based on collective parameterisation of multiple catchments in contrasting hydrological settings and subject to varied processes. 350 gauged catchments all over the UK have been simulated, and a robust set of parameters is being sought by examining the full range of hydrological processes and calibrating to a highly diverse flow data series. The modelling system will be used to generate flow time series based on historical input data and also downscaled Regional Climate Model (RCM) forecasts using the UKCP09 Weather Generator. This will allow for analysis of flow frequency and associated future changes, which cannot be determined from the instrumental record or from lumped parameter model outputs calibrated only to historical catchment behaviour. This work will be based on the existing and functional modelling system described following some further improvements to calibration, particularly regarding simulation of groundwater-dominated catchments.
The River EdenDTC Project: A National Demonstration Test Catchment
NASA Astrophysics Data System (ADS)
Benskin, C.; Surridge, B.; Deasy, C.; Woods, C.; Rimmer, D.; Lees, E.; Owens, G.; Jonczyk, J.; Quinton, J.; Wilkinson, M.; Perks, M.; Quinn, P.; Barker, P.; Haygarth, P.; Burke, S.; Reaney, S.; Watson, N.
2012-04-01
Our environment is a complex system of interactions between natural process and anthropogenic activities that disrupt them. It is crucial to manage the balance for continued food production whilst maintaining the quality of the environment. The challenges we face include managing the impact of agricultural land use on aquatic quality and biodiversity as an integral system, rather than as separate issues. In order to do this, it is critical to understand how the different components are linked - how does land use affect our water courses and ground water, and their associated ecosystems, and how can the impact of agricultural land use on these systems be minimised? Regulating farm nutrient management through measures that minimise sources, their exposure to mobilisation, and reduce drainage pathways to water courses are all fundamental to the UK's approach to meeting the Water Framework Directive objective of achieving 'good ecological status' in all surface and groundwater bodies by 2015. The EdenDTC project is part of a 5-year national Demonstration Test Catchments (DTC) environmental scheme, aiming to understand the above issues through combining scientific research with local knowledge and experience from multiple stakeholders. The DTC project is a 5-year initiative by Defra, Welsh Assembly Government and the Environment Agency, which encompasses a research platform covering three distinct river catchments: the Eden in Cumbria; the Wensum in Norfolk; and the Avon in Hampshire. Within the EdenDTC, the impact and effects of multiple diffuse pollutants on ecosystems and sustainable food production are being studied on a river catchment scale. Three 10 km2 focus catchments, selected to represent the different farming practices and geologies observed across the Eden, have been instrumented to record the dynamics of agricultural diffuse pollution at multiple scales. Within each focus catchment, two sub-catchments were selected: one control and one mitigation, in which a number of existing and novel mitigation measures will be tested. A number of on-farm measures, aimed at reducing agricultural diffuse pollution, will be evaluated by monitoring their effect on water quality and associated biodiversity. In order to achieve this, state of the art hydro-meteorological logging systems have been installed. The outlets of the focus catchments each have a 'high-tech' multi-parameter station that will provide data for total P, soluble reactive P, nitrate, ammonium, temperature, conductivity, dissolved oxygen, turbidity, pH and flow. At the sub-catchment scale are 10 sub-stations, which provide a record of turbidity and water level. All are continuously sampling at 15 minute intervals and are telemetered. The goal is to give an abundance of high quality, multi-scale continuous data provided in real time. Additional storm sampling is being performed at all stations using automatic water samplers, and monthly spot samples are also analysed for each site. The information gathered at these different scales is hoped to improve the effectiveness/efficiency of schemes such as the England Catchment Sensitive Farming Delivery Initiative (ECSFDI). It is also hoped that many of the mitigation features will be multipurpose, having positive effects on flooding, carbon sequestration, habitat creation and biodiversity.
Factors influencing stream baseflow transit times in tropical montane watersheds
NASA Astrophysics Data System (ADS)
Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.
2016-04-01
Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.
NASA Astrophysics Data System (ADS)
Ala-aho, P. O. A.; Tetzlaff, D.; Laudon, H.; McNamara, J. P.; Soulsby, C.
2016-12-01
We use the Spatially distributed Tracer-Aided Rainfall-Runoff (STARR) modelling framework to explore non-stationary flow and isotope response in three northern headwater catchments. The model simulates dynamic, spatially variable tracer concentration in different water stores and fluxes within a catchment, which can constrain internal catchment mixing processes, flow paths and associated water ages. To date, a major limitation in using such models in snow-dominated catchments has been the difficulties in paramaterising the isotopic transformations in snowpack accumulation and melt. We use high quality long term datasets for hydrometrics and stable water isotopes collected in three northern study catchments for model calibration and testing. The three catchments exhibit different hydroclimatic conditions, soil and vegetation types, and topographic relief, which brings about variable degree of snow dominance across the catchments. To account for the snow influence we develop novel formulations to estimate the isotope evolution in the snowpack and melt. Algorithms for the isotopic evolution parameterize an isotopic offset between snow evaporation and melt fluxes and the remaining snow storage. The model for each catchment is calibrated to match both streamflow and tracer concentration at the stream outlet to ensure internal consistency of the system behaviour. The model is able to reproduce the streamflow along with the spatio-temporal differences in tracer concentrations across the three studies catchments reasonably well. Incorporating the spatially distributed snowmelt processes and associated isotope transformations proved essential in capturing the stream tracer reponse for strongly snow-influenced cathments. This provides a transferrable tool which can be used to understand spatio-temporal variability of mixing and water ages for different storages and flow paths in other snow influenced, environments.
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Haygarth, Phil; Quinn, Paul; Reaney, Sim
2014-05-01
A high temporal resolution data set from the Eden Demonstration Test Catchment (DTC) project is used to investigate the processes causing pollution and the influence of temporal sampling regime on the WFD classification of three catchments. This data highlights WFD standards may not be fit for purpose. The Eden DTC project is part of a UK government-funded project designed to provide robust evidence regarding how diffuse pollution can be cost-effectively controlled to improve and maintain water quality in rural river catchments. The impact of multiple water quality parameters on ecosystems and sustainable food production are being studied at the catchment scale. Three focus catchments approximately 10 km2 each, have been selected to represent the different farming practices and geophysical characteristics across the Eden catchment, Northern England. A field experimental programme has been designed to monitor the dynamics of agricultural diffuse pollution at multiple scales using state of the art sensors providing continuous real time data. The data set, which includes Total Phosphorus and Total Reactive Phosphorus, Nitrate, Ammonium, pH, Conductivity, Turbidity and Chlorophyll a reveals the frequency and duration of nutrient concentration target exceedance which arises from the prevalence of storm events of increasing magnitude. This data set is sub-sampled at different time intervals to explore how different sampling regimes affects our understanding of nutrient dynamics and the ramification of the different regimes to WFD chemical status. This presentation seeks to identify an optimum temporal resolution of data for effective catchment management and to question the usefulness of the WFD status metric for determining health of a system. Criteria based on high frequency short duration events needs to be accounted for.
NASA Astrophysics Data System (ADS)
Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.
2009-04-01
Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
NASA Astrophysics Data System (ADS)
McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.
2015-12-01
Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.
NASA Astrophysics Data System (ADS)
Boix-Fayos, Carolina; Almagro, María; Díaz-Pereira, Elvira; Pérez-Cutillas, Pedro; de Vente, Joris; Martínez-Mena, María
2017-04-01
Quantification of different organic carbon pools mobilized by lateral fluxes is important to close organic carbon (OC) budgets at the catchment scale. This quantification helps to identify in which forms OC is transferred, deposited, and mineralized during the erosion cycle. Many Mediterranean mountain catchments have experienced important land use changes in the last 50 years leading to a recovery of the vegetation in many cases. Furthermore, many of them are characterized by stream discontinuity with high runoff rates responding to intensive hydrological pulses. There is a current lack of knowledge on fluvial OC fluxes and their relation to soil organic carbon stocks in these systems. The objective of this research was to quantify the amount of organic carbon transported by these systems in a catchment representative of Mediterranean conditions and to explore how intermittent fluvial systems can affect organic carbon transported by lateral flows. During six years OC fluvial fluxes in a catchment of 77 km2 in SE Spain were monitored. The catchment experienced a greening-up process in the last 50 years through a conversion mainly from agricultural use (decrease 44%) to forest (increase 45%). Data on water discharge, sediment concentration, total organic carbon (OC) of suspended sediments and dissolved organic carbon (DOC) were collected throughout 32 rainfall events and 13 sampling periods with base flow conditions. The data were collected from two monitoring stations located on two nested subcatchments covering permanent and ephemeral flow conditions. We found no significant differences in OC concentrations in suspended sediments (10.1 ± 5 g kg-1) and DOC (0.014 ± 0.010 g kg-1) between the ephemeral and the permanent streams. However, sediment concentration, index of aggregation and silt content of suspended load were significantly higher in the ephemeral stream than in the permanent one. OC concentration of suspended sediments was much lower than OC concentration of the catchment soils (20.5 ± 7 g kg-1), and it showed a strong positive correlation with clay content. DOC concentrations were quite high, being in the upper limit of the mean values reported for European rivers and close to DOC values of runoff generated in natural forests from similar areas. A strong positive correlation between DOC and sediment concentration was also observed. DOC represents a 20% and 12% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. OC in suspended solids represents an 80% and 88% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. The ephemeral stream (with a contribution of 70% to the total catchment area) provides up to 20% to the total transported OC downstream. The OC transported to the catchment outlet (1.97 g C m-2 year-1) constitutes 33 % of the OC lateral flux mobilized in the upper subcatchment areas (6 g C m-2 year-1). These findings highlight the strong dynamic character of organic carbon during transport in these fluvial systems and the important role of the hydrological regime for carbon transport and stability.
Morphology, geology and water quality assessment of former tin mining catchment.
Ashraf, Muhammad Aqeel; Maah, Mohd Jamil; Yusoff, Ismail
2012-01-01
Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river.
A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen
2000-01-01
A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment
Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail
2012-01-01
Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549
Garbossa, Luis H P; Souza, Robson V; Campos, Carlos J A; Vanz, Argeu; Vianna, Luiz F N; Rupp, Guilherme S
2017-01-01
Thermotolerant coliform (TC) loadings were quantified for 49 catchments draining into the North and South Bays of Santa Catarina (SC, southeastern Brazil), an area known for its tourism and aquaculture. TC loadings were calculated based on flow measurements taken in 26 rivers. TC concentrations ere quantified based on surface water samples collected at 49 catchment outlets in 2012 and 2013. Median TC loads ranged from 3.7 × 10 3 to 6.8 × 10 8 MPN s -1 . TC loadings in the catchments increased in proportion to increases in resident human population, population density and percentage of urbanised area. Catchments with more than 60% of area covered by wastewater collection and treatment systems had higher TC loads per person than catchments with less than 25%. Based on the study catchments, these results indicate that current sewerage infrastructure is ineffective in reducing contamination of faecal origin to surface waters. These findings have important implications for the management of microbiological health hazards in bathing, recreational and shellfish aquaculture waters in the North and South Bays of Santa Catarina Island.
Bressy, A; Gromaire, M-C; Lorgeoux, C; Saad, M; Leroy, F; Chebbo, G
2012-12-15
Stormwater and atmospheric deposits were collected on a small residential urban catchment (0.8 ha) near Paris in order to determine the levels of certain micropollutants (using a preliminary scan of 69 contaminants, followed by a more detailed quantification of PAHs, PCBs, alkylphenols and metals). Atmospheric inputs accounted for only 10%-38% of the stormwater contamination (except for PCBs), thus indicating substantial release within the catchment. On this small upstream catchment however, stormwater contamination is significantly lower than that observed downstream in storm sewers on larger adjacent urban catchments with similar land uses. These results likely stem from cross-contamination activity during transfers inside the sewer system and underscore the advantages of runoff management strategies at the source for controlling stormwater pollutant loads. Moreover, it has been shown that both contamination levels and contaminant speciation evolve with the scale of the catchment, in correlation with a large fraction of dissolved contaminants in upstream runoff, which differs from what has been traditionally assumed for stormwater. Consequently, the choice of treatment device/protocol must be adapted to the management scale as well as to the targeted type of contaminant. Copyright © 2011 Elsevier Ltd. All rights reserved.
National-Scale Hydrologic Classification & Agricultural Decision Support: A Multi-Scale Approach
NASA Astrophysics Data System (ADS)
Coopersmith, E. J.; Minsker, B.; Sivapalan, M.
2012-12-01
Classification frameworks can help organize catchments exhibiting similarity in hydrologic and climatic terms. Focusing this assessment of "similarity" upon specific hydrologic signatures, in this case the annual regime curve, can facilitate the prediction of hydrologic responses. Agricultural decision-support over a diverse set of catchments throughout the United States depends upon successful modeling of the wetting/drying process without necessitating separate model calibration at every site where such insights are required. To this end, a holistic classification framework is developed to describe both climatic variability (humid vs. arid, winter rainfall vs. summer rainfall) and the draining, storing, and filtering behavior of any catchment, including ungauged or minimally gauged basins. At the national scale, over 400 catchments from the MOPEX database are analyzed to construct the classification system, with over 77% of these catchments ultimately falling into only six clusters. At individual locations, soil moisture models, receiving only rainfall as input, produce correlation values in excess of 0.9 with respect to observed soil moisture measurements. By deploying physical models for predicting soil moisture exclusively from precipitation that are calibrated at gauged locations, overlaying machine learning techniques to improve these estimates, then generalizing the calibration parameters for catchments in a given class, agronomic decision-support becomes available where it is needed rather than only where sensing data are located.lassifications of 428 U.S. catchments on the basis of hydrologic regime data, Coopersmith et al, 2012.
A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems.
Ciszewski, Dariusz; Grygar, Tomáš Matys
Recently observed rapid climate changes have focused the attention of researchers and river managers on the possible effects of increased flooding frequency on the mobilization and redistribution of historical pollutants within some river systems. This text summarizes regularities in the flood-related transport, channel-to-floodplain transfer, and storage and remobilization of heavy metals, which are the most persistent environmental pollutants in river systems. Metal-dispersal processes are essentially much more variable in alluvia than in soils of non-inundated areas due to the effects of flood-sediment sorting and the mixing of pollutants with grains of different origins in a catchment, resulting in changes of one to two orders of magnitude in metal content over distances of centimetres. Furthermore, metal remobilization can be more intensive in alluvia than in soils as a result of bank erosion, prolonged floodplain inundation associated with reducing conditions alternating with oxygen-driven processes of dry periods and frequent water-table fluctuations, which affect the distribution of metals at low-lying strata. Moreover, metal storage and remobilization are controlled by river channelization, but their influence depends on the period and extent of the engineering works. Generally, artificial structures such as groynes, dams or cut-off channels performed before pollution periods favour the entrapment of polluted sediments, whereas the floodplains of lined river channels that adjust to new, post-channelization hydraulic conditions become a permanent sink for fine polluted sediments, which accumulate solely during overbank flows. Metal mobilization in such floodplains takes place only by slow leaching, and their sediments, which accrete at a moderate rate, are the best archives of the catchment pollution with heavy metals.
Upadhayay, Hari Ram; Smith, Hugh G; Griepentrog, Marco; Bodé, Samuel; Bajracharya, Roshan Man; Blake, William; Cornelis, Wim; Boeckx, Pascal
2018-05-08
Soil erosion by water is critical for soil, lake and reservoir degradation in the mid-hills of Nepal. Identification of the nature and relative contribution of sediment sources in rivers is important to mitigate water erosion within catchments and siltation problems in lakes and reservoirs. We estimated the relative contribution of land uses (i.e. sources) to suspended and streambed sediments in the Chitlang catchment using stable carbon isotope signature (δ 13 C) of long-chain fatty acids as a tracer input for MixSIAR, a Bayesian mixing model used to apportion sediment sources. Our findings reveal that the relative contribution of land uses varied between suspended and streambed sediment, but did not change over the monsoon period. Significant over- or under-prediction of source contributions could occur due to overlapping source tracer values, if source groups are classified on a catchment-wide basis. Therefore, we applied a novel deconvolutional framework of MixSIAR (D-MixSIAR) to improve source apportionment of suspended sediment collected at tributary confluences (i.e. sub-catchment level) and at the outlet of the entire catchment. The results indicated that the mixed forest was the dominant (41 ± 13%) contributor of sediment followed by broadleaf forest (15 ± 8%) at the catchment outlet during the pre-wet season, suggesting that forest disturbance as well as high rainfall and steep slopes interact for high sediment generation within the study catchment. Unpaved rural road tracks located on flat and steep slopes (11 ± 8 and 9 ± 7% respectively) almost equally contributed to the sediment. Importantly, agricultural terraces (upland and lowland) had minimal contribution (each <7%) confirming that proper terrace management and traditional irrigation systems played an important role in mitigating sediment generation and delivery. Source contributions had a small temporal, but large spatial, variation in the sediment cascade of Chitlang stream. D-MixSIAR provided significant improvement regarding spatially explicit sediment source apportionment within the entire catchment system. This information is essential to prioritize implementation measures to control erosion in community managed forests to reduce sediment loadings to Kulekhani hydropower reservoir. In conclusion, using compound-specific stable isotope (CSSI) tracers for sediment fingerprinting in combination with a deconvolutional Bayesian mixing model offers a versatile approach to deal with the large tracer variability within catchment land uses and thus to successfully apportion multiple sediment sources. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lerner, R. N.; Lerner, D. N.; Surridge, B.; Paetzold, A.; Harris, B.; Anderson, C. W.
2005-12-01
In Europe, the Water Framework Directive (WFD) is providing a powerful regulatory driver to adopt integrated catchment management, and so pressurizing researchers to build suitable supporting tools. The WFD requires agencies to drive towards `good ecological quality' by 2015. After the initial step of characterising water bodies and the pressures on them, the next substantive step is the preparation of river basin management plans and proposed programmes of measures by 2009. Ecological quality is a complex concept and poorly defined, unless it is taken as a simple measure such as the abundance of a particular species of organism. There is clearly substantial work to do to build a practical but sound definition of ecological quality; practical in the sense of being easy to measure and explain to stakeholders, and sound in the sense that it reflects ecological complexity within catchments, the variability between catchments, and the conflicts demands for goods and services that human society places upon the ecological system. However ecological quality is defined, it will be driven by four interacting groups of factors. These represent the physical, chemical, ecological and socio-economic environments within and encompassing the catchment. Some of these groupings are better understood than others, for example hydrological processes and the transport of solutes are reasonably understood, even though they remain research areas in their own right. There are much larger gaps in our understanding at the interfaces, i.e. predicting how, for example, hydrological processes such as flow and river morphology influence ecological quality. Overall, it is clear we are not yet in a position to build deterministic models of the overall ecological behaviour of catchment. But we need predictive tools to support catchment management agencies in preparing robust plans. This poster describes our current exploration of soft modelling options to build a comprehensive macro-ecological model of UK catchments. This is taking place within the Catchment Science Centre, a joint venture between the University of Sheffield and the Environment Agency.
Pesticide fate on catchment scale: conceptual modelling of stream CSIA data
NASA Astrophysics Data System (ADS)
Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.
2017-10-01
Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration and CSIA data and advocates the use of travel-time distributions for assessing pesticide fate and transport on catchment scale.
Catchments of general practice in different countries– a literature review
2014-01-01
The purpose of this paper is to review the current research on catchment areas of private general practices in different developed countries because healthcare reform, including primary health care, has featured prominently as an important political issue in a number of developed countries. The debates around health reform have had a significant health geographic focus. Conceptually, GP catchments describe the distribution, composition and profile of patients who access a general practitioner or a general practice (i.e. a site or facility comprising one or more general practitioners). Therefore, GP catchments provide important information into the geographic variation of access rates, utilisation of services and health outcomes by all of the population or different population groups in a defined area or aggregated area. This review highlights a wide range of diversity in the literature as to how GP catchments can be described, the indicators and measures used to frame the scale of catchments. Patient access to general practice health care services should be considered from a range of locational concepts, and not necessarily constrained by their place of residence. An analysis of catchment patterns of general practitioners should be considered as dynamic and multi-perspective. Geographic information systems provide opportunities to contribute valuable methodologies to study these relationships. However, researchers acknowledge that a conceptual framework for the analysis of GP catchments requires access to real world data. Recent studies have shown promising developments in the use of real world data, especially from studies in the UK. Understanding the catchment profiles of individual GP surgeries is important if governments are serious about patient choice being a key part of proposed primary health reforms. Future health planning should incorporate models of GP catchments as planning tools, at the micro level as well as the macro level, to assist policies on the allocation of resources so that opportunities for good health outcomes for all groups within society, especially those who have been systematically denied equitable access, are maximised. PMID:25174719
Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.
2010-01-01
The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. ?? 2010 John Wiley & Sons, Ltd.
Hydrologic response to modeled snowmelt input in alpine catchments in the Southwestern United States
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Molotch, N. P.; Jepsen, S. M.; Meixner, T.; Williams, M. W.; Sickman, J. O.
2012-12-01
Snowmelt from high elevation catchments is the primary source of water resources in the Southwestern United States. Timing and duration of snowmelt and resulting catchment response can show the physical and chemical importance of storage at the catchment scale. Storage of waters in subsurface materials provides a physical and chemical buffer to hydrologic input variability. We expect the hydrochemistry of catchments with less storage capacity will more closely reflect input waters than a catchment with more storage and therefore more geochemical evolution of waters. Two headwater catchments were compared for this study; Emerald Lake Watershed (ELW) in the southern Sierra Nevada and Green Lake 4 (GL4) in the Colorado Front Range. These sites have geochemically similar granitic terrane, and negligible evaporation and transpiration due to their high-elevation setting. Eleven years of data (1996-2006) from spatially-distributed snowmelt models were spatially and temporally aggregated to generate daily values of snowmelt volume for each catchment area. Daily storage flux was calculated as the difference between snowmelt input and catchment outflow at a daily timestep, normalized to the catchment area. Daily snowmelt values in GL4 are more consistent (the annual standard deviation ranged from 0.19 to 0.76 cm) than the daily snowmelt in ELW (0.60 to 1.04 cm). Outflow follows the same trend, with an even narrower range of standard deviations from GL4 (0.27 to 0.54 cm) compared to the standard deviation of outflow in ELW (0.38 to 0.98 cm). The dampening of the input variability could be due to storage in the catchment; the larger effect would mean a larger storage capacity in the catchment. Calculations of storage flux (the input snowmelt minus the output catchment discharge) show the annual sum of water into storage in ELW ranges from -0.9200 to 1.1124 meters, in GL4 the ranger is narrower, from -0.655 to 0.0992 meters. Cumulative storage for each year can be negative (more water leaving the system than entering; storage loss) or positive (more water coming into the system than leaving; storage gain). The cumulative storage for all years in GL4 show a similar positive trend from day of year 60 through 150, followed by a decrease to the end of the snowmelt season. Only two years (1997 and 2005) in GL4 were calculated to cumulatively gain storage water, the other nine years lost stored water to outflow. The cumulative storage annual data in ELW do not show as strong of a trend for all years. ELW also a different distribution of cumulative storage values; with four years showing a cumulative loss and seven years showing a gain in stored water. This could show a depletion of stored water, an underestimate of snowmelt or a connection to deeper flowpaths. Mass-balance inverse geochemical models will be used to determine the hydrochemical connectivity or lack of connectivity of snowmelt to outflow relative to the physical calculations. Initial hydrochemical results show generally higher concentrations of solutes from GL4 outflow, which may show more contribution from stored waters.
NASA Astrophysics Data System (ADS)
Dunn, S. M.; Lilly, A.
2001-10-01
There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.
Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.
Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien
2017-02-01
Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.
NASA Astrophysics Data System (ADS)
Rivers, Mark; Clarendon, Simon; Coles, Neil
2013-04-01
Natural Resource Management and Agri-industry development groups in Australia have invested considerable resources into the investigation of the economic, social and, particularly, environmental impacts of varying farming activities in a "catchment context". This research has resulted in the development of a much-improved understanding of the likely impacts of changed management practices at the farm-scale as well as the development of a number of conceptual models which place farming within this broader catchment context. The project discussed in this paper transformed a conceptual model of dairy farm phosphorus (P) management and transport processes into a more temporally and spatially dynamic model. This was then loaded with catchment-specific data and used as a "policy support tool" to allow the Australian dairy industry to examine the potential farm and catchment-scale impacts of varying dairy farm management practices within some key dairy farming regions. Models were developed, validated and calibrated using "STELLA©" dynamic modelling software for three catchments in which dairy is perceived as a significant land use. The models describe P movement and cycling within and through dairy farms in great detail and also estimate P transport through major source, sink and flow sectors of the catchments. A series of scenarios were executed for all three catchments which examined three main "groups" of tests: changes to farm P input rates; implementation of perceived environmental "Best Management Practices" (BMPs), and; changes to land use mosaics. Modifications to actual P input rates into dairy farms (not surprisingly) had a major effect on nutrient transport within and from the farms with a significant rise in nutrient loss rates at all scales with increasing fertiliser use. More surprisingly, however, even extensive environmental BMP implementation did not have marked effects on off-farm nutrient loss rates. On and off-farm riparian management implemented over entire catchments, for example, only reduced P losses by approximately 20%. Most importantly, changes to land use mosaics within the catchments provided great insight into the relative roles within the catchment P system of the various land uses. While dairying uses large amounts of P, the effects that dairy farm management can have at the catchment scale when these farms represent only a small proportion of the landscape are limited. The most important conclusions from the research are that: • While State and regional environmental management and regulatory agencies continue to set optimistic goals for water quality protection, this research shows that these targets are not achievable within current landscape paradigms even after broadscale BMP implementation, and that either these targets must be re-considered or that significant land use change (rather than simply improved management within current systems) must occur to meet the targets. • Catchment-scale effects of P losses at the farm scale are a complex function of P-use efficiency, landscape position and landscape footprint. Simply targetting those landuses perceived to have high nutrient loss rates does not adequately address the problem. • Catchment P management must be considered in a more inclusive and holistic way, and these assessments should be used to inform future planning policies and development plans if environmental goals as well as community expectations about the productive use of agricultural land are to be met.
NASA Astrophysics Data System (ADS)
Carr, G.
2017-12-01
Real world problems rarely regard disciplinary boundaries. This is particularly apparent in catchments, where knowledge and understanding from many different research disciplines is essential to address the water resource challenges facing society. People are an integral part of any catchment. Therefore a comprehensive understanding of catchment evolution needs to include the social system. Socio-hydrological models that can simulate the co-evolution of human-water systems, for example, with regards to floods and droughts, show great promise in their capacity to capture and understand such systems. Yet, to develop socio-hydrological models into more comprehensive analysis tools that adequately capture the social components of the system, researchers need to embrace interdisciplinary working and multi-disciplinary research teams. By exploring the development of interdisciplinary research in a water programme, several key practices have been identified that support interdisciplinary collaboration. These include clarification where researchers discuss and re-explain their research or position to expose all the assumptions being made until all involved understand it; harnessing differences where different opinions and types of knowledge are treated respectfully to minimise tensions and disputes; and boundary setting where defensible limits to the research enquiry are set with consideration for the restrictions (funds, skills, resources) through negotiation and discussion between the research team members. Focussing on these research practices while conducting interdisciplinary collaborative research into the human-water system, is anticipated to support the development of more integrated approaches and models.
NASA Astrophysics Data System (ADS)
Stoelzle, Michael; Weiler, Markus
2016-04-01
Alpine catchments are often considered as quickly responding systems where streamflow contributions from subsurface storages (groundwater) are mostly negligible due to the steep topography, low permeable bedrock and the absence of well-developed soils. Many studies in high altitude catchments have hence focused on water stored in snowpack and glaciers or on rainfall-runoff processes as the dominant streamflow contributions. Interestingly less effort has been devoted to winter streamflow analysis when melt- or rainfall-driven contributions are switched off due to the frozen state of the catchment. Considering projected changes in the alpine cryosphere (e.g. snow, glacier, permafrost) quantification of groundwater storage and contribution to streamflow is crucial to assess the social and ecological implications for downstream areas (e.g. water temperature, drought propagation). In this study we hypothesize that groundwater is the main streamflow contribution during winter and thus being responsible for the perennial regime of many alpine catchments. The hypothesis is investigated with well-known methods based on recession and breakpoint analysis of the streamflow regimes and temperature data to determine frozen periods. Analyzing nine catchments in Switzerland with mean elevation between 1000 and 2400 m asl, we found that above a mean elevation of 1800 m asl winter recessions are sufficient long and persistent enough to quantify groundwater contribution to streamflow and to characterize the properties of subsurface storage. The results show that groundwater in alpine catchment is the dominant streamflow contribution for nearly half a year and accountable for several hundred millimeter of annual streamflow. In sub-alpine catchments, driven by a mix of snowmelt and rainfall, a clear quantification of groundwater contributions is rather challenging due to discontinuous frozen periods in winter. We found that the inter-annual variability of different streamflow contributions is helpful to assess the water sustainability of alpine catchments functioning as water towers for downstream water basins. We outline how well-known hydrograph and recession analyses in alpine catchments can help to explore the role of catchment storage and to advance our understanding of (ground-)water management in alpine environments.
Impact of Persistent Degassing of Kilauea Volcano on Domestic Water Supplies
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Macomber, T.
2010-12-01
In March, 2008, a small explosive eruption in the summit crater of Kilauea Volcano marked the initiation of a new, persistently degassing vent at Kilauea. Emission rates of sulfur dioxide initially exceeded 1000 tons per day but declined to a longer term rate of ~800 tons per day. Because of its location farther inland, the plume from this vent generated more severe and more frequent adverse air quality impacts on the surrounding and downwind communities than has the longer lived degassing vents at Pu'u O'o. Because many residents on Hawaii Island derive their domestic water supply from roof catchment systems, deposition of aerosols produced in the volcanic plume could pose a significant health threat to the community. In order to quantify that risk, a program of screening of water catchment systems was undertaken in three communities: Lower Puna, upwind of the vent; Volcano Village, immediately adjacent to the Kilauea summit; and Hawaiian Ocean View Estates, located ~65 km downwind from the vent. An aggregate of 439 samples were collected and analyzed for pH, and fluoride, chloride and sulfate ion concentrations; the median values and extrema are shown in Table I below. The pH values for the catchments proved not to be a good indicator of plume influence: the Volcano and Ocean View communities showed a bimodal distribution of values reflecting residents managing their water systems (median pH = 6.2 and 7.2 respectively) and those that didn't (median pH = 4.5 and 4.3 respectively); however, the lower extremes for pH gave values of 2.9 and 3.3 respectively. Chloride values were also variable due to the use of sodium hypochlorite to treat for biological contaminants. The median values for fluoride and sulfate show a progressive increase from the Puna catchments to Volcano and Ocean View. We believe that these values are consistent with the relative exposure of the communities to the volcanic plume: although the Volcano community is closer to the source, wind conditions conducive to exposure are infrequent whereas the more distant Ocean View community is exposed to a more dilute plume but at a much higher frequency. Even though the median values are within accepted limits for drinking water, the extreme values observed are cause for concern: the pH values are well below those recommended for drinking water and the fluoride values are approaching WHO recommended drinking water levels. With even modest increases in plume output or exposure times, some of the community catchment systems can accumulate sufficient acid or fluoride ion concentrations to pose a significant health threat if drinking water is drawn from those catchments. Continued monitoring of catchment water quality is recommended.Table I. Catchment Water Supply Analytical Results Concentrations in parts per million
Spatially distributed potential evapotranspiration modeling and climate projections.
Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco
2018-08-15
Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kirchner, J. W.
2016-01-01
Environmental heterogeneity is ubiquitous, but environmental systems are often analyzed as if they were homogeneous instead, resulting in aggregation errors that are rarely explored and almost never quantified. Here I use simple benchmark tests to explore this general problem in one specific context: the use of seasonal cycles in chemical or isotopic tracers (such as Cl-, δ18O, or δ2H) to estimate timescales of storage in catchments. Timescales of catchment storage are typically quantified by the mean transit time, meaning the average time that elapses between parcels of water entering as precipitation and leaving again as streamflow. Longer mean transit times imply greater damping of seasonal tracer cycles. Thus, the amplitudes of tracer cycles in precipitation and streamflow are commonly used to calculate catchment mean transit times. Here I show that these calculations will typically be wrong by several hundred percent, when applied to catchments with realistic degrees of spatial heterogeneity. This aggregation bias arises from the strong nonlinearity in the relationship between tracer cycle amplitude and mean travel time. I propose an alternative storage metric, the young water fraction in streamflow, defined as the fraction of runoff with transit times of less than roughly 0.2 years. I show that this young water fraction (not to be confused with event-based "new water" in hydrograph separations) is accurately predicted by seasonal tracer cycles within a precision of a few percent, across the entire range of mean transit times from almost zero to almost infinity. Importantly, this relationship is also virtually free from aggregation error. That is, seasonal tracer cycles also accurately predict the young water fraction in runoff from highly heterogeneous mixtures of subcatchments with strongly contrasting transit-time distributions. Thus, although tracer cycle amplitudes yield biased and unreliable estimates of catchment mean travel times in heterogeneous catchments, they can be used to reliably estimate the fraction of young water in runoff.
NASA Astrophysics Data System (ADS)
Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.
2017-12-01
While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.
NASA Astrophysics Data System (ADS)
Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.
2015-12-01
Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an EnKF-model system that downscales satellite data and predicts catchment-scale RZSM content is especially timely, given the anticipated release of SMAP surface moisture data in 2015.
HESS Opinions Catchments as meta-organisms - a new blueprint for hydrological modelling
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.; Hrachowitz, Markus
2017-02-01
Catchment-scale hydrological models frequently miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem. It manipulates and partitions moisture in a way that supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, establishing a continuous, ever-evolving feedback loop with the landscape and climatic drivers. In brief, hydrological systems are alive and have a strong capacity to adjust themselves to prevailing and changing environmental conditions. Although most models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian theory on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. In addition, catchments, such as many other natural systems, do not only evolve over time, but develop features of spatial organization, including surface or sub-surface drainage patterns, as a by-product of this evolution. Models that fail to account for patterns and the associated feedbacks miss a critical element of how systems at the interface of atmosphere, biosphere and pedosphere function. In contrast to what is widely believed, relatively simple, semi-distributed conceptual models have the potential to accommodate organizational features and their temporal evolution in an efficient way, a reason for that being that because their parameters (and their evolution over time) are effective at the modelling scale, and thus integrate natural heterogeneity within the system, they may be directly inferred from observations at the same scale, reducing the need for calibration and related problems. In particular, the emergence of new and more detailed observation systems from space will lead towards a more robust understanding of spatial organization and its evolution. This will further permit the development of relatively simple time-dynamic functional relationships that can meaningfully represent spatial patterns and their evolution over time, even in poorly gauged environments.
An interdisciplinary swat ecohydrological model to define catchment-scale hydrologic partitioning
NASA Astrophysics Data System (ADS)
Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.
2013-06-01
Land use and climate change have long been implicated in modifying ecosystem services, such as water quality and water yield, biodiversity, and agricultural production. To account for future effects on ecosystem services, the integration of physical, biological, economic, and social data over several scales must be implemented to assess the effects on natural resource availability and use. Our objective is to assess the capability of the SWAT model to capture short-duration monsoonal rainfall-runoff processes in complex mountainous terrain under rapid, event-driven processes in a monsoonal environment. To accomplish this, we developed a unique quality-control gap-filling algorithm for interpolation of high frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. We calibrated the interdisciplinary model to a combination of statistical, hydrologic, and plant growth metrics. In addition, we used multiple locations of different drainage area, aspect, elevation, and geologic substrata distributed throughout the catchment. Results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. While our model accurately reproduced observed discharge variability, the addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. The results of this study provide a valuable resource to describe landscape controls and their implication on discharge, sediment transport, and nutrient loading. This study also shows the challenges of applying the SWAT model to complex terrain and extreme environments. By incorporating anthropogenic features into modeling scenarios, we can greatly enhance our understanding of the hydroecological impacts on ecosystem services.
NASA Astrophysics Data System (ADS)
Moore, Robert J.; Wells, Steven C.; Cole, Steven J.
2016-04-01
It has been common for flood forecasting systems to be commissioned at a catchment or regional level in response to local priorities and hydrological conditions, leading to variety in system design and model choice. As systems mature and efficiencies of national management are sought, there can be a drive towards system rationalisation, gaining an overview of model performance and consideration of simplification through model-type convergence. Flood forecasting model assessments, whilst overseen at a national level, may be commissioned and managed at a catchment and regional level, take a variety of forms and be large in number. This presents a challenge when an integrated national assessment is required to guide operational use of flood forecasts and plan future investment in flood forecasting models and supporting hydrometric monitoring. This contribution reports on how a nationally consistent framework for flood forecasting model performance has been developed to embrace many past, ongoing and future assessments for local river systems by engineering consultants across England & Wales. The outcome is a Performance Summary for every site model assessed which, on a single page, contains relevant catchment information for context, a selection of overlain forecast and observed hydrographs and a set of performance statistics with associated displays of novel condensed form. One display provides performance comparison with other models that may exist for the site. The performance statistics include skill scores for forecasting events (flow/level threshold crossings) of differing severity/rarity, indicating their probability and likely timing, which have real value in an operational setting. The local models assessed can be of any type and span rainfall-runoff (conceptual and transfer function) and flow routing (hydrological and hydrodynamic) forms. Also accommodated by the framework is the national G2G (Grid-to-Grid) distributed hydrological model, providing area-wide coverage across the fluvial rivers of England and Wales, which can be assessed at gauged sites. Thus the performance of the national G2G model forecasts can be directly compared with that from the local models. The Performance Summary for each site model is complemented by a national spatial analysis of model performance stratified by model-type, geographical region and forecast lead-time. The map displays provide an extensive evidence-base that can be interrogated, through a Flood Forecasting Model Performance web portal, to reveal fresh insights into comparative performance across locations, lead-times and models. This work was commissioned by the Environment Agency in partnership with Natural Resources Wales and the Flood Forecasting Centre for England and Wales.
Estimating retention potential of headwater catchment using Tritium time series
NASA Astrophysics Data System (ADS)
Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe
2018-06-01
Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.
NASA Astrophysics Data System (ADS)
Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik
2017-09-01
Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response as a function of the catchments' elevation and land cover. The forested catchment, located at the higher elevations, had the highest seasonal streamflows. During the wet season, different land covers at the lower elevations were important in defining the streamflow responses between the deforested catchment and the catchment with intermediate forest cover. Streamflows were higher and the rainfall-runoff responses were faster in the deforested catchment than in the intermediate forest cover catchment. During the dry season, the catchments' elevation defined streamflows due to higher water inputs and lower evaporative demand at the higher elevations.
The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales
C. Gabrielli; J.J. McDonnell; W.T. Jarvis
2012-01-01
Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at...
School Catchment Area Evasion: The Case of Berlin, Germany
ERIC Educational Resources Information Center
Noreisch, Kathleen
2007-01-01
This paper seeks to examine the ways in which school segregation plays out in a pure catchment area system and to what extent residential composition is directly mirrored in schools. The research examines the data for the districts in Berlin and, more specifically at the school level, for the district of Tempelhof-Schoneberg. The research is based…
O. Fovet; L. Ruiz; M. Hrachowitz; M. Faucheux; C. Gascuel-Odoux
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is...
NASA Astrophysics Data System (ADS)
Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David
2017-04-01
Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.
The role of Natural Flood Management in managing floods in large scale basins during extreme events
NASA Astrophysics Data System (ADS)
Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David
2016-04-01
There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water in large scale basins in the future. The broader benefits of engineering landscapes to hold water for pollution control, sediment loss and drought minimisation will also be shown.
Modeling micropollutant fate at the catchment scale: from science to practice
NASA Astrophysics Data System (ADS)
Seuntjens, P.; Desmet, N.; Holvoet, K.; van Griensven, A.; van Hoey, S.; Tang, X. Y.; Nopens, I.
2009-04-01
Micropollutants, such as pesticides, personal care products, veterinary and human pharmaceuticals, pose a possible threat to human and ecological health. Humans and ecosystems may be exposed to these chemicals via the water system. Catchment models can be used to optimise management in view of risk reduction of the chemicals. Along the trajectory of science to practice a number of catchment models are available that simulate the fate and transport of micropollutants. They range from physically-based fully-coupled soil, groundwater, and surface water models, over empirical management models, to purely statistical database-driven models. For assessing effects on ecosystems, models need to be able to predict the observed highly dynamic behaviour of pesticide concentrations in the surface water, since adverse effects will be determined by the number, intensity and frequency of ecological threshold exceedances. For assessing effects on humans, models need to predict the dilution between areas where the pesticide is released and the location of the drinking water intake, sometimes tens or hundreds of kilometres further downstream. We adapted management models to simulate dynamic pesticide behaviour and fate at the catchment scale. The models were also used to illustrate the effects of specific management options on risk reduction and to derive the dominant sources of pollutants in a catchment area. The results show that the concentrations of pesticides in river systems are attributed to (1) fast flow over and in soils or pavements, and to (2) point sources. Therefore, future models for improved estimation of chemical fate at the catchment scale need a combination of stochastic source characterisation, higher spatial resolution and reduced complexity of the mathematical description of fast flow processes. This will be illustrated by recent developments in model simplification coupled to increased spatial detail.
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang; Gerwin, Werner; Hinz, Christoph; Zaplata, Markus
2016-04-01
Landscapes and ecosystems are complex systems with many feedback mechanisms acting between the various abiotic and biotic components. The knowledge about these interacting processes is mainly derived from mature ecosystems. The initial development of ecosystem complexity may involve state transitions following catastrophic shifts, disturbances or transgression of thresholds. The Chicken Creek catchment was constructed in 2005 in the mining area of Lusatia/Germany to study processes and feedback mechanisms during ecosystem evolution. The hillslope-shaped 6 ha site has defined boundary conditions and well-documented inner structures. The dominating substrate above the underlying clay layer is Pleistocene sandy material representing mainly the lower C horizon of the former landscape. Since 2005, the unrestricted, unmanaged development of the catchment was intensively monitored. During the ten years since then, we observed characteristic state transitions in catchment functioning driven by feedbacks between original substrate properties, surface structures, soil development and vegetation succession. Whereas surface runoff induced by surface crusting and infiltration dominated catchment hydrology in the first years, the impact of vegetation on hydrological pathways and groundwater levels became more and more evident during the last years. Discharge from the catchment changed from episodic events driven by precipitation and surface runoff to groundwater driven. This general picture is overlain by spatial patterns and single episodic events of external drivers. The scientific value of the Chicken Creek site with known boundary conditions and structure information could help in disentangling general feedback mechanisms between hydrologic, pedogenic, biological and geomorphological processes as well as a in gaining a more integrative view of succession and its drivers during the transition from initial, less complex systems to more mature ecosystems. Long-term time series of data are a key for a better understanding of these processes and the effects on ecosystem resilience and self-organization.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rapolu, U.; Ding, D.; Muste, M.; Bennett, D.; Schnoor, J. L.
