A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen
2000-01-01
A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.
Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2014-05-01
Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.
A Catchment-Based Land Surface Model for GCMs and the Framework for its Evaluation
NASA Technical Reports Server (NTRS)
Ducharen, A.; Koster, R. D.; Suarez, M. J.; Kumar, P.
1998-01-01
A new GCM-scale land surface modeling strategy that explicitly accounts for subgrid soil moisture variability and its effects on evaporation and runoff is now being explored. In a break from traditional modeling strategies, the continental surface is disaggregated into a mosaic of hydrological catchments, with boundaries that are not dictated by a regular grid but by topography. Within each catchment, the variability of soil moisture is deduced from TOP-MODEL equations with a special treatment of the unsaturated zone. This paper gives an overview of this new approach and presents the general framework for its off-line evaluation over North-America.
NASA Astrophysics Data System (ADS)
Fiener, P.; Auerswald, K.; van Oost, K.
2009-04-01
In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.
Relationship between landscape characteristics and surface water quality.
Chang, C L; Kuan, W H; Lui, P S; Hu, C Y
2008-12-01
The effects of landscape characteristics on surface water quality were evaluated in terms of land-use condition, soil type and slope. The case area, the Chichiawan stream in the Wulin catchment in Taiwan, is Formosan landlocked salmon's natural habitat. Due to the agriculture behavior and mankind's activities, the water and environmental quality has gradually worsened. This study applied WinVAST model to predict hydrological responses and non-point source pollution (NPSP) exports in the Wulin catchment. The land-use condition and the slope of land surface in a catchment are major effect factors for watershed responses, including flows and pollutant exports. This work discussed the possible variation of watershed responses induced by the change of land-use condition, soil type and slope, etc. The results show that hydrological responses are highly relative to the value of Curve Number (CN); Pollutant exports have large relation to the average slope of the land surface in the Wulin catchment.
Modeling Land Use Change In A Tropical Environment Using Similar Hydrologic Response Units
NASA Astrophysics Data System (ADS)
Guardiola-Claramonte, M.; Troch, P.
2006-12-01
Montane mainland South East Asia comprises areas of great biological and cultural diversity. Over the last decades the region has overcome an important conversion from traditional agriculture to cash crop agriculture driven by regional and global markets. Our study aims at understanding the hydrological implications of these land use changes at the catchment scale. In 2004, networks of hydro-meteorological stations observing water and energy fluxes were installed in two 70 km2 catchments in Northern Thailand (Chiang Mai Province) and Southern China (Yunnan Province). In addition, a detailed soil surveying campaign was done at the moment of instrument installation. Land use is monitored periodically using satellite data. The Thai catchment is switching from small agricultural fields to large extensions of cash crops. The Chinese catchment is replacing the traditional forest for rubber plantations. A first comparative study based on catchments' geomorphologic characteristics, field observations and rainfall-runoff response revealed the dominant hydrologic processes in the catchments. Land use information is then translated into three different Hydrologic Response Units (HRU): rice paddies, pervious and impervious surfaces. The pervious HRU include different land uses such as different stages of forest development, rubber plantations, and agricultural fields; the impervious ones are urban areas, roads and outcrops. For each HRU a water and energy balance model is developed incorporating field observed hydrologic processes, measured field parameters, and literature-based vegetation and soil parameters to better describe the root zone, surface and subsurface flow characteristics without the need of further calibration. The HRU water and energy balance models are applied to single hillslopes and their integrated hydrologic response are compared for different land covers. Finally, the response of individual hillslopes is routed through the channel network to represent each of the basins. Results from the model are compared to measured catchment-scale water and energy fluxes.
NASA Astrophysics Data System (ADS)
Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.
2013-12-01
Rivers are the funnels of landscapes, with the quality of water at the catchment outlet reflecting interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses. The impacts of changing climate and land cover on water quality are not straightforward; but instead, are set by the interaction of numerous landscape components at multiple spatiotemporal scales. In agricultural-dominated subtropical landscapes such as the Hoteo River Catchment in northern North Island of New Zealand, the land surface can be very dynamic, responding quickly to storms, drought, forest clearings, and grazing practices. In order to capture these short-term fluctuations, we created an 8-day land disturbance index for the catchment using MODIS Nadir BRDF-adjusted reflectance (NBAR) data (500 meter resolution) from 2000 to 2013. We also fused this time-series with Landsat TM/ETM surface reflectance data (30 meter resolution) to more precisely capture the location and extent of these land disturbances. This high-resolution land disturbance time-series was then compared to daily rainfall, daily river discharge, and monthly water samples to assess the effects of changing weather and land cover on a suite of water quality variables including water clarity, turbidity, ammonium (NH4), nitrate (NO3), total nitrogen (TN), dissolved reactive phosphate (DRP), total phosphorus (TP), and fecal coliforms. Forest clearings in the early part of our study period created the most intense land disturbances, which led to elevated turbidity and DRP during subsequent storms. Pasture areas during drought were also characterized by high disturbance indices, particularly in 2013 - the worst drought on record for northern New Zealand. Seasonal effects on land disturbance and water quality were also detected, especially for water clarity and turbidity. From 2011 to 2013, river discharge and turbidity from three sub-catchments were measured at 5-minute intervals to capture rainfall event-based water quality patterns. Together, the event-based and monthly turbidity data suggest that intense land disturbances in the Hoteo Catchment have the ability to switch the catchment from supply-limited (river loadings are dictated by what is available from the landscape) to transport-limited (loadings from the landscape are abundant, and thus dictated by water runoff). The findings from this research can be used to assess (1) the vulnerability of agricultural land uses to climate changes, particularly the impact of severe droughts from intensifying ENSO phenomena; and (2) the interactive effects of changing climate and land use on water quality across multiple spatiotemporal scales.
NASA Astrophysics Data System (ADS)
Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine
2015-04-01
Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.
NASA Technical Reports Server (NTRS)
Ducharne, Agnes; Koster, Randal D.; Suarez, Max J.; Stieglitz, Marc; Kumar, Praveen
2000-01-01
The viability of a new catchment-based land surface model (LSM) developed for use with general circulation models is demonstrated. First, simple empirical functions -- tractable enough for operational use in the LSM -- are established that faithfully capture the control of topography on the subgrid variability of soil moisture and the surface water budget, as predicted by theory. Next, the full LSM is evaluated offline. Using forcing and validation datasets developed for PILPS Phase 2c, the minimally calibrated model is shown to reproduce observed evaporation and runoff fluxes successfully in the Red-Arkansas River Basin. A complementary idealized study that employs the range of topographic variability seen over North America demonstrates that the simulated surface water budget does vary strongly with topography, which can, by itself, induce variations in annual evaporation as high as 20%.
NASA Astrophysics Data System (ADS)
Heathwaite, A. L.
1994-07-01
Lake studies allow contemporary sediment and nutrient dynamics to be placed in a historical context in order that trends and rates of change in catchment inputs may be calculated. Here, a synthesis of the temporal information contained in catchment and lake sediment records is attempted. A chemical fractionation technique is used to isolate the different sediment sources contained in the lake core, and 210Pb dates provide an accurate record of changes in lake sediment sources over the past 100 years. The extent to which land-use records, collated from agricultural census returns, and process-based studies of sediment and nutrient export from different catchment land uses can be used to explain the trends observed in the lake sediments is examined. Sediment influx to the study lake has increased from less than 2 mm year -1 prior to the Second World War to over 10 mm year -1 at present. The source of the sediment is largely unaltered and unweathered allochthonous material eroded from the catchment. Land-use records suggest that the intensification of agriculture, characterized by a shift towards arable land immediately postwar, followed by an increase in the area of temporary grass in the 1960s, may be the cause of accelerated catchment erosion; both land-use changes would have increased the area of ploughed land in the catchment. An increase in the number of cattle and sheep in the catchment from around 2000 and 6000, respectively, in the 1940s, to a peak of nearly 7000 cattle and over 15 000 sheep in the 1980s, provides a further source of sediment and nutrients. Livestock are grazed on permanent grassland which is commonly located on steep hillslopes and in riparian zones where saturation-excess surface runoff may be an important hydrological pathway. Rainfall simulation experiments show that surface runoff from heavily grazed grassland has a high suspended sediment, ammonium-nitrogen and particulate phosphorus load. The combined effect of the long-term increase in the organic loading from livestock and the inorganic N and P load from fertilizers, may be the source of nutrient enrichment in the lake.
Catchment-scale groundwater recharge and vegetation water use efficiency
NASA Astrophysics Data System (ADS)
Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.
2017-12-01
Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment characteristics, such as climate and topography, and free of discharge measurements.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2009-04-01
We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?
Porter, Kenneth D H; Reaney, Sim M; Quilliam, Richard S; Burgess, Chris; Oliver, David M
2017-12-31
Microbial pollution of surface waters in agricultural catchments can be a consequence of poor farm management practices, such as excessive stocking of livestock on vulnerable land or inappropriate handling of manures and slurries. Catchment interventions such as fencing of watercourses, streamside buffer strips and constructed wetlands have the potential to reduce faecal pollution of watercourses. However these interventions are expensive and occupy valuable productive land. There is, therefore, a requirement for tools to assist in the spatial targeting of such interventions to areas where they will have the biggest impact on water quality improvements whist occupying the minimal amount of productive land. SCIMAP is a risk-based model that has been developed for this purpose but with a focus on diffuse sediment and nutrient pollution. In this study we investigated the performance of SCIMAP in predicting microbial pollution of watercourses and assessed modelled outputs of E. coli, a common faecal indicator organism (FIO), against observed water quality information. SCIMAP was applied to two river catchments in the UK. SCIMAP uses land cover risk weightings, which are routed through the landscape based on hydrological connectivity to generate catchment scale maps of relative in-stream pollution risk. Assessment of the model's performance and derivation of optimum land cover risk weightings was achieved using a Monte-Carlo sampling approach. Performance of the SCIMAP framework for informing on FIO risk was variable with better performance in the Yealm catchment (r s =0.88; p<0.01) than the Wyre (r s =-0.36; p>0.05). Across both catchments much uncertainty was associated with the application of optimum risk weightings attributed to different land use classes. Overall, SCIMAP showed potential as a useful tool in the spatial targeting of FIO diffuse pollution management strategies; however, improvements are required to transition the existing SCIMAP framework to a robust FIO risk-mapping tool. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Assimilation of Freeze - Thaw Observations into the NASA Catchment Land Surface Model
NASA Technical Reports Server (NTRS)
Farhadi, Leila; Reichle, Rolf H.; DeLannoy, Gabrielle J. M.; Kimball, John S.
2014-01-01
The land surface freeze-thaw (F-T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and vegetation productivity at the land surface. In this study, we developed an F-T assimilation algorithm for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F-T state in the GEOS-5 Catchment land surface model. The F-T analysis is a rule-based approach that adjusts Catchment model state variables in response to binary F-T observations, while also considering forecast and observation errors. A regional observing system simulation experiment was conducted using synthetically generated F-T observations. The assimilation of perfect (error-free) F-T observations reduced the root-mean-square errors (RMSE) of surface temperature and soil temperature by 0.206 C and 0.061 C, respectively, when compared to model estimates (equivalent to a relative RMSE reduction of 6.7 percent and 3.1 percent, respectively). For a maximum classification error (CEmax) of 10 percent in the synthetic F-T observations, the F-T assimilation reduced the RMSE of surface temperature and soil temperature by 0.178 C and 0.036 C, respectively. For CEmax=20 percent, the F-T assimilation still reduces the RMSE of model surface temperature estimates by 0.149 C but yields no improvement over the model soil temperature estimates. The F-T assimilation scheme is being developed to exploit planned operational F-T products from the NASA Soil Moisture Active Passive (SMAP) mission.
Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Omata, Teppei
2015-01-01
The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in March 2011 resulted in the deposition of large quantities of radionuclides, such as (134)Cs and (137)Cs, over parts of eastern Japan. Since then high levels of radioactive contamination have been detected in large areas, including forests, agricultural land, and residential areas. Due to the strong adsorption capability of radiocesium to soil particles, radiocesium migrates with eroded sediments, follows the surface flow paths, and is delivered to more populated downstream regions and eventually to the Pacific Ocean. It is therefore important to understand the transport of contaminated sediments in the hydrological system and to predict changes in the spatial distribution of radiocesium concentrations by taking the land-surface processes related to sediment migration into consideration. In this study, we developed a distributed model to simulate the transport of water and contaminated sediment in a watershed hydrological system, and applied this model to a partially forested mountain catchment located in an area highly contaminated by the radioactive fallout. Observed discharge, sediment concentration, and cesium concentration measured from June 2011 until December 2012 were used for calibration of model parameters. The simulated discharge and sediment concentration both agreed well with observed values, while the cesium concentration was underestimated in the initial period following the accident. This result suggests that the leaching of radiocesium from the forest canopy, which was not considered in the model, played a significant role in its transport from the catchment. Based on the simulation results, we quantified the long-term fate of radiocesium over the study area and estimated that the effective half-life of (137)Cs deposited in the study area will be approximately 22 y due to the export of contaminated sediment by land-surface processes, and the amount of (137)Cs remaining in the catchment will be reduced to 39% of the initial total within 30 y after contamination. This study provides a perspective on the transport of suspended sediments and radiocesium in catchments with similar land use and radiocesium contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Badar, Bazigha; Romshoo, Shakil A.; Khan, M. A.
2013-04-01
In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modelling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, inter-alia, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.
Land Use Change and Land Degradation in Southeastern Mediterranean Spain
NASA Astrophysics Data System (ADS)
Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva
2007-07-01
The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall “recuperating” trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.
Land use change and land degradation in southeastern Mediterranean Spain.
Symeonakis, Elias; Calvo-Cases, Adolfo; Arnau-Rosalen, Eva
2007-07-01
The magnitude of the environmental and social consequences of soil erosion and land degradation in semiarid areas of the Mediterranean region has long been recognized and studied. This paper investigates the interrelationship between land use/cover (LULC) changes and land degradation using remotely sensed and ancillary data for southeastern Spain. The area of study, the Xaló River catchment situated in the north of the Alicante Province, has been subjected to a number of LULC changes during the second half of the 20th century such as agricultural abandonment, forest fires, and tourist development. Aerial photographs dating back to 1956 were used for the delineation of historic LULC types; Landsat ETM+ data were used for the analysis and mapping of current conditions. Two important indicators of land degradation, namely, susceptibility to surface runoff and soil erosion, were estimated for the two dates using easily parametrizable models. The comparison of 1956 to 2000 conditions shows an overall "recuperating" trend over the catchment and increased susceptibility to soil erosion only in 3% of the catchment area. The results also identify potential degradation hot-spots where mitigation measures should be taken to prevent further degradation. The readily implemented methodology, based on modest data requirements demonstrated by this study, is a useful tool for catchment to regional scale land use change and land degradation studies and strategic planning for environmental management.
This dataset represents the base flow index values within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Source_Information). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The bfi (%) was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metrics as a continuous data type (see Data Structure and Attribute Information for a description).
Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management
NASA Astrophysics Data System (ADS)
Beck, Scott M.; McHale, Melissa R.; Hess, George R.
2016-07-01
Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.
Guzha, Alphonce C.; Torres, Gilmar N.; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S. S.; Couto, Eduardo; Gerold, Gerhard
2017-01-01
Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow. PMID:28609462
Nóbrega, Rodolfo L B; Guzha, Alphonce C; Torres, Gilmar N; Kovacs, Kristof; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo; Gerold, Gerhard
2017-01-01
Understanding the impacts of land-use change on landscape-hydrological dynamics is one of the main challenges in the Northern Brazilian Cerrado biome, where the Amazon agricultural frontier is located. Motivated by the gap in literature assessing these impacts, we characterized the soil hydro-physical properties and quantified surface water fluxes from catchments under contrasting land-use in this region. We used data from field measurements in two headwater micro-catchments with similar physical characteristics and different land use, i.e. cerrado sensu stricto vegetation and pasture for extensive cattle ranching. We determined hydraulic and physical properties of the soils, applied ground-based remote sensing techniques to estimate evapotranspiration, and monitored streamflow from October 2012 to September 2014. Our results show significant differences in soil hydro-physical properties between the catchments, with greater bulk density and smaller total porosity in the pasture catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado vegetation to pasture causes soil hydro-physical properties deterioration, reduction in evapotranspiration reduction, and increased streamflow.
NASA Astrophysics Data System (ADS)
Roningen, J. M.; Eylander, J. B.
2014-12-01
Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.
Distributed Modelling of Stormflow Generation: Assessing the Effect of Ground Cover
NASA Astrophysics Data System (ADS)
Jarihani, B.; Sidle, R. C.; Roth, C. H.; Bartley, R.; Wilkinson, S. N.
2017-12-01
Understanding the effects of grazing management and land cover changes on surface hydrology is important for water resources and land management. A distributed hydrological modelling platform, wflow, (that was developed as part of Deltares's OpenStreams project) is used to assess the effect of land management practices on runoff generation processes. The model was applied to Weany Creek, a small catchment (13.6 km2) of the Burdekin Basin, North Australia, which is being studied to understand sources of sediment and nutrients to the Great Barrier Reef. Satellite and drone-based ground cover data, high resolution topography from LiDAR, soil properties, and distributed rainfall data were used to parameterise the model. Wflow was used to predict total runoff, peak runoff, time of rise, and lag time for several events of varying magnitudes and antecedent moisture conditions. A nested approach was employed to calibrate the model by using recorded flow hydrographs at three scales: (1) a hillslope sub-catchment: (2) a gullied sub-catchment; and the 13.6 km2 catchment outlet. Model performance was evaluated by comparing observed and predicted stormflow hydrograph attributes using the Nash Sutcliffe efficiency metric. By using a nested approach, spatiotemporal patterns of overland flow occurrence across the catchment can also be evaluated. The results show that a process-based distributed model can be calibrated to simulate spatial and temporal patterns of runoff generation processes, to help identify dominant processes which may be addressed by land management to improve rainfall retention. The model will be used to assess the effects of ground cover changes due to management practices in grazed lands on storm runoff.
Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Zaitchik, Benjamin F.; Rodell, Matt
2008-01-01
The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.
Hydrology of prairie wetlands: Understanding the integrated surface-water and groundwater processes
Hayashi, Masaki; van der Kamp, Garth; Rosenberry, Donald O.
2016-01-01
Wetland managers and policy makers need to make decisions based on a sound scientific understanding of hydrological and ecological functions of wetlands. This article presents an overview of the hydrology of prairie wetlands intended for managers, policy makers, and researchers new to this field (e.g., graduate students), and a quantitative conceptual framework for understanding the hydrological functions of prairie wetlands and their responses to changes in climate and land use. The existence of prairie wetlands in the semi-arid environment of the Prairie-Pothole Region (PPR) depends on the lateral inputs of runoff water from their catchments because mean annual potential evaporation exceeds precipitation in the PPR. Therefore, it is critically important to consider wetlands and catchments as highly integrated hydrological units. The water balance of individual wetlands is strongly influenced by runoff from the catchment and the exchange of groundwater between the central pond and its moist margin. Land-use practices in the catchment have a sensitive effect on runoff and hence the water balance. Surface and subsurface storage and connectivity among individual wetlands controls the diversity of pond permanence within a wetland complex, resulting in a variety of eco-hydrological functionalities necessary for maintaining the integrity of prairie-wetland ecosystems.
Targeting sediment management strategies using sediment quantification and fingerprinting methods
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.
2016-04-01
Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (<40oC) and sieved (125 microns). Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle size and organic matter selectivity processes. Contributions from potential sources type groups (channel - ditches and stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were statistically un-mixed using FR2000, an uncertainty-inclusive algorithm, and combined with sediment yield data. Results showed sediment contributions from channel, field and road groups were 70%, 25% and 5% in the poorly-drained catchment, 59%, 22% and 19% in the well-drained catchment, and 17%, 74% and 9% in the moderately-drained catchment. Higher channel contributions in the poorly-drained catchment were attributed to bank erosion accelerated by the rapid diversion of surface runoff into channels, facilitated by surface and sub-surface artificial drainage networks, and bank seepage from lateral pressure gradients due to confined groundwater. Despite the greatest proportion of arable soils in the well-drained catchment, this source was frequently hydrologically disconnected as well-drained soils largely infiltrated rainfall and prevented surface soil erosion. Periods of high and intense rainfall were associated with greater proportions of field losses in the well-drained catchment likely due to infiltration exceeding the saturated hydraulic conductivity of soils and establishment of surface hydrological connectivity. Losses from field topsoils dominated in the moderately-drained catchment as antecedent soil wetness maintained surface flow pathways and coincided with low groundcover on arable soils. For cost-effective management of sediment pressures to aquatic ecosystems, catchment specific variations in sediment sources must be considered.
NASA Astrophysics Data System (ADS)
Dominguez, M.
2017-12-01
Headwater catchments in complex terrain typically exhibit significant variations in microclimatic conditions across slopes. This microclimatic variability in turn, modifies land surface properties presumably altering the hydrologic dynamics of these catchments. The extent to which differences in microclimate and land cover dictate the partition of water and energy fluxes within a catchment is still poorly understood. In this study, we attempt to do an assessment of the effects of aspect, elevation and latitude (which are the principal factors that define microclimate conditions) on the hydrologic behavior of the hillslopes within catchments with complex terrain. Using a distributed hydrologic model on a number of catchments at different latitudes, where data is available for calibration and validation, we estimate the different components of the water balance to obtain the aridity index (AI = PET/P) and the evaporative index (EI = AET/P) of each slope for a number of years. We use Budyko's curve as a framework to characterize the inter-annual variability in the hydrologic response of the hillslopes in the studied catchments, developing a hydrologic sensitivity index (HSi) based on the relative change in Budyko's curve components (HSi=ΔAI/ΔEI). With this method, when the HSi values of a given hillslope are larger than 1 the hydrologic behavior of that part of the catchment is considered sensitive to changes in climatic conditions, while values approaching 0 would indicate the opposite. We use this approach as a diagnostic tool to discern the effect of aspect, elevation, and latitude on the hydrologic regime of the slopes in complex terrain catchments and to try to explain observed patterns of land cover conditions on these types of catchments.
NASA Astrophysics Data System (ADS)
Rončák, Peter; Lisovszki, Evelin; Szolgay, Ján; Hlavčová, Kamila; Kohnová, Silvia; Csoma, Rózsa; Poórová, Jana
2017-06-01
The effects of land use management practices on surface runoff are evident on a local scale, but evidence of their impact on the scale of a watershed is limited. This study focuses on an analysis of the impact of land use changes on the flood regime in the Myjava River basin, which is located in Western Slovakia. The Myjava River basin has an area of 641.32 km2 and is typified by the formation of fast runoff processes, intensive soil erosion, and muddy floods. The main factors responsible for these problems with flooding and soil erosion are the basin's location, geology, pedology, agricultural land use, and cropping practices. The GIS-based, spatially distributed WetSpa rainfall-runoff model was used to simulate mean daily discharges in the outlet of the basin as well as the individual components of the water balance. The model was calibrated based on the period between 1997 and 2012 with outstanding results (an NS coefficient of 0.702). Various components of runoff (e.g., surface, interflow and groundwater) and several elements of the hydrological balance (evapotranspiration and soil moisture) were simulated under various land use scenarios. Six land use scenarios (`crop', `grass', `forest', `slope', `elevation' and `optimal') were developed. The first three scenarios exhibited the ability of the WetSpa model to simulate runoff under changed land use conditions and enabled a better adjustment of the land use parameters of the model. Three other "more realistic" land use scenarios, which were based on the distribution of land use classes (arable land, grass and forest) regarding permissible slopes in the catchment, confirmed the possibility of reducing surface runoff and maximum discharges with applicable changes in land use and land management. These scenarios represent practical, realistic and realizable land use management solutions and they could be economically implemented to mitigate soil erosion processes and enhance the flood protection measures in the Myjava River basin.
Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.
Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon
2015-01-01
Human-induced changes to river loads of nutrients and sediments pose a significant threat to marine ecosystems. Ongoing land-use change can further increase these loads, and amplify the impacts of land-based threats on vulnerable marine ecosystems. Consequently, there is a need to assess these threats and prioritise actions to mitigate their impacts. A key question regarding prioritisation is whether actions in catchments to maintain coastal-marine water quality can be spatially congruent with actions for other management objectives, such as conserving terrestrial biodiversity. In selected catchments draining into the Gulf of California, Mexico, we employed Land Change Modeller to assess the vulnerability of areas with native vegetation to conversion into crops, pasture, and urban areas. We then used SedNet, a catchment modelling tool, to map the sources and estimate pollutant loads delivered to the Gulf by these catchments. Following these analyses, we used modelled river plumes to identify marine areas likely influenced by land-based pollutants. Finally, we prioritised areas for catchment management based on objectives for conservation of terrestrial biodiversity and objectives for water quality that recognised links between pollutant sources and affected marine areas. Our objectives for coastal-marine water quality were to reduce sediment and nutrient discharges from anthropic areas, and minimise future increases in coastal sedimentation and eutrophication. Our objectives for protection of terrestrial biodiversity covered species of vertebrates. We used Marxan, a conservation planning tool, to prioritise interventions and explore spatial differences in priorities for both objectives. Notable differences in the distributions of land values for terrestrial biodiversity and coastal-marine water quality indicated the likely need for trade-offs between catchment management objectives. However, there were priority areas that contributed to both sets of objectives. Our study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166
Awad, John; van Leeuwen, John; Abate, Dawit; Pichler, Markus; Bestland, Erick; Chittleborough, David J; Fleming, Nigel; Cohen, Jonathan; Liffner, Joel; Drikas, Mary
2015-10-01
The influence of vegetation and soil texture on the concentration and character of dissolved organic matter (DOM) present in runoff from the surface and sub-surface of zero order catchments of the Myponga Reservoir-catchment (South Australia) was investigated to determine the impacts of catchment characteristics and land management practices on the quality of waters used for domestic supply. Catchments selected have distinct vegetative cover (grass, native vegetation or pine) and contrasting texture of the surface soil horizon (sand or clay loam/clay). Water samples were collected from three slope positions (upper, middle, and lower) at soil depths of ~30 cm and ~60 cm in addition to overland flows. Filtered (0.45 μm) water samples were analyzed for dissolved organic carbon (DOC) and UV-visible absorbance and by F-EEM and HPSEC with UV and fluorescence detection to characterize the DOM. Surface and sub-surface runoff from catchments with clay soils and native vegetation or grass had lower DOC concentrations and lower relative abundances of aromatic, humic-like and high molecular weight organics than runoff from sandy soils with these vegetative types. Sub-surface flows from two catchments with Pinus radiata had similar DOC concentrations and DOM character, regardless of marked variation in surface soil texture. Runoff from catchments under native vegetation and grass on clay soils resulted in lower DOC concentrations and hence would be expected to have lower coagulant demand in conventional treatment for potable water supply than runoff from corresponding sandy soil catchments. However, organics in runoff from clay catchments would be more difficult to remove by coagulation. Surface waters from the native vegetation and grass catchments were generally found to have higher relative abundance of organic compounds amenable to removal by coagulation compared with sub-surface waters. Biophysical and land management practices combine to have a marked influence on the quality of source water used for domestic supply. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.
2010-05-01
Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling experiment aims at separating the effect of land cover from other differences (e.g. catchment area, morphology) between the two catchments. This approach allows us to make general statements on effects of land cover, required for future predictions for larger areas. In our modelling experiment, a process-based distributed hydrological model is used for the two catchments. First, we calibrate the model using data from the two catchments until a single set of parameters valid for both is found. With this set of parameters and considering a given meteorological driver (due to their proximity, it can be considered the same for both catchments), runoff at the outlet of each catchment is simulated. Land cover is then swapped between catchments and a new runoff simulation is performed for each "swapped" catchment, using the same set of parameters and the same meteorological driver. The effects of the land cover change are determined by analysing the differences between the first and the "swapped" simulations. This study is based on an analysis of the hydrological differences of two catchments with different history of land use, and a comparative modelling experiment applied to them. Following this approach, we attempt to advance our understanding of the effects of land-use/land-cover changes in catchment hydrology and, ultimately, anticipate their hydrological consequences under a future re-vegetation scenario.
Integrating 3D geological information with a national physically-based hydrological modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark
2016-04-01
Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are located in the chalk in the south east of England. As such, the British Geological Survey 3D geology model for Great Britain (GB3D) has been incorporated, for the first time in any hydrological model, to pave the way for improvements to be made to simulations of catchments with important groundwater regimes. This coupling has involved development of software to allow for easy incorporation of geological information into SHETRAN for any model setup. The addition of more realistic subsurface representation following this approach is shown to greatly improve model performance in areas dominated by groundwater processes. The resulting modelling system has great potential to be used as a resource at national, regional and local scales in an array of different applications, including climate change impact assessments, land cover change studies and integrated assessments of groundwater and surface water resources.
Threshold responses in runoff from sub-humid heterogeneous low relief regions
NASA Astrophysics Data System (ADS)
Devito, K.; Hokanson, K. J.; Chasmer, L.; Kettridge, N.; Lukenbach, M.; Mendoza, C. A.; Moore, P.; Peters, D.; Silins, U.
2017-12-01
We examined runoff in 20 catchments (50 to 50000 km2) over a 25 year wet and dry climate cycle to understand temporal and spatial thresholds in runoff generation responses in the water limited, glaciated continental Boreal Plains (BP) eco-region of Western Canada. Annual runoff ranged over 3 orders of magnitude (<3 mm to >300 mm/year) but was poorly correlated with annual precipitation. A threshold relationship was observed with multi-year cumulative moisture deficit (CMD) that reflected temporal and spatial differences in effective storage, antecedent moisture state and hydrologic connectivity among catchments with differing portions of land-cover (e.g. wetland vs. forestland) and glacial-deposit types. During dry states (CMD< -200 mm), catchment annual low flow ranged by over one order of magnitude (2 to 80 mm/yr), and increased with percent area of coarse textured deposits. In fine textured catchments, runoff was only observed in catchments with >30% wetland area. During mesic conditions (CMD 0 mm), runoff remained very low in catchments with large proportions of forests and poorly connected open water depressions associated with fine-textured moraines. Runoff was positively correlated with percent peatland area, suggesting that peatland networks were the primary source areas of surface water to regional runoff. During the infrequent wet states (CMD > 200 mm) of the study period, runoff coefficients were similar among all catchments indicating that both forests and peatlands contributed to catchment runoff. . Rather than estimating regional runoff from topographic drainage networks, integrating CMD with the classification of catchments based on land-cover configuration and glacial-deposit type can: 1) better represent water cycling and regional sink-source dynamics controlling regional runoff, and 2) provide an effective management framework for predicting climate and land-use impacts on regional runoff in low relief glacial landscapes such as the Boreal Plain.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the estimated area of land use and land cover from the National Land Cover Dataset 2001 (LaMotte, 2008), compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set represents land use and land cover for the conterminous United States for 2001. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering the South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5) and the Pacific Northwest (MRB7) river basins.
NASA Astrophysics Data System (ADS)
Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.
2015-08-01
Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.
NASA Astrophysics Data System (ADS)
Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.
2016-01-01
Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.
NASA Astrophysics Data System (ADS)
Regazzoni, C.; Payraudeau, S.
2012-04-01
Runoff and associated erosion represent a primary mode of mobilization and transfer of pesticides from agricultural lands to watercourses and groundwater. The pesticides toxicity is potentially higher at the headwater catchment scale. These catchments are usually ungauged and characterized by temporary streams. Several mitigation strategies and management practices are currently used to mitigate the pesticides mixtures in agro-ecosystems. Among those practices, Stormwater Wetlands (SW) could be implemented to store surface runoff and to mitigate pesticides loads. The implementation of New Potential Stormwater Wetlands (NPSW) requires a diagnosis of intermittent runoff at the headwater catchment scale. The main difficulty to perform this diagnosis at the headwater catchment scale is to spatially characterize with enough accuracy the landscape components. Indeed, fields and field margins enhance or decrease the runoff and determine the pathways of hortonian overland flow. Land use, soil and Digital Elevation Model databases are systematically used. The question of the respective weight of each of these databases on the uncertainty of the diagnostic results is rarely analyzed at the headwater catchment scale. Therefore, this work focused (i) on the uncertainties of each of these databases and their propagation on the hortonian overland flow modelling, (ii) the methods to improve the accuracy of each database, (iii) the propagation of the databases uncertainties on intermittent runoff modelling and (iv) the impact of modelling cell size on the diagnosis. The model developed was a raster approach of the SCS-CN method integrating re-infiltration processes. The uncertainty propagation was analyzed on the Briançon vineyard catchment (Gard, France, 1400 ha). Based on this study site, the results showed that the geographic and thematic accuracies of regional soil database (1:250 000) were insufficient to correctly simulate the hortonian overland flow. These results have to be weighted according to the soil heterogeneity. Conversely, the regional land use (1:50 000) provided an acceptable diagnostic when combining with accurate soil database (1:15 000). Moreover, the regional land use quality can be improved by integrating road and river networks usually available at the national scale. Finally, a 5 m modelling cell size appeared as an optimum to correctly describe the landscape components and to assess the hortonian overland flow. A wrong assessment of the hortonian overland flow leads to a misinterpretation of the results and affects effective decision-making, e.g. the number and the location of the NSPW. This uncertainty analysis and the improvement methods developed on this study site can be adapted on other headwater catchments characterized by intermittent surface runoff.
Awad, John; Fisk, Claire A; Cox, Jim W; Anderson, Sharolyn J; van Leeuwen, John
2018-09-01
Catchment properties influence the character and concentration of dissolved organic matter (DOM). Surface and subsurface runoff from discrete catchments were collected and DOM was measured and assessed in terms of its treatability by Enhanced Coagulation and potential for disinfection by-product (trihalomethane, THMFP) formation potential. Models were developed of [1] DOM character [i.e. SUVA and SpCoL] and concentration (measured as dissolved organic carbon), [2] treatability of DOM by coagulation/flocculation processes and [3] specific THMFP based on the catchment features including: (a) surface and sub-surface soil texture (% clay: 5-25%), (b) topography (% slope: 5-15%) and (c) vegetation cover [i.e. high photosynthetic vegetation, low photosynthetic vegetation and bare soil] extracted from RapidEye satellite imagery using spectral mixture analysis. From these models, a catchment management decision support tool was designed for application by catchment managers to support decision-making of land-use and expected water quality related to water resources for drinking water supply. Data sets used for models developing presented in this paper have been published in Research Data Australia (RDA) under the title of "Impacts of catchment properties on DOM and nutrients in waters from drinking water catchments". 1 These data sets are available in open access and published in June 2017. A catchment management decision support model (CMDSM) tool was developed. Macros created using Visual Basic for Applications in Excel 2010. Excel 2010 or higher is required to open the CMDSM tool. The tool is provided by the University of South Australia (UniSA) and is not currently available on-line so please contact the corresponding author for access or further information. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Influences of upland and riparian land use patterns on stream biotic integrity
Snyder, C.D.; Young, J.A.; Villella, R.; Lemarie, D.P.
2003-01-01
We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.
Influence of land use on hyporheos in catchment of the Jarama River (central Spain)
NASA Astrophysics Data System (ADS)
Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.
2012-04-01
The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.
The application of GEOtop for catchment scale hydrology in Ireland
NASA Astrophysics Data System (ADS)
Lewis, C.; Xu, X.; Albertson, J.; Kiely, G.
2009-04-01
GEOtop represents the new generation of distributed hydrological model driven by geospatial data (e.g. topography, soils, vegetation, land cover). It estimates rainfall-runoff, evapotranspiration and provides spatially distributed outputs as well as routing water and sediment flows through stream and river networks. The original version of GEOtop designed in Italy, includes a rigorous treatment of the core hydrological processes (e.g. unsaturated and saturated flow and transport, surface energy balances, and streamflow generation/routing). Recently GEOtop was extended to include treatment of shallow landslides. The GEOtop model is built on an open-source programming framework, which makes it well suited for adaptation and extension. GEOtop has been run very successfully in a number of alpine catchments (such as Brenta) but has not been used on Irish catchments before. The cell size used for the spatially distributed inputs varies from catchment to catchment. In smaller catchments (less than 2000ha) 50 by 50m cells have been used and 200 by 200 for larger catchments. Smaller cell sizes have been found to significantly increase the computational time so a larger cell size is used providing it does not significantly affect the performance of the model. Digital elevation model, drainage direction, landuse and soil type maps are the minimum spatial requirements with precipitation, radiation, temperature, atmospheric pressure and wind speed been the minimum meteorological requirements for a successful run. The soil type maps must also contain information regarding texture and hydraulic conductivity. The first trial of GEOtop in Ireland was on a small 1524 ha catchment in the south of Ireland. The catchment ranges from 50 to just over 200m, the land use is predominately agricultural grassland and it receives on average 1400mm of rain per year. Within this catchment there is a meteorological tower which provides the meteorological inputs, soil moisture is also recorded at this location. GEOtop was run from the end of April 2006 to December 2007. A comparison of measured and simulated values of soil moisture showed some good results and proved that the model could be successfully be used in Ireland. Following initial success in modelling soil moisture in a small catchment GEOtop was then used in the much larger 115,000 ha Blackwater catchment. The variation of soil type within the catchment was obtained from a national soils database while Landuse data was obtained from the national Corrine Land use database. Hydraulic properties were estimated by carrying out on site infiltration experiments. As GEOtop can accept multiple rainfall inputs and it was known that the rainfall varies substantially within in the catchment it was decided to make use of a rainfall study on the Blackwater catchment. A total of 21 rain gauges were deployed around the catchment for year 2006. The data from these 21 rain gauges were then added to the inputs which GEOtop interpolated the rainfall using the kriging method. Continuous flow is recorded at the outlet of the Blackwater catchment and as GEOtop simulates stream flows we were able to see how well GEOtop modelled the hydrology of the catchment. Comparisons of simulated versus real flow showed that GEOtop was providing us with satisfactory results. Once we were satisfied that GEOtop was successfully modelling the catchment we were able to see the effects of varying rain fall and land use on many different hydraulic parameters such stream flow, soil suction potential, soil moisture content etc. When this process has been carried out for other parts of the country it is planned to use GEOtop study potential threats to soil quality such as erosion, surface sealing, compaction, landslides and loss of organic matter. New modules will be develop for GEOtop to help understand and quantify these threats. The model will also be used to help understand the interactions between soil hydrology, land use and climate change (with climate projections from the IPCC fourth assessment). These outputs will be combined with Irish geo-spatial data to develop a GIS-based risk assessment tool to predict impacts on soil quality based on hydrology, land use and climate change.
NASA Astrophysics Data System (ADS)
Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan
2015-06-01
The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow module revealed average runoff coefficients between 0.12 and 0.80 for the various land uses and decreased from impervious (0.80), grass on steep slopes (0.56), grass on mild slopes (0.48), mixed grasses and trees (0.42) to relatively natural vegetation (0.12). The established modular model, reflecting the driving hydrological processes, enables the quantification of land use specific contributions towards the baseflow and quickflow components. This quantification facilitates the integration of water sensitive urban infrastructure for the sustainable development of water in tropical megacities.
Effects of future climate and land use scenarios on riverine source water quality.
Delpla, Ianis; Rodriguez, Manuel J
2014-09-15
Surface water quality is particularly sensitive to land use practices and climatic events that affect its catchment. The relative influence of a set of watershed characteristics (climate, land use, morphology and pedology) and climatic variables on two key water quality parameters (turbidity and fecal coliforms (FC)) was examined in 24 eastern Canadian catchments at various spatial scales (1 km, 5 km, 10 km and the entire catchment). A regression analysis revealed that the entire catchment was a better predictor of water quality. Based on this information, linear mixed effect models for predicting turbidity and FC levels were developed. A set of land use and climate scenarios was considered and applied within the water quality models. Four land use scenarios (no change, same rate of variation, optimistic and pessimistic) and three climate change scenarios (B1, A1B and A2) were tested and variations for the near future (2025) were assessed and compared to the reference period (2000). Climate change impacts on water quality remained low annually for this time horizon (turbidity: +1.5%, FC: +1.6%, A2 scenario). On the other hand, the influence of land use changes appeared to predominate. Significant benefits for both parameters could be expected following the optimistic scenario (turbidity: -16.4%, FC: -6.3%; p < 0.05). However, pessimistic land use scenario led to significant increases on an annual basis (turbidity: +11.6%, FC: +15.2%; p < 0.05). Additional simulations conducted for the late 21st century (2090) revealed that climate change impacts could become equivalent to those modeled for land use for this horizon. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.
2017-12-01
Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied land use planning. The findings of this study will be useful for the water resource managers to mitigate future risks associated with land use and climate changes in the study catchment. Keywords: land use change, climate change, hydrological impact assessment, Samin catchment
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the mean percent impervious surface from the Imperviousness Layer of the National Land Cover Dataset 2001, (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data set represents imperviousness for the conterminous United States for 2001. The Imperviousness Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002;Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
NASA Astrophysics Data System (ADS)
Gao, Jihui; Holden, Joseph; Kirkby, Mike
2014-05-01
Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal, the size of land cover change patches has no effect on river flow for patch sizes up to 40000m2. Principle (3): Bare peat on gentle slopes gives a faster flow response and higher peak value at the catchment outlet, while high density vegetation or re-vegetation on a gentle slope area has larger positive impact on peak river flow delay when compared with the same practices on steeper slopes. These simple principles should be useful to planners who wish to determine resource efficiency and optimisation for peatland protection and restoration works in headwater systems. If practitioners require further detail on impacts of specific spatial changes to land cover in a catchment then this modelling approach can be applied to new catchments of concern.
The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles
NASA Technical Reports Server (NTRS)
Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.
2017-01-01
The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.
2016-12-01
A computationally efficient, semi-distributed hydrologic modeling framework is developed to simulate water balance at a catchment scale. The Soil Moisture and Runoff simulation Toolkit (SMART) is based upon the delineation of contiguous and topologically connected Hydrologic Response Units (HRUs). In SMART, HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are distributed cross sections or equivalent cross sections (ECS) delineated in first order sub-basins. ECSs are formulated by aggregating topographic and physiographic properties of the part or entire first order sub-basins to further reduce computational time in SMART. Previous investigations using SMART have shown that temporal dynamics of soil moisture are well captured at a HRU level using the ECS delineation approach. However, spatial variability of soil moisture within a given HRU is ignored. Here, we examined a number of disaggregation schemes for soil moisture distribution in each HRU. The disaggregation schemes are either based on topographic based indices or a covariance matrix obtained from distributed soil moisture simulations. To assess the performance of the disaggregation schemes, soil moisture simulations from an integrated land surface-groundwater model, ParFlow.CLM in Baldry sub-catchment, Australia are used. ParFlow is a variably saturated sub-surface flow model that is coupled to the Common Land Model (CLM). Our results illustrate that the statistical disaggregation scheme performs better than the methods based on topographic data in approximating soil moisture distribution at a 60m scale. Moreover, the statistical disaggregation scheme maintains temporal correlation of simulated daily soil moisture while preserves the mean sub-basin soil moisture. Future work is focused on assessing the performance of this scheme in catchments with various topographic and climate settings.
NASA Astrophysics Data System (ADS)
Alvarez-Garreton, C. D.; Mendoza, P. A.; Zambrano-Bigiarini, M.; Galleguillos, M. H.; Boisier, J. P.; Lara, A.; Cortés, G.; Garreaud, R.; McPhee, J. P.; Addor, N.; Puelma, C.
2017-12-01
We provide the first catchment-based hydrometeorological, vegetation and physical data set over 531 catchments in Chile (17.8 S - 55.0 S). We compiled publicly available streamflow records at daily time steps for the period 1980-2015, and generated basin-averaged time series of the following hydrometeorological variables: 1) daily precipitation coming from three different gridded sources (re-analysis and satellite-based); 2) daily maximum and minimum temperature; 3) 8-days potential evapotranspiration (PET) based on MODIS imagery and daily PET based on Hargreaves formula; and 4) daily snow water equivalent. Additionally, catchments are characterized by their main physical (area, mean elevation, mean slope) and land cover characteristics. We synthetized these datasets with several indices characterizing the spatial distribution of climatic, hydrological, topographic and vegetation attributes. The new catchment-based dataset is unprecedented in the region and provides information that can be used in a myriad of applications, including catchment classification and regionalization studies, impacts of different land cover types on catchment response, characterization of drought history and projections, climate change impacts on hydrological processes, etc. Derived practical applications include water management and allocation strategies, decision making and adaptation planning to climate change. This data set will be publicly available and we encourage the community to use it.
Marques da Silva, Richarde; Guimarães Santos, Celso Augusto; Carneiro de Lima Silva, Valeriano; Pereira e Silva, Leonardo
2013-11-01
This study evaluates erosivity, surface runoff generation, and soil erosion rates for Mamuaba catchment, sub-catchment of Gramame River basin (Brazil) by using the ArcView Soil and Water Assessment Tool (AvSWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. Daily rainfall data between 1969 and 1989 from six rain gauges were used, and the monthly rainfall erosivity of each station was computed for all the studied years. In order to evaluate the calibration and validation of the model, monthly runoff data between January 1978 and April 1982 from one runoff gauge were used as well. The estimated soil loss rates were also realistic when compared to what can be observed in the field and to results from previous studies around of catchment. The long-term average soil loss was estimated at 9.4 t ha(-1) year(-1); most of the area of the catchment (60%) was predicted to suffer from a low- to moderate-erosion risk (<6 t ha(-1) year(-1)) and, in 20% of the catchment, the soil erosion was estimated to exceed > 12 t ha(-1) year(-1). Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the catchment was divided into four priority categories (low, moderate, high and very high) for conservation intervention. The study demonstrates that the AvSWAT model provides a useful tool for soil erosion assessment from catchments and facilitates the planning for a sustainable land management in northeastern Brazil.
Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment
NASA Astrophysics Data System (ADS)
Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny
2017-04-01
Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.
NASA Astrophysics Data System (ADS)
Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.
2015-12-01
This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007 and 2013. A reclassification procedure of the maps permitted to assess the major land use changes in the catchment from 1990 to 2013. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during the calibration and the validation ranged between 0.9 and 0.6 for total discharge, soil moisture, and groundwater level, indicating satisfying to good agreements between observed and simulated variables. After a successful multi-criteria validation the model was run with the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment in 2013 it can be assumed that savannah was mainly converted to cropland. The increase in cropland area results from the population growth and the farming system in the catchment. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high discharge and peak flow, suggesting (i) an increase in water resources that is not available for plant growth and the population of the catchment and (ii) an alteration of flood risk for both the population within and downstream of the catchment.