2011-12-01
Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. Considerable research has been performed to develop an understanding of the impact of local land use decisions on field and catchment processes at an annual basis. Still less is known about the impact of economic and environmental outcomes on decision-making processes at the local and national level. Traditional geographic information management systems lack the ability to support the modeling and analysis of complex spatial processes. New frameworks are needed to track, query, and analyze the massive amounts of data generated by ensembles of simulations produced by multiple models that couple socioeconomic and natural system processes. On this context, we propose to develop an Intelligent Digital Watershed (IDW) which fuses emerging concepts of Digital Watershed (DW). DW is a comprehensive characterization of the eco hydrologic systems based on the best available digital data generated by measurements and simulations models. Prototype IDW in the form of a cyber infrastructure based engineered system will facilitate novel insights into human/environment interactions through multi-disciplinary research focused on watershed-related processes at multiple spatio-temporal scales. In ongoing effort, the prototype IDW is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. This paper would also lay out the database design that stores metadata about simulation scenarios, scenario inputs and outputs, and connections among these elements- essentially the database. The paper describes the cyber infrastructure and workflows developed for connecting the IDW modeling tools: ABM, Data-Driven Modeling, and SWAT.
NASA Astrophysics Data System (ADS)
Liu, H.; Lin, H.
2013-12-01
Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled jointly by complex interactions among landform units, soil types, initial soil moisture, precipitation features, and season. Through the wavelet method (coherence spectrum and phase differences), dual-pore filtering effects of soil system were proven, rendering it possible to further infer characteristic properties of the underlying hydrological processes in the subsurface. We found that preferential flow dominates the catchment discharge response at short-time periods (< 3 days), while the matrix flow may dominate the discharge response at the time scales of around 10-12 days. The temporal and spatial patterns of PF occurrence revealed in this study can help advance the modeling and prediction of complex PF dynamics in this and other similar landscapes.
Scales of Natural Flood Management
NASA Astrophysics Data System (ADS)
Nicholson, Alex; Quinn, Paul; Owen, Gareth; Hetherington, David; Piedra Lara, Miguel; O'Donnell, Greg
2016-04-01
The scientific field of Natural flood Management (NFM) is receiving much attention and is now widely seen as a valid solution to sustainably manage flood risk whilst offering significant multiple benefits. However, few examples exist looking at NFM on a large scale (>10km2). Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. Although certain NFM interventions may appear distant and disconnected from main stem waterbodies, they will undoubtedly be contributing to WFD at the catchment waterbody scale. This paper offers examples of NFM, and explains how they can be maximised through practical design across many scales (from feature up to the whole catchment). New tools to assist in the selection of measures and their location, and to appreciate firstly, the flooding benefit at the local catchment scale and then show a Flood Impact Model that can best reflect the impacts of local changes further downstream. The tools will be discussed in the context of our most recent experiences on NFM projects including river catchments in the north east of England and in Scotland. This work has encouraged a more integrated approach to flood management planning that can use both traditional and novel NFM strategies in an effective and convincing way.
Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management
NASA Astrophysics Data System (ADS)
Beck, Scott M.; McHale, Melissa R.; Hess, George R.
2016-07-01
Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.
NASA Astrophysics Data System (ADS)
Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea
2013-04-01
The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a thorough understanding of the fluvial system and, in particular, basin-wide assessment of resilience to human-induced change. . The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale while integrating recent and historic point records for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model in combination with fuzzy clustering. The above framework is able to identify non-trivial correlations in driving forces and to derive a fuzzy classification at reach scale which represents continuities and discontinuities in the river systems. The use of the above framework allowed analyzing the spatial distribution of geomorphic features at catchment scale, revealing patterns of similarities and dissimilarities within the catchment and allowing a classification of river reaches characterized by similar geomorphic drivers, fluvial processes and response to external forcing. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale integrating historical and recent available high resolution data. The framework aims at opening the way to a more structured organization and analyses of recently available information on river geomorphic features, so far often missing or rarely exploited. This approach poses the basis to produce efficient databases of river geomorphic features and processes related to natural and anthropogenic drivers. That is a necessity in order to enhance our understanding of the internal and external forces which drive fluvial systems, to assess the resilience and dynamic of river landscapes and to develop the more efficient river management strategies of the future.
This dataset represents climate observations within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) PRISM is a set of monthly, yearly, and single-event gridded data products of mean temperature and precipitation, max/min temperatures, and dewpoints, primarily for the United States. In-situ point measurements are ingested into the PRISM (Parameter elevation Regression on Independent Slopes Model) statistical mapping system. The PRISM products use a weighted regression scheme to account for complex climate regimes associated with orography, rain shadows, temperature inversions, slope aspect, coastal proximity, and other factors. (see Data Sources for links to NHDPlusV2 data and USGS Data) These data are summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).
This dataset represents climate observations within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) PRISM is a set of monthly, yearly, and single-event gridded data products of mean temperature and precipitation, max/min temperatures, and dewpoints, primarily for the United States. In-situ point measurements are ingested into the PRISM (Parameter elevation Regression on Independent Slopes Model) statistical mapping system. The PRISM products use a weighted regression scheme to account for complex climate regimes associated with orography, rain shadows, temperature inversions, slope aspect, coastal proximity, and other factors. (see Data Sources for links to NHDPlusV2 data and USGS Data) These data are summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).
NASA Astrophysics Data System (ADS)
Ángel Bajo, José; Redel-Macías, María Dolores; Nichols, Mary; Pérez, Rafael; Bellido, Francisco; Marín-Moreno, Víctor; Taguas, Encarnación V.
2017-04-01
A virtual lab for learning to use devices and to treat experimental measurements of hydrological and erosive processes in small agricultural catchments was created to support the practical content of the subject Restoration of Forest Ecosystems of the Master of Forest Engineer (University of Cordoba). The objective was to build a virtual place representing a real site equipped to make measurements of rainfall, runoff and sediment concentration. The virtual lab included pictures, videos and explanations that facilitate learning. Moreover, some practical cases were proposed to apply the explained terms. The structure of menu consisted of: Experimental measurements in catchments; Gallery of videos; Equipment; Practical case; Glossary and Additional Information. Their contents were carefully carried out by professors and scientists of Hydrology and Electronics. The main advantages of the virtual lab were its compatibility with on-line platforms such as Moodle and the presentation of examples for the direct analysis as a basis for solving the proposed practical cases. It has been successfully used for two years and was well-values by the students due the opportunities offered by self-access learning tools. In addition, constraints associated with field trips such as logistical complexity and economic aspects are removed.
NASA Astrophysics Data System (ADS)
Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz
2015-04-01
The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.
Shanley, J.B.; Kram, P.; Hruska, J.; Bullen, T.D.
2004-01-01
Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 ??eq L-1 at Pluhuv Bor compared to 400 ??eq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment. ?? 2004 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Pullanikkatil, Deepa; Palamuleni, Lobina G.; Ruhiiga, Tabukeli M.
2016-06-01
Likangala River catchment in Zomba District of Southern Malawi is important for water resources, agriculture and provides many ecosystem services. Provisioning ecosystem services accrued by the populations within the catchment include water, fish, medicinal plants and timber among others. In spite of its importance, the River catchment is under threat from anthropogenic activities and land use change. This paper studies land uses and land cover change in the catchment and how the changes have impacted on the ecosystem services. Landsat 5 and 8 images (1984, 1994, 2005 and 2013) were used to map land cover change and subsequent inventorying of provisioning ecosystem services. Participatory Geographic Information Systems and Focus group discussions were conducted to identify provisioning ecosystems services that communities benefit from the catchment and indicate these on the map. Post classification comparisons indicate that since 1984, there has been a decline in woodlands from 135.3 km2 in 1984 to 15.5 km2 in 2013 while urban areas increased from 9.8 km2 to 23.8 km2 in 2013. Communities indicated that provisioning ecosystems services such as forest products, wild animals and fruits and medicinal plants have been declining over the years. In addition, evidence of catchment degradation through waste disposal, illegal sand mining, deforestation and farming on marginal lands were observed. Population growth, urbanization and demand for agricultural lands have contributed to this land use and land cover change. The study suggests addressing catchment degradation through integrated method where an ecosystems approach is used. Thus, both the proximate and underlying driving factors of land-use and land cover change need to be addressed in order to sustainably reduce ecosystem degradation.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.
2017-12-01
Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Breil, Pascal; Javelle, Pierre; Pejakovic, Nikola; Guérin, Stéphane
2017-04-01
The Yzeron periurban catchment (150 km2) is prone to flash floods leading to overflow in the downstream part of the catchment. A prevention and management plan has been approved and the set-up of a flood forecasting system is planned. The present study presents a comparison of several solutions for flood forecasting in the catchment. It is based on an extensive data collection (rain gauges, radar/rain gauge reanalyses, discharge and water level data) from this experimental catchment. A set of rainfall-runoff events leading to floods (problematic and non-problematic floods) was extracted and formed the basis for the definition of a first forecasting method. It is based on data analysis and the identification of explaining factors amongst the following: rainfall amount, intensity, antecedent rainfall, initial discharge. Several statistical methods including Factorial Analysis of Mixed Data and Classification and Regression Tree were used for this purpose. They showed that several classes of problematic floods can be identified. The first one is related to wet conditions characterized with high initial discharge and antecedent rainfall. The second class is driven by rainfall amount, initial discharge and rainfall intensity. Thresholds of these variables can be identified to provide a first warning. The second forecasting method assessed in the study is the system that will be operational in France in 2017, based on the AIGA method (Javelle et al., 2016). For this purpose, 18-year discharge simulation using the hydrological model of the AIGA method, forced using radar/rain gauges reanalysis were available at 44 locations within the catchment. The dates for which quantiles of a given return period were overtopped were identified and compared with the list of problematic events. The AIGA method was found relevant in identifying the most problematic events, but the lead time needs further investigation in order to assess the usefulness for population warning. References: Pierre Javelle, Didier Organde, Julie Demargne, Clotilde Saint-Martin, Céline de Saint-Aubin, Léa Garandeau and Bruno Janet (2016). Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method. E3S Web of Conferences 7, 18010 (2016), 3rd European Conference on Flood Risk Management (FLOODrisk 2016), http://dx.doi.org/10.1051/e3sconf/20160718010
NASA Astrophysics Data System (ADS)
Adams, Russell; Owen, Gareth
2015-04-01
Over the past few years a series of catchment monitoring studies in the UK have developed a wide range of tools to enable managers and planners to make informed decisions to target several key outcomes. These outcomes include the mitigation of diffuse pollution and the reduction of flood risk. Good progress has been but additional steps are still required to link together more detailed models that represent catchment processes with the decision support systems (often termed matrices; i.e. DSMs) which form the basis of these planning and management tools. Examples include: (i) the FARM tools developed by the PROACTIVE team at Newcastle University to assess different catchment management options for mitigating against flooding events, (ii) TOPMANAGE, a suite of algorithms that link with high resolution DEMs to enable surface flow pathways, having the potential to be mitigated by Natural Flood Management (NFM) features (in order to target diffuse pollution due to nutrients and sediments) to be identified. To date, these DSMs have not been underpinned by models that can be run in real-time to quantify the benefits in terms of measurable reductions in flood or nutrient pollution risks. Their use has therefore been mostly as qualitative assessment tools. This study aims to adapt an existing spreadsheet-based model, the CRAFT, in order for it to become fully coupled to a DSM approach. Previous catchment scale applications of the CRAFT have focussed on meso-scale studies where any management interventions at a local scale are unlikely to be detectable at the monitoring point (the catchment outlet). The model has however been reasonably successful in identifying potential flow and transport pathways that link the headwater subcatchments to the outlet. Furthermore, recent enhancements to the model enable features such as sedimentation ponds and lagoons that can trap and remove nutrients and sediments to be added, once data become available from different types of NFM features to parameterise these. The model can be used to investigate runoff attenuation (in this case primarily through a lagged routing term applied to surface runoff) as a result of implementing mitigation measures. However to be fully integrated within a DSM framework requires the CRAFT to be linked to a user-friendly interface that will allow the user to modify key parameters, preferably using a web-based expert system, which will be explored further.
Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Zia, Huma; Harris, Nick; Merrett, Geoff
2013-04-01
Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of collaborative information sharing can have a direct influence on agricultural practice. We apply a nutrient management scheme to a model of an example catchment with several individual networks. The networks are able to correlate catchment events to events within their zone of influence, allowing them to adapt their monitoring and control strategy in light of wider changes across the catchment. Results indicate that this can lead to significant reductions in nutrient losses (up to 50%) and better reutilization of nutrients amongst farms, having a positive impact on catchment scale water quality and fertilizer costs. 1. EC, E.C., Directive 2000/60/EC establishing a framework for Community action in the field of water policy, 2000. 2. Rivers, M., K. Smettem, and P. Davies. Estimating future scenarios for farm-watershed nutrient fluxes using dynamic simulation modelling-Can on-farm BMPs really do the job at the watershed scale? in Proc.29th Int.Conf System Dynamics Society, 2011. 2010. Washington 3. Liu, C., et al., On-farm evaluation of winter wheat yield response to residual soil nitrate-N in North China Plain. Agronomy Journal, 2008. 100(6): p. 1527-1534. 4. Kotamäki, N., et al., Wireless in-situ sensor network for agriculture and water monitoring on a river basin scale in Southern Finland: Evaluation from a data user's perspective. Sensors, 2009. 9(4): p. 2862-2883.
Structural and functional connectivity in the agricultural Can Revull catchment (Mallorca, Spain)
NASA Astrophysics Data System (ADS)
Calsamiglia, Aleix; García-Comendador, Julián; Fortesa, Josep; Crema, Stefano; Cavalli, Marco; Alorda, Bartomeu; Estrany, Joan
2017-04-01
Unravelling the spatio-temporal variability of the sediment transfer within a catchment represents a challenge of great importance to quantify erosion, soil redistribution and their impacts on agricultural landscape. Structural and functional connectivity have been identified as useful aspects of connectivity that may clarify how these processes are coupled or decoupled in various types of catchment sediment cascades. In this study, hydrological and sediment connectivity in a Mediterranean agricultural catchment (1.4 km2) modified through traditional drainage systems (i.e., ditches and subsurface tile drainages) was assessed during two contrasted rainfall events occurred in October 2016 (20 mm in 24 h -return period < 1 yr-, I30 6.6 mm h-1 with 32 mm accumulated in 14 days) and in December 2016 (99 mm in 24 h -return period ≈ 25 yr-, I30 23 mm h-1 with 39 mm accumulated in 14 days). A morphometric index of connectivity (IC) was calculated to study the spatial patterns of structural connectivity. The identification of the main sediment pathways -in terms of functional connectivity- was conducted by field mapping, whilst the estimation of erosion and deposition rates by the analysis of high resolution digital terrain models (i.e., 5 cm pix-1; RMSE < 0.05 m) obtained from automated digital photogrammetry and unmanned aerial vehicle (UAV). The IC estimations allowed the identification of the most (dis-)connected areas related with the anthropogenic control in the resisting forces of the catchment. On the one hand, in the upper part of the catchment, depositional compartments were created by dry-stone walls that separate agricultural properties laminating flash floods. On the other hand, in the lower part of the catchment these depositional compartments were generated by an orthogonal network of ditches situated topographically above the natural thalwegs. In its turn, the most connected areas are located in the steepest parts of the catchment under rainfed herbaceous crops without dry stone walls and also within the lowland depositional compartments where the pathways are diverted generating parallel concentrated flows because of the greater elevation of these ditches. The observed spatial patterns of functional connectivity showed significant differences between the two events, although well fitted with IC as a clear evidence of anthropogenic controls in the resisting forces. During the October 2016 event -representative of high frequency-low magnitude events in the catchment- traditional drainage systems controlled the water and sediment transfer which was mainly concentrated within the ditches. By contrast, during the event of December 2016 -representative of extreme events- this transfer process was controlled by the natural morphology of the catchment, which activated coupling mechanisms between different compartments, increasing the effective area and triggering erosion processes including the formation of rills and incipient gullies. The spatial location of the sediment mobilization and deposition areas during the extreme event in December 2016 is well fitted with the IC estimations. The application of IC, therefore, may provide useful information to improve the drainage systems design and the implementation of measures to prevent soil losses.
NASA Astrophysics Data System (ADS)
Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark
2018-06-01
Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding complex relationships in the management of the catchment.
Development of flood index by characterisation of flood hydrographs
NASA Astrophysics Data System (ADS)
Bhattacharya, Biswa; Suman, Asadusjjaman
2015-04-01
In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA, Oc-gok Basin in Republic of Korea and the haor region of Bangladesh. Keywords: flood index, flood risk management, flood characteristics
NASA Astrophysics Data System (ADS)
Crabit, Armand; Colin, François
2016-04-01
Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also provides significant insight into the hydrological processes operating in small ephemeral stream systems and highlights similarities/dissimilarities between catchments.
Reducing calibration parameters to increase insight in catchment organization and similarity
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Onof, Christian
2013-04-01
Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.
NASA Astrophysics Data System (ADS)
Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.
2004-12-01
Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure. Results will serve as a key dataset to assess how canopy conditions affect surface hydrology in complex snow-dominated catchments in the intermountain western U.S.
NASA Astrophysics Data System (ADS)
Matingo, Thomas; Gumindoga, Webster; Makurira, Hodson
2018-05-01
Flash floods are experienced almost annually in the ungauged Mbire District of the Middle Zambezi Basin. Studies related to hydrological modelling (rainfall-runoff) and flood forecasting require major inputs such as precipitation which, due to shortage of observed data, are increasingly using indirect methods for estimating precipitation. This study therefore evaluated performance of CMORPH and TRMM satellite rainfall estimates (SREs) for 30 min, 1 h, 3 h and daily intensities through hydrologic and flash flood modelling in the Lower Middle Zambezi Basin for the period 2013-2016. On a daily timestep, uncorrected CMORPH and TRMM show Probability of Detection (POD) of 61 and 59 %, respectively, when compared to rain gauge observations. The best performance using Correlation Coefficient (CC) was 70 and 60 % on daily timesteps for CMORPH and TRMM, respectively. The best RMSE for CMORPH was 0.81 % for 30 min timestep and for TRMM was 2, 11 % on 3 h timestep. For the year 2014 to 2015, the HEC-HMS (Hydrological Engineering Centre-Hydrological Modelling System) daily model calibration Nash Sutcliffe efficiency (NSE) for Musengezi sub catchment was 59 % whilst for Angwa it was 55 %. Angwa sub-catchment daily NSE results for the period 2015-2016 was 61 %. HEC-RAS flash flood modeling at 100, 50 and 25 year return periods for Angwa sub catchment, inundated 811 and 867 ha for TRMM rainfall simulated discharge at 3 h and daily timesteps, respectively. For CMORPH generated rainfall, the inundation was 818, 876, 890 and 891 ha at daily, 3 h, 1 h and 30 min timesteps. The 30 min time step for CMORPH effectively captures flash floods with the measure of agreement between simulated flood extent and ground control points of 69 %. For TRMM, the 3 h timestep effectively captures flash floods with coefficient of 67 %. The study therefore concludes that satellite products are most effective in capturing localized hydrological processes such as flash floods for sub-daily rainfall, because of improved spatial and temporal resolution.
NASA Astrophysics Data System (ADS)
Nepal, S.
2016-12-01
The spatial transferability of the model parameters of the process-oriented distributed J2000 hydrological model was investigated in two glaciated sub-catchments of the Koshi river basin in eastern Nepal. The basins had a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986-1991) and validated (1992-1997) in the Dudh Koshi sub-catchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001-2009). A sensitivity and uncertainty analysis was carried out for both sub-catchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both sub-catchments, including baseflow and medium range flows (rising and recession limbs). The efficiency results according to both Nash-Sutcliffe and the coefficient of determination was above 0.84 in both cases. The sensitivity analysis showed that the same parameter was most sensitive for Nash-Sutcliffe (ENS) and Log Nash-Sutcliffe (LNS) efficiencies in both catchments. However, there were some differences in sensitivity to ENS and LNS for moderate and low sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. A generalized likelihood uncertainty estimation (GLUE) result suggest that most of the time the observed runoff is within the parameter uncertainty range, although occasionally the values lie outside the uncertainty range, especially during flood peaks and more in the Tamor. This may be due to the limited input data resulting from the small number of precipitation stations and lack of representative stations in high-altitude areas, as well as to model structural uncertainty. The results indicate that transfer of the J2000 parameters to a neighboring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying process-based J2000 model be to the ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.
Long-term data set analysis of stable isotopic composition in German rivers
NASA Astrophysics Data System (ADS)
Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine
2017-09-01
Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to also understand the impact of changes in the hydrological cycle on the larger scales. They can also be used for calibration and validation of flow and transport models at catchment and sub-catchment scale.
NASA Astrophysics Data System (ADS)
Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.
2015-12-01
This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007 and 2013. A reclassification procedure of the maps permitted to assess the major land use changes in the catchment from 1990 to 2013. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during the calibration and the validation ranged between 0.9 and 0.6 for total discharge, soil moisture, and groundwater level, indicating satisfying to good agreements between observed and simulated variables. After a successful multi-criteria validation the model was run with the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment in 2013 it can be assumed that savannah was mainly converted to cropland. The increase in cropland area results from the population growth and the farming system in the catchment. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high discharge and peak flow, suggesting (i) an increase in water resources that is not available for plant growth and the population of the catchment and (ii) an alteration of flood risk for both the population within and downstream of the catchment.
NASA Astrophysics Data System (ADS)
Yang, Y.; Liu, B.
2017-12-01
Climate change and human activities are two critical factors causing the dramatical variations of streamflow in the Yellow River Basin of China during the last several decades. More and more attention has been paid to the temporal relationships of streamflow with precipitation and temperature recently. The objective of the current study was to explore the contributions of precipitation and temperature to the temporal variations of streamflow on the Loess Plateau using a multiple wavelet coherency method. Annual streamflow during 1961-2013 for 17 small catchments were collected from the Yellow River Conservancy Commission and annual precipitation and temperature for each catchment were derived from the meteorological data at the national weather stations across the Loess Plateau through the China Meteorological Data Sharing Service System. An abrupt decrease was observed in the annual streamflow around year 2000 for any of the 17 catchments investigated, which was believed to be related with the extensive Grain for Green Project. According to bivariate wavelet coherences, however, annual streamflow showed strong temporal variations with annual precipitation at 8 out of the 17 catchments, where the percentage area of significant coherency (PASC) exceeded 50%. Especially in Weihe and Yiluohe catchments, the corresponding PASC were close to 100%, suggesting that annual precipitation change accounted for almost all the temporal streamflow variations. Compared to annual precipitation, the temporal correlation of temperature with streamflow was relatively small, as implied in the lower mean wavelet coherence (MWC) and PASC. Moreover, including temperature in addition to precipitation in the multiple wavelet coherency analysis failed to increase either MWC or PASC in any of the 17 catchments except for Qingjianhe and Qiushuihe catchments. It was indicated that for most catchments on the Loess Plateau, annual temperature was not significantly different from the red noise in explaining the additional variation in streamflow. In view of the small PASC values resulted for most catchments, there existed other environmental and/or anthropogenic factors responsible for the temporal variations of streamflow.
NASA Astrophysics Data System (ADS)
Qin, H. P.; Yu, X. Y.; Khu, S. T.
2009-04-01
Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant source and wash off processes in different storm intensity should be consider in future monitoring and model development. Keywords: storm runoff; wash off; urbanization; catchment modeling; litter; residual
The artifcial catchment Chicken Creek as a tool to study initial ecosystem development
NASA Astrophysics Data System (ADS)
Schaaf, W.; Elmer, M.; Fischer, A.; Gerwin, W.; Nenov, R.
2011-12-01
The artificial catchment Chicken Creek was constructed in 2005 to study the increasingly complex interactions of processes and structures during initial development of ecosystems. The 6ha area serves as the central research site for the Transregional Collaborative Research Center 38. Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment during the first five years of development. Initial structures formed by the construction process (e.g. catchment morphology, subsurface structures like clay dams and dumping cones, caterpillar tracks at the surface) and initial substrate characteristics (e.g. texture, geochemistry) were decisive both for the distribution and flow of precipitation water and for vegetation succession. External factors like episodic events (e.g. heavy thunderstorms) triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate. These processes resulted in transport and redistribution of water and sediment within the catchment, mainly along the main slope, and the formation of new structural elements like gullies and channels, a sedimentation fan above and sediments within the pond. As a result, we observed an overall differentiation of the site, e.g. with respect to water availability and texture redistribution, into areas with abrasion or accumulation processes dominating and areas with stable surfaces. During further development, both external factors and processes within the catchment continued to influence the site. For example, beside the initial soil seed bank, the surrounding environment of the catchment clearly affected species invasion. The dissection and stability of surfaces may be an important factor for the establishment of plants and habitats as well as for the formation of vegetation patterns and biological soil crusts. The transformation of the initial geo-system into areas with evolving terrestrial or aquatic characteristics and from a very episodic to a more permanent stream network and discharge, together with the observed vegetation dynamics increased site diversity and heterogeneity with respect to water and nutrient availability and transformation processes compared to the more homogenous conditions at point zero. We expect that these more permanent structures and patterns established after five years will greatly influence the future development of the catchment with respect to e.g. input and accumulation of soil organic matter, nitrogen input and availability by symbiotic microbial N-fixation, development of root systems and soil food webs, weathering and soil formation, element cycling, and the water and element budget at the catchment scale.
River Ecosystem Response to Prescribed Vegetation Burning on Blanket peatland
Brown, Lee E.; Johnston, Kerrylyn; Palmer, Sheila M.; Aspray, Katie L.; Holden, Joseph
2013-01-01
Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson’s diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems. PMID:24278367
River ecosystem response to prescribed vegetation burning on Blanket Peatland.
Brown, Lee E; Johnston, Kerrylyn; Palmer, Sheila M; Aspray, Katie L; Holden, Joseph
2013-01-01
Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.
Wagener, Thorsten; McGlynn, Brian
2015-01-01
Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197
NASA Astrophysics Data System (ADS)
Guo, Xiaoyu; Tian, Lide; Wang, Lei; Yu, Wusheng; Qu, Dongmei
2017-06-01
Catchment-scale hydrological cycles are expected to suffer more extremes under a background of climate change. Quantifying hydrological changes in high and remote areas is practically challenging. However, stable isotopes in river water can be seen to vary, dependent upon the combined influence exerted by recharge sources and local climatic conditions; the study of river water stable isotopes can therefore provide a meaningful method for delineating catchment-scale hydrological studies. In this study, we present high-resolution time series of river δ18O and d-excess values; additionally, we identify the seasonal dynamics of river recharge sources and major components of the catchment-scale water balance, together with precipitation and groundwater isotopes, and concurrent meteorological data recorded in Magazangbu catchment on the northwestern Tibetan Plateau (TP). Using isotopic analysis, and within a proportional framework, we partitioned the isotopic fractionation (E1) or non-fractionation (E2) from soil evaporation fluxes (Esoil) apparent in different processes, using NDVI (Normal Differential Vegetation Index) data collected by MODIS satellites to calculate the vegetation fractional coverage (VFC), and Global Land Data Assimilation System (GLDAS) records to determine evapotranspiration data (ET). Finally, the contributions made by each ET component (Esoil and plant transpiration) to total catchment ET were computed for the high and remote northwestern TP. Our results show that: (1) river δ18O values were high in summer and low in winter, while d-excess values displayed a contrary seasonal cycle; (2) for the monsoon period, precipitation contributed 60.6% to Magazangbu catchment runoff. Deeper groundwater was the main water source for the winter low base flow, and shallow groundwater or high elevation snowmelt was the principal component of the spring thaw and autumn freezing periods; and (3) a substantial proportion of Esoil (96.4% annually; 92.2% during monsoon) was consumed without isotopic fractionation (E2); plant transpiration (T) constituted less than half of total ET (41% annually, 29% during monsoon) in Magazangbu catchment. This calculation of river recharge sources and partitioning of catchment ET components using isotopic signals and MODIS NDVI data or GLDAS ET data provide new methods for hydrological studies in high and remote areas. These results provide important catchment-scale water-balance information which is very useful to climate models conducted in a high-elevation arid environment.
Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine
NASA Astrophysics Data System (ADS)
Jebreen, Hassan; Wohnlich, Stefan; Wisotzky, Frank; Banning, Andre; Niedermayr, Andrea; Ghanem, Marwan
2018-03-01
Knowledge of groundwater recharge constitutes a valuable tool for sustainable management in karst systems. In this respect, a quantitative evaluation of groundwater recharge can be considered a pre-requisite for the optimal operation of groundwater resources systems, particular for semi-arid areas. This paper demonstrates the processes affecting recharge in Palestine aquifers. The Central Western Catchment is one of the main water supply sources in the West Bank. Quantification of potential recharge rates are estimated using chloride mass balance (CMB) and empirical recharge equations over the catchment. The results showing the spatialized recharge rate, which ranges from 111-216 mm/year, representing 19-37% of the long-term mean annual rainfall. Using Water Balance models and climatological data (e. g. solar radiation, monthly temperature, average monthly relative humidity and precipitation), actual evapotranspiration (AET) is estimated. The mean annual actual evapotranspiration was about 66-70% of precipitation.
Evaluation of effectiveness of combined sewer overflow control measures by operational data.
Schroeder, K; Riechel, M; Matzinger, A; Rouault, P; Sonnenberg, H; Pawlowsky-Reusing, E; Gnirss, R
2011-01-01
The effect of combined sewer overflow (CSO) control measures should be validated during operation based on monitoring of CSO activity and subsequent comparison with (legal) requirements. However, most CSO monitoring programs have been started only recently and therefore no long-term data is available for reliable efficiency control. A method is proposed that focuses on rainfall data for evaluating the effectiveness of CSO control measures. It is applicable if a sufficient time-series of rainfall data and a limited set of data on CSO discharges are available. The method is demonstrated for four catchments of the Berlin combined sewer system. The analysis of the 2000-2007 data shows the effect of CSO control measures, such as activation of in-pipe storage capacities within the Berlin system. The catchment, where measures are fully implemented shows less than 40% of the CSO activity of those catchments, where measures have not yet or not yet completely been realised.
The spatial structure and temporal synchrony of water quality in stream networks
NASA Astrophysics Data System (ADS)
Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles
2017-04-01
To feed nine billion people in 2050 while maintaining viable aquatic ecosystems will require an understanding of nutrient pollution dynamics throughout stream networks. Most regulatory frameworks such as the European Water Framework Directive and U.S. Clean Water Act, focus on nutrient concentrations in medium to large rivers. This strategy is appealing because large rivers integrate many small catchments and total nutrient loads drive eutrophication in estuarine and oceanic ecosystems. However, there is growing evidence that to understand and reduce downstream nutrient fluxes we need to look upstream. While headwater streams receive the bulk of nutrients in river networks, the relationship between land cover and nutrient flux often breaks down for small catchments, representing an important ecological unknown since 90% of global stream length occurs in catchments smaller than 15 km2. Though continuous monitoring of thousands of small streams is not feasible, what if we could learn what we needed about where and when to implement monitoring and conservation efforts with periodic sampling of headwater catchments? To address this question we performed repeat synoptic sampling of 56 nested catchments ranging in size from 1 to 370 km2 in western France. Spatial variability in carbon and nutrient concentrations decreased non-linearly as catchment size increased, with thresholds in variance for organic carbon and nutrients occurring between 36 and 68 km2. While it is widely held that temporal variance is higher in smaller streams, we observed consistent temporal variance across spatial scales and the ranking of catchments based on water quality showed strong synchrony in the water chemistry response to seasonal variation and hydrological events. We used these observations to develop two simple management frameworks. The subcatchment leverage concept proposes that mitigation and restoration efforts are more likely to succeed when implemented at spatial scales expressing high variability in the target parameter, which indicates decreased system inertia and demonstrates that alternative system responses are possible. The subcatchment synchrony concept suggests that periodic sampling of headwaters can provide valuable information about pollutant sources and inherent resilience in subcatchments and that if agricultural activity were redistributed based on this assessment of catchment vulnerability to nutrient loading, water quality could be improved while maintaining crop yields.
Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan
2014-06-15
Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.
Relict rock glaciers in alpine catchments: A regional study in Central Austria
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried
2013-04-01
Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments. This proportion increases to 8.6% for areas above 1500 m a.s.l. and even to 23% for areas above 2000 m a.s.l.. Results for a 626 km² large subunit (Seckauer Tauern Range) reveal that even 15.6% of the area above 1500 m a.s.l. and more 42% above 2000 m a.s.l. are influenced by relict rock glaciers as aquifers. A total water volume of 4240 Mio m³ is precipitated annually (mean value for the normal period 1971-2000) in the entire study area. 22% of this water is evapotranspirated and the remaining water is the discharge of the catchments. Despite the fact that 8.6% of the entire Niedere Tauern Range above 1500 m a.s.l. belong to rock glacier catchments, about 9.5% of the total discharge and 9.2% of the total precipitation originates in the rock glacier catchments. In contrast, only 7.9% of all precipitated water is evapotranspirated in these catchments. In the subunit Seckauer Tauern Range the same figures for rock glacier catchments are substantially higher and more pronounced in their differences with 15.6% for area, 16.8% for precipitation, 14.5% for evapotranspiration and even 17.3% for discharge. These figures exemplarily show that rock glaciers and their catchments are highly relevant in the alpine water cycle of the study area.
How accounting for transient catchment hydrology in the design of river engineering works ?
NASA Astrophysics Data System (ADS)
Rosso, R.; Bocchiola, D.; Rulli, M. C.
2009-04-01
Current engineering practice of hydrologic design is based on hazard estimates that are carried out under the steady state conjecture, i.e. stationarity. This occurs for both assessing averages and second order statistics, and predicting low frequency quantiles. Conversely, routing of hydrologic input variables via known boundary conditions of the systems, i.e. the hydrological basin, can produce non stationary behavior of derived variates, i.e. those required for design. Abrupt changes in the drainage basin can lead to unexpected and profound changes in the magnitude of design events, sometimes providing design loads higher than those expected for a stationary system. Modified connectivity between the constantly developing human mobility network, the drainage system, and the dendritic river topology may result in tremendously modified signature of the climate on hydrologic response. Anthropic footprint on soil use may lead to hugely increased hydrological feedback and floods therein. Transient effects of forest fires in arid or semiarid areas decrease vegetation dampening on runoff production and soil stability, with a dramatic fallout when heavy storms occur within the post event recovery time window. Sudden pulses of fine and coarse sediment occurring in the forest fire's wake, and in connection with rapid mass movements, such as landslides or avalanches in alpine areas, may decrease the effectiveness of engineering works even for unchanged hydrologic loads. New paradigms are necessary to provide enhanced design strategies of river engineering works. These should entail the heavily non linear effects of pulse events with transient effect in time on hydro-morphological dynamics of rivers and increased risk therein, particularly for those works aimed to bear extreme loads, i.e. coping with very high return periods. Major instances deal with dams, power plants, and all those schemes that are very sensitive because of potential consequences of hydrologic catastrophes. Here, examples are given of structures, works and events with transient effect in time affecting the expected hydrological risk, and some strategies sketched to deal with such issues henceforward.
The use of Natural Flood Management to mitigate local flooding in the rural landscape
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Quinn, Paul; Ghimire, Sohan; Nicholson, Alex; Addy, Steve
2014-05-01
The past decade has seen increases in the occurrence of flood events across Europe, putting a growing number of settlements of varying sizes at risk. The issue of flooding in smaller villages is usually not well publicised. In these small communities, the cost of constructing and maintaining traditional flood defences often outweigh the potential benefits, which has led to a growing quest for more cost effective and sustainable approaches. Here we aim to provide such an approach that alongside flood risk reduction, also has multipurpose benefits of sediment control, water quality amelioration, and habitat creation. Natural flood management (NFM) aims to reduce flooding by working with natural features and characteristics to slow down or temporarily store flood waters. NFM measures include dynamic water storage ponds and wetlands, interception bunds, channel restoration and instream wood placement, and increasing soil infiltration through soil management and tree planting. Based on integrated monitoring and modelling studies, we demonstrate the potential to manage runoff locally using NFM in rural systems by effectively managing flow pathways (hill slopes and small channels) and by exploiting floodplains and buffers strips. Case studies from across the UK show that temporary storage ponds (ranging from 300 to 3000m3) and other NFM measures can reduce peak flows in small catchments (5 to 10 km2) by up to 15 to 30 percent. In addition, increasing the overall effective storage capacity by a network of NFM measures was found to be most effective for total reduction of local flood peaks. Hydraulic modelling has shown that the positioning of such features within the catchment, and how they are connected to the main channel, may also affect their effectiveness. Field evidence has shown that these ponds can collect significant accumulations of fine sediment during flood events. On the other hand, measures such as wetlands could also play an important role during low flow conditions, by providing base flows during drought conditions. Ongoing research using hydrological datasets aims to assess how these features function during low flow conditions and how storage ponds could be used as irrigation ponds in arable areas. To allow for effective implementation and upkeep of NFM measures on the ground, demonstration sites have been developed through a process of iterative stakeholder engagement. Coupled with the use of novel visualisation techniques, results are currently being communicated to a wider community of local landowners and catchment managers. The approach of using networks of interception bunds and offline storage areas in the rural landscape could potentially provide a cost effective means to reduce flood risk in small responsive catchments across Europe. As such it could provide an alternative or addition to traditional engineering techniques, while also effectively managing catchments to achieve multiple environmental objectives.
NASA Astrophysics Data System (ADS)
Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.
2014-06-01
It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented and the parameterisation approach that would be taken in each case is discussed. Preliminary findings in the case studies lend support to the conceptual theories outlined in the framework. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to improve social-ecological systems modelling through better representation of human feedbacks on hydrological processes.
Integrating 3D geological information with a national physically-based hydrological modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark
2016-04-01
Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.
NASA Astrophysics Data System (ADS)
Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Zimmer, M. A.; Ross, D. S.
2011-12-01
Determining solute sources and water flowpaths in catchments is of critical importance to development of models that effectively describe catchment function. For solutes in soil water and stream water, simple mass balance models that compare precipitation input to catchment outlet compositions can predict average mineral weathering contributions for the catchment as a whole, but fail to provide information about either variability of contributions from different portions of the catchment and different soil depths or processes such as ion exchange and biological cycling. In order to better understand how forested headwater catchments function, we are interpreting concentration and isotope ratios of the alkaline earth elements Ca, Sr and Ba in streamwater, groundwater, the soil ion exchange pool and plants in a hydropedologic context at the 41 hectare hydrologic reference catchment (Watershed 3) at the Hubbard Brook Experimental Forest, New Hampshire, USA. This forested headwater catchment consists of a beech-birch-maple-spruce forest growing on vertically- and laterally-developed Spodosols and Inceptisols formed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Across the watershed in terms of the soil ion exchange pool, the forest floor has high Sr/Ba and Ca/Sr ratios, mineral soils have intermediate Sr/Ba and low Ca/Sr, and relatively unweathered till in the C horizon has low Sr/Ba and high Ca/Sr. Waters moving through these various compartments will obtain Sr/Ba and Ca/Sr ratios reflecting these characteristics, and thus variations of Sr/Ba and Ca/Sr of streamwater provide evidence of the depth of water flowpaths feeding the streams. 87Sr/86Sr of exchangeable Sr spans a broad range from 0.715 to 0.725, with highest values along the mid-to upper flanks of the catchment and lowest values in a broad zone along the central axis of the catchment associated with numerous groundwater seeps. Thus, variations of 87Sr/86Sr in streamwater provide evidence of the spatial distribution of water flowpaths feeding the streams. In addition, we are exploring the use of Sr and Ba stable isotope ratios (88Sr/86Sr, 138Ba/134Ba) as novel tracers of Sr and Ba sources in catchments. Initial results indicate that both Sr and Ba stable isotopes are fractionated by plants similarly to patterns observed globally for Ca stable isotopes. We hypothesize that while biologically-cycled Ca is efficiently retained in the organic soil-plant system, biologically-cycled Sr and especially Ba will be more easily leached by soil waters and delivered to the streams and thus their stable isotope ratios may provide an additional means to distinguish between shallow and deep water flowpaths in forested catchments.
Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab
2015-04-01
Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.
Jenkins, Aaron Peter; Jupiter, Stacy; Mueller, Ute; Jenney, Adam; Vosaki, Gandercillar; Rosa, Varanisese; Naucukidi, Alanieta; Mulholland, Kim; Strugnell, Richard; Kama, Mike; Horwitz, Pierre
2016-12-01
The impact of environmental change on transmission patterns of waterborne enteric diseases is a major public health concern. This study concerns the burden and spatial nature of enteric fever, attributable to Salmonella Typhi infection in the Central Division, Republic of Fiji at a sub-catchment scale over 30-months (2013-2015). Quantitative spatial analysis suggested relationships between environmental conditions of sub-catchments and incidence and recurrence of typhoid fever. Average incidence per inhabited sub-catchment for the Central Division was high at 205.9/100,000, with cases recurring in each calendar year in 26% of sub-catchments. Although the numbers of cases were highest within dense, urban coastal sub-catchments, the incidence was highest in low-density mountainous rural areas. Significant environmental determinants at this scale suggest increased risk of exposure where sediment yields increase following runoff. The study suggests that populations living on large systems that broaden into meandering mid-reaches and floodplains with alluvial deposition are at a greater risk compared to small populations living near small, erosional, high-energy headwaters and small streams unconnected to large hydrological networks. This study suggests that anthropogenic alteration of land cover and hydrology (particularly via fragmentation of riparian forest and connectivity between road and river networks) facilitates increased transmission of typhoid fever and that environmental transmission of typhoid fever is important in Fiji.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Ye, Xu-chun; Werner, Adrian D.; Li, Yun-liang; Yao, Jing; Li, Xiang-hu; Xu, Chong-yu
2014-09-01
Changes in lake hydrological regimes and the associated impacts on water supplies and ecosystems are internationally recognized issues. During the past decade, the persistent dryness of Poyang Lake (the largest freshwater lake in China) has caused water supply and irrigation crises for the 12.4 million inhabitants of the region. There is conjecture as to whether this dryness is caused by climate variability and/or human activities. This study examines long-term datasets of catchment inflow and Lake outflow, and employs a physically-based hydrodynamic model to explore catchment and Yangtze River controls on the Lake's hydrology. Lake water levels fell to their lowest during 2001-2010 relative to previous decades. The average Lake size and volume reduced by 154 km2 and 11 × 108 m3 during the same period, compared to those for the preceding period (1970-2000). Model simulations demonstrated that the drainage effect of the Yangtze River was the primary causal factor. Modeling also revealed that, compared to climate variability impacts on the Lake catchment, modifications to Yangtze River flows from the Three Gorges Dam have had a much greater impact on the seasonal (September-October) dryness of the Lake. Yangtze River effects are attenuated in the Lake with distance from the River, but nonetheless propagate some 100 km to the Lake's upstream limit. Proposals to build additional dams in the upper Yangtze River and its tributaries are expected to impose significant challenges for the management of Poyang Lake. Hydraulic engineering to modify the flow regime between the Lake and the Yangtze River would somewhat resolve the seasonal dryness of the Lake, but will likely introduce other issues in terms of water quality and aquatic ecosystem health, requiring considerable further research.