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley
2015-01-01
This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, Kelly
2005-01-01
We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less
NASA Astrophysics Data System (ADS)
Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark
2018-06-01
Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding complex relationships in the management of the catchment.
NASA Astrophysics Data System (ADS)
Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa
2017-12-01
Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.
Spatio-temporal dynamics of sediment sources in a peri-urban Mediterranean catchment
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Blake, William; Kikuchi, Ryunosuke; Ferreira, António
2017-04-01
Sediment fluxes driven by hydrological processes lead to natural soil losses, but human activities, such as urbanization, influence hydrology and promote erosion, altering the landscape and sediment fluxes. In peri-urban areas, comprising a mixture of semi-natural and man-made land-uses, understanding sediment fluxes is still a research challenge. This study investigates spatial and temporal dynamics of fluvial sediments in a rapidly urbanizing catchment. Specific objectives are to understand the main sources of sediments relating to different types of urban land disturbance, and their variability driven by (i) weather, season and land-use changes through time, and (ii) sediment particle size. The study was carried out Ribeira dos Covões, a peri-urban catchment (6.2km2) in central Portugal. The climate is humid Mediterranean, with mean annual temperature and rainfall of 15˚ C and 892 mm, respectively. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). The catchment has an average slope of 9˚ , but includes steep slopes of up to 46˚ . The land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels, resulting from urbanization occurring progressively since 1973. Urbanization since 2010 has mainly comprised the building of a major road, covering 1% of the catchment area, and the ongoing construction of an enterprise park, occupying 5% of the catchment. This study uses a multi-proxy sediment fingerprinting approach, based on X-Ray Fluorescence (XRF) analyses to characterize the elemental geochemistry of sediments collected within the stream network after three storm events in 2012 and 2015. A range of statistical techniques, including hierarchical cluster analysis, was used to identify discriminant sediment properties and similarities between fine bed-sediment samples of tributaries and downstream sites. Quantification of sediment supply from upstream sub-catchments was undertaken using a Bayesian unmixing model. Geochemical signatures of sub-catchment sediment varied significantly with lithology and type of urban influence, but a tendency for limestone sub-catchments to be more urbanized made it difficult to isolate the influence of each factor. Nevertheless, differences in sub-catchment geochemistry between the survey dates indicate significant changes through time in both the relative importance and character of urban impacts. In 2012 the sandstone sub-catchment provided 88%, 92% and 93% of the <63μm, 63μm-125μm and 125μm-2000μm sediment, respectively, with most sediment deriving from the enterprise park site undergoing deforestation and construction. Most of the remaining sediment derived from the construction of the major road in the limestone sub-catchment. In 2015, however, sediment losses within the catchment appear to have been significantly reduced by planned and accidental retention basins below the enterprise park and major road construction sites, respectively. Nevertheless, the landscape disturbance provided by these constructional sites was of much greater importance than sediment mobilization in urban areas with paved roads and other impervious surfaces. The greatest heavy metal concentrations, however, were recorded in sediments deriving from road runoff. Despite the positive impact of retention basins in reducing sediment delivery from human disturbed areas, sediment connectivity could be reduced further by dispersing and filtering upslope runoff from urban surfaces more systematically into woodland sink areas.
NASA Astrophysics Data System (ADS)
Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.
2017-12-01
Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.
NASA Astrophysics Data System (ADS)
Kolbe, T.; Abbott, B. W.; Marçais, J.; Thomas, Z.; Aquilina, L.; Labasque, T.; Pinay, G.; De Dreuzy, J. R.
2016-12-01
Groundwater transit time and flow path are key factors controlling nitrogen retention and removal capacity at the catchment scale (Abbott et al., 2016), but the relative importance of hydrogeological and topographical factors in determining these parameters remains uncertain (Kolbe et al., 2016). To address this unknown, we used numerical modelling techniques calibrated with CFC groundwater age data to quantify transit time and flow path in an unconfined aquifer in Brittany, France. We assessed the relative importance of parameters (aquifer depth, porosity, arrangement of geological layers, and permeability profile), hydrology (recharge rate), and topography in determining characteristic flow distances (Leray et al., 2016). We found that groundwater flow was highly local (mean travel distance of 350 m) but also relatively old (mean CFC age of 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters within the constraints of the CFC age data. However, circulation was sensitive to topography in lowland areas where the groundwater table was close to the land surface, and to recharge rate in upland areas where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL) defined as the mean groundwater travel distance divided by the equivalent surface distance water would have traveled along the land surface. Lowland rGW-LOCAL was near 1, indicating primarily topographic controls. Upland rGW-LOCALwas 1.6, meaning the groundwater recharge area was substantially larger than the topographically-defined catchment. This ratio was applied to other catchments in Brittany to test its relevance in comparing controls on groundwater circulation within and among catchments. REFERENCES Abbott et al., 2016, Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth-Science Reviews. Kolbe et al., 2016, Coupling 3D groundwater modeling with CFC-based age dating to classify local groundwater circulation in an unconfined crystalline aquifer. J. Hydrol. Leray et al., 2016, Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions. J. Hydrol.
NASA Astrophysics Data System (ADS)
Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.
2014-12-01
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.
Chen, Cheng-long; Gao, Ming; Ni, Jiu-pai; Xie, De-ti; Deng, Hua
2016-05-15
As an independent water-collecting area, small catchment is the source of non-point source pollution in Three Gorges Region. Choosing 3 kinds of the most representative land-use types and using them to lay monitoring points of overland runoff within the small catchment of Wangjiagou in Fuling of Three Gorges Region, the author used the samples of surface runoff collected through the twelve natural rainfalls from May to December to analyze the feature of spatial-temporal change of Nitrogen's losses concentrations under the influence of different land use types and the hillslopes and small catchments composed by those land use types, revealing the relation between different land-use types and Nitrogen's losses of small catchments in Three Gorges Region. The result showed: the average losses concentration of TN showed the biggest difference for different land use types during the period of spring crops, and the average value of dry land was 1. 61 times and 6.73 times of the values of interplanting field of mulberry and paddy field, respectively; the change of the losses concentration of TN was most conspicuous in the 3 periods of paddy field. The main element was NO₃⁻-N, and the relation between TN and NO₃⁻-N showed a significant linear correlation. TN's and NO₃⁻-N's losses concentrations were significantly and positively correlated with the area ratio of corn and mustard, but got a significant negative correlation with the area ratio of paddy and mulberry; NH₄⁺-N's losses concentrations got a significant positive correlation with the area ratio of mustard. Among all the hillslopes composed by different land use types, TN's average losses concentration of surface runoff of the hillslope composed by interplantating field of mulberry and paddy land during the three periods was the lowest, and the values were 2.55, 11.52, 8.58 mg · L⁻¹, respectively; the hillslope of rotation plough land of corn and mustard had the maximum value, and the values were 27.51, 25.11, 27.11 mg · L⁻¹, respectively; different land use types and spatial combination ways of subcatchment had a greater influence on TN's losses concentrations, so using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective measure to control the source of non-point source pollution of Three Gorges Region.
NASA Astrophysics Data System (ADS)
Chaney, N.; Wood, E. F.
2014-12-01
The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.
2015-04-01
The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.
Koo, B K; O'Connell, P E
2006-04-01
The site-specific land use optimisation methodology, suggested by the authors in the first part of this two-part paper, has been applied to the River Kennet catchment at Marlborough, Wiltshire, UK, for a case study. The Marlborough catchment (143 km(2)) is an agriculture-dominated rural area over a deep chalk aquifer that is vulnerable to nitrate pollution from agricultural diffuse sources. For evaluation purposes, the catchment was discretised into a network of 1 kmx1 km grid cells. For each of the arable-land grid cells, seven land use alternatives (four arable-land alternatives and three grassland alternatives) were evaluated for their environmental and economic potential. For environmental evaluation, nitrate leaching rates of land use alternatives were estimated using SHETRAN simulations and groundwater pollution potential was evaluated using the DRASTIC index. For economic evaluation, economic gross margins were estimated using a simple agronomic model based on nitrogen response functions and agricultural land classification grades. In order to see whether the site-specific optimisation is efficient at the catchment scale, land use optimisation was carried out for four optimisation schemes (i.e. using four sets of criterion weights). Consequently, four land use scenarios were generated and the site-specifically optimised land use scenario was evaluated as the best compromise solution between long term nitrate pollution and agronomy at the catchment scale.
NASA Astrophysics Data System (ADS)
Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin
2014-05-01
Understanding hydrological response and geomorphic behavior of small catchments in urban environments, especially those experiencing urban expansion, represents serious and important problem which has not yet been given an adequate research attention. Urbanization exerts profound and diverse impacts on catchment characteristics, particularly by increasing surface runoff coefficients, peak flow discharges and rates of flash flood waves propagation as a result of widespread appearance of buildings and paved surfaces with practically zero infiltration capacities. Another essential influence of urbanization on small catchment hydrological regimes is associated with significant changes of natural topography (from relatively minor modifications such as grading of steeper slopes to complete transformations including total filling of gullies and small valleys, transfer of small streams from surface into underground pipes or collectors, etc.) combined with creation of systems of concrete-protected surface drainages and underground storm flow sewages. Such activities can result in substantial changes of runoff- and sediment-contributing areas for the remaining gullies and small valleys in comparison to the pre-urbanization conditions, causing dramatic increase of fluvial activity in some of those and much lower flow discharges in others. In addition, gullies and small valleys in urban settlements often become sites of dumping for both dry and liquid domestic and industrial wastes, thus being major pathways for dissolved and particle-bound pollutant transfer into perennial streams and rivers. All the problems listed require detailed hydrological and geomorphic investigations in order to provide sound basis for developing appropriate measures aimed to control and decrease urban erosion, sediment redistribution, pollution of water bodies, damage to constructions and communications. Recent advances in sediment tracing and fingerprinting techniques provide promising opportunities for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently became very limited.
NASA Astrophysics Data System (ADS)
Qin, H. P.; Yu, X. Y.; Khu, S. T.
2009-04-01
Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant source and wash off processes in different storm intensity should be consider in future monitoring and model development. Keywords: storm runoff; wash off; urbanization; catchment modeling; litter; residual
Climatic and land-use driven change of runoff throughout Sweden
NASA Astrophysics Data System (ADS)
Worman, A. L. E.; Riml, J.; Lindstrom, G.
2015-12-01
Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.
NASA Astrophysics Data System (ADS)
Peña, Luis E.; Barrios, Miguel; Francés, Félix
2016-10-01
Changes in land use within a catchment are among the causes of non-stationarity in the flood regime, as they modify the upper soil physical structure and its runoff production capacity. This paper analyzes the relation between the variation of the upper soil hydraulic properties due to changes in land use and its effect on the magnitude of peak flows: (1) incorporating fractal scaling properties to relate the effect of the static storage capacity (the sum of capillary water storage capacity in the root zone, canopy interception and surface puddles) and the upper soil vertical saturated hydraulic conductivity on the flood regime; (2) describing the effect of the spatial organization of the upper soil hydraulic properties at catchment scale; (3) examining the scale properties in the parameters of the Generalized Extreme Value (GEV) probability distribution function, in relation to the upper soil hydraulic properties. This study considered the historical changes of land use in the Combeima River catchment in South America, between 1991 and 2007, using distributed hydrological modeling of daily discharges to describe the hydrological response. Through simulation of land cover scenarios, it was demonstrated that it is possible to quantify the magnitude of peak flows in scenarios of land cover changes through its Wide-Sense Simple Scaling with the upper soil hydraulic properties.
NASA Astrophysics Data System (ADS)
Ulén, Barbro; Djodjic, Faruk; Etana, Araso; Johansson, Göran; Lindström, Jan
2011-03-01
SummaryA refined version of a conditional phosphorus risk index (PRI) for P losses to waters was developed based on monitoring and analyses of PRI factors from an agricultural catchment in Sweden. The catchment has a hummocky landscape of heavy glacial till overlying moraine and an overall balanced soil P level. Single P source factors and combinations of factors were tested and discussed together with water movement and water management factors important for catchments dominated by drained clay soils. An empirical relationship was established (Pearson correlation coefficient 0.861, p < 0.001) between phosphorus sorption index (PSI-CaCl 2), measured in a weak calcium chloride solution, and iron (Fe-AL) aluminium (Al-AL) and phosphorus (P-AL) in soil extract with acid ammonium lactate. Differing relationships were found for a field that had not received any manure in the last 15 years and a field that had received chicken litter very recently. In addition, a general relationship (Pearson correlation coefficient 0.839, p < 0.001) was found between the ratio of phosphorus extracted from fresh soil in water (Pw) to PSI-CaCl 2 and the degree of phosphorus saturation in lactate extract (DPS-AL). One exception was a single field, representing 7% of agricultural land in the catchment, that had been treated with glyphosate shortly before soil sampling. Saturated hydraulic conductivity (SHC) in heavy clay in contact with the moraine base (at 1 m depth) was on average 0.06 m day -1. In clay not in contact with moraine, SHC was significantly lower (mean 0.007 m day -1). A reduction in the present tile drain spacing (from 14-16 m to 11 m) is theoretically required to maintain satisfactory water discharge and groundwater level. Up to 10% of the arable land was estimated to be a potential source area for P, based on different indices. Parts of a few fields close to farm buildings (1% of total arable land) were identified as essential P source areas, with high DPS-AL values and low PSI-CaCl 2 values throughout the soil profile. A further 2% of arable land was identified as potential important transport areas, based on visible surface water rills or frequent water-ponded conditions. Fields comprising 10% of the total arable land in the catchment should be re-drained in the near future to improve water infiltration and avoid unnecessary channelised water flow. The need for an improved PRI for erosion and water transport is discussed.
Physical and Biological Impacts of Changing Land-Uses and the Environment
NASA Astrophysics Data System (ADS)
English, W. R.; Pike, J. W.; Jolley, L. W.; Goddard, M. A.; Biondi, M. J.; Hur, J. M.; Powell, B. A.; Morse, J. C.
2005-05-01
A goal of the Changing Land Use and the Environment (CLUE) project is to characterize surface water quality impacted by land-use change in the Saluda and Reedy River watersheds of South Carolina. The CLUE project focuses on impacts common to urban development including 1. sedimentation from construction sites, 2. alteration of discharge and channel morphology due to increased impervious surfaces, 3. macroinvertebrate community response to sedimentation and habitat alteration, and 4. microbial contamination. We found that mean streambed particle size was reduced in developing areas. Stream cross-sectional areas enlarged in catchments with high percentages of impervious surfaces. Sedimentation and altered discharge resulted in the benthic macroinvertebrate community showing a general reduction in biotic integrity values and reductions in Plecoptera taxa richness. Fecal coliform levels were higher for both surface water and bottom sediments in and below urbanized areas during base flows. Levels of fecal coliform in samples collected during storm flows were significantly higher than in base flows, and were correlated with high sediment loads.
Land use structures fish assemblages in reservoirs of the Tennessee River
Miranda, Leandro E.; Bies, J. M.; Hann, D. A.
2015-01-01
Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.
Leaf breakdown in streams differing in catchment land use
Paul, M.J.; Meyer, J.L.; Couch, C.A.
2006-01-01
1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.
NASA Astrophysics Data System (ADS)
Yira, Y.; Diekkrüger, B.; Steup, G.; Bossa, A. Y.
2016-06-01
This study investigates the impacts of land use change on water resources in the Dano catchment, Burkina Faso, using a physically based hydrological simulation model and land use scenarios. Land use dynamic in the catchment was assessed through the analysis of four land use maps corresponding to the land use status in 1990, 2000, 2007, and 2013. A reclassification procedure levels out differences between the classification schemes of the four maps. The land use maps were used to build five land use scenarios corresponding to different levels of land use change in the catchment. Water balance was simulated by applying the Water flow and balance Simulation Model (WaSiM) using observed discharge, soil moisture, and groundwater level for model calibration and validation. Model statistical quality measures (R2, NSE and KGE) achieved during calibration and validation ranged between 0.6 and 0.9 for total discharge, soil moisture, and groundwater level, indicating a good agreement between observed and simulated variables. After a successful multivariate validation the model was applied to the land use scenarios. The land use assessment exhibited a decrease of savannah at an annual rate of 2% since 1990. Conversely, cropland and urban areas have increased. Since urban areas occupy only 3% of the catchment it can be assumed that savannah was mainly converted to cropland. The conversion rate of savannah was lower than the annual population growth of 3%. A clear increase in total discharge (+17%) and decrease in evapotranspiration (-5%) was observed following land use change in the catchment. A strong relationship was established between savannah degradation, cropland expansion, discharge increase and reduction of evapotranspiration. The increase in total discharge is related to high peak flow, suggesting (i) an increase in water resources that are not available for plant growth and human consumption and (ii) an alteration of flood risk for both the population within and downstream of the catchment.
Nosrati, Kazem
2013-04-01
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.
Spatial structure and scaling of macropores in hydrological process at small catchment scale
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter
2013-04-01
During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.
Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Lakshmi, Venkataraman
1993-01-01
Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.
Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Ferreira, António
2017-04-01
Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas, but was 21-fold higher in winter than in summer in the least urbanized sub-catchment, indicating greater flow connectivity in winter, enhanced by increased soil moisture. Lithology also played an important role on hydrology, with sandstone sub-catchments exhibiting greater annual baseflow index values (23-46%) than found in limestone ones (<5%). For sub-catchments underlain by both lithologies, linear relationships were found between storm runoff coefficients and percentage urban and percentage impervious area, but with greater runoff responses in the sandstone ones. Nevertheless, linear regression lines for both lithologies get close to each other when the extent of urban areas reached about 50%. The proximity of urban areas to the stream network and whether urban storm runoff is directly piped to the stream network were important parameters influencing peak flows and response time. Landscape mosaics that include land-use patches of high soil permeability tend to provide locations of surface water retention and enhanced infiltration, thereby breaking flow connectivity between hillslope urban surfaces and the stream network. This kind of spatial pattern should be considered for urban planning, in order to minimize flood hazards.
Impact of land use changes on hydrology of Mt. Kilimanjaro. The case of Lake Jipe catchment
NASA Astrophysics Data System (ADS)
Ngugi, Keziah; Ogindo, Harun; Ertsen, Maurits
2015-04-01
Mt. Kilimanjaro is an important water tower in Kenya and Tanzania. Land degradation and land use changes have contributed to dwindling surface water resources around Mt. Kilimanjaro. This study focuses on Lake Jipe catchment of about 451Km2 (Ndetei 2011) which is mainly drained by River Lumi, a tributary of river Pangani. River Lumi starts from Mt. Kilimanjaro and flows North east wards to cross the border from Tanzania to Kenya eventually flowing into Lake Jipe which is a trans-boundary lake. The main purpose of this study was to investigate historical land use changes and relate this to reduction in surface water resources. The study will propose measures that could restore the catchment thereby enhancing surface water resources feeding Lake Jipe. A survey was conducted to document community perspectives of historical land use changes. This information was corroborated using Landsat remote sensed images spanning the period 1985-2013 to determine changes in the land cover due to human activities on Lake Jipe Catchment. River Lumi flow data was obtained from Water Resources Management Authority and analyzed for flow trends. The dwindling extent of the Lake was obtained from the community's perspective survey and by Landsat images. Community survey and remote sensing indicated clearing of the forest on the mountain and conversion of the same to crop production fields; damming of river Lumi in Tanzania, conversion of bush land to crop production fields further downstream of river Lumi and irrigation. There is heavy infestation of the invasive species Prosopis juliflora which had aggressively colonized grazing land and blocked irrigation canals. Other land use changes include land fragmentation due to subdivision. Insecure land tenure was blamed for failure by farmers to develop soil and water conservation infrastructure. Available River gauging data showed a general decline in river flow. Heavy flooding occurred during rainy seasons. Towards Lake Jipe after the river gauging station, several springs discharge into river Lumi and the river becomes permanent. The community believes Lake Jipe is a dying lake and will be gone in the coming years unless interventions to save it are implemented. Most of river Lumi water was delivered directly into the lakes outlet, river Ruvu, thus by-passing Lake Jipe. This was due to siltation that blocked river Lumis mouth. Consequently, lake Jipes volume and surface area have reduced dramatically from over the years. Drying of Lake Jipe will affect a lot of people who depend on the lake and the ecosystem. Addressing the problems requires re-afforestation measures and soil and moisture conservation. The severe runoff need to be dammed especially on the Kenyan side to create artificial surface water resources. River Lumi should be trained to discharge into the lake. Land tenure security need to be improved as incentives for proper land utilization. New farming methods to increase land productivity will encourage farmers to practice soil and water conservation measure.
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
A Multialgorithm Approach to Land Surface Modeling of Suspended Sediment in the Colorado Front Range
Stewart, J. R.; Kasprzyk, J. R.; Rajagopalan, B.; Minear, J. T.; Raseman, W. J.
2017-01-01
Abstract A new paradigm of simulating suspended sediment load (SSL) with a Land Surface Model (LSM) is presented here. Five erosion and SSL algorithms were applied within a common LSM framework to quantify uncertainties and evaluate predictability in two steep, forested catchments (>1,000 km2). The algorithms were chosen from among widely used sediment models, including empirically based: monovariate rating curve (MRC) and the Modified Universal Soil Loss Equation (MUSLE); stochastically based: the Load Estimator (LOADEST); conceptually based: the Hydrologic Simulation Program—Fortran (HSPF); and physically based: the Distributed Hydrology Soil Vegetation Model (DHSVM). The algorithms were driven by the hydrologic fluxes and meteorological inputs generated from the Variable Infiltration Capacity (VIC) LSM. A multiobjective calibration was applied to each algorithm and optimized parameter sets were validated over an excluded period, as well as in a transfer experiment to a nearby catchment to explore parameter robustness. Algorithm performance showed consistent decreases when parameter sets were applied to periods with greatly differing SSL variability relative to the calibration period. Of interest was a joint calibration of all sediment algorithm and streamflow parameters simultaneously, from which trade‐offs between streamflow performance and partitioning of runoff and base flow to optimize SSL timing were noted, decreasing the flexibility and robustness of the streamflow to adapt to different time periods. Parameter transferability to another catchment was most successful in more process‐oriented algorithms, the HSPF and the DHSVM. This first‐of‐its‐kind multialgorithm sediment scheme offers a unique capability to portray acute episodic loading while quantifying trade‐offs and uncertainties across a range of algorithm structures. PMID:29399268
Advances in Land Data Assimilation at the NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Reichle, Rolf
2009-01-01
Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the SMAP L4_SM product. Terrestrial water storage observations from GRACE satellite system were also successfully assimilated into the NASA Catchment model and provided improved estimates of groundwater variability when compared to the model estimates alone. Moreover, satellite-based land surface temperature (LST) observations from the ISCCP archive were assimilated using a bias estimation module that was specifically designed for LST assimilation. As with soil moisture, LST assimilation provides modest yet statistically significant improvements when compared to the model or satellite observations alone. To achieve the improvement, however, the LST assimilation algorithm must be adapted to the specific formulation of LST in the land model. An improved method for the assimilation of snow cover observations was also developed. Finally, the coupling of LIS to the mesoscale Weather Research and Forecasting (WRF) model enabled investigations into how the sensitivity of land-atmosphere interactions to the specific choice of planetary boundary layer scheme and land surface model varies across surface moisture regimes, and how it can be quantified and evaluated against observations. The on-going development and integration of land assimilation modules into the Land Information System will enable the use of GSFC software with a variety of land models and make it accessible to the research community.
Which catchment characteristics control the temporal dependence structure of daily river flows?
NASA Astrophysics Data System (ADS)
Chiverton, Andrew; Hannaford, Jamie; Holman, Ian; Corstanje, Ron; Prudhomme, Christel; Bloomfield, John; Hess, Tim
2014-05-01
A hydrological classification system would provide information about the dominant processes in the catchment enabling information to be transferred between catchments. Currently there is no widely-agreed upon system for classifying river catchments. This paper developed a novel approach to assess the influence that catchment characteristics have on the precipitation-to-flow relationship, using a catchment classification based on the average temporal dependence structure in daily river flow data over the period 1980 to 2010. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment. Temporal dependence was analysed by creating temporally averaged semi-variograms for a set of 116 near-natural catchments (in order to prevent direct anthropogenic disturbances influencing the results) distributed throughout the UK. Cluster analysis, using the variogram, classified the catchments into four well defined clusters driven by the interaction of catchment characteristics, predominantly characteristics which influence the precipitation-to-flow relationship. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and / or the storage in the catchment. Arable land is correlated with several other variables, hence is a proxy indicating the residence time of the water in the catchment. Finally, quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This work demonstrates that a variogram-based approach is a powerful and flexible methodology for grouping catchments based on the precipitation-to-flow relationship which could be applied to any set of catchments with a relatively complete daily river flow record.
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.
2006-02-01
A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.
NASA Astrophysics Data System (ADS)
Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim
2010-05-01
The theoretical basis for why changes in land management might increase flood risk are well known, but proving them through numerical modelling still remains a challenge. In large catchments, like the River Eden in Cumbria, NW England, one of the reasons for this is that it is unfeasible to test multiple scenarios in all their possible locations. We have developed two linked approaches to refine the number of scenarios and locations using 1) spatial downscaling and 2) participatory decision making, which potentially should increase the likelihood of finding a link between land use and downstream flooding. Firstly, land management practices can have both flood reducing and flood increasing effects, depending on their location. As a result some areas of the catchment are more important in determining downstream flood risk than others, depending on the land use and hydrological connectivity. We apply a downscaling approach to identify which sub-catchments are most important in explaining downstream flooding. This is important because it is in these areas that management options are most likely to have a positive and detectable effect. Secondly, once the dominant sub-catchment has been identified, the land management scenarios that are both feasible and likely to impact flood risk need to be determined. This was done through active stakeholder engagement. The stakeholder group undertook a brainstorming exercise, which suggested about 30 different rural land management scenarios, which were mapped on to a literature-based conceptual framework of hydrological processes. Then these options were evaluated based on five criteria: relevance to catchment, scientific effectiveness, testability, robustness/uncertainty and feasibility of implementation. The suitability of each scenario was discussed and prioritised by the stakeholder group based on scientific needs and expectations and local suitability and feasibility. The next stage of the participatory approach was a mapping workshop, whereby a map of the catchment was laid out and locations where each scenario could feasibly be implemented were drawn on. This was combined with an analysis of historical maps to identify past land covers and a catchment walkover survey to put modelling work in the real world context. The land management scenarios were tested using hydrological and hydraulic models. Landscape scale changes, such as the effects of compaction and afforestation were tested using a catchment scale hydrological mode, CRUM2D. Channel scale changes, such as re-meandering and floodplain storage were tested using the 1D hydraulic model, iSIS, by altering channel cross sections and creating spills between the channel and floodplain. It is expected that the channel modification and floodplain storage scenarios will have the greatest impact on flooding both at the local and catchment scales. The landscape scale changes are more diffuse and therefore their impact is expected to be less significant. Although, early analysis indicates that the spatial location of changes strongly influences their effect on flooding.
NASA Astrophysics Data System (ADS)
Parkin, G.; O'Donnell, G.; Ewen, J.; Bathurst, J. C.; O'Connell, P. E.; Lavabre, J.
1996-02-01
Validation methods commonly used to test catchment models are not capable of demonstrating a model's fitness for making predictions for catchments where the catchment response is not known (including hypothetical catchments, and future conditions of existing catchments which are subject to land-use or climate change). This paper describes the first use of a new method of validation (Ewen and Parkin, 1996. J. Hydrol., 175: 583-594) designed to address these types of application; the method involves making 'blind' predictions of selected hydrological responses which are considered important for a particular application. SHETRAN (a physically based, distributed catchment modelling system) is tested on a small Mediterranean catchment. The test involves quantification of the uncertainty in four predicted features of the catchment response (continuous hydrograph, peak discharge rates, monthly runoff, and total runoff), and comparison of observations with the predicted ranges for these features. The results of this test are considered encouraging.
Field-based study of connectivity in an agricultural catchment
NASA Astrophysics Data System (ADS)
Lexartza-Artza, I.; Wainwright, J.
2009-12-01
Field-based studies of hydrological connectivity can provide context-specific knowledge that might both help understand dynamic complex systems and contribute to other synthetic or modelling approaches. The importance of such an understanding of catchment processes and also of the knowledge of catchment connections with water bodies and the changes of concentration with scale for Integrated Catchment Management has been increasingly emphasized. To provide a holistic understanding, approaches to the study of connectivity need to include both structural and functional aspects of the system and must consider the processes taking place within and across different temporal and spatial scales. A semi-quantitative nested approach has been used to investigate connectivity and study the interactions and feedbacks between the factors influencing transfer processes in the Ingbirchworth Catchment, in the uplands of the River Don, England. A series of reconnaissance techniques have been combined with monitoring of aspects such as rainfall, runoff, sediment transfer and soil-moisture distribution from plot to catchment scale and with consideration of linkages between land and water bodies. The temporal aspect has also been considered, with a special focus on the temporal distribution of events and the influence of longer term catchment changes such as those in land use and management practices. A variability of responses has been observed in relation to the characteristics of events, land use and scale of observation, with elements traditionally considered as limiting or enhancing connectivity responding differently under changing conditions. Sediment redistribution, reshaping of structure and consequent reinforcing loops can be observed across all land uses and landscape units, but the relevance it terms of effective connectivity of highly connected patches varies as the scale is increased. The knowledge acquired can contribute to recognise emerging processes significant for active land-water connection and thus provide useful knowledge for decision making.
Hasani Sangani, Mohammad; Jabbarian Amiri, Bahman; Alizadeh Shabani, Afshin; Sakieh, Yousef; Ashrafi, Sohrab
2015-04-01
Increasing land utilization through diverse forms of human activities, such as agriculture, forestry, urban growth, and industrial development, has led to negative impacts on the water quality of rivers. To find out how catchment attributes, such as land use, hydrologic soil groups, and lithology, can affect water quality variables (Ca(2+), Mg(2+), Na(+), Cl(-), HCO 3 (-) , pH, TDS, EC, SAR), a spatio-statistical approach was applied to 23 catchments in southern basins of the Caspian Sea. All input data layers (digital maps of land use, soil, and lithology) were prepared using geographic information system (GIS) and spatial analysis. Relationships between water quality variables and catchment attributes were then examined by Spearman rank correlation tests and multiple linear regression. Stepwise approach-based multiple linear regressions were developed to examine the relationship between catchment attributes and water quality variables. The areas (%) of marl, tuff, or diorite, as well as those of good-quality rangeland and bare land had negative effects on all water quality variables, while those of basalt, forest land cover were found to contribute to improved river water quality. Moreover, lithological variables showed the greatest most potential for predicting the mean concentration values of water quality variables, and noting that measure of EC and TDS have inversely associated with area (%) of urban land use.
Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting
NASA Astrophysics Data System (ADS)
Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur
2017-04-01
Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff data provided by the National River Flood Archive using a number of model performance metrics. We use a calibrated conceptually-based lumped model, more typically applied in flood studies, as a benchmark for our analysis.
NASA Astrophysics Data System (ADS)
Lørup, Jens Kristian; Refsgaard, Jens Christian; Mazvimavi, Dominic
1998-03-01
The purpose of this study was to identify and assess long-term impacts of land use change on catchment runoff in semi-arid Zimbabwe, based on analyses of long hydrological time series (25-50 years) from six medium-sized (200-1000 km 2) non-experimental rural catchments. A methodology combining common statistical methods with hydrological modelling was adopted in order to distinguish between the effects of climate variability and the effects of land use change. The hydrological model (NAM) was in general able to simulate the observed hydrographs very well during the reference period, thus providing a means to account for the effects of climate variability and hence strengthening the power of the subsequent statistical tests. In the test period the validated model was used to provide the runoff record which would have occurred in the absence of land use change. The analyses indicated a decrease in the annual runoff for most of the six catchments, with the largest changes occurring for catchments located within communal land, where large increases in population and agricultural intensity have taken place. However, the decrease was only statistically significant at the 5% level for one of the catchments.
NASA Astrophysics Data System (ADS)
Pearson, Callum; Reaney, Sim; Bracken, Louise; Butler, Lucy
2015-04-01
Throughout the United Kingdom flood risk is a growing problem and a significant proportion of the population are at risk from flooding throughout the country. Across England and Wales over 5 million people are believed to be at risk from fluvial, pluvial or coastal flooding (DEFRA, 2013). Increasingly communities that have not dealt with flooding before have recently experienced significant flood events. The communities of Stockdalewath and Highbridge in the Roe catchment, a tributary of the River Eden in Cumbria, UK, are an excellent example. The River Roe has a normal flow of less than 5m3 sec-1 occurring 97 percent of the time however there have been two flash floods of 98.8m3 sec-1 in January 2005 and 86.9m3 sec-1 in May 2013. These two flash flood events resulted in the inundation of numerous properties within the catchment with the 2013 event prompting the creation of the Roe Catchment Community Water Management Group which aims are to deliver a sustainable approach to managing the flood risk. Due to the distributed rural population the community fails the cost-benefit analysis for a centrally funded flood risk mitigation scheme. Therefore the at-risk community within the Roe catchment have to look for cost-effective, sustainable techniques and interventions to reduce the potential negative impacts of future events; this has resulted in a focus on natural flood risk management. This research investigates the potential to reduce flood risk through natural catchment-based land management techniques and interventions within the Roe catchment; providing a scientific base from with further action can be enacted. These interventions include changes to land management and land use, such as soil aeration and targeted afforestation, the creation of runoff attenuation features and the construction of in channel features, such as debris dams. Natural flood management (NFM) application has been proven to be effective when reducing flood risk in smaller catchments and the potential to transfer these benefits to the Roe catchment (~69km2) have been assessed. Furthermore these flood mitigation features have the potential to deliver wider environmental improvements throughout the catchment and hence the potential for multiple benefits such as diffuse pollution reduction and habitat creation are considered. The research explores the impact of NFM techniques, flood storage areas or afforestation for example, with a view to enhancing local scale habitats. The research combines innovative catchment modelling techniques, both risk-based approaches (SCIMAP Flood) and spatially distributed hydrological simulation modelling (CRUM3), with in-field monitoring and observation of flow pathways and tributary response to rainfall using time-lapse cameras. Additional work with the local community and stakeholders will identify the range and location of potential catchment-based land management techniques and interventions being assessed; natural flood management implementation requires the participation and cooperation of landowners and local community to be successful (Howgate and Kenyon, 2009).
Vystavna, Y; Diadin, D; Grynenko, V; Yakovlev, V; Vergeles, Y; Huneau, F; Rossi, P M; Hejzlar, J; Knöller, K
2017-09-18
Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15 N-NO 3 and δ 18 O-NO 3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L -1 in surface water and from 0.5 to 100 mg L -1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.
This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The STATSGO Layer table specifies two soil erodibility factors for each component layer, KFFACT and KFACT. The STATSGO documentation describes KFFACT as a soil erodibility factor which quanitifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to caluculate soil loss by water. KFACT is described as a soil erodibility factor which is adjusted for the effect of rock fragments. The average value of each of these soil erodibility factors was determined for the top (surface) layer for each map unit of each state.The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Data Source). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The soil erodibility factor was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metri
Modelling strategies to predict the multi-scale effects of rural land management change
NASA Astrophysics Data System (ADS)
Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.
2011-12-01
Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
Tracing crop-specific sediment sources in agricultural catchments
NASA Astrophysics Data System (ADS)
Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.
2012-02-01
A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research into CSSI signature development (plant and soil processes) and the influence of cultivation regimes are required to support future development of this new tool.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the mean percent tree canopy from the Canopy Layer of the National Land Cover Dataset 2001 (LaMotte and Wieczorek, 2010), compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data set represents tree canopy percentage for the conterminous United States for 2001. The Canopy Layer of the National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (http://www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
NASA Astrophysics Data System (ADS)
Seeber, Christoph; Hartmann, Heike; Xiang, Wei; King, Lorenz
2010-05-01
Land use / land cover change (LUCC) is the most important human alteration of the earth's surface and is primarily studied in cases where it leads to severe environmental problems. The construction of the Three Gorges Dam on the Yangtze River in China has an extensive impact on the ecosystems and the local population. To assess its impact, the Xiangxi Catchment is taken as an example. The outlet of the Xiangxi River, a northern tributary of the Yangtze River, is located about 40 km upstream of the Three Gorges Dam. Due to the loss of fertile arable land and residential land which is mainly induced by the inundation and measures of resettlement, enormous LUCC is observed in the study area by depicting the land use / land cover by classification of LandsatTM data retrieved in 1987 and 2007. LUCC in the Xiangxi Catchment during this period can generally be characterized as decrease of cultivated land, increase of woodland and fallow land, and a shift in cropping from traditional smallholder farming to the establishment of citrus orchards, which are implemented as cash crops. Not only the inundation and the resettlement have an impact on LUCC, also the newly built and improved traffic infrastructure, growth of urban structures and land use policies in terms of environmental protection are expected to play an important role concerning LUCC. To assess the spatial and temporal impact of influencing factors, a LUCC gradient is generated based on post-classification change analysis of multispectral data. Furthermore, inter-stages between 1987 and 2007 have to be examined, to reach for a higher temporal resolution, which shall help to figure out temporal relationships between LUCC and the occurrence of driving factors. Once influence factors and and their spatial and temporal impacts are identified, a basis for predicting LUCC in the future for is provided for this area.
Assessing temporal variations in connectivity through suspended sediment hysteresis analysis
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; Melland, Alice; Mellander, Per-Erik; hUallacháin, Daire Ó.
2016-04-01
Connectivity provides a valuable concept for understanding catchment-scale sediment dynamics. In intensive agricultural catchments, land management through tillage, high livestock densities and extensive land drainage practices significantly change hydromorphological behaviour and alter sediment supply and downstream delivery. Analysis of suspended sediment-discharge hysteresis has offered insights into sediment dynamics but typically on a limited selection of events. Greater availability of continuous high-resolution discharge and turbidity data and qualitative hysteresis metrics enables assessment of sediment dynamics during more events and over time. This paper assesses the utility of this approach to explore seasonal variations in connectivity. Data were collected from three small (c. 10 km2) intensive agricultural catchments in Ireland with contrasting morphologies, soil types, land use patterns and management practices, and are broadly defined as low-permeability supporting grassland, moderate-permeability supporting arable and high-permeability supporting arable. Suspended sediment concentration (using calibrated turbidity measurements) and discharge data were collected at 10-min resolution from each catchment outlet and precipitation data were collected from a weather station within each catchment. Event databases (67-90 events per catchment) collated information on sediment export metrics, hysteresis category (e.g., clockwise, anti-clockwise, no hysteresis), numeric hysteresis index, and potential hydro-meteorological controls on sediment transport including precipitation amount, duration, intensity, stream flow and antecedent soil moisture and rainfall. Statistical analysis of potential controls on sediment export was undertaken using Pearson's correlation coefficient on separate hysteresis categories in each catchment. Sediment hysteresis fluctuations through time were subsequently assessed using the hysteresis index. Results showed the numeric hysteresis index varied over time in all three catchments. The exact response was catchment specific reflecting changing sediment availability and connectivity through time as indicated by dominant controls. In the low-permeability grassland catchment, proximal sources dominated which was consistent with observations of active channel bank erosion. Seasonal increases in rainfall increased the erosion potential but continuous grassland cover mitigated against hillslope sediment contributions despite high hydrological connectivity and surface pathways. The moderate-permeability arable catchment was dominated by events with a distal source component but those with both proximal and distal sediment sources yielded the highest sediment quantities. These events were driven by rainfall parameters suggesting sediment were surface derived and the hillslope was hydrologically connected during most events. Through time, a sustained period of rainfall increased the magnitude of negative hysteresis, likely demonstrating increasing surface hydrological connectivity due to increased groundwater saturation. Where increased hydrological connectivity coincided with low groundcover, the largest sediment exports were recorded. Events in the high permeability catchment indicated predominantly proximal sediments despite abundant distal sources from tilled fields. The infiltration dominated high permeability soils hydrologically disconnected these field sources and limited sediment supply. However, the greatest sediment export occurred in this catchment suggesting thresholds existed, which when exceeded during higher magnitude events, resulted in efficient conveyance of sediments. Hysteresis analysis offers wider utility as a tool to understand sediment pathways and connectivity issues with applications to catchment management strategies.
NASA Astrophysics Data System (ADS)
Molina, A.; Vanacker, V.; Brisson, E.; Balthazar, V.
2012-04-01
Interactions between human activities and the physical environment have increasingly transformed the hydrological functioning of Andean ecosystems. In these human-modified landscapes, land use/-cover change may have a profound effect on riverine water and sediment fluxes. The hydrological impacts of land use/-cover change are diverse, as changes in vegetation affect the various components of the hydrological cycle including evapotranspiration, infiltration and surface runoff. Quantitative data for tropical mountain regions are scarce, as few long time series on rainfall, water discharge and land use are available. Furthermore, time series of rainfall and streamflow data in tropical mountains are often highly influenced by large inter- and intra-annual variability. In this paper, we analyse the hydrological response to complex forest cover change for a catchment of 280 km2 located in the Ecuadorian Andes. Forest cover change in the Pangor catchment was reconstructed based on airphotos (1963, 1977), LANDSAT TM (1991) and ETM+ data (2001, 2009). From 1963, natural vegetation was converted to agricultural land and pine plantations: forests decreased by a factor 2, and paramo decreased by 20 km2 between 1963 and 2009. For this catchment, there exists an exceptionally long record of rainfall and streamflow data that dates back from the '70s till now, but large variability in hydrometeorological data exists that is partly related to ENSO events. Given the nonstationary and nonlinear character of the ENSO-related changes in rainfall, we used the Hilbert-Huang transformation to detrend the time series of the river flow data from inter- and intra-annual fluctuations in rainfall. After applying adaptive data analysis based on empirical model decomposition techniques, it becomes apparent that the long-term trend in streamflow is different from the long-term trend in rainfall data. While the streamflow data show a long-term decrease in monthly flow, the rainfall data have a trend of increasing and then decreasing precipitation amounts. These results suggest that the land use changes had an important impact on the total water yield of the catchment. Interestingly, the effect of reforestation in the upper part of the catchment with its associated decrease in water yield seems to be dominant over the effect of deforestation in the lower part of the basin.
NASA Astrophysics Data System (ADS)
Faber, Claas; Wu, Naicheng; Ulrich, Uta; Fohrer, Nicola
2015-04-01
Since lowlands are characterised by flat topography and low hydraulic gradients, groundwater inflow has a large influence to streamflow generation in such catchments. In catchments with intense agricultural land use, artificial drainages are often another major contributor to streamflow. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of a catchment. Contribution of surface runoff to streamflow is usually less important in volume. However, due to high concentrations of agrochemicals, surface runoff can constitute an important entry pathway into water bodies, especially if strong precipitation events coincide with fertilizer or pesticide application. The DFG funded project "Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modelled runoff components and phosphorous transport" investigates prevalent processes in this context in a 50 km² lowland catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. End Member Mixing Analysis (EMMA) is used in the project to determine the relative importance of groundwater, tile drainage and surface runoff to streamflow at daily time steps. It became apparent that geochemical tracers are suitable for distinguishing surface runoff, but are weak for the separation of tile drainage and groundwater influence. We attribute this to the strong and complex interaction between soil water and shallow groundwater tables in the catchment. Recent studies (e.g. Pfister et al. 2011, Tauro et al. 2013) show the potential of diatoms as indicators for hydrological processes. Since we found diatoms to be suitable for the separation of tile drainage and stream samples (Wu et al., unpublished data) in our catchment, we are able to include diatom derived indices (e.g. density, species moisture indices, diversity indices) as traces in EMMA. Our results show that the inclusion of diatom data in the EMMA dataset improves the ability to distinguish tile drainage, groundwater and surface runoff influence to streamflow in our agriculturally dominated lowland catchment. Keywords: tile drainage, surface runoff, groundwater, hydrograph separation, EMMA, dia-toms, water quality, lowland catchments References: Pfister L, Wetzel CE, Martínez-Carreras N, Frentress J, Ector L, Hoffmann L, McDonnell JJ. 2011. Do diatoms run downhill? Using biodiversity of terrestrial and aquatic diatoms to identify hydrological connectivity between aquatic zones in Luxembourg. AGU Fall Meeting. Tauro F, Martínez-Carreras N, Wetzel CE, Hissler C, Barnich F, Frentress J, Ector L, Hoff-mann L, McDonnell JJ, Pfister L. 2013. Fluorescent diatoms as hydrological tracers: a proof of concept percolation experiment. EGU abstract, EGU2013-7687-4.
NASA Astrophysics Data System (ADS)
Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.
2004-12-01
Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure. Results will serve as a key dataset to assess how canopy conditions affect surface hydrology in complex snow-dominated catchments in the intermountain western U.S.
Catchment land use predicts benthic vegetation in small estuaries
Warry, Fiona Y.; Reich, Paul; Mac Nally, Ralph; Woodland, Ryan J.
2018-01-01
Many estuaries are becoming increasingly eutrophic from human activities within their catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such data are expensive and time consuming to obtain. We compared the percent of fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land within the catchment was the best predictor of the proportion of macroalgae within the estuaries studied. There was a transition to a dominance of macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of estuaries to catchment land use. PMID:29473004
Grayson, Richard; Kay, Paul; Foulger, Miles
2008-01-01
Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.