Kellie Vache; Lutz Breuer; Julia Jones; Phil Sollins
2015-01-01
We present a systems modeling approach to the development of a place-based ecohydrological model. The conceptual model is calibrated to a variety of existing observations, taken in watershed 10 (WS10) at the HJ Andrews Experimental Forest (HJA) in Oregon, USA, a long term ecological research (LTER) site with a long history of catchment-...
New insights into biogeochemical processing gained from sub-daily river monitoring
NASA Astrophysics Data System (ADS)
Halliday, S. J.; Wade, A. J.; Skeffington, R. A.; Bowes, M.; Palmer-Felgate, E.; Loewenthal, M.; Jarvie, H.; Neal, C.; Reynolds, B.; Gozzard, E.; Newman, J.
2012-12-01
This talk will focus on the insights obtained from sub-daily hydrochemical monitoring for a sustained time periods (> 1 year), at multiple sites within a catchment and across different catchment types. Sub-daily instream hydrochemical dynamics were investigated, using non-stationary time-series analysis techniques, for two catchments representative of upland and lowland UK. The River Hafren at Plynlimon, mid-Wales drains an upland catchment where half the land cover is unmanaged moorland and the other half is first generation plantation forestry. The Hafren was monitored at two sites on a 7-hourly basis, between March 2007 and January 2009, using a Xian automatic sampler. The River Enborne, Berkshire, southeast England, is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works discharges. The Enborne was monitored on an hourly basis between November 2009 and February 2012, using in situ field deployable analytical equipment to measure: Total Reactive Phosphorus (TRP: Systea Micromac C), Nitrate (Hach-Lange Nitratax), pH, dissolved oxygen, conductivity and water temperature (YSI 6600 Multi-parameter sonde). The results reveal complex diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by both flow conditions and nutrient sources. The comparison of the upland and lowland nitrate time series highlights how the different nitrogen sources within each system results in marked differences in the seasonal and diurnal dynamics, with a seasonal maximum in winter and a single peak diurnal cycle in the upland system, compared to a summer maximum and a two peak diurnal cycle in the lowland system. The analysis of TRP and nitrate concentrations in the Enborne catchment, in combination with flow, pH, dissolved oxygen, conductivity and water temperature, allowed the main processes controlling the observed sub-daily nutrient dynamics to be investigated. The different monitoring approaches adopted revealed the complexities involved in the accurate extraction of diurnal dynamics under lower frequency sampling, and the inherent issues of aliasing. Monitoring for 2 years also allowed an initial assessment of the inter-annual variability in the observed dynamics.
NASA Astrophysics Data System (ADS)
Umgiesser, Georg; Bellafiore, Debora; De Pascalis, Francesca; Icke, Joost; Stanica, Adrian
2017-04-01
The DANUBIUS Research Infrastructure (DANUBIUS-RI) is a new initiative to address the challenges and opportunities of research on large river- sea (RS) systems. DANUBIUS-RI is a distributed pan-European RI that will provide a platform for interdisciplinary research. It will deal with RS investigation through facilities and expertise from a large number of European institutions becoming a 'one-stop shop' for knowledge exchange in managing RS systems, ranging from freshwater to marine research. Globally, RS systems are complex and dynamic, with huge environmental, social and economic value. They are poorly understood but under increasing pressure through pollution, hydraulic engineering, water supply, energy, flood control and erosion. RS systems in Europe are among the most impacted globally, after centuries of industrialisation, urbanisation and agricultural intensification. Improved understanding is essential to avoid irreversible degradation and for restoration. DANUBIUS-RI will provide, among a number of other facilities concerning observations, analyses, impacts' evaluation, a modeling node that will provide integrated up-to-date tools, at locations of high scientific importance and opportunity, covering the RS systems - from source (upper parts of rivers - mountain lakes) to the transition with coastal seas. Modeling will be one of the major services provided by DANUBIUS-RI, relying on the inputs from the whole RI. RS systems are challenging from a modelling point of view, because of the complex morphology and the wide temporal and spatial range of processes occurring. Scale interaction plays a central role, considering the different hydro-eco-morphological processes on the large (basin) and small (local, coast, rivers, lagoons) scale. Currently, different model applications are made for the different geographical domains, and also for subsets of the processes. For instance there are separate models for rainfall runoff in the catchment, a sewer model for the urban area and a water quality model for the sea. Obviously, the subsystems interact with each other: water flows from the catchments to the rivers and into the sea. The rainfall runoff from the upstream catchment picks up the emissions and the river transports the substances via the estuaries to the sea. In the sea, the substances interact with the marine ecosystem. The challenge for the modeling of river - sea systems is (1) the integration of models for the geographical domains, (2) the integration of physical, chemical, ecological and socio-economical processes and (3) the exploration and application of new data sources. The modeling strategy that is starting to be shaped within DANUBIUS-RI will provide relocatable tools and suitable techniques to be efficiently applied in the different geographical areas, integrating the DANUBIUS-RI modeling skills and showing high performance modeling solutions for the investigation of RS systems. Moreover, a technological advanced platform for modeling services, in terms of software and shared data will be created. A preliminary sketch of the organization of the DANUBIUS modeling node and examples of field of action for RS systems investigation will be provided.
NASA Astrophysics Data System (ADS)
Hanisch, J.; Connon, R.; Templeton, M.; Quinton, W. L.; Olefeldt, D.; Moore, T. R.; Roulet, N. T.; Sonnentag, O.
2014-12-01
Our current understanding of peatland energy, water and carbon (C) cycles implies that northern peatlands are vulnerable to projected climate change, and that the perturbation of these cycles might cause a strong positive or negative net feedback to the climate system. About one third of Canada's northern peatlands contain contain perennialy frozen ground (permafrost). Boreal forest-peatland ecosystems in the discontinuous permafrost zone (50-90% of frozen ground) are especially vulnerable to rising temperatures as permafrost is ice-rich, relatively warm and thin, and thus susceptible to complete disappearance causing ground surface subsidence and a decline in forest cover in response to water-logging. Several recent studies have substantially improved our understanding of northern peatland's role in the climate system by quantifying their net ecosystem C balance which includes atmospheric and aqueous C fluxes generally dominated by the export of dissolved organic C (DOC). We characterize seasonal and diurnal variations in DOC export from five catchments (0.02-0.05 km2) at Scotty Creek, a 152 km2-watershed under the influence of rapidly degrading and disappearing discontinuous permafrost near Fort Simpson, Northwest Territories, Canada. The five catchments are characterized by different fractions of forested peat plateaus with permafrost (38-73%) and permafrost-free collapse bogs (27-62%). Dissolved organic carbon concentrations at Scotty Creek appear to be higher in catchments where the percentage of peat plateaus is higher compared to bogs, independent of catchment size. Average DOC concentration for catchments with a lower percentage of peat plateaus is lower (~43 mg/l) than for those with a higher percentage of plateaus (~60 mg/l). These preliminary results suggest that lateral C losses from this rapidly changing landscape are at least partly controlled by the peat plateau-bog ratio. Over the year, DOC export from the five catchments is limited to around a week due to the relatively dry conditions at Scotty Creek over the hot summer months: only one of the catchments produces continuous measurable surface runoff. However, as indicated through water level recordings, additional unaccounted DOC export may occur through diffuse subsurface flow.
The Evolution of Root Zone Storage Capacity after Land Use Change
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus
2016-04-01
Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the root zone storage capacities, converging to new equilibrium conditions and linked to forest regrowth. Further trend analysis suggested a relatively quick hydrological recovery between 5 and 15 years in the study catchments. The results lend evidence to the role of both, climate and vegetation dynamics for the development of root zone systems and their controlling influence on hydrological response dynamics.
Geographic Information Systems and Web Page Development
NASA Technical Reports Server (NTRS)
Reynolds, Justin
2004-01-01
The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIS. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre" which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. GIS can be broken down into two main categories, urban GIS and natural resource GIS. Further still, natural resource GIS can be broken down into six sub-categories, agriculture, forestry, wildlife, catchment management, archaeology, and geology/mining. Agriculture GIS has several applications, such as agricultural capability analysis, land conservation, market analysis, or whole farming planning. Forestry GIs can be used for timber assessment and management, harvest scheduling and planning, environmental impact assessment, and pest management. GIS when used in wildlife applications enables the user to assess and manage habitats, identify and track endangered and rare species, and monitor impact assessment.
Monitoring of fluvial transport in small upland catchments - methods and preliminary results
NASA Astrophysics Data System (ADS)
Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa
2014-06-01
In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order
NASA Astrophysics Data System (ADS)
Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.
2015-12-01
With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Daughney, Christopher J.; Stewart, Michael K.; McDonnell, Jeffrey J.
2013-04-01
The transit time distribution of streamflow is a fundamental descriptor of the flowpaths of water through a catchment and the storage of water within it, controlling its response to landuse change, pollution, ecological degradation, and climate change. Significant time lags (catchment memory) in the responses of streams to these stressors and their amelioration or restoration have been observed. Lag time can be quantified via water transit time of the catchment discharge. Mean transit times can be in the order of years and decades (Stewart et al 2012, Morgenstern et al., 2010). If the water passes through large groundwater reservoirs, it is difficult to quantify and predict the lag time. A pulse shaped tracer that moves with the water can allow quantification of the mean transit time. Environmental tritium is the ideal tracer of the water cycle. Tritium is part of the water molecule, is not affected by chemical reactions in the aquifer, and the bomb tritium from the atmospheric nuclear weapons testing represents a pulse shaped tracer input that allows for very accurate measurement of the age distribution parameters of the water in the catchment discharge. Tritium time series data from all catchment discharges (streams and springs) into Lake Rotorua, New Zealand, allow for accurate determination of the age distribution parameters. The Lake Rotorua catchment tritium data from streams and springs are unique, with high-quality tritium data available over more than four decades, encompassing the time when the bomb-tritium moved through the groundwater system, and from a very high number of streams and springs. Together with the well-defined tritium input into the Rotorua catchment, this data set allows for the best understanding of the water dynamics through a large scale catchment, including validation of complicated water mixing models. Mean transit times of the main streams into the lake range between 27 and 170 years. With such old water discharging into the lake, most of the water inflows into the lake are not yet fully representing the nitrate loading in their sub-catchments from current land use practises. These water inflows are still 'diluted' by pristine old water, but over time, the full amount of nitrate load will arrive at the lake. With the age distribution parameters, it is possible to predict the increase in nitrate load to the lake via the groundwater discharges. All sub-catchments have different mean transit times. The mean transit times are not necessarily correlated with observable hydrogeologic properties like hydraulic conductivity and catchment size. Without such age tracer data, it is therefore difficult to predict mean transit times (lag times, memory) of water transfer through catchments. References: Stewart, M.K., Morgenstern, U., McDonnell, J.J., Pfister, L. (2012). The 'hidden streamflow' challenge in catchment hydrology: A call to action for streamwater transit time analysis. Hydrol. Process. 26,2061-2066, Invited commentary. DOI: 10.1002/hyp.9262 Morgenstern, U., Stewart, M.K., and Stenger, R. (2010) Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow, Hydrol. Earth Syst. Sci, 14, 2289-2301
Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience
NASA Astrophysics Data System (ADS)
Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.
2005-05-01
Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.
Evolving water science in the Anthropocene
NASA Astrophysics Data System (ADS)
Savenije, H. H. G.; Hoekstra, A. Y.; van der Zaag, P.
2013-06-01
This paper reviews the changing relation between man and water since the industrial revolution, the period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet. We show how the rapidly changing reality urges us to continuously improve our understanding of the complex interactions between man and the water system. The paper starts with demonstrating that hydrology and the science of water resources management have played key roles in human and economic development throughout history; yet these roles have often been marginalised or obscured. Knowledge on hydrology and water resources engineering and management helped to transform the landscape, and thus also the very hydrology within catchments itself. It is only fairly recent that water experts have become self-conscious of such mechanisms, exemplified by several concepts that try to internalise them (integrated water resources management, eco-hydrology, socio-hydrology). We have reached a stage where a more systemic understanding of scale interdependencies can inform the sustainable governance of water systems, using new concepts like precipitationsheds, virtual water transfers, water footprint and water value flow.
NASA Astrophysics Data System (ADS)
Kauzlaric, Martina; Schädler, Bruno; Weingartner, Rolf
2014-05-01
The main objective of the MontanAqua transdisciplinary project is to develop strategies moving towards a more sustainable water resources management in the Crans-Montana-Sierre region (Valais, Switzerland) in view of global change. Therefore, a detailed assessment of the available water resources in the study area today and in the future is needed. The study region is situated in the inner alpine zone, with strong altitudinal precipitation gradients: from the precipitation rich alpine ridge down to the dry Rhône plain. A typical plateau glacier on top of the ridge is partly drained through the karstic underground formations and linked to various springs to either side of the water divide. The main anthropogenic influences on the system are reservoirs and diversions to the irrigation channels. Thus, the study area does not cover a classical hydrological basin as the water flows frequently across natural hydrographic boundaries. This is a big challenge from a hydrological point of view, as we cannot easily achieve a closed, measured water balance. Over and above, a lack of comprehensive historical data in the catchment reduces the degree of process conceptualization possible, as well as prohibits usual parameter estimation procedures. The Penn State Integrated Hydrologic Model (PIHM) (Kumar, 2009) has been selected to estimate the available natural water resource for the whole study area. It is a semi-discrete, physically-based model which includes: channel routing, overland flow, subsurface saturated and unsaturated flow, rainfall interception, snow melting and evapotranspiration. Its unstructured mesh decomposition offers a flexible domain decomposition strategy for efficient and accurate integration of the physiographic, climatic and hydrographic watershed. The model was modified in order to be more suitable for a karstified mountainous catchment: it now includes the possibility to punctually add external sources, and the temperature-index approach for estimating melt was adjusted to include the influence of solar radiation. No parameter calibration in a classical sense was used as sufficient observations are missing. Hence, parameters are estimated with values obtained from the literature, catchment boundaries were determined basing on tracer experiments, as well as the relationship between precipitation, spring- and river-discharge. Historical data such as river discharge, infiltration experiments and snow and glacier mass balance measurements were used to validate simulations. Here some case studies are presented, illustrating the difficulty of estimating snowmelt and icemelt parameters, of judging their correctness, as well as the consequent sensitivity of the regional water balance. REFERENCES Kumar, M. 2009: Toward a hydrologic modeling system. PhD Thesis, Departement of civil and Environmental engineering, Pennsylvania State University, USA.
NASA Astrophysics Data System (ADS)
Doummar, Joanna; Aoun, Michel; Andari, Fouad
2016-04-01
Karst aquifers are highly heterogeneous and characterized by a duality of recharge (concentrated; fast versus diffuse; slow) and a duality of flow which directly influences groundwater flow and spring responses. Given this heterogeneity in flow and infiltration, karst aquifers do not always obey standard hydraulic laws. Therefore the assessment of their vulnerability reveals to be challenging. Studies have shown that vulnerability of aquifers is highly governed by recharge to groundwater. On the other hand specific parameters appear to play a major role in the spatial and temporal distribution of infiltration on a karst system, thus greatly influencing the discharge rates observed at a karst spring, and consequently the vulnerability of a spring. This heterogeneity can only be depicted using an integrated numerical model to quantify recharge spatially and assess the spatial and temporal vulnerability of a catchment for contamination. In the framework of a three-year PEER NSF/USAID funded project, the vulnerability of a karst catchment in Lebanon is assessed quantitatively using a numerical approach. The aim of the project is also to refine actual evapotranspiration rates and spatial recharge distribution in a semi arid environment. For this purpose, a monitoring network was installed since July 2014 on two different pilot karst catchment (drained by Qachqouch Spring and Assal Spring) to collect high resolution data to be used in an integrated catchment numerical model with MIKE SHE, DHI including climate, unsaturated zone, and saturated zone. Catchment characterization essential for the model included geological mapping and karst features (e.g., dolines) survey as they contribute to fast flow. Tracer experiments were performed under different flow conditions (snow melt and low flow) to delineate the catchment area, reveal groundwater velocities and response to snowmelt events. An assessment of spring response after precipitation events allowed the estimation of the fast infiltration component. A series of laboratory tests were performed to acquire physical values to be used as a benchmark for model parameterization, such as laboratory tests on soils for conductivity at saturation and grain size analysis. Time series used for input or calibration were collected and computed from continuous high resolution monitoring of climatic data, moisture variation in the soil, and discharge at the investigated spring. This similar model approach used on a catchment site in Germany is to be applied and validated on two pilot karst catchments in Lebanon governed by semi-arid climatic conditions. References Doummar J., Sauter M., Geyer T., 2012. Simulation of flow processes in a large scale karst system with an integrated catchment model (Mike She) - Identification of relevant parameters influencing spring discharge. Journal of Hydrology, v. 426-427- p 112-123. Jukić, D., and Denić-Jukić, V., 2009. Groundwater balance estimation in karst by using a conceptual rainfall-runoff model. Journal of Hydrology, v. 373- p 302-315
NASA Astrophysics Data System (ADS)
Soulsby, C.; Kuppel, S.; Smith, A.; Tetzlaff, D.
2017-12-01
The dynamics of water storage in a catchment provides a fundamental insight into the interlinkages between input and output fluxes, and how these are affected by environmental change. Such dynamics also mediate, and help us understand, the fundamental difference of the rapid celerity of the rainfall-runoff (minutes to hours) response of catchments and the much slower velocity of water particles (months to decades) as they are transported through catchment systems. In this contribution we report an intensive, long-term (>10year), multi-scale isotope study in the Scottish Highlands that has sought to better understand these issues. We have integrated empirical data collection with diverse modelling approaches to quantify the dynamics and residence times of storage in different compartments of the hydrological system (vegetation canopies, soils, ground waters etc.) and their relationship between the magnitude and travel time distributions of output fluxes (stream flow, transpiration and evaporation). Use of conceptual, physically-based and probabilistic modelling approaches give broadly consistent perspectives on the storage-discharge relationships and the preferential selection of younger waters in runoff, evaporation and transpiration; while older waters predominate in groundwater. The work also highlighted the importance role vegetation plays in regulating fluxes in evaporation and transpiration and how this contributes to the differential ageing of water in mobile and bulk waters in the soil compartment. A separate case study shows how land use change can affect storage distributions in a catchment and radically change travel time distributions in output fluxes.
Haghighatafshar, Salar; Nordlöf, Beatrice; Roldin, Maria; Gustafsson, Lars-Göran; la Cour Jansen, Jes; Jönsson, Karin
2018-02-01
Coupled one-dimensional (1D) sewer and two-dimensional (2D) overland flow hydrodynamic models were constructed to evaluate the flood mitigation efficiency of a renowned blue-green stormwater retrofit, i.e. Augustenborg, in Malmö, Sweden. Simulation results showed that the blue-green stormwater systems were effective in controlling local surface flooding in inner-city catchments, having reduced the total flooded surfaces by about 70%. However, basement flooding could still be a potential problem depending on the magnitude of the inflows through combined sewer from upstream areas. Moreover, interactions between blue-green retrofits and the surrounding pipe-system were studied. It was observed that the blue-green retrofits reduced the peak flows by approximately 80% and levelled out the runoff. This is a substantial advantage for downstream pipe-bound catchments, as they do not receive a cloudburst-equivalent runoff from the retrofitted catchment, but a reduced flow corresponding to a much milder rainfall. Blue-green retrofits are more effective if primarily implemented in the upstream areas of a pipe-bound catchment since the resulting reduced runoff and levelled out discharge would benefit the entire network lying downstream. Implementing blue-green retrofits from upstream towards downstream can be considered as a sustainable approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.
2006-02-01
A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.
Contaminant attenuation by shallow aquifer systems under steady flow
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.
2017-10-01
We present a framework for analyzing advection-dominated solute transport and transformation in aquifer systems of boreal catchments that are typically shallow and rest on crystalline bedrock. A methodology is presented for estimating tracer discharge based on particle trajectories from recharge to discharge locations and computing their first passage times assuming that the flow pattern is approximately steady-state. Transformation processes can be included by solving one-dimensional reactive transport with randomized water travel time as the independent variable; the distribution of the travel times incorporates morphological dispersion (due to catchment geometry/topography) as well as macro-dispersion (due to heterogeneity of underlying hydraulic properties). The implementation of the framework is illustrated for the well characterized coastal catchment of Forsmark (Sweden). We find that macro-dispersion has a notable effect on attenuation even though the morphological dispersion is significantly larger. Preferential flow on the catchment scale is found to be considerable with only 5% of the Eulerian velocities contributing to transport over the simulation period of 375 years. Natural attenuation is illustrated as a simple (linear decay) transformation process. Simulated natural attenuation can be estimated analytically reasonably well by using basic hydrological and structural information, the latter being the pathway length distribution and average aquifer depth to the bedrock.
Hydrologic sensitivity of headwater catchments to climate and landscape variability
NASA Astrophysics Data System (ADS)
Kelleher, Christa; Wagener, Thorsten; McGlynn, Brian; Nippgen, Fabian; Jencso, Kelsey
2013-04-01
Headwater streams cumulatively represent an extensive portion of the United States stream network, yet remain largely unmonitored and unmapped. As such, we have limited understanding of how these systems will respond to change, knowledge that is important for preserving these unique ecosystems, the services they provide, and the biodiversity they support. We compare responses across five adjacent headwater catchments located in Tenderfoot Creek Experimental Forest in Montana, USA, to understand how local differences may affect the sensitivity of headwaters to change. We utilize global, variance-based sensitivity analysis to understand which aspects of the physical system (e.g., vegetation, topography, geology) control the variability in hydrologic behavior across these basins, and how this varies as a function of time (and therefore climate). Basin fluxes and storages, including evapotranspiration, snow water equivalent and melt, soil moisture and streamflow, are simulated using the Distributed Hydrology-Vegetation-Soil Model (DHSVM). Sensitivity analysis is applied to quantify the importance of different physical parameters to the spatial and temporal variability of different water balance components, allowing us to map similarities and differences in these controls through space and time. Our results show how catchment influences on fluxes vary across seasons (thus providing insight into transferability of knowledge in time), and how they vary across catchments with different physical characteristics (providing insight into transferability in space).
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.
2016-12-01
Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence these high-resolution processes must be studied in conjunction, rather than in isolation, to understand system dynamics and critically to evaluate effective mitigation schemes.
CAOS: the nested catchment soil-vegetation-atmosphere observation platform
NASA Astrophysics Data System (ADS)
Weiler, Markus; Blume, Theresa
2016-04-01
Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this presentation, we will highlight the potential of this integrated observation platform to estimate energy and water exchange between the terrestrial and aquatic systems and the atmosphere, to trace water flow pathways in the unsaturated and saturated zone, and to understand the organization of processes and fluxes and thus runoff generation at different temporal and spatial scales.
Large-scale derived flood frequency analysis based on continuous simulation
NASA Astrophysics Data System (ADS)
Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno
2016-04-01
There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several drawbacks reported in traditional approaches for the derived flood frequency analysis and therefore is recommended for large scale flood risk case studies.
Legacy effects of nitrogen and phosphorus in a eutrophic lake catchment: Slapton Ley, SW England
NASA Astrophysics Data System (ADS)
Burt, T. P.; Worrall, F.; Howden, N. J. K.
2017-12-01
Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is a shallow lake (maximum depth 2.9 m). In the 1960s it became apparent that the Lower Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. Long-term monitoring data are also available for the catchment area including the lake from the Environment Agency.The nitrate issue has been of particular interest at Slapton; although many longer series exist for large river basins like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for a small rural basin. Recent declines in nitrate concentration may reflect less intensive agricultural activity, lower fertiliser inputs in particular, but there may also be a legacy effect in the shallow groundwater system. Phosphorus concentrations in stream and lake water have also shown declining concentrations but a phosphorus legacy in the surficial lake sediments means that algal blooms continue to develop in most summers, as indicated by a continued rise in summer pH levels. Further field observation at the sediment-water interface is needed to better understand the biogeochemical drivers and the balance between N and P limitation in the lake. Successful management of the Nature Reserve requires better understanding of the links between hydrological and biogeochemical processes operating within the catchment area.
Effects of suburban development on runoff generation in the Croton River basin, New York, USA
Burns, D.; Vitvar, T.; McDonnell, J.; Hassett, J.; Duncan, J.; Kendall, C.
2005-01-01
The effects of impervious area, septic leach-field effluent, and a riparian wetland on runoff generation were studied in three small (0.38-0.56 km 2) headwater catchments that represent a range of suburban development (high density residential, medium density residential, and undeveloped) within the Croton River basin, 70 km north of New York City. Precipitation, stream discharge, and groundwater levels were monitored at 10-30 min intervals for 1 year, and stream water and groundwater samples were collected biweekly for ??18O, NO3-, and SO42- analysis for more than 2 years during an overlapping period in 2000-2002. Data from 27 storms confirmed that peak magnitudes increased and recession time decreased with increasing development, but lags in peak arrival and peak discharge/mean discharge were greatest in the medium density residential catchment, which contains a wetland in which storm runoff is retained before entering the stream. Baseflow during a dry period from Aug. 2001-Feb. 2002 was greatest in the high-density residential catchment, presumably from the discharge of septic effluent through the shallow groundwater system and into the stream. In contrast, moderate flows during a wet period from Mar.-Aug. 2002 were greatest in the undeveloped catchment, possibly as a result of greater subsurface storage or greater hydraulic conductivity at this site. The mean residence time of baseflow was about 30 weeks at all three catchments, indicating that human influence was insufficient to greatly affect the groundwater recharge and discharge properties that determine catchment residence time. These results suggest that while suburban development and its associated impervious surfaces and storm drains accelerate the transport of storm runoff into streams, the combined effects of remnant natural landscape features such as wetlands and human alterations such as deep groundwater supply and septic systems can change the expected effects of human development on storm runoff and groundwater recharge. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan
2017-04-01
Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.
Urban Water and Riverine Quality: Participatory Science in Singapore
NASA Astrophysics Data System (ADS)
Higgitt, D. L.
2011-12-01
Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.
Catchment classification by runoff behaviour with self-organizing maps (SOM)
NASA Astrophysics Data System (ADS)
Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.
2011-09-01
Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.
Catchment classification by runoff behaviour with self-organizing maps (SOM)
NASA Astrophysics Data System (ADS)
Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.
2011-03-01
Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.
Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.
2000-01-01
In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.
Picturing and modelling catchments by representative hillslopes
NASA Astrophysics Data System (ADS)
Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin
2016-04-01
Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically-based models can be parametrized based on comprehensive field data and a good perceptual model. Our results particularly indicate that the main challenge in understanding and modelling the seasonal water balance of a catchment is a proper representation of the phenological cycle of vegetation, not exclusively the structure of the subsurface and spatial variability of soil hydraulic parameters.
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Drought propagation and its relation with catchment biophysical characteristics
NASA Astrophysics Data System (ADS)
Alvarez-Garreton, C. D.; Lara, A.; Garreaud, R. D.
2016-12-01
Droughts propagate in the hydrological cycle from meteorological to soil moisture to hydrological droughts. To understand the drivers of this process is of paramount importance since the economic and societal impacts in water resources are directly related with hydrological droughts (and not with meteorological droughts, which have been most studied). This research analyses drought characteristics over a large region and identify its main exogenous (climate forcing) and endogenous (biophysical characteristics such as land cover type and topography) explanatory factors. The study region is Chile, which covers seven major climatic subtypes according to Köppen system, it has unique geographic characteristics, very sharp topography and a wide range of landscapes and vegetation conditions. Meteorological and hydrological droughts (deficit in precipitation and streamflow, respectively) are characterized by their durations and standardized deficit volumes using a variable threshold method, over 300 representative catchments (located between 27°S and 50°S). To quantify the propagation from meteorological to hydrological drought, we propose a novel drought attenuation index (DAI), calculated as the ratio between the meteorological drought severity slope and the hydrological drought severity slope. DAI varies from zero (catchment that attenuates completely a meteorological drought) to one (the meteorological drought is fully propagated through the hydrological cycle). This novel index provides key (and comparable) information about drought propagation over a wide range of different catchments, which has been highlighted as a major research gap. Similar drought indicators across the wide range of catchments are then linked with catchment biophysical characteristics. A thorough compilation of land cover information (including the percentage of native forests, grass land, urban and industrial areas, glaciers, water bodies and no vegetated areas), catchment physical properties, and climatic conditions is done for all the catchments. Data mining techniques are applied to identify the main exogenous and endogenous factors determining drought characteristics and propagation.
Understanding catchment dynamics through a Space-Society-Water trialectic
NASA Astrophysics Data System (ADS)
Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle
2017-04-01
Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage points that will have the greatest ability to affect positive change or maintain productive situations and thus, where to invest to meaningfully contribute to water security in the catchment.
Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow
NASA Astrophysics Data System (ADS)
Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.
1997-12-01
Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and benefits of the sampling exercise are reviewed.
Non-linearities in Holocene floodplain sediment storage
NASA Astrophysics Data System (ADS)
Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten
2013-04-01
Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows that a strong multifractality is present in the scaling relationship between sediment storage and catchment area, depending on geomorphic landscape properties. Extrapolation of data from one spatial scale to another inevitably leads to large errors: when only the data of the upper floodplains are considered, a regression analysis results in an overestimation of total floodplain deposition for the entire catchment of circa 115%. This example demonstrates multifractality and related non-linearity in scaling relationships, which influences extrapolations beyond the initial range of measurements. These different examples indicate how traditional extrapolation techniques and assumptions in sediment budget studies can be challenged by field data, further complicating our understanding of these systems. Although simplifications are often necessary when working on large spatial scale, such non-linearities may form challenges for a better understanding of system behavior.
NASA Astrophysics Data System (ADS)
Blake, Will; Walsh, Rory; Bidin, Kawi; Annammala, Kogila
2015-04-01
It is widely recognised that commercial logging and conversion of tropical rainforest to oil palm plantation leads to enhanced fluvial sediment flux to the coastal zone but the dynamics of delivery and mechanisms that act to retain sediment and nutrients within rainforest ecosystems, e.g. riparian zone and floodplain storage, are poorly understood and underexploited as a management tool. While accretion of lateral in-channel bench deposits in response to forest clearance has been demonstrated in temperate landscapes, their development and value as sedimentary archives of catchment response to human disturbance remains largely unexplored in tropical rainforest river systems. Working within the Segama River basin, Sabah, Malaysian Borneo, this study aimed to test the hypothesis that (1) lateral bench development in tropical rainforest rivers systems is enhanced by upstream catchment disturbance and that (2) the sedimentary record of these deposits can be used to infer changes in sediment provenance and intensification of sediment flux associated with logging activities. Sediment cores were taken from in-channel bench deposits with upstream catchment contributing areas of 721 km2 and 2800 km2 respectively. Accretion rates were determined using fallout 210Pb and 137Cs and the timing of peak accumulation was shown to correspond exactly with the known temporal pattern of logging and associated fluvial sediment response over the period 1980 to present following low pre-logging rates. Major and minor element geochemistry of deposits was used to assess the degree of weathering that deposited sediment had experienced. This was linked to surface (heavily weathered) and subsurface (less weathered) sediment sources relating to initial disturbance by logging and post-logging landsliding responses respectively. A shift in the dominant source of deposited material from surface (i.e. topsoil) to subsurface (i.e. relatively unweathered subsoil close to bedrock) origin was observed to coincide with the increase in accretion rates following logging of steep headwater slopes. Coherence of sedimentary, monitoring and observational evidence demonstrates that in-channel bench deposits offer a previously unexplored sedimentary archive of catchment response to logging in tropical rainforest systems and a tool for evaluating the erosional responses of ungauged basins. In-channel bench development due to catchment disturbance may augment ecosystem services provided by the riparian corridors of larger rivers and process knowledge gained from sedimentary archives can be used to underpin future riparian and catchment forest management strategies.
Design of runoff water harvesting systems and its role in minimizing water losses
NASA Astrophysics Data System (ADS)
Berliner, P.; Carmi, G.; Leake, S.; Agam, N.
2016-12-01
Precipitation is one of the major water sources for agricultural production in arid and semi-arid areas. Rainfalls are limited, erratic and not always coincide with the crop growing season. Only a part of the rain is absorbed by the soil. Soil evaporation is most severe in these regions and the large part of the absorbed water is lost to evaporation. The technique of collecting and conveying the runoff is known as runoff harvesting. Microcatchments are one of the primary techniques used for collecting, storing and conserving local surface runoff for growing trees/shrubs. In this system, runoff water is collected close-by the area in which it was generated, and trees/shrubs may utilize the water. The main objective of the present research was to estimate the effect of the design of the micro-catchment collection area (shallow basin and deep trench) has on the efficiency of the water conservation in the soil profile. The study was carried out during two years using regular micro-catchments (three replicates) with a surface area of 9 m2 (3 x 3 m) and a depth of 0.1 m and trenches (three replicates) with a surface area of 12 m2 (12 x 1 m) and 1 m depth. One and three olive trees were planted inside the trenches and micro-catchments, respectively. Access tubes for neutron probe were installed in micro-catchments and trenches (four and seven, respectively) to depths of 3m. Soil water content in the soil profile was monitored. Sap flow in trees was measured by PS-TDP8 Granier sap flow system every 0.5 hour and fluxes computed for the time intervals that correspond to the soil water measurements. The first year study included flooding trenches and regular micro-catchments once with the same amount of water (1.5 m3) and the second year study included flooding four times with 0.25 m3 each time. Flooding was followed by monitoring the water balance components and estimation of evaporation losses and water use efficiency by olive trees. Evaporation from trenches and regular micro-catchments was estimated as the difference between evapotranspiration obtained by soil water content monitoring and transpiration estimated by sap flow measurements. The results clearly show that the evaporation from the regular micro-catchments was significantly larger than that of trenches during the entire duration of the both experiments.
NASA Astrophysics Data System (ADS)
Luk, K. C.; Ball, J. E.; Sharma, A.
2000-01-01
Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.
Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E
2014-04-01
Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system. Copyright © 2013 Elsevier B.V. All rights reserved.
Duintjer Tebbens, Radboud J; Zimmermann, Marita; Pallansch, Mark A; Thompson, Kimberly M
2017-12-01
Poliovirus surveillance plays a critical role in achieving and certifying eradication and will play a key role in the polio endgame. Environmental surveillance can provide an opportunity to detect circulating polioviruses prior to the observation of any acute flaccid paralysis cases. We completed a systematic review of peer-reviewed publications on environmental surveillance for polio including the search terms "environmental surveillance" or "sewage," and "polio," "poliovirus," or "poliomyelitis," and compared characteristics of the resulting studies. The review included 146 studies representing 101 environmental surveillance activities from 48 countries published between 1975 and 2016. Studies reported taking samples from sewage treatment facilities, surface waters, and various other environmental sources, although they generally did not present sufficient details to thoroughly evaluate the sewage systems and catchment areas. When reported, catchment areas varied from 50 to over 7.3 million people (median of 500,000 for the 25% of activities that reported catchment areas, notably with 60% of the studies not reporting this information and 16% reporting insufficient information to estimate the catchment area population size). While numerous studies reported the ability of environmental surveillance to detect polioviruses in the absence of clinical cases, the review revealed very limited information about the costs and limited information to support quantitative population effectiveness of conducting environmental surveillance. This review motivates future studies to better characterize poliovirus environmental surveillance systems and the potential value of information that they may provide in the polio endgame.
Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Destouni, Georgia; Jawitz, James W.; Thompson, Sally E.; Loukinova, Natalia V.; Darracq, Amélie; Zanardo, Stefano; Yaeger, Mary; Sivapalan, Murugesu; Rinaldo, Andrea; Rao, P. Suresh C.
2010-12-01
Complexity of heterogeneous catchments poses challenges in predicting biogeochemical responses to human alterations and stochastic hydro-climatic drivers. Human interferences and climate change may have contributed to the demise of hydrologic stationarity, but our synthesis of a large body of observational data suggests that anthropogenic impacts have also resulted in the emergence of effective biogeochemical stationarity in managed catchments. Long-term monitoring data from the Mississippi-Atchafalaya River Basin (MARB) and the Baltic Sea Drainage Basin (BSDB) reveal that inter-annual variations in loads (LT) for total-N (TN) and total-P (TP), exported from a catchment are dominantly controlled by discharge (QT) leading inevitably to temporal invariance of the annual, flow-weighted concentration, $\\overline{Cf = (LT/QT). Emergence of this consistent pattern across diverse managed catchments is attributed to the anthropogenic legacy of accumulated nutrient sources generating memory, similar to ubiquitously present sources for geogenic constituents that also exhibit a linear LT-QT relationship. These responses are characteristic of transport-limited systems. In contrast, in the absence of legacy sources in less-managed catchments, $\\overline{Cf values were highly variable and supply limited. We offer a theoretical explanation for the observed patterns at the event scale, and extend it to consider the stochastic nature of rainfall/flow patterns at annual scales. Our analysis suggests that: (1) expected inter-annual variations in LT can be robustly predicted given discharge variations arising from hydro-climatic or anthropogenic forcing, and (2) water-quality problems in receiving inland and coastal waters would persist until the accumulated storages of nutrients have been substantially depleted. The finding has notable implications on catchment management to mitigate adverse water-quality impacts, and on acceleration of global biogeochemical cycles.
Water balance and soil losses in an irrigated catchment under conservation tillage in Southern Spain
NASA Astrophysics Data System (ADS)
Cid, Patricio; Mateos, Luciano; Taguas, Encarnación V.; Gómez-Macpherson, Helena
2013-04-01
Conservation tillage based on permanent beds with crop-residue retention and controlled traffic has been recently introduced in irrigated annual crops in Southern Spain as one way to improve water infiltration, reduce soil losses, and save energy. The water balance and soil losses in water runoff have been monitored during 4 years in a 28-ha catchment within a production farm where this kind of soil conservation practice was established in 2004 for a maize-cotton-wheat rotation. The catchment average slope is 6 %. Soils are Typic Calcixerept and Typic Haploxerert. The water balance components that were measured include: applied irrigation water, rainfall, and runoff. Runoff was measured at the outlet of the catchment by means of a hydrological station that consisted of long-throated flume, ultrasonic water level sensor, automatic water sampler, data logger and transmission system, weather station, and ancillary equipment. We present here results from three hydrological seasons (October to September): 2009-10, 2010-11, and 2011-12. The first season the catchment was grown with wheat, thus the irrigation depth was small (25 mm); rainfall above average, 1103 mm; and the runoff coefficient was 26 %. In the season 2010-11, the catchment was grown with cotton, the irrigation depth was 503 mm, rainfall was 999 mm, and the seasonal runoff coefficient was 7 %. The last season, the crop was maize, rainfall was below average (368 mm), irrigation 590 mm, and the runoff coefficient as the previous year, 7 %. Soil losses were very small: 0.05, 1.26, and 1.33 t per ha and year, the first, second, and third monitored seasons, respectively. A simple water balance model allowed simulating evapotranspiration, deep percolation and runoff. The Curve Number for the catchment was calibrated using the balance model.
NASA Astrophysics Data System (ADS)
Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan
2014-05-01
Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom did not change significantly. This is due primarily to the stable vegetation cover conditions between the mid of 1980s and 2000 (average NDVI of 0.34 with std. deviation of 0.07). Vegetation cover and area of upper catchments are important controlling factors of the morphologic characteristics of braided rivers in drylands. Thus, measures geared towards reducing the impacts of braided rivers on agricultural systems and there by the livelihood of the society in plains need to focus on rehabilitation activities (soil and water conservation) in upper catchments.
Grey water on three agricultural catchments in the Czech Republic
NASA Astrophysics Data System (ADS)
Blazkova, Sarka D.; Kulasova, Alena
2014-05-01
The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.
NASA Astrophysics Data System (ADS)
Schulz, Karsten; Burgholzer, Reinhard; Klotz, Daniel; Wesemann, Johannes; Herrnegger, Mathew
2018-05-01
The unit hydrograph (UH) has been one of the most widely employed hydrological modelling techniques to predict rainfall-runoff behaviour of hydrological catchments, and is still used to this day. Its concept is based on the idea that a unit of effective precipitation per time unit (e.g. mm h-1) will always lead to a specific catchment response in runoff. Given its relevance, the UH is an important topic that is addressed in most (engineering) hydrology courses at all academic levels. While the principles of the UH seem to be simple and easy to understand, teaching experiences in the past suggest strong difficulties in students' perception of the UH theory and application. In order to facilitate a deeper understanding of the theory and application of the UH for students, we developed a simple and cheap lecture theatre experiment which involved active student participation. The seating of the students in the lecture theatre represented the hydrological catchment
in its size and form. A set of plastic balls, prepared with a piece of magnetic strip to be tacked to any white/black board, each represented a unit amount of effective precipitation. The balls are evenly distributed over the lecture theatre and routed by some given rules down the catchment to the catchment outlet
, where the resulting hydrograph is monitored and illustrated at the black/white board. The experiment allowed an illustration of the underlying principles of the UH, including stationarity, linearity, and superposition of the generated runoff and subsequent routing. In addition, some variations of the experimental setup extended the UH concept to demonstrate the impact of elevation, different runoff regimes, and non-uniform precipitation events on the resulting hydrograph. In summary, our own experience in the classroom, a first set of student exams, as well as student feedback and formal evaluation suggest that the integration of such an experiment deepened the learning experience by active participation. The experiment also initialized a more experienced based discussion of the theory and assumptions behind the UH. Finally, the experiment was a welcome break within a 3 h lecture setting, and great fun to prepare and run.
Characterising and classifying agricultural drainage channels for sediment and phosphorus management
NASA Astrophysics Data System (ADS)
Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice
2016-04-01
In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were over-engineered, which likely reduces downstream P transfer. Streams had the greatest potential to convey fine sediment and associated P during event flows. Optimising these linear features for eutrophication management in headwaters, periodic removal of fine sediment and maintenance of channel vegetation in net attenuating and transferring channels, respectively, would help to minimise sediment and P transfers from these catchments.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
NASA Astrophysics Data System (ADS)
Sykes, Helena; Neale, Simon; Coe, Sarah
2016-04-01
Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to examine the effects of change.
NASA Astrophysics Data System (ADS)
Outram, F. N.; Lloyd, C.; Jonczyk, J.; Benskin, C. McW. H.; Grant, F.; Dorling, S. R.; Steele, C. J.; Collins, A. L.; Freer, J.; Haygarth, P. M.; Hiscock, K. M.; Johnes, P. J.; Lovett, A. L.