Simulating land use changes in the Upper Narew catchment using the RegCM model
NASA Astrophysics Data System (ADS)
Liszewska, Malgorzata; Osuch, Marzena; Romanowicz, Renata
2010-05-01
Catchment hydrology is influenced by climate forcing in the form of precipitation, temperature, evapotranspiration and human interactions such as land use and water management practices. The difficulty in separating different causes of change in a hydrological regime results from the complexity of interactions between those three factors and catchment responses and the uncertainty and scarcity of available observations. This paper describes an application of a regional climate model to simulate the variability in precipitation, temperature, evaporation and discharge under different land use parameterizations, using the Upper Narew catchment (north-east Poland) as a case study. We use RegCM3 model, developed at the International Centre for Theoretical Physics, Trieste, Italy. The model's dynamic core is based on the hydrostatic version of the NCAR/PSU Mesoscale Model version 5 (primitive equations, hydrostatic, compressible, sigma-vertical coordinate). The physical input includes radiation transfer, large-scale and convective precipitation, Planetary Boundary Layer, biosphere. The RegCM3 model has options to interface with a variety of re-analyses and GCM boundary conditions, and can thus be used for scenario assessments. The variability of hydrological conditions in response to regional climate model projections is modeled using an integrated Data Based Mechanistic (DBM) rainfall-flow/flow-routing model of the Upper River Narew catchment. The modelling tool developed is formulated in the MATLAB-SIMULINK language. The basic system structure includes rainfall-flow and flow routing modules, based on a Stochastic Transfer Function (STF) approach combined with a nonlinear transformation of rainfall into effective rainfall. We analyse the signal resulting from modified land use in a given region. 10 month-long runs have been performed from February to November for the period of 1991-2000 based on the NCEP re-analyses. The land use data have been taken from the GLCC dataset and the Corine Land Cover programme (http://dataservice.eea.europa.eu/, GIOS, Poland). Simulations taking into account land use modifications in the catchment are compared with the reference simulations under no change in land use in the region. In the second part of the paper we discuss the application of the RegCM3 model in two climate change scenarios (SRES A2 and B1). The study is a contribution to the LUWR programme (http://luwr.igf.edu.pl).
NASA Astrophysics Data System (ADS)
Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.
2016-12-01
Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water quality. Climate and land uses change scenarios are incorporated into the model to explain how nutrient export will vary across the catchment in 30, 60 and 90 years from now. Uncertainty of nutrient predictions is also assesses in order to determine the degree of reliability of the estimates.
NASA Astrophysics Data System (ADS)
Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.
2015-12-01
Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water quality. Climate and land uses change scenarios are incorporated into the model to explain how nutrient export will vary across the catchment in 30, 60 and 90 years from now. Uncertainty of nutrient predictions is also assesses in order to determine the degree of reliability of the estimates.
NASA Astrophysics Data System (ADS)
Ragab, R.; Bromley, J.; Dörflinger, G.; Katsikides, S.; D'Agostino, D. R.; Lamaddalena, N.; Trisorio, G. L.; Montenegro, S. G.; Montenegro, A.
2010-12-01
An Integrated Hydrological Modelling System, IHMS has been developed to study the impact of climate and land use changes on water resources. The system comprises three packages: the DiCaSM, MODFLOW and SWI models. The Distributed Catchment Scale Model DiCaSM, produces the recharge data for MODFLOW which in turn produces the head distribution for the Sea Water Intrusion model, SWI. These models can run separately. The DiCaSM model simulates the water balance and produces values of evapotranspiration, rainfall interception, infiltration, transpiration, soil water content, groundwater recharge, streamflow and surface runoff. In the 1st example of application, the IHMS was applied on Kouris and Akrotiri catchments in Cyprus. The system was successfully tested against the streamflow and groundwater levels data. Further, the model showed that by 2050, groundwater and surface water would decrease by 35% and 24% for Kouris and 20% and 17% for Akrotiri, respectively. In the 2nd example, the reliability of DiCaSM application on Candelaro catchment in the Apulia region, southern Italy was assessed and the uncertainty of the results were investigated using GLUE (Generalised Likelihood Uncertainty Estimation) methodology. In the 3rd example, DiCaSM model was applied on Tapacurá catchment in the NE of Brazil. The model successfully simulated streamflow and the soil moisture. The climate change scenarios indicated a possible reduction in surface water availability by -13.9%, -22.63% and -32.91% in groundwater recharge and by -4.98%, -14.28% and -20.58% in surface flows for the time spans 2010-2039, 2040-2069, 2070-2099, respectively. Changing the land use by reforestation of part of the catchment area, i.e. replacing current use of arable land would decrease groundwater recharge by -4.2% and streamflow by -2.7%. Changing land use from vegetables to sugar cane would result in decreasing groundwater recharge by around -10%, and increasing stream flow by 5%. In the 4th example, the DiCaSM model has been applied on Mimoso catchment in the Brazilian NE region. The model successfully simulated streamflows (2000 -2008) and forecasted a reduction of 27% to 71%, for ground water recharge, and 26% to 67%, for streamflow. Introducing castor beans would increase the groundwater recharge and streamflow, if the caatinga areas would be converted into castor beans. Changing an area of 1000 ha from caatinga to castor beans would increase the groundwater recharge by 46% and streamflow by 3%. If the same area of pasture is converted into castor beans, there would be an increase of groundwater recharge and streamflow by 24% and 5%, respectively. The examples suggest that IHMS is an effective tool for the authorities to help balance water demand and supply under the climate and land use changes.
The impact of agricultural land use on stream chemistry in the Middle Hills of the Himalayas, Nepal
NASA Astrophysics Data System (ADS)
Collins, Robert; Jenkins, Alan
1996-11-01
The chemistry of streams draining agricultural and forested catchments in the Middle Hills of Nepal is described. Differences between mean streamwater chemistry are attributable to the effects of the terraced agriculture and land management practices. The agricultural catchments were found to exhibit higher mean concentrations of base cations (Na, Mg, K), bicarbonate, acid anions (SO 4, Cl), metals (Al, Fe) and nutrients (NO 3, PO 4). Increased base cations apparently result from tillage practices exposing fresh soil material to weathering. Increased acid anions result from inputs of inorganic fertiliser, notably ammonium sulphate, and from an apparent increase in evapotranspiration from the flooded terraces in the agricultural catchments. Increased metal concentrations may be promoted by increased weathering and erosion rates, and this is further supported by observations of dramatically higher turbidity in the streamwater draining the agricultural catchments. Higher levels of nutrients are the direct result of fertiliser input but concentrations are generally low from all catchments as a result of denitrification, indicating that eutrophication downstream is not a likely consequence of land use change. The major dynamics of water chemistry occur during the monsoon, which is also the main season for agricultural production. Mean wet season concentrations of base cations tend to be lower than in the dry season at all catchments as higher flow dilutes the relatively constant weathering input. Ammonium concentrations are higher from the agricultural catchments in the wet season as a result of direct washout of fertiliser. Detailed monitoring through storm periods at one agricultural catchment indicates that the chemistry responds very rapidly to changing flow, with cations decreasing and acid anions increasing followed by equally rapid recovery as flow recedes. Bicarbonate concentrations also decline markedly but are still sufficiently high to maintain pH near neutral throughout the storm event. The impacts of agricultural land use on streamwater chemistry are unlikely to lead to potentially damaging consequences for the aquatic biota at present or in the short-term future. The potential for acidity generation as a result of the high loads of nitrogenous fertilisers applied is apparently buffered by the land tillage practices, which promote higher weathering and so higher concentrations of base cations.
Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds
USDA-ARS?s Scientific Manuscript database
In many headwater catchments, streamflow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water were...
Land Management, River Restoration and the Water Framework Directive
NASA Astrophysics Data System (ADS)
Smith, Ben; Clifford, Nicholas
2014-05-01
The influence of catchment land-use on river ecosystems is well established, with negative changes in hydrology, sediment supply and pollutants causing widespread degradation in modified catchments across Europe. The strength of relationship found between different land-use types and impacts on river systems varies from study to study as a result of issues around data quality, scale, study design and the interaction of stressors at multiple scales. Analysis of large-scale datasets can provide important information about the way that catchments pressures affect WFD objectives at a national scale. Comparisons of relationships between land-use and WFD status in different types of catchment within the UK allow an assessment of catchment sensitivity and analysis of the catchment characteristics which influence these relationships. The results suggest prioritising catchments at or near land-use thresholds, or targeting waterbodies with limited land-use pressures but which are failing to achieve GES or GEP. This paper uses UK datasets on land cover and WFD waterbody status to examine how catchment land-use impacts on WFD status and to evaluate opportunities to achieve Good Ecological Status or Good Ecological Potential. Agricultural and urban land-use are shown to have different types of relationship with respect to the likelihood of achieving Good Ecological Status, and with clear threshold effects apparent for urban land-use in the catchment. Broad-scale analysis shows the influence of different sized buffer strips in mitigating the negative effects of different types of land-cover, and reinforces the positive effects of riparian woodland on river ecosystems and their potential under the WFD.
Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi
2016-05-01
Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-03-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-05-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
Global maps of streamflow characteristics based on observations from several thousand catchments
NASA Astrophysics Data System (ADS)
Beck, Hylke; van Dijk, Albert; de Roo, Ad
2015-04-01
Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from three to four thousand small-to-medium sized catchments (10-10000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps due to their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (0.125° resolution). These maps possess several unique features: they represent observation-driven estimates; are based on an unprecedentedly large set of catchments; and have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available via http://water.jrc.ec.europa.eu.
Ribolzi, Olivier; Evrard, Olivier; Huon, Sylvain; de Rouw, Anneke; Silvera, Norbert; Latsachack, Keo Oudone; Soulileuth, Bounsamai; Lefèvre, Irène; Pierret, Alain; Lacombe, Guillaume; Sengtaheuanghoung, Oloth; Valentin, Christian
2017-06-21
Soil erosion supplies large quantities of sediments to rivers of Southeastern Asia. It reduces soil fertility of agro-ecosystems located on hillslopes, and it degrades, downstream, water resource quality and leads to the siltation of reservoirs. An increase in the surface area covered with commercial perennial monocultures such as teak plantations is currently observed at the expanse of traditional slash-and-burn cultivation systems in steep montane environments of these regions. The impacts of land-use change on the hydrological response and sediment yields have been investigated in a representative catchment of Laos monitored for 13 years. After the gradual conversion of rice-based shifting cultivation to teak plantation-based systems, overland flow contribution to stream flow increased from 16 to 31% and sediment yield raised from 98 to 609 Mg km -2 . This result is explained by the higher kinetic energy of raindrops falling from the canopy, the virtual absence of understorey vegetation cover to dissipate drop energy and the formation of an impermeable surface crust accelerating the formation and concentration of overland flow. The 25-to-50% lower 137 Cs activities measured in soils collected under mature teak plantations compared to soils under other land uses illustrate the severity of soil erosion processes occurring in teak plantations.
Catchment scale multi-objective flood management
NASA Astrophysics Data System (ADS)
Rose, Steve; Worrall, Peter; Rosolova, Zdenka; Hammond, Gene
2010-05-01
Rural land management is known to affect both the generation and propagation of flooding at the local scale, but there is still a general lack of good evidence that this impact is still significant at the larger catchment scale given the complexity of physical interactions and climatic variability taking place at this level. The National Trust, in partnership with the Environment Agency, are managing an innovative project on the Holnicote Estate in south west England to demonstrate the benefits of using good rural land management practices to reduce flood risk at the both the catchment and sub-catchment scales. The Holnicote Estate is owned by the National Trust and comprises about 5,000 hectares of land, from the uplands of Exmoor to the sea, incorporating most of the catchments of the river Horner and Aller Water. There are nearly 100 houses across three villages that are at risk from flooding which could potentially benefit from changes in land management practices in the surrounding catchment providing a more sustainable flood attenuation function. In addition to the contribution being made to flood risk management there are a range of other ecosystems services that will be enhanced through these targeted land management changes. Alterations in land management will create new opportunities for wildlife and habitats and help to improve the local surface water quality. Such improvements will not only create additional wildlife resources locally but also serve the landscape response to climate change effects by creating and enhancing wildlife networks within the region. Land management changes will also restore and sustain landscape heritage resources and provide opportunities for amenity, recreation and tourism. The project delivery team is working with the National Trust from source to sea across the entire Holnicote Estate, to identify and subsequently implement suitable land management techniques to manage local flood risk within the catchments. These techniques will include: controlling headwater drainage, increasing evapotranspiration and interception by creating new woodlands in the upper catchment areas, enabling coarse woody debris dams to slow down water flows through steep valleys, improving soil water storage potential by appropriate soil and crop management, retaining water on lowland flood meadows and wet woodland creation within the floodplain. The project, due to run from 2009 until 2013, incorporates hydrometric and water quality monitoring, together with hydrologic and hydraulic modelling in order to attempt to demonstrate the effect of land management changes on flood dynamics and flood risk management. To date, the project team have undertaken the fundamental catchment characterisation work to understand its physical setting and the interaction of the physical processes that influence the hydrological response of the catchment to incident precipitation. The results of this initial work has led to the identification of a suitably robust hydrometric monitoring network within the catchments to meet the needs of providing both quantitative evidence of the impacts of land management change on flood risk, together with generating good quality datasets for the validation and testing of the new hydrologic models. As the project aims to demonstrate ‘best practice' in all areas, the opportunity has been taken to install a network of automatic hydrometric monitoring equipment, together with an associated telemetry system, in order to maximise data coverage, accuracy and reliability. Good quality datasets are a critical requirement for reliable modelling. The modelling will also be expanded to incorporate climate change scenarios. This paper will describe the catchment characterisation work undertaken to date, the proposed land management changes in relation to flood risk management, the initial catchment hydraulic modelling work and the implementation of the new hydrometric monitoring network within the study area.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the total amount of nitrogen and phosphorus, in kilograms for the year 2002, compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is County-Level Estimates of Nutrient Inputs to the Land Surface of the Conterminous United States, 1982-2001 (Ruddy and others, 2006). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
NASA Astrophysics Data System (ADS)
Zhou, Huiping; Chang, Weina; Zhang, Longjiang
2016-08-01
Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other uncertainty factors.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.
1996-03-01
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Heathwaite, L.; Lane, S. N.; Buckley, C.
2007-12-01
Pollution of rivers from agricultural phosphorus is recognised as a significant global problem and is a major management challenge as it involves processes that are small in magnitude, distributed over large areas, operating at fine spatial scales and associated with certain land use types when they are well connected to the receiving waters. Whilst some of these processes have been addressed in terms of water quality forecasting models and field measurements, we lack effective tools to prioritise where action should be taken to remediate the diffuse pollution problem. From a management perspective, the required information is on 'what to do where' rather than absolute values. This change in focus opens up the problem to be considered in a probabilistic / relative framework rather than concentrating on absolute values. The SCIMAP risk management framework is based on the critical source area concept whereby a risk and a connection are required to generate a problem. Treatments of both surface and subsurface hydrological connectivity have been developed. The approach is based on the philosophy that for a point to be considered connected there needs to be a continuous flow path to the receiving water. This information is calculated by simulating the possible flow paths from the source cell to the receiving water and recording the required catchment wetness to allow flow along that route. This algorithm gives information on the ease at which each point in the landscape can export risk along surface and subsurface pathways to the receiving waters. To understand the annual dynamics of the locational diffuse P risk, a temporal risk framework has been developed. This risk framework accounts for land management activies within the agricultural calendar. These events include the application of fertiliser, the P additions from livestock and the offtake of P in crops. Changes to these risks can be made to investigate management options. The SCIMAP risk mapping framework has been applied to 12 catchments in England as part of the DEFRA / Environment Agency's Catchment Sensitive Farming programme. Result from these catchments will be presented.
Seep and stream nitrogen dynamics in two adjacent mixed land use watersheds
USDA-ARS?s Scientific Manuscript database
In many headwater catchments, stream flow originates from surface seeps and springs. The objective of this study was to determine the influence of seeps on nitrogen (N) dynamics within the stream and at the outlet of two adjacent mixed land use watersheds. Nitrogen concentrations in stream water wer...
From Hills to Holes: How Climate Change and Mining are Altering Runoff Processes in Canada
NASA Astrophysics Data System (ADS)
Carey, S. K.
2015-12-01
Canadian environments are under considerable pressure from both climate and land-use change. While warming temperatures are widespread and amplified in the north, surface mining has resulted in large-scale landscape disturbance. How these changes affect catchment response is profound, fundamentally altering the cycling and delivery of water and geochemicals to the drainage network. In permafrost-underlain environments, coupled mass and energy processes control runoff response, and as ground thaw increases, new subsurface pathways become accessible while changing overall catchment storage. With surface mining, watersheds are altered such that they bare little resemblance to what existed prior to mining. In this presentation, data will be presented from long-term experiments exploring the impact of climate and mining on runoff processes in cold catchments using stable isotopes of water and associated hydrometric measurements. In southern Yukon, results from the Wolf Creek Research Basin highlights the influence of surface energy balances on controlling the timing and magnitude of flow response, with inter-annual variability largely driven by how atmospheric forcing interacts with permafrost-underlain areas of the catchment. In mountainous areas of southern British Columbia, surface mining reconfigures landscapes as valleys are filled with waste-rock. Mine-influenced catchments exhibit attenuated flows with delays in spring freshet and a more muted to precipitation. Stable isotopes in stream water suggests that both waste-rock and reference catchments are well mixed, however reference catchments are more responsive to enrichment and depletion events and that mine-influenced catchments had a heavier isotope signature than reference watersheds, suggesting enhanced influence of rainfall on recharge. In both cases, snow storage and release exerts considerable control on streamflow responses, and future changes in streamflow regimes will reflect both a changes in the snow regime and inherent catchment storage properties that are dynamic with time.
NASA Astrophysics Data System (ADS)
Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim
2010-05-01
The recent increase in flood frequency and magnitude has been hypothesised to have been caused by either climate change or land management. Field scale studies have found that changing land management practices does affect local runoff and streamflow, but upscaling these effects to the catchment scale continues to be problematic, both conceptually and more importantly methodologically. The impact on downstream flood risk is highly dependent upon where the changes are in the catchment, indicating that some areas of the catchment are more important in determining downstream flood risk than others. This is a major flaw in the traditional approach to studying the effect of land use on downstream flood risk: catchment scale hydrological models, which treat every cell in the model equally. We are proposing an alternative ideological approach for doing flood management research, which is underpinned by downscaling the downstream effect (problem i.e. flooding) to the upstream causes (contributing sub-catchments). It is hoped that this approach could have several benefits over the traditional upscaling approach. Firstly, it provides an efficient method to prioritise areas for land use management changes to be implemented to reduce downstream flood risk. Secondly, targets for sub-catchment hydrograph change can be determined which will deliver the required downstream effect. Thirdly, it may be possible to detect the effect of land use changes in upstream areas on downstream flood risk, by weighting the areas of most importance in hydrological models. Two methods for doing this downscaling are proposed; 1) data-based statistical analysis; and 2) hydraulic modelling-based downscaling. These will be outlined using the case study of the River Eden, Cumbria, NW England. The data-based methodology uses the timing and magnitude of floods for each sub-catchment. Principal components analysis (PCA) is used to simplify sub-catchment interactions and optimising stepwise regression is used to predict downstream flood magnitude from the significant principal components. Two particular sub-catchments, the Eamont and the Upper Eden were highlighted as explaining the highest proportion of downstream flood risk, with 21.0% and 19.6% respectively. This approach uses the concept of data mining, whereby commonly available discharge data is used in an innovative way to learn about catchment behaviour. An alternative downscaling approach is hydraulic modelling whereby the input hydrographs from each tributary are changed in turn, both in terms of the magnitudes and the timing of the flows. This basic scenario testing approach can be used to assess the sensitivity of downstream flood risk to upstream contributing tributaries. This approach also highlighted the Upper Eden and Eamont as the most sensitive sub-catchments. A 25% reduction in the flows from these sub-catchments resulted in a 33.1cm and 21.9cm stage reduction downstream respectively, while an 8 hour delay of the peak flow caused a 32.3cm and 27.4cm decrease in downstream stage respectively. This alternative flood management approach is not a replacement to traditional hydrological modelling (upscaling), but a pre-step which allows for more focussed and informed investigation of land management scenarios, in the area where they are most likely to have beneficial impacts on downstream flooding.
Gücker, Björn; Silva, Ricky C S; Graeber, Daniel; Monteiro, José A F; Boëchat, Iola G
2016-04-15
Many tropical biomes are threatened by rapid land-use change, but its catchment-wide biogeochemical effects are poorly understood. The few previous studies on DOM in tropical catchments suggest that deforestation and subsequent land use increase stream water dissolved organic carbon (DOC) concentrations, but consistent effects on DOM elemental stoichiometry have not yet been reported. Here, we studied stream water DOC concentrations, catchment DOC exports, and DOM elemental stoichiometry in 20 tropical catchments at the Cerrado-Atlantic rainforest transition, dominated by natural vegetation, pasture, intensive agriculture, and urban land cover. Streams draining pasture could be distinguished from those draining natural catchments by their lower DOC concentrations, with lower DOM C:N and C:P ratios. Catchments with intensive agriculture had higher DOC exports and lower DOM C:P ratios than natural catchments. Finally, with the highest DOC concentrations and exports, as well as the highest DOM C:P and N:P ratios, but the lowest C:N ratios among all land-use types, urbanized catchments had the strongest effects on catchment DOM. Thus, urbanization may have alleviated N limitation of heterotrophic DOM decomposition, but increased P limitation. Land use-especially urbanization-also affected the seasonality of catchment biogeochemistry. While natural catchments exhibited high DOC exports and concentrations, with high DOM C:P ratios in the rainy season only, urbanized catchments had high values in these variables throughout the year. Our results suggest that urbanization and pastoral land use exerted the strongest impacts on DOM biogeochemistry in the investigated tropical catchments and should thus be important targets for management and mitigation efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.
NASA Astrophysics Data System (ADS)
Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter
2017-04-01
Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.
NASA Astrophysics Data System (ADS)
Bernardi, Tony
2014-05-01
Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI) profile data were compiled from previous work with colleagues in this area. Preliminary interpretation of the mapping and the geophysics is that there is a three-layer framework for groundwater modelling: fractured granitic rock with an irregular upper surface, finer-grained (volcanic) rock that has either mantled the older granite or has been intruded into, and a weathering profile developed in relation to the land surface. More careful interpretation of the intervals that shallow and deep piezometers and shallow and deep bores are sampling indicates that variability in water chemistry between holes can, in part, be explained because they are sampling different materials in the sub-surface geology/regolith geology. Quartz is a relatively resistant phase throughout the profiles. For both substrates there is a decrease in the feldspar in increasingly weathered regolith materials, with a corresponding increase in kaolinite clay. There is increased homogenisation of the profile, and some horizonation due to pedogenic processes (e.g. bioturbation, illuviation of fines down profile) nearer the land surface. This results in a concentration of more resistant phases (quartz and remnant primary feldspar as sands) at the land surface over the granitic substrate, however kaolinite persists in the profile over the finer substrate. The presence of measurable ferruginous oxides and sesquioxides relates to localised percolation of oxidising fluids through the profiles. Understanding the configuration and composition of rocks and regolith materials in the Baldry catchment facilitates interpretation of observed patterns in hydrological analyses.
Riparian influences on stream fish assemblage structure in urbanizing streams
Roy, A.H.; Freeman, B.J.; Freeman, Mary C.
2007-01-01
We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.
A catchment scale water balance model for FIFE
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, E. F.; Sivapalan, M.; Thongs, D. J.
1992-01-01
A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologic fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model-computed evaporation is compared to that observed, both at site 2 (grid location 1916-BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.
NASA Astrophysics Data System (ADS)
Howden, Nicholas J. K.; Burt, Tim P.; Worrall, Fred; Mathias, Simon; Whelan, Mick J.
2011-06-01
Widespread pollution of groundwater by nutrients due to 20th century agricultural intensification has been of major concern in the developed world for several decades. This paper considers the River Thames catchment (UK), where water-quality monitoring at Hampton (just upstream of London) has produced continuous records for nitrate for the last 140 years, the longest continuous record of water chemistry anywhere in the world. For the same period, data are available to characterize changes in both land use and land management at an annual scale. A modeling approach is used that combines two elements: an estimate of nitrate available for leaching due to land use and land management; and, an algorithm to route this leachable nitrate through to surface or groundwaters. Prior to agricultural intensification at the start of World War II, annual average inputs were around 50 kg ha-1, and river concentrations were stable at 1 to 2 mg l-1, suggesting in-stream denitrification capable of removing 35 (±15) kt N yr-1. Postintensification data suggest an accumulation of 100 (±40) kt N yr-1 in the catchment, most of which is stored in the aquifer. This build up of reactive N species within the catchments means that restoration of surface nitrate concentrations typical of the preintensification period would require massive basin-wide changes in land use and management that would compromise food security and take decades to be effective. Policy solutions need to embrace long-term management strategies as an urgent priority.
A Multi-Hydro simulation for the evaluation of the hydrologic behaviour of a peri-urban catchment
NASA Astrophysics Data System (ADS)
Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Hoang, C.
2012-12-01
In the context of the growth of the cities, the urbanized areas occupy more places in the riskier area of flood. As more and more people live in these peri-urban areas and are vulnerable to the flood risk. The understanding of this risk asks the question of the modeling of the flood. In this way, the Multi-Hydro model was developed and improved at the Ecole des Ponts ParisTech. This model consists into a coupling between four modules (relying on existing open source and widely validated physically based model): one for the rainfall scenario generation, one for the surface processes, one for the subsurface processes and one for the load of the sewer system. This structure of coupling allows to represent all the parts of the water's path from the surface to the sewer system's pipes and to the soil of the considered catchment and it allows to disconnect one element of the coupling system if it's necessary. Moreover, this model uses some GIS data as the elevation, the land use, the soil description and the sewer system description which can be managed by a dedicaded open source SIG allowing to use directly the data in the model. Considering the great amount of data needed for the model occurring, the overland water depth couldn't be relied on the survey data. However, the behaviour changes of a catchment by the changing of the land use can be evaluate by the analysis of the risk map and an advanced statistical analysis. Thus, the Multi-Hydro model was applied on a city of the Paris area: the city of Villecresnes. It is a small catchment of 0.712 square kilometer where the flood comes only from the runoff of the rainfall. This catchment is simulated with too kind of rainfall (constant or variable in space and in time) and with two kind of elevation: a "raw" elevation coming from the field survey and a "modified" elevation in function of the land use. In this last case, the elevation is increased for the houses places by 5m and decreased in the road places by 15 cm. The location of the water is controlled by the topography in the first case but it's controlled by the location of the houses in the second case. The serie of maps obtained in the both cases are analyzed by advanced statistical method (multifractals) that shown that the modification of the elevation according into the land use implies important changes on the global hydrologic behaviour of the catchment. The impact of the design of the rainfall is induced by the location of the higher intensities of the rainfall because according to the location of these higher intensities, the discharge at the outlet of the catchment can be modified.
NASA Astrophysics Data System (ADS)
Pullanikkatil, Deepa; Palamuleni, Lobina G.; Ruhiiga, Tabukeli M.
2016-06-01
Likangala River catchment in Zomba District of Southern Malawi is important for water resources, agriculture and provides many ecosystem services. Provisioning ecosystem services accrued by the populations within the catchment include water, fish, medicinal plants and timber among others. In spite of its importance, the River catchment is under threat from anthropogenic activities and land use change. This paper studies land uses and land cover change in the catchment and how the changes have impacted on the ecosystem services. Landsat 5 and 8 images (1984, 1994, 2005 and 2013) were used to map land cover change and subsequent inventorying of provisioning ecosystem services. Participatory Geographic Information Systems and Focus group discussions were conducted to identify provisioning ecosystems services that communities benefit from the catchment and indicate these on the map. Post classification comparisons indicate that since 1984, there has been a decline in woodlands from 135.3 km2 in 1984 to 15.5 km2 in 2013 while urban areas increased from 9.8 km2 to 23.8 km2 in 2013. Communities indicated that provisioning ecosystems services such as forest products, wild animals and fruits and medicinal plants have been declining over the years. In addition, evidence of catchment degradation through waste disposal, illegal sand mining, deforestation and farming on marginal lands were observed. Population growth, urbanization and demand for agricultural lands have contributed to this land use and land cover change. The study suggests addressing catchment degradation through integrated method where an ecosystems approach is used. Thus, both the proximate and underlying driving factors of land-use and land cover change need to be addressed in order to sustainably reduce ecosystem degradation.
NASA Astrophysics Data System (ADS)
Eekhout, Joris P. C.; de Vente, Joris
2017-04-01
Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts. The projected higher frequency of extreme weather events under climate change will lead to an increase of plant water stress, reservoir inflow and sediment yield. Sustainable Land Management (SLM) practices are increasingly promoted as climate change adaptation strategy and to increase resilience against extreme events. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on catchment-scale impacts on soil and water resources. We applied a spatially distributed hydrological model (SPHY), coupled with an erosion model (MUSLE) to the Segura River catchment (15,978 km2) in SE Spain. We run the model for three periods: one reference (1981-2000) and two future scenarios (2031-2050 and 2081-2100). Climate input data for the future scenarios were based on output from 9 Regional Climate Models and for different emission scenarios (RCP 4.5 and RCP 8.5). Realistic scenarios of SLM practices were developed based on a local stakeholder consultation process. The evaluated SLM scenarios focussed on reduced tillage and organic amendments under tree and cereal crops, covering 24% and 15% of the catchment, respectively. In the reference scenario, implementation of SLM at the field-scale led to an increase of the infiltration capacity of the soil and a reduction of surface runoff up to 29%, eventually reducing catchment-scale reservoir inflow by 6%. This led to a reduction of field-scale sediment yield of more than 50% and a reduced catchment-scale sediment flux to reservoirs of 5%. SLM was able to fully mitigate the effect of climate change at the field-scale and partly at the catchment-scale. Therefore, we conclude that large-scale adoption of SLM can effectively contribute to climate change adaptation by increasing the soil infiltration capacity, the soil water retention capacity and soil moisture content in the rootzone, leading to less crop stress. These findings of regional scale impacts of SLM are of high relevance for land-owners, -managers and policy makers to design effective climate change adaptation strategies.
A Monte Carlo approach to the inverse problem of diffuse pollution risk in agricultural catchments
NASA Astrophysics Data System (ADS)
Milledge, D.; Lane, S. N.; Heathwaite, A. L.; Reaney, S.
2012-04-01
The hydrological and biogeochemical processes that operate in catchments influence the ecological quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. As an alternative to the, often complex, reductionist models we outline a - data-driven - approach based on 'inverse modelling'. We invert SCIMAP, a parsimonious risk based model that has an explicit treatment of hydrological connectivity, and use a Bayesian approach to determine the risk that must be assigned to different land uses in a catchment in order to explain the spatial patterns of measured in-stream nutrient concentrations. First, we apply the model to a set of eleven UK catchments to show that: 1) some land use generates a consistently high or low risk of diffuse nitrate (N) and Phosphate (P) pollution; but 2) the risks associated with different land uses vary both between catchments and between P and N delivery; and 3) that the dominant sources of P and N risk in the catchment are often a function of the spatial configuration of land uses. These results suggest that on a case by case basis, inverse modelling may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for freshwater ecosystems. However, a key uncertainty in this approach is the extent to which it can recover the 'true' risks associated with a land cover given error in both the input parameters and equifinality in model outcomes. We test this using a set of synthetic scenarios in which the true risks can be pre-assigned then compared with those recovered from the inverse model. We use these scenarios to identify the number of simulations and observations required to optimize recovery of the true weights, then explore the conditions under which the inverse model becomes equifinal (hampering recovery of the true weights) We find that this is strongly dependent on the covariance in land covers between subcatchments, introducing the possibility that instream sampling could be designed or subsampled to maximize identifiability of the risks associated with a given land cover.
Carbon redistribution by erosion processes in an intensively disturbed catchment
NASA Astrophysics Data System (ADS)
Boix-Fayos, Carolina; Martínez-Mena, María; Pérez Cutillas, Pedro; de Vente, Joris; Barberá, Gonzalo G.; Mosch, Wouter; Navarro Cano, Jose Antonio; Gaspar, Leticia; Navas, Ana
2016-04-01
Understanding how organic carbon moves with sediments along the fluvial system is crucial to close catchment scale carbon budgets. Especially challenging is the analysis of organic carbon dynamics during fluvial transport in heterogeneous, fragile and disturbed environments with ephemeral and intense hydrological pulses, typical of Mediterranean conditions. This paper explores the catchment scale organic carbon redistribution by lateral flows in extreme Mediterranean environmental conditions from a geomorphological perspective. The study area is a catchment (Cárcavo) in SE Spain with a semiarid climate, erodible lithologies, shallow soils, and highly disturbed by agricultural terraces, land levelling, reforestations and construction of check-dams. To increase understanding of erosion induced catchment scale organic carbon redistribution, we studied the subcatchments of 8 check-dams distributed along the catchment main channel in detail. We determined 137Cs, physicochemical characteristics and organic carbon pools of soils and sediments deposited behind each check-dam, performed spatial analysis of properties of the catchment and buffer areas around check-dams, and carried out geomorphological analysis of the slope-channel connections. Soils showed very low Total Organic Carbon (TOC) values oscillating between 15.2 and 4.4 g Kg-1 for forest and agricultural soils, respectively. Sediments mobilized by erosion were poor in TOC compared to the eroded (forest) soils (6.6±0.7 g Kg-1), and the redistribution of organic carbon through the catchment, especially of the Mineral Associated Organic Carbon (MAC) pool, showed the same pattern as clay particles and 137Cs. The TOC erosion rates (0.031±0.03 Mg ha-1 y-1) were comparable to others reported for subhumid Mediterranean catchments and to those modelled worldwide for pasture land. Those lateral fluxes were equivalent to 10.4 % of the TOC stock from the topsoil at the moment of the check-dam construction and reforestation works. However the organic carbon in deposited sediments comes not only from surface erosion processes, but also from deeper soil or sediment layers mobilized by concentrated erosion processes. Sediment richer in organic carbon comes from the soil surface of vegetated (reforested) areas close and well connected to the channels. Subcatchments dominated by laminar erosion processes showed two times higher TOC/total erosion ratio than subcatchments dominated by concentrated flow erosion processes. Lithology, soils and geomorphology exert a more important control on organic carbon redistribution than land use and vegetation cover in this geomorphologically very active catchment.
Gravity changes, soil moisture and data assimilation
NASA Astrophysics Data System (ADS)
Walker, J.; Grayson, R.; Rodell, M.; Ellet, K.
2003-04-01
Remote sensing holds promise for near-surface soil moisture and snow mapping, but current techniques do not directly resolve the deeper soil moisture or groundwater. The benefits that would arise from improved monitoring of variations in terrestrial water storage are numerous. The year 2002 saw the launch of NASA's Gravity Recovery And Climate Experiment (GRACE) satellites, which are mapping the Earth's gravity field at such a high level of precision that we expect to be able to infer changes in terrestrial water storage (soil moisture, groundwater, snow, ice, lake, river and vegetation). The project described here has three distinct yet inter-linked components that all leverage off the same ground-based monitoring and land surface modelling framework. These components are: (i) field validation of a relationship between soil moisture and changes in the Earth's gravity field, from ground- and satellite-based measurements of changes in gravity; (ii) development of a modelling framework for the assimilation of gravity data to constrain land surface model predictions of soil moisture content (such a framework enables the downscaling and disaggregation of low spatial (500 km) and temporal (monthly) resolution measurements of gravity change to finer spatial and temporal resolutions); and (iii) further refining the downscaling and disaggregation of space-borne gravity measurements by making use of other remotely sensed information, such as the higher spatial (25 km) and temporal (daily) resolution remotely sensed near-surface soil moisture measurements from the Advanced Microwave Scanning Radiometer (AMSR) instruments on Aqua and ADEOS II. The important field work required by this project will be in the Murrumbidgee Catchment, Australia, where an extensive soil moisture monitoring program by the University of Melbourne is already in place. We will further enhance the current monitoring network by the addition of groundwater wells and additional soil moisture sites. Ground-based gravity measurements will also be made on a monthly basis at each monitoring site. There will be two levels of modelling and monitoring; regional across the entire Murrumbidgee Catchment (100,000 km2), and local across a small sub-catchment (150 km2).
Sediment dynamics in an overland flow-prone forest catchment
NASA Astrophysics Data System (ADS)
Zimmermann, Alexander; Elsenbeer, Helmut
2010-05-01
Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.
Catchment Classification: Connecting Climate, Structure and Function
NASA Astrophysics Data System (ADS)
Sawicz, K. A.; Wagener, T.; Sivapalan, M.; Troch, P. A.; Carrillo, G. A.
2010-12-01
Hydrology does not yet possess a generally accepted catchment classification framework. Such a classification framework needs to: [1] give names to things, i.e. the main classification step, [2] permit transfer of information, i.e. regionalization of information, [3] permit development of generalizations, i.e. to develop new theory, and [4] provide a first order environmental change impact assessment, i.e., the hydrologic implications of climate, land use and land cover change. One strategy is to create a catchment classification framework based on the notion of catchment functions (partitioning, storage, and release). Results of an empirical study presented here connects climate and structure to catchment function (in the form of select hydrologic signatures), based on analyzing over 300 US catchments. Initial results indicate a wide assortment of signature relationships with properties of climate, geology, and vegetation. The uncertainty in the different regionalized signatures varies widely, and therefore there is variability in the robustness of classifying ungauged basins. This research provides insight into the controls of hydrologic behavior of a catchment, and enables a classification framework applicable to gauged and ungauged across the study domain. This study sheds light on what we can expect to achieve in mapping climate, structure and function in a top-down manner. Results of this study complement work done using a bottom-up physically-based modeling framework to generalize this approach (Carrillo et al., this session).
NASA Astrophysics Data System (ADS)
St Laurent, Jacques; Mazumder, Asit
2012-12-01
The potential for riverine drinking source water to become contaminated with pathogens is related to the production and transport of fecal waste from within the local catchment area. Identifying specific relationships between land-use types and fecal contamination in riverine water provides an indication of the risk associated with land-use change and helps to target mitigation measures toward land-use types of concern. Fecal coliform (FC) data from 42 riverine sites across British Columbia (BC), Canada, were examined in relation to land-use composition (including 16 land-use types) in the local catchment area. FC concentration significantly increased in relation to anthropogenic land-use impacts but was negatively associated with undisturbed and high-elevation land types. Regression tree analysis identified that highest FC concentrations occurred in catchments characterized by more than 12.5% agricultural land and more than 1.6% urban land. Furthermore, the risk of violation of the BC partial treatment raw drinking water quality guideline for FC concentration (100 CFU 100 mL-1) increased in relation to agricultural impacts. Additional factors, such as sewage treatment discharge, low dilution in smaller streams, and higher temperatures, were associated with higher FC concentration among sites with similar levels of agricultural development. These results identify land-use types that present the greatest threat to riverine contamination, namely agricultural and urban land, and indicate the proportion of such land use associated with high contamination. Land use should be managed and source water protection should be targeted in light of these results so as to minimize the risk of surface water exposure to fecal contaminants.
NASA Technical Reports Server (NTRS)
De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre
2018-01-01
The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.
Global Maps of Temporal Streamflow Characteristics Based on Observations from Many Small Catchments
NASA Astrophysics Data System (ADS)
Beck, H.; van Dijk, A.; de Roo, A.
2014-12-01
Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. We used observed Q from approximately 7500 small catchments (<10,000 km2) around the globe to train neural network ensembles to estimate temporal Q distribution characteristics from climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Training coefficients of determination for the estimation of the Q characteristics ranged from 0.56 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were the least important, perhaps due to data quality. The trained neural network ensembles were subsequently applied spatially over the ice-free land surface including ungauged regions, resulting in global maps of the Q characteristics (0.125° spatial resolution). These maps possess several unique features: 1) they represent purely observation-driven estimates; 2) are based on an unprecedentedly large set of catchments; and 3) have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of five macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available for download.
Physically based modeling in catchment hydrology at 50: Survey and outlook
NASA Astrophysics Data System (ADS)
Paniconi, Claudio; Putti, Mario
2015-09-01
Integrated, process-based numerical models in hydrology are rapidly evolving, spurred by novel theories in mathematical physics, advances in computational methods, insights from laboratory and field experiments, and the need to better understand and predict the potential impacts of population, land use, and climate change on our water resources. At the catchment scale, these simulation models are commonly based on conservation principles for surface and subsurface water flow and solute transport (e.g., the Richards, shallow water, and advection-dispersion equations), and they require robust numerical techniques for their resolution. Traditional (and still open) challenges in developing reliable and efficient models are associated with heterogeneity and variability in parameters and state variables; nonlinearities and scale effects in process dynamics; and complex or poorly known boundary conditions and initial system states. As catchment modeling enters a highly interdisciplinary era, new challenges arise from the need to maintain physical and numerical consistency in the description of multiple processes that interact over a range of scales and across different compartments of an overall system. This paper first gives an historical overview (past 50 years) of some of the key developments in physically based hydrological modeling, emphasizing how the interplay between theory, experiments, and modeling has contributed to advancing the state of the art. The second part of the paper examines some outstanding problems in integrated catchment modeling from the perspective of recent developments in mathematical and computational science.
Catchment scale afforestation for mitigating flooding
NASA Astrophysics Data System (ADS)
Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen
2016-04-01
After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating downstream flood risk at sub-catchment and catchment scale. Key words: Flood peak, nature-based solutions, forest hydrology, hydrological modelling, SHETRAN, flood frequency, flood magnitude, land-cover change, upland afforestation.
NASA Astrophysics Data System (ADS)
Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.
2009-04-01
Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable grassland soils; areas where arable production represents a significant landuse; and catchments on productive and unproductive aquifers. The catchments were identified using a GIS-based multicriteria decision analysis with objective criteria that included landuse data (including agricultural and settlement statistics) combined with soils and geology data to evaluate the risk of P and N loss. Shortlisted catchments were then finalised using practical criteria based on the potential for hydrometry and hydrochemistry research. In each catchment, a conceptual model approach is being used to hypothesize the sources, seasonal mobilisation and pathways of nutrients and water through the soil/subsoil system and transfer into surface and ground water systems to stratify each catchment experimental design. Knowledge of the nutrient management of each catchment farm and resulting soil fertility will be used to monitor the sources of agricultural N and P. Environmental soil nutrient tests will provide baselines and checks on the potential for mobilisation. Areas of high soil fertility that are coincident with high surface or sub-surface hydrological connectivity will be monitored for subsequent nutrient transfer. Other potential nutrient source loads within the catchments, such as rural waste-water treatment plants and domestic septic systems, will be factored in as non-agricultural sources. Similarly, the potential for farmyard transfers will also be assessed. The net balance of nutrient transfer at the catchment outlets will be monitored using a high resolution method that is coincident with hydrometric measurements to ensure that there is a full understanding of the inter-dependence between point and diffuse nutrient transfers and hydrodynamics. This source to transfer approach is highly appropriate and a move towards inductive understanding of nutrient use and export in river catchments - the scale at which policies for water resources management will be assessed under the WFD. The data are also highly conducive to constraining catchment scale, distributed models for predicting chemical transfers in runoff. As the Programme is aiming to integrate the often perceived contentious objectives of water quality management with those of sustainable agriculture, farm economics will also be monitored at the same time and an assessment made of farmer attitudes. An advisory programme is also a major component and dedicated farm advisors will ensure that farmers are fully appraised of obligations and opportunities in the National Action Programme.
Global maps of streamflow characteristics based on observations from several thousand catchments
NASA Astrophysics Data System (ADS)
Beck, Hylke; de Roo, Ad; van Dijk, Albert
2016-04-01
Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from three to four thousand small-to-medium sized catchments (10--10 000~km^2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps due to their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (0.125° resolution). These maps possess several unique features: they represent observation-driven estimates; are based on an unprecedentedly large set of catchments; and have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available via http://water.jrc.ec.europa.eu.
NASA Astrophysics Data System (ADS)
Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida
2013-04-01
In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.
NASA Astrophysics Data System (ADS)
Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.
2015-12-01
Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff contributed about 40%, 20% in subsurface while there is about 13% in the base flow. For better understanding and interpretation of the area there is still need of further coherent research and analysis for land use change and future climate change impact in the glaciered alpine catchment of Himalayan region.
Accelerating advances in continental domain hydrologic modeling
Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.
2015-01-01
In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.
NASA Astrophysics Data System (ADS)
Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.
2014-09-01
While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.
The impact of land use and season on the riverine transport of mercury into the marine coastal zone.
Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Szubska, Marta; Romanowski, Andrzej; Falkowska, Lucyna
2014-11-01
In Mediterranean seas and coastal zones, rivers can be the main source of mercury (Hg). Catchment management therefore affects the load of Hg reaching the sea with surface runoff. The major freshwater inflows to the Baltic Sea consist of large rivers. However, their systems are complex and identification of factors affecting the outflow of Hg from its catchments is difficult. For this reason, a study into the impact of watershed land use and season on mercury biogeochemistry and transport in rivers was performed along two small rivers which may be considered typical of the southern Baltic region. Neither of these rivers are currently impacted by industrial effluents, thus allowing assessment of the influence of catchment terrain and season on Hg geochemistry. The study was performed between June 2008 and May 2009 at 13 sampling points situated at different terrain types within the catchments (forest, wetland, agriculture and urban). Hg analyses were conducted by CVAFS. Arable land erosion was found to be an important source of Hg to the aquatic system, similar to urban areas. Furthermore, inflows of untreated storm water discharge resulted in a fivefold increase of Hg concentration in the rivers. The highest Hg concentration in the urban runoff was observed with the greatest amount of precipitation during summer. Moderate rainfalls enhance the inflow of bioavailable dissolved mercury into water bodies. Despite the lack of industrial effluents entering the rivers directly, the sub-catchments with anthropogenic land use were important sources of Hg in the rivers. This was caused by elution of metal, deposited in soils over the past decades, into the rivers. The obtained results are especially important in the light of recent environmental conscience regulations, enforcing the decrease of pollution by Baltic countries.
NASA Astrophysics Data System (ADS)
Diamond, J.; Cohen, M.
2012-12-01
Catchment-scale analyses can provide important insight into the processes governing solute sources, transport and storage. Understanding solute dynamics is vital for water management both for accurate predictions of chemical fluxes as well as ecosystem responses to them. This project synthesized long-term (>15 years) hydrochemical data from 80 variably sized (101-105 m2) watersheds in Florida. Our goal was to evaluate scaling effects on flow-solute relationships, and determine the factors that control observed inter-catchment variation. We obtained long term records of a variety of chemical parameters include color, nutrients (N and P), and geogenic solutes (Ca, Si, Mg, Na, Cl) from stations where chemistry and flow data were matched. Catchment attributes (land use, terrain, surface geology) were obtained for each stream as potential covariates. Concentration-discharge relationships were modeled as power functions, the exponents (b) of which were categorized into three end-member scenarios: (1) b>0, or chemodynamic conditions, where increased discharge increases concentration, (2) b=0, or chemostatic conditions, where concentration is independent of discharge, and (3) b<0, or dilution conditions, where increased discharge decreases concentrations. Color was strongly chemodynamic, while geogenic solutes tended to be chemostatic;nutrient-flow relationships varied substantially (from dilution to chemodynamic) suggesting important ancillary controls. To assess between-site variability, power function exponents were compared against land use and catchment area. These results indicate that watersheds dominated by urban land use exhibit stronger dilution effects for most solutes while watersheds dominated by agricultural land use were generally chemostatic particularly for nutrients. This synthesis approach to understanding controls on observed concentration-discharge relationships is crucial to understanding the dynamics and early-warning indicators of anthropogenically-induced transition from dilution to chemostatic behavior.