2013-12-01
The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011-2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in both hydrographs and chemographs. Hysteresis loops constructed from high resolution data are used to highlight an array of potential pollutant sources and delivery pathways. In the Hampshire Avon DTC, transport was dominated by sub-surface processes, where phosphorus, largely in the soluble form, was found to be transport-limited. In the Wensum DTC, transport was largely dominated by rapid sub-surface movement due to the presence of under-drainage, which mobilised large quantities of nitrate during the storm. In the Eden DTC, transport was found to be initially dominated by surface runoff, which switched to subsurface delivery on the falling limb of the hydrograph, with the surface delivery transporting large amounts of particulate phosphorus to the river, with a transport-limited response. The lack of exhaustion of nutrient delivery in response to such extreme flow generation indicates the size of the nutrient pools stored in these catchments, and highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to UK river systems from diffuse agricultural sources.
Potenziale der Nutzung organischer Spurenstoffe als Indikatoren in Grundwasserleitern
NASA Astrophysics Data System (ADS)
Reh, Roland; Nödler, Karsten; Hillebrand, Olav; Licha, Tobias
2016-11-01
Risk assessment for drinking water requires a conceptual hydrogeological model of the catchment as well as an understanding of flow pathways, residence times and processes on the catchment scale. In fractured and karst aquifers, this is a challenging task, in part because the application of artificial tracers, environmental tracers or stable isotopes for understanding processes on the catchment scale is limited. Recently, a large number of organic compounds with different properties in very small concentrations have been detected in groundwater, including pesticides, pharmaceuticals, corrosion inhibitors and caffeine. In this article, we use a case study to demonstrate the potential of employing these compounds as indicators to reflect selected aquifer characteristics and properties, and to answer specific questions on the hydrogeological system.
NASA Astrophysics Data System (ADS)
Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent
2014-05-01
The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first validation results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.
What is the Source? Post-glacial sediment flux from the Waipaoa Catchment, New Zealand
NASA Astrophysics Data System (ADS)
Bilderback, E. L.; Pettinga, J. R.; Litchfield, N. J.; Quigley, M.; Marden, M.
2011-12-01
In the Waipaoa, and for much of the eastern North Island, the shift from the last glacial coldest period to the current interglacial climatic regime resulted in Late Pleistocene-Holocene catchment-wide channel incision (Berryman et al., 2000; Litchfield and Berryman, 2005). Only ~25% of the total post 18 ka sediment yield for the Waipaoa Catchment can be accounted for by channel incision, one of the most widespread and most effective erosive processes in the catchment (Orpin et al., 2006; Marden et al., 2008). We find that deep-seated landslides, which are pervasive, cannot make up this apparent source area sediment deficit. This presents a challenge to our current understanding of the Waipaoa Sedimentary System. New high resolution topographic data sets (lidar and photogrammetry) combined with tephrochronology and field mapping have enabled us to approximate the sediment flux from post 18 ka deep-seated landslides. The sediment delivered to the offshore sink from these upper Waipaoa landslides is likely to be less than 20% of the sediment volume calculated for channel incision. A further GIS analysis of the ~2500 km2 Waipaoa catchment using work from Crosby and Whipple (2006) delineating relict topography and Marden et al. (2008) accounting for river incision and slopes stabilized behind terrace remnants indicates that only about half of the available catchment area could have contributed additional large volumes of sediment to the offshore post 18 ka sink. The presence of tephra cover older than 18 ka on landforms ranging from flat ridgelines to steep (>30 degree) slopes in this remaining terrestrial source area suggests that it has not been eroded en mass. The apparent source deficit remains even though many of the major erosive processes available to fill this deficit have been studied and the potentially contributing catchment area is dramatically reduced by these studies. This analysis raises questions about erosive processes and our ability to balance large scale sediment budgets. Does costal erosion contribute a significant volume to the offshore sink? Was sediment from other catchments trapped in the Poverty Bay postglacial shelf basin? Are the uncertainties in any of these source and sink calculations large enough that the previous questions are essentially irrelevant? We believe that it is an achievable goal to account for the major processes that generate sediment in the Waipaoa Sedimentary System and that this budget tuning can inform our understanding of active landscapes.
NASA Astrophysics Data System (ADS)
Lepage, Hugo; Laceby, J. Patrick; Evrard, Olivier; Onda, Yuichi; Caroline, Chartin; Lefèvre, Irène; Bonté, Philippe; Ayrault, Sophie
2015-04-01
Several coastal catchments located in the vicinity of the Fukushima Dai-Ichi Power Plant were impacted contaminated fallout in March 2011. Following the accident, typhoons and snowmelt runoff events transfer radiocesium contamination through the coastal floodplains and ultimately to the Pacific Ocean. Therefore it is important to understand the location and relative contribution of different erosion sources in order to manage radiocesium transfer within these coastal catchments and the cumulative export of radiocesium to the Pacific Ocean. Here we present a sediment fingerprinting approach to determine the relative contributions of sediment from different soil types to sediment transported throughout two coastal riverine systems. The sediment fingerprinting technique presented utilizes differences in the elemental geochemistry of the distinct soil types to determine their relative contributions to sediment sampled in riverine systems. This research is important as it furthers our understanding of dominant erosion sources in the region which will help with ongoing decontamination and monitoring efforts pertaining to the management of fallout radiocesium migration in the region.
A Demographic and Epidemiological Study of Naval Hospital Charleston’s Catchment Area Population
1993-08-01
Management Project examines the military beneficiary population in the Naval Hospital Charleston Catchment Area to determine what demographic attributes...are exhibited, and what medical demands the beneficiaries have placed on the Military Health Service System between 01 and 30 June 1992. Various data...closure or realignment of the military treatment facility. 14. SUBJECT TERMS 15. NUMBER OF PAGES 304Demographic and Epidemiological Study 16. PRICE CODE 17
1993-12-30
projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible
NASA Astrophysics Data System (ADS)
Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa
2017-12-01
Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.
Achieving Natural Flood Management through collaboration
NASA Astrophysics Data System (ADS)
Nicholson, Alex; Byers, Samantha; Thomas, Ted; Welton, Phil
2016-04-01
Recent flooding in the UK has brought much attention to the field of Natural flood Management (NFM) as a means of helping to reduce flood risk to communities. Key questions exist in the field, which include quantifying the impact of NFM and maintaining it. In addition, agencies and at-risk communities look for ways of delivering NFM in a tightly stretched financial climate. Well-implemented NFM has the effect of restoring more natural catchment hydrological and sedimentological processes, which in turn can have significant flood risk and WFD benefits for catchment waterbodies. These catchment scale improvements in-turn allow more 'natural' processes to be returned to rivers and streams, creating a more resilient system. NFM can tick many boxes and target many funding opportunities. This paper discusses the NFM component of the Lustrum Beck Flood Alleviation Scheme (Stockton-On-Tees, UK), and explains how a multi-agency approach had to be considered to allow elements of the scheme to be delivered. A startling 70 different landowners and agencies manage the land in the Lustrum Beck catchment (~40km2). A partnership between the Environment Agency and the Forestry Commission is planning to work on a demonstration site in the centre of the catchment. The paper goes on to explain the importance of this demonstration area in the context of the wider scheme.
A desktop system of virtual morphometric globes for Mars and the Moon
NASA Astrophysics Data System (ADS)
Florinsky, I. V.; Filippov, S. V.
2017-03-01
Global morphometric models can be useful for earth and planetary studies. Virtual globes - programs implementing interactive three-dimensional (3D) models of planets - are increasingly used in geo- and planetary sciences. We describe the development of a desktop system of virtual morphometric globes for Mars and the Moon. As the initial data, we used 15'-gridded global digital elevation models (DEMs) extracted from the Mars Orbiter Laser Altimeter (MOLA) and the Lunar Orbiter Laser Altimeter (LOLA) gridded archives. For two celestial bodies, we derived global digital models of several morphometric attributes, such as horizontal curvature, vertical curvature, minimal curvature, maximal curvature, and catchment area. To develop the system, we used Blender, the free open-source software for 3D modeling and visualization. First, a 3D sphere model was generated. Second, the global morphometric maps were imposed to the sphere surface as textures. Finally, the real-time 3D graphics Blender engine was used to implement rotation and zooming of the globes. The testing of the developed system demonstrated its good performance. Morphometric globes clearly represent peculiarities of planetary topography, according to the physical and mathematical sense of a particular morphometric variable.
NASA Astrophysics Data System (ADS)
Zitek, Andreas; Tchaikovsky, Anastassiya; Irrgeher, Johanna; Waidbacher, Herwig; Prohaska, Thomas
2014-05-01
Isoscapes - spatially distributed isotope patterns across landscapes - are increasingly used as important basis for ecological studies. The natural variation of the isotopic abundances in a studied area bears the potential to be used as natural tracer for studying e.g. migrations of animals or prey-predator relations. The 87Sr/86Sr ratio is one important tracer, since it is known to provide a direct relation of biological samples to geologically distinct regions, as Sr isotopes are incorporated into living tissues as a proxy for calcium and taken up from the environment without any significant fractionation. Although until now the focus has been mainly set on terrestrial systems, maps for aquatic systems are increasingly being established. Here we present the first 87Sr/86Sr aquatic isoscape of the Danube catchment, the second largest river catchment in Europe, from near its source starting at river km 2581 in Germany down to its mouth to river km 107 in Romania. The total length of the river Danube is 2780 km draining a catchment area 801 463 km2 (10 % of the European continent). The major purpose of this study was to assess the potential of the 87Sr/86Sr isotope ratio to be used as tool for studying fish migrations at different scales in the entire Danube catchment. Within the Joint Danube Research 3 (JDS 3), the biggest scientific multi-disciplinary river expedition of the World in 2013 aiming at the assessment of the ecological status and degree of human alterations along the river Danube, water samples were taken at 68 pre-defined sites along the course of the river Danube including the major tributaries as a basis to create the so called 'Isoscape of the Danube catchment'. The determination of 87Sr/86Sr isotope ratio in river water was performed by multicollector-sector field-inductively coupled plasma-mass spectrometry (MC-SF-ICP-MS). The JDS 3 data were combined with existing data from prior studies conducted within the Austrian part of the Danube catchment. Finally, the dominating geological formations in the catchment upstream of the sampling site were determined using ArcGIS. Analyses of water samples yielded several 'Isozones' along the course of the Danube, indicating diverse geological conditions. Studying migration phenomena of fish using natural isotopic marks in hard parts is especially possible between these 'Isozones'. In geologically similar regions with little differences in the 87Sr/86Sr isotope ratio, element distributions or artificial marking methods (tagging, spiking) can be used complementarily. A significant positive relationship between the 87Sr/86Sr ratio in river water and the proportion of siliceous geological formations in the catchment was found. Moreover, the 87Sr/86Sr isotope ratio along the Austrian part of the Danube and its tributaries proved to be stable between seasons. The strong relation of the geology of a catchment to the 87Sr/86Sr isotope ratios in river water provides the possibility to predict the 87Sr/86Sr ratios in river water by the dominating geology in river catchments, for an estimation of the general applicability of the 87Sr/86Sr ratio in European rivers to fish ecological questions.
NASA Astrophysics Data System (ADS)
Pribulick, C. E.; Maxwell, R. M.; Williams, K. H.; Carroll, R. W. H.
2014-12-01
Prediction of environmental response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing hydrologic systems that provide water to millions of downstream users. In this study, the relationships between large-scale climatic change and the corresponding small-scale hydrologic processes of mountainous terrain are investigated in the East River headwaters catchment near Gothic, CO. This catchment is emblematic of many others within the upper Colorado River Basin and covers an area of 250 square kilometers, has a topographic relief of 1420 meters, an average elevation of 3266 meters and has varying stream characteristics. This site allows for the examination of the varying effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. Driven by meteorological forcing, ParFlow is able to capture land surface processes and represents surface and subsurface interactions through saturated and variably saturated heterogeneous flow. Data from Digital Elevation Models (DEMs), land cover, permeability, geologic and soil maps, and on-site meteorological stations, were prepared, analyzed and input into ParFlow as layers with a grid size comprised of 1403 by 1685 cells to best represent the small-scale, high resolution model domain. Water table depth, soil moisture, soil temperature, snowpack, runoff and local energy budget values provide useful insight into the catchments response to the Intergovernmental Panel on Climate Change (IPCC) temperature projections. In the near term, coupling this watershed model with one describing a diverse suite of subsurface elemental cycling pathways, including carbon and nitrogen, will provide an improved understanding of the response of the subsurface ecosystems to hydrologic transitions induced as a result of global climate change.
NASA Astrophysics Data System (ADS)
Seyoum, Mesgana; van Andel, Schalk Jan; Xuan, Yunqing; Amare, Kibreab
Flow forecasting in poorly gauged, flood-prone Ribb and Gumara sub-catchments of the Blue Nile was studied with the aim of testing the performance of Quantitative Precipitation Forecasts (QPFs). Four types of QPFs namely MM5 forecasts with a spatial resolution of 2 km; the Maximum, Mean and Minimum members (MaxEPS, MeanEPS and MinEPS where EPS stands for Ensemble Prediction System) of the fixed, low resolution (2.5 by 2.5 degrees) National Oceanic and Atmospheric Administration Global Forecast System (NOAA GFS) ensemble forecasts were used. Both the MM5 and the EPS were not calibrated (bias correction, downscaling (for EPS), etc.). In addition, zero forecasts assuming no rainfall in the coming days, and monthly average forecasts assuming average monthly rainfall in the coming days, were used. These rainfall forecasts were then used to drive the Hydrologic Engineering Center’s-Hydrologic Modeling System, HEC-HMS, hydrologic model for flow predictions. The results show that flow predictions using MaxEPS and MM5 precipitation forecasts over-predicted the peak flow for most of the seven events analyzed, whereas under-predicted peak flow was found using zero- and monthly average rainfall. The comparison of observed and predicted flow hydrographs shows that MM5, MaxEPS and MeanEPS precipitation forecasts were able to capture the rainfall signal that caused peak flows. Flow predictions based on MaxEPS and MeanEPS gave results that were quantitatively close to the observed flow for most events, whereas flow predictions based on MM5 resulted in large overestimations for some events. In follow-up research for this particular case study, calibration of the MM5 model will be performed. The overall analysis shows that freely available atmospheric forecasting products can provide additional information on upcoming rainfall and peak flow events in areas where only base-line forecasts such as no-rainfall or climatology are available.
NASA Astrophysics Data System (ADS)
Goswami, M.; O'Connor, K. M.; Shamseldin, A. Y.
The "Galway Real-Time River Flow Forecasting System" (GFFS) is a software pack- age developed at the Department of Engineering Hydrology, of the National University of Ireland, Galway, Ireland. It is based on a selection of lumped black-box and con- ceptual rainfall-runoff models, all developed in Galway, consisting primarily of both the non-parametric (NP) and parametric (P) forms of two black-box-type rainfall- runoff models, namely, the Simple Linear Model (SLM-NP and SLM-P) and the seasonally-based Linear Perturbation Model (LPM-NP and LPM-P), together with the non-parametric wetness-index-based Linearly Varying Gain Factor Model (LVGFM), the black-box Artificial Neural Network (ANN) Model, and the conceptual Soil Mois- ture Accounting and Routing (SMAR) Model. Comprised of the above suite of mod- els, the system enables the user to calibrate each model individually, initially without updating, and it is capable also of producing combined (i.e. consensus) forecasts us- ing the Simple Average Method (SAM), the Weighted Average Method (WAM), or the Artificial Neural Network Method (NNM). The updating of each model output is achieved using one of four different techniques, namely, simple Auto-Regressive (AR) updating, Linear Transfer Function (LTF) updating, Artificial Neural Network updating (NNU), and updating by the Non-linear Auto-Regressive Exogenous-input method (NARXM). The models exhibit a considerable range of variation in degree of complexity of structure, with corresponding degrees of complication in objective func- tion evaluation. Operating in continuous river-flow simulation and updating modes, these models and techniques have been applied to two Irish catchments, namely, the Fergus and the Brosna. A number of performance evaluation criteria have been used to comparatively assess the model discharge forecast efficiency.
Catchment scale water resource constraints on UK policies for low-carbon energy system transition
NASA Astrophysics Data System (ADS)
Konadu, D. D.; Fenner, R. A.
2017-12-01
Long-term low-carbon energy transition policy of the UK presents national scale propositions of different low-carbon energy system options that lead to meeting GHG emissions reduction target of 80% on 1990 levels by 2050. Whilst national-scale assessments suggests that water availability may not be a significant constrain on future thermal power generation systems in this pursuit, these analysis fail to capture the appropriate spatial scale where water resource decisions are made, i.e. at the catchment scale. Water is a local resource, which also has significant spatio-temporal regional and national variability, thus any policy-relevant water-energy nexus analysis must be reflective of these characteristics. This presents a critical challenge for policy relevant water-energy nexus analysis. This study seeks to overcome the above challenge by using a linear spatial-downscaling model to allocate nationally projected water-intensive energy system infrastructure/technologies to the catchment level, and estimating the water requirements for the deployment of these technologies. The model is applied to the UK Committee on Climate Change Carbon Budgets to 2030 as a case study. The paper concludes that whilst national-scale analyses show minimal long-term water related impacts, catchment level appraisal of water resource requirements reveal significant constraints in some locations. The approach and results presented in this study thus, highlights the importance of bringing together scientific understanding, data and analysis tools to provide better insights for water-energy nexus decisions at the appropriate spatial scale. This is particularly important for water stressed regions where the water-energy nexus must be analysed at appropriate spatial resolution to capture the full water resource impact of national energy policy.
Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus
Holtschlag, David J.
2009-01-01
AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.
The impact of land use and season on the riverine transport of mercury into the marine coastal zone.
Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Szubska, Marta; Romanowski, Andrzej; Falkowska, Lucyna
2014-11-01
In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.
NASA Astrophysics Data System (ADS)
Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.
2015-12-01
Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.
Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments
NASA Astrophysics Data System (ADS)
Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.
2013-04-01
SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.
NASA Astrophysics Data System (ADS)
Houben, Peter
2012-10-01
The long-cultivated loess landscapes of central Europe provide the opportunity to explore the long-term perspective on the evolution human-natural sediment systems that are driven by human-caused soil erosion processes. A balance of spatially non-uniform sediment production, sedimentation and delivery was developed to highlight the quantitative dimensions and functioning of anthropogenic sediment redistribution in an undulating loess catchment of temperate Europe. The presented long-term perspective relies on analysing pedostratigraphic and lithostratigraphic field data from 728 corings across ˜10-km2, GIS-based data processing, and the analysis of data uncertainty. For a period of 5000 years of tillage, anthropogenic sediment production equals ˜9425 t ha-1, of which 62% still reside as colluvial sediment on the catchment's hillsides. The valley floors fulfil a sediment-conveyor function through transporting 77% of the sediment received from the hillsides. Whole-catchment yield to the contiguous higher-order valley is 29% of the amount of anthropogenic sediment production. The average catchment-scale depth of soil truncation is 0.64 m while the remaining anthropogenic sediment cover has an average thickness of 0.46 m (effective surface denudation: ˜0.18 m). The long-term integral net erosion rate is ˜0.5 t ha-1 a-1 because of extensive sediment retention on hillsides. The inherited human imprint on the soilscape, eventually, can be judged as beneficial rather than detrimental: the ubiquitous cover of humic colluvia generally is more suitable for intense cultivation than pristine pedostratigraphies. The sediment budget, although build from a historic perspective, also provides a plausible reference for realistic objectives of managing the soil erosion problem in human-natural sediment systems.
Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China
NASA Astrophysics Data System (ADS)
Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean
2015-04-01
Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be formulated to mitigate DWPA from farm to policy levels.
NASA Astrophysics Data System (ADS)
Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan
2015-06-01
The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow module revealed average runoff coefficients between 0.12 and 0.80 for the various land uses and decreased from impervious (0.80), grass on steep slopes (0.56), grass on mild slopes (0.48), mixed grasses and trees (0.42) to relatively natural vegetation (0.12). The established modular model, reflecting the driving hydrological processes, enables the quantification of land use specific contributions towards the baseflow and quickflow components. This quantification facilitates the integration of water sensitive urban infrastructure for the sustainable development of water in tropical megacities.
High temporal resolution water chemistry information for catchment understanding and management
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Deasy, C.; Ockenden, M.; Perks, M.; Quinton, J.
2013-12-01
Many rivers and lakes are currently not meeting their full ecological potential due to environmental pressures including non-point source pollution from the catchment. These pressures include sediment, nitrogen and phosphorus from agriculture and other sources. Each of these pollutants is transferred through the landscape with different hydrological processes and along different pathways. Therefore, to effectively select and spatially target mitigation actions in the landscape, an understanding of the dominant hydrological processes and dynamics which are causing the transfer of material is required. Recent advances in environmental monitoring have enabled the collection of new rich datasets with a high temporal sampling frequency. In the UK, these techniques have been implemented in the Defra Demonstration Test Catchments project and with Natural England for targeted site investigations. Measurements include weather, hydrological flows, sediment, oxygen isotopes, nitrogen and phosphorus from a combination of in-field labs, water chemistry sondes and storm samplers. The detailed time series data can then be analysed to give insights into catchment processes through the analysis of the measured process dynamics. For example, evidence of the transfer of material along surface (or pipe) flow paths can be found from the co-incident timing of the sediment and flow record, or the timing of temperature variations after a storm event can give insight into the contribution of shallow groundwater. Given this evidence of catchment hydrological dynamics it is possible to determine the probable pathways which are transferring pollutants and hence it is possible to select suitable mitigation options in the landscape to improve the river or lake. For example, evidence of a pollutant transfer occurring as shallow soil flows suggests that buffer strips would not be an effective solution since these measures intercept surface pathways. Information on catchment residence time not only gives insight into the pathway but also gives information on the likely amount of time required for an improvement in water quality to occur. Therefore, the success or failure of a scheme can be assessed at an appropriate time after the works rather than prematurely. These insights into catchment processes enable us to understand the systems in greater depth and crucially to communicate this understanding to the local stakeholders. The greater evidence of the system behaviour can then be used to prompt uptake of the mitigation features and hence lead to environmental and ecological improvements. Funding from Defra UK and Natural England, UK.
NASA Astrophysics Data System (ADS)
Yang, Y.; Tenenbaum, D. E.
2009-12-01
The process of urbanization has major effects on both human and natural systems. In order to monitor these changes and better understand how urban ecological systems work, urban spatial structure and the variation needs to be first quantified at a fine scale. Because the land-use and land-cover (LULC) in urbanizing areas is highly heterogeneous, the classification of urbanizing environments is the most challenging field in remote sensing. Although a pixel-based method is a common way to do classification, the results are not good enough for many research objectives which require more accurate classification data in fine scales. Transect sampling and object-oriented classification methods are more appropriate for urbanizing areas. Tenenbaum used a transect sampling method using a computer-based facility within a widely available commercial GIS in the Glyndon Catchment and the Upper Baismans Run Catchment, Baltimore, Maryland. It was a two-tiered classification system, including a primary level (which includes 7 classes) and a secondary level (which includes 37 categories). The statistical information of LULC was collected. W. Zhou applied an object-oriented method at the parcel level in Gwynn’s Falls Watershed which includes the two previously mentioned catchments and six classes were extracted. The two urbanizing catchments are located in greater Baltimore, Maryland and drain into Chesapeake Bay. In this research, the two different methods are compared for 6 classes (woody, herbaceous, water, ground, pavement and structure). The comparison method uses the segments in the transect method to extract LULC information from the results of the object-oriented method. Classification results were compared in order to evaluate the difference between the two methods. The overall proportions of LULC classes from the two studies show that there is overestimation of structures in the object-oriented method. For the other five classes, the results from the two methods are similar, except for a difference in the proportions of the woody class. The segment to segment comparison shows that the resolution of the light detection and ranging (LIDAR) data used in the object-oriented method does affect the accuracy of the classification. Shadows of trees and structures are still a big problem in the object-oriented method. For classes that make up a small proportion of the catchments, such as water, neither method was capable of detecting them.
Geographic variation within the military health system.
Kimsey, Linda; Olaiya, Samuel; Smith, Chad; Hoburg, Andrew; Lipsitz, Stuart R; Koehlmoos, Tracey; Nguyen, Louis L; Weissman, Joel S
2017-04-13
This study seeks to quantify variation in healthcare utilization and per capita costs using system-defined geographic regions based on enrollee residence within the Military Health System (MHS). Data for fiscal years 2007 - 2010 were obtained from the Military Health System under a data sharing agreement with the Defense Health Agency (DHA). DHA manages all aspects of the Department of Defense Military Health System, including TRICARE. Adjusted rates were calculated for per capita costs and for two procedures with high interest to the MHS- back surgery and Cesarean sections for TRICARE Prime and Plus enrollees. Coefficients of variation (CoV) and interquartile ranges (IQR) were calculated and analyzed using residence catchment area as the geographic unit. Catchment areas anchored by a Military Treatment Facility (MTF) were compared to catchment areas not anchored by a MTF. Variation, as measured by CoV, was 0.37 for back surgery and 0.13 for C-sections in FY 2010- comparable to rates documented in other healthcare systems. The 2010 CoV (and average cost) for per capita costs was 0.26 ($3,479.51). Procedure rates were generally lower and CoVs higher in regions anchored by a MTF compared with regions not anchored by a MTF, based on both system-wide comparisons and comparisons of neighboring areas. In spite of its centrally managed system and relatively healthy beneficiaries with very robust health benefits, the MHS is not immune to unexplained variation in utilization and cost of healthcare.
A Multi-Hydro simulation for the evaluation of the hydrologic behaviour of a peri-urban catchment
NASA Astrophysics Data System (ADS)
Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Hoang, C.
2012-12-01
In the context of the growth of the cities, the urbanized areas occupy more places in the riskier area of flood. As more and more people live in these peri-urban areas and are vulnerable to the flood risk. The understanding of this risk asks the question of the modeling of the flood. In this way, the Multi-Hydro model was developed and improved at the Ecole des Ponts ParisTech. This model consists into a coupling between four modules (relying on existing open source and widely validated physically based model): one for the rainfall scenario generation, one for the surface processes, one for the subsurface processes and one for the load of the sewer system. This structure of coupling allows to represent all the parts of the water's path from the surface to the sewer system's pipes and to the soil of the considered catchment and it allows to disconnect one element of the coupling system if it's necessary. Moreover, this model uses some GIS data as the elevation, the land use, the soil description and the sewer system description which can be managed by a dedicaded open source SIG allowing to use directly the data in the model. Considering the great amount of data needed for the model occurring, the overland water depth couldn't be relied on the survey data. However, the behaviour changes of a catchment by the changing of the land use can be evaluate by the analysis of the risk map and an advanced statistical analysis. Thus, the Multi-Hydro model was applied on a city of the Paris area: the city of Villecresnes. It is a small catchment of 0.712 square kilometer where the flood comes only from the runoff of the rainfall. This catchment is simulated with too kind of rainfall (constant or variable in space and in time) and with two kind of elevation: a "raw" elevation coming from the field survey and a "modified" elevation in function of the land use. In this last case, the elevation is increased for the houses places by 5m and decreased in the road places by 15 cm. The location of the water is controlled by the topography in the first case but it's controlled by the location of the houses in the second case. The serie of maps obtained in the both cases are analyzed by advanced statistical method (multifractals) that shown that the modification of the elevation according into the land use implies important changes on the global hydrologic behaviour of the catchment. The impact of the design of the rainfall is induced by the location of the higher intensities of the rainfall because according to the location of these higher intensities, the discharge at the outlet of the catchment can be modified.
Physically based modeling in catchment hydrology at 50: Survey and outlook
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Putti, Mario
2015-09-01
Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.
Lessons learned for applying a paired-catchment approach in drought analysis
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Rangecroft, Sally; Coxon, Gemma; Agustín Breña Naranjo, José; Van Ogtrop, Floris; Croghan, Danny; Van Lanen, Henny
2017-04-01
Ongoing research is looking to quantify the human impact on hydrological drought using observed data. One potentially suitable method is the paired-catchment approach. Paired catchments have been successfully used for quantifying the impact of human actions (e.g. forest treatment and wildfires) on various components of a catchment's water balance. However, it is unclear whether this method could successfully be applied to drought. In this study, we used a paired-catchment approach to quantify the effects of reservoirs, groundwater abstraction and urbanisation on hydrological drought in the UK, Mexico, and Australia. Following recommendations in literature, we undertook a thorough catchment selection and identified catchments of similar size, climate, geology, and topography. One catchment of the pair was affected by either reservoirs, groundwater abstraction or urbanisation. For the selected catchment pairs, we standardised streamflow time series to catchment area, calculated a drought threshold from the natural catchment and applied it to the human-influenced catchment. The underlying assumption being that the differences in drought severity between catchments can then be attributed to the anthropogenic activity. In some catchments we had local knowledge about human influences, and therefore we could compare our paired-catchment results with hydrological model scenarios. However, we experienced that detailed data on human influences usually are not well recorded. The results showed us that it is important to account for variation in average annual precipitation between the paired catchments to be able to transfer the drought threshold of the natural catchment to the human-influenced catchment. This can be achieved by scaling the discharge by the difference in annual average precipitation. We also found that the temporal distribution of precipitation is important, because if meteorological droughts differ between the paired catchments, this may mask changes caused by human activities. This issue can generally be overcome by selecting adjacent or nearby catchments. Finally, we found that geology is much more important for paired-catchment analysis of drought than we anticipated based upon the experiences in flood research. For example, in two of the UK pairs, we could not use the results due to differences in geology overruling the human influence. We learned that in the selection of catchments for drought analysis, (hydro)geology should be considered in even more detail. Taking these aspects into account, we concluded that the paired-catchment approach works for evaluating the effects of reservoirs and groundwater abstraction on streamflow drought, but is more challenging for urbanisation. The reasons are more problems in catchment selection, lack of results, and complexity of processes making attribution more difficult. Urbanisation is not a simple land cover change influencing only infiltration and runoff, but it involves all kinds of indirect effects, such as artificial inputs (drainage, sewage return flows) that are very important during low flow periods. For this we would suggest starting in small, well-measured urban catchments, of which all artificial inputs are known. We believe that with the careful selection criteria and accounting for variations in climate and landscape, there is scope for using a paired-catchment approach in hydrological drought research.
NASA Astrophysics Data System (ADS)
van Dijk, Albert I. J. M.; Peña-Arancibia, Jorge L.; Wood, Eric F.; Sheffield, Justin; Beck, Hylke E.
2013-05-01
Ideally, a seasonal streamflow forecasting system would ingest skilful climate forecasts and propagate these through calibrated hydrological models initialized with observed catchment conditions. At global scale, practical problems exist in each of these aspects. For the first time, we analyzed theoretical and actual skill in bimonthly streamflow forecasts from a global ensemble streamflow prediction (ESP) system. Forecasts were generated six times per year for 1979-2008 by an initialized hydrological model and an ensemble of 1° resolution daily climate estimates for the preceding 30 years. A post-ESP conditional sampling method was applied to 2.6% of forecasts, based on predictive relationships between precipitation and 1 of 21 climate indices prior to the forecast date. Theoretical skill was assessed against a reference run with historic forcing. Actual skill was assessed against streamflow records for 6192 small (<10,000 km2) catchments worldwide. The results show that initial catchment conditions provide the main source of skill. Post-ESP sampling enhanced skill in equatorial South America and Southeast Asia, particularly in terms of tercile probability skill, due to the persistence and influence of the El Niño Southern Oscillation. Actual skill was on average 54% of theoretical skill but considerably more for selected regions and times of year. The realized fraction of the theoretical skill probably depended primarily on the quality of precipitation estimates. Forecast skill could be predicted as the product of theoretical skill and historic model performance. Increases in seasonal forecast skill are likely to require improvement in the observation of precipitation and initial hydrological conditions.
Interest of A Morphological Explanation of The Unit Hydrograph Concept: Case of Urban Catchments
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Cudennec, C.; Cellier, G.; Andrieu, H.
Expansion of urbanised areas has put emphasis on related water management prob- lems, such as flooding and pollution control, which requires a good knowledge of the hydrological response of urban catchments. Unfortunately, most of urban catchments are ungauged and their hydrological features must be deduced from existent data. A good description of the urban characteristics can give some advances in the field of urban hydrology : the geographical and physical knowledge of the city is made eas- ier by the emergence of urban data banks, introducing a meter-scale morphological description of the city. Linking the hydrological response of a catchment to its geo- morphology has been successfully implemented in natural settings within the concept of GIUH (Geomorphologic Instantaneous Unit Hydrograph). In the same manner, the available description of urban catchments makes it possible to deduce their hydrolog- ical behaviour throughout the Unit Hydrograph concept. We suggest to compare three complementary methods of determination of Unit Hydrographs, with increasing de- grees of description of the catchment morphology. The first method, presenting a high degree of accounting for the catchment morphology, is called MIUH (Morphologi- cal Instantaneous Unit Hydrograph; Rodriguez et al., 2000), and is derived from the analysis of urban databanks allowing an explicit description of the runoff production areas and their downstream flow channels. The second one, called H2U (Duchesne et al., 1997) and corresponding to a moderate degree, is a gamma law whose 2 pa- rameters are based on the Strahler order of the catchment and the mean hydraulic length of water paths through the drainage system. The third method, called FDTF (First Derivative Transfert Function; Duband et al., 1993) and corresponding to a low degree, is a validation method deriving Unit Hydrograph by a deconvolution itera- tive identification technique, from a sample of observed rainfall and flow data. The three methods are shortly summarised, and applied to two urban catchments of the Nantes urban center (60 and 180 ha), Western France. Their comparison is discussed and shows encouraging results. Deriving Unit Hydrographs from the morphology of ungauged catchment appears to be of high interest for hydrology, and the degree of accounting for informations about this morphology can be adapted according to the availability of geographical data on the studied catchment. Duchesne, J., C. Cudennec, and V. Corbierre, 1997. Relevance of the H2U model to 1 predict the discharge of a catchment, Water Science and Technology, 36(5), 169-175. Duband, D., C. Obled, and J. Rodriguez, 1993. Unit hydrograph revisited : an alterna- tive approach to UH and effective precipitation identification. Journal of Hydrology, 150(1): p 115-150. Rodriguez, F., H. Andrieu, J.D. Creutin, and G. Raimbault, 2000. Hydrological anal- ysis using urban data banks, paper presented at Hydroinformatics, IIHR Iowa City, USA. 2
NASA Astrophysics Data System (ADS)
Dung, B. X.; Gomi, T.; Onda, Y.; Kato, H.; Hiraoka, M.
2012-12-01
We conducted field observation in nested headwater catchments draining Japanese cypress (Chamaecyparis obtusa) and cedar (Cryptomeria japonica) forests at Tochigi prefectures for examining the effects of forest thinning on runoff generation at different catchment scales. 50% of the stems was removed with line thinning in catchment K2 (treatment catchment), while catchment K3 remained untreated as a control. We also monitored nested catchments within K2-1 (17.1 ha) as K2-2 (10.2 ha), K2-3 (3.7 ha) and K2-4 (5.1 ha), and within K3-1 (8.9 ha) as K3-2 (3.0 ha). Runoff from the catchments was monitored during the pre-thinning (from April, 2010 to May 2011), and the post-thinning periods (from June 2011 to July 2012). Paired-catchment and hydrograph separation analysis were used to evaluate the effects of forest thinning on runoff generation at different catchment scales. We developed the pre-thinning calibration equation for predicting post-thinning responses. Paired-catchment analysis revealed that annual catchment runoff increased 648 mm in K2-1, 414 mm in K2-2, 517 mm in K2-3 and 487 mm in K2-4 after the thinning. Both quick and delayed runoff components only increased significantly in the larger catchments of K2-1 and K2-2, while only delayed runoff components of smaller catchments (K2-3 and K2-4) increased significantly during the post-thinning period. Increases of quick runoff in large catchments could be associated with quick runoff response to soil surface compaction by line thinning and skid trail installation. Increases of delayed runoff in small catchment may be associated with increase in net precipitation and decrease in evapotranspiration. Our finding showed that changes in internal hydrological flow pathways and associated changes in runoff components due to forest harvesting differ depending on the catchment sizes.
Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark
2015-06-01
The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exploring the link between meteorological drought and streamflow to inform water resource management
NASA Astrophysics Data System (ADS)
Lennard, Amy; Macdonald, Neil; Hooke, Janet
2015-04-01
Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.
Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz
2014-01-01
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.
Iñiguez–Armijos, Carlos; Leiva, Adrián; Frede, Hans–Georg; Hampel, Henrietta; Breuer, Lutz
2014-01-01
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments. PMID:25147941
Fernández-Barrera, Andrés H; Castro-Fresno, Daniel; Rodriguez-Hernandez, Jorge; Vega-Zamanillo, Angel
2011-01-30
Runoff contamination has motivated the development of different systems for its treatment in order to decrease the pollutant load that is discharged into natural water bodies. In the long term, these systems may undergo operational problems. This paper presents the results obtained in a laboratory study with a 1:1 scale prototype of a System of Catchment, Pre-treatment and Treatment (SCPT) of runoff waters. The analysis aims to establish the operational behaviour of the SCPT in the long term with respect to oil degradation and hydraulic conductivity in the geotextile filter. It is concluded that bio-degradation processes take place inside the SCPT and that hydraulic conductivity of the geotextile filtration system decreases slowly with successive simulated runoff events. Copyright © 2010 Elsevier B.V. All rights reserved.
Carbon redistribution by erosion processes in an intensively disturbed catchment
NASA Astrophysics Data System (ADS)
Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana
2016-04-01
Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and reforestation works. However the organic carbon in deposited sediments comes not only from surface erosion processes, but also from deeper soil or sediment layers mobilized by concentrated erosion processes. Sediment richer in organic carbon comes from the soil surface of vegetated (reforested) areas close and well connected to the channels. Subcatchments dominated by laminar erosion processes showed two times higher TOC/total erosion ratio than subcatchments dominated by concentrated flow erosion processes. Lithology, soils and geomorphology exert a more important control on organic carbon redistribution than land use and vegetation cover in this geomorphologically very active catchment.
Nitrogen attenuation along delivery pathways in agricultural catchments
NASA Astrophysics Data System (ADS)
McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.
2014-05-01
Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg/L). Whereas in the grassland catchment NO3-N concentrations ranged from 0.001 - 23.9 mg/L (SD = 4.40 mg/L) with elevated concentrations in the midslope and upslope zones and groundwater at the hillslope bottom which were consistently close to the limits of detection, indicating a potential denitrifying zone. Using a combination of groundwater flow modelling (Visual Modflow-Flex), high density spatial and temporal sampling and push pull tracer techniques; it is aimed to contribute to the wider understanding of N dynamics in terms of the individual environmental parameters affecting N attenuation, spatial and temporal variability in denitrification rates and gaseous emissions along the hillslope flow path.
NASA Astrophysics Data System (ADS)
van Emmerik, Tim; Eilander, Dirk; Piet, Marijn; Mulder, Gert
2013-04-01
The Chamcar Bei catchment in southern Cambodia is a typical ungauged basin. Neither meteorological data or discharge measurements are available. In this catchment, local farmers are highly dependent on the irrigation system. However, due to the unreliability of the water supply, it was required to make a hydrological model, with which further improvements of the irrigation system could be planned. First, we used knowledge generated in the IAHS decade on Predictions in Ungauged Basins (PUB) to estimate the annual water balance of the Chamcar Bei catchment. Next, using remotely sensed precipitation, vegetation, elevation and transpiration data, a monthly rainfall-runoff model has been developed. The rainfall-runoff model was linked to the irrigation system reservoir, which allowed to validate the model based on soft data such as historical knowledge of the reservoir water level and groundwater levels visible in wells. This study shows that combining existing remote sensing data and soft ground data can lead to useful modeling results. The approach presented in this study can be applied in other ungauged basins, which can be extremely helpful in managing water resources in developing countries.
Catchment-wide survival of wild- and hatchery-reared Atlantic salmon smolts in a changing system
Stich, Daniel S.; Bailey, Michael M.; Holbrook, Christopher M.; Kinnison, Michael T.; Zydlewski, Joseph D.
2015-01-01
We developed a hierarchical multistate model to estimate survival of Atlantic salmon (Salmo salar) smolts in the Penobscot River, USA, over a decade during which two mainstem dams were removed from the catchment. We investigated effects of (i) environmental factors, (ii) rearing history, and (iii) management actions, including dam removal, turbine shutdown, and installation of new powerhouses. Mean ± SD smolt survival per kilometre was higher through free-flowing reaches of the catchment (0.995 ± 0.004·km−1) than through reaches containing dams that remain in the system (0.970 ± 0.019·km−1). We observed maximum survival between 12 and 17 °C and at intermediate discharges (1200 m3·s−1). Smolt survival increased concurrent with dam removal and decreased following increases in hydropower generation. The greatest increase in smolt survival followed seasonal turbine shutdowns at a dam located on the largest tributary to the Penobscot River, while other shutdowns had little influence. Our model provides a useful tool for assessing changes to survival of migratory species and will be useful for informing stocking plans to maximize numbers of smolts leaving coastal systems.
NASA Astrophysics Data System (ADS)
van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François
2016-07-01
Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.
NASA Astrophysics Data System (ADS)
Li, Qiaoling; Li, Zhijia; Zhu, Yuelong; Deng, Yuanqian; Zhang, Ke; Yao, Cheng
2018-06-01
Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.
Assessing catchment connectivity using hysteretic loops
NASA Astrophysics Data System (ADS)
Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia
2017-04-01
Storm events mobilize large proportions of sediments in catchment systems. Therefore understanding catchment sediment dynamics throughout the continuity of storms and how initial catchment states act as controls on the transport of sediment to catchment outlets is important for effective catchment management. Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within catchments (Baartman et al., 2013; Parsons et al., 2015; Masselink et al., 2016a,b; Mekonnen et al., 2016). However, sediment connectivity alone does not provide a practicable mechanism by which the catchment's initial state - and thus the location of entrained sediment in the sediment transport cascade - can be characterized. Studying the dynamic relationship between water discharge (Q) and suspended sediment (SS) at the catchment outlet can provide a valuable research tool to infer the likely source areas and flow pathways contributing to sediment transport because the relationship can be characterized by predictable hysteresis patterns. Hysteresis is observed when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed - towards the increase or towards the diminution of the flow. However, the complexity of the phenomena and factors which determine the hysteresis make its interpretation ambiguous. Previous work has described various types of hysteretic loops as well as the cause for the shape of the loop, mainly pointing to the origin of the sediments. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz principal and Oskotz woodland). La Tejería and Latxaga watersheds are similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr catchment, north-west Ethiopia. Accepted to Land Degradation and Development. Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714
A simple distributed sediment delivery approach for rural catchments
NASA Astrophysics Data System (ADS)
Reid, Lucas; Scherer, Ulrike
2014-05-01
The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The flow pathways were extracted in a geographic information system. Then the sediment delivery ratio for each source area was determined using an empirical approach considering the slope, morphology and land use properties along the flow path. As a benchmark for the calibration of the model parameters we used results of a detailed process based erosion model available for the study area. Afterwards the approach was tested in larger catchments located in the same loess region.