Linking catchment characteristics and water chemistry with the ecological status of Irish rivers.
Donohue, Ian; McGarrigle, Martin L; Mills, Paul
2006-01-01
Requirements of the EU Water Framework Directive for the introduction of ecological quality objectives for surface waters and the stipulation that all surface waters in the EU must be of 'good' ecological status by 2015 necessitate a quantitative understanding of the linkages among catchment attributes, water chemistry and the ecological status of aquatic ecosystems. Analysis of lotic ecological status, as indicated by an established biotic index based primarily on benthic macroinvertebrate community structure, of 797 hydrologically independent river sites located throughout Ireland showed highly significant inverse associations between the ecological status of rivers and measures of catchment urbanisation and agricultural intensity, densities of humans and cattle and chemical indicators of water quality. Stepwise logistic regression suggested that urbanisation, arable farming and extent of pasturelands are the principal factors impacting on the ecological status of streams and rivers in Ireland and that the likelihood of a river site complying with the demands of the EU Water Framework Directive, and be of 'good' ecological status, can be predicted with reasonable accuracy using simple models that utilise either widely available landcover data or chemical monitoring data. Non-linear landcover and chemical 'thresholds' derived from these models provide a useful tool in the management of risk in catchments, and suggest strongly that more careful planning of land use in Ireland is essential in order to restore and maintain water quality as required by the Directive.
Palazón, L; Navas, A
2017-06-01
Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km 2 , Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the <63 μm sediment fraction from the surface reservoir sediments (2 cm) are investigated following the fingerprinting procedure to assess how the use of different statistical procedures affects the amounts of source contributions. Three optimum composite fingerprints were selected to discriminate between source contributions based in land uses/land covers from the same dataset by the application of (1) discriminant function analysis; and its combination (as second step) with (2) Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd
2010-05-01
Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer precipitation, while 2007/08 was considerably drier than average (P = 554 mm). We will present concentrations and losses of all nitrogen fractions and their relationship to the dominating soil type, precipitation characteristics, discharge, and fertilization practice. Furthermore, we will assess whether the determination of DON helps to improve the correlation between nitrogen input and nitrogen losses.
NASA Astrophysics Data System (ADS)
Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu
2017-09-01
Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.
USDA-ARS?s Scientific Manuscript database
The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present (with...
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut
2018-02-01
Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.
NASA Astrophysics Data System (ADS)
Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.
2009-09-01
The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of South Africa.
Dymond, John R; Davie, Tim J A; Fenemor, Andrew D; Ekanayake, Jagath C; Knight, Ben R; Cole, Anthony O; de Oca Munguia, Oscar Montes; Allen, Will J; Young, Roger G; Basher, Les R; Dresser, Marc; Batstone, Chris J
2010-09-01
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic-and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.
NASA Astrophysics Data System (ADS)
Dymond, John R.; Davie, Tim J. A.; Fenemor, Andrew D.; Ekanayake, Jagath C.; Knight, Ben R.; Cole, Anthony O.; de Oca Munguia, Oscar Montes; Allen, Will J.; Young, Roger G.; Basher, Les R.; Dresser, Marc; Batstone, Chris J.
2010-09-01
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality ( E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.
NASA Astrophysics Data System (ADS)
Payraudeau, S.; Tournoud, M. G.; Cernesson, F.
Distributed modelling in hydrology assess catchment subdivision to take into account physic characteristics. In this paper, we test the effect of land use aggregation scheme on catchment hydrological response. Evolution of intra-subcatchment land use is studied using statistic and entropy methods. The SCS-CN method is used to calculate effective rainfall which is here assimilated to hydrological response. Our purpose is to determine the existence of a critical threshold-area appropriate for the application of hydrological modelling. Land use aggregation effects on effective rainfall is assessed on small mediterranean catchment. The results show that land use aggregation and land use classification type have significant effects on hydrological modelling and in particular on effective rainfall modelling.
The impact of hydrologic segmentation on the Critical Zone water fluxes of headwater catchments
NASA Astrophysics Data System (ADS)
Gutierrez-Jurado, H. A.; Dominguez, M.; Guan, H.
2017-12-01
Headwater catchments are usually located on areas with complex terrain, where variability in aspect and microclimate give rise to contrasting vegetation cover and soil properties. This fine-scale variability in land surface conditions within a catchment is usually overlooked in hydrologic models, and the resulting differences in hydrologic dynamics across the slopes neglected. In this work we evaluate the impact of the differential hydrologic response, or as we define it here, "hydrologic segmentation" on the partition of water fluxes of contrasting slopes within a series of headwater catchments across a latitudinal gradient. Our aim is to investigate the effect of hydrologically segmenting the slopes of headwater catchments as a function of their unique aspect-vegetation-soils associations, on the water fluxes of the catchments and their potential consequences on the water balance at a regional scale. Using a distributed hydrologic model and data from a series of catchments with varying land cover and climatic conditions, we run a set of simulations with and without hydrologic segmentation to assess the effect of changing the architecture of the top part of the critical zone on the evaporation, transpiration, infiltration and runoff fluxes of each catchment slope. We calibrate and compare the simulation results with observations from a network of hydrologic sensors and independent field estimates of the various water fluxes. Our results suggest that hydrologic segmentation will significantly affect both the timing and partition of evapotranspiration fluxes with direct impacts on soil moisture residence times and the potential for deep infiltration and aquifer recharge.
Modelling and optimization of land use/land cover change in a developing urban catchment.
Xu, Ping; Gao, Fei; He, Junchao; Ren, Xinxin; Xi, Weijin
2017-06-01
The impacts of land use/cover change (LUCC) on hydrological processes and water resources are mainly reflected in changes in runoff and pollutant variations. Low impact development (LID) technology is utilized as an effective strategy to control urban stormwater runoff and pollution in the urban catchment. In this study, the impact of LUCC on runoff and pollutants in an urbanizing catchment of Guang-Ming New District in Shenzhen, China, were quantified using a dynamic rainfall-runoff model with the EPA Storm Water Management Model (SWMM). Based on the simulations and observations, the main objectives of this study were: (1) to evaluate the catchment runoff and pollutant variations with LUCC, (2) to select and optimize the appropriate layout of LID in a planning scenario for reducing the growth of runoff and pollutants under LUCC, (3) to assess the optimal planning schemes for land use/cover. The results showed that compared to 2013, the runoff volume, peak flow and pollution load of suspended solids (SS), and chemical oxygen demand increased by 35.1%, 33.6% and 248.5%, and 54.5% respectively in a traditional planning scenario. The assessment result of optimal planning of land use showed that annual rainfall control of land use for an optimal planning scenario with LID technology was 65%, and SS pollutant load reduction efficiency 65.6%.
Quantifying and Modelling Long Term Sediment Dynamics in Catchments in Western Europe
NASA Astrophysics Data System (ADS)
Notebaert, B.; De Brue, H.; Verstraeten, G.; Broothaerts, N.
2015-12-01
Quantification of sediment dynamics allows to get insight in driving forces and internal dynamics of the sediment cascade system. A useful tool to achieve this is the sediment budget approach, which encompasses the quantification of different sinks and sources. A Holocene time-differentiated sediment budget has been constructed for the Belgian Dijle River catchment (720 km²), based on a large set of field data. The results show how soil erosion is driven by land use changes over longer timescales. Sediment redistribution and the relative importance of the different sinks also vary over time, mainly as a result of changing land use and related landscape connectivity. However, the coarse temporal resolution typically associated with Holocene studies complicates the understanding of sub-millennial scale processes. In a second step, the field-based sediment budget was combined with a modeling approach using Watem/Sedem, a spatially distributed model that simulates soil erosion and colluvial deposition. After validation of the model calibration against the sediment budget, the model was used in a sensitivity analysis. Results confirm the overwhelming influence of human land use on both soil erosion and landscape connectivity, whereas the climatic impact is comparatively small. In addition to catchment-wide simulations, the model also served to test the relative importance of lynchets and dry valleys in different environments. Finally, the geomorphic model was used to simulate past land use, taking into account equifinality. For this purpose, a large series of hypothetical time-independent land use maps of the Dijle catchment were modeled based on a multi-objective allocation algorithm, and applied in Watem/Sedem. Modeled soil erosion and sediment deposition outcomes for each scenario were subsequently compared with the field-based record, taking into account uncertainties. As such, the model allows to evaluate and select realistic land use scenarios for the Holocene.
NASA Astrophysics Data System (ADS)
Soltani, M.; Kunstmann, H.; Laux, P.; Mauder, M.
2016-12-01
In mountainous and prealpine regions echohydrological processes exhibit rapid changes within short distances due to the complex orography and strong elevation gradients. Water- and energy fluxes between the land surface and the atmosphere are crucial drivers for nearly all ecosystem processes. The aim of this research is to analyze the variability of surface water- and energy fluxes by both comprehensive observational hydrometeorological data analysis and process-based high resolution hydrological modeling for a mountainous and prealpine region in Germany. We particularly focus on the closure of the observed energy balance and on the added value of energy flux observations for parameter estimation in our hydrological model (GEOtop) by inverse modeling using PEST. Our study area is the catchment of the river Rott (55 km2), being part of the TERENO prealpine observatory in Southern Germany, and we focus particularly on the observations during the summer episode May to July 2013. We present the coupling of GEOtop and the parameter estimation tool PEST, which is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. Estimation of the surface energy partitioning during the data analysis process revealed that the latent heat flux was considered as the main consumer of available energy. The relative imbalance was largest during nocturnal periods. An energy imbalance was observed at the eddy-covariance site Fendt due to either underestimated turbulent fluxes or overestimated available energy. The calculation of the simulated energy and water balances for the entire catchment indicated that 78% of net radiation leaves the catchment as latent heat flux, 17% as sensible heat, and 5% enters the soil in the form of soil heat flux. 45% of the catchment aggregated precipitation leaves the catchment as discharge and 55% as evaporation. Using the developed GEOtop-PEST interface, the hydrological model is calibrated by comparing simulated and observed discharge, soil moisture and -temperature, sensible-, latent-, and soil heat fluxes. A reasonable quality of fit could be achieved. Uncertainty- and covariance analyses are performed, allowing the derivation of confidence intervals for all estimated parameters.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.
2012-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.
NASA Astrophysics Data System (ADS)
Twohig, Sarah; Pattison, Ian; Sander, Graham
2017-04-01
Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been subjected to field validation as part of a wider research project which provides an indication of the robustness of widespread models as effective management tools.
Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier
2018-05-15
Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than initial rate of recovery. These findings demonstrate the value of citizen science initiatives in quantifying long-term and seasonal consequences of changes in land management, which are necessary to identify sustainable limits and predict recovery timeframes. Copyright © 2017 Elsevier B.V. All rights reserved.
Midway, Stephen R.; Wagner, Tyler; Tracy, Bryn H.; Hogue, Gabriela M.; Starnes, Wayne C.
2015-01-01
Worldwide, streams and rivers are facing a suite of pressures that alter water quality and degrade physical habitat, both of which can lead to changes in the composition and richness of fish populations. These potential changes are of particular importance in the Southeast USA, home to one of the richest stream fish assemblages in North America. Using data from 83 stream sites in North Carolina sampled in the 1960’s and the past decade, we used hierarchical Bayesian models to evaluate relationships between species richness and catchment land use and land cover (e.g., agriculture and forest cover). In addition, we examined how the rate of change in species richness over 50 years was related to catchment land use and land cover. We found a negative and positive correlation between forest land cover and agricultural land use and average species richness, respectively. After controlling for introduced species, most (66 %) stream sites showed an increase in native fish species richness, and the magnitude of the rate of increase was positively correlated to the amount of forested land cover in the catchment. Site-specific trends in species richness were not positive, on average, until the percentage forest cover in the network catchment exceeded about 55 %. These results suggest that streams with catchments that have moderate to high (>55 %) levels of forested land in upstream network catchments may be better able to increase the number of native species at a faster rate compared to less-forested catchments.
Nguyen, Hong Hanh; Recknagel, Friedrich; Meyer, Wayne; Frizenschaf, Jacqueline; Shrestha, Manoj Kumar
2017-11-01
Sustainable management of drinking water reservoirs requires taking into account the potential effects of their catchments' development. This study is an attempt to estimate the daily patterns of nutrients transport in the catchment - reservoir systems through the application of the ensemble of complementary models SWAT-SALMO. SWAT quantifies flow, nitrate and phosphate loadings originating in catchments before entering downstream reservoirs meanwhile SALMO determines phosphate, nitrate, and chlorophyll-a concentrations within the reservoirs. The study applies to the semi-arid Millbrook catchment-reservoir system that supplies drinking water to north-eastern suburbs of Adelaide, South Australia. The catchment hosts viti- and horticultural land uses. The warm-monomictic, mesotrophic reservoir is artificially aerated in summer. After validating the simulation results for both Millbrook catchment and reservoir, a comprehensive scenario analysis has been conducted to reveal cascading effects of altered management practices, land uses and climate conditions on water quality in the reservoir. Results suggest that the effect on reservoir condition in summer would be severe, most likely resulting in chlorophyll-a concentrations of greater than 40 μg/l if the artificial destratification was not applied from early summer. A 50% curbing of water diversion from an external pipeline to the catchment will slightly limit chlorophyll-a concentrations by 1.22% as an effect of reduced inflow phosphate loads. The simulation of prospective land use scenarios converting 50% of present pasture in the Millbrook catchment into residential and orchards areas indicates an increase of summer chlorophyll-a concentrations by 9.5-107.9%, respectively in the reservoir. Global warming scenarios based on the high emission simulated by SWAT-SALMO did result in earlier growth of chlorophyll-a but overall the effects on water quality in the Millbrook reservoir was not significant. However scenarios combining global warming and land use changes resulted in significant eutrophication effects in the reservoir, especially in the unmanaged condition with stratification in summer. This study has demonstrated that complementary model ensembles like SWAT-SALMO allow to comprehend more realistically cascading effects of distinct catchment processes on internal reservoir's processes, and facilitate integrated management scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relating Satellite Gravimetry to Global Snow Water Equivalent
NASA Astrophysics Data System (ADS)
Baumann, S. C.
2017-12-01
The gravimetric satellites GRACE measure changes of Earth's mass. The data mainly show changes in total water storage (TWS) but cannot distinguish between different sources. Hence, other data are necessary to extract the different compartments. Due to the spatial resolution of 200,000 km² and an accuracy of 2.5 cm w.e., other global products are compared with GRACE. In this study, the hydrological model WGHM and the land surface model GLDAS were used. All data were pre-processed in the same way as the GRACE data. Data were converted into monthly 1° grid values. Time is from 01/2003 to 12/2013 with a total of 131 months. The aim of the study was to extract SWE from GRACE as snow is an important factor for permafrost development. The main assumption is that changes in TWS can be linked to changes in SWE if SWE is the dominant compartment of TWS or if SWE changes proportionally with TWS. The study area were two river catchments in North America (Mackenzie, Yukon) and three in Russia (Lena, Ob, Yenisei). TWS as SWE from both models were correlated with GRACE as with each other (1) pixel and (2) catchment based. The (1) pixel based correlation used absolute values and the (2) catchment based correlation the sum of monthly anomalies from the total mean for each catchment. Initial results of the (1) pixel based correlation show a very high correlation of the WGHM vs. GLDAS data. The correlation of GRACE vs. WGHM is higher compared to the correlation between GRACE vs. GLDAS. The (2) correlation of the catchment data was higher than 0.74 in all river catchments for the WGHM vs. GLDAS data (TWS and SWE). As for the pixel based correlation, values for the correlation of GRACE vs. WGHM are higher compared to GRACE vs. GLDAS in all river catchments. Summed monthly WGHM anomalies of the catchments showed a uniform periodically annual pattern. GRACE data showed the same pattern between 2006 and 2011 but had more peaks in the beginning and the end of the study period. Therefore, a second correlation was performed for this uniform shorter period. The (1) pixel based correlation of GRACE vs. the two models had higher values in the river catchments in North America and lower values in Russia. This pattern was more pronounced in the correlation of GRACE vs. WGHM. The (2) catchment based correlation of the shorter period improved for nearly all correlation pairs and river catchments.
Development and validation of a runoff and erosion model for lowland drained catchments
NASA Astrophysics Data System (ADS)
Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier
2017-04-01
Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall occurring on dry soils in spring). The model was able to reproduce the runoff volumes for these different situations, and performed well, especially in winter (the relationship between observed and modeled values has R2=0.72) when most of the sediment are transferred. Therefore, future work will evaluate the model ability to reproduce the erosion and sediment dynamics in this catchment in order to provide a tool for sediment management in these lowland environments draining agricultural land where river siltation is problematic.
A simple distributed sediment delivery approach for rural catchments
NASA Astrophysics Data System (ADS)
Reid, Lucas; Scherer, Ulrike
2014-05-01
The transfer of sediments from source areas to surface waters is a complex process. In process based erosion models sediment input is thus quantified by representing all relevant sub processes such as detachment, transport and deposition of sediment particles along the flow path to the river. A successful application of these models requires, however, a large amount of spatially highly resolved data on physical catchment characteristics, which is only available for a few, well examined small catchments. For the lack of appropriate models, the empirical Universal Soil Loss Equation (USLE) is widely applied to quantify the sediment production in meso to large scale basins. As the USLE provides long-term mean soil loss rates, it is often combined with spatially lumped models to estimate the sediment delivery ratio (SDR). In these models, the SDR is related to data on morphological characteristics of the catchment such as average local relief, drainage density, proportion of depressions or soil texture. Some approaches include the relative distance between sediment source areas and the river channels. However, several studies showed that spatially lumped parameters describing the morphological characteristics are only of limited value to represent the factors of influence on sediment transport at the catchment scale. Sediment delivery is controlled by the location of the sediment source areas in the catchment and the morphology along the flow path to the surface water bodies. This complex interaction of spatially varied physiographic characteristics cannot be adequately represented by lumped morphological parameters. The objective of this study is to develop a simple but spatially distributed approach to quantify the sediment delivery ratio by considering the characteristics of the flow paths in a catchment. We selected a small catchment located in in an intensively cultivated loess region in Southwest Germany as study area for the development of the SDR approach. The flow pathways were extracted in a geographic information system. Then the sediment delivery ratio for each source area was determined using an empirical approach considering the slope, morphology and land use properties along the flow path. As a benchmark for the calibration of the model parameters we used results of a detailed process based erosion model available for the study area. Afterwards the approach was tested in larger catchments located in the same loess region.
Using serious games and virtual worlds in pesticides transport teaching
NASA Astrophysics Data System (ADS)
Payraudeau, Sylvain; Alvarez-Zaldivar, Pablo; van Dijk, Paul; Imfeld, Gwenaël
2017-04-01
Teaching environmental scenarios, such as the availability and transport of pesticides in catchments, may fail with traditional lectures and tutorials due to the complex and synergic interplay of soil, landuse, compounds properties, hydroclimatic forcing and biogeochemical processes. To tackle and pedagogically enter into this complexity, virtual worlds (i.e. computer-based simulated environment) and serious games (i.e. applied games with added pedagogical value) can efficiently improve knowledge and know-how of the future water management stakeholders and scientists. We have developed an e-learning teaching unit using virtual catchments and serious games by gradually adapting the level of complexity depending of the targeted public. The first targeted group is farmers in continuing education centers. We developed a distributed pesticide transport tool in a virtual agricultural catchment to highlight the specific risks of off-site pesticide transport along crop growing season. Students of this first group can interactively define and combine climatic, land-use and soil type scenarios with different pesticides to experiment the components of worst-case situations and to propose best-management practices depending of the involved environmental compartments, i.e. atmosphere, soil, surface water or groundwater. For Master's degree students, we added a level of complexity by adding a specific module focusing on pesticide degradation using cutting-edge approaches. With the compound-specific isotope analysis (CSIA) module students are able to link the 13C/12C signature of pesticides to the ongoing dissipation processes within the catchment. By using and interpreting CSIA data, students can thus efficiently understand the difference between non-destructive (e.g. sorption) and destructive (e.g. bio and abiotic degradation) processes occurring in a catchment. This CSIA tool applied to a virtual agricultural catchment will also allow to distinguish the dilution effect from the degradation effect in complex agricultural catchments receiving pesticides. We anticipate our e-learning teaching unit based on serious game and virtual catchments will help future scientists and stakeholders to better understand and manage pesticides transport within catchments.
NASA Astrophysics Data System (ADS)
Nobrega, R. L. B.; Guzha, A. C.; Torres, G. N.; Kovacs, K.; Lamparter, G.; Amorim, R. S. S.; Couto, E.; Gerold, G.
2015-09-01
In recent decades, the Brazilian Cerrado biome has been affected by intense land-use change, particularly the conversion of natural forest to agricultural land. Understanding the environmental impacts of this land-use change on landscape hydrological dynamics is one of the main challenges in the Amazon agricultural frontier, where part of the Brazilian Cerrado biome is located and where most of the deforestation has occurred. This study uses empirical data from field measurements to characterize controls on hydrological processes from three first-order micro-catchments < 1 km2 in the Cerrado biome. These micro-catchments were selected on the basis of predominant land use including native cerrado vegetation, pasture grass with cattle ranching, and cash crop land. We continuously monitored precipitation, streamflow, soil moisture, and meteorological variables from October 2012 to September 2014. Additionally, we determined the physical and hydraulic properties of the soils, and conducted topographic surveys. We used these data to quantify the water balance components of the study catchments and to relate these water fluxes to land use, catchment physiographic parameters, and soil hydrophysical properties. The results of this study show that runoff coefficients were 0.27, 0.40, and 0.16 for the cerrado, pasture, and cropland catchments, respectively. Baseflow is shown to play a significant role in streamflow generation in the three study catchments, with baseflow index values of more than 0.95. The results also show that evapotranspiration was highest in the cerrado (986 mm yr-1) compared to the cropland (828 mm yr-1) and the pasture (532 mm yr-1). However, discharges in the cropland catchment were unexpectedly lower than that of the cerrado catchment. The normalized discharge was 55 % higher and 57 % lower in the pasture and cropland catchments, respectively, compared with the cerrado catchment. We attribute this finding to the differences in soil type and topographic characteristics, and low-till farming techniques in the cropland catchment, additionally to the buffering effect of the gallery forests in these catchments. Although the results of this study provide a useful assessment of catchment rainfall-runoff controls in the Brazilian Cerrado landscape, further research is required to include quantification of the influence of the gallery forests on both hydrological and hydrochemical fluxes, which are important for watershed management and ecosystem services provisioning.
On the use of a physically-based baseflow timescale in land surface models.
NASA Astrophysics Data System (ADS)
Jost, A.; Schneider, A. C.; Oudin, L.; Ducharne, A.
2017-12-01
Groundwater discharge is an important component of streamflow and estimating its spatio-temporal variation in response to changes in recharge is of great value to water resource planning, and essential for modelling accurate large scale water balance in land surface models (LSMs). First-order representation of groundwater as a single linear storage element is frequently used in LSMs for the sake of simplicity, but requires a suitable parametrization of the aquifer hydraulic behaviour in the form of the baseflow characteristic timescale (τ). Such a modelling approach can be hampered by the lack of available calibration data at global scale. Hydraulic groundwater theory provides an analytical framework to relate the baseflow characteristics to catchment descriptors. In this study, we use the long-time solution of the linearized Boussinesq equation to estimate τ at global scale, as a function of groundwater flow length and aquifer hydraulic diffusivity. Our goal is to evaluate the use of this spatially variable and physically-based τ in the ORCHIDEE surface model in terms of simulated river discharges across large catchments. Aquifer transmissivity and drainable porosity stem from GLHYMPS high-resolution datasets whereas flow length is derived from an estimation of drainage density, using the GRIN global river network. ORCHIDEE is run in offline mode and its results are compared to a reference simulation using an almost spatially constant topographic-dependent τ. We discuss the limits of our approach in terms of both the relevance and accuracy of global estimates of aquifer hydraulic properties and the extent to which the underlying assumptions in the analytical method are valid.
NASA Astrophysics Data System (ADS)
Guse, B.; Sulc, D.; Schmalz, B.; Fohrer, N.
2012-04-01
The European Water Framework Directive (WFD) requires a catchment-based approach, which is assessed in the IMPACT project by combining abiotic and biotic models. The core point of IMPACT is a model chain (catchment model -> 1-D-hydraulic model -> 3-D-hydro-morphodynamic model -> biotic habitat model) with the aim to estimate the occurrence of the target species of the WFD. Firstly, the model chain is developed for the current land use and climate conditions. Secondly, land use and climate change scenarios are developed at the catchment scale. The outputs of the catchment model for the scenarios are used as input for the next models within the model chain to estimate the effect of these changes on the target species. The eco-hydrological catchment model SWAT is applied for the Treene catchment in Northern Germany and delivers discharge and water quality parameters as a spatial explicit output for each subbasin. There is no water level information given by SWAT. However, water level values are needed as lower boundary condition for the hydro-dynamic and habitat models which are applied for the 300 m candidate reference reach. In order to fill the gap between the catchment and the hydro-morphodynamic model, the 1-D hydraulic model HEC-RAS is applied for a 3 km long reach transect from the next upstream hydrological station until the upper bound of the candidate study reach. The channel geometry for HEC-RAS was estimated based on 96 cross-sections which were measured in the IMPACT project. By using available discharge and water level measurements from the hydrological station and own flow velocity measurements, the channel resistence was estimated. HEC-RAS was run with different statistical indices (mean annual drought, mean discharge, …) for steady flow conditions. The rating curve was then constructed for the target cross-section, i.e. the lower bound of the candidate study reach, to fulfill the combining with the hydro- and morphodynamic models. These statistical indices can also be calculated for the discharge series provided by land use and climate scenarios. In this way, the effect of land use and climate change on the catchment and the hydraulic processes can be assessed.
NASA Astrophysics Data System (ADS)
Foerster, Saskia; Wilczok, Charlotte; Brosinsky, Arlena; Kroll, Anja; Segl, Karl; Francke, Till
2014-05-01
Many drylands are characterized by strong erosion in headwater catchments, where connectivity processes play an important role in the redistribution of water and sediments. Sediment connectivity relates to the physical transfer of sediment through a drainage basin (Bracken and Croke 2007). The identification of sediment source areas and the way they connect to the channel network are essential to environmental management (Reid et al. 2007), especially where high erosion and sediment delivery rates occur. Vegetation cover and its spatial and temporal pattern is one of the main factors affecting sediment connectivity. This is particularly true for patchy vegetation covers typical for dryland environments. While many connectivity studies are based on field-derived data, the potential of remotely-sensed data for sediment connectivity analyses has not yet been fully exploited. Recent advances in remote sensing allow for quantitative, spatially explicit, catchment-wide derivation of surface information to be used in connectivity analyses. These advances include a continuous increase in spatial image resolution to comprise processes at the plot to hillslope to catchment scale, an increase in the temporal resolution to cover seasonal and long-term changes and an increase in the spectral resolution enabling the discrimination of dry and green vegetation fractions from soil surfaces in heterogeneous dryland landscapes. The utilization of remotely-sensed data for connectivity studies raises questions on what type of information is required, how scale of sediment flux and image resolution match, how the connectivity information can be incorporated into water and sediment transport models and how this improves model predictions. The objective of this study is to demonstrate the potential of remotely-sensed data for mapping sediment connectivity pathways and their seasonal change at the example of a mesoscale dryland catchment in the Spanish Pyrenees. Here, sediment connectivity pathways have been mapped for two adjacent sub-catchments (approx. 70 km²) of the Isábena River in different seasons using a quantitative connectivity index based on fractional vegetation cover and topography data. Fractional cover of green and dry vegetation, bare soil and rock were derived by applying a Multiple Endmember Spectral Mixture Analysis approach applied to a hyperspectral image dataset. Sediment connectivity was mapped using the Index of Connectivity (Borselli et al. 2008), in which the effect of land cover on runoff and sediment fluxes is expressed by a spatially distributed weighing factor (in this study, the cover and management factor of the RUSLE). The resulting connectivity maps show that areas behave very differently with regard to connectivity, depending on the land cover but also on the spatial distribution of vegetation abundances and topographic barriers. Most parts of the catchment show higher connectivity values in summer than in spring. The studied sub-catchments show a slightly different connectivity behaviour reflecting the different land cover proportions and their spatial configuration. Future work includes the incorporation of sediment connectivity information into a hydrological model (WASA-SED, Mueller et al. 2010) to better reflect connectivity processes and testing the sensitivity of the model to different input data.
Historic change in catchment land use and metal loading to Sydney estuary, Australia (1788-2010).
Birch, G F; Lean, J; Gunns, T
2015-09-01
Sydney estuary has a long history of environmental degradation and is one of the most modified water ways in Australia due to a highly urbanised catchment (~77 %) and a high population (4.6 million). The objectives of the present study were to map historical land use change from European settlement (1788) to 2010 to determine catchment evolutionary pathways and to estimate catchment loading (total suspended solids, Cu, Pb and Zn) to the estuary over this period. Land use distribution in Sydney catchment, determined for seven time horizons over this period, indicated that a substantial increase in residential land use through subdivision of large estates and an increase in road area resulted in a marked increase in metal loading to Sydney estuary between 1892 and 1936. The decline in industrial activity from a maximum in 1978 (3.9 %) to 1.8 % in 2010 and the introduction of unleaded fuel during this time was accompanied by reduction in metal loading to the estuary. Land use time horizon maps enabled the creation of novel, ternary diagrams to represent temporal evolution in catchment land use. The 15 sub-catchments of Sydney estuary were combined into three major catchment categories, i.e., urban, dense urban and commercial. Present-day annual discharge of stormwater from the Sydney catchment was calculated to be 466,000 ML and annual loadings of total suspended sediment (TSS), Cu, Pb and Zn in tonnes were 49,239, 27, 37 and 57, respectively. Stormwater has superseded industry as the main source of anthropogenic metals to this estuary in recent times.
NASA Astrophysics Data System (ADS)
Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.
2013-12-01
Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.
Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D
2010-11-01
The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. Copyright © 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, E.
2015-12-01
Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.
Wieczorek, Michael; LaMotte, Andrew E.
2010-01-01
This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).
NASA Astrophysics Data System (ADS)
Abebe, N. A.; Ogden, F. L.
2011-12-01
Watersheds vary in their nature based on their geographic location, altitude, climate, geology, soils, and land use/land cover. These variations lead to differences in the conceptualization and formulation of hydrological models intended to represent the expected hydrological processes in a given catchment. Watersheds in the tropics are characterized by intensive and persistent biological activity and a large amount of rainfall. Our study focuses on the Agua Salud project catchments located in the Panama Canal Watershed, Panama, which have steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. These catchments are also highly affected by soil cracks, decayed tree roots and animal burrows that form a network of preferential flow paths. One hypothesis is that these macropores conduct interflow during heavy rainfall, when a transient perched water table forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant flow processes, including overland flow, channel flow, vertical matrix and non-Richards film flow, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer and deep saturated groundwater flow. In our model formulation, we use the model to examine a variety of hydrological processes which we anticipate may occur. Emphasis is given to the modeling of the soil moisture dynamics in the bioturbation layer, development of lateral preferential flow and activation of the macropores and exchange of water at the interface between a bioturbation layer and a second layer below it. We consider interactions between surface water, ground water, channel water and perched water in the riparian zone cells with the aim of understanding likely runoff generation mechanisms. Results show that inclusion of as many different flow processes as possible during conceptualization and during model development helps to reject infeasible scenarios/hypotheses, and suggests further watershed-scale studies to improve our understanding of the hydrologic behavior of these poorly understood catchments.
Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick
2016-05-05
Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.
2015-04-01
Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently confirming the robust cross-validation of these results. Average annual SSCs and SSYs were higher in poorly drained catchments (17-27 t km-2 yr-1) than those with well drained soils (8-10 t km-2 yr-1). Catchments with both poorly-drained soils and land use dominated by tillage were most susceptible to field-scale soil erosion due to rapid establishment of overland flow pathways and periods of bare soils during cropping cycles. However results suggest that relatively high SSY may also occur in grassland catchments, particularly on poorly drained soils and with higher stocking densities and greater likelihood of channel bank erosion. Whilst the mean SSY rates are low by international standards, inter-annual variability was significant highlighting the spatial and temporal fluctuations in runoff and soil erosion risk. Such issues are of particular concern as Ireland pursues an agricultural policy of sustainable intensification. Effective soil erosion and sediment management should address catchment specific characteristics.
NASA Astrophysics Data System (ADS)
Bussi, Gianbattista; Whitehead, Paul G.; Thomas, Amy R. C.; Masante, Dario; Jones, Laurence; Jack Cosby, B.; Emmett, Bridget A.; Malham, Shelagh K.; Prudhomme, Christel; Prosser, Havard
2017-10-01
Water-borne pathogen contamination from untreated sewage effluent and runoff from farms is a serious threat to the use of river water for drinking and commercial purposes, such as downstream estuarine shellfish industries. In this study, the impact of climate change and land-use change on the presence of faecal indicator bacteria in freshwater was evaluated, through the use of a recently-developed catchment-scale pathogen model. The River Conwy in Wales has been used as a case-study, because of the large presence of livestock in the catchment and the importance of the shellfish harvesting activities in its estuary. The INCA-Pathogens catchment model has been calibrated through the use of a Monte-Carlo-based technique, based on faecal indicator bacteria measurements, and then driven by an ensemble of climate projections obtained from the HadRM3-PPE model (Future Flow Climate) plus four land-use scenarios (current land use, managed ecosystem, abandonment and agricultural intensification). The results show that climate change is not expected to have a very large impact on average river flow, although it might alter its seasonality. The abundance of faecal indicator bacteria is expected to decrease in response to climate change, especially during the summer months, due to reduced precipitation, causing reduced runoff, and increased temperature, which enhances the bacterial die-off processes. Land-use change can also have a potentially large impact on pathogens. The "managed ecosystems" scenario proposed in this study can cause a reduction of 15% in average water faecal indicator bacteria and up to 30% in the 90th percentile of water faecal indicator bacteria, mainly due to the conversion of pasture land into grassland and the expansion of forest land. This study provides an example of how to assess the impacts of human interventions on the landscape, and what may be the extent of their effects, for other catchments where the human use of the natural resources in the uplands can jeopardise the use of natural resources downstream.
NASA Astrophysics Data System (ADS)
Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît
2015-06-01
Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.
NASA Astrophysics Data System (ADS)
Tyszkowski, Sebastian; Kaczmarek, Halina
2014-05-01
Changes in land cover in the catchment area are, beside climate change, some of the major factors affecting sedimentation processes in lakes. With increasing human impact, changes in land cover no longer depend primarily on climate. In relation to research on sediments of Lake Czechowskie in Pomeranian Province in North Poland, land use changes over the last 200 years were analysed, with particular reference to deforestation or afforestation. The study area was the lake catchment, which covers nearly 20 km2. The analysis was based on archival and contemporary cartographic and photogrammetric materials, georeferenced and rectified using ArcGIS software. The following materials were used: Schrötter-Engelhart, Karte von Ost-Preussen nebst Preussisch Litthauen und West-Preussen nebst dem Netzdistrict, 1:50 000, section 92, 93, 1796-1802; Map Messtishchblatt, 1:25000, sheet Czarnen, (mapping conducted in 1874), 1932; Map WIG (Military Geographical Institute - Wojskowy Instytut Geograficzny), 1:25000, sheet Osowo, (mapping conducted in 1929-31), 1933; aerial photos 1:13000, 1964, 1969; 1:25000, 1987; 1:26000, 1997; aerial ortophotomap , 1:5000, 2010. Today, over 60% of the catchment of Lake Czechowskie is covered with forests, dominated by planted Scots pine (Pinus sylvestris), while the remaining areas are used for agricultural purposes or are built up. The first cartographic materials indicate that in the late 18th c., forest covered almost 50% of the catchment surface. By the year 1870, there was a significant reduction in the forested area, as its contribution fell to 40%. Deforestation took place mainly between the main villages. In the 1920s the forest cover increased to 44%. Today, almost the entire lake is surrounded by forest and a wetland belt (at least 0.5 km wide). Deforestation in the catchment should not be attributed solely to logging because the area of Tuchola Forests (Bory Tucholskie) was repeatedly affected by natural disasters. In the 19th c. these predominantly included fires, while in the 20th c., mostly pest outbreaks were observed. Human activity in the catchment of Lake Czechowskie, shown in the cartographic materials from the late 18th and early 19th c., is also manifested by the creation of dams on the lake, which might have increased water level in the lake. The early 20th c., imaged on the map from 1933, was a period of intense change, leading to agricultural use of wetlands. They were drained by ditches, also in the Trzechowskie peatland. This study was supported by the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association and the research project no. 2011/01/B/ST10/07367 Polish Ministry of Science and Higher Education
Futter, M N; Löfgren, S; Köhler, S J; Lundin, L; Moldan, F; Bringmark, L
2011-12-01
Surface water concentrations of dissolved organic carbon ([DOC]) are changing throughout the northern hemisphere due to changes in climate, land use and acid deposition. However, the relative importance of these drivers is unclear. Here, we use the Integrated Catchments model for Carbon (INCA-C) to simulate long-term (1996-2008) streamwater [DOC] at the four Swedish integrated monitoring (IM) sites. These are unmanaged headwater catchments with old-growth forests and no major changes in land use. Daily, seasonal and long-term variations in streamwater [DOC] driven by runoff, seasonal temperature and atmospheric sulfate (SO₄(2-)) deposition were observed at all sites. Using INCA-C, it was possible to reproduce observed patterns of variability in streamwater [DOC] at the four IM sites. Runoff was found to be the main short-term control on [DOC]. Seasonal patterns in [DOC] were controlled primarily by soil temperature. Measured SO₄(2-) deposition explained some of the long-term [DOC] variability at all sites.
O'Sullivan, Lilian; Wall, David; Creamer, Rachel; Bampa, Francesca; Schulte, Rogier P O
2018-03-01
Functional Land Management (FLM) is proposed as an integrator for sustainability policies and assesses the functional capacity of the soil and land to deliver primary productivity, water purification and regulation, carbon cycling and storage, habitat for biodiversity and recycling of nutrients. This paper presents the catchment challenge as a method to bridge the gap between science, stakeholders and policy for the effective management of soils to deliver these functions. Two challenges were completed by a wide range of stakeholders focused around a physical catchment model-(1) to design an optimised catchment based on soil function targets, (2) identify gaps to implementation of the proposed design. In challenge 1, a high level of consensus between different stakeholders emerged on soil and management measures to be implemented to achieve soil function targets. Key gaps including knowledge, a mix of market and voluntary incentives and mandatory measures were identified in challenge 2.
Soil water dynamics of lateritic catchments as affected by forest clearing for pasture
NASA Astrophysics Data System (ADS)
Sharma, M. L.; Barron, R. J. W.; Williamson, D. R.
1987-10-01
Aspects of soil water dynamics as affected by land use changes were examined over a period of five years (1974-1979) in two groups of adjacent catchments located in 1200 mm yr -1 and 800 mm yr -1 rainfall zones near Collie, Western Australia. In the summer of 1976/1977, after three years of calibration, 100% of one high rainfall catchment, Wights, and 53% of one lower rainfall catchment, Lemon, was cleared of native eucalyptus forest and replaced with pasture. The soil water storage down to 6m was measured in-situ using a neutron probe in fifteen access tubes located at five stratified sites in each catchment. Considerable spatial variability in soil water storage was encountered within a site, between sites within a catchment, and between paired catchments; the dominant variability being between sites. Comparisons between the pre- and postclearing states within a catchment and between the cleared and uncleared control catchments were used to evaluate the effect of change in land use on soil water dynamics. Within two years of the change from forest to pasture, a significant increase in soil water storage had occurred in the profiles in both cleared catchments. Concurrently, there was a small decrease in the uncleared control catchments. The increases following clearing were greater in the higher than in the lower rainfall catchment, more pronounced in the first year than in the second year, and occurred mostly at depths greater than 2m. In Wights catchment, the increase in summer minimum soil water storage in the first and second years amounted to 220 and 58 mm respectively, whilst for Lemon catchment the increase for the first year was < 50 mm. This increased soil water storage was due to a substantially lower evapotranspiration from the shallow-rooted, seasonally active pasture which extracts water from the top 1 m or so, compared with the perennial native eucalyptus forest which extracts water from depths down to 6 m and beyond. Due to the relatively low water holding capacity of the surface lateritic soils, the drainage beyond 1 m is substantially increased under pasture, and this results in an increased recharge to the underlying aquifer.
Rochelle-Newall, Emma J; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain
2016-09-08
Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.
NASA Astrophysics Data System (ADS)
Rochelle-Newall, Emma J.; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain
2016-09-01
Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers.
NASA Astrophysics Data System (ADS)
Yin, G.; Forman, B. A.; Loomis, B. D.; Luthcke, S. B.
2017-12-01
Vertical deformation of the Earth's crust due to the movement and redistribution of terrestrial freshwater can be studied using satellite measurements, ground-based sensors, hydrologic models, or a combination thereof. This current study explores the relationship between vertical deformation estimates derived from mass concentrations (mascons) from the Gravity Recovery and Climate Experiment (GRACE), vertical deformation from ground-based Global Positioning System (GPS) observations collected from the Plate Boundary Observatory (PBO), and hydrologic loading estimates based on model output from the NASA Catchment Land Surface Model (Catchment). A particular focus is made to snow-dominated basins where mass accumulates during the snow season and subsequently runs off during the ablation season. The mean seasonal cycle and the effects of atmospheric loading, non-tidal ocean loading, and glacier isostatic adjustment (GIA) are removed from the GPS observations in order to derive the vertical displacement caused predominately by hydrological processes. A low-pass filter is applied to GPS observations to remove high frequency noise. Correlation coefficients between GRACE- and GPS-based estimates at all PBO sites are calculated. GRACE-derived and Catchment-derived displacements are subtracted from the GPS height variations, respectively, in order to compute the root mean square (RMS) reduction as a means of studying the consistency between the three different methods. Results show that in most sites, the three methods exhibit good agreement. Exceptions to this generalization include the Central Valley of California where extensive groundwater pumping is witnessed in the GRACE- and GPS-based estimates, but not in the Catchment-based estimates because anthropogenic groundwater pumping activities are not included in the Catchment model. The relatively good agreement between GPS- and GRACE-derived vertical crustal displacements suggests that ground-based GPS has tremendous potential for a Bayesian merger with GRACE-based estimates in order to provide a higher resolution (in space and time) of terrestrial water storage.
The role of land use and soils in regulating water flow in small headwater catchments of the Andes
NASA Astrophysics Data System (ADS)
Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.
2011-05-01
Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Sheng; Li, Hongyi; Huang, Maoyi
2014-07-21
Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep terrain. Its contribution to total runoff is, however, poorly represented in the current generation of land surface models. The lack of physical basis of these common parameterizations precludes a priori estimation of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data analysis of streamflow recession curves extracted from 50 eastern United Statesmore » catchments. Detailed regression analyses were performed between parameters of the empirical storage–discharge relationships and the controlling climate, soil and topographic characteristics. The regression analyses performed on empirical recession curves at catchment scale indicated that the coefficient of the power-law form storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with climate.« less
NASA Astrophysics Data System (ADS)
Ridwansyah, Iwan; Fakhrudin, M.; Wibowo, Hendro; Yulianti, Meti
2018-02-01
Cimanuk watershed is one of the national priority watersheds for rehabilitation considering its critical condition. In this area, Jatigede Reservoir operates, which is the second largest reservoir in Indonesia, after Jatiluhur Reservoir. The reservoir performs several functions, including flood control, irrigation for 90.000 ha of rice fields, water supply of 3.500 litres per second, and power generation of 110 MW. In 2004 the Jatigede Reservoir catchment area had a critical land area of 40.875 ha (28% of the catchment area). The sedimentation rate in Cimanuk River at Eretan station shows a high rate (5.32 mm/year), which potentially decreases the function of Jatigede Reservoir. Therefore, a strategy of Best Management Practice’s (BMP’s) is required to mitigate the problem by using SWAT hydrology modelling. The aim of this study is to examine the impact of BMP’s on surface runoff and sediment yield in Jatigede Reservoir Catchment Area. Simulations were conducted using land use in 2011. The results of this study suggest that SWAT model is considered as a reasonable modelling of BMP’s simulation concerning Nash-Sutcliffe Coefficients (0.71). The simulation is using terraces, silt pit, and dam trenches as BMP’s techniques. The BMP’s application can reduce surface runoff from 99.7 mm to 75.8 mm, and decrease sediment yield from 61.9 ton/ha/year to 40.8 ton/ha/year.
NASA Astrophysics Data System (ADS)
Bowen, Gabriel J.; Kennedy, Casey D.; Liu, Zhongfang; Stalker, Jeremy
2011-12-01
The stable H and O isotope composition of river and stream water records information on runoff sources and land-atmosphere water fluxes within the catchment and is a potentially powerful tool for network-based monitoring of ecohydrological systems. Process-based hydrological models, however, have thus far shown limited power to replicate observed large-scale variation in U.S. surface water isotope ratios. Here we develop a geographic information system-based model to predict long-term annual average surface water isotope ratios across the contiguous United States. We use elevation-explicit, gridded precipitation isotope maps as model input and data from a U.S. Geological Survey monitoring program for validation. We find that models incorporating monthly variation in precipitation-evapotranspiration (P-E) amounts account for the majority (>89%) of isotopic variation and have reduced regional bias relative to models that do not consider intra-annual P-E effects on catchment water balance. Residuals from the water balance model exhibit strong spatial patterning and correlations that suggest model residuals isolate additional hydrological signal. We use interpolated model residuals to generate optimized prediction maps for U.S. surface water δ2H and δ18O values. We show that the modeled surface water values represent a relatively accurate and unbiased proxy for drinking water isotope ratios across the United States, making these data products useful in ecological and criminal forensics applications that require estimates of the local environmental water isotope variation across large geographic regions.
NASA Astrophysics Data System (ADS)
Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael
2016-04-01
Eutrophication is a serious environmental problem. Despite numerous experimental and modelling efforts, understanding of the effect of land use and agriculture practices on in-stream nitrogen fluxes is still not fully achieved. This study combined intensive field monitoring and numerical modelling using 30 years of surface water quality data of a drinking water reservoir catchment in central Germany. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% of agricultural land use with significant changes in agricultural practices within the investigation period. The geology of the Weida catchment is characterized by clay schists and eruptive rocks, where rocks have low permeability. The semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was used to reproduce the measured data. First, the model was calibrated for discharge and nitrate-N concentrations (NO3-N) during the period 1997-2000. Then, the HYPE model was validated successfully for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates (with lowest discharge prediction performance of NSE = 0.78 and PBIAS = 3.74%, considering calibration and validation periods). Results showed that the measured as well as simulated in-stream nitrate-N concentration respond quickly to fertilizer application changes (increase/decrease). This rapid response can be explained with short residence times of interflow and baseflow runoff components due to the hardrock geological properties of the catchment. Results revealed that the surface runoff and interflow are the most dominant runoff components. HYPE model could reproduce reasonably well the NO3-N daily loads for varying fertilizer application, when detailed input data in terms of crop management (field-specific survey) are considered.
Quantifying the impact of land use change on hydrological responses in the Upper Ganga Basin, India
NASA Astrophysics Data System (ADS)
Tsarouchi, Georgia-Marina; Mijic, Ana; Moulds, Simon; Chawla, Ila; Mujumdar, Pradeep; Buytaert, Wouter
2013-04-01
Quantifying how changes in land use affect the hydrological response at the river basin scale is a challenge in hydrological science and especially in the tropics where many regions are considered data sparse. Earlier work by the authors developed and used high-resolution, reconstructed land cover maps for northern India, based on satellite imagery and historic land-use maps for the years 1984, 1998 and 2010. Large-scale land use changes and their effects on landscape patterns can impact water supply in a watershed by altering hydrological processes such as evaporation, infiltration, surface runoff, groundwater discharge and stream flow. Three land use scenarios were tested to explore the sensitivity of the catchment's response to land use changes: (a) historic land use of 1984 with integrated evolution to 2010; (b) land use of 2010 remaining stable; and (c) hypothetical future projection of land use for 2030. The future scenario was produced with Markov chain analysis and generation of transition probability matrices, indicating transition potentials from one land use class to another. The study used socio-economic (population density), geographic (distances to roads and rivers, and location of protected areas) and biophysical drivers (suitability of soil for agricultural production, slope, aspect, and elevation). The distributed version of the land surface model JULES was integrated at a resolution of 0.01° for the years 1984 to 2030. Based on a sensitivity analysis, the most sensitive parameters were identified. Then, the model was calibrated against measured daily stream flow data. The impact of land use changes was investigated by calculating annual variations in hydrological components, differences in annual stream flow and surface runoff during the simulation period. The land use changes correspond to significant differences on the long-term hydrologic fluxes for each scenario. Once analysed from a future water resources perspective, the results will be beneficial in constructing decision support tools for regional land-use planning and management.
Chen, Chenglong; Gao, Ming; Xie, Deti; Ni, Jiupai
2016-04-01
Losses of agricultural pollutants from small catchments are a major issue for water quality in the Three Gorges Region. Solutions are urgently needed. However, before pollutant losses can be controlled, information about spatial and temporal variations in pollutant losses is needed. The study was carried out in the Wangjiagou catchment, a small agricultural catchment in Fuling District, Chongqing, and the data about non-point source losses of nitrogen and phosphorus was collected here. Water samples were collected daily by an automatic water sampler at the outlets of two subcatchments from 2012 to 2014. Also, samples of surface runoff from 28 sampling sites distributed through the subcatchments were collected during 12 rainfall events in 2014. A range of water quality variables were analyzed for all samples and were used to demonstrate the variation in non-point losses of nitrogen and phosphorus over a range of temporal and spatial scales and in different types of rainfall in the catchment. Results showed that there was a significant linear correlation between the mass concentrations of total nitrogen (TN) and nitrate (NO3-N) in surface runoff and that the relationship was maintained with changes in time. Concentrations of TN and NO3-N peaked after fertilizer was applied to crops in spring and autumn; concentrations decreased rapidly after the peak values in spring but declined slowly in autumn. N and P concentrations fluctuated more and showed a greater degree of dispersion during the spring crop cultivation period than those in autumn. Concentrations of TN and NO3-N in surface runoff were significantly and positively correlated with the proportion of the area that was planted with corn and mustard tubers, but were negatively correlated with the proportion of the area taken up with rice and mulberry plantations. The average concentrations of TN and NO3-N in surface runoff reached the highest level from the sampling points at the bottom of the land used for corn only, but lowest in rice fields. Slope gradient had a significant positive correlation with TN’s and total phosphorus (TP)’s concentration losses. Concentrations of TN, NO3-N, and total phosphorus were significantly correlated with rainfall. Peak concentrations of ammoniacal nitrogen occurred during the fertilizer application period in spring and autumn. Different structures of land use types had a significant influence on the concentration losses of nitrogen and phosphorus; thus, using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective solution to control non-point source pollution of the Three Gorges Region.
Towards a simple representation of chalk hydrology in land surface modelling
NASA Astrophysics Data System (ADS)
Rahman, Mostaquimur; Rosolem, Rafael
2017-01-01
Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated zone in large-scale land surface modelling applications.
Flooding from Intense Rainfall: an overview of project SINATRA
NASA Astrophysics Data System (ADS)
Cloke, Hannah
2014-05-01
Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by identifying the large-scale atmospheric conditions associated with FFIR events, and linking them to catchment type. (2) Use this new understanding and data to improve models of FFIR so we can predict where they may happen nationwide by: employing an integrated catchment/urban scale modelling approach to FFIR at high spatial and temporal scales, modelling rapid catchment response to flash floods and their impacts in urban areas; scaling up to larger catchments by improving the representation of fast riverine and surface water flooding and hydromorphic change (including debris flow) in regional scale models of FFIR; improving the representation of FFIR in the JULES land surface model by integrating river routing and fast runoff processes, and performing assimilation of soil moisture and river discharge into the model run (3) Use these new findings and predictions to provide the Environment Agency and other professionals with information and software they can use to manage FFIR, reducing their damage and impact to communities by: developing tools to enable prediction of future FFIR impacts to support the Flood Forecasting Centre in issuing new 'impacts-based' warnings about their occurrence; developing a FFIR analysis tool to assess risks associated with rare events in complex situations involving incomplete knowledge, analogous to those developed for safety assessment in radioactive waste management.
Remotely Sensed Based Lake/Reservoir Routing in Congo River Basin
NASA Astrophysics Data System (ADS)
Raoufi, R.; Beighley, E.; Lee, H.
2017-12-01
Lake and reservoir dynamics can influence local to regional water cycles but are often not well represented in hydrologic models. One challenge that limits their inclusion in models is the need for detailed storage-discharge behavior that can be further complicated in reservoirs where specific operation rules are employed. Here, the Hillslope River Routing (HRR) model is combined with a remotely sensed based Reservoir Routing (RR) method and applied to the Congo River Basin. Given that topographic data are often continuous over the entire terrestrial surface (i.e., does not differentiate between land and open water), the HRR-RR model integrates topographic derived river networks and catchment boundaries (e.g., HydroSHEDs) with water boundary extents (e.g., Global Lakes and Wetlands Database) to develop the computational framework. The catchments bordering lakes and reservoirs are partitioned into water and land portions, where representative flowpath characteristics are determined and vertical water balance and lateral routings is performed separately on each partition based on applicable process models (e.g., open water evaporation vs. evapotranspiration). To enable reservoir routing, remotely sensed water surface elevations and extents are combined to determine the storage change time series. Based on the available time series, representative storage change patterns are determined. Lake/reservoir routing is performed by combining inflows from the HRR-RR model and the representative storage change patterns to determine outflows. In this study, a suite of storage change patterns derived from remotely sensed measurements are determined representative patterns for wet, dry and average conditions. The HRR-RR model dynamically selects and uses the optimal storage change pattern for the routing process based on these hydrologic conditions. The HRR-RR model results are presented to highlight the importance of lake attenuation/routing in the Congo Basin.
NASA Astrophysics Data System (ADS)
Cheng, Y.; Ogden, F. L.; Zhu, J.
2017-12-01
The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.
NASA Astrophysics Data System (ADS)
Kolbe, Tamara; Marçais, Jean; Thomas, Zahra; Abbott, Benjamin W.; de Dreuzy, Jean-Raynald; Rousseau-Gueutin, Pauline; Aquilina, Luc; Labasque, Thierry; Pinay, Gilles
2016-12-01
Nitrogen pollution of freshwater and estuarine environments is one of the most urgent environmental crises. Shallow aquifers with predominantly local flow circulation are particularly vulnerable to agricultural contaminants. Water transit time and flow path are key controls on catchment nitrogen retention and removal capacity, but the relative importance of hydrogeological and topographical factors in determining these parameters is still uncertain. We used groundwater dating and numerical modeling techniques to assess transit time and flow path in an unconfined aquifer in Brittany, France. The 35.5 km2 study catchment has a crystalline basement underneath a ∼60 m thick weathered and fractured layer, and is separated into a distinct upland and lowland area by an 80 m-high butte. We used groundwater discharge and groundwater ages derived from chlorofluorocarbon (CFC) concentration to calibrate a free-surface flow model simulating groundwater flow circulation. We found that groundwater flow was highly local (mean travel distance = 350 m), substantially smaller than the typical distance between neighboring streams (∼1 km), while CFC-based ages were quite old (mean = 40 years). Sensitivity analysis revealed that groundwater travel distances were not sensitive to geological parameters (i.e. arrangement of geological layers and permeability profile) within the constraints of the CFC age data. However, circulation was sensitive to topography in the lowland area where the water table was near the land surface, and to recharge rate in the upland area where water input modulated the free surface of the aquifer. We quantified these differences with a local groundwater ratio (rGW-LOCAL), defined as the mean groundwater travel distance divided by the mean of the reference surface distances (the distance water would have to travel across the surface of the digital elevation model). Lowland, rGW-LOCAL was near 1, indicating primarily topographical controls. Upland, rGW-LOCAL was 1.6, meaning the groundwater recharge area is almost twice as large as the topographically-defined catchment for any given point. The ratio rGW-LOCAL is sensitive to recharge conditions as well as topography and it could be used to compare controls on groundwater circulation within or between catchments.
Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments
NASA Astrophysics Data System (ADS)
Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles
2016-03-01
Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and the probability of human disturbance provides a useful perspective for evaluating vulnerability of aquatic ecosystems and for managing systems to maintain agricultural production while minimizing leakage of nutrients.
Hydrogeological controls of groundwater - land surface interactions
NASA Astrophysics Data System (ADS)
Bresciani, Etienne; Batelaan, Okke; Goderniaux, Pascal
2017-04-01
Interaction of groundwater with the land surface impacts a wide range of climatic, hydrologic, ecologic and geomorphologic processes. Many site-specific studies have successfully focused on measuring and modelling groundwater-surface water interaction, but upscaling or estimation at catchment or regional scale appears to be challenging. The factors controlling the interaction at regional scale are still poorly understood. In this contribution, a new 2-D (cross-sectional) analytical groundwater flow solution is used to derive a dimensionless criterion that expresses the conditions under which the groundwater outcrops at the land surface (Bresciani et al., 2016). The criterion gives insights into the functional relationships between geology, topography, climate and the locations of groundwater discharge along river systems. This sheds light on the debate about the topographic control of groundwater flow and groundwater-surface water interaction, as effectively the topography only influences the interaction when the groundwater table reaches the land surface. The criterion provides a practical tool to predict locations of groundwater discharge if a limited number of geomorphological and hydrogeological parameters (recharge, hydraulic conductivity and depth to impervious base) are known, and conversely it can provide regional estimates of the ratio of recharge over hydraulic conductivity if locations of groundwater discharge are known. A case study with known groundwater discharge locations located in South-West Brittany, France shows the feasibility of regional estimates of the ratio of recharge over hydraulic conductivity. Bresciani, E., Goderniaux, P. and Batelaan, O., 2016, Hydrogeological controls of water table-land surface interactions. Geophysical Research Letters 43(18): 9653-9661. http://dx.doi.org/10.1002/2016GL070618
NASA Astrophysics Data System (ADS)
Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.
2015-12-01
Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley slope asymmetry is most strongly predicted by asymmetries of insolation and drainage density, which generally supports a water-balance based conceptual model of valley asymmetry development. Surprisingly, vegetation asymmetries had relatively low predictive importance.
NASA Astrophysics Data System (ADS)
Short, Chrisopher; Clarke, Lucy; Uttley, Chris; Smith, Brian
2017-04-01
Following severe flooding in 2007, and subsequent smaller flood events, a decision was taken in 2012 to explore nature-based solutions in 250km2 river catchment in the southern Cotswolds in the UK. A major tributary within the catchment has been designated as rapid response; with a primarily limestone geology limestone and a mixture of spring and surface drained sources along a number of tributaries feeding in the river, with one main population centre where the water bodies converge. The project involves landscape and land management interventions aimed at attenuating high flows to reduce flood risk through changes in land management practices in both agriculture and forestry and slowing peak flows in surface flows through increased infiltration and attenuation areas. After three years of the project it is clear that the threshold for effectiveness requires the majority of the upstream catchment area to be implementing these measures. However, the cost effectiveness of the approach seems to be substantial compared to traditional hard-engineering approaches. The level of community involvement, including local flood forums, is high and the social, and natural, capital has been enhanced through the project. Early results suggest that there have been localized improvements in water quality and biodiversity as well as a reduction in peak flow but such changes are difficult to directly associate to the project. What is clear is the role of communities, landowners and partners to implement natural flood management on a catchment wide scale. In this sense the project has adopted a co-management or adaptive management approach which brings together the knowledges of hydrologists, ecologists, farmers, woodland owners and the local community to implement locally be-spoke solutions within a broader project framework. This paper will outline the initial findings and the governance structure that has assisted in the early success of the project within a theoretical framework of co-management and suggest how this type of framework is suitable for a range of nature-based solutions across Europe. However, the challenge remains of capturing the multiple-benefits that such projects offer as these are often missed through conventional approaches such as cost-benefit analysis and some reflections on this will also be presented along with a potential way forward.
Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling
NASA Astrophysics Data System (ADS)
Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.
2017-12-01
Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.
What surface water tells about groundwater in lowlands - and what it does not
NASA Astrophysics Data System (ADS)
Steidl, Jörg; Lischeid, Gunnar; Kalettka, Thomas; Dannowski, Ralf; Merz, Christoph
2017-04-01
Lowland regions often exhibit a high density streams, lakes, ponds and wetlands. This holds, e.g., for Northeast Europe. As a consequence of heterogeneous sedimentation during and after glaciation, and temporarily dead ice blocks left behind in the late stage of the last glaciation, the landscape is now spotted by small depressions that are often filled with water, called kettle holes. Tight coupling between groundwater and surface water with non-stationary gradients and flow directions is often considered rather complex and surely is a challenge for hydrological models. However, on the other hand, close links imply that the one system bears information about the other and vice versa. For example, for the 170 km2 Quillow catchment in Northeast Germany a detailed groundwater map was generated from airborne remote sensing data exclusively, that is, from laser scan data of water level elevation in streams and kettle holes. On average, about 12 points of support per km2 were used. Such a high density can hardly be achieved at that scale based on groundwater wells. The resulting map was checked for consistency and plausibility. The groundwater map allowed delineating the catchments of the single kettle holes in order to assess the impact of land use of water quality. These catchments differed substantially from those determined based on topography. In general, the former usually exhibited a clearly elongated shape of up to some km length, resembling more single groundwater flowpaths rather than exhibiting the typical shape of stream catchments. Analysis of water quality monitoring data revealed that kettle hole water reflected the concentration of earth and alkaline earth metals of the shallow groundwater. However, this did not hold for nutrients and redox sensitive solutes due to rapid biogeochemical turnover in the eutrophic to hypertrophic small lentic systems.
NASA Astrophysics Data System (ADS)
Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias
2014-05-01
For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of Environmental Research and Public Health 7 (10): 3657-3703. Ryzinska-Paier, G., T. Lendenfeld, K. Correa, P. Stadler, A.P. Blaschke, R. L. Mach, H. Stadler, AKT Kirschner und A.H. Farnleitner (2014) A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci. Technol. in press
NASA Astrophysics Data System (ADS)
Niacsu, Lilian; Ionita, Ion; Samoila, Claudia; Grigoraş, Georgel
2017-04-01
Land degradation has been recognized as the major environmental threat in the Moldavian Plateau of eastern Romania. The Racova catchment, located in the central part of this area and extending on 32,908 ha, is significantly subjected to moderate-high rates of soil erosion, gullying, landslides and reservoir siltation. Several methods have been used to estimate land degradation indicators, such as classical research methods (field surveys and mapping, mathematical-statistical processing), present-day methods based on the GIS software, the Cs-137 technique etc. For example, the landslide inventory resulted from data collected during field surveys, interpretation of the 2005 and 2009 aerial orthophotos, exploiting very-high resolution digital elevation model (DEM) based on the topographical plans at 1:5,000 scale, and the visual analysis of products obtained from 2012 LiDAR DEM (slope map and shaded relief images). The results obtained showed that landslides, in any shape or age, are the most typical degradation processes in the Racova catchment, particularly extending on steep slopes representing north or west looking cuesta fronts, usually. At present, they cover half of the study area and most are inactive. The gullied systems amounting 4% of the catchment area consist of both types of gullies, discontinuous and continuous along valley-bottoms, respectively. In addition, the major role of gully erosion in triggering landslides and high reservoir siltation rate has been considered. Extensive conservation practices have been deployed over the 70's and 80's, namely: contour farming on arable land (under strip-cropping, buffer strip-cropping and bench terraces), reforestation over 2,000 ha (especially with black-locust on the active landslides), check dams to control gully erosion etc. Since 1990, two land reforms have been implemented (the Act No. 18/1991 and the Act No.1/2000) and their impact was very marked on soil conservation and crop yields. The major effect of these Acts is the revival of traditional agricultural systems, especially up-and-down hill farming. Under these circumstances the land degradation still remains problematically high in the Racova catchment.
NASA Astrophysics Data System (ADS)
Christanto, N.; Sartohadi, J.; Setiawan, M. A.; Shrestha, D. B. P.; Jetten, V. G.
2018-04-01
Land use change influences the hydrological as well as landscape processes such as runoff and sediment yields. The main objectives of this study are to assess the land use change and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were used to classify the old image. Therefore, the present and the past images are comparable. The influence of the past and present land use on runoff and sediment yield has been compared with field measurement. The effect of land use changes shows the increased surface runoff which is the result of change in the curve number (CN) values. The study shows that it is possible to classify previously obtained image based on spectral characteristics and indices of major land cover types derived from recently obtained image. This avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it also demonstrates that it is possible to link land cover changes with land degradation processes and finally to sedimentation in the reservoir. The only condition is the requirement for having the comparable dataset which should not be difficult to generate. Any variation inherent in the data which are other than surface reflectance has to be corrected.
Nino de Guzman, Gabriela T.; Hapeman, Cathleen J.; Prabhakara, Kusuma; Codling, Eton E.; Shelton, Daniel R.; Rice, Clifford P.; Hively, W. Dean; McCarty, Gregory W.; Lang, Megan W.; Torrents, Alba
2012-01-01
Row-crop and poultry production have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined the effects of land use, subwatershed characteristics, and climatic conditions on the water quality parameters of a subwatershed in the Choptank River watershed. The catchments within the subwatershed were defined using advanced remotely-sensed data and current geographic information system processing techniques. Water and sediment samples were collected in May–October 2009 and April–June 2010 under mostly baseflow conditions and analyzed for select bacteria, nitrate-N, ammonium-N, total arsenic, total phosphorus (TP), orthophosphate (ortho-P), and particle-phase phosphorus (PP); n = 96 for all analytes except for arsenic, n = 136, and for bacteria, n = 89 (aqueous) and 62 (sediment). Detections of Enterococci and Escherichia coli concentrations were ubiquitous in this subwatershed and showed no correlation to location or land use, however larger bacterial counts were observed shortly after precipitation. Nitrate-N concentrations were not correlated with agricultural lands, which may reflect the small change in percent agriculture and/or the similarity of agronomic practices and crops produced between catchments. Concentration data suggested that ammonia emission and possible deposition to surface waters occurred and that these processes may be influenced by local agronomic practices and climatic conditions. The negative correlation of PP and arsenic concentrations with percent forest was explained by the stronger signal of the head waters and overland flow of particulate phase analytes versus dissolved phase inputs from groundwater. Service roadways at some poultry production facilities were found to redirect runoff from the facilities to neighboring catchment areas, which affected water quality parameters. Results suggest that in this subwatershed, catchments with poultry production facilities are possible sources for arsenic and PP as compared to catchment areas where these facilities were not present.
NASA Astrophysics Data System (ADS)
Gascuel-Odoux, Chantal; Cordier, Marie-Odile; Grimaldi, Catherine; Salmon-Monviola, Jordy; Masson, Veronique; Squividant, Herve; Trepos, Ronan
2013-04-01
Agricultural landscapes are structured by a mosaic of farmers'fields whose boundaries and land use change over time, and by linear elements such as hedgerows, ditches and roads, which are more or less connected to each other. Such man-made features are now well known to have an effect on catchment hydrology, erosion and water quality. In such agricultural landscapes, it is crucial to have an adequate functional representation of the flow pathways and define relevant indicators of surface flow connectivity over the catchment towards the stream, as a necessary step for improving landscape design and water protection. A new conceptual object oriented approach has been proposed by building the drainage network on the identification of the inlets and outlets for surface water flow on each farmers' field and surrounding landscape elements (Aurousseau et al., 2009 ; Gascuel-Odoux et al., 2011), then on delineating a set of elementary plot outlet trees labelled by attributes which feed the stream. This drainage network is therefore represented as a global plot outlet tree which conceptualizes the connectivity of the surface flow patterns over the catchment. This approach has been applied to different catchment areas, integrated in modelling (Gascuel-Odoux et al., 2009) and decision support tools. It provides a functional display of data for decision support which can highlight the plots of potential risk regarding the surface runoff, areas which are often shortly extended over catchments (suspended sediment application). Integrated in modelling and mining tools, it allows to catch typologies of the most spatial pattern involved in water quality degradation (herbicides transport model) (Trepos et al., 2012) and test their permanency in time regarding the variations of climate conditions and agricultural practices (Salmon-Monviola et al., 2011). This set of works joins skills in hydrology, agronomy and computer sciences. Aurousseau P., Gascuel-Odoux C., Squividant H., Tortrat F., Cordier M.O., 2009. A plot drainage network as a conceptual tool for the spatial representation of surface flow pathways in agricultural catchments. Computer and Geosciences, 35, 276-288. Gascuel-Odoux C., Aurousseau P., Cordier M.O., Durand P., Garcia F., Masson, V., Salmon-Monviola J., Tortrat F., Trepos, R. 2009. A decision-oriented model to evaluate the effect of land use and management on herbicide contamination in stream water. Environmental modelling and software, 24, 1433-1446. Gascuel-Odoux C., Aurousseau, P., Doray, T., Squividant, H., Macary, F., Uny, D., Grimaldi, C., 2011. Incorporating landscape features in a plot tree structure to represent surface flow connectivity in rural catchments. Hydrological Processes, 25, 3625-3636. Salmon-Monviola J., Gascuel-Odoux C., Garcia F., Tortrat F., Cordier M.O., Masson V., Trepos R., 2011. Simulating the effect of technical and environmental constraints on the spatio-temporal distribution of herbicide applications and stream losses. Agriculture, Environment and Ecosystems, 140, 382-394. Trepos, R., Masson V., Cordier, M.O., Gascuel-Odoux, C., Salmon-Monviola J., 2012. Mining simulation data by rule induction to determine critical source areas of stream water pollution by herbicides. Computers and Electronics in Agriculture 86: 75-88.
NASA Astrophysics Data System (ADS)
Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.
2014-12-01
This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.
NASA Astrophysics Data System (ADS)
Costa, M. H.; Dias, L. C. P.; Macedo, M.; Coe, M. T.; Neill, C.
2015-12-01
This study assess the influence of land cover changes on evapotranspiration and streamflow in small catchments in the Upper Xingu River Basin (Mato Grosso state, Brazil). Streamflow was measured in catchments with uniform land use for September 1, 2008 to August 31, 2010. We used models to simulate evapotranspiration and streamflow for the four most common land cover types found in the Upper Xingu: tropical forest, cerrado (savanna), pasture, and soybean croplands. We used INLAND to perform single point simulations considering tropical rainforest, cerrado and pasturelands, and AgroIBIS for croplands. Converting natural vegetation to agriculture substantially modifies evapotranspiration and streamflow in small catchments. Measured mean streamflow in soy catchments was about three times greater than that of forest catchments, while the mean annual amplitude of flow in soy catchments was more than twice that of forest catchments. Simulated mean annual evapotranspiration was 39% lower in agricultural ecosystems (pasture and soybean cropland) than in natural ecosystems (tropical rainforest and cerrado). Observed and simulated mean annual streamflows in agricultural ecosystems were more than 100% higher than in natural ecosystems. The accuracy of the simulations is improved by using field-measured soil hydraulic properties. The inclusion of local measurements of key soil parameters is likely to improve hydrological simulations in other tropical regions.
NASA Astrophysics Data System (ADS)
Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven
2013-04-01
Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the medium-scaled catchment of Yzeron (France) is chosen. It is subjected to a fast progression of urbanization since the eighties and has been monitored for a long time period. The fully-distributed hydrological model J2000, available through the JAMS modelling framework, was found appropriate to simulate the water balance of the Yzeron catchment at a daily time step. However, it was not designed especially for periurban areas, so its structure and parameters are under adaptation. Firstly, as hydrological responses in urban areas are quicker than in rural areas, a sub-daily time step is necessary to improve the simulation of periurban hydrological processes. Therefore, J2000 was adapted to be run at a hourly time step. Secondly, in order to better take into account rainwater management, an explicit representation of sewer networks is implemented in the J2000 model whose periurban version is called J2000P. It receives urban rainwater coming from impervious surfaces connected to a combined sewer system and delivers this water to the treatment plant or directly to the river in case of sewer overflow device outflows. We will present the impact of these modifications on the simulated hydrological regime.
Ren, Ming-Yi; Yang, Li-Yuan; Wang, Long-Feng; Han, Xue-Mei; Dai, Jie-Rui; Pang, Xu-Gui
2018-01-01
Surface soil samples collected from Nansi Lake catchment were analyzed for mercury (Hg) to determine its spatial trends and environmental impacts. Results showed that the average soil Hg contents were 0.043 mg kg -1 . A positive correlation was shown between TOC and soil Hg contents. The main type of soil with higher TOC contents and lower pH values showed higher soil Hg contents. Soil TOC contents and CV values were both higher in the eastern catchment. The eastern part of the catchment, where the industry is developed, had relatively high soil Hg contents and a banding distribution of high Hg contents was corresponded with the southwest-northeast economic belt. Urban soils had higher Hg contents than rural soils. The urbanization pattern that soil Hg contents presented a decreasing trend from city center to suburb was shown clearly especially in the three cities. Soil Hg contents in Jining City showed a good consistency with the urban land expansion. The spatial trends of soil Hg contents in the catchment indicated that the type and the intensity of human activities have a strong influence on the distribution of Hg in soils. Calculated risk indices showed that the western part of the catchment presented moderately polluted condition and the eastern part of the catchment showed moderate to strong pollution level. The area with high ecological risk appeared mainly along the economic belt.
A multi-scale modelling procedure to quantify hydrological impacts of upland land management
NASA Astrophysics Data System (ADS)
Wheater, H. S.; Jackson, B.; Bulygina, N.; Ballard, C.; McIntyre, N.; Marshall, M.; Frogbrook, Z.; Solloway, I.; Reynolds, B.
2008-12-01
Recent UK floods have focused attention on the effects of agricultural intensification on flood risk. However, quantification of these effects raises important methodological issues. Catchment-scale data have proved inadequate to support analysis of impacts of land management change, due to climate variability, uncertainty in input and output data, spatial heterogeneity in land use and lack of data to quantify historical changes in management practices. Manipulation experiments to quantify the impacts of land management change have necessarily been limited and small scale, and in the UK mainly focused on the lowlands and arable agriculture. There is a need to develop methods to extrapolate from small scale observations to predict catchment-scale response, and to quantify impacts for upland areas. With assistance from a cooperative of Welsh farmers, a multi-scale experimental programme has been established at Pontbren, in mid-Wales, an area of intensive sheep production. The data have been used to support development of a multi-scale modelling methodology to assess impacts of agricultural intensification and the potential for mitigation of flood risk through land use management. Data are available from replicated experimental plots under different land management treatments, from instrumented field and hillslope sites, including tree shelter belts, and from first and second order catchments. Measurements include climate variables, soil water states and hydraulic properties at multiple depths and locations, tree interception, overland flow and drainflow, groundwater levels, and streamflow from multiple locations. Fine resolution physics-based models have been developed to represent soil and runoff processes, conditioned using experimental data. The detailed models are used to calibrate simpler 'meta- models' to represent individual hydrological elements, which are then combined in a semi-distributed catchment-scale model. The methodology is illustrated using field and catchment-scale simulations to demonstrate the the response of improved and unimproved grassland, and the potential effects of land management interventions, including farm ponds, tree shelter belts and buffer strips. It is concluded that the methodology developed has the potential to represent and quantify catchment-scale effects of upland management; continuing research is extending the work to a wider range of upland environments and land use types, with the aim of providing generic simulation tools that can be used to provide strategic policy guidance.
NASA Astrophysics Data System (ADS)
Noacco, V.; Howden, N. J. K.; Wagener, T.; Worrall, F.; Burt, T. P.
2015-12-01
This study investigates drivers of changing dissolved organic carbon (DOC) export in the UK's River Thames basin between 1884 and 2014. Specifically, we consider how the impacts of land-use change and population growth drive increases in DOC concentrations and fluxes at the basin outlet. Such key factors for the long-term increase in riverine DOC in temperate, mineral-soil catchments are still widely debated. First, we estimate soil organic carbon (SOC) stocks in the Thames basin for the period. Second, we convert SOC losses due to land-use change into DOC loss to surface waters through runoff. Finally, we combine this input of DOC with an export coefficient model that considers catchment drivers for DOC release to the river. SOC stocks for each year are calculated from a large database of typical SOC levels for land-uses present in the Thames basin and are combined with literature values of transition times for SOC to adjust to a new level following land-use change. We also account for climate change effects on SOC stock due to temperature increases, which reduces SOC stocks as soil organic matter turnover rates increase. Our work shows that the major driver for DOC increase to the river Thames was the rise in the catchment population, where the increase in urban area was used as a proxy. This highlights the role of sewage effluent in contributing to the rise of fluvial DOC, even though wastewater treatments were in place since the early 1990s. Land-use change had significant but short-term impacts in the increase in DOC, mainly due to massive conversion of permanent grassland into arable land during World War II.
NASA Astrophysics Data System (ADS)
Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana
2017-04-01
Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N export in catchments under managed land use. Furthermore, the changes in diurnal patterns in the forest catchment and absence of similar patterns in the other catchments are an indication that biogeochemical processes such as nitrification and denitrification in areas under different land use are affected as well. This could have implications for regional N-cycling.
NASA Astrophysics Data System (ADS)
Theuring, Phillip
2013-04-01
Mongolia is facing a tremendous change of land-use intensification due to expansions in the agricultural sector, an increase of cattle and livestock and a growth of urban settlements by migration of the rural population to the cities. With most of its area located in a semiarid to arid environment, Mongolia is vulnerable to climatic changes that are expected to lead to higher temperatures and increased evapotranspiration. It is expected that this may lead to unfavorable changes in surface water quality caused by increased nutrients and sediment bound pollutants emissions. Increased fine sediment load is associated with nutrient, heavy metal and pollutant input and therefore affects water quality. Previous studies using radionuclide fallout isotope sediment source fingerprinting investigations identified riverbank erosion as the main source of suspended sediment in the Kharaa River. Erosion susceptibility calculations in combination with suspended sediment observations showed strong seasonal and annual variabilities of sediment input and in-stream transport, and a strong connection of erosional behaviour with land-use.The objective of this study is to quantify the current water quality threats by fine sediment inputs in the 15,000 km2 Kharaa River basin in Northern Mongolia by delineating the sources of the fine sediments and estimating the sediment budget.To identify the spatial distribution of sediment sources within the catchment, more than 1000 samples from the river confluences at the outlet of each sub basin into the main tributary were collected during 5 intensive grab sediment sampling campaigns in 2009-11. The fine sediment fraction (<10μm) has been analysed using geochemical tracer techniques for spatial source identification, based on major elements (e.g. Si, Al, Mg, Fe, Na, K, P) and trace elements (e.g. Ba, Pb, Sr, Zn). The contribution of suspended sediment of each sub basin in the main tributary has been evaluated with help of a mixing model. To asses sediment sources the RUSLE based sediment budget model (SedNet) was employed to estimate surface erosion and sediment budget. The spatial origin of the fine sediment in the catchment could be identified by geochemical fingerprinting techniques. This shows that only some subcatchments contribute considerably to the fine sediment load, especially areas with high grazing intensity and degraded riparian vegetation. The estimated average soil loss in the catchment is 0.2 t×ha-1•a-1. The model results reveal a strong influence of the landuse in the catchment on surface erosion and fine sediment input, which will increase with the intensification of agriculture in the catchment.
NASA Astrophysics Data System (ADS)
Amri, Khairul; Nugraha, Loparedo; Barchia, Muhammad Faiz
2017-11-01
Land use changes in Manna watershed are caused degradation in the watershed functions. When water infiltration goes down, some water runs off flowing to Manna River cause submerged on the downstream. The aim of this study is to analyze how the Manna watershed overcoming environmentally degraded conditions. The critical level of the Manna catchment areas was determined by overlaying some digital maps based on procedure applying in the Ministry of Forestry, Republic of Indonesia (P.32/MENHUT-II/2009). Measuring the critical level of the catchment also needed natural and actual infiltrations map, and the interpretation process of the analysis used ArcGIS 10.1 software. Based on the spatial data analysis by overlaying maps of slope, soils, and rainfall, the natural infiltration rate in the Manna watershed categorized high level (44.1%). While, the critical level of the catchment areas of the Manna watershed classified in good condition cover about 64,5 % of the areas, and starting to degraded state cover about 35,5 % of the watershed areas. The environment degradation conditions indicated the land use changes in the Manna watershed could deteriorate infiltration rates. The cultivated agricultural activities neglected conservation rule could accelerate the critical catchment areas in the Manna watershed.
Environmental care in agricultural catchments: Toward the communicative catchment
NASA Astrophysics Data System (ADS)
Martin, Peter
1991-11-01
Substantial land degradation of agricultural catchments in Australia has resulted from the importation of European farming methods and the large-scale clearing of land. Rural communities are now being encouraged by government to take responsibility for environmental care. The importance of community involvement is supported by the view that environmental problems are a function of interactions between people and their environment. It is suggested that the commonly held view that community groups cannot care for their resources is due to inappropriate social institutions rather that any inherent disability in people. The communicative catchment is developed as a vision for environmental care into the future. This concept emerges from a critique of resource management through the catchment metaphors of the reduced, mechanical, and the complex, evolving catchment, which reflect the development of systemic and people-centered approaches to environmental care. The communicative catchment is one where both community and resource managers participate collaboratively in environmental care. A methodology based on action research and systemic thinking (systemic action research) is proposed as a way of moving towards the communicative catchment of the future. Action research is a way of taking action in organizations and communities that is participative and informed by theory, while systemic thinking takes into account the interconnections and relationships between social and natural worlds. The proposed vision, methodology, and practical operating principles stem from involvement in an action research project looking at extension strategies for the implementation of total catchment management in the Hunter Valley, New South Wales.
NASA Astrophysics Data System (ADS)
Ferreira, C. S. S.; Walsh, R. P. D.; Steenhuis, T. S.; Shakesby, R. A.; Nunes, J. P. N.; Coelho, C. O. A.; Ferreira, A. J. D.
2015-06-01
Planning of semi-urban developments is often hindered by a lack of knowledge on how changes in land-use affect catchment hydrological response. The temporal and spatial patterns of overland flow source areas and their connectivity in the landscape, particularly in a seasonal climate, remain comparatively poorly understood. This study investigates seasonal variations in factors influencing runoff response to rainfall in a peri-urban catchment in Portugal characterized by a mosaic of landscape units and a humid Mediterranean climate. Variations in surface soil moisture, hydrophobicity and infiltration capacity were measured in six different landscape units (defined by land-use on either sandstone or limestone) in nine monitoring campaigns at key times over a one-year period. Spatiotemporal patterns in overland flow mechanisms were found. Infiltration-excess overland flow was generated in rainfalls during the dry summer season in woodland on both sandstone and limestone and on agricultural soils on limestone due probably in large part to soil hydrophobicity. In wet periods, saturation overland flow occurred on urban and agricultural soils located in valley bottoms and on shallow soils upslope. Topography, water table rise and soil depth determined the location and extent of saturated areas. Overland flow generated in upslope source areas potentially can infiltrate in other landscape units downslope where infiltration capacity exceeds rainfall intensity. Hydrophilic urban and agricultural-sandstone soils were characterized by increased infiltration capacity during dry periods, while forest soils provided potential sinks for overland flow when hydrophilic in the winter wet season. Identifying the spatial and temporal variability of overland flow sources and sinks is an important step in understanding and modeling flow connectivity and catchment hydrologic response. Such information is important for land managers in order to improve urban planning to minimize flood risk.
NASA Astrophysics Data System (ADS)
Alatorre, L. C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J. M.
2012-05-01
Soil erosion and sediment yield are strongly affected by land use/land cover (LULC). Spatially distributed erosion models are of great interest to assess the expected effect of LULC changes on soil erosion and sediment yield. However, they can only be applied if spatially distributed data is available for their calibration. In this study the soil erosion and sediment delivery model WATEM/SEDEM was applied to a small (2.84 km2) experimental catchment in the Central Spanish Pyrenees. Model calibration was performed based on a dataset of soil redistribution rates derived from point 137Cs inventories, allowing capture differences per land use in the main model parameters. Model calibration showed a good convergence to a global optimum in the parameter space, which was not possible to attain if only external (not spatially distributed) sediment yield data were available. Validation of the model results against seven years of recorded sediment yield at the catchment outlet was satisfactory. Two LULC scenarios were then modeled to reproduce land use at the beginning of the twentieth century and a hypothetic future scenario, and to compare the simulation results to the current LULC situation. The results show a reduction of about one order of magnitude in gross erosion (3180 to 350 Mg yr-1) and sediment delivery (11.2 to 1.2 Mg yr-1 ha-1) during the last decades as a result of the abandonment of traditional land uses (mostly agriculture) and subsequent vegetation recolonization. The simulation also allowed assessing differences in the sediment sources and sinks within the catchment.
Time-varying parameter models for catchments with land use change: the importance of model structure
NASA Astrophysics Data System (ADS)
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
Quantifying depression-focused recharge in a seasonally frozen, semi-arid landscape
NASA Astrophysics Data System (ADS)
Cey, Edwin; Noorduijn, Saskia; Mohammed, Aaron; Pavlovskii, Igor; Bentley, Laurence; Hayashi, Masaki
2016-04-01
Groundwater recharge in the northern prairie region is influenced by seasonal accumulation of snowmelt runoff in numerous closed topographic depressions (tens to 100's of meters in size) that dot the landscape. Estimating recharge is difficult due to the number and complexity of processes at play, including snow redistribution, runoff, infiltration, evapotranspiration, lateral water redistribution, and recharge, which take place on clay-rich, macroporous sediments that are seasonally frozen. A multi-faceted study, referred to as the Groundwater Recharge in the Prairies (GRIP) project, was undertaken on the Canadian prairies in order to better understand the key hydrologic processes and to generate reliable basin-scale estimates of groundwater recharge that are necessary for sustainable groundwater management. Detailed monitoring of hydrological fluxes across individual depression-midslope-upland complexes was undertaken at three field sites located in different ecoregions, yielding valuable insights into the hydrologic processes and feedbacks within these individual micro-catchments. This process understanding was incorporated into a relatively simple one-dimensional (1D) water budget model, to which a new upscaling scheme was applied to estimate recharge over a watershed or multiple watersheds. The 1D model links upland and depression processes for an individual micro-catchment, and then upscales to a larger model grid cell based on a categorization of depressions based on their surface area and density within the grid cell. This approach enables explicit incorporation of relevant recharge processes, thus producing realistic recharge estimates, while limiting computational demand. The model has been calibrated and tested against a long-term data set from one of the field sites. Results demonstrate complex relationships between upland-depression water transfers and catchment geometry, resulting in maximal groundwater recharge in catchments with intermediate ratios of depression to catchment area. Preliminary modeling results and field data also suggest that recharge is highly sensitive to local land use and climatic conditions, and thus the model represents a useful tool for evaluation of spatial and temporal variability of recharge in the face of changing land use and climatic conditions.
Extreme Events in Urban Streams Leading to Extreme Temperatures in Birmingham, UK
NASA Astrophysics Data System (ADS)
Rangecroft, S.; Croghan, D.; Van Loon, A.; Sadler, J. P.; Hannah, D. M.
2016-12-01
Extreme flows and high water temperature events act as critical stressors on the ecological health of rivers. Urban headwater streams are considered particularly vulnerable to the effects of these extreme events. Despite this, such catchments remain poorly characterised and the effect of differences in land use is rarely quantified, especially in relation to water temperature. Thus a key research gap has emerged in understanding the patterns of water temperature during extreme events within contrasting urban, headwater catchments. We studied the headwaters of two bordering urban catchments of contrasting land use within Birmingham, UK. To characterise response to extreme events, precipitation and flow were analysed for the period of 1970-2016. To analyse the effects of extreme events on water temperature, 10 temperature loggers recording at 15 minute intervals were placed within each catchment covering a range of land use for the period May 2016 - present. During peak over threshold flood events higher average peaks were observed in the less urbanised catchment; however highest maximum flow peaks took place in the more densely urbanised catchment. Very similar average drought durations were observed between the two catchments with average flow drought durations of 27 days in the most urbanised catchment, and 29 in the less urbanised catchment. Flashier water temperature regimes were observed within the more urbanised catchment and increases of up to 5 degrees were apparent within 30 minutes during certain storms at the most upstream sites. Only in the most extreme events did the more densely urban stream appear more susceptible to both extreme high flows and extreme water temperature events, possibly resultant from overland flow emerging as the dominant flow pathway during intense precipitation events. Water temperature surges tended to be highly spatially variable indicating the importance of local land use. During smaller events, water temperature was less changeable and spatially variable, suggesting that overland flow may not the dominant flow pathway in such events. During drought events, the effect of catchment land use on water temperature was less apparent.
A 125 year long record of DOC flux from a major temperate catchment: land-use vs. climate control?
NASA Astrophysics Data System (ADS)
Clay, G.; Worrall, F.; Howden, N. K.; Burt, T. P.
2010-12-01
Our understanding of the controls upon carbon biogeochemistry has always been limited by lack of long term observational data at the same time as having long term monitoring of possible environmental drivers. For the River Thames catchment in the UK (9998 km2) records of DOM have been kept since 1868 and DOM flux since 1882. In addition to riverflow being monitored in the catchment there has also been monitoring of climate, land-use and population back to at least 1868. The Thames catchment is a mixed agricultural urban catchment dominated by mineral soils where groundwater plays a significant part in the catchments flow system. During the period of the record the catchment has undergone urbanisation, climate warming but has also undergone large-scale land use change associated with World War II and agricultural intensification in the 1960s. The importance of these combinations of pressures are explored in the time series through a range of time series techniques and the results show: i) That DOC flux in the catchment is now at historic low levels, with the maximum flux being 35 ktonnes C/yr (3.5 tonnes/km2/yr) in 1915 and the lowest flux being 2 ktonnes C/yr (0.2 tonnes/km2/yr) in 1997. ii) The trend in the DOC flux is explained by changes in flow, which appear associated with both with groundwater storage in the catchment and with changes in land-use. iii) The significant decline in the DOC flux appears to be due to the transition in the catchment from dominated from pasture to an arable land use. iv) The decline of DOC flux with temperature would suggest that DOC mineralisation reaction has a higher Q10 than the DOC production. v) Declining DOC flux from mineral soils catchments would offset increases in DOC flux from organic soils but would also represent a shift in carbon losses from fluvial to being direct to the atmosphere.
Multidecadal change in streamflow associated with anthropogenic disturbances in the tropical Andes
NASA Astrophysics Data System (ADS)
Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.
2015-10-01
Andean headwater catchments are an important source of freshwater for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes in these catchments. In this paper, we assess change in streamflow based on long time series of hydrometeorological data (1974-2008) and land cover reconstructions (1963-2009) in the Pangor catchment (282 km2) located in the tropical Andes. Three main land cover change trajectories can be distinguished during the period 1963-2009: (1) expansion of agricultural land by an area equal to 14 % of the catchment area (or 39 km2) in 46 years' time, (2) deforestation of native forests by 11 % (or -31 km2) corresponding to a mean rate of 67 ha yr-1, and (3) afforestation with exotic species in recent years by about 5 % (or 15 km2). Over the time period 1963-2009, about 50 % of the 64 km2 of native forests was cleared and converted to agricultural land. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow, which exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term change in precipitation but very likely result from anthropogenic disturbances associated with land cover change.
Describing Ecosystem Complexity through Integrated Catchment Modeling
NASA Astrophysics Data System (ADS)
Shope, C. L.; Tenhunen, J. D.; Peiffer, S.
2011-12-01
Land use and climate change have been implicated in reduced ecosystem services (ie: high quality water yield, biodiversity, and agricultural yield. The prediction of ecosystem services expected under future land use decisions and changing climate conditions has become increasingly important. Complex policy and management decisions require the integration of physical, economic, and social data over several scales to assess effects on water resources and ecology. Field-based meteorology, hydrology, soil physics, plant production, solute and sediment transport, economic, and social behavior data were measured in a South Korean catchment. A variety of models are being used to simulate plot and field scale experiments within the catchment. Results from each of the local-scale models provide identification of sensitive, local-scale parameters which are then used as inputs into a large-scale watershed model. We used the spatially distributed SWAT model to synthesize the experimental field data throughout the catchment. The approach of our study was that the range in local-scale model parameter results can be used to define the sensitivity and uncertainty in the large-scale watershed model. Further, this example shows how research can be structured for scientific results describing complex ecosystems and landscapes where cross-disciplinary linkages benefit the end result. The field-based and modeling framework described is being used to develop scenarios to examine spatial and temporal changes in land use practices and climatic effects on water quantity, water quality, and sediment transport. Development of accurate modeling scenarios requires understanding the social relationship between individual and policy driven land management practices and the value of sustainable resources to all shareholders.