Geostatistical methods in the assessment of the spatial variability of the quality of river water
NASA Astrophysics Data System (ADS)
Krasowska, Małgorzata; Banaszuk, Piotr
2017-11-01
The research was conducted in the agricultural catchment in north-eastern Poland. The aim of this study was to check how geostatistical analysis can be useful for the detection zones and forms of supply stream by water from different sources. The work was included the implementation of hydrochemical profiles. These profiles were made by measuring the electrical conductivity (EC) values and temperature along the river. On the basis of these results, the authors calculated the coefficient of Moran I and performed semivariogram and found that the EC values are correlated on a stretch of about 140 m. This means that the spatial correlation between samples of water in the stream is readable over a distance of about 140 meters. Therefore it is believed that the degree of water mineralization on this section is shaped by water entering the river channel migration in different ways: through tributaries, leachate drainage and surface runoff. In the case of the analyzed catchment, the potential sources of pollution were drainage systems. Therefore, the spatial analysis allowed the identification pollution sources in a catchment, especially in drained agricultural catchments.
NASA Astrophysics Data System (ADS)
Estrany, Joan; Grimalt, Miquel
2014-10-01
Geographic signatures are physical and human-induced characteristics or processes that identify comparable or unique features of estuaries along latitudinal gradients. In Mediterranean areas, the microtidal regime and the strong seasonal and inter-annual contrasts cause an alternation between relatively high runoff and arid conditions. Furthermore, the long history of human settlement also increases the complexity in the study of these estuarine systems. This study investigates these signatures of the estuaries located within the Mallorcan eastern coast, which are geomorphologically homogeneous because of a similar bedrock geology and Holocene history. A multi-method approach focused on the integration of geomorphometry, hydraulics, historical sources and statistics was used. We explore the role played by catchment morphometric parameters, severe flash flood events and human disturbances in controlling the geomorphology of 10 beach-barrier enclosed, fluvial incised lagoons. Most of the lagoons discharge into 'calas', ranging in size from 1345 to 17,537 m2 and their related catchments are representative of the Mediterranean hydrological systems. Multiple regression models illustrate that the size, slope and drainage network development of the catchments explain the variance in length (r2 = 0.67), volume (r2 = 0.49), area (r2 = 0.64), circularity (r2 = 0.72) and average width (r2 = 0.81) of the lagoons. Depending on these catchment morphometric variables, the shape of the lagoons is also determined by the occurrence of catastrophic flash floods, which cause scouring and dredging, whereas the ordinary flood events and sea storms promote refilling and sedimentation. A historical analysis since 1850 documented 18 flood events, 5 of which were catastrophic with destructive effects along the catchments and large morphological changes in coastal lagoons. High intensity rainfall (up to 200 mm in 2 h), the geomorphometry of the catchments and the massive construction of terraces and transverse walls are involved in the generation of catastrophic flood events. Additionally, the lagoons were altered considerably by human intervention for flood control and to allow for an increased amount of human activities within the surrounding areas, although the high recurrence of catastrophic flood events causes a persistent difficulty in the human battle to dominate these ecosystems. Therefore, the area occupied by lagoons increased between 1956 and the present time from 31,981 m2 to 63,802 m2 because of the high recurrence of catastrophic flood events. Furthermore, tourism demand and a social conservation consciousness have promoted restoration and preservation since the 1990s. This study has improved the geomorphological knowledge of small Mediterranean estuaries affected by human disturbances in the high-energy environment found in Mallorca.
NASA Astrophysics Data System (ADS)
Cheng, Lei; Zhang, Lu; Chiew, Francis H. S.; Canadell, Josep G.; Zhao, Fangfang; Wang, Ying-Ping; Hu, Xianqun; Lin, Kairong
2017-07-01
It is widely recognized that vegetation changes can significantly affect the local water availability. Methods have been developed to predict the effects of vegetation change on water yield or total streamflow. However, it is still a challenge to predict changes in base flow following vegetation change due to limited understanding of catchment storage-discharge dynamics. In this study, the power law relationship for describing catchment storage-discharge dynamics is reformulated to quantify the changes in storage-discharge relationship resulting from vegetation changes using streamflow data from six paired-catchment experiments, of which two are deforestation catchments and four are afforestation catchments. Streamflow observations from the paired-catchment experiments clearly demonstrate that vegetation changes have led to significant changes in catchment storage-discharge relationships, accounting for about 83-128% of the changes in groundwater discharge in the treated catchments. Deforestation has led to increases in groundwater discharge (or base flow) but afforestation has resulted in decreases in groundwater discharge. Further analysis shows that the contribution of changes in groundwater discharge to the total changes in streamflow varies greatly among experimental catchments ranging from 12% to 80% with a mean of 38 ± 22% (μ ± σ). This study proposed a new method to quantify the effects of vegetation changes on groundwater discharge from catchment storage and will improve our predictability about the impacts of vegetation changes on catchment water yields.
Can spatial statistical river temperature models be transferred between catchments?
NASA Astrophysics Data System (ADS)
Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.
2017-09-01
There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across multiple catchments and larger spatial scales.
Dymond, John R; Davie, Tim J A; Fenemor, Andrew D; Ekanayake, Jagath C; Knight, Ben R; Cole, Anthony O; de Oca Munguia, Oscar Montes; Allen, Will J; Young, Roger G; Basher, Les R; Dresser, Marc; Batstone, Chris J
2010-09-01
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic-and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.
NASA Astrophysics Data System (ADS)
Prasetyo, Yudo; Ardi Gunawan, Setyo; Maksum, Zia Ul
2016-11-01
Semarang is the biggest city in central Java-Indonesia which has a rapid and massive infrastructure development nowadays. In order to control water resources and flood, the local goverment has been built east and west flood canal in Kaligarang and West Semarang River. One of main problem in Semarang city is the lack of fresh water in dry season because ground water is not rechargeable well. Rechargeable groundwater ability depends on underground water recharge rate and catchment area condition. The objective of the study is to determine condition and classification of water catchment area in Semarang city. The catchment area conditions will be determine by five parameters as follows soil type, land use, slope, ground water potential and rainfall intensity. In this study, we use three methods approach to solve the problem which is segmentation classification to acquire land use classification from high resolution imagery using nearest neighborhood algorithm, Interferometric Synthetic Aperture Radar (SAR) to derive DTM from SAR Imagery and multi criteria weighting and spatial analysis using GIS method. There are three types optical image (ALOS PRISM, SPOT-6 and ALOS PALSAR) to calculate water catchment area condition in Semarang city. For final result, this research will divide the water catchment into six criteria as follows good, naturally normal, early critical, a little bit critical, critical and very critical condition. The result shows that water catchment area condition is in an early critical condition around 2607,523 Ha (33,17 %), naturally normal condition around 1507,674 Ha (19,18 %), a little bit critical condition around 1452,931 Ha (18,48 %), good with 1157,04 Ha (14,72 %), critical with 1058,639 Ha (13,47 %) and very critical with 75,0387 Ha (0,95 %). The distribution of water catchment area conditions in West and East Flood Canal have an irreguler pattern. In northern area of watershed consists of begin to critical, naturally normal and good condition. Meanwhile in southern area of watershed consists of a little bit critical, critical and very critical condition.
Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Xia, Jun; Yu, Jingjie; Randall, Mark; Zhang, Yichi; Zhao, Tongtiegang; Pan, Xingyao; Zhai, Xiaoyan; Shao, Quanxi
2018-05-01
Urbanization-induced landuse changes alter runoff regimes in complex ways. In this study, a detailed investigation of the urbanization impacts on runoff regimes is provided by using multiple runoff metrics and with consideration of landuse dynamics. A catchment hydrological model is modified by coupling a simplified flow routing module of the urban drainage system and landuse dynamics to improve long-term urban runoff simulations. Moreover, multivariate statistical approach is adopted to mine the spatial variations of runoff metrics so as to further identify critical impact factors of landuse changes. The Qing River catchment as a peri-urban catchment in the Beijing metropolitan area is selected as our study region. Results show that: (1) the dryland agriculture is decreased from 13.9% to 1.5% of the total catchment area in the years 2000-2015, while the percentages of impervious surface, forest and grass are increased from 63.5% to 72.4%, 13.5% to 16.6% and 5.1% to 6.5%, respectively. The most dramatic landuse changes occur in the middle and downstream regions; (2) The combined landuse changes do not alter the average flow metrics obviously at the catchment outlet, but slightly increase the high flow metrics, particularly the extreme high flows; (3) The impacts on runoff metrics in the sub-catchments are more obvious than those at the catchment outlet. For the average flow metrics, the most impacted metric is the runoff depth in the dry season (October ∼ May) with a relative change from -10.9% to 11.6%, and the critical impact factors are the impervious surface and grass. For the high flow metrics, the extreme high flow depth is increased most significantly with a relative change from -0.6% to 10.5%, and the critical impact factors are the impervious surface and dryland agriculture; (4) The runoff depth metrics in the sub-catchments are increased because of the landuse changes from dryland agriculture to impervious surface, but are decreased because of the landuse changes from dryland agriculture or impervious surface to grass or forest. The results of this study provide useful information for urban planning such as Sponge City design.
NASA Astrophysics Data System (ADS)
Dymond, John R.; Davie, Tim J. A.; Fenemor, Andrew D.; Ekanayake, Jagath C.; Knight, Ben R.; Cole, Anthony O.; de Oca Munguia, Oscar Montes; Allen, Will J.; Young, Roger G.; Basher, Les R.; Dresser, Marc; Batstone, Chris J.
2010-09-01
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality ( E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.
NASA Astrophysics Data System (ADS)
Thomas, Zahra; Rousseau-Gueutin, Pauline; Kolbe, Tamara; Abbott, Ben; Marcais, Jean; Peiffer, Stefan; Frei, Sven; Bishop, Kevin; Le Henaff, Geneviève; Squividant, Hervé; Pichelin, Pascal; Pinay, Gilles; de Dreuzy, Jean-Raynald
2017-04-01
The distribution of groundwater residence time in a catchment provides synoptic information about catchment functioning (e.g. nutrient retention and removal, hydrograph flashiness). In contrast with interpreted model results, which are often not directly comparable between studies, residence time distribution is a general output that could be used to compare catchment behaviors and test hypotheses about landscape controls on catchment functioning. In this goal, we created a virtual observatory platform called Catchment Virtual Observatory for Sharing Flow and Transport Model Outputs (COnSOrT). The main goal of COnSOrT is to collect outputs from calibrated groundwater models from a wide range of environments. By comparing a wide variety of catchments from different climatic, topographic and hydrogeological contexts, we expect to enhance understanding of catchment connectivity, resilience to anthropogenic disturbance, and overall functioning. The web-based observatory will also provide software tools to analyze model outputs. The observatory will enable modelers to test their models in a wide range of catchment environments to evaluate the generality of their findings and robustness of their post-processing methods. Researchers with calibrated numerical models can benefit from observatory by using the post-processing methods to implement a new approach to analyzing their data. Field scientists interested in contributing data could invite modelers associated with the observatory to test their models against observed catchment behavior. COnSOrT will allow meta-analyses with community contributions to generate new understanding and identify promising pathways forward to moving beyond single catchment ecohydrology. Keywords: Residence time distribution, Models outputs, Catchment hydrology, Inter-catchment comparison
NASA Astrophysics Data System (ADS)
Onda, Yuichi; Taniguchi, Keisuke; Kato, Hiroaki; Yoshimura, Kazuya; Wakiyama, Yoshifumi; Iwagami, Sho; Tsujimura, Maki; Sakaguchi, Aya; Yamamoto, Masatoshi
2015-04-01
Due to Fukushima Daiichi Nuclear Power Plant accident, radioactive materials including Cs-134 and Cs-137 were widely distributed in surrounded area. The radiocesiums have been transported in river networks. The monitoring started at 6 sites from June 2011. Subsequently, additional 24 monitoring sites were installed between October 2012 and January 2013. Flow and turbidity (for calculation of suspended sediment concentration) were measured at each site, while suspended sediments and river water were collected every one or half month to measure Cs-134 and Cs-137 activity concentrations by gamma spectrometry. Also detailed field monitoring has been condcuted in Yamakiya-district, Kawamata town, Fukushima prefecture. These monitoring includes, 1) Radiocesium wash-off from the runoff-erosion plot under different land use, 2) 2. Measurement of radiocesium transfer in forest environment, in association with hydrological pathways such as throughfall and overlandflow on hillslope, 3) Monitoring on radiocesium concentration in soil water, ground water, and spring water, 4)Monitoring of dissolved and particulate radiocesium concentration in river water, and stream water from the forested catchment, and 5)Measurement of radiocesium content in drain water and suspended sediment from paddy field. Our monitoring result demonstrated that the Cs-137 concentration in eroded sediment from the runoff-erosion plot has been almost constant for the past 3 years, however the Cs-137 concentration of suspended sediment from the forested catchment showed slight decrease through time. On the other hand, the suspended sediment from paddy field and those in river water from large catchments exhibited rapid decrease in Cs-137 concentration with time. The decreasing trend of Cs-137 concentration were fitted by the two-component exponential model, differences in decreasing rate of the model were compared and discussed among various land uses and catchment scales. Such analysis can provide important insights into the future prediction of the radiocesium wash-off from catchments from different land uses. The decerasing trend of river system vaired with catchments. Our analysis suggest that these differences can be explained by upstream landuse with different decreasing trend.
NASA Astrophysics Data System (ADS)
Quinn, Niall; Freer, Jim; Coxon, Gemma; Dunne, Toby; Neal, Jeff; Bates, Paul; Sampson, Chris; Smith, Andy; Parkin, Geoff
2017-04-01
Computationally efficient flood inundation modelling systems capable of representing important hydrological and hydrodynamic flood generating processes over relatively large regions are vital for those interested in flood preparation, response, and real time forecasting. However, such systems are currently not readily available. This can be particularly important where flood predictions from intense rainfall are considered as the processes leading to flooding often involve localised, non-linear spatially connected hillslope-catchment responses. Therefore, this research introduces a novel hydrological-hydraulic modelling framework for the provision of probabilistic flood inundation predictions across catchment to regional scales that explicitly account for spatial variability in rainfall-runoff and routing processes. Approaches have been developed to automate the provision of required input datasets and estimate essential catchment characteristics from freely available, national datasets. This is an essential component of the framework as when making predictions over multiple catchments or at relatively large scales, and where data is often scarce, obtaining local information and manually incorporating it into the model quickly becomes infeasible. An extreme flooding event in the town of Morpeth, NE England, in 2008 was used as a first case study evaluation of the modelling framework introduced. The results demonstrated a high degree of prediction accuracy when comparing modelled and reconstructed event characteristics for the event, while the efficiency of the modelling approach used enabled the generation of relatively large ensembles of realisations from which uncertainty within the prediction may be represented. This research supports previous literature highlighting the importance of probabilistic forecasting, particularly during extreme events, which can be often be poorly characterised or even missed by deterministic predictions due to the inherent uncertainty in any model application. Future research will aim to further evaluate the robustness of the approaches introduced by applying the modelling framework to a variety of historical flood events across UK catchments. Furthermore, the flexibility and efficiency of the framework is ideally suited to the examination of the propagation of errors through the model which will help gain a better understanding of the dominant sources of uncertainty currently impacting flood inundation predictions.
Crop structure in a gully catchment and the development of a loess gully (Lublin Upland, E Poland)
NASA Astrophysics Data System (ADS)
Mędrek, Karolina; Rodzik, Jan
2015-04-01
The study was conducted in a loess gully catchment with an area of 1.23 km2 and height differences of less than 50 m (213-165 m above sea level), located in Kolonia Celejów in the Nałęczów Plateau. This is one of mesoregions of Lublin Upland. In the investigated catchment, loess cover with a thickness of 10-20 m, accumulated during the Vistulian Glaciation, is dissected by a gully system with a depth of 5-15 m and total length of 7.5 km. The gully system is forested in 30% of its area. Until recently, the remaining part of the catchment under agricultural use has been dominated by conventional farming of cereals, potatoes, and sugar beets. Today, 15% of the non-forested area of the catchment is occupied by housing premises, dirt roads, and fallow land, and 45% by orchards with maintained turf, including berry plantations. This type of land management contributes to the retention of precipitation, and protects the soil from flushing. Approximately 20% of the agricultural land is occupied by conventional crops (cereals and root crops), protecting the soil to a moderate degree. Water runoff in the area does not occur every year. Approximately 20% of the agricultural land is currently occupied by cruciferous vegetables (broccoli and cauliflower), decorative shrubs, and orchards without turf in the first 2 years of use. Water and soil runoff from these crops occurs even several times per year. The majority of the material is retained in the lower part of the field, and the water flows into the gully. The crops in the fields adjacent to the ravine have a direct impact on the development of the gully. If the field is located on a raised headland, the flowing water dissects the edge of the gully, and the eroded material is accumulated on the gully bottom. If the field is located in a valley above the gullyhead, the flowing water dissects the bottom of the gully, and the eroded material is discharged outside the catchment.
Tracing seasonal groundwater contributions to stream flow using a suite of environmental isotopes
NASA Astrophysics Data System (ADS)
Pritchard, J. L.; Herczeg, A. L.; Lamontagne, S.
2003-04-01
Groundwater discharge to streams is important for delivering essential solutes to maintain ecosystem health and flow throughout dry seasons. However, managing the groundwater components of stream flow is difficult because several sources of water can contribute, including delayed drainage from bank storage and regional groundwater. In this study we assessed the potential for a variety of environmental tracers to discriminate between different sources of water to stream flow. A case study comparing Cl-, delta O-18 &delta H-2, Rn-222 and 87Sr/86Sr to investigate the spatial and temporal variability of groundwater inputs to stream flow was conducted in the Wollombi Brook Catchment (SE Australia). The objectives were to characterise the three potential sources of water to stream flow (surface water, groundwater from the near-stream sandy alluvial aquifer system, and groundwater from the regional sandstone aquifer system) and estimate their relative contributions to stream discharge at flood recession and baseflow. Surface water was sampled at various locations along the Wollombi Brook and from its tributaries during flood recession (Mar-01) and under baseflow conditions (Oct-01). Alluvial groundwater was sampled from a piezometer network and regional groundwater from deeper bores in the lower to mid-catchment biannually over two years to characterise these potential sources of water to stream flow. Chloride identified specific reaches of the catchment that were either subjected to evaporation or received regional groundwater contributions to stream flow. The water isotopes verified which of these reaches were dominated by evaporation versus groundwater contributions. They also revealed that the predominant sources of water to stream flow during flood recession were either rainfall and storm runoff or regional groundwater, and that during baseflow the predominant source of water to stream flow was alluvial groundwater. Radon showed that there was a greater proportion of groundwater contributing to stream flow in the upper part of the catchment than the lower catchment during both flood recession and baseflow. Strontium isotopes showed that regional groundwater contributed less than 10% to stream flow in all parts of the catchment under baseflow conditions.
NASA Astrophysics Data System (ADS)
Jordan, Phil; Melland, Alice; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Ryan, David; Crockford, Lucy; Macintosh, Katrina; Campbell, Julie; Arnscheidt, Joerg; Cassidy, Rachel
2014-05-01
A complete appraisal of material fluxes in flowing waters is really only possibly with high time resolution data synchronous with measurements of discharge. Defined by Kirchner et al. (2004; Hydrological Processes, 18/7) as the high-frequency wave of the future and with regard to disentangling signal noise from process pattern, this challenge has been met in terms of nutrient flux monitoring by automated bankside analysis. In Ireland over a ten-year period, time-series nutrient data collected on a sub-hourly basis in rivers have been used to distinguish fluxes from different catchment sources and pathways and to provide more certain temporal pictures of flux for the comparative definition of catchment nutrient dynamics. In catchments where nutrient fluxes are particularly high and exhibit a mix of extreme diffuse and point source influences, high time resolution data analysis indicates that there are no satisfactory statistical proxies for seasonal or annual flux predictions that use coarse datasets. Or at least exposes the limits of statistical approaches to catchment scale and hydrological response. This has profound implications for catchment monitoring programmes that rely on modelled relationships. However, using high resolution monitoring for long term assessments of catchment mitigation measures comes with further challenges. Sustaining continuous wet chemistry analysis at river stations is resource intensive in terms of capital, maintenance and quality assurance. Furthermore, big data capture requires investment in data management systems and analysis. These two institutional challenges are magnified when considering the extended time period required to identify the influences of land-based nutrient control measures on water based systems. Separating the 'climate signal' from the 'source signal' in river nutrient flux data is a major analysis challenge; more so when tackled with anything but higher resolution data. Nevertheless, there is scope to lower costs in bankside analysis through technology development, and the scientific advantages of these data are clear and exciting. When integrating its use with policy appraisal, it must be made clear that the advances in river process understanding from high resolution monitoring data capture come as a package with the ability to make more informed decisions through an investment in better information.
Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying
2008-10-01
Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.
NASA Astrophysics Data System (ADS)
Pfister, Laurent; Klaus, Julian; Hissler, Christophe; François Iffly, Jean; Gourdol, Laurent; Martinez-Carreras, Nuria; McDonnell, Jeffrey J.
2014-05-01
Recent hydrological process research focussed on how much water a catchment can store and how these catchments store and release water. Storage can be a valuable metric for catchment description, inter-comparison, and classification. Further storage controls catchment mixing, non-linearities in rainfall-runoff transformation and eco-hydrological processes. Various methods exist to determine catchment storage (e.g. natural tracer, soil moisture and groundwater data, hydrological models). Today it remains unclear what parts of the catchment storage are measured with the different models. Here we present a new hydrometric approach to answer the question how much water a catchment can store. We tested our approach in a dense hydro-climatological monitoring network that encompasses 16 recording streamgauges and 21 pluviographs in the Alzette River basin in Luxembourg (Europe). Catchment scales are ranging from 0.47 to 285 km2 and they have clean- and mixed combinations of distinct geologies ranging from schists to marls, sandstone, dolomite and limestone. Previous investigations in the area of interest have shown that geology largely controls winter runoff coefficients. Here, we focus at how catchment geology is ultimately affecting catchment storage. We used the approach of Sayama et al. (2011) to compute catchment dynamic storage changes for each winter season over the period 2002-2012 (based on precipitation as input; discharge and evapotranspiration as output). We determined dynamic storage changes for each winter semester (October to March) in all 16 catchments over the period 2002-2012. At the beginning of each hydrological winter season, all catchments showed similar trends in storage change. A few weeks into the winter season, catchments with lowest permeability (e.g. marls) started to plateau. The highest storage values were reached several months later in the season in catchments dominated by permeable substrate (e.g. sandstone). For most catchments, we found strong correlations between baseflow prior to the recharge period (i.e. at initiation of the total storage calculations) and the seasonal maximum value of the total storage change calculations. In order to determine the maximum storage potential for each catchment, we fitted a trendline through the annual 'initial baseflow - maximum storage' populations. By extrapolating these trendlines to zero flow conditions, we obtained the maximum storage potential. Our results show that these maximum storage values clearly tend to be larger in catchments dominated by permeable substrate, compared to areas underlain by impermeable bedrock. In the latter, average filling ratios were found to be substantially higher (exceeding 80%) than in catchments dominated by permeable substrate (approximately 40%). These findings were confirmed by average seasonal winter runoff coefficients that are substantially higher in catchments dominated by impermeable bedrock (Pfister et al., in prep.). Our new approach allows a fast assessment of storage potential in catchments based on discharge, precipitation and evapotranspiration data. Pfister L. et al. 2014: Catchment storage, baseflow isotope signatures and basin geology: Is there a connection? In preparation. Sayama, T., McDonnell, J.J., Dhakal, A., Sullivan, K., 2011. How much water can a watershed store ? Hydrological Processes 25, 3899-3908.
NASA Astrophysics Data System (ADS)
Llorente-Adán, Jose A.; Lana-Renault, Noemí; Galilea, Ianire; Ruiz-Flaño, Purificacion
2015-04-01
Terrace construction for cultivation results in a complete transformation of the hillslopes to a series of flat sectors and almost vertical steps. This strategy, which involves a redistribution of soils and a re-organization of the drainage network, provides fertile soil over steep slopes, improves infiltration and controls overland flow under conditions of intense rainstorms. In Camero Viejo (north-western Iberian ranges) most of the hillslopes are occupied by terraced fields. During the XXth century, rural population declined and agricultural practices were abandoned. In this area, a small catchment (1.9 km2) was monitored in 2012 for studying how the abandonment of agricultural terraces affect water and sediment transfer from the hillslopes to the channels. Terraces occupy 40% of the catchment and are covered by sparse grass and shrubs. The equipment installed in the catchment registers continuously meteorological data, discharge and water table fluctuations. Data on suspended sediment transport is obtained by means of a rising-stage sampler. Here we present the hydrological results corresponding to the years 2012-13 and 2013-14. The hydrological response of the catchment was moderate (annual runoff coefficient < 0.20), which could be in part explained by the high evapotranspiration rates reported in the area. Lows flows were recorded in summer and autumn, when the water reserves of the catchment were dry, and high flows occurred from January, when the catchment became wetter. The shape of the hydrographs, with slow response times, moderate peakflows and long recession limbs suggested a large contribution of subsurface flow, probably favored by deep and well structured soils in the bench terraces. Soil saturation areas were not observed during the study period, suggesting that soil infiltration processes and subsurface flow are important, and that the drainage system of the terraces is probably well maintained. No suspended sediment has been collected so far, confirming the hypothesis that subsurface flow might be a dominant runoff generation process.
Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia
NASA Astrophysics Data System (ADS)
Rode, Michael; Theuring, Philipp; Collins, Adrian L.
2015-04-01
Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.
NASA Astrophysics Data System (ADS)
Kyllmar, K.; Mårtensson, K.; Johnsson, H.
2005-03-01
A method to calculate N leaching from arable fields using model-calculated N leaching coefficients (NLCs) was developed. Using the process-based modelling system SOILNDB, leaching of N was simulated for four leaching regions in southern Sweden with 20-year climate series and a large number of randomised crop sequences based on regional agricultural statistics. To obtain N leaching coefficients, mean values of annual N leaching were calculated for each combination of main crop, following crop and fertilisation regime for each leaching region and soil type. The field-NLC method developed could be useful for following up water quality goals in e.g. small monitoring catchments, since it allows normal leaching from actual crop rotations and fertilisation to be determined regardless of the weather. The method was tested using field data from nine small intensively monitored agricultural catchments. The agreement between calculated field N leaching and measured N transport in catchment stream outlets, 19-47 and 8-38 kg ha -1 yr -1, respectively, was satisfactory in most catchments when contributions from land uses other than arable land and uncertainties in groundwater flows were considered. The possibility of calculating effects of crop combinations (crop and following crop) is of considerable value since changes in crop rotation constitute a large potential for reducing N leaching. When the effect of a number of potential measures to reduce N leaching (i.e. applying manure in spring instead of autumn; postponing ploughing-in of ley and green fallow in autumn; undersowing a catch crop in cereals and oilseeds; and increasing the area of catch crops by substituting winter cereals and winter oilseeds with corresponding spring crops) was calculated for the arable fields in the catchments using field-NLCs, N leaching was reduced by between 34 and 54% for the separate catchments when the best possible effect on the entire potential area was assumed.
Yang, Yang; Chui, Ting Fong May
2018-06-20
Attention is increasingly being paid to low impact development (LID) practices in urban stormwater management. Because LID practices offer a wide variety of hydro-environmental benefits, it is often necessary to account for these benefits collectively in cost-benefit analysis and LID alternative selection. The conventional methods of quantifying these benefits, however, can hardly incorporate the preferences of decision makers, and commonly involve tedious parameter estimations. To address these shortcomings, this study adopts a relative performance evaluation method to assess the various hydro-environmental impacts of LID alternatives in small urban catchments. This study considers several categories of hydro-environmental impacts, including water balance impact, surface pollutant load abatement, and combined sewer overflow and flood risk mitigation. Several performance indicators are used for each impact category. The system-wide effectiveness of an LID alternative is then derived by the weighted aggregation of its indicator scores, which are obtained by comparing its performance with that of all of the other alternatives. The hydro-environmental impact of green roofs and bioretention cells of varying areas in New York City, U.S. are investigated in detail. The results suggest that a green roof that covers the whole catchment is as effective as a bioretention cell that covers 3%-5% of the catchment in terms of stormwater management, and that the effectiveness of a bioretention cell doubles when its surface area increases from 2% to 10% of the catchment area. These assessment results are influenced by catchment-specific assessment criteria (e.g., the high flow threshold) and management interests, which suggests that design guidelines for different catchments should be tailored to their natural and drainage characteristics. The framework used in this study allows stakeholders' interests to be reflected in LID alternative selections and the implications of different design guidelines to be thoroughly investigated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Land use structures fish assemblages in reservoirs of the Tennessee River
Miranda, Leandro E.; Bies, J. M.; Hann, D. A.
2015-01-01
Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.
Temperature dynamics of stormwater runoff in Australia and the USA.
Hathaway, J M; Winston, R J; Brown, R A; Hunt, W F; McCarthy, D T
2016-07-15
Thermal pollution of surface waters by urban stormwater runoff is an often overlooked by-product of urbanization. Elevated stream temperatures due to an influx of stormwater runoff can be detrimental to stream biota, in particular for cold water systems. However, few studies have examined temperature trends throughout storm events to determine how these thermal inputs are temporally distributed. In this study, six diverse catchments in two continents are evaluated for thermal dynamics. Summary statistics from the data showed larger catchments have lower maximum runoff temperatures, minimum runoff temperatures, and temperature variability. This reinforces the understanding that subsurface drainage infrastructure in urban catchments acts to moderate runoff temperatures. The catchments were also evaluated for the presence of a thermal first flush using two methodologies. Results showed the lack of a first flush under traditional assessment methodologies across all six catchments, supporting the results from a limited number of studies in literature. However, the time to peak temperature was not always coincident with the time to peak flow, highlighting the variability of thermal load over time. When a new first flush methodology was applied, significant differences in temperature were noted with increasing runoff depth for five of the six sites. This study is the first to identify a runoff temperature first flush, and highlights the need to carefully consider the appropriate methodology for such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessment of the water balance over France using regionalized Turc-Pike formula
NASA Astrophysics Data System (ADS)
Le Lay, Matthieu; Garçon, Rémy; Gailhard, Joël; Garavaglia, Federico
2016-04-01
With extensive use of hydrological models over a wide range of hydro-climatic contexts, bias in hydro-climatic data may lead to unreliable models and thus hydrological forecasts and projections. This issue is particularly pregnant when considering mountainous areas with great uncertainties on precipitations, or when considering complex unconservative catchments (e.g. karstic systems). The Turc-Pike water balance formula, analogous to the classical Budyko formula, is a simple and efficient mathematical formulation relating long-term average streamflow to long-term average precipitation and potential evaporation. In this study, we propose to apply this framework to assess and eventually adjust the water-balance before calibrating an operational hydrologic model (MORDOR model). Considering a large set of 350 french catchments, the Turc-Pike formula is regionalized based on ecohydrologic criterions to handle various hydro-climatic contexts. This interannual regional model is then applied to assess the water-balance over numerous catchments and various conditions, such as karstic, snow-driven or glaciarized and even anthropized catchments. Results show that it is possible to obtain pretty realistic corrections of meteorological inputs (precipitations, temperature or potential evaporation) or hydrologic surface (or runoff). These corrections can often be confirmed a posteriori by exogenous information. Positive impacts on hydrologic model's calibration are also demonstrated. This methodology is now operational for hydrologic applications at EDF (Electricité de France, French electric utility company), and therefore applied on hundreds of catchments.
NASA Astrophysics Data System (ADS)
Tan, Z.; Leung, L. R.; Li, H. Y.; Tesfa, T. K.
2017-12-01
Sediment yield (SY) has significant impacts on river biogeochemistry and aquatic ecosystems but it is rarely represented in Earth System Models (ESMs). Existing SY models focus on estimating SY from large river basins or individual catchments so it is not clear how well they simulate SY in ESMs at larger spatial scales and globally. In this study, we compare the strengths and weaknesses of eight well-known SY models in simulating annual mean SY at about 400 small catchments ranging in size from 0.22 to 200 km2 in the US, Canada and Puerto Rico. In addition, we also investigate the performance of these models in simulating event-scale SY at six catchments in the US using high-quality hydrological inputs. The model comparison shows that none of the models can reproduce the SY at large spatial scales but the Morgan model performs the better than others despite its simplicity. In all model simulations, large underestimates occur in catchments with very high SY. A possible pathway to reduce the discrepancies is to incorporate sediment detachment by landsliding, which is currently not included in the models being evaluated. We propose a new SY model that is based on the Morgan model but including a landsliding soil detachment scheme that is being developed. Along with the results of the model comparison and evaluation, preliminary findings from the revised Morgan model will be presented.
Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter
2018-01-01
Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).
Flood Impact Modelling and Natural Flood Management
NASA Astrophysics Data System (ADS)
Owen, Gareth; Quinn, Paul; ODonnell, Greg
2016-04-01
Local implementation of Natural Flood Management methods are now being proposed in many flood schemes. In principal it offers a cost effective solution to a number of catchment based problem as NFM tackles both flood risk and WFD issues. However within larger catchments there is the issue of which subcatchments to target first and how much NFM to implement. If each catchment has its own configuration of subcatchment and rivers how can the issues of flood synchronisation and strategic investment be addressed? In this study we will show two key aspects to resolving these issues. Firstly, a multi-scale network water level recorder is placed throughout the system to capture the flow concentration and travel time operating in the catchment being studied. The second is a Flood Impact Model (FIM), which is a subcatchment based model that can generate runoff in any location using any hydrological model. The key aspect to the model is that it has a function to represent the impact of NFM in any subcatchment and the ability to route that flood wave to the outfall. This function allows a realistic representation of the synchronisation issues for that catchment. By running the model in interactive mode the user can define an appropriate scheme that minimises or removes the risk of synchornisation and gives confidence that the NFM investment is having a good level of impact downstream in large flood events.
Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter
2018-01-01
Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator). PMID:29342204
Nielsen, Martha G.
2006-01-01
The U.S. Geological Survey, in cooperation with the National Park Service, developed a hydrogeomorphic (HGM) classification system for wetlands greater than 0.4 hectares (ha) on Mt. Desert Island, Maine, and applied this classification using map-scale data to more than 1,200 mapped wetland units on the island. In addition, two hydrologic susceptibility factors were defined for a subset of these wetlands, using 11 variables derived from landscape-scale characteristics of the catchment areas of these wetlands. The hydrologic susceptibility factors, one related to the potential hydrologic pathways for contaminants and the other to the susceptibility of wetlands to disruptions in water supply from projected future changes in climate, were used to indicate which wetlands (greater than 1 ha) in Acadia National Park (ANP) may warrant further investigation or monitoring. The HGM classification system consists of 13 categories: Riverine-Upper Perennial, Riverine-Nonperennial, Riverine- Tidal, Depressional-Closed, Depressional-Semiclosed, Depressional-Open, Depressional-No Ground-Water Input, Mineral Soil Flat, Organic Soil Flat, Tidal Fringe, Lacustrine Fringe, Slope, and Hilltop/Upper Hillslope. A dichotomous key was developed to aid in the classification of wetlands. The National Wetland Inventory maps produced by the U.S. Fish and Wildlife Service provided the wetland mapping units used for this classification. On the basis of topographic map information and geographic information system (GIS) layers at a scale of 1:24,000 or larger, 1,202 wetland units were assigned a preliminary HGM classification. Two of the 13 HGM classes (Riverine-Tidal and Depressional-No Ground-Water Input) were not assigned to any wetlands because criteria for determining those classes are not available at that map scale, and must be determined by more site-specific information. Of the 1,202 wetland polygons classified, which cover 1,830 ha in ANP, 327 were classified as Slope, 258 were Depressional (Open, Semiclosed, and Closed), 231 were Riverine (Upper Perennial and Nonperennial), 210 were Soil Flat (Mineral and Organic), 68 were Lacustrine Fringe, 51 were Tidal Fringe, 22 were Hilltop/Upper Hillslope, and another 35 were small open water bodies. Most small, isolated wetlands classified on the island are Slope wetlands. The least common, Hilltop/Upper Hillslope wetlands, only occur on a few hilltops and shoulders of hills and mountains. Large wetland complexes generally consist of groups of Depressional wetlands and Mineral Soil Flat or Organic Soil Flat wetlands, often with fringing Slope wetlands at their edges and Riverine wetlands near streams flowing through them. The two analyses of wetland hydrologic susceptibility on Mt. Desert Island were applied to 186 wetlands located partially or entirely within ANP. These analyses were conducted using individually mapped catchments for each wetland. The 186 wetlands were aggregated from the original 1,202 mapped wetland polygons on the basis of their HGM classes. Landscape-level hydrologic, geomorphic, and soil variables were defined for the catchments of the wetlands, and transformed into scaled scores from 0 to 10 for each variable. The variables included area of the wetland, area of the catchment, area of the wetland divided by the area of the catchment, the average topographic slope of the catchment, the amount of the catchment where bedrock crops out with no soil cover or excessively thin soil cover, the amount of storage (in lakes and wetlands) in the catchment, the topographic relief of the catchment, the amount of clay-rich soil in the catchment, the amount of manmade impervious surface, whether the wetland had a stream inflow, and whether the wetland had a hydraulic connection to a lake or estuary. These data were determined using a GIS and data layers mapped at a scale of 1:24,000 or larger. These landscape variables were combined in different ways for the two hydrologic susceptibility fact
NASA Astrophysics Data System (ADS)
Laudon, Hjalmar; Tetzlaff, Doerthe; Seibert, Jan; Soulsby, Chris; Carey, Sean; Buttle, Jim; McDonnell, Jeff; McGuire, Kevin; Caissie, Daniel; Shanley, Jamie
2010-05-01
There has been an increasing interest in understanding the regulating mechanisms of surface water dissolved organic carbon (DOC) the last decade. A majority of this recent work has been based on individual well characterized research catchments or on regional synoptic datasets combined with readily available landscape and climatic variables. However, as the production and transport of DOC primarily is a function of hydro-climatic conditions a better description of catchment hydrological functioning across large geographic regions would be favorable for moving the mechanistic understanding forward. To do this we report from a first assessment of catchment DOC within the international inter-catchment comparison program North-Watch (http://www.abdn.ac.uk/northwatch/). North-Watch includes long-term research catchments ranging from northern temperate regions to the boreal and sub-arctic biomes with the aim to better understand the variable hydrological and biogeochemical responses in Northern catchments to climate change. The North-Watch catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the US (Sleepers River and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). The annual average DOC concentration in the nine catchments investigated were directly linked to hydro-climatic influences (e.g. temperature, water storage) and landscape configuration. In general, the DOC concentration followed a parabolic shape with temperature, where the highest concentrations were found in the boreal and near boreal sites and with the lowest concentrations in the temperate and sub-arctic catchments. The between catchment variability in DOC concentration could also be explained by catchment water storage and amount of wetlands in the catchment. Whereas there is a mechanistic link between long-term climatic conditions and the areal coverage of wetlands, the total catchment storage of water is more strongly linked to topography, parent material and soil depth. The result from this analysis will serve as a conceptual framework for understanding biogeochemical response to environmental change across northern catchments. The next step in this work will be to include more detailed comparisons of the role catchment hydrological functioning for explaining the patterns and dynamics of catchment DOC of these northern watersheds.
Oltmann, Richard N.; Shulters, Michael V.
1989-01-01
Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments during the 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete run6ff samples were analyzed for numerous inorganic, biological, physical, and organic constituents. Atmospheric dry-deposition and street-surface particulate samples also were collected and analyzed. With the exception of the industrial catchment, the highest runoff concentrations for most constituents occurred during the initial storm runoff and then decreased throughout the remainder of the storm, independent of hydraulic conditions. Metal concentrations were high during initial runoff, but also increased as flow increased. Constituent concentrations for the industrial catchment fluctuated greatly during storms. Statistical tests showed higher ammonia plus organic nitrogen, ammonia, pH, and phenol concentrations in rainfall at the industrial site than at the single-dwelling residential and laboratory sites. Statistical testing of runoff quality data showed higher concentrations for the industrial catchment than for the two residential and commercial catchments for most constituents. Total recoverable lead was one of the few constituents that had lower concentrations for the industrial catchment than for the other three catchments. The two residential catchments showed no significant difference in runoff concentrations for 50 of the 57 constituents used in the statistical analysis. The commercial catchment runoff concentrations for most constituents generally were similar to the residential catchments. Although constituent concentrations generally were higher for the industrial catchment than for the commercial catchment, constituent storm loads from the commercial catchment were similar to the industrial catchment because of the greater runoff volume from the highly impervious commercial catchment. Between 10 and 50 percent of the constituent runoff loads for the two residential catchments were attributed to the rainfall load, with the percentages generally considerably less for the industrial catchment. Event mean concentrations (EMC) for most constituents for all but the industrial catchment were highest for the first two or three storms of the rain season after which they became almost constant. Constituent event mean concentrations for the industrial catchment generally did not show any pattern throughout a rain season. Multiple-regression predictor equations for event mean concentrations were developed for several constituents for all sites. Average annual constituent unit loads were computed for 18 constituents for each catchment. The organophosphorus compounds, diazinon, malathion, and parathion were the most prevalent pesticides detected in rainfall. Diazinon was detected in all 54 rainfall samples. Parathion and malathion were detected in 49 and 50 samples, respectively. Other pesticides detected in rainfall included chlordane, lindane, methoxychlor, endosulfan, and 2,4-D. Of these, only methoxychlor and endosulfan were not consistently detected in runoff.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Ratnayake, Rangajeewa; Antonovic, Milan; Strigaro, Daniele
2017-04-01
Environmental monitoring systems in low economies countries are often in decline, outdated or missing with the consequence that there is a very scarce availability and accessibility to these information that are vital for coping and mitigating natural hazards. Non-conventional monitoring systems based on open technologies may constitute a viable solution to create low cost and sustainable monitoring systems that may be fully developed, deployed and maintained at local level without lock-in dependances on copyrights or patents or high costs of replacements. The 4onse research project , funded under the Research for Development program of the Swiss National Science Foundation and the Swiss Office for Development and Cooperation, propose a complete monitoring system that integrates Free & Open Source Software, Open Hardware, Open Data, and Open Standards. After its engineering, it will be tested in the Deduru Oya catchment (Sri Lanka) to evaluate the system and develop a water management information system to optimize the regulation of artificial basins levels and mitigate flash floods. One of the objective is to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. Results, challenges and experiences from the first six months of the projects will be presented with particular focus on the activities of synergies building and data collection and dissemination system advances.
NASA Astrophysics Data System (ADS)
Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin
2018-03-01
Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.
Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G
2016-04-15
Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Dementieva, D M; Dementiev, M S
As a result, of the management of the irrigation system the most part of the runoff headwaters of the river Kuban was transferred to the arid plains of the Stavropol Territory, Rostov Region and Kalmykia Gravity Water via the water tract of the Kuban-Manych. This system was assumed to be supplied by pure mountain water. In fact, 3-4 class contaminated water currently passes to the water intake of the irrigation system (Nevinnomyssky channel). There is a tendency to the further deterioration in the quality of surface waters. It was determined that in the last decades in the catchment area of the upper reaches of the Kuban (Karachaevo-Cherkessia) the population was determined to increase sharply. As a result the discharge of industrial, agricultural, domestic and recreational waste into the river significantly increased. In that in catchment areas there is practically no infrastructure of the acquisition, processing and recycling of waste for the irrigation system. Intensive recreational and transport development of mountainous areas of Karachay-Cherkessia aggravates the situation and may lead to the need for deep water purification for subsequent consumption already in the vast territories of the Central Caucasus. Due to lack of the infrastructure for the water treatment in the upper reaches of the Kuban, it can lead to the serious systemic crisis. It is proposed to start to create in the catchment areas the cost-based system of recycling waste on the base of their processing by pyrolysis.
Sediment budget for Rediu reservoir catchment, North-Eastern Romania
NASA Astrophysics Data System (ADS)
Todosi, Cristian; Niculita, Mihai
2016-04-01
Sediment budgets are a useful tool for geomorphologic analysis, catchment management and environmental assessment, despite the uncertainties related to their assessment. We present the sediment budget construction and validation for a small catchment of 9.5319 kmp (953.19 ha) situated in the North-Eastern part of Romania. The Rediu reservoir was built between 1986 and 1988, on Rediu valley, a left tributary of Bahlui river, north-west from Iasi city. The catchment of the reservoir has 6.5 km in length and 2.5 km in maximum width, the altitudes decreasing from 170 m in the northern part, to 52 m in the southern part. The valley is symmetric, the altitude of the hillslopes going between 200 m to 75 m in one km length, in the transversal section with the maximum width. The floodplain is narrow having between 20 m to 210 m (in the area of confluence with Breazu tributary). The mean slope of the catchment is 6.4 degree, the maximum slope being 24.6 degrees. The length of channels which show banks of up to 2 m is 19.98 km. The land is used predominantly as crops (58.1 %), 16.7 % being covered by pastures (from which over half are eroded), 11.5 % percent of the catchment being covered by planted forests, 9.2 % by rural constructions and roads, 2.9 % by hayfields, 1.5 % by lakes and 0.1 % by orchards. Beside the Rediu reservoir, there are three ponds (15 771, 1761 and 751 sqm) in the catchment. We considered the trap efficiency for the reservoir and the ponds to be 95%. Aerial images from 1963, 1978 , 1984, 2005, 2008, 2010, 2012 and 2014 were used to assess the state of geomorphological processes before and after the reservoir construction. After 1970 a gully system situated in Breazu tributary sub-catchment and several active landslides along the main valley left side were forested. Beside these processes, soil erosion and human impact by constructions are the main processes generating sediment in the study area. The sediment yields were quantified by estimating the quantity of sediments which entered in Rediu reservoir since its construction. The method for volume calculation was the comparison trough geomorphic change detection of two DEMs representing the initial bathymetry (1986 - taken from 1:5 000 scale topographic maps) and a bathymetry surveyed in 2012. The total sediment quantity deposited in the reservoir is 73 947 t (54 776 cbm * 1.35 t/cbm) in the 24 years of operation (1988 to 2012) which means a rate of 3.23 t/ha/y. Soil erosion estimated with RUSEL2 and its routing trough the fluvial system of Rediu reservoir catchment was modelled using WaTEM/SEDEM 2006 model. The modelled quantity of sediments deposited yearly in the Rediu reservoir is 2626 t, which mean 2.75 t/ha. The catchment produce 4803 t, meaning 5.04 t/ha/y from which 2.17 t/ha/y are deposited along the flowpaths, only 0.12 t/ha/y being exported downstream the Rediu reservoir. The difference between the measured and modelled values, 0.48 t/ha/y we argue that is related to the input generated by the human impact, mainly by construction activities. Taking into account that in the near future, the constructions and roads will extend, because of the vicinity with Iasi city, is of great importance to monitor erosion process.
We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...
How to Assess the Signature of the Data: Catchments and Aquifers as Input Processing Systems
NASA Astrophysics Data System (ADS)
Lischeid, G.
2010-12-01
It has been argued recently that hydrological models should not only mimic observed data, but should reproduce the signatures of the data appropriately. However, there is no consent how these signatures could be assessed. In general, hydrological models aim at predicting groundwater head dynamics or hydrograph response to input signals (e.g., groundwater recharge, effective rain), based on information about structural properties of the system, like e.g., transmissivity fields, soil hydraulic conductivity, or size of the catchment water storage. That approach usually faces substantial spatial heterogeneities and nonlinear feedbacks. Here, an alternative approach is suggested for characterizing catchments or aquifers as input signal processing systems. The concept was developed for remote areas where direct anthropogenic effects (groundwater withdrawal, injection wells, etc.), plant water uptake and evaporation from groundwater and streams are negligible. Then, any increase of groundwater head or discharge is related to a corresponding input signal, i.e., groundwater recharge or effective rainfall. That signal propagates through the system and is increasingly attenuated and decelerated with increasing flowpath length. This attenuation differs from simple low-pass-filtering. E.g., different input signals propagate at different velocities, depending on rainfall intensity, antecedent soil moisture, etc. The new approach is based on a principal component analysis of time series of groundwater or lake water level, soil water content, or discharge at different sites. This information is used to for assessing the functional properties of the system rather than its structural heterogeneity at different measurement sites, and to assess first order controls on its spatial patterns. Thus, hydrologic measurements provide a mean to measure the functional properties of the system. It is suggested to use this as signatures of the data. In a next step, model structure can be optimized, focusing on representing these signatures. Furthermore, even the unknown input signal can be assessed, making the catchment or aquifer a giant effective rain sampler. Examples will be presented including heterogeneous and sparse data sets, and an extension to a more complex system with various production wells of a large water supply work.
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.
2015-04-01
The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.
USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda
Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin
2016-01-01
Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems. PMID:27556474
USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.
Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin
2016-08-20
Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.
Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.
Langhammer, Jakub; Rödlová, Sylva
2013-12-01
Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.
Spatial Correlation Of Streamflows: An Analytical Approach
NASA Astrophysics Data System (ADS)
Betterle, A.; Schirmer, M.; Botter, G.
2016-12-01
The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the absence of discharge measurements.
Spatial distribution of dissolved constituents in Icelandic river waters
NASA Astrophysics Data System (ADS)
Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún
2011-02-01
SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.
NASA Astrophysics Data System (ADS)
Matti, B.; Dahlke, H. E.; Dieppois, B.; Lawler, D.; Lyon, S. W.
2016-12-01
Fluvial flood events have a large impact on humans, both socially and economically. Concurrent with climate change flood seasonality in cold environments is expected to shift from a snowmelt-dominated to a rainfall-dominated flow regime. This would have profound impacts on water management strategies, i.e. flood risk mitigation, drinking water supply and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large-scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explored changes in flood seasonality across near-natural catchments in cold environments of the North Atlantic region (40 - 70° N) using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt-dominated catchments with a single peak occurring in spring (March through May), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows. Mean daily flows corroborate those findings with approximately 50% of the catchments showing significant changes. Comparing Scandinavia to North America the same trends could be detected with a stronger signal at the west coast of Scandinavia due to the Westerlies. Contrasting trends were detected for spring flows, for which North American catchments showed decreasing trends whereas increasing trends were observed across Scandinavia. Such changes in flood seasonality have clear implications for management strategies such as the estimation of design floods for flood prevention measures.
NASA Astrophysics Data System (ADS)
Fryirs, Kirstie; Gore, Damian
2013-07-01
River bed colmation layers clog the interstices of gravel-bed rivers, impeding the vertical exchange of water and nutrients that drives ecosystem function in the hyporheic zone. In catchments where fine-grained sediment supply has increased since human disturbance, understanding sediment provenance and the (dis)connectivity of supply allows practitioners to target sediment source problems and treat them within catchment management plans. Release of alluvial fine-grained sediment from channel bank erosion since European settlement has resulted in the formation of a colmation layer along the upper Hunter River at Muswellbrook, eastern Australia. X-ray fluorescence spectrometry (XRF) and X-ray diffractometry (XRD) are used to determine the elemental and mineralogical signatures of colmation layer and floodplain sediment sources across this 4480 km2 catchment. This sediment tracing technique is used to construct a picture of how suspended sediment supply and (dis)connectivity operates in this catchment. In this system, the primary source areas are subcatchments in which sediments are stored largely in partly confined floodplain pockets, but from which sediment supply is unimpeded and directly connected to the receiving reach. Subcatchments in which alluvial sediment storage is significant — and which contain large, laterally unconfined valleys — are essentially 'switched off' or disconnected from the receiving reach. This is because large sediment sinks act to trap fine-grained sediment before it reaches the receiving reach, forming a buffer along the sediment conveyor belt. Given the age structure of floodplains in the receiving reach, this pattern of source area contributions and (dis)connectivity must have occurred throughout the Holocene.
Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales
NASA Astrophysics Data System (ADS)
Pérez Ciria, T.; Chiogna, G.
2017-12-01
Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.
An evaluation of Dynamic TOPMODEL for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.
2015-12-01
Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.
NASA Astrophysics Data System (ADS)
Kheimi, M.; Wang, D.
2017-12-01
Water operating in reservoir system is similar to natural catchment systems in water regulations. The most contributing role in both systems is found to be mitigating of available water deficits from excessive and keeping it away from prolonged droughts. In this paper, Bodyko equation and hedging rule are presented by two stage portioning monthly water balance model. The first stage is the partitioning of precipitation to evapotranspiration (E) plus future storage (S1) and runoff (Q); the second stage is using hedging rule where evapotranspiration and future storage to be recognized by a tradeoff between evapotranspiration and future water storage. The model introduces a linear two point hedging parameters: starting water availability (y1) and ending of water availability (y2).The calibration of the model is based on five parameters: three derived from Budyko equation (S0, ξ, and Yp) and two from hedging rule (y1 and y2).The catchment climate zone along with its physical properties have an effect on the degree of hedging. The y1 and y2 parameters are indicators of the amount of hedging in dry and wet zones. The span between the starting point (y1) and ending point (y2) of hedging indicate there is hedging against future evapotranspiration shortage. Observation of 187 catchments was examined using this model concept for the period of 21 years starting from 1983 to 2003. After calibration and validation using a genetic algorithm it shows that hedging effect in catchment against future evapotranspiration shortages exists with an abundance of hedging effect in dry areas more than wet areas.
NASA Astrophysics Data System (ADS)
von Freyberg, Jana; Kirchner, James W.
2017-04-01
In the pre-Alpine Alptal catchment in central Switzerland, snowmelt and rainfall events cause rapid changes not only in hydrological conditions, but also in water quality. A flood forecasting model for such a mountainous catchment thus requires process understanding that is informed by high-frequency monitoring of hydrological and hydrochemical parameters. Therefore, we installed a high-frequency sampling and analysis system near the outlet of the 0.7 km2 Erlenbach catchment, a headwater tributary of the Alp river. We measured stable water isotopes (δ18O, δ2H) in precipitation and streamwater using Picarro, Inc.'s (Santa Clara, CA, USA) newly developed Continuous Water Sampler Module (CWS) coupled to their L2130-i Cavity Ring-Down Spectrometer, at 30 min temporal resolution. Water quality was monitored with a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as with a UV-Vis spectroscopy system and electrochemical probes (s::can Messtechnik GmbH, Vienna, Austria) for characterization of nutrients and basic water quality parameters. For quantification of trace elements and metals, we collected additional water samples for subsequent ICP-MS analysis in the laboratory. To illustrate the applicability of our newly developed automated analysis and sampling system under field conditions, we will present initial results from the 2016 fall and winter seasons at the Erlenbach catchment. During this period, river discharge was mainly fed by groundwater, as well as intermittent snowmelt and rain-on-snow events. Our high-frequency data set, along with spatially distributed sampling of snowmelt, enables a detailed analysis of source areas, flow pathways and biogeochemical processes that control chemical dynamics in streamflow and the discharge regime.
NASA Astrophysics Data System (ADS)
Lapworth, D. J.; Gooddy, D. C.; Allen, D.; Old, G. H.
2009-09-01
Understanding groundwater-surface water (GW-SW) interaction in Chalk catchments is complicated by the degree of geological heterogeneity. At this study site, in southern United Kingdom, alluvial deposits in the riparian zone can be considered as a patchwork of varying grades and types with an equally varied lateral connectivity. Some display good connection with the river system and others good connection with the groundwater system and, by definition, poorer connectivity with the surface water. By coupling tangential flow fractionation (TFF) with fluorescence analysis we were able to characterize the organic matter in the river and hyporheic zone. There is a significant proportion of particulate and colloidal fluorescent organic matter (FOM) within the river system and at depth within the gravels beneath the river channel. At depth in the hyporheic zone, the surface water inputs are dampened by mixing with deeper groundwater FOM. The shallow (0-0.5 m below river bed) hyporheic zone is highly dynamic as a result of changing surface water inputs from upstream processes. Labile C in the form of protein-like FOM appears to be attenuated preferentially compared to fulvic-like fluorescence in the hyporheic zone compared to the adjacent gravel and sand deposits. These preliminary findings have important implications for understanding nutrient and trace element mobility and attenuation within the groundwater, surface water, and hyporheic zone of permeable Chalk catchments. Fluorescence analysis of dissolved organic matter has been shown to be a useful environmental tracer that can be used in conjunction with other methods to understand GW-SW processes within a permeable Chalk catchment.
The situation of sanitary systems in rural areas in the Miyun catchment, China.
Kröger, C; Xu, A; Duan, S; Zhang, B; Eckstädt, H; Meissner, R
2012-01-01
The Miyun Reservoir provides most of Beijing's drinking water. Despite its importance, the Miyun reservoir suffers from decreasing water quality caused by uncontrolled wastewater discharges, inadequate land use and over fertilization, which increase the pressure on soil and water resources. The major pollutants are nitrogen and phosphorus which emanate to some extent from untreated sewage. So far there is little data about the existing wastewater quantity and quality in rural settlements in northern China. This study was conducted in typical villages situated along upstream rivers in the catchment of the Miyun Reservoir. The main objective was to determine the current situation and efficiency of the wastewater treatment system in rural settlements.
NASA Astrophysics Data System (ADS)
Abancó, Clàudia; Hürlimann, Marcel; Moya, José
2014-05-01
Debris flows represent a risk to the society due to their high destructive power. Rainfall is the main debris-flow triggering factor. Rainfall thresholds are generally used for warning of debris flow occurrence in susceptible catchments. However, the efficiency of such thresholds for real time hazard assessment is often conditioned by many factors, such as: the location and number of the rain gauges used (both to define the thresholds, and for setting off warnings); the temporal and spatial evolution of rainfall's convective cells or the effect of snow cover melting. These factors affect the length of the warning time, which is of crucial importance for issuing alert messages or alarms to the people and infrastructures at risk. The Rebaixader catchment (Central Pyrenees, Spain) is being monitored since 2009 by six stations recording information on initiation (4 stations) and flow detection and cinematic behaviour (2 stations). Until December 2013, 7 debris flows, 17 debris floods and 4 rockfalls have been recorded. The objectives of this work were: a) the definition of rainfall thresholds at two different rain gauges; b) the analysis of the infiltration patterns in order to define their potential use for warning systems and c) preliminary testing of rainfall thresholds' efficiency in terms of warning time, in this catchment. This last goal consisted in the comparison of the time elapsed between the rainfall threshold was exceeded and the event occurrence was detected by the stations at the channel area. The results suggest that the intensity-duration rainfall thresholds sometimes provide warning times which would be too short for an adequate reaction in the Rebaixader catchment (less than 10 minutes). The combination of such rainfall thresholds with infiltration measurements is useful to increase the warning time. This occurs especially in the events triggered in spring, when the snowmelt plays an important role in the event's triggering conditions. However, the effects of infiltration associated to the summer convective rainfalls are almost imperceptible; therefore their importance in warning systems decreases.
Remote sensing of surface water quality in relation to catchment condition in Zimbabwe
NASA Astrophysics Data System (ADS)
Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy
2017-08-01
The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.
2013-12-01
The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the catchments. We used the Global Likelihood Uncertainty Estimations (GLUE) approach [Beven and Binley, 1992] to assess the parameter uncertainties and the subsequent error in model outputs and residence times. Reasonably low parameter uncertainties were obtained by calibrating simultaneously the two paired catchments with two outlets time series of stream flow and nitrate concentrations. Finally, only one parameter controlled the contrast in nitrogen residence times between the catchments. Therefore, this approach provided a promising metric for classifying the variability of catchment response to agricultural nitrogen inputs. Beven, K., and A. Binley (1992), THE FUTURE OF DISTRIBUTED MODELS - MODEL CALIBRATION AND UNCERTAINTY PREDICTION, Hydrological Processes, 6(3), 279-298. Kirchner, J. W., X. Feng, and C. Neal (2001), Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations, Journal of Hydrology, 254(1-4), 82-101. Ruiz, L., S. Abiven, C. Martin, P. Durand, V. Beaujouan, and J. Molenat (2002), Effect on nitrate concentration in stream water of agricultural practices in small catchments in Brittany : II. Temporal variations and mixing processes, Hydrology and Earth System Sciences, 6(3), 507-513.
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.
2011-12-01
Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By contrast, during the dry year infiltration and subsequent displacement of stored water that has had longer contact time with minerals and therefore has become more geochemically evolved to produce a greater difference between snowmelt and catchment outlet hydrochemistry. The results for EMD show little distinction between albite weathering for wet and dry years (55.9g and 66.0g, relatively). A hypothesis for this lack of difference in mineral phase changes may be due to less subsurface storage capacity in EMD relative to GL4. The spatial distribution of snowmelt has also been shown to influence the integrated watershed response, and future work includes using the Alpine Hydrochemical Model (AHM) to further investigate catchment response to these spatial data. The AHM will also provide further insight of surface-groundwater interactions through a more integrated model which includes hydrochemical, biological and physical processes to elucidate catchment response to changes in snowmelt dynamics.
Deciphering flood frequency curves from a coupled human-nature system perspective
NASA Astrophysics Data System (ADS)
Li, H. Y.; Abeshu, G. W.; Wang, W.; Ye, S.; Guo, J.; Bloeschl, G.; Leung, L. R.
2017-12-01
Most previous studies and applications in deriving or applying FFC are underpinned by the stationarity assumption. To examine the theoretical robustness of this basic assumption, we analyzed the observed FFCs at hundreds of catchments in the contiguous United States along the gradients of climate conditions and human influences. The shape of FFCs is described using three similarity indices: mean annual floods (MAF), coefficient of variance (CV), and a seasonality index defined using circular statistics. The characteristics of catchments are quantified with a small number of dimensionless indices, including particularly: 1) the climatic aridity index, AI, which is a measure of the competition between energy and water availability; 2) reservoir impact index, defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume. The linkages between these two sets of indices are then explored based on a combination of mathematical derivations of the Budyko formula, simple but physically based reservoir operation models, and other auxiliary data. It is found that the shape of FFCs shifts from arid to humid climate, and from periods with weak human influences to periods with strong influences. The seasonality of floods is found to be largely controlled by the synchronization between the seasonal cycles of precipitation and solar radiation in pristine catchments, but also by the reservoir regulation capacity in managed catchments. Our findings may help improve flood-risk assessment and mitigation in both natural and regulated river systems across various climate gradients.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Glendell, Miriam; Stutter, Marc I.; Helliwell, Rachel C.
2017-04-01
An understanding of catchment response to climate and land use change at a regional scale is necessary for the assessment of mitigation and adaptation options addressing diffuse nutrient pollution. It is well documented that the physicochemical properties of a river ecosystem respond to change in a non-linear fashion. This is particularly important when threshold water concentrations, relevant to national and EU legislation, are exceeded. Large scale (regional) model assessments required for regulatory purposes must represent the key processes and mechanisms that are more readily understood in catchments with water quantity and water quality data monitored at high spatial and temporal resolution. While daily discharge data are available for most catchments in Scotland, nitrate and phosphorus are mostly available on a monthly basis only, as typified by regulatory monitoring. However, high resolution (hourly to daily) water quantity and water quality data exist for a limited number of research catchments. To successfully implement adaptation measures across Scotland, an upscaling from data-rich to data-sparse catchments is required. In addition, the widespread availability of spatial datasets affecting hydrological and biogeochemical responses (e.g. soils, topography/geomorphology, land use, vegetation etc.) provide an opportunity to transfer predictions between data-rich and data-sparse areas by linking processes and responses to catchment attributes. Here, we develop a framework of catchment typologies as a prerequisite for transferring information from data-rich to data-sparse catchments by focusing on how hydrological catchment similarity can be used as an indicator of grouped behaviours in water quality response. As indicators of hydrological catchment similarity we use flow indices derived from observed discharge data across Scotland as well as hydrological model parameters. For the latter, we calibrated the lumped rainfall-runoff model TUWModel using multiple objective functions. The relationships between indicators of hydrological catchment similarity, physical catchment characteristics and nitrate and phosphorus concentrations in rivers are then investigated using multivariate statistics. This understanding of the relationship between catchment characteristics, hydrological processes and water quality will allow us to implement more efficient regulatory water quality monitoring strategies, to improve existing water quality models and to model mitigation and adaptation scenarios to global change in data-sparse catchments.
NASA Astrophysics Data System (ADS)
Kohnová, Silvia; Gaál, Ladislav; Bacigál, Tomáš; Szolgay, Ján; Hlavčová, Kamila; Valent, Peter; Parajka, Juraj; Blöschl, Günter
2016-12-01
The case study aims at selecting optimal bivariate copula models of the relationships between flood peaks and flood volumes from a regional perspective with a particular focus on flood generation processes. Besides the traditional approach that deals with the annual maxima of flood events, the current analysis also includes all independent flood events. The target region is located in the northwest of Austria; it consists of 69 small and mid-sized catchments. On the basis of the hourly runoff data from the period 1976- 2007, independent flood events were identified and assigned to one of the following three types of flood categories: synoptic floods, flash floods and snowmelt floods. Flood events in the given catchment are considered independent when they originate from different synoptic situations. Nine commonly-used copula types were fitted to the flood peak - flood volume pairs at each site. In this step, two databases were used: i) a process-based selection of all the independent flood events (three data samples at each catchment) and ii) the annual maxima of the flood peaks and the respective flood volumes regardless of the flood processes (one data sample per catchment). The goodness-of-fit of the nine copula types was examined on a regional basis throughout all the catchments. It was concluded that (1) the copula models for the flood processes are discernible locally; (2) the Clayton copula provides an unacceptable performance for all three processes as well as in the case of the annual maxima; (3) the rejection of the other copula types depends on the flood type and the sample size; (4) there are differences in the copulas with the best fits: for synoptic and flash floods, the best performance is associated with the extreme value copulas; for snowmelt floods, the Frank copula fits the best; while in the case of the annual maxima, no firm conclusion could be made due to the number of copulas with similarly acceptable overall performances. The general conclusion from this case study is that treating flood processes separately is beneficial; however, the usually available sample size in such real life studies is not sufficient to give generally valid recommendations for engineering design tasks.
NASA Astrophysics Data System (ADS)
Engel, Michael; Penna, Daniele; Frentress, Jay; Andreoli, Andrea; Hecher, Peter; Van Meerveld, Ilja; Comiti, Francesco
2017-04-01
In recent decades, restauration actions have been implemented in mountain rivers to face widespread morphological changes. Such natural and anthropogenic modifications can have relevant impacts on the ecological and ecohydrological functioning of riparian vegetation. Understanding the water sources used by riparian vegetation is important for the implementation of effective river restoration initiatives. Therefore, more ecohydrological research is needed to quantify the complex interactions between hydrology and vegetation in different alpine river systems. In this study we used water stable isotopes and electrical conductivity (EC) as tracers to better understand the hydrological and ecohydrological relationship between the riparian vegetation and the river bed of alpine river systems. We choose two catchments, Ahr/Aurino River and Mareit/Ridanna River catchments (South Tyrol, Italy) as study sites. In both catchments, we selected two sites comprising a younger (< 5 years) and an older (> 10 years) alder (Alnus incana) stand. At each site, soil moisture at different depths and groundwater levels were monitored. Suction lysimeters were installed at the same depths than the soil moisture sensors. Samples for tracer analysis were collected since June 2016 on a bi-weekly or monthly basis from precipitation, soil water, groundwater and stream water. EC was continuously measured in a piezometer at the Mareit River. In addition, we extracted sap water for isotopic analysis from alder trees. First results show that all water types sampled in both catchments fell along the global meteoric water line showing no evaporative enrichments. Sap samples are expected to deviate from the meteoric line but they have not been analysed yet. At both sites in the Ahr catchment, soil water seemed to be more variable and isotopically more enriched at 10 cm depth (δ2H: - 34 to -69 ‰) than at 50 cm (δ2H: -45 to -71 ‰), indicating a decreasing influence of precipitation with increasing soil depth. In contrast, soil water at Mareit River seemed to depend stronger on the topographical location of the site than on the soil depth. Groundwater in the Ahr catchment at the end of July 2016 showed isotopic depletion (δ2H: -89 ‰), which occurred about one month later than the isotopic depletion observed in the stream (δ2H: -96 ‰). This may indicate a stream-groundwater connectivity with a specific time lag. These observations may provide a first insight into the main controls on the complex interactions between stream and vegetation in the riparian zone. Keywords: stable isotopes of water; sap; alpine rivers; riparian zone connectivity; ecohydrology
NASA Astrophysics Data System (ADS)
Lissak, Candide; Fort, Monique; Arnaud-Fassetta, Gilles; Mathieu, Alexandre; Malet, Jean-Philippe; Carlier, Benoit; Betard, François; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charney, Bérengère; Bletterie, Xavier
2014-05-01
The Guil River catchment (Queyras, Southern French Alps) is prone to hydro-geomorphic hazards related to catastrophic floods, with an amplification of their impacts due to strong hillslope-channel connectivity such as in 1957 (> R.I. 100 yr), and more recently in 2000 (R.I. 30 yr). In both cases, the rainfall intensity, aggravated by pre-existing saturated soils, explained the immediate response of the fluvial system and the subsequent destabilisation of slopes. This resulted in serious damages to infrastructure and buildings in the valley bottom, mostly along some specific reaches and confluences with debris flow prone tributaries. After each event, new protective structures are built. One of the purposes of this study, undertaken in the frame of the SAMCO (ANR) project, was to understand the hydro-geomorphological functioning of this upper Alpine catchment in a context of hazards mitigation and sustainable management of sediment yield, transfer and deposition. To determine the main sediment storages that could be mobilised during the next major hydro-meteorological events, the first step of our study consists in the identification and characterisation of areas that play a role into the sediment transfer processing. From environmental characteristics (channel geometric, vegetation cover…) and anthropogenic factors (hydraulic infrastructures, urban development…), a semi-automatic method provides a typology of contribution areas with sediment storages sensitive to erosion, or areas that will be prone to deposition of sediments during the next flooding event. The second step of the study is focused on the sediment storages with their characterisation and connectivity to the trunk channel. Taking into account the entire catchment and including the torrential system, this phase analyses the sedimentary transfers from the identification and classification of sediment storages to the evaluation of the degree of connectivity with the main or secondary channels. The proposed methodology is based on data directly derived from GIS analysis using interpretation of aerial photographs, regional scale Digital Elevation Model (DEM), high-resolution DEM derived from airborne-based LiDAR, and field survey. The data thus obtained can be used in the final geomorphological map. Future investigations will quantify the contribution of each sub-catchment in the global sediment budget of the Guil catchment. For a better assessment of sediment fluxes and sediment delivery into the main channel network, tracers (pit-tags) and diachronic Terrestrial Laser Scanning will be performed in selected sub-catchments in order to measure erosion rates and contribution to the sediment yield in the valley bottoms during the floods, avalanches and rainfall seasonal events.
Sediment connectivity evolution on an alpine catchment undergoing glacier retreat
NASA Astrophysics Data System (ADS)
Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric
2014-05-01
Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into the rough surface of the SLBL results. The impact of sediment dynamic changes on the study catchment due to glacier retreat has been assessed by comparing predictions deriving from model application on different scenarios. Simulations allowed the analysis of sediment connectivity evolution over decade scales suggesting an increase of potential sediment transfer and connections in areas close to the main channel network. References: Cavalli, M., Trevisani, S., Comiti, F., Marchi, L., 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41. Jaboyedoff M., Bardou E., Derron M.-H. 2004. Sloping local base level: a tool to estimate potential erodible volume and infilling alluvial sediment of glacial valleys. Swiss Geo-Scientists meeting, November 2004, Lausanne.
NASA Astrophysics Data System (ADS)
Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.
2010-05-01
Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling experiment aims at separating the effect of land cover from other differences (e.g. catchment area, morphology) between the two catchments. This approach allows us to make general statements on effects of land cover, required for future predictions for larger areas. In our modelling experiment, a process-based distributed hydrological model is used for the two catchments. First, we calibrate the model using data from the two catchments until a single set of parameters valid for both is found. With this set of parameters and considering a given meteorological driver (due to their proximity, it can be considered the same for both catchments), runoff at the outlet of each catchment is simulated. Land cover is then swapped between catchments and a new runoff simulation is performed for each "swapped" catchment, using the same set of parameters and the same meteorological driver. The effects of the land cover change are determined by analysing the differences between the first and the "swapped" simulations. This study is based on an analysis of the hydrological differences of two catchments with different history of land use, and a comparative modelling experiment applied to them. Following this approach, we attempt to advance our understanding of the effects of land-use/land-cover changes in catchment hydrology and, ultimately, anticipate their hydrological consequences under a future re-vegetation scenario.
Use of modeling to protect, plan, and manage water resources in catchment areas.
Constant, Thibaut; Charrière, Séverine; Lioeddine, Abdejalil; Emsellem, Yves
2016-08-01
The degradation of water resources by diffuse pollution, mainly due to nitrate and pesticides, is an important matter for public health. Restoration of the quality of natural water catchments by focusing on their catchment areas is therefore a national priority in France. To consider catchment areas as homogeneous and to expend an equal effort on the entire area inevitably leads to a waste of time and money, and restorative actions may not be as efficient as intended. The variability of the pedological and geological properties of the area is actually an opportunity to invest effort on smaller areas, simply because every action is not equally efficient on every kind of pedological or geological surface. Using this approach, it is possible to invest in a few selected zones that will be efficient in terms of environmental results. The contributive hydraulic areas (CHA) concept is different from that of the catchment area. Because the transport of most of the mobile and persistent pollutants is primarily driven by water circulation, the concept of the CHA is based on the water pathway from the surface of the soil in the catchment area to the well. The method uses a three-dimensional hydrogeological model of surface and groundwater integrated with a geographic information system called Watermodel. The model calculates the contribution (m(3)/h or %) of each point of the soil to the total flow pumped in a well. Application of this model, partially funded by the Seine Normandy Basin Agency, to the catchment of the Dormelles Well in the Cretaceous chalk aquifer in the Orvanne valley, France (catchment area of 23,000 ha at Dormelles, county 77), shows that 95 % of the water pumped at the Dormelles Well comes from only 26 % of the total surface area of the catchment. Consequently, an action plan to protect the water resource will be targeted at the 93 farmers operating in this source area rather than the total number of farmers (250) across the entire 23,000 ha. Another model, developed from Epiclès© software, permits the calculation of the under-root nitrate concentrations for each field based on soil type, climate, and farming practices. When the Watermodel and Epiclès© are coupled, nitrate transfers from the soil to the catchment and the river can be modeled. In this study, the initial pollution due to the actual farming practices was simulated and we were also able to estimate the efficiency of the agronomic action plan by testing several scenarios and calculating the time needed to reach the target nitrate concentration in the well.
Typecasting catchments: Classification, directionality, and the pursuit of universality
NASA Astrophysics Data System (ADS)
Smith, Tyler; Marshall, Lucy; McGlynn, Brian
2018-02-01
Catchment classification poses a significant challenge to hydrology and hydrologic modeling, restricting widespread transfer of knowledge from well-studied sites. The identification of important physical, climatological, or hydrologic attributes (to varying degrees depending on application/data availability) has traditionally been the focus for catchment classification. Classification approaches are regularly assessed with regard to their ability to provide suitable hydrologic predictions - commonly by transferring fitted hydrologic parameters at a data-rich catchment to a data-poor catchment deemed similar by the classification. While such approaches to hydrology's grand challenges are intuitive, they often ignore the most uncertain aspect of the process - the model itself. We explore catchment classification and parameter transferability and the concept of universal donor/acceptor catchments. We identify the implications of the assumption that the transfer of parameters between "similar" catchments is reciprocal (i.e., non-directional). These concepts are considered through three case studies situated across multiple gradients that include model complexity, process description, and site characteristics. Case study results highlight that some catchments are more successfully used as donor catchments and others are better suited as acceptor catchments. These results were observed for both black-box and process consistent hydrologic models, as well as for differing levels of catchment similarity. Therefore, we suggest that similarity does not adequately satisfy the underlying assumptions being made in parameter regionalization approaches regardless of model appropriateness. Furthermore, we suggest that the directionality of parameter transfer is an important factor in determining the success of parameter regionalization approaches.
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
NASA Astrophysics Data System (ADS)
Velázquez, Juan Alberto; Anctil, François; Ramos, Maria-Helena; Perrin, Charles
2010-05-01
An ensemble forecasting system seeks to assess and to communicate the uncertainty of hydrological predictions by proposing, at each time step, an ensemble of forecasts from which one can estimate the probability distribution of the predictant (the probabilistic forecast), in contrast with a single estimate of the flow, for which no distribution is obtainable (the deterministic forecast). In the past years, efforts towards the development of probabilistic hydrological prediction systems were made with the adoption of ensembles of numerical weather predictions (NWPs). The additional information provided by the different available Ensemble Prediction Systems (EPS) was evaluated in a hydrological context on various case studies (see the review by Cloke and Pappenberger, 2009). For example, the European ECMWF-EPS was explored in case studies by Roulin et al. (2005), Bartholmes et al. (2005), Jaun et al. (2008), and Renner et al. (2009). The Canadian EC-EPS was also evaluated by Velázquez et al. (2009). Most of these case studies investigate the ensemble predictions of a given hydrological model, set up over a limited number of catchments. Uncertainty from weather predictions is assessed through the use of meteorological ensembles. However, uncertainty from the tested hydrological model and statistical robustness of the forecasting system when coping with different hydro-meteorological conditions are less frequently evaluated. The aim of this study is to evaluate and compare the performance and the reliability of 18 lumped hydrological models applied to a large number of catchments in an operational ensemble forecasting context. Some of these models were evaluated in a previous study (Perrin et al. 2001) for their ability to simulate streamflow. Results demonstrated that very simple models can achieve a level of performance almost as high (sometimes higher) as models with more parameters. In the present study, we focus on the ability of the hydrological models to provide reliable probabilistic forecasts of streamflow, based on ensemble weather predictions. The models were therefore adapted to run in a forecasting mode, i.e., to update initial conditions according to the last observed discharge at the time of the forecast, and to cope with ensemble weather scenarios. All models are lumped, i.e., the hydrological behavior is integrated over the spatial scale of the catchment, and run at daily time steps. The complexity of tested models varies between 3 and 13 parameters. The models are tested on 29 French catchments. Daily streamflow time series extend over 17 months, from March 2005 to July 2006. Catchment areas range between 1470 km2 and 9390 km2, and represent a variety of hydrological and meteorological conditions. The 12 UTC 10-day ECMWF rainfall ensemble (51 members) was used, which led to daily streamflow forecasts for a 9-day lead time. In order to assess the performance and reliability of the hydrological ensemble predictions, we computed the Continuous Ranked probability Score (CRPS) (Matheson and Winkler, 1976), as well as the reliability diagram (e.g. Wilks, 1995) and the rank histogram (Talagrand et al., 1999). Since the ECMWF deterministic forecasts are also available, the performance of the hydrological forecasting systems was also evaluated by comparing the deterministic score (MAE) with the probabilistic score (CRPS). The results obtained for the 18 hydrological models and the 29 studied catchments are discussed in the perspective of improving the operational use of ensemble forecasting in hydrology. References Bartholmes, J. and Todini, E.: Coupling meteorological and hydrological models for flood forecasting, Hydrol. Earth Syst. Sci., 9, 333-346, 2005. Cloke, H. and Pappenberger, F.: Ensemble Flood Forecasting: A Review. Journal of Hydrology 375 (3-4): 613-626, 2009. Jaun, S., Ahrens, B., Walser, A., Ewen, T., and Schär, C.: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Nat. Hazards Earth Syst. Sci., 8, 281-291, 2008. Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous probability distributions, Manage Sci., 22, 1087-1096, 1976. Perrin, C., Michel C. and Andréassian,V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275-301, 2001. Renner, M., Werner, M. G. F., Rademacher, S., and Sprokkereef, E.: Verification of ensemble flow forecast for the River Rhine, J. Hydrol., 376, 463-475, 2009. Roulin, E. and Vannitsem, S.: Skill of medium-range hydrological ensemble predictions, J. Hydrometeorol., 6, 729-744, 2005. Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of the probabilistic prediction systems, in: Proceedings, ECMWF Workshop on Predictability, Shinfield Park, Reading, Berkshire, ECMWF, 1-25, 1999. Velázquez, J.A., Petit, T., Lavoie, A., Boucher M.-A., Turcotte R., Fortin V., and Anctil, F. : An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrol. Earth Syst. Sci., 13, 2221-2231, 2009. Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego, CA, 465 pp., 1995.
NASA Astrophysics Data System (ADS)
Becouze, C.; Bertrand-Krajewski, J. L.; Coquery, M.; Dembélé, A.; Cren-Olivé, C.
2009-04-01
Keywords: WFD, priority pollutants, stormwater, sewer systems, atmospheric deposition The European Water Framework Directive (WFD, 2000) requires both a progressive reduction of priority substances discharges and a cessation of hazardous priority substances discharges into water bodies. In order to define priorities for action in a global and integrated urban water management approach, we need to identify and quantify all sources of pollutants (diffuse agricultural and urban emissions, industrial emissions, effluents from wastewater treatment plants, from separate and combined sewer systems, etc.). The objectives of the ESPRIT collaborative project are to identify, evaluate, characterise and later on model the fluxes of priority substances in urban stormwater, for both combined and separate sewer systems. This paper presents i) the methodology applied to collect representative samples of dry atmospheric deposits, of rainwater and of stormwater discharges at the outlet of experimental catchments, ii) the EMC (Event Mean Concentrations) values and the fluxes of 36 organic substances and of 26 metals calculated for various storm events, and iii) the discussion of these results. Two experimental sites have been selected in Lyon for the project: Ecully (combined sewer system draining a 245 ha residential catchment) and Chassieu (separate stormwater system draining a 185 ha industrial catchment). Each catchment outlet is equipped with sensors measuring various parameters (flow depth and velocity, pH, conductivity, turbidity, temperature) and with refrigerated automatic samplers. Each site is also equipped with prototype devices collecting separately samples of both dry atmospheric deposits and rainwater. All sampling devices comply with requirements for trace micro-pollutants monitoring (Teflon tubing, clean glass bottles, etc.). Field and laboratory blank procedures were carried out to quantify the possible contamination along the sampling/conditioning chain. Event mean samples are built manually according to both discharge and conductivity time series. 26 metals are analysed by ICP-MS in dissolved and particulate phases. A multi-residue analytical method is used to quantify 36 organic micro-pollutants in the dissolved phase by GS-MS and LC-FLD-MS/MS (validation of the method for particulate phase is currently carried out). Since the beginning of 2008, 19 campaigns have been carried at the outlet of both sites, plus 12 campaigns of atmospheric deposits and 20 campaigns of rainwater. 8 organic pollutants in the dissolved phase and almost all metals in both dissolved and particulate phases are detected. The contribution of the atmosphere to the fluxes is significant. A significant variability between the two catchments has been observed, both for metals and for some organics pollutants including pesticides. Inter-event variability is also very significant in each site for concentrations and specific fluxes (i.e. per active ha), indicating that long term campaigns are necessary to reliably evaluate annual fluxes. The paper will present and discuss the results with more details.
J.J. McDonnell; K. McGuire; P. Aggarwal; K.J. Beven; D. Biondi; G. Destouni; S. Dunn; A. James; J. Kirchner; P. Kraft; S. Lyon; P. Maloszewski; B. Newman; L. Pfister; A. Rinaldo; A. Rodhe; T. Sayama; J. Seibert; K. Solomon; C. Soulsby; M. Stewart; D. Tetzlaff; C. Tobin; P. Troch; M. Weiler; A. Western; A. Wörman; S. Wrede
2010-01-01
The time water spends travelling subsurface through a catchment to the stream network (i.e. the catchment water transit time) fundamentally describes the storage, flow pathway heterogeneity and sources of water in a catchment. The distribution of transit times reflects how catchments retain and release water and solutes that in turn set biogeochemical conditions and...
Surficial redistribution of fallout 131iodine in a small temperate catchment
NASA Astrophysics Data System (ADS)
Landis, Joshua D.; Hamm, Nathan T.; Renshaw, Carl E.; Dade, W. Brian; Magilligan, Francis J.; Gartner, John D.
2012-03-01
Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides' shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries.
Surficial redistribution of fallout 131iodine in a small temperate catchment
Landis, Joshua D.; Hamm, Nathan T.; Renshaw, Carl E.; Dade, W. Brian; Magilligan, Francis J.; Gartner, John D.
2012-01-01
Isotopes of iodine play significant environmental roles, including a limiting micronutrient (127I), an acute radiotoxin (131I), and a geochemical tracer (129I). But the cycling of iodine through terrestrial ecosystems is poorly understood, due to its complex environmental chemistry and low natural abundance. To better understand iodine transport and fate in a terrestrial ecosystem, we traced fallout 131iodine throughout a small temperate catchment following contamination by the 11 March 2011 failure of the Fukushima Daiichi nuclear power facility. We find that radioiodine fallout is actively and efficiently scavenged by the soil system, where it is continuously focused to surface soils over a period of weeks following deposition. Mobilization of historic (pre-Fukushima) 137cesium observed concurrently in these soils suggests that the focusing of iodine to surface soils may be biologically mediated. Atmospherically deposited iodine is subsequently redistributed from the soil system via fluvial processes in a manner analogous to that of the particle-reactive tracer 7beryllium, a consequence of the radionuclides’ shared sorption affinity for fine, particulate organic matter. These processes of surficial redistribution create iodine hotspots in the terrestrial environment where fine, particulate organic matter accumulates, and in this manner regulate the delivery of iodine nutrients and toxins alike from small catchments to larger river systems, lakes and estuaries. PMID:22378648
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Viney, Neil R.; Jeevaraj, Charles G.
1996-03-01
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1-5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing.The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.
Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling
NASA Astrophysics Data System (ADS)
Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.
2017-12-01
Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.
Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.
2013-01-01
A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.