NASA Astrophysics Data System (ADS)
Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce
2016-04-01
Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and for a range of different pesticides under alternative flow and wetland dimension scenarios. In agreement with observations, model predictions for metaldehyde losses in the monitored system were negligible. The scenario analysis suggested that, even for pesticides with a relatively short aquatic half life, wetland systems would need to be much larger than those studied here in order to get any appreciable attenuation. Shallow systems have highest potential for promoting losses due to biodegradation, if we assume that most degrading organisms reside in fixed biofilms in the sediment. Sorption is not predicted to represent a significant net sink, except over short time scales in the first runoff event after application.
Land use changing and land use optimization of Lake Baikal basin on the example of two key areas
NASA Astrophysics Data System (ADS)
Solodyankina, S.
2012-04-01
Lake Baikal contains roughly 20% of the world's unfrozen surface fresh water. It was declared a UNESCO World Heritage Site in 1996. Today levels of urbanization and economic stress on environmental resources is increasing on the shorts of the lake Baikal. The potential of economic development (industry, local tourism, and mining) of the Severobaykalsky and Sludyansky districts is rather high although they are characterized not only by beneficial features for local economy but also by considerable disadvantages for nature of this world valuable territory. This investigation show human-caused landscape changes during economic development of the two key areas in Baikal water catchment basin during 10 years (point of reference is 2000 year). Key areas are 1) the Baikalo-Patomskoe highland in the north of the Baikal catchment basin (Severobaykalsky district, Republic of Buryatia); 2) Khamar-Daban mountain system in the south of the Baikal catchment basin (Sludyansky districy, Irkutsk region). Since 2000 year land use of the territory has changed. Areas of agriculture were reduced but recreation activity on the bank of the lake was increased. Methods of GIS analysis and local statistic analysis of landscape characteristic were used. Nature, rural and urban areas ratio are estimated. Vegetation and soil condition assessment were made. The essence of this research is in helping to make decisions linked to upcoming problems: situation identification, evaluation and forecasting of the potential landscape condition, optimization of land use, mitigation of impact and mapping of territories and nature resources which have a high ecological value or endangered by industrial impact. For this purpose landscape maps of the territories on the base of the remote sensing information and field investigations were created. They used to calculate potential landscape functions of the territory without taking into account present impact of anthropogenic actions. Land use maps for years 2000 and 2010 were created to show: 1) how many landscape functions (ecosystem services) have been missed in time period of 2000-2010 years; 2) trends of land use changing. The nature-anthropogenic landscapes classification is developed, where natural and anthropogenic factors are taken into account in one system. It used to considerate of cumulative impacts of anthropogenic actions for each relevant resource, and to analyse of all past, present, and reasonably foreseeable future condition of whole landscape and its components (parent rock, surface and ground water, soil, flora and fauna, air).
Influence of rainfall and catchment characteristics on urban stormwater quality.
Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha
2013-02-01
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.
Regionalization of land-use impacts on streamflow using a network of paired catchments
NASA Astrophysics Data System (ADS)
Ochoa-Tocachi, Boris F.; Buytaert, Wouter; De Bièvre, Bert
2016-09-01
Quantifying the impact of land use and cover (LUC) change on catchment hydrological response is essential for land-use planning and management. Yet hydrologists are often not able to present consistent and reliable evidence to support such decision-making. The issue tends to be twofold: a scarcity of relevant observations, and the difficulty of regionalizing any existing observations. This study explores the potential of a paired catchment monitoring network to provide statistically robust, regionalized predictions of LUC change impact in an environment of high hydrological variability. We test the importance of LUC variables to explain hydrological responses and to improve regionalized predictions using 24 catchments distributed along the Tropical Andes. For this, we calculate first 50 physical catchment properties, and then select a subset based on correlation analysis. The reduced set is subsequently used to regionalize a selection of hydrological indices using multiple linear regression. Contrary to earlier studies, we find that incorporating LUC variables in the regional model structures increases significantly regression performance and predictive capacity for 66% of the indices. For the runoff ratio, baseflow index, and slope of the flow duration curve, the mean absolute error reduces by 53% and the variance of the residuals by 79%, on average. We attribute the explanatory capacity of LUC in the regional model to the pairwise monitoring setup, which increases the contrast of the land-use signal in the data set. As such, it may be a useful strategy to optimize data collection to support watershed management practices and improve decision-making in data-scarce regions.
Impact of land-use on water pollution in a rapidly urbanizing catchment in China
NASA Astrophysics Data System (ADS)
Khu, Soon-Thiam; Qin, Huapeng
2010-05-01
Many catchments in developing countries are undergoing fast urbanization which is usually characterized by population increase, economic growth as well as drastic changes of land-use from natural/rural to urban area. During the urbanization process, some catchments experience water quality deterioration due to rapid increase of pollution loads. Nonpoint source pollution resulting from storm water runoff has been recognized as one of the major causes of pollutants in many cities in developing countries. The composition of land-use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management in the catchment. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as the study area, and temporary monitoring sites were set at the outlets of its 6 sub-catchments to synchronously measured rainfall, runoff and water quality during 4 storm events. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants (such as COD, BOD, NH3-N, TN, TP and SS) in each sub-catchment during the storm events; and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land-use; however, they have different trends in heavy storm events, which correlate with the different proportional combination of residential, industrial, agricultural and bare land-use. It is also shown that it is necessary to consider some pervious land-use types in runoff pollution monitoring or management for a rapidly urbanizing area, particularly in heavy storm.
Wang, Jun; Fu, Bo-jie; Qiu, Yang; Chen, Li-ding
2003-03-01
Due to relatively strong human activities in the hilly area of Loess Plateau, the natural vegetation has been destroyed, and landscape pattern based on agricultural land matrix was land use mosaic composing of shrub land, grassland, woodland and orchard. This pattern has an important effect on soil moisture and soil nutrients. The Danangou catchment, a typical small catchment, was selected to study the effects of land use and its patterns on soil moisture and nutrients in this paper. The results are as follows: The comparisons of soil moisture among seven land uses for wet year and dry year were performed; (1) the average of soil moisture content for whole catchment was 12.11% in wet year, while it was 9.37% in dry year; (2) soil moisture among seven land uses significantly different in dry year, but not in wet year; (3) from wet year to dry year, the profile type of soil moisture changed from decreasing type to fluctuation-type and from fluctuant type to increasing type; (4) the increasing trend in soil moisture from the top to foot of hillslope occurred in simple land use along slope, while complicated distribution of soil moisture was observed in multiple land uses along slope. The relationship between soil nutrients and land uses and landscape positions were analysed: (1) five nutrient contents of soil organic matter (SOM), total N (TN), available N (AN), total P (TP) and available P (AP) in hilly area were lower than that in other area. SOM content was less than 1%, TN content less than 0.07%, and TP content between 0.05% and 0.06%; (2) SOM and TN contents in woodland, shrub land and grassland were significantly higher than that in fallow land and cropland, and higher level in soil fertility was found in crop-fruit intercropping land among croplands; (3) soil nutrient distribution and responses to landscape positions were variable depending on slope and the location of land use types.
Rochelle-Newall, Emma J.; Ribolzi, Olivier; Viguier, Marion; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Dinh, Rinh Pham; Naporn, Piyapong; Sy, Hai Tran; Soulileuth, Bounsamay; Hmaimum, Nikom; Sisouvanh, Pem; Robain, Henri; Janeau, Jean-Louis; Valentin, Christian; Boithias, Laurie; Pierret, Alain
2016-01-01
Lack of access to clean water and adequate sanitation continues to be a major brake on development. Here we present the results of a 12-month investigation into the dynamics of Escherichia coli, a commonly used indicator of faecal contamination in water supplies, in three small, rural catchments in Laos, Thailand and Vietnam. We show that land use and hydrology are major controlling factors of E. coli concentrations in streamwater and that the relative importance of these two factors varies between the dry and wet seasons. In all three catchments, the highest concentrations were observed during the wet season when storm events and overland flow were highest. However, smaller peaks of E. coli concentration were also observed during the dry season. These latter correspond to periods of intense farming activities and small, episodic rain events. Furthermore, vegetation type, through land use and soil surface crusting, combined with mammalian presence play an important role in determining E. coli loads in the streams. Finally, sampling during stormflow revealed the importance of having appropriate sampling protocols if information on maximum contamination levels is required as grab sampling at a fixed time step may miss important peaks in E. coli numbers. PMID:27604854
Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates
USDA-ARS?s Scientific Manuscript database
SMAP (Soil Moisture Active and Passive) radiometer observations at 40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model to generate the 9-km SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution radar observations from Sentinel-1 to ...
NASA Astrophysics Data System (ADS)
Lavrieux, Marlène; Meusburger, Katrin; Birkholz, Axel; Alewell, Christine
2017-04-01
Slope destabilization and associated sediment transfer are among the major causes of aquatic ecosystems and surface water quality impairment. Through land uses and agricultural practices, human activities modify the soil erosive risk and the catchment connectivity, becoming a key factor of sediment dynamics. Hence, restoration and management plans of water bodies can only be efficient if the sediment sources and the proportion attributable to different land uses and agricultural practices are identified. Several sediment fingerprinting methods, based on the geochemical (elemental composition), color, magnetic or isotopic (137Cs) sediment properties, are currently in use. However, these tools are not suitable for a land-use based fingerprinting. New organic geochemical approaches are now developed to discriminate source-soil contributions under different land-uses: The compound-specific stable isotopes (CSSI) technique, based on the biomarkers isotopic signature (here, fatty acids δ13C) variability within the plant species, The analysis of highly specific (i.e. source-family- or even source-species-specific) biomarkers assemblages, which use is until now mainly restricted to palaeoenvironmental reconstructions, and which offer also promising prospects for tracing current sediment origin. The approach was applied to reconstruct the spatio-temporal variability of the main sediment sources of Baldegg Lake (Lucern Canton, Switzerland), which suffers from a substantial eutrophication, despite several restoration attempts during the last 40 years. The sediment supplying areas and the exported volumes were identified using CSSI technique and highly specific biomarkers, coupled to a sediment connectivity model. The sediment origin variability was defined through the analysis of suspended river sediments sampled at high flow conditions (short term), and by the analysis of a lake sediment core covering the last 130 years (long term). The results show the utility of biomarkers and CSSI to track organic sources in contrasted land-use settings. Associated to other fingerprinting methods, this approach could in the future become a decision support tool for catchments management.
Soil surface lowering due to soil erosion in villages near Lake Victoria, Uganda
NASA Astrophysics Data System (ADS)
de Meyer, A.; Deckers, J.; Poesen, J.; Isabirye, M.
2009-04-01
In the effort to pinpoint the sources of sediment pollution in Lake Victoria, the contribution of sedi-ment from compounds, landing sites, main roads and footpaths is determined in the catchment of Na-bera Bay and Kafunda Bay at the northern shore of Lake Victoria in southern Uganda. The amount of soil loss in compounds and landing sites is determined by the reconstruction of the original and current soil surface according to botanical and man-made datable objects. The soil erosion rate is then deter-mined by dividing the eroded soil volume (corrected for compaction) by the age of the oldest datable object. In the study area, the average soil erosion rate in compounds amounts to 107 Mg ha-1 year-1 (per unit compound) and in landing sites to 207 Mg ha-1 year-1 (per unit landing site). Although com-pounds and landing sites occupy a small area of the study area (1.1 %), they are a major source of sediment to Lake Victoria (63 %). The soil loss on footpaths and main roads is calculated by multip-lying the total length of footpaths and main roads with the average width and depth (measured towards a reference surface). After the correction for compaction is carried out, the soil erosion rate on foot-paths amounts to 34 Mg ha-1 year-1 and on main roads to 35 Mg ha-1 year-1. Also footpaths and main roads occupy a small area of the study area (1.1 %), but contribute disproportionately to the total soil loss in the catchment (22 %). In this research, the information about the village/compound given by the villager/owner is indispensable. In accordance to an adaptation of the model of McHugh et al. (2002), 32 % of the sediment that is generated in the catchment, is deposited in Lake Victoria (i.e. 2 209 Mg year-1 or 0.7 Mg ha-1 year-1). The main buffer in the study area is papyrus at the shore of Lake Victoria. Also sugarcane can be a major buffer. However, the sugarcane-area is intersected by com-pounds, landing sites, footpaths and main roads that generate large amounts of sediment and function as main bypass mechanisms (high CR) facilitating and enhancing sediment delivery to Lake Victoria.
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Ramon, Batalla; Araújo José C., De; da Costa Alexandre, Cunha; Till, Francke; Andreas, Güntner; Jose, Lopez-Tarazon; George, Mamede; Müller Eva, N.
2010-05-01
About one-third of the global population currently lives in countries which experience conditions of water stress. Such regions, often located within dryland ecosystems, are exposed to the hazard that the available freshwater resources fail to meet the water demand in domestic, agricultural and industrial sectors. Water availability often relies on the retention of river runoff in artificial lakes and reservoirs. However, the water storage in reservoirs is often adversely affected by sedimentation as a result of soil erosion. Erosion of the land surface due to natural or anthropogenic reasons and deposition of the eroded material in reservoirs threatens the reliability of reservoirs as a source of water supply. To sustain future water supply, a quantification of the sediment export from large dryland catchments becomes indispensable. A comprehensive modelling framework for water and sediment transport at the meso-scale, with a particular focus on dryland regions, has been developed from a German, Catalonian and Brazilian team during the last decade. It includes novel components for erosion from erosion-prone hillslopes, sediment transfer, retention and re-mobilization through the river system and sediment distribution, trapping and transfer through a reservoir. The parameterisation for pilot catchments is based on field monitoring campaigns of water and sediment fluxes, the analysis of land-use patterns, and the identification of the sediment hot spots through remotely sensed data. We present results of erosion-prone landscape units, the role of sediment transport in the river system, and the sedimentation processes in reservoirs. The modelling studies demonstrate the wide range of environmental problems where the model may be employed to develop sustainable management strategies for land and water resources. Evaluation of scenarios (land use, climate change) combined with an integrated assessment of options in reservoir management opens the opportunity to address relevant questions of water management including problems of water yield, reservoir capacity and economical comparison of on-/ offsite sediment management.
The impact of changing climate on surface and ground water quality in southeast of Ireland
NASA Astrophysics Data System (ADS)
Tribak, Kamal
2015-04-01
In the current changing climate globally, Ireland have been experiencing a yearly recurrent extreme heavy rainfall events in the last decade, with damaging visible effects socially, economically and on the environment. Ireland intensive agriculture production is a major treat to the aquatic environment, Nitrogen and phosphorus losses to the water courses are major causes to eutrophication. The European Water Frame Directive (WFD 2000/60/EC) and Nitrates Directive (91/676/EEC) sets a number of measures to better protect and improve water status. Five years of high temporal resolution river water quality data measurement from two contrasting catchment in the southeast of Ireland were correlated with rain fall and nutrients losses to the ground and surface water, additional to the integrated Southeast River District Basin ground and surface water quality to establish spatiotemporal connection to the agriculture activities, the first well-drained soil catchment had high coefficient correlation with rain fall with higher losses to groundwater, on the other hand higher nutrients losses to surface water were higher with less influence from groundwater recharge of N and P transfer, the poorly clay base soil contributed to higher increased losses to surface water during excessive rain fall. Agriculture activities, hydrology, geology and human interaction can interact according to their site specific setting and the effects will fluctuate dependent on the conditions influencing the impact on water quality, there is a requirement to better distinguish those effects together and identify areas and land uses control and nutrients management to improve the water quality, stakeholders co-operation along with effective polices, long term monitoring, nutrients pathways management and better understanding of the environmental factors interaction on national, regional and catchment scale to enable planning policies and enforcement measures to be more focused on areas of high risk than others.
Bartley, Rebecca; Speirs, William J; Ellis, Tim W; Waters, David K
2012-01-01
Land use (and land management) change is seen as the primary factor responsible for changes in sediment and nutrient delivery to water bodies. Understanding how sediment and nutrient (or constituent) concentrations vary with land use is critical to understanding the current and future impact of land use change on aquatic ecosystems. Access to appropriate land-use based water quality data is also important for calculating reliable load estimates using water quality models. This study collated published and unpublished runoff, constituent concentration and load data for Australian catchments. Water quality data for total suspended sediments (TSS), total nitrogen (TN) and total phosphorus (TP) were collated from runoff events with a focus on catchment areas that have a single or majority of the contributing area under one land use. Where possible, information on the dissolved forms of nutrients were also collated. For each data point, information was included on the site location, land use type and condition, contributing catchment area, runoff, laboratory analyses, the number of samples collected over the hydrograph and the mean constituent concentration calculation method. A total of ∼750 entries were recorded from 514 different geographical sites covering 13 different land uses. We found that the nutrient concentrations collected using "grab" sampling (without a well defined hydrograph) were lower than for sites with gauged auto-samplers although this data set was small and no statistical analysis could be undertaken. There was no statistically significant difference (p<0.05) between data collected at plot and catchment scales for the same land use. This is most likely due to differences in land condition over-shadowing the effects of spatial scale. There was, however, a significant difference in the concentration value for constituent samples collected from sites where >90% of the catchment was represented by a single land use, compared to sites with <90% of the upstream area represented by a single land use. This highlights the need for more single land use water quality data, preferably over a range of spatial scales. Overall, the land uses with the highest median TSS concentrations were mining (∼50,000mg/l), horticulture (∼3000mg/l), dryland cropping (∼2000mg/l), cotton (∼600mg/l) and grazing on native pastures (∼300mg/l). The highest median TN concentrations are from horticulture (∼32,000μg/l), cotton (∼6500μg/l), bananas (∼2700μg/l), grazing on modified pastures (∼2200μg/l) and sugar (∼1700μg/l). For TP it is forestry (∼5800μg/l), horticulture (∼1500μg/l), bananas (∼1400μg/l), dryland cropping (∼900mg/l) and grazing on modified pastures (∼400μg/l). For the dissolved nutrient fractions, the sugarcane land use had the highest concentrations of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). Urban land use had the highest concentrations of dissolved inorganic phosphorus (DIP). This study provides modellers and catchment managers with an increased understanding of the processes involved in estimating constituent concentrations, the data available for use in modelling projects, and the conditions under which they should be applied. Areas requiring more data are also discussed. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Henine, Hocine; Julien, Tournebize; Jaan, Pärn; Ülo, Mander
2017-04-01
In agricultural areas, nitrogen (N) pollution load to surface waters depends on land use, agricultural practices, harvested N output, as well as the hydrology and climate of the catchment. Most of N transfer models need to use large complex data sets, which are generally difficult to collect at larger scale (>km2). The main objective of this study is to carry out a hydrological and a geochemistry modeling by using a simplified data set (land use/crop, fertilizer input, N losses from plots). The modelling approach was tested in the subsurface-drained Orgeval catchment (Paris Basin, France) based on following assumptions: Subsurface tile drains are considered as a giant lysimeter system. N concentration in drain outlets is representative for agricultural practices upstream. Analysis of observed N load (90% of total N) shows 62% of export during the winter. We considered prewinter nitrate (NO3) pool (PWNP) in soils at the beginning of hydrological drainage season as a driving factor for N losses. PWNP results from the part of NO3 not used by crops or the mineralization part of organic matter during the preceding summer and autumn. Considering these assumptions, we used PWNP as simplified input data for the modelling of N transport. Thus, NO3 losses are mainly influenced by the denitrification capacity of soils and stream water. The well-known HYPE model was used to perform water and N losses modelling. The hydrological simulation was calibrated with the observation data at different sub-catchments. We performed a hydrograph separation validated on the thermal and isotopic tracer studies and the general knowledge of the behavior of Orgeval catchment. Our results show a good correlation between the model and the observations (a Nash-Sutcliffe coefficient of 0.75 for water discharge and 0.7 for N flux). Likewise, comparison of calibrated PWNP values with the results from a field survey (annual PWNP campaign) showed significant positive correlation. One can conclude that the simplified modeling approach using PWNP as a driving factor for the evaluation of N losses from drained agricultural catchments gave satisfactory results and we can propose this approach for a wider use.
Spatial heterogeneity of leaf area index across scales from simulation and remote sensing
NASA Astrophysics Data System (ADS)
Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl
2016-04-01
Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.
Towards protecting the Great Barrier Reef from land-based pollution.
Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart
2016-06-01
The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nebiyu, Amsalu; Dume, Bayu; Bode, Samuel; Ram, Hari; Boeckx, Pascal
2017-04-01
Land degradation and associated processes such as gullying, flooding and sedimentation, are among the developmental challenges in many countries and HEP reservoirs in the Gilgel Gibe catchment, Ethiopia, are under threat from siltation. Soil erosion is one of the biggest global environmental problems resulting in both on-site and offsite effects which have economic implications and an essential actor in assessing ecosystem health and function. Sediment supply in a catchment is heterogeneous in time and space depending on climate, land use and a number of landscape characteristics such as slope, topography, soil type, vegetation and drainage conditions. In the Ethiopian highlands, sediment delivery depends on discharge, the onset of rainfall, land use and land cover, which varies between rainfall seasons. There is also a variation among catchments in suspended sediment concentration due to the variation in the catchments characteristics in Ethiopia. Rainfall-runoff relationship, sediment production and delivery to rivers or dams is variable and poorly understood; due to heterogeneous lithology; various climatic conditions across small spatial scales; land use and land management practices in Ethiopia. Spatial variation in sediment yield in Africa varies to differences in seismic activity, topography, vegetation cover and annual runoff depth. In the Gilgel-Gibe catchment, the annual sediment load of the Gilgel-Gibe River has been estimated to be about 4.5×107 tons taking the contribution of sheet erosion alone. Also, the suspended sediment yield of the tributaries in Gilgel-Gibe catchment has been estimated to be in the range of 0.4-132.1 tons per hectare per year. The soil loss due to landslide alone in the past 20 years in the catchment was about 11 t/ha/yr. Heavy rainfall, bank erosion and river incisions have been indicated as the main triggering factors for landslides and the associated sediment delivery in the Gilgel-Gibe catchment. Approaches for catchment restoration and reduction of sediment flux are considered. The long term sustainability of HEP power generation in Ethiopia is evaluated in this context.
NASA Astrophysics Data System (ADS)
Barnhart, T. B.; Vukomanovic, J.; Bourgeron, P.; Molotch, N. P.
2017-12-01
Land-cover change at the alpine-subalpine interface has the potential to change the water balance of mountainous, snow-dominated catchments due to the influence of vegetation on blowing snow, effective precipitation, evapotranspiration, and other processes. Understanding how land-cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce a disproportionate amount of runoff relative to their land area. We coupled the LANdscape DIsturbance and Succession (LANDIS-II) model with a spatially explicit, physics-based, watershed process model, the Regional Hydro-Ecologic Simulation System (RHESSys), to simulate land-cover change and its impact on the water balance in a 6.6 km2 headwater catchment that spans the alpine-subalpine transition on the Colorado Front Range. We simulated two potential futures of air temperature warming (+4 °C/century) to 2100: a) increased precipitation (+15%, MP) and b) decreased precipitation (-15%, LP). As the LANDIS-II model simulates forest succession in a stochastic manner, we use three LANDIS-II model runs each for the MP and LP future forcing conditions. For both MP and LP, the RHESSys forcing data set was updated to reflect the changes in precipitation and temperature used to generate the land-cover futures. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Somewhat surprisingly, this increase in forest cover led to mean increases in streamflow production of 9% for MP and 3% for LP in 2050. In 2100, mean streamflow production increased by 15% and 6% for the MP and LP scenarios, respectively. This is likely due to increases in effective precipitation as the catchment forested and blowing snow decreased. Indeed, catchment effective precipitation increased from 94% in 2000 to 97% and 99% in 2050 and 2100, respectively, for both MP and LP conditions. This result counters previous work as runoff production increased with forested area, highlighting the need to better understand the impacts of forest expansion on blowing snow and effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land-cover change is of critical importance due to the potential water resources impacts in downstream regions.
NASA Astrophysics Data System (ADS)
Edelmann, Katharina; Nóbrega, Rodolfo L. B.; Gerold, Gerhard
2017-04-01
The Amazon and Cerrado biomes in Brazil have been under intense land-use change during the past few decades. The conversion of native vegetation to pastures and croplands has caused impacts on hydrological processes in these biomes, resulting in increased streamflow and nutrient fluxes. Our aim was to compare the nutrient dynamics during stormflow events in two pairs of adjacent micro-catchments with similar physical characteristics under contrasting land use, i.e. native vegetation (rainforest or cerrado) and pasture. One pair of catchments was located in the Amazon and the other in the Cerrado, both on the Amazon Agricultural Frontier in the Brazilian states of Mato Grosso and Pará. We collected hydrological and hydrochemical data on 50 stormflow events on a sub-hourly resolution during the wet seasons of 2013 and 2014. We compared the dynamics of total inorganic carbon (TIC), total organic carbon (TOC), dissolved organic carbon (DOC), nitrate (NO3), calcium (Ca), potassium (K), and magnesium (Mg) in different hydrograph parts, i.e. rising limb, peak and recession limb, between the catchments within the same biome. For the Cerrado biome, our findings show that the nutrient concentrations in the stormflows were higher in the pasture catchment than in the cerrado catchment. In the Amazon biome, we found an inverse relationship with higher concentrations in the forest catchment than in the pasture catchment, except for TIC and K. Most nutrients in the cerrado catchment had the highest concentrations in the rising limb. Mg, however, reached highest concentrations during peak discharge, and lowest in the recession limb. In the adjacent pasture catchment, in contrast, the highest nutrient concentrations were observed during the peak discharge (TIC, TOC, Ca) or the recession limb (DOC, NO3, K, Mg) with lowest in the rising limb, except for NO3, which showed the lowest concentrations during peak discharge. In the Amazon forest catchment, the peak discharge showed the highest nutrient concentrations, while concentrations in the recession limb were higher than in the rising limb. We also found that in this catchment K concentrations were lower in the recession limb than in the rising limb. In the Amazonian pasture catchment, the peak discharge showed the greatest concentrations for TIC, TOC, and Ca, and the rising limb the lowest. DOC and NO3 concentrations in this catchment were the highest in the rising and were lowest in peak discharge, while K increased over time. Based on that, we conclude that stormflow is an important driver of nutrients fluxes due to land-use change on the Amazon Agricultural Frontier, with significant increases and distinguished dynamics during the storm events, and higher nutrient concentrations in the catchments with pastures than in the ones with native vegetation, especially for TIC and K.
NASA Astrophysics Data System (ADS)
Serpa, Dalila; Nunes, João Pedro; Santos, Juliana; Sampaio, Elsa; Jacinto, Rita; Veiga, Sandro; Lima, Júlio; Moreira, Madalena; Corte-Real, João; Keizer, Jan Jacob; Abrantes, Nelson
2016-04-01
The impacts of climate and land use changes on streamflow and sediment export were evaluated for a humid (São Lourenço) and a dry (Guadalupe) Mediterranean catchment, using the Soil and Water Assessment Tool (SWAT) model. SWAT was able to produce viable streamflow and sediment export simulations for both catchments, which provided a baseline for investigating climate and land use changes under the A1B and B1 emission scenarios for the period between 2071 and 2100. Compared to the baseline period (1971-2000), climate change scenarios forecasted a decrease in annual precipitation in both catchments (humid, both scenarios: -12%; dry, both scenarios: -8%), but with strong increases during winter. Land use changes followed a socio-economic storyline in which traditional agriculture was replaced by more profitable land uses, i.e. corn and commercial forestry at the humid site and sunflower at the dry site. Climate changes led to a decrease of streamflow in both catchments (humid, both scenarios: -13%; dry, A1B: -14%; B1: -18%), mostly as a consequence of the projected decrease in rainfall. Land use changes led to small increases in flow discharge, but a higher increase was observed for the dry site under scenario A1B (humid, A1B: +0.3%; B1: +1%; dry, A1B: +6%; B1: +0.3%). The combination of climate and land use scenarios was mostly dominated by the climatic response, since a decrease in streamflow was observed for both catchments (humid, A1B: -13%; B1: -12%; dry, A1B: -8%; B1: -18%). Regarding the erosive response, clear differences were observed between catchments mostly due to differences in both the present-day and forecasted vegetation types. Climate scenarios led to a decrease in sediment export at the humid catchment (A1B: -11%; B1: -9%) and to an increase at the dry catchment (A1B: +24%; B1: +22%) in the first case due to the predominant vegetation type (vineyards and maritime pine) providing year-round cover, while in the second, due to annual crops (wheat and pasture) exposing soils during winter. For land use scenarios, the same contrast occurred between catchments (humid, A1B: -18%; B1: -10%; dry, A1B: +257%; B1: +9%) due to the expansion of permanent cover vegetation in one case and annual crops in the other. Climate and land use changes had off-setting effects on sediment export at the humid catchment (A1B: -29%; B1: -22%), as a result of reduced precipitation and cultivation of more soil-protective crops. A different response was observed for the dry catchment (A1B: +222%; B1: +5%), as the increase in sediment export associated with the cultivation of highly erosion-prone crops was not aggravated by the higher rainfall amounts forecasted for winter months. The results of the present study highlight that indirect impacts of climate change, like land use changes, might be similar or more severe than direct impacts.
Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.
2010-01-01
Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.
Oltmann, Richard N.; Shulters, Michael V.
1989-01-01
Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments during the 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete run6ff samples were analyzed for numerous inorganic, biological, physical, and organic constituents. Atmospheric dry-deposition and street-surface particulate samples also were collected and analyzed. With the exception of the industrial catchment, the highest runoff concentrations for most constituents occurred during the initial storm runoff and then decreased throughout the remainder of the storm, independent of hydraulic conditions. Metal concentrations were high during initial runoff, but also increased as flow increased. Constituent concentrations for the industrial catchment fluctuated greatly during storms. Statistical tests showed higher ammonia plus organic nitrogen, ammonia, pH, and phenol concentrations in rainfall at the industrial site than at the single-dwelling residential and laboratory sites. Statistical testing of runoff quality data showed higher concentrations for the industrial catchment than for the two residential and commercial catchments for most constituents. Total recoverable lead was one of the few constituents that had lower concentrations for the industrial catchment than for the other three catchments. The two residential catchments showed no significant difference in runoff concentrations for 50 of the 57 constituents used in the statistical analysis. The commercial catchment runoff concentrations for most constituents generally were similar to the residential catchments. Although constituent concentrations generally were higher for the industrial catchment than for the commercial catchment, constituent storm loads from the commercial catchment were similar to the industrial catchment because of the greater runoff volume from the highly impervious commercial catchment. Between 10 and 50 percent of the constituent runoff loads for the two residential catchments were attributed to the rainfall load, with the percentages generally considerably less for the industrial catchment. Event mean concentrations (EMC) for most constituents for all but the industrial catchment were highest for the first two or three storms of the rain season after which they became almost constant. Constituent event mean concentrations for the industrial catchment generally did not show any pattern throughout a rain season. Multiple-regression predictor equations for event mean concentrations were developed for several constituents for all sites. Average annual constituent unit loads were computed for 18 constituents for each catchment. The organophosphorus compounds, diazinon, malathion, and parathion were the most prevalent pesticides detected in rainfall. Diazinon was detected in all 54 rainfall samples. Parathion and malathion were detected in 49 and 50 samples, respectively. Other pesticides detected in rainfall included chlordane, lindane, methoxychlor, endosulfan, and 2,4-D. Of these, only methoxychlor and endosulfan were not consistently detected in runoff.
Assessing catchment connectivity using hysteretic loops
NASA Astrophysics Data System (ADS)
Davis, Jason; Masselink, Rens; Goni, Mikel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel; Keesstra, Saskia
2017-04-01
Storm events mobilize large proportions of sediments in catchment systems. Therefore understanding catchment sediment dynamics throughout the continuity of storms and how initial catchment states act as controls on the transport of sediment to catchment outlets is important for effective catchment management. Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within catchments (Baartman et al., 2013; Parsons et al., 2015; Masselink et al., 2016a,b; Mekonnen et al., 2016). However, sediment connectivity alone does not provide a practicable mechanism by which the catchment's initial state - and thus the location of entrained sediment in the sediment transport cascade - can be characterized. Studying the dynamic relationship between water discharge (Q) and suspended sediment (SS) at the catchment outlet can provide a valuable research tool to infer the likely source areas and flow pathways contributing to sediment transport because the relationship can be characterized by predictable hysteresis patterns. Hysteresis is observed when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed - towards the increase or towards the diminution of the flow. However, the complexity of the phenomena and factors which determine the hysteresis make its interpretation ambiguous. Previous work has described various types of hysteretic loops as well as the cause for the shape of the loop, mainly pointing to the origin of the sediments. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz principal and Oskotz woodland). La Tejería and Latxaga watersheds are similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops). Ozkotz principal (ca.1,700 ha) is covered with forest and pasture (cattle-breeding); while Oskotz woodland (ca. 500 ha), a sub-watershed of the Oskotz principal, is almost completely covered with forest. The predominant climate in the Oskotz catchments sub-Atlantic. Furthermore, antecedent conditions and event characteristics were analysed. The loops were compared quantitatively and qualitatively between catchments for similar events and within the catchments for events with different characteristics. In this study, several measures to objectively classify hysteresis loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. These loop characteristics were compared to event specific characteristics such as antecedent precipitation, time of year, and precipitation intensity, duration and total. The combination of hysteresis loops and variables influencing connectivity can then tell something about the sources of sediments for different events and catchments. References Baartman, J.E.M., Masselink, R.H., Keesstra, S.D., Temme, A.J.A.M., 2013. Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms 38: 1457-1471. Masselink RJH, Heckmann T, Temme AJAM, Anders NS, Gooren HPA, Keesstra SD. 2016. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes. DOI: 10.1002/hyp.10993 Masselink, R.J.H., Keesstra, S.D., Temme, A.J.A.M., Seeger, M., Giménez, R., Casalí, J., 2016. Modelling Discharge and Sediment Yield at Catchment Scale Using Connectivity Components. Land Degradation and Development 27: 933-945, DOI: 10.1002/ldr.2512 Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., Maroulis, J., Reducing sediment connectivity through man-made and natural sediment sinks in the Minizr catchment, north-west Ethiopia. Accepted to Land Degradation and Development. Parsons A.J., Bracken L., Peoppl , R., Wainwright J., Keesstra, S.D., 2015. Editorial: Introduction to special issue on connectivity in water and sediment dynamics. In press in Earth Surface Processes and Landforms. DOI: 10.1002/esp.3714
NASA Astrophysics Data System (ADS)
Lovette, J. P.; Duncan, J. M.; Band, L. E.
2016-12-01
Watershed management requires information on the hydrologic impacts of local to regional land use, land cover and infrastructure conditions. Management of runoff volumes, storm flows, and water quality can benefit from large scale, "top-down" screening tools, using readily available information, as well as more detailed, "bottom-up" process-based models that explicitly track local runoff production and routing from sources to receiving water bodies. Regional scale data, available nationwide through the NHD+, and top-down models based on aggregated catchment information provide useful tools for estimating regional patterns of peak flows, volumes and nutrient loads at the catchment level. Management impacts can be estimated with these models, but have limited ability to resolve impacts beyond simple changes to land cover proportions. Alternatively, distributed process-based models provide more flexibility in modeling management impacts by resolving spatial patterns of nutrient source, runoff generation, and uptake. This bottom-up approach can incorporate explicit patterns of land cover, drainage connectivity, and vegetation extent, but are typically applied over smaller areas. Here, we first model peak flood flows and nitrogen loads across North Carolina's 70,000 NHD+ catchments using USGS regional streamflow regression equations and the SPARROW model. We also estimate management impact by altering aggregated sources in each of these models. To address the missing spatial implications of the top-down approach, we further explore the demand for riparian buffers as a management strategy, simulating the accumulation of nutrient sources along flow paths and the potential mitigation of these sources through forested buffers. We use the Regional Hydro-Ecological Simulation System (RHESSys) to model changes across several basins in North Carolina's Piedmont and Blue Ridge regions, ranging in size from 15 - 1,130 km2. The two approaches provide a complementary set of tools for large area screening, followed by smaller, more process based assessment and design tools.
Calibration of a distributed hydrologic model for six European catchments using remote sensing data
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.
2017-12-01
While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.
Sediment budgets of mountain catchments: Scale dependence and the influence of land-use
NASA Astrophysics Data System (ADS)
Förster, Helga; Dotterweich, Markus; Wunderlich, Jürgen
2010-05-01
Long-term sediment budgets of forested mountain catchments are scarcely investigated today. This is because they are traditionally expected to show few erosion features and low sediment delivery. This opinion originates from process-based hydrological studies proving the runoff preventing properties of trees and forest soils. In addition mountain areas have been colonized later and only sporadically compared to the fruitful loess-covered lowlands. On the other hand steep hillslopes, narrow valleys and the availability of regolith cause a high erosion potential. And there is evidence that historical floods and yearly occurring storms initiate intensive but local and sporadic erosion events. Sediment budgets from zero-order catchments of the Palatinate Forest in the south-western sandstone escarpment in Rhineland-Palatinate show spatially varying intensities of land use impact and relief conditions. The budgets are based on field data and a soilscape model of an upper periglacial cover bed with a homogenous thickness. OSL- and 14C-dates of colluvial deposits allow relating erosion events to land-use changes derived from historical maps and written archives. The presented case studies from the Palatinate Forest are of special interest as the high proximity to the loess-covered and intensively cultivated Rhine Graben effected settlement and land-use intensity in the mountain catchments. Clear cuts for settlements were joined by deforestation for agriculture and stretched mainly along the Haardtrand and high order valleys. Off these areas the strength of interference in the forest ecosystem depended on transport possibilities and distance to the Rhine Graben. In the vicinity strong devastation and clear cutting occurred. With increasing distance the felling intensity decreased and some parts seem to be nearly undisturbed until the 18th century. The needs for wood were controlled by the economical development as well as political decisions on local to European scale. The results from Palatinate Forest show that some of the cultural phases, which have been determined as main Holocene erosion phases in the Rhine Graben, did not extend to the mountain areas. The colluvial documentation of settlement history in small catchments directly connected to the Rhine Graben starts in the Neolithic Period but is not continual, while in those within the mountains colluvial layers older than modern times are missing. An inquiry of historical and modern storm events supports the requirements of local differentiation of sediment dynamics. On the meso-scale the sediment budget of the Speyerbach shows, that the output of the catchment is higher than the sedimentation within the catchment area. A diverse pattern occurs on the local scale: while the loess-covered subcatchments show a dominance of sedimentation, the steeper ones with narrow valleys shows an exceeding delivery to the output. As the latter ones are dominant in the Speyerbach catchment, the meso-scale catchment budget seems to be determined by the majority. Micro-scale diversity of land-use history therefore determines the sediment delivery rate of small mountain catchments and underlines the need for systematic archaeological research activities in mountain areas in Germany.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2016-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2017-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
Argue, Denise M.; Pope, Jason P.; Dieffenbach, Fred
2012-01-01
An inventory of water-quality data on field parameters, major ions, and nutrients provided a summary of water quality in headwater (first- and second-order) streams within watersheds along the Appalachian National Scenic Trail (Appalachian Trail). Data from 1,817 sampling sites in 831 catchments were used for the water-quality summary. Catchment delineations from NHDPlus were used as the fundamental geographic units for this project. Criteria used to evaluate sampling sites for inclusion were based on selected physical attributes of the catchments adjacent to the Appalachian Trail, including stream elevation, percentage of developed land cover, and percentage of agricultural land cover. The headwater streams of the Appalachian Trail are generally dilute waters, with low pH, low acid neutralizing capacity (ANC), and low concentrations of nutrients. The median pH value was slightly acidic at 6.7; the median specific conductance value was 23.6 microsiemens per centimeter, and the median ANC value was 98.7 milliequivalents per liter (μeq/L). Median concentrations of cations (calcium, magnesium, sodium, and potassium) were each less than 1.5 milligrams per liter (mg/L), and median concentrations of anions (bicarbonate, chloride, fluoride, sulfate, and nitrate) were less than 10 mg/L. Differences in water-quality constituent levels along the Appalachian Trail may be related to elevation, atmospheric deposition, geology, and land cover. Spatial variations were summarized by ecological sections (ecosections) developed by the U.S. Forest Service. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all negatively correlated with elevation. The highest elevation ecosections (White Mountains, Blue Ridge Mountains, and Allegheny Mountains) had the lowest pH, ANC, and concentrations of major ions. The lowest elevation ecosections (Lower New England and Hudson Valley) generally had the highest pH, ANC, and concentrations of major ions. The geology in discrete portions of these two ecosections was classified as containing carbonate minerals which has likely influenced the chemical character of the streamwater. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all positively correlated with percentages of developed and agricultural land uses at the lower elevations of the central region of the Appalachian Trail (including the Green-Taconic-Berkshire Mountains, Lower New England, Hudson Valley, and Northern Ridge and Valley ecosections). The distinctly different chemical character of the streams in the central sections of the Appalachian Trail is likely related to the lower elevations, the presence of carbonate minerals in the geology, higher percentages of developed and agricultural land uses, and possibly the higher inputs of sulfate and nitrate from atmospheric deposition. Acid deposition of sulfate and nitrate are important influences on the acid-base chemistry of the surface waters of the Appalachian Trail. Atmospheric deposition estimates are consistently high (more than 18 kilograms per hectare (kg/ha) for sulfate, and more than 16 kg/ha for nitrate) at both the highest and lowest elevations. However, the lowest elevation (Green-Taconic-Berkshire Mountains, Lower New England, Hudson Valley, Northern Glaciated Allegheny Plateau, and Northern Ridge and Valley ecosections) included the largest spatial area of sustained high estimates of atmospheric deposition. Calcium-bicarbonate was the most frequently calculated water type in the Lower New England and Hudson Valley ecosections. In the northern and southern sections of the Appalachian Trail mix-cation water types were most prevalent and sulfate was the predominate anion. The predominance of the sulfate anion in the surface waters of the northern and southern ecosections likely reflects the influence of sulfate deposition. Although the central portion of the Appalachian Trail has the largest spatial area of high atmospheric acid deposition, the lower ionic strength waters in the northern and southern ecosections of the Appalachian Trail may have been more adversely affected by acid deposition. The low ionic strength of the streams in the White Mountains, Blue Ridge Mountains, and Allegheny Mountains ecosections makes parts of these regions susceptible to seasonal or event-driven episodic acidification, which can be detrimental to health of aquatic and terrestrial ecosystems. Median catchment ANC values were classified into three groups - acidic, sensitive, and insensitive. The White Mountains, Blue Ridge Mountains, and Allegheny Mountains ecosections included the highest frequency of catchments classified as acidic or sensitive. More than 56 percent of the catchments from the White Mountains ecosection were classified as sensitive to acidic inputs. In the Blue Ridge ecosection, 1.6 percent of the catchments were classified as acidic, and 38.2 percent of the catchments were classified as sensitive to acidic inputs. In the Allegheny Mountains ecosection, 17.6 percent of the catchments were classified as acidic, and 29.4 percent of the catchments were classified as sensitive to acidic inputs. Median concentrations of nitrogen species were less than 0.4 mg/L, and median concentrations of total phosphorus were less than 0.02 mg/L along the Appalachian Trail. A comparison of median catchment concentrations of nutrients to estimated national background concentrations demonstrated that concentrations along the Appalachian Trail are generally lower. A comparison of median concentrations of total nitrogen and total phosphorus to the U.S. Environmental Protection Agency's (USEPA) nutrient criteria for the Eastern U.S. ecoregions showed that the concentrations of total nitrogen in the northern section of the Appalachian Trail were generally higher than the USEPA criterion. Similarly, median concentrations of total phosphorus in the southern regions of the Appalachian Trail were approximately twice as high as USEPA criteria. Sections of the Appalachian Trail are adjacent to modest amounts of agricultural and developed land areas. These nonforested land areas may be contributing to the percentage of catchments in which concentrations of total nitrogen and total phosphorus are higher than USEPA nutrient ecoregion criteria.
Adams, Vanessa M.; Pressey, Robert L.
2014-01-01
Land use change is the most significant driver linked to global species extinctions. In Northern Australia, the landscape is still relatively intact with very low levels of clearing. However, a re-energized political discourse around creating a northern food bowl means that currently intact ecosystems in northern Australia could be under imminent threat from increased land clearing and water extraction. These impacts are likely to be concentrated in a few regions with suitable soils and water supplies. The Daly River Catchment in the Northern Territory is an important catchment for both conservation and development. Land use in the Daly catchment has been subject to clearing guidelines that are largely untested in terms of their eventual implications for the spatial configuration of conservation and development. Given the guidelines are not legislated they might also be removed or revised by subsequent Territory Governments, including the recently-elected one. We examine the uncertainties around the spatial implications of full implementation of the Daly clearing guidelines and their potential effects on equity of opportunity across land tenures and land uses. We also examine how removal of the guidelines could affect conservation in the catchment. We conclude that the guidelines are important in supporting development in the catchment while still achieving conservation goals, and we recommend ways of implementing the guidelines to make best use of available land resources for intensified production. PMID:24798486
NASA Astrophysics Data System (ADS)
Robinet, J.; Minella, J. P. G.; Schlesner, A.; Lücke, A.; Ameijeiras-Marino, Y.; Opfergelt, S.; Vanderborght, J.; Gerard, G.
2017-12-01
Changes in runoff pathways affect many environmental processes. Land use change (LUC), and more specifically forest conversion to arable land, is one of the controls of water fluxes at the hillslope or catchment scale. Still, the long term effects of forest conversion and agricultural activities in (sub-) tropical environments have been relatively understudied. Our objective was therefore to study the impact of deforestation and land degradation through agriculture on runoff pathways. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. Stream-, pore-, subsurface- and rainwater were monitored, sampled and analyzed for Dissolve Silicon concentration (DSi) and δ18O isotopic signature. Both forested and agricultural catchments were highly responsive to rainfall event and only 2 runoff components contributed to the stream discharge were identified: baseflow and peak flow components. The δ18O peak flow signal in the agricultural catchment was closely related to the δ18O rainfall signal. In the forested catchment, the δ18O peak flow signal was similar to a seasonally averaged signal. This suggested that most peak flow was derived from current rainfall events in the agricultural catchment, while being derived from a mixed reservoir in the forested one. The DSi of the peak flow was low in both catchments. Hence, the mixing in the forested catchment cannot have taken place in the soil matrix as the soil pore water contained high DSi concentrations. Instead, the mixing must have taken place in a reservoir with a relatively short residence time and isolated, to some extent, from the soil matrix. The dense channel network left by decayed roots in the forest soil above a clay-rich water-impeding B horizon is the most likely candidate and this was confirmed by visual observations. Contributions of other, deeper reservoirs are unlikely given the quick response time of the catchment. Dissolved fluxes at the catchment scale are therefore less likely to be strongly affected by the change in water pathways as, in both catchments, the peak flow component had low solute concentrations. Land use change effects on dissolved loads are likely to be more impacted by the change in water balance caused by forest removal, which leads to a higher water surplus.
Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA
Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.
2002-01-01
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.
Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA
NASA Astrophysics Data System (ADS)
Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.
2002-02-01
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.
Collins, S; Singh, R; Rivas, A; Palmer, A; Horne, D; Manderson, A; Roygard, J; Matthews, A
2017-11-01
Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832km 2 ), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores (<30m below ground level (bgl)), suggests groundwater across the lower Rangitikei catchment in general is under anoxic/reduced conditions. The groundwater typically has low dissolved oxygen (DO) concentrations (<1mg/L), suggesting the subsurface environment is conducive to potential attenuation by 'denitrification' of NO 3 -N in groundwater. We further measured NO 3 -N attenuation in shallow groundwater piezometers (3-6mbgl) using single-well push-pull tests. We found generally low levels (<0.5mg/L) of NO 3 -N in shallow groundwater piezometers (>5mbgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO 3 -N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04mgNL -1 h - 1 to 1.57mgNL -1 h - 1 . This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate, of nutrients leached from farms, to mitigate the likely impacts of land use on water quality and ecosystem health in agricultural catchments. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Collins, S.; Singh, R.; Rivas, A.; Palmer, A.; Horne, D.; Manderson, A.; Roygard, J.; Matthews, A.
2017-11-01
Intensive agricultural activities are generally associated with nitrogen leaching from agricultural soils, and this nitrogen has the potential to percolate and contaminate groundwater and surface waters. We assessed surface water and groundwater interactions, and nitrogen leaching and its potential attenuation in shallow groundwater in the lower Rangitikei River catchment (832 km2), New Zealand. We combined regional- and local-scale field surveys and experiments, nutrient budget modelling, and hydraulic and geochemical methods, to gain an insight into leaching, transformation and transport of nitrogen via groundwaters to the river in the study area. Concurrent river flow gaugings (in January 2015) and a piezometric map, developed from measured depths to groundwater in 110 bores (in October 2014), suggest groundwater discharges to the Rangitikei River in the upper parts of the study area, while there is groundwater recharge near the coast. The groundwater redox characterisation, based on sampling and analysis of 15 mostly shallow bores (< 30 m below ground level (bgl)), suggests groundwater across the lower Rangitikei catchment in general is under anoxic/reduced conditions. The groundwater typically has low dissolved oxygen (DO) concentrations (< 1 mg/L), suggesting the subsurface environment is conducive to potential attenuation by 'denitrification' of NO3-N in groundwater. We further measured NO3-N attenuation in shallow groundwater piezometers (3-6 m bgl) using single-well push-pull tests. We found generally low levels (< 0.5 mg/L) of NO3-N in shallow groundwater piezometers (> 5 m bgl), despite being installed under intensive land uses, such as dairying and cropping. Our in-field push-pull tests showed NO3-N reduction at four shallow groundwater piezometers, with the rates of reduction varying from 0.04 mg N L- 1 h-1 to 1.57 mg N L- 1 h-1. This highlights the importance of a sound understanding of not only the sources, but also transport and transformation, or fate, of nutrients leached from farms, to mitigate the likely impacts of land use on water quality and ecosystem health in agricultural catchments.
NASA Astrophysics Data System (ADS)
Pribulick, C. E.; Maxwell, R. M.; Williams, K. H.; Carroll, R. W. H.
2014-12-01
Prediction of environmental response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing hydrologic systems that provide water to millions of downstream users. In this study, the relationships between large-scale climatic change and the corresponding small-scale hydrologic processes of mountainous terrain are investigated in the East River headwaters catchment near Gothic, CO. This catchment is emblematic of many others within the upper Colorado River Basin and covers an area of 250 square kilometers, has a topographic relief of 1420 meters, an average elevation of 3266 meters and has varying stream characteristics. This site allows for the examination of the varying effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. Driven by meteorological forcing, ParFlow is able to capture land surface processes and represents surface and subsurface interactions through saturated and variably saturated heterogeneous flow. Data from Digital Elevation Models (DEMs), land cover, permeability, geologic and soil maps, and on-site meteorological stations, were prepared, analyzed and input into ParFlow as layers with a grid size comprised of 1403 by 1685 cells to best represent the small-scale, high resolution model domain. Water table depth, soil moisture, soil temperature, snowpack, runoff and local energy budget values provide useful insight into the catchments response to the Intergovernmental Panel on Climate Change (IPCC) temperature projections. In the near term, coupling this watershed model with one describing a diverse suite of subsurface elemental cycling pathways, including carbon and nitrogen, will provide an improved understanding of the response of the subsurface ecosystems to hydrologic transitions induced as a result of global climate change.
NASA Astrophysics Data System (ADS)
Robinet, Jérémy; Ameijeiras-Mariño, Yolanda; Vanderborght, Jan; Opfergelt, Sophie; Govers, Gerard
2017-04-01
Hydrology plays a major role in controlling biogeochemical fluxes at various scales. Among the various controlling factors of water fluxes at the hillslope or catchment scale, land use change is a direct human effect which has been relatively under-examined despite its potential important impact. The overall objective of this research is therefore to investigate how land use change can affect water fluxes and how these changes may, on their turn, affect biogeochemical fluxes, with a particular focus on silicon (Si) dynamic. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. The conversion of forest to arable land in the agricultural catchment is relatively recent, as deforestation started at the beginning of the 20th century. Stream, pore and groundwater were monitored, sampled and analyzed for major elements concentrations and δ18O. Preliminary results showed that deforestation and agriculture led to an increase in solute export at the catchment outlet, with for example dissolved Si (DSi) concentration and flux two times higher for the agricultural catchment. δ18O and DSi concentration data showed the importance of preferential flow in macropores in the forested catchment, probably because of the high root and low bulk densities. This led to a reduced mobilization of the pore water during rainfall event, contrarily to the agricultural catchment. As a result, there is almost no contribution of this relatively DSi-enriched pool to the river discharge in the forested environment. Those results indicate that the conversion of forest to arable land has had a significant impact on the biogeochemical fluxes, highlighted in this study with observed changes in DSi flux. Those changes could be partially attributed to changes in water fluxes and pathways.
21st century hydrological modeling for optimizing traditional soil and water conservation practices
NASA Astrophysics Data System (ADS)
Wildemeersch, Jasmien; Garba, Maman; Sabiou, Mahaman; Al-Barri, Bashar; Cornelis, Wim
2017-04-01
In order to increase dryland productivity, soil and water conservation practices have received renewed attention, leading to their massive implementation in marginal drylands. However, versatile tools to evaluate their efficiency under a wide range of conditions are often lacking. This study focuses on semi-arid Niger, where as a result of growing population pressure and severe soil erosion, farmers increasingly rely on degraded lands for millet production. The adverse rainfall distribution and imbalanced rainfall partitioning over the rootzone of these degraded lands calls for sustainable land management strategies that are water resource efficient. We therefore evaluated the soil-water balance of promising Nigerien Water and Soil Conservation (WSC) techniques (i.e., zaï pits, demi-lune microcatchments and scarification with standing crop residue) and their impact on millet yield by means of an in-situ field experiment on degraded laterite soil classified as Plinthosol with a 1% slope. We also applied a fully coupled 3D surface-subsurface hydrological model based on the Richards' and the Saint Venant equations to further improve promising WSC techniques. All WSC practices received the same amount of fertilizer and were compared to two control practices, one with and one without fertilizer. Soil-water content was recorded with a neutron probe till 105 cm depth and runoff by means of a cemented gutter directing runoff water with a multi-pipe divisor into a collector drum. WSC techniques proved to significantly reduce runoff with overall runoff coefficients being reduced from 25% (control practice) to 5-10%. Consequently, significantly more water was stored inside the catchments of the zaï pits and demi-lunes. With the scarification treatment, no considerable differences in soil-water storage were found with the control. On the other hand, WSC practices had little impact on soil evaporation, which was only 12% of rainfall by the self-mulching soil. Crop transpiration increased with WSC and highest millet yields were found with zaï pits (4 to 5 times higher than under the fertilized control). Although rainwater was better partitioned in case of demi-lune microcatchments resulting in highest amounts of water stored in the soil, yield was only 40-60% of that with zaï pits. This was due to a higher plant density within each demi-lune microcatchment in an attempt to attain similar plant densities at field scale across the treatments. An optimized design for demi-lune microcatchments, in which the number of catchments per surface area is increased while reducing plant density per catchment, is therefore suggested. This was demonstrated using the fully coupled surface-subsurface process-based model that enabled to simulate at field scale overland and soil-water flow in 3D under various WSC designs. The model would also allow to evaluate the effect of WSC practices at catchment scale.
COMPACT: The role of soil management in mitigating catchment flood risk
NASA Astrophysics Data System (ADS)
Pattison, Ian; Coates, Victoria; Frost, Matthew; Demirci, Emrah
2017-04-01
This paper reports a new NERC funded research project which addresses the impact of agricultural soil compaction on surface runoff and catchment scale flood risk. The intensification of agriculture, through increasing the number of animals in pasture, and the use of larger, heavier machinery for arable farming, over the past 50 years or so is hypothesised to have had an impact on the severity and frequency of flooding. These land management practices cause soil compaction, which reduces the rate of rainfall infiltration and the volume of water that can be stored within the sub-surface. This results in more rainfall being partitioned into the faster surface runoff pathway into rivers and potentially causing flooding downstream. However, the level of soil compaction is highly heterogeneous over space and time. This is because different animals i.e. cattle, sheep and horses, exert different loads on the soil and are kept at different densities. Furthermore, farm animals are known to exhibit behaviour whereby certain parts of the field are moved over more frequently than others. The same is the case in arable farming practices, whereby ploughing forms tramlines or wheelings, which are more compacted. Different forms of management practice ranging from zero-tillage to conventional cultivation exert different pressures on the soil at different times of year. However, very little is known about this variability of soil compaction levels at the sub-field level and land under different management practices. This research aims to quantify this sub-field variation in compaction severity and depths through using novel Ground Penetrating Radar (GPR) and Animal tracking GPS technology. Combining these with more conventional soil property tests, including bulk density, saturated hydraulic conductivity and using a penetrometer will allow relationships with frequency of load to be developed over different spatial and temporal scales. Furthermore, X-Ray CT scanning will reveal the fine scale impacts of compaction on soil structure. This data will form the input to a physically based, reduced complexity, spatially distributed hydrological model to test feasible "what if?" scenarios. This will upscale local changes in land management and soil characteristics to catchment scale flooding. Results from research focussing on a priori compacted areas, such as feeding areas, field gates, shelter zones and tractor wheelings show that these are statistically different to areas assumed to be less compacted in the open field.
NASA Astrophysics Data System (ADS)
Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.
2014-12-01
Urban stream quality is particularly susceptible to extreme precipitation events and land use change. Although the projected effects of extreme events and land use change on hydrology have been resonably well studied, the impacts on urban water quality have not been widely examined due in part to the scale mismatch between global climate models and the spatial scales required to represent urban hydrology and water quality signals. Here we describe a grid-based modeling system that integrates the Distributed Hydrology Soil Vegetation Model (DHSVM) and urban water quality module adpated from EPA's Storm Water Management Model (SWMM) and Soil and water assessment tool (SWAT). Using the model system, we evaluate, for four partially urbanized catchments within the Puget Sound basin, urban water quality under current climate conditions, and projected potential changes in urban water quality associated with future changes in climate and land use. We examine in particular total suspended solids, toal nitrogen, total phosphorous, and coliform bacteria, with catchment representations at the 150-meter spatial resolution and the sub-daily timestep. We report long-term streamflow and water quality predictions in response to extreme precipitation events of varying magnitudes in the four partially urbanized catchments. Our simulations show that urban water quality is highly sensitive to both climatic and land use change.
Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.
Tuset, J; Vericat, D; Batalla, R J
2016-01-01
The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important role in modifying the cycles of water and sediment yields in Mediterranean mountain catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.
2013-01-01
The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.
NASA Astrophysics Data System (ADS)
Johnes, P.
2013-12-01
Nutrient enrichment of waters from land-based and atmospheric sources presents a significant management challenge, requiring effective stakeholder engagement and policy development, properly underpinned by robust scientific evidence. The challenge is complex, raising significant questions about the specific sources, apportionment and pathways that determine nutrient enrichment and the key priorities for effective management and policy intervention. This paper presents outputs from 4 major UK research programmes: the Defra Demonstration Test Catchments programme (DTC), the Environment Agency's Catchment Sensitive Farming monitoring and evaluation programme (CSF), Natural Resources Wales Welsh Catchment Initiative (WCI) and the NERC Environmental Virtual Observatory programme (EVOp). Funded to meet this challenge, they are delivering new understanding of the rates and sources of pollutant fluxes from land to water, their impacts on ecosystem goods and services, and likely trends under future climate and land use change from field to national scale. DTC, a 12m investment by the UK Government, has set up long-term, high resolution research platforms equipped with novel telemetered sensor networks to monitor stream ecosystem responses to on-farm mitigation measures at a representative scale for catchment management. Ecosystem structural and functional responses and bulk hydrochemistry are also being monitored using standard protocols. CSF has set up long-term, enhanced monitoring in 8 priority catchments, with monthly monitoring in a further 72 English catchments and 6 Welsh priority catchments, to identify shifts in pollutant flux to waters resulting from mitigation measures in priority areas and farming sectors. CSF and WCI have contributed to >50 million of targeted farm improvements to date, representing a significant shift in farming practice. Each programme has generated detailed evidence on stream ecosystem responses to targeted mitigation. However, to provide effective underpinning for policy the major challenge has been to upscale this knowledge beyond these data-rich systems and identify the dominant contributing areas and priorities for management intervention to control nutrient flux and ecological impacts in data-poor systems which are located downstream from existing monitoring infrastructure or are in unmonitored catchments in remote locations. EVOp has directly addressed this challenge, developing a cloud computing enabled National Biogeochemical Modelling Framework to support ensemble modelling, knowledge capture and transfer from DTC, CSF, WCI and data-rich research catchments. This platform provides opportunities for further development of national biogeochemical modelling capability, allowing upscaled predictions from plot to catchment and national scale, enabling knowledge transfer from data-rich to data-poor areas. This paper presents initial findings from these research platforms, identifying the key priorities for action emerging from our national scale scenario analysis, and future research directions to further improve understanding, prediction and management capability in nutrient enriched waters and their catchments under changing climate and land use.
Long-term effects of climate and land cover change on freshwater provision in the tropical Andes
NASA Astrophysics Data System (ADS)
Molina, A.; Vanacker, V.; Brisson, E.; Mora, D.; Balthazar, V.
2015-06-01
Andean headwater catchments play a pivotal role to supply fresh water for downstream water users. However, few long-term studies exist on the relative importance of climate change and direct anthropogenic perturbations on flow regimes. In this paper, we assess multi-decadal change in freshwater provision based on long time series (1974-2008) of hydrometeorological data and land cover reconstructions for a 282 km2 catchment located in the tropical Andes. Three main land cover change trajectories can be distinguished: (1) rapid decline of native vegetation in montane forest and páramo ecosystems in ~1/5 or 20% of the catchment area, (2) expansion of agricultural land by 14% of the catchment area, (3) afforestation of 12% of native páramo grasslands with exotic tree species in recent years. Given the strong temporal variability of precipitation and streamflow data related to El Niño-Southern Oscillation, we use empirical mode decomposition techniques to detrend the time series. The long-term increasing trend in rainfall is remarkably different from the observed changes in streamflow that exhibit a decreasing trend. Hence, observed changes in streamflow are not the result of long-term climate change but very likely result from direct anthropogenic disturbances after land cover change. Partial water budgets for montane cloud forest and páramo ecosystems suggest that the strongest changes in evaporative water losses are observed in páramo ecosystems, where progressive colonization and afforestation of high alpine grasslands leads to a strong increase in transpiration losses.
Ferguson, Christobel M; Croke, Barry F W; Beatson, Peter J; Ashbolt, Nicholas J; Deere, Daniel A
2007-06-01
In drinking water catchments, reduction of pathogen loads delivered to reservoirs is an important priority for the management of raw source water quality. To assist with the evaluation of management options, a process-based mathematical model (pathogen catchment budgets - PCB) is developed to predict Cryptosporidium, Giardia and E. coli loads generated within and exported from drinking water catchments. The model quantifies the key processes affecting the generation and transport of microorganisms from humans and animals using land use and flow data, and catchment specific information including point sources such as sewage treatment plants and on-site systems. The resultant pathogen catchment budgets (PCB) can be used to prioritize the implementation of control measures for the reduction of pathogen risks to drinking water. The model is applied in the Wingecarribee catchment and used to rank those sub-catchments that would contribute the highest pathogen loads in dry weather, and in intermediate and large wet weather events. A sensitivity analysis of the model identifies that pathogen excretion rates from animals and humans, and manure mobilization rates are significant factors determining the output of the model and thus warrant further investigation.
NASA Astrophysics Data System (ADS)
Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano
2016-04-01
Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model was calibrated for the hydrological years 2008 to 2010 and validated for the three following years using streamflow data. The impact of future land use changes was analysed by investigating the impact of the size and location of the urban areas within the catchment. Modelling results are expected to support the decision making process in planning and developing new urban areas.
Polar Ice Caps: a Canary for the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.
2010-12-01
Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight changes in ELA where you can track an “on-off” type of mass balance switch. To place these ELA changes into temporal context, we propose to investigate proglacial lake environments below the various catchments. We intend to take rock flour as an indicator that the individual catchment is above the ELA. By contrasting the chronology from different catchments we can assemble minor ELA changes. Such an approach could be applied for other ice caps in Greenland and other areas, such as the Quelccaya Ice Cap, Peru.
Catchment Integration of Sensor Array Observations to Understand Hydrologic Connectivity
NASA Astrophysics Data System (ADS)
Redfern, S.; Livneh, B.; Molotch, N. P.; Suding, K.; Neff, J. C.; Hinckley, E. L. S.
2017-12-01
Hydrologic connectivity and the land surface water balance are likely to be impacted by climate change in the coming years. Although recent work has started to demonstrate that climate modulates connectivity, we still lack knowledge of how local ecology will respond to environmental and atmospheric changes and subsequently interact with connectivity. The overarching goal of this research is to address and forecast how climate change will affect hydrologic connectivity in an alpine environment, through the use of near-surface observations (temperature, humidity, soil moisture, snow depth) from a new 16-sensor array (plus 5 precipitation gauges), together with a distributed hydrologic model, over a small catchment on Colorado's Niwot Ridge (above 3000m). Model simulations will be constrained to distributed sensor measurements taken in the study area and calibrated with streamflow. Periods of wetting and dry-down will be analyzed to identify signatures of connectivity across the landscape, its seasonal signals and its sensitivity to land cover. Further work will aim to develop future hydrologic projections, compare model output with related observations, conduct multi-physics experiments, and continue to expand the existing sensor network.
NASA Astrophysics Data System (ADS)
Kamarinas, I.; Julian, J.; Owsley, B.; de Beurs, K.; Hughes, A.
2014-12-01
Water quality is dictated by interactions among geomorphic processes, vegetation characteristics, weather patterns, and anthropogenic land uses over multiple spatio-temporal scales. In order to understand how changes in climate and land use impact river water quality, a suite of data with high temporal resolution over a long period is needed. Further, all of this data must be analyzed with respect to connectivity to the river, thus requiring high spatial resolution data. Here, we present how changes in climate and land use over the past 25 years have affected water quality in the 268 sq. km Hoteo River catchment in New Zealand. Hydro-climatic data included daily solar radiation, temperature, soil moisture, rainfall, drought indices, and runoff at 5-km resolution. Land cover changes were measured every 8 days at 30-m resolution by fusing Landsat and MODIS satellite imagery. Water quality was assessed using 15-min turbidity (2011-2014) and monthly data for a suite of variables (1990-2014). Watershed connectivity was modeled using a corrected 15-m DEM and a high-resolution drainage network. Our analyses revealed that this catchment experiences cyclical droughts which, when combined with intense land uses such as livestock grazing and plantation forest harvesting, leaves many areas in the catchment disturbed (i.e. exposed soil) that are connected to the river through surface runoff. As a result, flow-normalized turbidity was elevated during droughts and remained relatively low during wet periods. For example, disturbed land area decreased from 9% to 4% over 2009-2013, which was a relatively wet period. During the extreme drought of 2013, disturbed area increased to 6% in less than a year due mainly to slow pasture recovery after heavy stocking rates. The relationships found in this study demonstrate that high spatiotemporal resolution land cover datasets are very important to understanding the interactions between landscape and climate, and how these interactions affect water quality.
Land use and land cover changes in Zêzere watershed (Portugal)--Water quality implications.
Meneses, B M; Reis, R; Vale, M J; Saraiva, R
2015-09-15
To understand the relations between land use allocation and water quality preservation within a watershed is essential to assure sustainable development. The land use and land cover (LUC) within Zêzere River watershed registered relevant changes in the last decades. These land use and land cover changes (LUCCs) have impacts in water quality, mainly in surface water degradation caused by surface runoff from artificial and agricultural areas, forest fires and burnt areas, and caused by sewage discharges from agroindustry and urban sprawl. In this context, the impact of LUCCs in the quality of surface water of the Zêzere watershed is evaluated, considering the changes for different types of LUC and establishing their possible correlations to the most relevant water quality changes. The results indicate that the loss of coniferous forest and the increase of transitional woodland-shrub are related to increased water's pH; while the growth in artificial surfaces and pastures leads mainly to the increase of soluble salts and fecal coliform concentration. These particular findings within the Zêzere watershed, show the relevance of addressing water quality impact driven from land use and should therefore be taken into account within the planning process in order to prevent water stress, namely within watersheds integrating drinking water catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Winnaar, G.; Jewitt, G. P. W.; Horan, M.
Water scarce countries such as South Africa are subject to various hydrological constraints which can often be attributed to poor rainfall partitioning, particularly within resource poor farming communities that are reliant on rainfed agriculture. Recent initiatives to address this have shifted focus to explore more efficient alternatives to water supply and the recognition of numerous opportunities to implement runoff harvesting as a means to supplement water availability. However, increasing the implementation of runoff harvesting, without encountering unintended impacts on downstream hydrological and ecological systems, requires better understanding of the hydrologic and environmental impacts at catchment scale. In this paper the representation of spatial variations in landscape characteristics such as soil, land use, rainfall and slope information is shown to be an important step in identifying potential runoff harvesting sites, after which modelling the hydrological response in catchments where extensive runoff harvesting is being considered can be performed and likely impacts assessed. Geographic information systems (GIS) was utilised as an integrating tool to store, analyse and manage spatial information and when linked to hydrological response models, provided a rational means to facilitate decision making by providing catchment level identification, planning and assessment of runoff harvesting sites as illustrated by a case study at the Potshini catchment, a small sub-catchment in the Thukela River basin, South Africa. Through the linked GIS, potential runoff harvesting sites are identified relative to areas that concentrate runoff and where the stored water will be appropriately distributed. Based on GIS analysis it was found that 17% percent of the Potshini catchment area has a high potential for generating surface runoff, whereas an analysis of all factors which influence the location of such systems, shows that 18% is highly suitable for runoff harvesting. Details of the spatially explicit method that was adopted in this paper are provided and output from the integrated GIS modelling system is presented using suitability maps. It is concluded that providing an accurate spatial representation of the runoff generation potential within a catchment is an important step in developing a strategic runoff harvesting plan for any catchment.
Jan Seibert; Jeffrey J. McDonnell
2010-01-01
The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in...
The road to NHDPlus — Advancements in digital stream networks and associated catchments
Moore, Richard B.; Dewald, Thomas A.
2016-01-01
A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.
NASA Astrophysics Data System (ADS)
Wegehenkel, Martin
As a result of a new agricultural funding policy established in 1992 by the European Community, it was assumed that up to 15-20% of arable land would have been set aside in the next years in the new federal states of north-eastern Germany, for example, Brandenburg. As one potential land use option, afforestation of these set aside areas was discussed to obtain deciduous forests. Since the mean annual precipitation in north-eastern Germany, Brandenburg is relatively low (480-530 mm y -1), an increase in interception and evapotranspiration loss by forests compared to arable land would lead to a reduction in ground water recharge. Experimental evidence to determine effects of such land use changes are rarely available. Therefore, there is a need for indirect methods to estimate the impact of afforestation on the water balance of catchments. In this paper, a conceptual hydrological model was verified and calibrated in two steps using data from the Stobber-catchment located in Brandenburg. In the first step, model outputs like daily evapotranspiration rates and soil water contents were verified on the basis of experimental data sets from two test locations. One test site with the land use arable land was located within the Stobber-catchment. The other test site with pine forest was located near by the catchment. In the second step, the model was used to estimate the impact of afforestation on catchment water balance and discharge. For that purpose, the model was calibrated against daily discharge measurements for the period 1995-1997. For a simple afforestation scenario, it was assumed that the area of forest increases from 34% up to 80% of the catchment area. The impact of this change in forest cover proportion was analyzed using the calibrated model. In case of increasing the proportion of forest cover in the catchment due to the scenario afforestation, the model predicts a reduction in discharge and an increase in evapotranspiration.
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
NASA Astrophysics Data System (ADS)
Crouch, T. D.; Ogden, F. L.; Stallard, R. F.; Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project
2010-12-01
Hydrological processes in the humid tropics are poorly understood and an important topic when it comes to water management in the seasonal tropics. The Smithsonian Tropical Research Institute, Panama Canal Watershed Experiment, Agua Salud Project, seeks to understand these processes and quantify the long-term effects of different land cover and uses across the Panama Canal Watershed. One of the project’s main objectives is to understand how reforestation effects seasonal stream flows. To meet this objective, a baseline characterization of hydrology on the small catchment scale is being assessed across different land uses typical in rural Panama. The small experimental catchments are found within Panama’s protected Soberania National Park and the adjacent headwaters of the Agua Salud and Mendoza Rivers, all of which are part of the greater Panama Canal Watershed. The land uses being monitored include a variety of control catchments as well as treated pasture sites. The catchments used for this study include a mature old regrowth forest, a 50% deforested or mosaic regrowth site, an active pasture and a monoculture invasive grass site (saccharum spontaneum) as experimental controls and two treated catchments that were recently abandoned pastures converted to teak and native species timber plantations. Installed instrumentation includes a network of rain gauges, v-notched weirs, atmometers, an eddy covariance system and an assortment of meteorological and automated geochemical sampling systems. Spatial, rainfall, runoff and ET data across these six geologically and topographically similar catchments are available from 2009 and 2010. Classic water balance and paired catchment techniques were used to compare the catchments on an annual, seasonal, and event basis. This study sets the stage for hydrologic modeling and for better understanding the effects of vegetation and land-use history on rainfall-runoff processes for the Agua Salud Project and Panama Canal Watershed Experiment.
Export of dissolved organic matter in relation to land use along a European climatic gradient.
Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal
2009-03-01
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.
Kendall, K.A.; Shanley, J.B.; McDonnell, Jeffery J.
1999-01-01
To test the transmissivity feedback hypothesis of runoff generation, surface and subsurface waters were monitored and sampled during the 1996 snowmelt at various topographic positions in a 41 ha forested headwater catchment at Sleepers River, Vermont. Two conditions that promote transmissivity feedback existed in the catchment during the melt period. First, saturated hydraulic conductivity increased toward land surface, from a geometric mean of 3.6 mm h-1 in glacial till to 25.6 mm h-1 in deep soil to 54.0 mm h-1 in shallow soil. Second, groundwater levels rose to within 0.3 m of land surface at all riparian sites and most hillslope sites at peak melt. The importance of transmissivity feedback to streamflow generation was tested at the catchment scale by examination of physical and chemical patterns of groundwater in near-stream (discharge) and hillslope (recharge/lateral flow) zones, and within a geomorphic hollow (convergent flow). The presence of transmissivity feedback was supported by the abrupt increase in streamflow as the water table rose into the surficial, transmissive zone; a flattening of the groundwater level vs. streamflow curve occurred at most sites. This relation had a clockwise hysteresis (higher groundwater level for given discharge on rising limb than at same discharge on falling limb) at riparian sites, suggesting that the riparian zone was the dominant source area during the rising limb of the melt hydrograph. Hysteresis was counterclockwise at hillslope sites, suggesting that hillslope drainage controlled the snowmelt recession. End member mixing analysis using Ca, Mg, Na, dissolved organic carbon (DOC), and Si showed that stream chemistry could be explained as a two-component mixture of groundwater high in base cations and an O-horizon/overland flow water high in DOC. The dominance of shallow flow paths during events was indicated by the high positive correlation of DOC with streamflow (r2 = 0.82). Despite the occurrence of transmissivity feedback, hillslope till and soil water were ruled out as end members primarily because their distinctive high-Si composition had little or no effect on streamwater composition. Till water from the geomorphic hollow had a chemistry very close to streamwater base flow, and may represent the base flow end member better than the more concentrated riparian groundwater. During snowmelt, streamwater composition shifted as this base flow was diluted - not by shallow groundwater from the hillslope, but rather by a more surficial O-horizon/overland flow water.Surface and subsurface waters were analyzed to test the transmissivity feedback of runoff generation during the 1996 snowmelt in a catchment at Sleepers River, Vermont. The importance of transmissivity feedback to stream flow generation was tested by examination of physical and chemical patterns of groundwater in near-stream and hillslope zones within a geomorphic hollow. End member mixing analysis of Ca, Mg, Na, dissolved organic carbon (DOC), and Si showed that stream chemistry could be explained as a two-component mixture of groundwater high in base cations and an O-horizon/overland flow water high in DOC. The dominance of shallow water paths during the events was indicated by the high positive correlation of DOC with streamflow (r2 = 0.82).
Carbon-Water-Energy Relations for Selected River Basins
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1998-01-01
A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.
Interpretation of the impacts of land disturbances on hydrology is confounded by climate variations. Clear definition of the anthropogenic impacts has been difficult, especially in cases where a clearly defined base line or reference point is absent. This study investigates the d...
Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying
2010-09-15
The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.
Maloney, K.O.; Feminella, J.W.; Mitchell, R.M.; Miller, S.A.; Mulholland, P.J.; Houser, J.N.
2008-01-01
The concept of landscape legacies has been examined extensively in terrestrial ecosystems and has led to a greater understanding of contemporary ecosystem processes. However, although stream ecosystems are tightly coupled with their catchments and, thus, probably are affected strongly by historical catchment conditions, few studies have directly examined the importance of landuse legacies on streams. We examined relationships between historical land use (1944) and contemporary (2000-2003) stream physical, chemical, and biological conditions after accounting for the influences of contemporary land use (1999) and natural landscape (catchment size) variation in 12 small streams at Fort Benning, Georgia, USA. Most stream variables showed strong relationships with contemporary land use and catchment size; however, after accounting for these factors, residual variation in many variables remained significantly related to historical land use. Residual variation in benthic particulate organic matter, diatom density, % of diatoms in Eunotia spp., fish density in runs, and whole-stream gross primary productivity correlated negatively, whereas streamwater pH correlated positively, with residual variation in fraction of disturbed land in catchments in 1944 (i.e., bare ground and unpaved road cover). Residual variation in % recovering land (i.e., early successional vegetation) in 1944 was correlated positively with residual variation in streambed instability, a macroinvertebrate biotic index, and fish richness, but correlated negatively with residual variation in most benthic macroinvertebrate metrics examined (e.g., Chironomidae and total richness, Shannon diversity). In contrast, residual variation in whole-stream respiration rates was not explained by historical land use. Our results suggest that historical land use continues to influence important physical and chemical variables in these streams, and in turn, probably influences associated biota. Beyond providing insight into biotic interactions and their associations with environmental conditions, identification of landuse legacies also will improve understanding of stream impairment in contemporary minimally disturbed catchments, enabling more accurate assessment of reference conditions in studies of biotic integrity and restoration. ?? 2008 by The North American Benthological Society.
Network-based Modeling of Mesoscale Catchments - The Hydrology Perspective of Glowa-danube
NASA Astrophysics Data System (ADS)
Ludwig, R.; Escher-Vetter, H.; Hennicker, R.; Mauser, W.; Niemeyer, S.; Reichstein, M.; Tenhunen, J.
Within the GLOWA initiative of the German Ministry for Research and Educa- tion (BMBF), the project GLOWA-Danube is funded to establish a transdisciplinary network-based decision support tool for water related issues in the Upper Danube wa- tershed. It aims to develop and validate integration techniques, integrated models and integrated monitoring procedures and to implement them in the network-based De- cision Support System DANUBIA. An accurate description of processes involved in energy, water and matter fluxes and turnovers requires an intense collaboration and exchange of water related expertise of different scientific disciplines. DANUBIA is conceived as a distributed expert network and is developed on the basis of re-useable, refineable, and documented sub-models. In order to synthesize a common understand- ing between the project partners, a standardized notation of parameters and functions and a platform-independent structure of computational methods and interfaces has been established using the Unified Modeling Language UML. DANUBIA is object- oriented, spatially distributed and raster-based at its core. It applies the concept of "proxels" (Process Pixel) as its basic object, which has different dimensions depend- ing on the viewing scale and connects to its environment through fluxes. The presented study excerpts the hydrological view point of GLOWA-Danube, its approach of model coupling and network based communication (using the Remote Method Invocation RMI), the object-oriented technology to simulate physical processes and interactions at the land surface and the methodology to treat the issue of spatial and temporal scal- ing in large, heterogeneous catchments. The mechanisms applied to communicate data and model parameters across the typical discipline borders will be demonstrated from the perspective of a land-surface object, which comprises the capabilities of interde- pendent expert models for snowmelt, soil water movement, runoff formation, plant growth and radiation balance in a distributed JAVA-based modeling environment. The coupling to the adjacent physical objects of atmosphere, groundwater and river net- work will also be addressed.
Urbanisation impacts on storm runoff along a rural-urban gradient
NASA Astrophysics Data System (ADS)
Miller, James David; Hess, Tim
2017-09-01
Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.
NASA Astrophysics Data System (ADS)
Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.
2017-12-01
The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.
NASA Astrophysics Data System (ADS)
Kyllmar, K.; Mårtensson, K.; Johnsson, H.
2005-03-01
A method to calculate N leaching from arable fields using model-calculated N leaching coefficients (NLCs) was developed. Using the process-based modelling system SOILNDB, leaching of N was simulated for four leaching regions in southern Sweden with 20-year climate series and a large number of randomised crop sequences based on regional agricultural statistics. To obtain N leaching coefficients, mean values of annual N leaching were calculated for each combination of main crop, following crop and fertilisation regime for each leaching region and soil type. The field-NLC method developed could be useful for following up water quality goals in e.g. small monitoring catchments, since it allows normal leaching from actual crop rotations and fertilisation to be determined regardless of the weather. The method was tested using field data from nine small intensively monitored agricultural catchments. The agreement between calculated field N leaching and measured N transport in catchment stream outlets, 19-47 and 8-38 kg ha -1 yr -1, respectively, was satisfactory in most catchments when contributions from land uses other than arable land and uncertainties in groundwater flows were considered. The possibility of calculating effects of crop combinations (crop and following crop) is of considerable value since changes in crop rotation constitute a large potential for reducing N leaching. When the effect of a number of potential measures to reduce N leaching (i.e. applying manure in spring instead of autumn; postponing ploughing-in of ley and green fallow in autumn; undersowing a catch crop in cereals and oilseeds; and increasing the area of catch crops by substituting winter cereals and winter oilseeds with corresponding spring crops) was calculated for the arable fields in the catchments using field-NLCs, N leaching was reduced by between 34 and 54% for the separate catchments when the best possible effect on the entire potential area was assumed.
NASA Astrophysics Data System (ADS)
Wayman, C. R.; Russo, T. A.; Li, L.; Forsythe, B.; Hoagland, B.
2017-12-01
As part of the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) project, we have collected geochemical and hydrological data from several subcatchments and four monitoring sites on the main stem of Shaver's Creek, in Huntingon county, Pennsylvania. One subcatchment (0.43 km2) is under agricultural land use, and the monitoring locations on the larger Shaver's Creek (up to 163 km2) drain watersheds with 0 to 25% agricultural area. These two scales of investigation, coupled with advances made across the SSHCZO on multiple lithologies allow us to extrapolate from the subcatchment to the larger watershed. We use geochemical surface and groundwater data to estimate the solute and water transport regimes within the catchment, and to show how lithology and land use are major controls on ground and surface water quality. One area of investigation includes the transport of nutrients between interflow and regional groundwater, and how that connectivity may be reflected in local surface waters. Water and nutrient (Nitrogen) isotopes, will be used to better understand the relative contributions of local and regional groundwater and interflow fluxes into nearby streams. Following initial qualitative modeling, multiple hydrologic and nutrient transport models (e.g. SWAT and CYCLES/PIHM) will be evaluated from the subcatchment to large watershed scales. We will evaluate the ability to simulate the contributions of regional groundwater versus local groundwater, and also impacts of agricultural land management on surface water quality. Improving estimations of groundwater contributions to stream discharge will provide insight into how much agricultural development can impact stream quality and nutrient loading.
A Catchment Systems Engineering (CSE) approach to managing intensively farmed land
NASA Astrophysics Data System (ADS)
Jonczyk, Jennine; Quinn, Paul; Barber, Nicholas; Wilkinson, Mark; ODonnell, Greg
2014-05-01
Rural land management practices can have a significant impact on the hydrological and nutrient dynamics within a catchment which can dramatically alter the way it processes water, exacerbating nutrient losses from the system. A collaborative and holistic approach for managing potential conflicts between land management activity for food production alongside the aspiration to achieve good water quality and the need to make space for water can ensure the long-term sustainability of our agricultural catchments. Catchment System Engineering (CSE) is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed, greatly reducing erosive soil losses. Coupled with management of farm nutrients at source many runoff attenuation features or measures can be co-located to achieve benefits for water quality. Examples of community-led mitigation measures using the CSE approach will be presented from two catchments in Northumberland, Northern England, that demonstrate the generic framework for identification of multipurpose features that slow, store and filter runoff at strategic locations in the landscape. Measures include within-field barriers, edge of field traps and within-field sediment filters and sediment traps which demonstrate how sediment can be trapped locally (including silt and clay fractions) and be recovered for use back on the land. Deliverables from this CSE approach includes the reduction of downstream flood risk and capturing of sediment and associated nutrients. The CSE approach allows for a more natural flood and nutrient management approach which helps to restore vital catchment functions to re-establish a healthy catchment system.
NASA Astrophysics Data System (ADS)
Abbott, Samantha; Julian, Jason P.; Kamarinas, Ioannis; Meitzen, Kimberly M.; Fuller, Ian C.; McColl, Samuel T.; Dymond, John R.
2018-03-01
The interaction of climate, geomorphology, and land use dictates catchment sediment production and associated river sediment loads. Accordingly, the resilience of catchments to disturbances can be assessed with suspended sediment regimes. This case study in the hill country of the lower North Island of New Zealand was a decade-long examination of the short- and long-term effects of an extreme storm event on sediment supply and exhaustion in the Oroua and Pohangina catchments, two catchments that have experienced intense land use changes and frequent broad-scale landslides. Indicators of Hydrologic Alteration, a program developed to characterize hydrologic regimes, was used to analyze daily suspended sediment records over a period of a decade in order to characterize sediment regimes of the Oroua and Pohangina. An aggregated data set of sediment-bearing events for the period of record was analyzed to examine the suspended sediment response of individual storms relative to runoff magnitudes. The findings of this study demonstrate that large storms that generate extreme landsliding and flooding have the ability to produce enough sediment to temporarily convert catchments from a supply-limited state to a transport-limited state. Landsliding and thus sediment supply was disproportionately high in locations where livestock grazing occurred on steep hillslopes. The timing and intensity of previous storms, or the antecedent catchment condition, was also shown to influence the response of the catchments. In both catchments, suspended sediment loads were elevated for a period of 4 years following the landslide-generating February 2004 storm. The methods and findings we present are useful for assessing the resilience of catchments exposed to frequent disturbances such as land use changes and landslides.
Understanding human infectious Cryptosporidium risk in drinking water supply catchments.
Swaffer, Brooke; Abbott, Hayley; King, Brendon; van der Linden, Leon; Monis, Paul
2018-07-01
Treating drinking water appropriately depends, in part, on the robustness of source water quality risk assessments, however quantifying the proportion of infectious, human pathogenic Cryptosporidium oocysts remains a significant challenge. We analysed 962 source water samples across nine locations to profile the occurrence, rate and timing of infectious, human pathogenic Cryptosporidium in surface waters entering drinking water reservoirs during rainfall-runoff conditions. At the catchment level, average infectivity over the four-year study period reached 18%; however, most locations averaged <5%. The maximum recorded infectivity fraction within a single rainfall runoff event was 65.4%, and was dominated by C. parvum. Twenty-two Cryptosporidium species and genotypes were identified using PCR-based molecular techniques; the most common being C. parvum, detected in 23% of water samples. Associations between landuse and livestock stocking characteristics with Cryptosporidium were determined using a linear mixed-effects model. The concentration of pathogens in water were significantly influenced by flow and dominance of land-use by commercial grazing properties (as opposed to lifestyle properties) in the catchment (p < 0.01). Inclusion of measured infectivity and human pathogenicity data into a quantitative microbial risk assessment (QMRA) could reduce the source water treatment requirements by up to 2.67 log removal values, depending on the catchment, and demonstrated the potential benefit of collating such data for QMRAs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gutchess, Kristina; Jin, Li; Ledesma, José L J; Crossman, Jill; Kelleher, Christa; Lautz, Laura; Lu, Zunli
2018-02-06
The long-term application of road salts has led to a rise in surface water chloride (Cl - ) concentrations. While models have been used to assess the potential future impacts of continued deicing practices, prior approaches have not incorporated changes in climate that are projected to impact hydrogeology in the 21st century. We use an INtegrated CAtchment (INCA) model to simulate Cl - concentrations in the Tioughnioga River watershed. The model was run over a baseline period (1961-1990) and climate simulations from a range of GCMs run over three 30-year intervals (2010-2039; 2040-2069; 2070-2099). Model projections suggest that Cl - concentrations in the two river branches will continue to rise for several decades, before beginning to decline around 2040-2069, with all GCM scenarios indicating reductions in snowfall and associated salt applications over the 21st century. The delay in stream response is most likely attributed to climate change and continued contribution of Cl - from aquifers. By 2100, surface water Cl - concentrations will decrease to below 1960s values. Catchments dominated by urban lands will experience a decrease in average surface water Cl - , although moderate compared to more rural catchments.
NASA Astrophysics Data System (ADS)
Miller, J. D.; Rickards, N. J.; Kjeldsen, T. R.; Hutchins, M.; Rowland, C.; Prudhomme, C.; Maliko, T.; Fidal, J.; Hagen-Zanker, A.
2016-12-01
The UK population is set to increase by 16% by 2035; it is therefore increasingly important to understand the impact this may have on urban populations, and in turn how this will affect river flow regimes and water quality in urban areas. A growing population is likely to lead to an increase in urban land use and impervious surfaces, the implications of which are not yet fully understood for issues such as future flood risk. The aim of this paper is to develop a greater understanding of the impacts of both an increasing population and urban extent in the context of a changing climate, and to assess the effect these may have on urban streamflow regimes and water security in the future. Flows are modelled for selected catchments in the Thames basin using URBMOD, a lumped rainfall runoff model that is able to represent both pervious and impervious surfaces, reducing infiltration in catchments where there is a greater urban extent. The model uses daily catchment average rainfall and evapotranspiration derived from gridded data, and is calibrated against long-term river flow records. Historic satellite imagery is used to train cellular automata land use models, which are then applied under different scenarios of urban development up to 2035. These changes in land use are combined with a range of climate change scenarios to give an indication of how urban flow regimes may be altered in the Thames basin over the next 20 years. Results suggest an intensification of the hydrological regime in the majority of catchments, with increases in high flow magnitudes (Q10) of up to 5%. The trend for low flows (Q90) is less clear, with some catchments displaying reductions of around 4%, whilst others show slight increased flows. We identify the main drivers behind these changes, from which the fine-scale impacts of urbanisation on water resources can be better understood. Research findings are being used to inform a regional-scale model, coupling water quantity and quality and providing insight to urban planners and stakeholders on the future urban hydrological regime in the Thames basin. Similar approaches are being used to assess impacts of anthropogenic drivers on water resources in the Cauvery basin in India, whereby the applicability of the model under very different climate and urban morphology will be tested.
NASA Astrophysics Data System (ADS)
Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Ochoa-Rodriguez, Susana; Willems, Patrick; Ichiba, Abdellah; Wang, Lipen; Pina, Rui; Van Assel, Johan; Bruni, Guendalina; Murla Tuyls, Damian; ten Veldhuis, Marie-Claire
2017-04-01
Land use distribution and sewer system geometry exhibit complex scale dependent patterns in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. Such features are well grasped with fractal tools, which are based scale invariance and intrinsically designed to characterise and quantify the space filled by a geometrical set exhibiting complex and tortuous patterns. Fractal tools have been widely used in hydrology but seldom in the specific context of urban hydrology. In this paper, they are used to analyse surface and sewer data from 10 urban or peri-urban catchments located in 5 European countries in the framework of the NWE Interreg RainGain project (www.raingain.eu). The aim was to characterise urban catchment properties accounting for the complexity and inhomogeneity typical of urban water systems. Sewer system density and imperviousness (roads or buildings), represented in rasterized maps of 2 m x 2 m pixels, were analysed to quantify their fractal dimension, characteristic of scaling invariance. It appears that both sewer density and imperviousness exhibit scale invariant features that can be characterized with the help of fractal dimensions ranging from 1.6 to 2, depending on the catchment. In a given area, consistent results were found for the two geometrical features, yielding a robust and innovative way of quantifying the level of urbanization. The representation of imperviousness in operational semi-distributed hydrological models for these catchments was also investigated by computing fractal dimensions of the geometrical sets made up of the sub-catchments with coefficients of imperviousness greater than a range of thresholds. It enables to quantify how well spatial structures of imperviousness are represented in the urban hydrological models.