NASA Astrophysics Data System (ADS)
Turner, Kate; Worrall, Fred
2010-05-01
Only 3% of the earths land surface is covered by peatland yet boreal and subarctic peatlands store approximately 15-30% of the World's soil carbon as peat (Limpens et al. 2008). In comparison British bogs store carbon equivalent to 20 years worth of national emissions. The loss of carbon from these areas in the form of dissolved organic carbon (DOC) is increasing and it is expected to have grown by up to 40% by 2018. Extensive drainage of UK peatlands has been associated with dehydration of the peat, an increase in water colour and a loss of carbon storage. It has been considered that the blocking of these drainage channels represents a means of peat restoration and a way of reducing DOC loss. This study aims to assess the effectiveness of this drain blocking at both an individual drain scale and at a larger catchment scale. Gibson et al. (2009) considered the effects of blocking at a solely individual drain scale finding that a 20% drop in DOC export was recorded post blocking however this decrease was due to a reduction in water yield rather than a reduction in DOC concentration with the concentration record showing no significant reduction. The effect of external parameters become more pronounced as the DOC record is examined at larger scales. The catchment is an open system and water chemistry will be influence by mixing with water from other sources. Also it is likely that at some point the drains will cut across slope leading to the flow of any highly coloured water down slope, bypassing the blockages, and entering the surface waters downstream. Degradation of DOC will occur naturally downstream due to the effects of light and microbial activity. There is, consequently, a need to examine the wider effects of drain blocking at a catchment scale to ensure that what is observed for one drain transfers to the whole catchment. A series of blocked and unblocked catchments were studied in Upper Teesdale, Northern England. Drain water samples were taken at least daily at nine localities. These sites were located such that individual drains could be monitored in the context of a larger catchment. Water table depth, flow and weather parameters were recorded along with the collection of runoff and soil water samples. A detailed sampling programme was undertaken in which a series of drains were studied in the 12 months prior to and post blocking. This approach has allowed the effects of blocking on the carbon budget, water balance and flow pathways to be considered. Results indicate that the blocking of zero order drainage channels leads to a decrease in DOC export on an individual drain scale. However, this is due to a reduction in water yield rather than concentration. Concentrations are seen to rise by a small yet statistically significant amount in blocked zero order streams. The effect at a larger scale is more complex. Annual export values in the unblocked control catchment show a rise from zero to first order streams indicating that water is being added to the system at this scale from external spatially variable sources. This pattern is also recognised in the blocked catchment. The DOC concentration record in blocked drains at this larger scale however indicated a reduction relative to the unblocked catchment. This reduction points to a change in flow pathways post blocking as highly coloured water re-navigates its way downstream. References: Gibson H, Worrall F, Burt TP, Adamson JK (2009) DOC budgets of drained peat catchments: implications for DOC production in peat soils, Hydrological Processes 23(13) 1901-1911 Limpens J (2008) Peatlands and the carbon cycle: from local processes to global implications- a synthesis, Biogeosciences 5 1475-1491
NASA Astrophysics Data System (ADS)
Nguyen, Hung T. T.; Galelli, Stefano
2018-03-01
Catchment dynamics is not often modeled in streamflow reconstruction studies; yet, the streamflow generation process depends on both catchment state and climatic inputs. To explicitly account for this interaction, we contribute a linear dynamic model, in which streamflow is a function of both catchment state (i.e., wet/dry) and paleoclimatic proxies. The model is learned using a novel variant of the Expectation-Maximization algorithm, and it is used with a paleo drought record—the Monsoon Asia Drought Atlas—to reconstruct 406 years of streamflow for the Ping River (northern Thailand). Results for the instrumental period show that the dynamic model has higher accuracy than conventional linear regression; all performance scores improve by 45-497%. Furthermore, the reconstructed trajectory of the state variable provides valuable insights about the catchment history—e.g., regime-like behavior—thereby complementing the information contained in the reconstructed streamflow time series. The proposed technique can replace linear regression, since it only requires information on streamflow and climatic proxies (e.g., tree-rings, drought indices); furthermore, it is capable of readily generating stochastic streamflow replicates. With a marginal increase in computational requirements, the dynamic model brings more desirable features and value to streamflow reconstructions.
NASA Astrophysics Data System (ADS)
Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary
2018-04-01
Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.
Hydrology-based understanding of Ontario Lacus in Titan's south pole
NASA Astrophysics Data System (ADS)
Dhingra, Rajani D.; Barnes, Jason W.; Yanites, Brian J.; Kirk, Randolph L.
2015-11-01
Ontario Lacus is the largest presently filled lake at the south pole of Titan. Many other large basins in south pole exist at lower elevations than Ontario Lacus but are currently empty. To find out what sets Ontario apart from those empty basins, we have carried a detailed hydrological assessment of Ontario Lacus. Topography of the region, as derived from Cassini RADAR altimetry was used to determine the catchment area of Ontario Lacus. We could map the areal extent of catchments as far as southern mid-latitudes. Clouds in southern mid and high latitudes have been observed by Cassini VIMS which indicate possible precipitation in those regions. Precipitation in southern mid-latitudes coupled with the large catchment areas of Ontario Lacus could be the reason behind it being filled. Our mass conservation calculations indicate that if runoff was the only contributor to the lake volume, then the lake might be filled within one Titan year (29.5 Earth years) in entirety. We also observe a non-linear relationship between the longest identifiable stream and the catchment area (Hack's Law) which is consistent with terrestrial hydrological systems and may help in further interpretation of the hydrology of Ontario Lacus.
NASA Astrophysics Data System (ADS)
Benettin, P.; Queloz, P.; Bailey, S. W.; McGuire, K. J.; Rinaldo, A.; Botter, G.
2015-12-01
Water age distributions can be used to address a number of environmental challenges, such as modeling the dynamics of river water quality, quantifying the interactions between shallow and deep flow systems and understanding nutrient loading persistence. Moreover, as the travel time of a water particle is the time available for biogeochemical reactions, it can be explicitly used to predict the concentration of non-conservative solutes, as e.g. those derived by mineral weathering. In recent years, many studies acknowledged the dynamic nature of streamflow age and linked it to observed variations in stream water quality. In this new framework, water stored within a catchment can be seen as a pool that is selectively "sampled" by streams and vegetation, determining the chemical composition of discharge and evapotranspiration. We present results from a controlled lysimeter experiment and real-world catchments, where the theoretical framework has been used to reproduce water quality datasets including conservative tracers (e.g. chloride and water stable isotopes) and weathering-derived solutes (like silicon and sodium). The approach proves useful to estimate the catchment water storage involved in solute mixing and sheds light on how solutes and water of different ages are selectively removed by vegetation and soil drainage.
NASA Astrophysics Data System (ADS)
McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.
2001-12-01
It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the hillslope reservoir/stormflow flux partially controls the relative contributions of hillslope and riparian zones to catchment runoff and solute dynamics.
Quantitative Generalizations for Catchment Sediment Yield Following Plantation Logging
NASA Astrophysics Data System (ADS)
Bathurst, James; Iroume, Andres
2014-05-01
While there is a reasonably clear qualitative understanding of the impact of forest plantations on sediment yield, there is a lack of quantitative generalizations. Such generalizations would be helpful for estimating the impacts of proposed forestry operations and would aid the spread of knowledge amongst both relevant professionals and new students. This study therefore analyzed data from the literature to determine the extent to which quantitative statements can be established. The research was restricted to the impact of plantation logging on catchment sediment yield as a function of ground disturbance in the years immediately following logging, in temperate countries, and does not consider landslides consequent upon tree root decay. Twelve paired catchment studies incorporating pre- and post-logging measurements of sediment yield were identified, resulting in forty-three test catchments (including 14 control catchments). Analysis yielded the following principal conclusions: 1) Logging generally provokes maximum annual sediment yields of less than a few hundred t km-2 yr-1; best management practice can reduce this below 100 t km-2 yr-1. 2) At both the annual and event scales, the sediment yield excess of a logged catchment over a control catchment is within one order of magnitude, except with severe ground disturbance. 3) There is no apparent relationship between sediment yield impact and the proportion of catchment logged. The effect depends on which part of the catchment is altered and on its connectivity to the stream network. 4) The majority of catchments delivered their maximum sediment yield in the first two years after logging. The logging impacts were classified in terms of the absolute values of specific sediment yield, the values relative to those in the control catchments for the same period and the values relative both to the control catchment and the pre-logging period. Most studies have been for small catchments (< 10 km2) and temperate regions; the impact at large catchment scales and in tropical regions requires further research.
A multi-method study of regional groundwater circulation in the Ordos Plateau, NW China
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Wei; Wan, Li; Wang, Xu-Sheng; Wang, Dan; Wang, Heng; Wang, Jun-Zhi; Zhang, Hong; Zhang, Zhi-Yuan; Zhao, Ke-Yu
2018-01-01
The Ordos Basin is one of the most intensively studied groundwater basins in China. The Ordos Plateau, located in the north part of the Ordos Basin, is ideal to study the pattern of regional groundwater circulation induced by water-table undulations due to the wavy topography and the relatively simple aquifer systems with macroscopically homogeneous sandstone. In catchments located near the first-order divide, the water table is found to be a subdued replica of the topography, and the nonclosed water-table contours in topographic highs of a catchment are indicative of regional groundwater outflow to other catchments. In topographic lows, groundwater-fed lakes/rivers, topography-driven flowing wells, water-loving and/or salt-tolerant vegetation, and soap holes are all indicative of discharge areas. In discharge areas, although groundwater inflow from recharge areas is relatively stable, seasonal variations in groundwater recharge and evapotranspiration lead to significant seasonal fluctuations in the water table, which can be used to estimate groundwater inflow and evapotranspiration rates based on water balance at different stages of water-table change. In the lowest reaches of a complex basin, superposition of local flow systems on regional flow systems has been identified based on groundwater samples collected from wells with different depths and geophysical measurements of apparent resistivity, both of which can be used for characterizing groundwater flow systems. This study enhances understanding of the pattern of regional groundwater circulation in the Ordos Plateau, and also tests the effectiveness of methods for groundwater flow-system characterization.
NASA Astrophysics Data System (ADS)
Brigandı, G.; Aronica, G. T.; Basile, G.; Pasotti, L.; Panebianco, M.
2012-04-01
On November 2011 a thunderstorms became almost exceptional over the North-East part of the Sicily Region (Italy) producing local heavy rainfall, mud-debris flow and flash flooding. The storm was concentrated on the Tyrrhenian sea coast near the city of Barcellona within the Longano catchment. Main focus of the paper is to present an experimental operative system for alerting extreme hydrometeorological events by using a methodology based on the combined use of rainfall thresholds, soil moisture indexes and quantitative precipitation forecasting. As matter of fact, shallow landslide and flash flood warning is a key element to improve the Civil Protection achievements to mitigate damages and safeguard the security of people. It is a rather complicated task, particularly in those catchments with flashy response where even brief anticipations are important and welcomed. It is well known how the triggering of shallow landslides is strongly influenced by the initial soil moisture conditions of catchments. Therefore, the early warning system here applied is based on the combined use of rainfall thresholds, derived both for flash flood and for landslide, and soil moisture conditions; the system is composed of several basic component related to antecedent soil moisture conditions, real-time rainfall monitoring and antecedent rainfall. Soil moisture conditions were estimated using an Antecedent Precipitation Index (API), similar to this widely used for defining soil moisture conditions via Antecedent Moisture conditions index AMC. Rainfall threshold for landslides were derived using historical and statistical analysis. Finally, rainfall thresholds for flash flooding were derived using an Instantaneous Unit Hydrograph based lumped rainfall-runoff model with the SCS-CN routine for net rainfall. After the implementation and calibration of the model, a testing phase was carried out by using real data collected for the November 2001 event in the Longano catchment. Moreover, in order to test the capability of the system to forecast thise event, Quantitative Precipitation Forecasting provided by the SILAM (Sicily Limited Area Model), a meteorological model run by SIAS (Sicilian Agrometeorological Service) with a forecast horizon up to 144 hours, have been used to run the system.
NASA Astrophysics Data System (ADS)
Guo, Danlu; Westra, Seth; Maier, Holger R.
2017-11-01
Scenario-neutral approaches are being used increasingly for assessing the potential impact of climate change on water resource systems, as these approaches allow the performance of these systems to be evaluated independently of climate change projections. However, practical implementations of these approaches are still scarce, with a key limitation being the difficulty of generating a range of plausible future time series of hydro-meteorological data. In this study we apply a recently developed inverse stochastic generation approach to support the scenario-neutral analysis, and thus identify the key hydro-meteorological variables to which the system is most sensitive. The stochastic generator simulates synthetic hydro-meteorological time series that represent plausible future changes in (1) the average, extremes and seasonal patterns of rainfall; and (2) the average values of temperature (Ta), relative humidity (RH) and wind speed (uz) as variables that drive PET. These hydro-meteorological time series are then fed through a conceptual rainfall-runoff model to simulate the potential changes in runoff as a function of changes in the hydro-meteorological variables, and runoff sensitivity is assessed with both correlation and Sobol' sensitivity analyses. The method was applied to a case study catchment in South Australia, and the results showed that the most important hydro-meteorological attributes for runoff were winter rainfall followed by the annual average rainfall, while the PET-related meteorological variables had comparatively little impact. The high importance of winter rainfall can be related to the winter-dominated nature of both the rainfall and runoff regimes in this catchment. The approach illustrated in this study can greatly enhance our understanding of the key hydro-meteorological attributes and processes that are likely to drive catchment runoff under a changing climate, thus enabling the design of tailored climate impact assessments to specific water resource systems.
A Budyko-type Model for Human Water Consumption
NASA Astrophysics Data System (ADS)
Lei, X.; Zhao, J.; Wang, D.; Sivapalan, M.
2017-12-01
With the expansion of human water footprint, water crisis is no longer only a conflict or competition for water between different economic sectors, but also increasingly between human and the environment. In order to describe the emergent dynamics and patterns of the interaction, a theoretical framework that encapsulates the physical and societal controls impacting human water consumption is needed. In traditional hydrology, Budyko-type models are simple but efficient descriptions of vegetation-mediated hydrologic cycle in catchments, i.e., the partitioning of mean annual precipitation into runoff and evapotranspiration. Plant water consumption plays a crucial role in the process. Hypothesized similarities between human-water and vegetation-water interactions, including water demand, constraints and system functioning, give the idea of corresponding Budyko-type framework for human water consumption at the catchment scale. Analogous to variables of Budyko-type models for hydrologic cycle, water demand, water consumption, environmental water use and available water are corresponding to potential evaporation, actual evaporation, runoff and precipitation respectively. Human water consumption data, economic and hydro-meteorological data for 51 human-impacted catchments and 10 major river basins in China are assembled to look for the existence of a Budyko-type relationship for human water consumption, and to seek explanations for the spread in the observed relationship. Guided by this, a Budyko-type analytical model is derived based on application of an optimality principle, that of maximum water benefit. The model derived has the same functional form and mathematical features as those that apply for the original Budyko model. Parameters of the new Budyko-type model for human consumption are linked to economic and social factors. The results of this paper suggest that the functioning of both social and hydrologic subsystems within catchment systems can be explored within a common conceptual framework, thus providing a unified socio-hydrologic basis for the study of coupled human-water systems. The exploration of the theoretical connections between the two subsystems pushes the water system modeling from a problem-solving orientation to puzzle-solving orientation.
NASA Astrophysics Data System (ADS)
Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.
2017-04-01
Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.
The problem with simple lumped parameter models: Evidence from tritium mean transit times
NASA Astrophysics Data System (ADS)
Stewart, Michael; Morgenstern, Uwe; Gusyev, Maksym; Maloszewski, Piotr
2017-04-01
Simple lumped parameter models (LPMs) based on assuming homogeneity and stationarity in catchments and groundwater bodies are widely used to model and predict hydrological system outputs. However, most systems are not homogeneous or stationary, and errors resulting from disregard of the real heterogeneity and non-stationarity of such systems are not well understood and rarely quantified. As an example, mean transit times (MTTs) of streamflow are usually estimated from tracer data using simple LPMs. The MTT or transit time distribution of water in a stream reveals basic catchment properties such as water flow paths, storage and mixing. Importantly however, Kirchner (2016a) has shown that there can be large (several hundred percent) aggregation errors in MTTs inferred from seasonal cycles in conservative tracers such as chloride or stable isotopes when they are interpreted using simple LPMs (i.e. a range of gamma models or GMs). Here we show that MTTs estimated using tritium concentrations are similarly affected by aggregation errors due to heterogeneity and non-stationarity when interpreted using simple LPMs (e.g. GMs). The tritium aggregation error series from the strong nonlinearity between tritium concentrations and MTT, whereas for seasonal tracer cycles it is due to the nonlinearity between tracer cycle amplitudes and MTT. In effect, water from young subsystems in the catchment outweigh water from old subsystems. The main difference between the aggregation errors with the different tracers is that with tritium it applies at much greater ages than it does with seasonal tracer cycles. We stress that the aggregation errors arise when simple LPMs are applied (with simple LPMs the hydrological system is assumed to be a homogeneous whole with parameters representing averages for the system). With well-chosen compound LPMs (which are combinations of simple LPMs) on the other hand, aggregation errors are very much smaller because young and old water flows are treated separately. "Well-chosen" means that the compound LPM is based on hydrologically- and geologically-validated information, and the choice can be assisted by matching simulations to time series of tritium measurements. References: Kirchner, J.W. (2016a): Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci. 20, 279-297. Stewart, M.K., Morgenstern, U., Gusyev, M.A., Maloszewski, P. 2016: Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems, and implications for past and future applications of tritium. Submitted to Hydrol. Earth Syst. Sci., 10 October 2016, doi:10.5194/hess-2016-532.
NASA Astrophysics Data System (ADS)
Kentel, E.; Dogulu, N.
2015-12-01
In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.
Repeated tracer tests in a karst system with concentrated allogenic recharge (Johnsbachtal, Austria)
NASA Astrophysics Data System (ADS)
Birk, Steffen; Wagner, Thomas; Pauritsch, Marcus; Winkler, Gerfried
2015-04-01
The Johnsbachtal (Austria) is a high Alpine headwater catchment covering an area of approximately 65 km², which is equipped with a hydrometeorological monitoring network (Strasser at al. 2013). The catchment is composed of carbonate rocks and crystalline rocks belonging to the Northern Calceraous Alps and the Greywacke Zone. The largest spring within the catchment, the Etzbach spring, is bound on karstified carbonate rocks of the Greywacke Zone. A stream sink located at a distance of approximately 1 km from the spring was used as injection point for repeated tracer tests in the years 2012, 2013, and 2014. In each case the tracer was recovered at the spring indicating an allogenic recharge component from the crystalline parts of the catchment. The spring discharge at the times of the three tracer tests varied between approximately 0.3 and 0.6 m³/s. Likewise the tracer travel times and thus the flow velocities were found to be different. Surprisingly, the largest tracer travel time (and thus lowest flow velocity) was obtained in 2013 when the spring discharge was highest (0.6 m³/s). In addition, the flow velocities in 2012 and 2014 were found to be clearly different, although the spring discharge was similar (roughly 0.3 m³/s) in both tests. Thus, the tracer velocity appears to be not correlated with the spring discharge. Field observations indicate that this finding can potentially be attributed to complexities at both the injection location (e.g., plugging of injection points and thus different flow paths) and the sampling point (i.e., the spring, which is composed of several outlet points representing different subcatchments). References: Strasser, U., Marke, T., Sass, O., Birk, S., Winkler, G. (2013): John's creek valley: a mountainous catchment for long-term interdisciplinary human-environment system research in Upper Styria (Austria). Environmental Earth Sciences, doi: 10.1007/s12665-013-2318-y
NASA Astrophysics Data System (ADS)
Founds, M. J.; McGwire, K.; Weltz, M.
2017-12-01
Critical research gaps in rangeland hydrology still exist on the impact of conservation practices on erosion and subsequent mobilization of dissolved solids to streams. This study develops the scientific foundation necessary to better understand how a restoration strategy using a Vallerani Plow can be optimized to minimize erosion from rainfall impact and concentrated flow. Use of the Vallerani system has been proposed for use in the Upper Colorado River Basin (UCRB), where rapidly eroding rangelands contribute high salt loads to the Colorado River at a significant economic cost. The poster presentation will document the findings from a series of physical rainfall and concentrated flow simulations taking place at an experimental site northeast of Reno, NV in early August. A Walnut Gulch Rainfall simulator is used to apply variable intensity and duration rainfall events to micro-catchment structures created by the Vallerani Plow. The erosion and deposition caused by simulated rainfall will be captured from multi-angle photography using structure from motion (SFM) to create sub-centimeter 3-D models between each rainfall event. A rill-simulator also will be used to apply large volumes of concentrated flow to Vallerani micro-catchments, testing the point at which their infiltration capacity is exceeded and micro-catchments are overtopped. This information is important to adequately space structures on a given hillslope so that chances of failure are minimized. Measurements of saturated hydraulic conductivity and sorptivity from a Guelph Permeameter will be compared to the experimental results in order to develop an efficient method for surveying new terrain for treatment with the Vallerani plow. The effect of micro-catchments on surface flow and erosion will eventually be incorporated into the process-based Rangeland Hydrology and Erosion Model (RHEM) to create a tool that provides decision makers with quantitative estimates of potential reductions in erosion when using the Vallerani System to restore highly erosive rangelands within the UCRB.
NASA Astrophysics Data System (ADS)
Jugie, Marion; Gob, Frédéric; Slawson, Deborah; Le-Coeur, Charles
2014-05-01
The EU Water Framework Directive (WFD, October 2000) mandated that the Member States of the European Union achieve the general objective of protection of aquatic ecology by 2015. European rivers and streams have to attain "good ecological status" through the preservation and restoration of aquatic environments. Member will have to ensure environmental continuity through "the adequate distribution of fish species and transport of sediments". In France, more than 61,000 transverse structures - mill dams, weirs, diversion gates - have been identified on rivers as being obstacles to ecological and sedimentary continuity. Because of their historical occupation by societies, rivers flowing in the Paris area have long been anthropized and artificialized. River courses, channel shape, sediment transport and hydrological regime modifications have tremendously transformed the hydrosystems surrounding the city of Paris. The Merantaise's catchment is one of this low energy river watershed, near Paris, that have been modified by historical engineering, especially during medieval-modern times and by the building of the Versailles Castle (XVIIth century). The hydraulic infrastructures are still there and impact the hydromorphogical conditions of the river (incision, lateral erosion, …). In addition to these ancient pressures a rapid and massive urbanization of the suburban areas has applied a new type of constraint to the hydrosystems in recent decades. This undermines the balance that was established following ancient engineering and disturbs the current functioning of the valley. These new types of land occupation have significantly altered the ecological circumstances and transformed the hydrological responses of rivers. In this study, we therefore seek to understand these processes of successive adjustments (ancient and recent) of a small river from the urban margins of the Orge watershed (to the south of Paris). We use a multi-scalar spatial and temporal approach to reconstruct the hydromorphological circumstances ancient and current, by hydrological chronicles and archives documentation.
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi
2015-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.
NASA Astrophysics Data System (ADS)
Regina, J. A.; Ogden, F. L.
2014-12-01
Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to watershed management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One question posed by this project concerns the hydrologic role of fire in tropical environments. Within the Panama Canal Watershed, fire has seen widespread use among agriculturalists. This study focused on a monoculture invasive grass (Saccharum spontaneum) catchment. Specifically, the effects of significant wildfire events on hydrological processes in the catchment were analyzed. The catchment is within Panama's protected Soberania National Park, which is part of the greater Panama Canal Watershed. Installed instrumentation includes a rain gauge cluster, a two-stage v-notch weir, atmometer and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across the catchment is available from 2009-2013. Various hydrologic characteristics, such as runoff ratio, peak flow per unit area, time to peak, runoff duration, and leaf area index, from before and after the events were compared. These characteristics are related to rates of ground water recharge and the occurrence of flash floods. This study provides a baseline from which the potential impacts of fire on hydrological processes in tropical environments can be analyzed.
NASA Astrophysics Data System (ADS)
Benettin, Paolo; van der Velde, Ype; van der Zee, Sjoerd E. A. T. M.; Rinaldo, Andrea; Botter, Gianluca
2013-08-01
Travel times are fundamental catchment descriptors that blend key information about storage, geochemistry, flow pathways and sources of water into a coherent mathematical framework. Here we analyze travel time distributions (TTDs) (and related attributes) estimated on the basis of the extensive hydrochemical information available for the Hupsel Brook lowland catchment in the Netherlands. The relevance of the work is perceived to lie in the general importance of characterizing nonstationary TTDs to capture catchment transport properties, here chloride flux concentrations at the basin outlet. The relative roles of evapotranspiration, water storage dynamics, hydrologic pathways and mass sources/sinks are discussed. Different hydrochemical models are tested and ranked, providing compelling examples of the improved process understanding achieved through coupled calibration of flow and transport processes. The ability of the model to reproduce measured flux concentrations is shown to lie mostly in the description of nonstationarities of TTDs at multiple time scales, including short-term fluctuations induced by soil moisture dynamics in the root zone and long-term seasonal dynamics. Our results prove reliable and suggest, for instance, that drastically reducing fertilization loads for one or more years would not result in significant permanent decreases in average solute concentrations in the Hupsel runoff because of the long memory shown by the system. Through comparison of field and theoretical evidence, our results highlight, unambiguously, the basic transport mechanisms operating in the catchment at hand, with a view to general applications.
Controls on Characteristics of Event-based Catchment Flood Response over Continental United States
NASA Astrophysics Data System (ADS)
Shen, X.; Mei, Y.; Nikolopoulos, E. I.; Anagnostou, E. N.
2017-12-01
Understanding the primary drivers of regional flood characteristics is of utmost importance for the development of flood early warning system. Many studies have dedicated their efforts on this topic, but the majority of these works is limited in terms of either the size of event population or the extent of their study domain. This prevents us from drawing a comprehensive understanding of the primary factors controlling the variability of catchment flood response across different hydroclimatic regimes and basin geomorphologies. In this study, we render an exhaustive analysis that includes the effect of climate, hydrometeorology, geomorphology, land cover and initial wetness conditions on the catchment's flood response for 318,000 flood events distributed across 5,900 catchments (basin scales ranging from 1 to 106 km2) of the Continental United States (CONUS) over a 10-year (2002 to 2013) period. Event runoff coefficients, response time lag and hydrograph shape are used as diagnostic variables to represent catchment flood response. Our results indicate different distributions of runoff coefficient over different climate regions and seasons. The magnitude of runoff coefficient increases as function of initial basin wetness condition and rainfall depth. Opposite patterns are found for the actual evapotranspiration rate and baseflow index. On the other hand, response time lag is controlled by the relief ratio of the basins and the mean flow length of the events; hydrograph shape reveals increasing trend with soil moisture condition and relief ratio.
Frehmann, T; Niemann, A; Ustohal, P; Geiger, W F
2002-01-01
Four individual mathematical submodels simulating different subsystems of urban drainage were intercoupled to an integral model. The submodels (for surface runoff, flow in sewer system, wastewater treatment plant and receiving water) were calibrated on the basis of field data measured in an existing urban catchment investigation. Three different strategies for controlling the discharge in the sewer network were defined and implemented in the integral model. The impact of these control measures was quantified by representative immission state-parameters of the receiving water. The results reveal that the effect of a control measure may be ambivalent, depending on the referred component of a complex drainage system. Furthermore, it is demonstrated that the drainage system in the catchment investigation can be considerably optimised towards environmental protection and operation efficiency if an appropriate real time control on the integral scale is applied.
Reaction and relaxation in a coarse-grained fluvial system following catchment-wide disturbance
NASA Astrophysics Data System (ADS)
Tunnicliffe, Jon; Brierley, Gary; Fuller, Ian C.; Leenman, Anya; Marden, Mike; Peacock, Dave
2018-04-01
The Waiapu River catchment (drainage area of 1734-km2) is one of the most prolific conveyors of sediment in the world, annually delivering roughly 35 Mt of fine material to the ocean from eroding gullies, hillslopes, and reworked sediment on valley floors. Tectonic and geologic influences, in combination with a dynamic climate influenced by tropical cyclones and clearance of vegetation from steep hillslopes, predisposes this region to high rates of erosion. The bedload sediment regime of the river is strongly influenced by several exceptionally large gullies and gully complexes that produce a coarse-grained, poorly sorted sediment mixture. Rapid abrasion and breakdown leads to high rates of suspended sediment yield. A wave of bedload material, manifesting as elevated bed levels and significant widening of active alluvial fills, has been triggered by large inputs of hillslope material from a few key tributary catchments following Cyclone Bola in 1988. We review the evidence for the relaxation process of the sedimentary system in the subsequent 29 years, appraising some of the legacy effects that may endure, as associated with reworking of the considerable alluvial stores within the Waiapu system. We use Structure-from-Motion (SfM) techniques and archival aerial photos to quantify changes in sediment storage at the base of two major gully systems in recent decades. A record of over 850 cross section surveys at 62 sites on 10 rivers throughout the catchment (1958-2017) indicates recent transition from a trend of continuous accumulation to downcutting and remobilisation of valley-bottom deposits. The channel cross sections provide a minimum estimate of sediment flux from source areas to the lower reaches of the river, giving a rudimentary but spatially extensive picture of the wave of material cascading through the drainage network. The largest impacts occur in the upper steepland rivers, closest to the landslide-derived sediment supply. Transport rates here, as inferred from cross section change, are at a maximum during an aggradational phase following Cyclone Bola then taper off, despite the large sediment accumulations remaining in the system. As of 2017, the river is in the process of incising the upper extents of this deposit on a trajectory of recovery toward pre-Bola conditions. The compilation of cross section data provides us with new insights into the sensitivity of particular sites in the landscape, as well as the changing relationship between reach sediment storage and transport rates during the response and relaxation phase of a major disturbance in a large catchment.
Influence of high resolution rainfall data on the hydrological response of urban flat catchments
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2016-04-01
In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.
Population density controls on microbial pollution across the Ganga catchment.
Milledge, D G; Gurjar, S K; Bunce, J T; Tare, V; Sinha, R; Carbonneau, P E
2018-01-01
For millions of people worldwide, sewage-polluted surface waters threaten water security, food security and human health. Yet the extent of the problem and its causes are poorly understood. Given rapid widespread global urbanisation, the impact of urban versus rural populations is particularly important but unknown. Exploiting previously unpublished archival data for the Ganga (Ganges) catchment, we find a strong non-linear relationship between upstream population density and microbial pollution, and predict that these river systems would fail faecal coliform standards for irrigation waters available to 79% of the catchment's 500 million inhabitants. Overall, this work shows that microbial pollution is conditioned by the continental-scale network structure of rivers, compounded by the location of cities whose growing populations contribute c. 100 times more microbial pollutants per capita than their rural counterparts. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Catchment land use predicts benthic vegetation in small estuaries
Warry, Fiona Y.; Reich, Paul; Mac Nally, Ralph; Woodland, Ryan J.
2018-01-01
Many estuaries are becoming increasingly eutrophic from human activities within their catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such data are expensive and time consuming to obtain. We compared the percent of fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land within the catchment was the best predictor of the proportion of macroalgae within the estuaries studied. There was a transition to a dominance of macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of estuaries to catchment land use. PMID:29473004
Flood Early Warning in Bridge Management System: from idea to implementation
NASA Astrophysics Data System (ADS)
Kerin, Igor; Bekić, Damir; Michalis, Panagiotis; Šolman, Hrvoje; Cahill, Paul; Gilja, Gordon; Pakrashi, Vikram; Lapthorne, John; McKeogh, Eamon
2017-04-01
Recent advances in computational speed, cloud systems and GPRS data are some of the factors that have resulted in an increased number of operational and fully automatized Flood Early Warning Systems (FEWS). Flood forecasting is becoming a well-recognised solution for flood management as an indirect measure for minimising the risk should preventive or defence measures prove ineffective or are not feasible for implementation. Public acceptance of FEWS as a standalone solution is still considered to be at low level. Further public engagement regarding engineering risks and providing timely notifications and warnings can, however, establish the true value of such a system to the society in general. Flood risks can be direct, resulting in damage to buildings, infrastructure and natural resources, or indirect, which can be related to disaster losses leading to declines in commercial output or revenue and impact on wellbeing of people, typically from disruptions to the flow of goods and services. Flood risk and structural risks are closely related, thereby impacting the maintenance and management of bridges assets over watercourses. Many studies indicate that most bridge collapses are related to hydraulic effects and consequently scour issues (i.e. the removal of riverbed around bridge foundations due to flowing water). Consequently, hydraulic, hydrologic and geotechnical expertise and knowledge can lead to introducing FEWS as a key tool for Bridge Scour Management System (BSMS), forming a part of a BMS. The implementation of this concept was initiated with the EU/FP7 funded project BRIDGE SMS. The project introduces BSMS into the overall BMS to develop a reliable decision support tool which would efficiently manage bridge failure risks in a cost-effective way. This is accomplished through the development of FEWS, alongside monitoring systems that can provide important information about environmental and structural conditions at the catchment area and bridge site respectively. The recorded rainfall from instrumentation deployed over a catchment is used as input data for hydrological modelling and now-casting, which results in flow hydrographs at the bridge containing flow rates and water level information. Soil moisture data is also used to determine the appropriate hydrological model set-up, such as dry, medium or saturated catchment conditions. The output from the hydrological model is a now-cast flow hydrograph, with a lag time of up to 24 hours. Discharge hydrograph is correlated to water levels using an existing rating curve and to the flow velocity using discharge-flow velocity curve. Water levels and flow rates are correlated to the flow velocity which provide the basis for the prediction of scour depth. FEWS in BMS introduces readiness for extreme flood events, pointing out key indicators prior to an event. Also, by considering climate change effects which is resulting in more extreme weather phenomena's, FEWS provides important information about bridge safety and assists to coordinate resources in an efficient and cost-effective way. Acknowledgement The authors wish to acknowledge the financial support of the European Commission, through the Marie-Curie Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.
NASA Astrophysics Data System (ADS)
Maurer, Thomas; Caviedes-Voullième, Daniel; Hinz, Christoph; Gerke, Horst H.
2017-04-01
Landscapes that are heavily disturbed or newly formed by either natural processes or human activity are in a state of disequilibrium. Their initial development is thus characterized by highly dynamic processes under all climatic conditions. The primary distribution and structure of the solid phase (i.e. mineral particles forming the pore space) is one of the decisive factors for the development of hydrological behavior of the eco-hydrological system and therefore (co-) determining for its - more or less - stable final state. The artificially constructed ‚Hühnerwasser' catchment (a 6 ha area located in the open-cast lignite mine Welzow-Süd, southern Brandenburg, Germany) is a landscape laboratory where the initial eco-hydrological development is observed since 2005. The specific formation (or construction) processes generated characteristic sediment structures and distributions, resulting in a spatially heterogeneous initial state of the catchment. We developed a structure generator that simulates the characteristic distribution of the solid phase for such constructed landscapes. The program is able to generate quasi-realistic structures and sediment compositions on multiple spatial levels (1 cm up to 100 m scale). The generated structures can be i) conditioned to actual measurement values (e.g., soil texture and bulk distribution); ii) stochastically generated, and iii) calculated deterministically according to the geology and technical processes at the excavation site. Results are visualized using the GOCAD software package and the free software Paraview. Based on the 3D-spatial sediment distributions, effective hydraulic van-Genuchten parameters are calculated using pedotransfer functions. The hydraulic behavior of different sediment distribution (i.e. versions or variations of the catchment's porous body) is calculated using a numerical model developed by one of us (Caviedes-Voullième). Observation data are available from catchment monitoring are available for i) determining the boundary conditions (e.g., precipitation), and ii) the calibration / validation of the model (catchment discharge, ground water). The analysis of multiple sediment distribution scenarios should allow to approximately determine the influx of starting conditions on initial development of hydrological behavior. We present first flow modeling results for a reference (conditioned) catchment model and variations thereof. We will also give an outlook on further methodical development of our approach.
Impact of modellers' decisions on hydrological a priori predictions
NASA Astrophysics Data System (ADS)
Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.
2014-06-01
In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of added information. In this qualitative analysis of a statistically small number of predictions we learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.
Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.
NASA Astrophysics Data System (ADS)
Raclot, Damien; Ciampalini, Rossano
2017-04-01
The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science, modelling changes in soil properties, erosion and sediment transport, agronomy and socio-economy. Beyond the description of the MASCC project, this presentation will describe the first results on the variability of soil erosion observed in the monitored catchments and on the impact of major events on the current soil erosion delivered at catchment outlet. As a starting project, MASCC will foster the involvement of all additional participants that would like to contribute to the project. Acknowledgements: We thanks the Arimnet2 ERA-Net initiative that funded the MASCC project. Keywords: Soil erosion, Agriculture, Conservation, Global change, Mediterranean area.
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Dragovich, Deirdre
2008-11-01
Slope-channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km 2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pb ex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.
Magnitudes and Sources of Catchment Sediment: When A + B Doesn't Equal C
NASA Astrophysics Data System (ADS)
Simon, A.
2015-12-01
The export of land-based sediments to receiving waters can cause degradation of water quality and habitat, loss of reservoir capacity and damage to reef ecosystems. Predictions of sources and magnitudes generally come from simulations using catchment models that focus on overland flow processes at the expense of gully and channel processes. This is not appropriate for many catchments where recent research has shown that the dominant erosion sources have shifted from the uplands and fields following European Settlement, to the alluvial valleys today. Still, catchment models which fail to adequately address channel and bank processes are still the overwhelming choice by resource agencies to help manage sediment export. These models often utilize measured values of sediment load at the river mouth to "calibrate" the magnitude of loads emanating from uplands and fields. The difference between the sediment load at the mouth and the simulated upland loading is then proportioned to channel sources.Bank erosion from the Burnett River (a "Reef Catchment" in eastern Queensland) was quantified by comparisons of bank-top locations and by numerical modeling using BSTEM. Results show that bank-derived sediment contributes between 44 and 73% of the sediment load being exported to the Coral Sea. In comparison reported results from a catchment model showed bank contributions of 8%. In absolute terms, this is an increase in the reported average, annual rate of bank erosion from 0.175 Mt/y to 2.0 Mt/y.In the Hoteo River, New Zealand, a rural North Island catchment characterized by resistant cohesive sediments, bank erosion was found to contribute at least 48% of the total specific yield of sediment. Combining the bank-derived, fine-grained loads from some of the major tributaries gives a total, average annual loading rate for fine material of about 10,900 t/y for the studied reaches in the Hoteo River System. If the study was extended to include the lower reaches of the main stem channel and other tributary reaches, this percentage would be higher. Similar studies in the United States using combinations of empirical and numerical modeling techniques have also disclosed that bank-derived sediment can be the major source of sediment in many catchments. An approach to improve the accuracy of predictions is proposed.
NASA Astrophysics Data System (ADS)
Kasaee Roodsari, B.; Chandler, D. G.
2016-12-01
Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.
NASA Astrophysics Data System (ADS)
Whitehead, P. G.; Crossman, J.; Jin, L.
2011-12-01
The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate Change simulations predict reduced flow regimes in the river system and changes to the nitrogen patterns. Nitrate is predicted to reduce in summer, due to the lower flows which generate longer water residence times and hence allow more time for denitrification processes to occur. Phosphorus levels increase, however, due to the reduced dilution of effluents with subsequent detrimental effects on ecology. The model has been used to evaluate alternative water management policies such as a new reservoir for London, the transfer of water from the River Severn into the Thames, the reduction in P discharges from Sewage Treatment Works and the control of diffuse runoff by improved land management. Thus using the models to evaluate alternative strategies is very positive contribution to policy and planning.
The topographic wetness index as a predictor for hot spots of DOC export from catchments
NASA Astrophysics Data System (ADS)
Musolff, Andreas; Oosterwoud, Marieke; Tittel, Jörg; Selle, Benny; Fleckenstein, Jan H.
2015-04-01
Dissolved organic carbon (DOC) concentrations in the discharge of many catchments in Europe and North America are rising. This increase is of concern for the drinking water supply from reservoirs since high DOC concentrations cause additional costs in water treatment and potentially the formation of harmful disinfection by-products. A prerequisite for understanding this increase is the knowledge on the spatial distribution of dominant soil DOC sources within catchments and on mobilization as well as transfer processes to the surface water. A number of studies identified wetland soils as the dominant source with fast mobilization and short transit times to the receiving surface water. However, most studies have either focussed on smaller, hillslope and single catchment or on larger scale multi-catchment assessments. Moreover, information on the distribution of soil types in catchments is not always readily available. This study brings together both types of assessment in a data-driven top-down approach: (i) a detailed survey on DOC concentration and loads over the course of one year within two paired data-rich catchments discharging into a large drinking water reservoir in central Germany and (ii) a database of hydrochemistry and physio-geographic characteristics of 113 catchments draining into 58 reservoirs across Germany over the course of 16 years. The objective is to define hot spots of DOC export within the catchments for both types of assessments (i, ii) and to test the suitability of the topographic wetness index (TWI) as a proxy for well-connected wetland soils at various spatial scales. In the sub-catchments of assessment (i) the spatial variability of concentrations and loads was much smaller than expected. None of the studied sub-catchments was a predominant producer of the total DOC loads exported from the catchments. We found the mean concentrations and loads to be positively correlated with the share of groundwater-dominated soils in the sub-catchments. These soils are distributed in riparian wetlands along all streams within the catchments. As a readily available proxy for wetland soils percentiles of the probability distribution of the TWI in the sub-catchments were found to be good predictors for mean DOC concentrations in catchment outlet as well as for loads. In the larger dataset across Germany (ii) we also found a surprisingly good correlation between the TWI within the catchments and mean DOC concentrations. Thus we can show that, despite the wide range of topographies, land use types, geological setups and climatic conditions within this dataset the dominant source zones of DOC export is well captured by the TWI as a proxy for the share of wetland soils and DOC source zones within the catchments.
Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay
2011-09-01
Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.
NASA Astrophysics Data System (ADS)
Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.
2012-04-01
Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water pollution abatement. The presented approach differs from existing approaches in a number of ways. First, we explicitly present an analytical derivation of private (national) and social (trans-national) welfare maximizing rates of water pollution abatement using nation-specific abatement cost functions. Second, the analytical optimal control approach provides an elegant and easily understandable solution concept that contributes to the development of efficient water quality improvement targets. Finally, we go beyond the usual cost-effectiveness analysis based on arbitrary 'tolerable' or target levels of pollution as we specifically account for the negative external costs of increased water pollution in the downstream aquatic and coastal environment. Results for the Minho region show that some private (national) welfare gains can be obtained through the adoption of win-win management practices, leading to a 12% reduction in the annual rate of water pollution and an almost 7% increase in annual regional income. Maximum social (trans-national) welfare gains can, however, be obtained through the adoption of win-win and lose-win management practices across Spain and Portugal, leading to a 36% reduction in water pollution and a 14% increase in regional income. Yet, non-cooperation in water pollution mitigation would only lead to a 16%-32% reduction in water pollution and a 8%-13% increase in regional income. Hence, social (trans-national) welfare losses from non-cooperation between Spain and Portugal would equate to between 16 and 81 million Euros per year.
NASA Astrophysics Data System (ADS)
Reis, Anabela; Martinho Lourenço, José M.; Parker, Andrew; Alencoão, Ana
2013-04-01
The River Corgo drains a meso-scale mountainous rural catchment with an area of 295 km2, underlain by crystalline rocks, in a temperate climate, which integrates the transboundary River Douro Basin, in the northeast of Portugal. A geochemical survey on oxic fluvial sediments of the river network shows considerable contents of metals associated to the finer particles (< 63um). The results on the study of the sediment properties indicate that these are essentially detrital in origin, derived from soils and weathering products. Moreover, taking into account the hydrological pattern of the catchment, the seasonal and spatial variability of metal contents associated to the sediments suggests that the control of metal in the sediments by their mineralogical, geochemical and physical properties is governed primarily at the level of the basin soils system, especially in the Wet Period, when the sediments are frequently remobilised (Reis, 2010). Although the soil particles are a common pathway of transport and entrance of metals in the fluvial network by runoff derived erosion, this mechanism is naturally more marked in mountainous catchments. Modelling sediment and adsorbed contaminant transport within catchments can help to identify possible contaminant sources, as well as to estimate the delivered quantities of eroded material and associated contaminants. In catchments with the described morphological features, monitoring the transport of sediments poses some issues concerning: (a) the low mass yield of suspended sediment from river water, under low-flow conditions; (b) the maintenance of the sediment sampler's devices in the streams, in periods of high-flow or storm events. This study describes the preliminary results of a GIS-based mass balance model of overland sediment transport to the River. The erosion, the first step of sediment transport, was estimated by an empirical model - The Universal Soil Loss Equation (USLE). The objective was to construct a GIS based potential soil loss spatial index model and posteriorly estimate the sediment yield for different locations within the catchment. The R factor was obtained from the literature; K factor was derived from the Soil Map of Trás-os-Montes; LS factor was calculated from the elevation digital model using the Simms et al. (2003) equation; C and P factors were derived from the Corin Land Cover Map produced for Portugal in 2006. The preliminary results indicate that the model is in accordance with the knowledge of the study area, and can be used as an initial indicator of areas of potential sediment source. So, the results show that potential loss is typically higher along the areas where the tributaries are deeply incised and bordered by steeper slopes, with locally extreme values. REFERENCES REIS, A. R. (2010) - Occurrence and mobilisation of non-organic micro-pollutants in mountainous riverine systems. PhD Thesis (unpublished), University of Trás-os-Montes e Alto Douro, Vila Real, 453 pp. SIMMS, A., WOODROFFE, C. & JONES, B. (2003) - Application of RUSLE for erosion management in a coastal catchment, southern NSW. MODSIM 2003: Intern. Congress on Modelling and Simulation, vol.2, Integrative Modelling of Biophysical, Social and Economic Systems for Resource Management Solutions, Australia, pp. 678-683.
A new conceptual framework for water and sediment connectivity
NASA Astrophysics Data System (ADS)
Keesstra, Saskia; Cerdà, Artemi; Parsons, Tony; Nunes, Joao Pedro; Saco, Patricia
2016-04-01
For many years scientists have tried to understand, describe and quantify sediment transport on multiple scales; from the geomorphological work triggered by a single thunderstorm to the geological time scale land scape evolution, and from particles and soil aggregates up to the continental scale. In the last two decades, a new concept called connectivity (Baartman et al., 2013; Bracken et al., 2013, 2015; Parsons et al., 2015) has been used by the scientific community to describe the connection between the different scales at which the sediment redistribution research along the watershed are being studied: pedon, slope tram, slope, watersheds, and basins. This concept is seen as a means to describe and quantify the results of processes influencing the transport of sediment on all these scales. Therefore the concept of connectivity and the way scales are used in the design of a measurement and monitoring scheme are interconnected (Cerdà et al., 2012), which shows that connectivity is not only a tool for process understanding, but also a tool to measure processes on multiple scales. This research aims to describe catchment system dynamics from a connectivity point of view. This conceptual framework can be helpful to look at catchment systems and synthesize which data are necessary to take into account when measuring or modelling water and sediment transfer in catchment systems, Identifying common patterns and generalities will help discover physical reasons for differences in responses and interaction between these processes. We describe a conceptual framework which is meant to bring a better understanding of the system dynamics of a catchment in terms of water and sediment transfer by breaking apart the system dynamics in stocks (the system state at a given moment) and flows (the system fluxes). Breaking apart the internal system dynamics that determine the behaviour of the catchment system is in our opinion a way to bring a better insight into the concepts of hydrological and sediment connectivity as described in previous research by Bracken et al (2013, 2015). By looking at the individual parts of the system, it becomes more manageable and less conceptual, which is important because we have to indicate where the research on connectivity should focus on. With this approach, processes and feedbacks in the catchment system can be pulled apart to study separately, making the system understandable and measureable, which will enable parameterization of models with actual measured data. The approach we took in describing water and sediment transfer is to first assess how they work in a system in dynamic equilibrium. After describing this, an assessment is made of how such dynamic equilibriums can be taken out of balance by an external push. Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Bracken, L.J., Wainwright, J., Ali, G.A., Tetzlaff, D., Smith, M.W., Reaney, S.M., and Roy, A.G. 2013. Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth Science Reviews, 119, 17-34. Bracken, L.J., Turnbull, L, Wainwright, J. and Boogart, P. Submitted. Sediment Connectivity: A Framework for Understanding Sediment Transfer at Multiple Scales. Earth Surface Processes and Landforms. Cerdà, A., Brazier, R., Nearing, M., and de Vente, J. 2012. scales and erosion. Catena, 102, 1-2. doi:10.1016/j.catena.2011.09.006 Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714
NASA Astrophysics Data System (ADS)
Boubakri, S.; Rhinane, H.
2017-11-01
The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.
Modeling dissolved silica retention in the limnic system of North America
NASA Astrophysics Data System (ADS)
Lauerwald, R.; Jansen, N.; Hartmann, J.; Dürr, H. H.; Loos, S.; Kempe, S.; Middelkoop, H.
2009-04-01
Dissolved silica (DSi) is an important nutrient in freshwater and coastal ecosystems. The availability of DSi is governed by DSi mobilization from the terrestrial system into the limnic system and fluvial transport of DSi to the coasts, respectively. Part of the DSi is retained in the limnic system due to biotic uptake and sedimentation. Anthropogenic influences including eutrophication and construction of dams and locks can lead to an increase in DSi retention (Humborg et al., 2006), with potentially severe consequences for coastal ecosystems (Danielsson et al., 2008). It is here hypothesized that DSi retention can be calculated by subtracting DSi fluxes observed at downstream sampling locations from the amount of DSi mobilized from the terrestrial system into rivers. This strategy to estimate the DSi retention is applied to river systems located in the USA and evaluated. Hydrochemical data from the USGS programs WQN and NAWQA are used to calculate annual DSi fluxes for more than 500 sampling locations. For each water sampling location the river catchment and catchment properties (lithology, land cover, lake area etc.) are calculated. Emphasize is put on abundance and size of lakes, wetlands, and reservoirs as places of increased DSi retention. DSi mobilization into rivers is estimated applying an empirical mobilization function developed for the North American region (Jansen et al., submitted). On average, DSi fluxes from the terrestrial system into rivers are higher than observed fluvial DSi fluxes. The difference between mobilized and observed DSi fluxes increases with catchment area. Applying the introduced difference method to a subset of water sampling locations situated near the rivers' mouths (n=89), a discharge weighted average DSi retention of about 26% is calculated. Uncertainties due to the statistical methods are discussed. References Danielsson, A., Papush, L., and Rahm, L., 2008, Alterations in nutrient limitations - Scenarios of a changing Baltic Sea: Journal of Marine Systems, v. 73, p. 263-283. Humborg, C., Pastuszak, M., Aigars, J., Siegmund, H., Morth, C.M., and Ittekkot, V., 2006, Decreased silica land-sea fluxes through damming in the Baltic Sea catchment - significance of particle trapping and hydrological alterations: Biogeochemistry, v. 77, p. 265-281. Jansen, N., Lauerwald, R., Hartmann, J., Dürr, H. H., Loos, S., Kempe, S. and Middelkoop, H. ,submitted, A continental scale model for dissolved silica mobilization for North America. (submitted to this session)
Representing macropore flow at the catchment scale: a comparative modeling study
NASA Astrophysics Data System (ADS)
Liu, D.; Li, H. Y.; Tian, F.; Leung, L. R.
2017-12-01
Macropore flow is an important hydrological process that generally enhances the soil infiltration capacity and velocity of subsurface water. Up till now, macropore flow is mostly simulated with high-resolution models. One possible drawback of this modeling approach is the difficulty to effectively represent the overall typology and connectivity of the macropore networks. We hypothesize that modeling macropore flow directly at the catchment scale may be complementary to the existing modeling strategy and offer some new insights. Tsinghua Representative Elementary Watershed model (THREW model) is a semi-distributed hydrology model, where the fundamental building blocks are representative elementary watersheds (REW) linked by the river channel network. In THREW, all the hydrological processes are described with constitutive relationships established directly at the REW level, i.e., catchment scale. In this study, the constitutive relationship of macropore flow drainage is established as part of THREW. The enhanced THREW model is then applied at two catchments with deep soils but distinct climates, the humid Asu catchment in the Amazon River basin, and the arid Wei catchment in the Yellow River basin. The Asu catchment has an area of 12.43km2 with mean annual precipitation of 2442mm. The larger Wei catchment has an area of 24800km2 but with mean annual precipitation of only 512mm. The rainfall-runoff processes are simulated at a hourly time step from 2002 to 2005 in the Asu catchment and from 2001 to 2012 in the Wei catchment. The role of macropore flow on the catchment hydrology will be analyzed comparatively over the Asu and Wei catchments against the observed streamflow, evapotranspiration and other auxiliary data.
Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet
NASA Astrophysics Data System (ADS)
Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.
2014-12-01
The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.
NASA Astrophysics Data System (ADS)
Neal, C.; Hill, T.; Hill, S.; Reynolds, B.
Acid Neutralization Capacity (ANC) data for ephemeral stream and shallow groundwater for the catchments of the upper River Severn show a highly heterogeneous system of within-catchment water flow pathways and chemical weathering on scales of less than 100m. Ephemeral streams draining permeable soils seem to be supplied mainly from shallow groundwater sources. For these streams, large systematic differences in pH and alkalinity occur due to the variability of the groundwater sources and variability in water residence times. However, the variability cannot be gauged on the basis of broad based physical information collected in the field as geology, catchment gradients and forest structure are very similar. In contrast, ephemeral streams draining impermeable soils are of more uniform chemistry as surface runoff is mainly supplied from the soil zone. Groundwater ANC varies considerably over space and time. In general, the groundwaters have higher ANCs than the ephemeral streams. This is due to increased chemical weathering from the inorganic materials in the lower soils and groundwater areas and possibly longer residence times. However, during the winter months the groundwater ANCs tend to be at their lowest due to additional event driven acidic soil water contributions and intermediate groundwater residence times. The results indicate the inappropriateness of a blanket approach to classifying stream vulnerability to acidification simply on the basis of soil sensitivity. However, the results may well indicate good news for the environmental management of acidic and acid sensitive systems. For example, they clearly indicate a large potential supply of weathering components within the groundwater zone to reduce or mitigate the acidifying effects of land use change and acidic deposition without the environmental needs for Aiming. Furthermore, the high variability of ephemeral stream runoff means that certain areas of catchments where there are specific problems associated with acidification can be identified for focused remediation work for the situation where liming is required. The case for focused field campaigns and caution against over reliance on blanket modelling approaches is suggested. The results negate the conventional generalizations within hydrology of how water moves through catchments to generate streamflow events (from Hortonian overland flow to catchment contributing areas).
Palaeoflood evidence on the River Nore, South East Ireland
NASA Astrophysics Data System (ADS)
Fleming, Ciara; Turner, Jonathan; Bourke, Mary
2017-04-01
Past geomorphic changes can be detected in sediment sinks, through the investigation of natural sediment archives. Since the advent of palaeoflood hydrology in the 1980s, numerous authors have demonstrated that such sediment deposits record valuable evidence of past flooding events. Many of these studies have focussed on fluvial systems in arid environments, with bedrock channels proving to be particularly successful field sites. In some districts, the collected datasets are now routinely employed to augment analyses of flood frequency and magnitude, which have traditionally relied on extrapolation of short hydrometric datasets. This study targets river reaches in a temperate humid environment, with a predominantly alluvial channel. The River Nore is one of the largest catchments draining South East Ireland. It is situated in a valley with an inherited glacial legacy and is principally a lowland river catchment. Specific morphological zones have been targeted which are optimal for flood deposit preservation, including palaeochannels, tributary junctions and floodplain overbank settings.There are a variety of anthropogenic pressures evident in this landscape. Among them are channelisation of select tributaries, a legacy of coal mining in the upland Carboniferous limestones, and the installation of man-made obstacles or modifications along the length of the river channel such as sluices and weirs. Regarding land-use, the majority of the catchment is dominated by agriculture, mainly pasture with some tillage. This study investigates palaeoflood evidence in the River Nore catchment and examines the development of the river floodplain using a variety of complementary field and desk-based methods. The sub-surface and micro-topography of river reaches are investigated using Ground Penetrating Radar (GPR) and Unmanned Aerial Vehicle (UAV) technology. Flood deposits have been characterised by examination of bank exposures and sediment cores. Installation of sediment traps at discrete locations will enable quantification of sedimentation rates of individual flood events over the winter period 2016/17. Historical Ordnance Survey maps, aerial and satellite imagery have been digitised in a GIS (Geographic Information System) to document channel change over time. Previous authors have noted a paucity of research in fluvial geomorphology in Ireland, particularly in lowland catchments, and this study endeavours to start addressing that gap. Furthermore, in terms of developments in palaeoflood hydrology, this is the first study of its kind in Ireland, attempting to understand and utilise geomorphic evidence of previous flood events in an Irish river catchment.
Using simple agent-based modeling to inform and enhance neighborhood walkability.
Badland, Hannah; White, Marcus; Macaulay, Gus; Eagleson, Serryn; Mavoa, Suzanne; Pettit, Christopher; Giles-Corti, Billie
2013-12-11
Pedestrian-friendly neighborhoods with proximal destinations and services encourage walking and decrease car dependence, thereby contributing to more active and healthier communities. Proximity to key destinations and services is an important aspect of the urban design decision making process, particularly in areas adopting a transit-oriented development (TOD) approach to urban planning, whereby densification occurs within walking distance of transit nodes. Modeling destination access within neighborhoods has been limited to circular catchment buffers or more sophisticated network-buffers generated using geoprocessing routines within geographical information systems (GIS). Both circular and network-buffer catchment methods are problematic. Circular catchment models do not account for street networks, thus do not allow exploratory 'what-if' scenario modeling; and network-buffering functionality typically exists within proprietary GIS software, which can be costly and requires a high level of expertise to operate. This study sought to overcome these limitations by developing an open-source simple agent-based walkable catchment tool that can be used by researchers, urban designers, planners, and policy makers to test scenarios for improving neighborhood walkable catchments. A simplified version of an agent-based model was ported to a vector-based open source GIS web tool using data derived from the Australian Urban Research Infrastructure Network (AURIN). The tool was developed and tested with end-user stakeholder working group input. The resulting model has proven to be effective and flexible, allowing stakeholders to assess and optimize the walkability of neighborhood catchments around actual or potential nodes of interest (e.g., schools, public transport stops). Users can derive a range of metrics to compare different scenarios modeled. These include: catchment area versus circular buffer ratios; mean number of streets crossed; and modeling of different walking speeds and wait time at intersections. The tool has the capacity to influence planning and public health advocacy and practice, and by using open-access source software, it is available for use locally and internationally. There is also scope to extend this version of the tool from a simple to a complex model, which includes agents (i.e., simulated pedestrians) 'learning' and incorporating other environmental attributes that enhance walkability (e.g., residential density, mixed land use, traffic volume).
Assessing the controls and uncertainties on mean transit times in contrasting headwater catchments
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Irvine, Dylan; Burton, Chad; Morgenstern, Uwe
2018-02-01
Estimating the time required for water to travel through headwater catchments from where it recharges to where it discharges into streams (the transit time) is important for understanding catchment behaviour. This study uses tritium (3H) activities of stream water to estimate the mean transit times of water in the upper Latrobe and Yarra catchments, southeast Australia, at different flow conditions. The 3H activities of the stream water were between 1.26 and 1.99 TU, which are lower than those of local rainfall (2.6 to 3.0 TU). 3H activities in individual subcatchments are almost invariably lowest at low streamflows. Mean transit times calculated from the 3H activities using a range of lumped parameter models are between 7 and 62 years and are longest during low streamflows. Uncertainties in the estimated mean transit times result from uncertainties in the geometry of the flow systems, uncertainties in the 3H input, and macroscopic mixing. In addition, simulation of 3H activities in FEFLOW indicates that heterogeneous hydraulic conductivities increase the range of mean transit times corresponding to a specific 3H activity. The absolute uncertainties in the mean transit times may be up to ±30 years. However, differences between mean transit times at different streamflows in the same catchment or between different subcatchments in the same area are more reliably estimated. Despite the uncertainties, the conclusions that the mean transit times are years to decades and decrease with increasing streamflow are robust. The seasonal variation in major ion geochemistry and 3H activities indicate that the higher general streamflows in winter are sustained by water displaced from shallower younger stores (e.g., soils or regolith). Poor correlations between 3H activities and catchment area, drainage density, mean slope, distance to stream, and landuse, imply that mean transit times are controlled by a variety of factors including the hydraulic properties of the soils and aquifers that are difficult to characterise spatially. The long mean transit times imply that there are long-lived stores of water in these catchments that may sustain streamflow over drought periods. Additionally, there may be considerable delay in contaminants reaching the stream.
A nested observation and model approach to non linear groundwater surface water interactions.
NASA Astrophysics Data System (ADS)
van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.
2009-04-01
Surface water quality measurements in The Netherlands are scattered in time and space. Therefore, water quality status and its variations and trends are difficult to determine. In order to reach the water quality goals according to the European Water Framework Directive, we need to improve our understanding of the dynamics of surface water quality and the processes that affect it. In heavily drained lowland catchment groundwater influences the discharge towards the surface water network in many complex ways. Especially a strong seasonal contracting and expanding system of discharging ditches and streams affects discharge and solute transport. At a tube drained field site the tube drain flux and the combined flux of all other flow routes toward a stretch of 45 m of surface water have been measured for a year. Also the groundwater levels at various locations in the field and the discharge at two nested catchment scales have been monitored. The unique reaction of individual flow routes on rainfall events at the field site allowed us to separate the discharge at a 4 ha catchment and at a 6 km2 into flow route contributions. The results of this nested experimental setup combined with the results of a distributed hydrological model has lead to the formulation of a process model approach that focuses on the spatial variability of discharge generation driven by temporal and spatial variations in groundwater levels. The main idea of this approach is that discharge is not generated by catchment average storages or groundwater heads, but is mainly generated by points scale extremes i.e. extreme low permeability, extreme high groundwater heads or extreme low surface elevations, all leading to catchment discharge. We focused on describing the spatial extremes in point scale storages and this led to a simple and measurable expression that governs the non-linear groundwater surface water interaction. We will present the analysis of the field site data to demonstrate the potential of nested-scale, high frequency observations. The distributed hydrological model results will be used to show transient catchment scale relations between groundwater levels and discharges. These analyses lead to a simple expression that can describe catchment scale groundwater surface water interactions.
THE HYDROLOGIC RESPONSE OF A SMALL CATCHMENT TO CLEAR-CUTTING
We simulated how a landscape disturbance (e.g., fire or clear-cutting) alters hillslope and catchment hydrologic processes. Specifically, we simulated how the pattern and magnitude of tree removal in a catchment increases downslope transport of water and alters catchment soil moi...
Sillanpää, Nora; Koivusalo, Harri
2013-01-01
Despite the crucial role of snow in the hydrological cycle in cold climate conditions, monitoring studies of urban snow quality often lack discussions about the relevance of snow in the catchment-scale runoff management. In this study, measurements of snow quality were conducted at two residential catchments in Espoo, Finland, simultaneously with continuous runoff measurements. The results of the snow quality were used to produce catchment-scale estimates of areal snow mass loads (SML). Based on the results, urbanization reduced areal snow water equivalent but increased pollutant accumulation in snow: SMLs in a medium-density residential catchment were two- to four-fold higher in comparison with a low-density residential catchment. The main sources of pollutants were related to vehicular traffic and road maintenance, but also pet excrement increased concentrations to a high level. Ploughed snow can contain 50% of the areal pollutant mass stored in snow despite its small surface area within a catchment.
NASA Astrophysics Data System (ADS)
Schaaf, Wolfgang
2010-05-01
To combine process-oriented research on initial development of ecosystems with interactions and co-development of spatial patterns and structures the Transregional Collaborative Research Centre (SFB/TRR) 38 (www.tu-cottbus.de/sfb_trr) was established as an initiative of three universities (BTU Cottbus, TU Munich and ETH Zurich). The objective of the SFB/TRR 38 is to enhance our understanding of structure genesis in ecosystems and of process dynamics as well as their interactions during the initial development phase. The artificial catchment was constructed in the mining area of Lusatia/Germany as the main research site (Gerwin et al. 2009). With an area of about 6 ha, this catchment ´Chicken Creeḱ is to our knowledge the largest artificial catchment worldwide. It was constructed as a 2-4 m layer of post-glacial sandy to loamy sediments overlying a 1-2 m layer of Tertiary clay that forms a shallow pan and seals the whole catchment at the base. No further measures of restoration like planting, amelioration or fertilization were carried out to allow natural succession and undisturbed development. Initial soil conditions were characterized by intensive grid sampling throughout the catchment. There is textural difference between the western and the eastern part of the catchment due to the fact that the substrates were dumped in two different periods during the construction process. In the NE part of the catchment pure sands dominate whereas the SW part has more loamy sands. Due to the carbonate content the pH values are weakly alkaline or neutral. The low contents in organic carbon, pedogenic oxides and clay mineralogy underline the initial state of the soil. Soil solution is sampled at four soil pits that were excavated down to the saturated layer in 2-2.5 m depth by hand and stabilized with a lining of PE rings with a diameter of 1m. From these pits boron silicate glass suction plates were installed into the soil in 2-3 depths. Soil solution is collected using a permanent pressure head of -10 kPa and sampled biweekly. Soil solution composition varies considerably between the four soil pits during the observation period. Compared to these spatial variations, differences in soil depth and over time are less pronounced. Main components of all sampled soil solutions are Ca2+, Mg2+, HCO3- and SO42-. Due to the carbonate content of the substrates, mean pH values vary between 7.0 and 8.0 in all samples. No correlations were found between soil solution compositions and soil parameters of the surrounding grid samples. Compared to the low organic carbon and total sulfur contents of the parent material, the concentrations of sulfate and DOC are surprisingly high. During summer drought periods pale whitish precipitations were frequently observed at the vertical walls of erosions gullies. Microscopy revealed that these precipitations form a very thin crust composed of very small crystal grains. Further analysis using SEM and EDX mapping showed that the particles are composed of Ca and S indicating gypsum or anhydrite. Similar findings in Chernozems of Central Germany. were interpreted as gypsum formation due to former high sulphur deposition together with low precipitation and leaching (Dultz and Kühn 2005). References Dultz, S. and Kühn, P., 2005: Occurrence, formation, and micromorphology of gypsum in soils from the Central-German Chernozem region. Geoderma 129, 230-250. Gerwin, W., Schaaf, W., Biemelt, D., Fischer, A., Winter, S., Hüttl, R.F., 2009: The artificial catchment "Chicken Creek" (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of initial ecosystem development. Ecolological Engineering 35, 1786-1796.
An optimization framework for measuring spatial access over healthcare networks.
Li, Zihao; Serban, Nicoleta; Swann, Julie L
2015-07-17
Measurement of healthcare spatial access over a network involves accounting for demand, supply, and network structure. Popular approaches are based on floating catchment areas; however the methods can overestimate demand over the network and fail to capture cascading effects across the system. Optimization is presented as a framework to measure spatial access. Questions related to when and why optimization should be used are addressed. The accuracy of the optimization models compared to the two-step floating catchment area method and its variations is analytically demonstrated, and a case study of specialty care for Cystic Fibrosis over the continental United States is used to compare these approaches. The optimization models capture a patient's experience rather than their opportunities and avoid overestimating patient demand. They can also capture system effects due to change based on congestion. Furthermore, the optimization models provide more elements of access than traditional catchment methods. Optimization models can incorporate user choice and other variations, and they can be useful towards targeting interventions to improve access. They can be easily adapted to measure access for different types of patients, over different provider types, or with capacity constraints in the network. Moreover, optimization models allow differences in access in rural and urban areas.
Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen
2013-01-01
When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple time-area model and historic rain series that are either displaced in time or affected with a bias. The results show that for a 10 minute forecast, time displacements of 5 and 10 minutes compare to biases of 60 and 100%, respectively, independent of the catchments time of concentration.
NASA Astrophysics Data System (ADS)
Dwivedi, R.; McIntosh, J. C.; Meixner, T.; Ferré, T. P. A.; Chorover, J.
2016-12-01
Mountain systems are critical sources of recharge to adjacent alluvial basins in dryland regions. Yet, mountain systems face poorly defined threats due to climate change in terms of reduced snowpack, precipitation changes, and increased temperatures. Fundamentally, the climate risks to mountain systems are uncertain due to our limited understanding of natural recharge processes. Our goal is to combine measurements and models to provide improved spatial and temporal descriptions of groundwater flow paths and transit times in a headwater catchment located in a sub-humid region. This information is important to quantifying groundwater age and, thereby, to providing more accurate assessments of the vulnerability of these systems to climate change. We are using: (a) combination of geochemical composition, along with 2H/18O and 3H isotopes to improve an existing conceptual model for mountain block recharge (MBR) for the Marshall Gulch Catchment (MGC) located within the Santa Catalina Mountains. The current model only focuses on shallow flow paths through the upper unconfined aquifer with no representation of the catchment's fractured-bedrock aquifer. Groundwater flow, solute transport, and groundwater age will be modeled throughout MGC using COMSOL Multiphysics® software. Competing models in terms of spatial distribution of required hydrologic parameters, e.g. hydraulic conductivity and porosity, will be proposed and these models will be used to design discriminatory data collection efforts based on multi-tracer methods. Initial end-member mixing results indicate that baseflow in MGC, if considered the same as the streamflow during the dry periods, is not represented by the chemistry of deep groundwater in the mountain system. In the ternary mixing space, most of the samples plot outside the mixing curve. Therefore, to further constrain the contributions of water from various reservoirs we are collecting stable water isotopes, tritium, and solute chemistry of precipitation, shallow groundwater, local spring water, MGC streamflow, and at a drainage location much lower than MGC outlet to better define and characterize each end-member of the ternary mixing model. Consequently, the end-member mixing results are expected to facilitate us in better understanding the MBR processes in and beyond MGC. Mountain systems are critical sources of recharge to adjacent alluvial basins in dryland regions. Yet, mountain systems face poorly defined threats due to climate change in terms of reduced snowpack, precipitation changes, and increased temperatures. Fundamentally, the climate risks to mountain systems are uncertain due to our limited understanding of natural recharge processes. Our goal is to combine measurements and models to provide improved spatial and temporal descriptions of groundwater flow paths and transit times in a headwater catchment located in a sub-humid region. This information is important to quantifying groundwater age and, thereby, to providing more accurate assessments of the vulnerability of these systems to climate change. We are using: (a) combination of geochemical composition, along with 2H/18O and 3H isotopes to improve an existing conceptual model for mountain block recharge (MBR) for the Marshall Gulch Catchment (MGC) located within the Santa Catalina Mountains. The current model only focuses on shallow flow paths through the upper unconfined aquifer with no representation of the catchment's fractured-bedrock aquifer. Groundwater flow, solute transport, and groundwater age will be modeled throughout MGC using COMSOL Multiphysics® software. Competing models in terms of spatial distribution of required hydrologic parameters, e.g. hydraulic conductivity and porosity, will be proposed and these models will be used to design discriminatory data collection efforts based on multi-tracer methods. Initial end-member mixing results indicate that baseflow in MGC, if considered the same as the streamflow during the dry periods, is not represented by the chemistry of deep groundwater in the mountain system. In the ternary mixing space, most of the samples plot outside the mixing curve. Therefore, to further constrain the contributions of water from various reservoirs we are collecting stable water isotopes, tritium, and solute chemistry of precipitation, shallow groundwater, local spring water, MGC streamflow, and at a drainage location much lower than MGC outlet to better define and characterize each end-member of the ternary mixing model. Consequently, the end-member mixing results are expected to facilitate us in better understanding the MBR processes in and beyond MGC.
NASA Astrophysics Data System (ADS)
Karami, Gholam Hossein; Bagheri, Rahim; Rahimi, Fahimeh
2016-12-01
Assessing the groundwater recharge potential zone and differentiation of the spring catchment area are extremely important to effective management of groundwater systems and protection of water quality. The study area is located in the Saldoran karstic region, western Iran. It is characterized by a high rate of precipitation and recharge via highly permeable fractured karstic formations. Pire-Ghar, Sarabe-Babaheydar and Baghe-rostam are three major karstic springs which drain the Saldoran anticline. The mean discharge rate and electrical conductivity values for these springs were 3, 1.9 and 0.98 m3/s, and 475, 438 and 347 μS/cm, respectively. Geology, hydrogeology and geographical information system (GIS) methods were used to define the catchment areas of the major karstic springs and to map recharge zones in the Saldoran anticline. Seven major influencing factors on groundwater recharge rates (lithology, slope value and aspect, drainage, precipitation, fracture density and karstic domains) were integrated using GIS. Geology maps and field verification were used to determine the weights of factors. The final map was produced to reveal major zones of recharge potential. More than 80 % of the study area is terrain that has a recharge rate of 55-70 % (average 63 %). Evaluating the water budget of Saldoran Mountain showed that the total volume of karst water emerging from the Saldoran karst springs is equal to the total annual recharge on the anticline. Therefore, based on the geological and hydrogeological investigations, the catchment area of the mentioned karst springs includes the whole Saldoran anticline.
NASA Astrophysics Data System (ADS)
Saari, Markus; Rossi, Pekka; Blomberg von der Geest, Kalle; Mäkinen, Ari; Postila, Heini; Marttila, Hannu
2017-04-01
High metal concentrations in natural waters is one of the key environmental and health problems globally. Continuous in-situ analysis of metals from runoff water is technically challenging but essential for the better understanding of processes which lead to pollutant transport. Currently, typical analytical methods for monitoring elements in liquids are off-line laboratory methods such as ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) and ICP-MS (ICP combined with a mass spectrometer). Disadvantage of the both techniques is time consuming sample collection, preparation, and off-line analysis at laboratory conditions. Thus use of these techniques lack possibility for real-time monitoring of element transport. We combined a novel high resolution on-line metal concentration monitoring with catchment scale physical hydrological modelling in Mustijoki river in Southern Finland in order to study dynamics of processes and form a predictive warning system for leaching of metals. A novel on-line measurement technique based on micro plasma emission spectroscopy (MPES) is tested for on-line detection of selected elements (e.g. Na, Mg, Al, K, Ca, Fe, Ni, Cu, Cd and Pb) in runoff waters. The preliminary results indicate that MPES can sufficiently detect and monitor metal concentrations from river water. Water and Soil Assessment Tool (SWAT) catchment scale model was further calibrated with high resolution metal concentration data. We show that by combining high resolution monitoring and catchment scale physical based modelling, further process studies and creation of early warning systems, for example to optimization of drinking water uptake from rivers, can be achieved.
Modeling flash floods in southern France for road management purposes
NASA Astrophysics Data System (ADS)
Vincendon, Béatrice; Édouard, Simon; Dewaele, Hélène; Ducrocq, Véronique; Lespinas, Franck; Delrieu, Guy; Anquetin, Sandrine
2016-10-01
Flash-floods are among the most devastating hazards in the Mediterranean. A major subset of damage and casualties caused by flooding is related to road submersion. Distributed hydrological nowcasting can be used for road flooding monitoring. This requires rainfall-runoff simulations at a high space and time resolution. Distributed hydrological models, such as the ISBA-TOP coupled system used in this study, are designed to simulate discharges for any cross-section of a river but they are generally calibrated for certain outlets and give deteriorated results for the sub-catchment outlets. The paper first analyses ISBA-TOP discharge simulations in the French Mediterranean region for target points different from the outlets used for calibration. The sensitivity of the model to its governing factors is examined to highlight the validity of results obtained for ungauged river sections compared with those obtained for the main gauged outlets. The use of improved model inputs is found beneficial for sub-catchments simulation. The calibration procedure however provides the parameters' values for the main outlets only and these choices influence the simulations for ungauged catchments or sub-catchments. As a result, a new version of ISBA-TOP system without any parameter to calibrate is used to produce diagnostics relevant for quantifying the risk of road submersion. A first diagnostic is the simulated runoff spatial distribution, it provides a useful information about areas with a high risk of submersion. Then an indicator of the flood severity is given by simulated discharges presented with respect to return periods. The latter has to be used together with information about the vulnerability of road-river cross-sections.
NASA Astrophysics Data System (ADS)
Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May
2014-11-01
Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.
NASA Astrophysics Data System (ADS)
Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.
2015-01-01
While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.
Urban River Restoration in Tehran: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Azizi, S.; Mousavi, H.; Farshad, F.; Hoseinzade Vahedi, N.; Zanjanian, M.; Khamesi, A.; Shojaee, M.; Safdarnejad, S. M.; Mirrahimi, H.; Ahmari, N.
2015-12-01
The typical treatment of urban river streams in Tehran has been limited channelization over the last 30 years. Changes in stream hydrology resulting from urbanization causes a widening gap between river and neighborhoods that results in the ecological and visual division between built and natural environments. To address these problems, a new management perspective in Tehran municipality seeks creating a sequence of thematic green spaces which serve as meeting points for adjacent neighborhoods. Implementation of pilot projects has proved that restoration of urban rivers requires a holistic approach with a range of technologies and tools that contribute to the goal of integrated planning. Currently, our team is working on Darband and Darabad catchments in north east Tehran,to provide opportunities for restoration of natural life in order to improve the amenity, ecology and sustainability of an urban river environment based on 4 key planning principles of: Demonstrating characteristics of the city's unique relationship to the river in the riverfront design; Knowing the river ecosystem and planning for a scale larger than the river front; minimizing new floodplain development; and Providing public access, connections, and recreational uses. This presentation will discuss the process of developing a new integrated GIS-based catchment planning system which helped the City shape its strategic plan for two catchments for the 2015-2030 period through multi-objective and multi-criteria optimization. The strategic plan is expected to enable the city to project the effects of introducing any future development in the catchment area on the river system, helping it to prevent such development activities which can have unintended long-term impacts.
Oberholster, P J; Botha, A-M; Hill, L; Strydom, W F
2017-12-01
Rising environmental pressures on water resources and resource quality associated with urbanisation, industrialisation, mining and agriculture are a global concern. In the current study the upper Olifants River catchment as case study was used, to show that acid mine drainage (AMD) and acid precipitation were the two most important drivers of possible acidification during a four-year study period. Over the study period 59% of the precipitation sampled was classified as acidic with a pH value below 5.6. Traces of acidification in the river system using aquatic organisms at different trophic levels were only evident in areas of AMD point sources. Data gathered from the ecotoxicology screening tools, revealed that discharge of untreated and partially treated domestic sewage from municipal sewage treatment works and informal housing partially mitigate any traces of acidification by AMD and acid precipitation in the main stem of the upper Olifants River. The outcome of the study using phytoplankton and macroinvertebrates as indicator organisms revealed that the high loads of sewage effluent might have played a major role in the neutralization of acidic surface water conditions caused by AMD and acid precipitation. Although previous multi-stage and microcosm studies confirmed the decrease in acidity and metals concentrations by municipal wastewater, the current study is the first to provide supportive evidence of this co-attenuation on catchment scale. These findings are important for integrated water resource management on catchment level, especially in river systems with a complex mixture of pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wightwick, Adam M; Bui, Anh Duyen; Zhang, Pei; Rose, Gavin; Allinson, Mayumi; Myers, Jackie H; Reichman, Suzanne M; Menzies, Neal W; Pettigrove, Vincent; Allinson, Graeme
2012-04-01
Fungicides are regularly applied in horticultural production systems and may migrate off-site, potentially posing an ecological risk to surface waterways. However, few studies have investigated the fate of fungicides in horticultural catchments. This study investigated the presence of 24 fungicides at 18 sites during a 5-month period within a horticultural catchment in southeastern Australia. Seventeen of the 24 fungicides were detected in the waterways, with fungicides detected in 63% of spot water samples, 44% of surface sediment samples, and 44% of the passive sampler systems deployed. One third of the water samples contained residues of two or more fungicides. Myclobutanil, trifloxystrobin, pyrimethanil, difenoconazole, and metalaxyl were the fungicides most frequently detected, being present in 16-38% of the spot water samples. Iprodione, myclobutanil, pyrimethanil, cyproconazole, trifloxystrobin, and fenarimol were found at the highest concentrations in the water samples (> 0.2 μg/l). Relatively high concentrations of myclobutanil and pyrimethanil (≥ 120 μg/kg dry weight) were detected in the sediment samples. Generally the concentrations of the fungicides detected were several orders of magnitude lower than reported ecotoxicological effect values, suggesting that concentrations of individual fungicides in the catchment were unlikely to pose an ecological risk. However, there is little information on the effects of fungicides, especially fungi and microbes, on aquatic ecosystems. There is also little known about the combined effects of simultaneous low-level exposure of multiple fungicides to aquatic organisms. Further research is required to adequately assess the risk of fungicides in aquatic environments.
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.
2017-12-01
In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.
2013-12-01
In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions, if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the Migina catchment.
Soil water dynamics of lateritic catchments as affected by forest clearing for pasture
NASA Astrophysics Data System (ADS)
Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.
1987-10-01
Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water holding capacity of the surface lateritic soils, the drainage beyond 1 m is substantially increased under pasture, and this results in an increased recharge to the underlying aquifer.
Systems analysis of urban wastewater systems--two systematic approaches to analyse a complex system.
Benedetti, L; Blumensaat, F; Bönisch, G; Dirckx, G; Jardin, N; Krebs, P; Vanrolleghem, P A
2005-01-01
This work was aimed at performing an analysis of the integrated urban wastewater system (catchment area, sewer, WWTP, receiving water). It focused on analysing the substance fluxes going through the system to identify critical pathways of pollution, as well as assessing the effectiveness of energy consumption and operational/capital costs. Two different approaches were adopted in the study to analyse urban wastewater systems of diverse characteristics. In the first approach a wide ranged analysis of a system at river basin scale is applied. The Nete river basin in Belgium, a tributary of the Schelde, was analysed through the 29 sewer catchments constituting the basin. In the second approach a more detailed methodology was developed to separately analyse two urban wastewater systems situated within the Ruhr basin (Germany) on a river stretch scale. The paper mainly focuses on the description of the method applied. Only the most important results are presented. The main outcomes of these studies are: the identification of stressors on the receiving water bodies, an extensive benchmarking of wastewater systems, and the evidence of the scale dependency of results in such studies.
Insights from 14C into C loss pathways in degraded peatlands
NASA Astrophysics Data System (ADS)
Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire
2016-04-01
Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This mechanism may be as important as changes in hydrological flow pathways within the peat in mobilising aged carbon from the systems.
Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine
2018-03-01
Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establish these regions is very flexible and has the potential to be extended to other geographical regions or toward the use in climate impact studies.
NASA Astrophysics Data System (ADS)
Poncelet, Carine; Merz, Ralf; Merz, Bruno; Parajka, Juraj; Oudin, Ludovic; Andréassian, Vazken; Perrin, Charles
2017-08-01
Most of previous assessments of hydrologic model performance are fragmented, based on small number of catchments, different methods or time periods and do not link the results to landscape or climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catchment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis based on regression trees and investigating the interplay between features. The catchment features most affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catchment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear responses (higher correlation between precipitation and streamflow) and lower input and output variability for such catchments. Finally, we show that, compared to national sets, multinational sets increase results transferability because they explore a wider range of hydroclimatic conditions.
NASA Astrophysics Data System (ADS)
Kakembo, Vincent; Ndou, Naledzani
2017-04-01
An investigation of the temporal changes in vegetation condition across the communal villages of the central Keiskamma catchment, Eastern Cape Province, in relation to local grazing management systems was conducted. Landsat TM images of 1984 and 1999, in conjunction with SPOT imagery of 2011 were used to assess the spatial trends in vegetation. Information regarding the functionality of local grazing management structures was obtained through structured interviews. Vegetation condition was related to grazing management systems using the logistic regression in Idrisi Selva remote sensing software. Analysis of vegetation condition trends revealed a consistent deterioration of vegetation condition in villages with weak grazing management systems. A statistically significant correlation between vegetation condition and grazing management systems was identified. High levels of vegetation degradation were associated with villages that did not adhere to sound grazing management practices. The introduction of another layer governance in the form of elected municipal committees weakened traditional village management structures. Strengthening traditional management committees should be the point of departure for vegetation restoration.
Urban permeable pavement system design based on “sponge city” concept
NASA Astrophysics Data System (ADS)
Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.
2017-08-01
Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.
Design flood estimation in ungauged basins: probabilistic extension of the design-storm concept
NASA Astrophysics Data System (ADS)
Berk, Mario; Špačková, Olga; Straub, Daniel
2016-04-01
Design flood estimation in ungauged basins is an important hydrological task, which is in engineering practice typically solved with the design storm concept. However, neglecting the uncertainty in the hydrological response of the catchment through the assumption of average-recurrence-interval (ARI) neutrality between rainfall and runoff can lead to flawed design flood estimates. Additionally, selecting a single critical rainfall duration neglects the contribution of other rainfall durations on the probability of extreme flood events. In this study, the design flood problem is approached with concepts from structural reliability that enable a consistent treatment of multiple uncertainties in estimating the design flood. The uncertainty of key model parameters are represented probabilistically and the First-Order Reliability Method (FORM) is used to compute the flood exceedance probability. As an important by-product, the FORM analysis provides the most likely parameter combination to lead to a flood with a certain exceedance probability; i.e. it enables one to find representative scenarios for e.g., a 100 year or a 1000 year flood. Possible different rainfall durations are incorporated by formulating the event of a given design flood as a series system. The method is directly applicable in practice, since for the description of the rainfall depth-duration characteristics, the same inputs as for the classical design storm methods are needed, which are commonly provided by meteorological services. The proposed methodology is applied to a case study of Trauchgauer Ach catchment in Bavaria, SCS Curve Number (CN) and Unit hydrograph models are used for modeling the hydrological process. The results indicate, in accordance with past experience, that the traditional design storm concept underestimates design floods.