NASA Astrophysics Data System (ADS)
Kendall, K. A.; Shanley, J. B.; McDonnell, J. J.
1999-07-01
To test the transmissivity feedback hypothesis of runoff generation, surface and subsurface waters were monitored and sampled during the 1996 snowmelt at various topographic positions in a 41 ha forested headwater catchment at Sleepers River, Vermont. Two conditions that promote transmissivity feedback existed in the catchment during the melt period. First, saturated hydraulic conductivity increased toward land surface, from a geometric mean of 3.6 mm h -1 in glacial till to 25.6 mm h -1 in deep soil to 54.0 mm h -1 in shallow soil. Second, groundwater levels rose to within 0.3 m of land surface at all riparian sites and most hillslope sites at peak melt. The importance of transmissivity feedback to streamflow generation was tested at the catchment scale by examination of physical and chemical patterns of groundwater in near-stream (discharge) and hillslope (recharge/lateral flow) zones, and within a geomorphic hollow (convergent flow). The presence of transmissivity feedback was supported by the abrupt increase in streamflow as the water table rose into the surficial, transmissive zone; a flattening of the groundwater level vs. streamflow curve occurred at most sites. This relation had a clockwise hysteresis (higher groundwater level for given discharge on rising limb than at same discharge on falling limb) at riparian sites, suggesting that the riparian zone was the dominant source area during the rising limb of the melt hydrograph. Hysteresis was counterclockwise at hillslope sites, suggesting that hillslope drainage controlled the snowmelt recession. End member mixing analysis using Ca, Mg, Na, dissolved organic carbon (DOC), and Si showed that stream chemistry could be explained as a two-component mixture of groundwater high in base cations and an O-horizon/overland flow water high in DOC. The dominance of shallow flow paths during events was indicated by the high positive correlation of DOC with streamflow ( r2=0.82). Despite the occurrence of transmissivity feedback, hillslope till and soil water were ruled out as end members primarily because their distinctive high-Si composition had little or no effect on streamwater composition. Till water from the geomorphic hollow had a chemistry very close to streamwater base flow, and may represent the base flow end member better than the more concentrated riparian groundwater. During snowmelt, streamwater composition shifted as this base flow was diluted—not by shallow groundwater from the hillslope, but rather by a more surficial O-horizon/overland flow water.
Hydrological Modelling of The Guadiana Basin
NASA Astrophysics Data System (ADS)
Conan, C.; Bouraoui, F.; de Marsily, G.; Bidoglio, G.
Increased anthropogenic activities such as agriculture, irrigation, industry, mining, ur- ban water supply and sewage treatment, have created significant environmental prob- lems. To ensure sustainable development of water resources, water managers need new strategies and suitable tools. In particular it is often compulsory that surface wa- ter and groundwater be managed simultaneously both in terms of quantity and quality at catchment scales. To this purpose, a model coupling SWAT (Soil and Water As- sessment Tool) and MODFLOW (Modular 3-D Flow model) was developed. SWAT is a quasi-distributed watershed model with a GIS interface that outlines the sub-basins and stream networks from a Digital Elevation Model (DEM) and calculates daily wa- ter balances from meteorological data, soil and land-use characteristics. The particular advantage of this model, compared to other fully distributed physically based mod- els, is that it requires a small amount of readily available input data. MODFLOW is a fully distributed model that calculates groundwater flow from aquifer characteris- tics. We have adapted this new coupled model SWAT-MODFLOW to a Mediterranean catchment, the Guadiana basin, and present the first results of this work. Only wa- ter quantity results are available at this stage. The validation consisted in comparing measured and predicted daily flow at the catchment and sub-catchment outlets for the period 1970-1995. The model accurately reproduced the decrease of the piezometric level, due to increased water abstraction, and the exchanges between surface water and ground-water. The sensitivity of the model to irrigation practices was evaluated. The usefulness of this model as a management tool has been illustrated through the analysis of alternative scenarios of agricultural practices and climate change.
Greenhouse gas fluxes of grazed and hayed wetland catchments in the U.S. Prairie Pothole Ecoregion
Finocchiaro, Raymond G.; Tangen, Brian A.; Gleason, Robert A.
2014-01-01
Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.
Soil erosion modelling for NSW coastal catchments using RUSLE in a GIS environment
NASA Astrophysics Data System (ADS)
Yang, Xihua; Chapman, Greg
2006-10-01
In this study, hillslope erosion risk has been estimated for all eastern New South Wales (NSW) catchments, Australia using Revised Universal Soil Loss Equation (RUSLE) in a geographic information system (GIS) environment. Rainfall-runoff erosivity (R) factor was interpolated from NSW rainfall-erosivity contour (isoerodent) data. Soil erodibility (K) factor was based on the soil regolith stability and sediment yield classification. The classification was derived from soil landscape and related soil map data. The slope length and steepness (LS) factor was derived from high resolution digital elevation model (DEM). A fully-automated program using Arc Macro Language (AML) produced RUSLE-based LS factor grids for all coastal catchments. The outputs are comparable to the range of LS values summarised in the literature. Cover and management (C) factor and conservation support-practices (P) factor were set to one. They are intended to be allocated according to land use, ground cover and erosion control provisions for particular land management actions. The resulting erosion risk map, with pixel size of 25-m, provides unprecedented resolution of relative expected sheet and rill erosion across all NSW costal catchments and can be adapted for a range of erosion control purposes such as bushfire hazard reduction and comprehensive costal assessment.
NASA Astrophysics Data System (ADS)
Molina, Armando; Govers, Gerard; Poesen, Jean; Van Hemelryck, Hendrik; De Bièvre, Bert; Vanacker, Veerle
2008-06-01
A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km - 2 year - 1 . Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × e- b C) which was found between vegetation cover and sediment yield at the catchment scale (10 3-10 9 m 2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1-10 3 m 2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates.
NASA Astrophysics Data System (ADS)
Giali, Gabriela; Schneider, Petra
2015-04-01
USE OF GIS TECHNOLOGY IN SURFACE WATER MONITORING FOR TARGETED POLICY INTERVENTION IN A MOUNTAINOUS CATCHMENT IN ROMANIA The collection of information on surface water quality is a specific activity that takes place systematically and regularly at regional and national scale, and it is important for the assessment of the water quality as well as for water management policy-making. A data base information management using a Geographical Information System (GIS) forms an important aspect of environmental management, which provides the frame for processing and visualisation of water monitoring data and information as well as for the optimisation of monitoring concepts. This paper presents an architecture performed by a GIS which provides a grafic database and attributes the nesessary measurements of the water quality to different sections of the mountainous catchment of the Suceava river in the north of Romania. With this approach the location of the water sampling points can be optimised in terms of the selection and setting of the river sections. To facilitate the setting of the sampling locations in the various sections of water sampling in the river, the presented GIS system provides to the user different information layers with combined or isolated data according to the objectives. In the frame of the research were created 5 layers of information in the basin under study, underlying the determination of a new information layer, namely the "Hydrografic Network Graded to Hydrographic Sections". Practically, in the studied basin were established 8 sections for water sampling locations, and the water quality characterization was done by the consideration of 15 quality indicators. The GIS system presented in this research is a valuable, useful and adaptable to land use changes data base that can be exploited by any number of combinations, its capabilities justify it's role as "tool to support decision making." With this characteristics it supports the policy-making of the competent bodies to fulfil the requirements of EC Water Framework Directive on catchment scale and it serves as planning tool for hydroengineering and water resources management.
Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.
NASA Astrophysics Data System (ADS)
Wynants, Maarten; Munishi, Linus; Solomon, Henok; Grenfell, Michael; Taylor, Alex; Millward, Geoff; Boeckx, Pascal; Ndakidemi, Patrick; Gilvear, David; Blake, William
2017-04-01
The Lake Manyara basin in the East African Rift Region of Tanzania is considered to be an important driver for sustainable development in northern Tanzania in terms of biodiversity conservation, ecotourism, fisheries, pastoralism and (irrigation) agriculture. Besides local conservation, Lake Manyara National Park and its surroundings also have a vital function as a wildlife corridor connecting the Tarangire and Maasai steppe ecosystem with the entire northern Tanzania and Southern Kenya collective of national parks and ecosystems. However, driven by population pressure, increasing number of farmers are establishing agricultural operations in the catchment, causing a shift of the natural vegetation towards agricultural land. Furthermore, pastoralists with ever growing cattle stocks are roaming the grasslands, causing a decrease in soil structure due to overgrazing and compaction of the soil. We hypothesize that these processes increase the vulnerability to erosion, which presents a credible threat to ecosystem service provision, on the one hand the agricultural- and rangelands where loss of this finite resource threatens food security and people's livelihoods and on the other hand the water bodies, where siltation and eutrophication threatens the water quality and biodiversity. Knowledge of sediment source and transfer dynamics in the main tributaries of Lake Manyara and the response of these dynamics to land use (change) is critical to inform sustainable management policy decisions to maintain and enhance future food and water security. Using geochemical tracing techniques and Bayesian unmixing models we were able to attribute the lake sediment proportionally to its contributing tributaries. Furthermore, we were able to identify differences in erosion processes in different tributary systems using gamma spectrometry measurements of surface-elevated fallout radionuclides (137Cs and 210Pb). In our results we found that almost half of the sediment in the lake could be attributed to the Makuyuni river system, while it only covers about 15 percent of the total catchment area. Comparing these results to our land use data, it is striking that this system has the lowest percentage of protected area and forest cover, while having large areas of agricultural, grass- and shrub land. It thus seems that the erosion dynamics in the Manyara catchment are linked with land cover, however further research into historical changes in sediment fluxes and land use is needed to infer the human impact on these dynamics.
NASA Astrophysics Data System (ADS)
Saad, H.; Habib, E. H.
2017-12-01
In August 2016, the city of Lafayette and many other urban centers in south Louisiana experienced catastrophic flooding resulting from prolonged rainfall. Statewide, this historic storm displaced more than 30,000 people from their homes, resulted in damages up to $8.7 billion, put rescue workers at risk, interrupted institutions of education and business, and worst of all, resulted in the loss of life of at least 13 Louisiana residents. With growing population and increasing signs of climate change, the frequency of major floods and severe storms is expected to increase, as will the impacts of these events on our communities. Local communities need improved capabilities for forecasting flood events, monitoring of flood impacts on roads and key infrastructure, and effectively communicating real-time flood dangers at scales that are useful to the public. The current study presents the application of the WRF-Hydro modeling system to represent integrated hydrologic, hydraulic and hydrometeorological processes that drive flooding in urban basins at temporal and spatial scales that can be useful to local communities. The study site is the 25- mile2 Coulee mine catchment in Lafayette, south Louisiana. The catchment includes two tributaries with natural streams located within mostly agricultural lands. The catchment crosses the I-10 highway and through the metropolitan area of the City of Lafayette into a man-made channel, which eventually drains into the Vermilion River and the Gulf of Mexico. Due to its hydrogeomorphic setting, local and rapid diversification of land uses, low elevation, and interdependent infrastructure, the integrated modeling of this coulee is considered a challenge. A nested multi-scale model is being built using the WRF-HYDRO, with 500m and 10m resolutions for the NOAH land-surface model and diffusive wave terrain routing grids, respectively.
Hashemi, Fatemeh; Olesen, Jørgen E; Dalgaard, Tommy; Børgesen, Christen D
2016-12-15
Nutrient loadings of nitrogen (N) and phosphorus (P) to aquatic environments are of increasing concern globally for managing ecosystems, drinking water supply and food production. There are often multiple sources of these nutrients in the landscape, and the different hydrological flow patterns within stream or river catchments have considerable influence on nutrient transport, transformation and retention processes that all eventually affect loadings to vulnerable aquatic environments. Therefore, in order to address options to reduce nutrient loadings, quantitative assessment of their effects in real catchments need to be undertaken. This involves setting up scenarios of the possible nutrient load reduction measures and quantifying their impacts via modelling. Over the recent two decades there has been a great increase in the use of scenario-based analyses of strategies to combat excessive nutrient loadings. Here we review 130 published papers extracted from Web of Science for 1995 to 2014 that have applied models to analyse scenarios of agricultural impacts on nutrients loadings at catchment scale. The review shows that scenario studies have been performed over a broad range of climatic conditions, with a large focus on measures targeting land cover/use and land management for reducing the source load of N and P in the landscape. Some of the studies considered how to manage the flows of nutrients, or how changes in the landscape may be used to influence both flows and transformation processes. Few studies have considered spatially targeting measures in the landscape, and such studies are more recent. Spatially differentiated options include land cover/use modification and application of different land management options based on catchments characteristics, cropping conditions and climatic conditions. Most of the studies used existing catchment models such as SWAT and INCA, and the choice of the models may also have influenced the setup of the scenarios. The use of stakeholders for designing scenarios and for communication of results does not seem to be a widespread practice, and it would be recommendable for future scenario studies to have a more in-depth involvement of stakeholders for the elaboration and interpretation of scenarios, in particular to enhance their relevance for farm and catchment management and to foster better policies and incentives. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stolte, J.; Ritsema, C. J.; Bouma, J.
2003-04-01
On the Loess Plateau in China, soil erosion amounts to between 10 000 and 25 000 tons/km^2 per year. The Chinese government acknowledges the erosion problem and promotes comprehensive erosion control. Erosion modeling might be a useful tool to understand and predict erosion and to ultimately find ways to prevent it. There is a growing awareness that successful research will have to take into account the farmers' objectives and constraints, and that it can benefit from their knowledge of local conditions. Erosion modeling as a tool in quantifying effects of alternative land uses requires knowledge of local biophysical parameters. Spatial and temporal variability of soil hydraulic conductivity are important parameters in soil erosion studies. A detailed investigation on the heterogeneity of the saturated conductivity and the implications for model outcome has to be carried out. The integrated goal of this study was to investigate the effect of different land use scenarios, based upon physical, economical and farmers points of view, on discharge and sediment losses, using stochastical distributions of measured field K_s values. The study area (Danangou catchment) is located in the middle part of the Loess Plateau in the northern part of Shaanxi Province. The catchment is about 3.5 km^2 in size, and drains directly into the Yanhe river. The elevation of the catchment ranges from 1085 to 1370 m above sea level. In the catchment, two villages, Leipingta and Danangou, are situated. In 1998, the total population in the catchment was 206 individuals belonging to 46 households. Average land area per household was about 1-2 ha, including small-scattered field plots. In this study, four land-use scenarios are identified: (i) current situation; (ii) an agricultural driven scenario; (iii) participatory planning-driven scenario; (iv) a soil physical driven scenario. In this study, the physically based hydrological and soil erosion model is used to quantify effects of land use on discharge and soil loss. To compare the effects of the defined land use scenarios, calculations were performed using a single rain event. For the saturated conductivity values, use was made of the geometric mean of the measured values for identified land-use groups. By randomly assigning values to each calculation grid-cell, a more diverse outcome of the model is expected reflecting the reality in a more credible way. To achieve this, for each land use scenario 50 drawings of the set of K_s values were performed. The participatory planning-driven scenario proved to produce minimal discharge, while under the current land use the discharge is high. All model outcome parameters showed higher values using the average value of K_s in comparison with the the use of stochastic values of K_s. By using stochastic values of K_s, confidence intervals of model outcome are introduced that reflect the uncertainty in input values and produce more realistic model outcome in terms of confidentiality and acceptability. Alternative land use will have a direct influence on the income of the farmers in the Danangou catchment. In the Participatory Conservation Planning a Participatory Household Economy Analysis (PHEA method) was developed to predict potential changes in household economy. The changes in farm production due to converting land as a result of different scenarios, was calculated in this study based on the results of the PHEA. The agricultural driven scenario resulted in a decrease of cropland, whereas the income increased. This indicates that when effort is put in extension work, the crop production (and therefor the income of the local people) can increase, without negative effects on discharge and soil erosion. The participatory planning-driven scenario, which extracts most of the cropland to be used for production, showed a considerable decrease in income.
NASA Astrophysics Data System (ADS)
Zapata-Rios, X.; Brooks, P. D.; Troch, P. A. A.; McIntosh, J. C.
2014-12-01
Landscape, climate, and vegetation interactions play a fundamental role in controlling the distribution of available water in hillslopes and catchments. In mid-latitudes, terrain aspect can regulate surface and subsurface hydrological processes, which not only affect the partitioning of energy and precipitation on short time scales, but also soil development, vegetation characteristics on long time scales. In Redondo Peak in northern New Mexico, a volcanic resurgent dome, first order streams drain different slopes around the mountain. In this setting, we study three adjacent first order catchments that share similar physical characteristics, but drain different aspects, allowing for an empirical study of how topographically controlled microclimate and soil influence the integrated hydrological and vegetation response. From 2008 to 2012, catchments were compared for the way they partition precipitation and how vegetation responds to variable water fluxes. Meteorological variables were monitored in 5 stations around Redondo Peak and surface runoff was monitored at the catchments' outlets. Hydrological partitioning at the catchment scale was estimated with the Horton Index, defined as the ratio between vaporization and wetting and it represents a measure of catchment-scale vegetation water use. Vegetation response was estimated using remotely sensed vegetation greenness (NDVI) derived from MODIS every 16 days with a spatial resolution of 250 m. Results show that the predominantly north facing catchment has the largest and least variable baseflow and discharge, consistent with greater mineral weathering fluxes and longer water transit times. In addition, vaporization, wetting and Horton Index, as well as NDVI, are smaller in the north facing catchment compared to the south east facing catchments. The predominant terrain aspect controls soil development, which affects the partitioning of precipitation and vegetation response at the catchment scale. These results also demonstrate how landscape evolution (e.g. depth of weathering profile) can affect various hydrologic processes, including streamflow response to precipitation and water residence time. In turn these processes are first-order controls on the sensitivity of the landscape to land use and climate change.
Challenges for implementing water quality monitoring and analysis on a small Costa Rican catchment
NASA Astrophysics Data System (ADS)
Golcher, Christian; Cernesson, Flavie; Tournoud, Marie-George; Bonin, Muriel; Suarez, Andrea
2016-04-01
The Costa Rican water regulatory framework (WRF) (2007), expresses the national concern about the degradation of surface water quality observed in the country since several years. Given the urgency of preserving and restoring the surface water bodies, and facing the need of defining a monitoring tool to classify surface water pollution, the Costa-Rican WRF relies on two water quality indexes: the so-called "Dutch Index" (D.I) and the Biological Monitoring Working Party adapted to Costa Rica (BMWP'CR), allowing an "easy" physicochemical and biological appraisal of the water quality and the ecological integrity of water bodies. Herein, we intend to evaluate whether the compound of water quality indexes imposed by Costa Rican legislation, is suitable to assess rivers local and global anthropogenic pressure and environmental conditions. We monitor water quality for 7 points of Liberia River (northern pacific region - Costa Rica) from March 2013 to July 2015. Anthropogenic pressures are characterized by catchment land use and riparian conditions. Environmental conditions are built from rainfall daily series. Our results show (i) the difficulties to monitor new sites following the recent implementation of the WRF; (ii) the statistical characteristics of each index; and (iii) a modelling tentative of relationships between water quality indexes and explanatory factors (land-use, riparian characteristics and climate conditions).
NASA Astrophysics Data System (ADS)
Villacís, Marcos; Cadier, Eric; Mena, Sandra; Anaguano, Marcelo; Calispa, Marlon; Maisisncho, Luis; Galárraga, Remigio; Francou, Bernard
2010-05-01
Preliminary hydro glacier estimates indicate that glacier contribution to the average annual consumption (5.6 m3 s-1) of the city of Quito (Capital of Ecuador, ~2'500.000 inhabitants, 2800 masl) represents only about 2%-4% of the total supply for human consumption. However, at the local level at the Antizana volcano (0°28'S, 78°09'W), the mass balance analysis of the system composed by the Humboldt catchment (area of 15.1 km2, 15% of glaciarized area, 5% of moraines area, 80% of the area is páramo-endemic ecosystem of the tropical Andes, range from 5670 masl to 4000 masl) and Los Crespos catchment (area of 2.4 km2, 67% glaciarized area, 27% moraines area, range from 5670 masl to 4500 masl), which is nested into the Humboldt catchment, allows us to identify that due to the presence of the glacier reservoirs there is an additional contribution of 24% to the annual volume at the Humboldt catchment and it helps to regulate the runoff during the dry season, where the daily additional glacier contribution from November to February in some cases could reach t 40%. The Humboldt catchment has similar physiographic characteristics than the sites where new diversions will be built in the future in order to satisfy the increasing demand of water for human consumption of the city of Quito and its surrounding populations. Based on detail hydrological observations (every 15 minutes measurements) during 2005 to 2009 and sporadic environmental trace analysis during the same period, the annual percentage of glacier contribution from the Humboldt catchment could potentially be as high as 37% due in part to the glacier melt contribution that gets infiltrated over 4750 masl it is then delivered around 4100 masl through underground circulation. Some of the sites where the glacier contribution reaches de surface has been identified through field work and the glacier origin of this water have been confirmed using a conductivity measurement, which seems to be a good indicator in when there is low precipitation. This additional contribution from glacier melt will reinforce the capacity to transform precipitation into runoff at the saturation zone of this high land catchment. As a consequence, the hydrologic behavior of these catchments could be negatively affected by disappearing glacier contribution under the climate change context predicted by the IPCC for this region. This could be also the case for catchments from other glacierized mountains located in the tropical Andes, where water supply for surrounding populations, high land ecosystems (locally known as páramos), and in some cases other economic activities such as agriculture will be in jeopardy.
NASA Astrophysics Data System (ADS)
van der Wiel, K.; Kapnick, S. B.; Vecchi, G.; Smith, J. A.
2017-12-01
The Mississippi-Missouri river catchment houses millions of people and much of the U.S. national agricultural production. Severe flooding events can therefore have large negative societal, natural and economic impacts. GFDL FLOR, a global coupled climate model (atmosphere, ocean, land, sea ice with integrated river routing module) is used to investigate the characteristics of great Mississippi floods with an average return period of 100 years. Model experiments under pre-industrial greenhouse gas forcing were conducted for 3400 years, such that the most extreme flooding events were explicitly modeled and the land and/or atmospheric causes could be investigated. It is shown that melt of snow pack and frozen sub-surface water in the Missouri and Upper Mississippi basins prime the river system, subsequently sensitizing it to above average precipitation in the Ohio and Tennessee basins. The months preceding the greatest flooding events are above average wet, leading to moist sub-surface conditions. Anomalous melt depends on the availability of frozen water in the catchment, therefore anomalous amounts of sub-surface frozen water and anomalous large snow pack in winter (Nov-Feb) make the river system susceptible for these great flooding events in spring (Feb-Apr). An additional experiment of 1200 years under transient greenhouse gas forcing (RCP4.5, 5 members) was done to investigate potential future change in flood risk. Based on a peak-over-threshold method, it is found that the number of great flooding events decreases in a warmer future. This decrease coincides with decreasing occurrence of large melt events, but is despite increasing numbers of large precipitation events. Though the model results indicate a decreasing risk for the greatest flooding events, the predictability of events might decrease in a warmer future given the changing characters of melt and precipitation.
NASA Astrophysics Data System (ADS)
de Vente, Joris; Zagaria, Cecilia; Pérez-Cutillas, Pedro; Almagro, Maria; Martínez-Mena, Maria; Baartman, Jantiene; Boix-Fayos, Carolina
2015-04-01
Changing climate and land management have strong implications for soil and water resources and for many essential ecosystem services (ES), such as provision of drinking and irrigation water, soil erosion control, and carbon sequestration. Large impacts of climate change are expected in the Mediterranean, characterized by a high dependence on scarce soil and water resources. On the other hand, well designed Sustainable Land Management (SLM) strategies can reduce the risks associated with climate change, but their design requires knowledge of their multiple effects on ecosystem services under present and future climate scenarios and of possible tradeoffs. Moreover, strategies are only viable if suited to local environmental, socio-economic and cultural conditions, so stakeholder engagement is crucial during their selection, evaluation and implementation. We present preliminary results of a catchment wide assessment of the expected impacts of climate change on water availability in the Segura basin (18800 km2) southeastern Spain. Furthermore, we evaluated the impacts of past land use changes and the benefits of catchment wide implementation of SLM practices to protect soil and water resources, prevent sedimentation of reservoirs and increase carbon sequestration in soil and vegetation. We used the InVEST modeling framework to simulate the water availability and sediment export under different climate, land use and land management scenarios, and quantified carbon stocks in soil and vegetation. Realistic scenarios of implementation of SLM practices were prepared based on an extensive process of stakeholder engagement and using latest climate change predictions from Regional Climate Models for different emission scenarios. Results indicate a strong decrease in water availability in the Segura catchment under expected climate change, with average reductions of upto 60% and large spatial variability. Land use changes (1990 - 2006) resulted in a slight increase in water yield (3.3%), a decrease in sediment export (21%) and organic carbon stock (1.7%). Headwaters showed on average a decrease in water yield, while downstream water yield increased, while changes in carbon stocks showed the opposite trend. Under present day land use, headwaters show highest carbon stocks and generally provide most ES per hectare. Yet, rainfed arable land located mainly in downstream parts of the catchment accounts for about 20% of the total carbon stock. Implementation of reduced tillage in combination with green manure results in an increase of the total carbon stock of the Segura catchment by about 3.3%, while sediment export reduces by 28% and water yield increases by 2.15% with an adoption rate of 10%. Under higher adoption levels decreasing water yield was found possibly indicating decreased water stress for crops. Overall, reduced tillage-green manure was found to lead to an increase in ES provision with important spatial variability and strongly affected by local environmental conditions. These results allow us to compare the effectiveness and efficiency of land use versus land management changes on protection of ecosystem services, tradeoffs and disparities between sub-catchments of the Segura River. This study's value lies in providing stakeholders with quantitative information upon which SLM strategies result in greatest catchment wide ecosystem service provision and tradeoffs, and thus greatest resilience to expected climate change impacts.
The effect of land use change on water quality: A case study in Ciliwung Watershed
NASA Astrophysics Data System (ADS)
Ayu Permatasari, Prita; Setiawan, Yudi; Nur Khairiah, Rahmi; Effendi, Hefni
2017-01-01
Ciliwung is the biggest river in Jakarta. It is 119 km long with a catchment area of 476 km2. It flows from Bogor Regency and crosses Bogor City, Depok City, and Jakarta before finally flowing into Java Sea through Jakarta Bay. The water quality in Ciliwung River has degraded. Many factors affect water quality. Understanding the relationship between land use and surface water quality is necessary for effective water management. It has been widely accepted that there is a close relationship between the land use type and water quality. This study aims to analyze the influence of various land use types on the water quality within the Ciliwung Watershed based on the water quality monitoring data and remote sensing data in 2010 and 2014. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. The result can provide scientific reference for the local land use optimization and water pollution control and guidance for the formulation of policies to coordinate the exploitation and protection of the water resource.
The contributions of climate and land cover impacts on streamflow in Norway
NASA Astrophysics Data System (ADS)
Huang, Shaochun; Eisner, Stephanie; Astrup, Rasmus; Beldring, Stein
2017-04-01
Located in high latitudes, Norway experienced significant changes in climate in the last 115 years. The average temperature rises at an average rate of 0.09 °C/decade while the annual precipitation increased by ca. 16% from 1900 to 2014 with statistical significance. In the meantime, the standing forest timber volume has increased continuously and almost tripled by the year 2012. Both the changes in climate and land cover would directly affect the streamflow and the hydropower production in Norway, which accounts for about 98% of the total electricity production of the whole country. However, there is a lack of understanding of the contribution of these different drivers to changes in streamflow in Norway, although such knowledge provides important information for future changes in water availability. This paper aims to quantify the relative contribution of climate and land cover impacts on the mean annual and seasonal streamflow (including total, quick and base flow) using the hydrological model HBV for 56 natural catchments in Norway. The changes in forest extend and structure are considered as the major land cover changes in these catchments. The discharge data are split into two periods (1961 - 1988 and 1989 - 2015) as the reference and changing periods. The HBV model was firstly calibrated in the reference period for all catchment separately and the simulated discharge in the changing period was used to calculate the relative contributions. The results show that the climate change played a bigger role than land cover change on annual total, quick and base flows in 62%, 48% and 82% studied basins, respectively. The climate change is the dominant driver on streamflows in winter and spring in most basins, while the land use change affected more significantly on summer flows as well as the base flow in autumn. Finally, the resulted contribution will be compared with the changes in climate and forest characteristics as external validation.
Catchment hydro-biogeochemical response to climate change and future land-use
The potential interacting effects of climate change and future land-use on hydrological and biogeochemical dynamics rarely have been described at the catchment level and are difficult or impossible to capture through experimentation or observation alone. We apply a new model, Vi...
Shrestha, Manoj K; Recknagel, Friedrich; Frizenschaf, Jacqueline; Meyer, Wayne
2017-07-15
Mediterranean catchments experience already high seasonal variability alternating between dry and wet periods, and are more vulnerable to future climate and land use changes. Quantification of catchment response under future changes is particularly crucial for better water resources management. This study assessed the combined effects of future climate and land use changes on water yield, total nitrogen (TN) and total phosphorus (TP) loads of the Mediterranean Onkaparinga catchment in South Australia by means of the eco-hydrological model SWAT. Six different global climate models (GCMs) under two representative concentration pathways (RCPs) and a hypothetical land use change were used for future simulations. The climate models suggested a high degree of uncertainty, varying seasonally, in both flow and nutrient loads; however, a decreasing trend was observed. Average monthly TN and TP load decreased up to -55% and -56% respectively and were found to be dependent on flow magnitude. The annual and seasonal water yield and nutrient loads may only slightly be affected by envisaged land uses, but significantly altered by intermediate and high emission scenarios, predominantly during the spring season. The combined scenarios indicated the possibility of declining flow in future but nutrient enrichment in summer months, originating mainly from the land use scenario, that may elevate the risk of algal blooms in downstream drinking water reservoir. Hence, careful planning of future water resources in a Mediterranean catchment requires the assessment of combined effects of multiple climate models and land use scenarios on both water quantity and quality. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rivers, Mark; Clarendon, Simon; Coles, Neil
2013-04-01
Natural Resource Management and Agri-industry development groups in Australia have invested considerable resources into the investigation of the economic, social and, particularly, environmental impacts of varying farming activities in a "catchment context". This research has resulted in the development of a much-improved understanding of the likely impacts of changed management practices at the farm-scale as well as the development of a number of conceptual models which place farming within this broader catchment context. The project discussed in this paper transformed a conceptual model of dairy farm phosphorus (P) management and transport processes into a more temporally and spatially dynamic model. This was then loaded with catchment-specific data and used as a "policy support tool" to allow the Australian dairy industry to examine the potential farm and catchment-scale impacts of varying dairy farm management practices within some key dairy farming regions. Models were developed, validated and calibrated using "STELLA©" dynamic modelling software for three catchments in which dairy is perceived as a significant land use. The models describe P movement and cycling within and through dairy farms in great detail and also estimate P transport through major source, sink and flow sectors of the catchments. A series of scenarios were executed for all three catchments which examined three main "groups" of tests: changes to farm P input rates; implementation of perceived environmental "Best Management Practices" (BMPs), and; changes to land use mosaics. Modifications to actual P input rates into dairy farms (not surprisingly) had a major effect on nutrient transport within and from the farms with a significant rise in nutrient loss rates at all scales with increasing fertiliser use. More surprisingly, however, even extensive environmental BMP implementation did not have marked effects on off-farm nutrient loss rates. On and off-farm riparian management implemented over entire catchments, for example, only reduced P losses by approximately 20%. Most importantly, changes to land use mosaics within the catchments provided great insight into the relative roles within the catchment P system of the various land uses. While dairying uses large amounts of P, the effects that dairy farm management can have at the catchment scale when these farms represent only a small proportion of the landscape are limited. The most important conclusions from the research are that: • While State and regional environmental management and regulatory agencies continue to set optimistic goals for water quality protection, this research shows that these targets are not achievable within current landscape paradigms even after broadscale BMP implementation, and that either these targets must be re-considered or that significant land use change (rather than simply improved management within current systems) must occur to meet the targets. • Catchment-scale effects of P losses at the farm scale are a complex function of P-use efficiency, landscape position and landscape footprint. Simply targetting those landuses perceived to have high nutrient loss rates does not adequately address the problem. • Catchment P management must be considered in a more inclusive and holistic way, and these assessments should be used to inform future planning policies and development plans if environmental goals as well as community expectations about the productive use of agricultural land are to be met.
Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments
NASA Astrophysics Data System (ADS)
Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.
2013-04-01
SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.
Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A
2014-07-01
Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.
NASA Astrophysics Data System (ADS)
Boylan, R. D.; Brooks, E. S.
2012-12-01
It has long been understood that soil organic matter (SOM) plays important role in the chemistry of agricultural soils. Promoting both cation exchange capacity and water retention, SOM also has the ability to sequester atmospheric carbon adding to a soils organic carbon content. Increasing soil organic carbon in the dryland agricultural region of the Inland Pacific Northwest is not only good for soil health, but also has the potential to mitigate greenhouse gas emissions. Implementing strategies that minimizing the loss of soil carbon thus promoting carbon sequestration require a fundamental understanding of the dominant hydrologic flow paths and runoff generating processes in this landscape. Global fluxes of organic carbon from catchments range from 0.4-73,979 kg C km-2 year-1 for particulate organic carbon and 1.2-56,946 kg C km-2 year-1 for dissolved organic carbon (Alvarez-Cobelas, 2010). This small component of the global carbon cycle has been relatively well studied but there have yet to be any studies that focus on the dryland agricultural region of the Inland Pacific Northwest. In this study event based samples were taken at 5 sites across the Palouse Basin varying in land use and management type as well as catchment size, ranging from 1km2 to 7000 km2. Data collection includes streamflow, suspended sediment, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), particulate organic carbon (POC), dissolved organic nitrogen (TN), and nitrate concentrations as well as soil organic carbon (SOC) from distributed source areas. It is predicted that management type and streamflow will be the main drivers for DOC and POC concentrations. Relationships generated and historic data will then be used in conjunction with the Water Erosion Prediction Project (WEPP) to simulate field scale variability in the soil moisture, temperature, surface saturation, and soil erosion. Model assessment will be based on both surface runoff and sediment load measured at the outlet of these field catchments and distributed measurements capturing spatial variability within the catchments. We demonstrate how the accurate representation of the field scale variability in hydrology is an essential first step in the development of full scale cropping models capable of evaluating precision-based mitigation strategies.
Building Towards a Conceptual Model for Phosphorus Transport in Lowland Catchments
NASA Astrophysics Data System (ADS)
van der Grift, B.; Griffioen, J.; Oste, L.
2016-12-01
The release of P to surface water following P leaching from heavily fertilized agricultural fields to groundwater and the extent of P retention at the redox interphase are of major importance for surface water quality. We studied the role of biogeochemical and hydrological processes during exfiltration of groundwater and their impact on phosphorus transport in lowland catchments in the Netherlands. Our study showed that the mobility and ecological impact of P in surface waters in lowland catchments or polders like in the Netherlands is strongly controlled by the exfiltration of anoxic groundwater containing ferrous iron. Chemical precipitates derived from groundwater-associated Fe(II) seeping into the overlying surface water contribute to immobilization of dissolved phosphate and, therefore, reduces its bioavailability. Aeration experiments with Fe(II) and phosphate-containing synthetic solutions and natural groundwater showed that Fe(II) oxidation in presence of phosphate leads initially to formation of Fe(III) hydroxyphosphates precipitates until phosphate is near-depleted from solution. A field campaign on P specation in surface waters draining agricultural land showed, additionally, that the total-P concentration is strongly dominated by iron-bound. Between 75 and 95% of the total-P concentration in the water samples was iron-bound particulate P. After the turnover of dissolved P to iron-bound particulate P, the P transport in catchments or polders is controlled by sedimentation and erosion of suspended sediments in the water body. Shear flow-induced surface erosion of sediment beds upon natural discharge events or generated by pumping stations is thus an important mechanism for P transport in catchments or polders. The flow velocities in headwaters like drainage ditches are generally low and not high enough to cause a bed shear stress that exceed the critical shear stress. Transport of particulate P that originates from groundwater and (agricultural) drains discharge is strongly retained but particulate P can be remobilized due to biogeochemical processes in the sediment layer at other moments. This makes it difficult to link agricultural practice to P concentrations in the surface water and this should be accounted for when judging measures to reduce P loads from agriculture.
NASA Astrophysics Data System (ADS)
Schönenberger, Urs; Spycher, Barbara; Kistler, David; Burdon, Frank; Reyes, Marta; Eggen, Rik; Joss, Adriano; Singer, Heinz; Stamm, Christian
2016-04-01
Treated municipal wastewater is an important source of micropollutants entering the environment. Micropollutants are a diverse range of chemicals of which concentrations vary strongly in space and time. To better quantitatively understand the spatio-temporal patterns of micropollutants in streams, we compared upstream and downstream locations at 24 wastewater treatment plants (WWTPs) across the Swiss Plateau and Jura regions. Each site represents the most upstream treatment plant in the corresponding catchment. In 2013, a broad analytical screening was applied to samples collected at 12 sites during winter (January) and summer conditions (June). Based in these results, the bi-monthly samples obtained in 2014 at 12 additional sites were analysed for a group of approximately 60 selected organic micropollutants. The screening results demonstrate that generally, pharmaceuticals, artificial sweeteners and corrosion inhibitors make up the largest share of the organic micropollutants in wastewater. Pesticides including biocides and plant protection products are also regularly found, but at lower concentrations. The opposite holds true for the concentration variability: pesticides vary the most across time and space, while pharmaceuticals exhibit more stable concentrations. Heavy metals fluctuate to a similar degree as pharmaceuticals. Principal component analyses suggest that pesticide and pharmaceutical levels at both upstream locations and in the wastewater vary independently of each other. At the upstream locations, the pesticide levels increased with the proportion of arable land in the watershed, whilst decreasing with greater cover of pasture and forest. Interestingly, the same patterns hold true for the composition of wastewater when considering land use in the catchments of the WWTPs. This suggests that pesticide-intensive agricultural crops not only impact surface water quality via diffuse pollution but also increase levels of pesticides in wastewater discharged to the streams. As a consequence, catchment land uses and effluent composition appear to be inextricably bound.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Gallo, E.; Carlson, M.; Riha, K. M.; Brooks, P. D.; McIntosh, J. C.; Sorooshian, A.; Michalski, G. M.; Meixner, T.
2011-12-01
Semi-arid regions are experiencing disproportionate increases in human population and land transformation worldwide, taxing limited water resources and altering nitrogen (N) biogeochemistry. How the redistribution of water and N by urbanization affects semi-arid ecosystems and downstream water quality (e.g. drinking water) is unclear. Understanding these interactions and their feedbacks will be critical for developing science-based management strategies to sustain these limited resources. This is especially true in the US where some of the fastest growing urban areas are in semi-arid ecosystems, where N and water cycles are accelerated, and intimately coupled, and where runoff from urban ecosystems is actively managed to augment a limited water supply to the growing human population. Here we synthesize several ongoing studies from the Tucson Basin in Arizona and examine how increasing urban land cover is altering rainfall-runoff relationships, groundwater recharge, water quality, and long range transport of atmospheric N. Studies across 5 catchments varying in impervious land cover showed that only the least impervious catchment responded to antecedent moisture conditions while hydrologic responses were not statistically related to antecedent rainfall conditions at more impervious sites. Regression models indicated that rainfall depth, imperviousness, and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality was not predictably related to imperviousness or catchment size. Rather, rainfall depth and duration, time since antecedent rainfall, and stream channel characteristics and infrastructure controlled runoff chemistry. Groundwater studies showed nonpoint source contamination of CFCs and associated nitrate in areas of rapid recharge along ephemeral channels. Aerosol measurements indicate that both long-range transport of N and N emissions from Tucson are being transported and deposited at high elevation in areas that recharge regional groundwater. Combined, our findings suggest that urbanization in semi-arid regions results in tradeoffs in the redistribution of water and N that have important implications for water management and sustaining water quality.
Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations
NASA Technical Reports Server (NTRS)
Reichle, R. H.
2010-01-01
Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.
NASA Astrophysics Data System (ADS)
Breuer, Sonja; Kilian, Rolf; Baeza, Oscar; Arz, Helge
2010-05-01
Cenozoic denudation rates are sparsely known for the southernmost Patagonian Andes. One of the scientific approaches is to calculate long-term denudation rates based on fission track analyses. Though, these average rates comprise a long period with distinct climate conditions and very different extend of glaciation. These integrated denudation rates include extensive surface areas with different morphological, glacial and vegetational properties. In contrast, our approach is restricted to relative short Holocene periods and small catchment areas, for which the denudation and its controlling surface characteristics could be defined more precisely. Thus a more precise evaluation of the influencing parameters like climate, morphology and vegetation cover was possible. We concentrated on three restricted and nearly closed areas of denudation and accumulation. In those catchments we determined the sediment masses of lakes, based on sediment drilling, echosounding and computer based interpolation of the siliciclastic sediment masses. These masses were transferred to the denudation areas which have been characterised and measured by remote sensing. The westernmost Tamar Lake is located on the Tamar Island in the western part of the Magellan Strait, where the annual precipitation is about 4,000 mm. The catchment area has a dense vegetation cover. The lake surrounding slopes reach an elevation of 400 m a.s.l and they are up to 60° steep. The calculated denudation rate for this catchment is about 2.56 mm/ka, which represents a minimum value, because the postglacial weathering horizon is only partly removed into the lake. The highest elevated lake Muy Profundo (500 m a.s.l.) possesses a denudation area with a nearly vegetation-free zone up to 750 m a.s.l. within the Patagonian Batholith. The catchment area of this lake is characterised by a roche moutonnée landform with steep slopes and active fracture zones. The precipitation varies between 5,000 and 8,000 mm/a. The denudation rates of the catchment amount to 0.42 mm/ka. Despite the high precipitation and the exposed position this denudation rate is unexpectedly low. Along the active fracture zones a stronger denudation could be observed by the occurrence of restricted gullies. The removed predominantly coarse clastic material is stored in alluvial cones and not included in our mass balance. The elevation of the catchment of the easternmost Chandler does not exceed 200 m a.s.l. and the area is characterised by a moderate relief with relatively flat slopes. The roche moutonnée landscape is interspersed with tracts of peat land and Magellanic rainforest. The precipitation ranges between 3,500 and 5,000 mm/a. Circulating acid soil water cause an intense chemical weathering and formed a 10-20 cm thick weathering horizon at the interface between bedrock and peaty soil. Due to the sediment core and the echosound stratigraphy, the denudation could be determined for two periods of time. The 2,040 cal. a BP tephra layer of the Mt. Burney volcano is the most distinct reflector in the echosound data. Therefore it was used as a sedimentation boundary. The denudation rates for the period 12,100 to ~2,000 and for the last 2000 years are very similar with ~2.55 mm/ka. On the basis of e.g. Ti/U enrichment in the weathering horizon, we conclude that the chemical denudation is very important in areas with vegetation cover in the superhumid Andes. In a long-term perspective, the relatively high denudation rates of low elevated peat land compared to the exposed rock surfaces may further increase the relief even during interglacial periods, like the Holocene. On the basis of our results we could state that the precipitation plays only a subordinated role as a control mechanism concerning the denudation in ice-free, but low temperate areas of the Patagonian Andes.
Garbossa, Luis H P; Souza, Robson V; Campos, Carlos J A; Vanz, Argeu; Vianna, Luiz F N; Rupp, Guilherme S
2017-01-01
Thermotolerant coliform (TC) loadings were quantified for 49 catchments draining into the North and South Bays of Santa Catarina (SC, southeastern Brazil), an area known for its tourism and aquaculture. TC loadings were calculated based on flow measurements taken in 26 rivers. TC concentrations ere quantified based on surface water samples collected at 49 catchment outlets in 2012 and 2013. Median TC loads ranged from 3.7 × 10 3 to 6.8 × 10 8 MPN s -1 . TC loadings in the catchments increased in proportion to increases in resident human population, population density and percentage of urbanised area. Catchments with more than 60% of area covered by wastewater collection and treatment systems had higher TC loads per person than catchments with less than 25%. Based on the study catchments, these results indicate that current sewerage infrastructure is ineffective in reducing contamination of faecal origin to surface waters. These findings have important implications for the management of microbiological health hazards in bathing, recreational and shellfish aquaculture waters in the North and South Bays of Santa Catarina Island.
Land susceptibility to soil erosion in Orashi Catchment, Nnewi South, Anambra State, Nigeria
NASA Astrophysics Data System (ADS)
Odunuga, Shakirudeen; Ajijola, Abiodun; Igwetu, Nkechi; Adegun, Olubunmi
2018-02-01
Soil erosion is one of the most critical environmental hazards that causes land degradation and water quality challenges. Specifically, this phenomenon has been linked, among other problems, to river sedimentation, groundwater pollution and flooding. This paper assesses the susceptibility of Orashi River Basin (ORB) to soil erosion for the purpose of erosion control measures. Located in the South Eastern part of Nigeria, the ORB which covers approximately 413.61 km2 is currently experiencing one of the fastest population growth rate in the region. Analysis of the soil erosion susceptibility of the basin was based on four factors including; rainfall, Land use/Land cover change (LULC), slope and soil erodibility factor (k). The rainfall was assumed to be a constant and independent variable, slope and soil types were categorised into ten (10) classes each while the landuse was categorised into five classes. Weight was assigned to the classes based on the degree of susceptibility to erosion. An overlay of the four variables in a GIS environment was used to produce the basin susceptibility to soil erosion. This was based on the weight index of each factors. The LULC analysis revealed that built-up land use increased from 26.49 km2 (6.4 %) in year 1980 to 79.24 km2 (19.16 %) in 2015 at an average growth rate of 1.51 km2 per annum while the light forest decreased from 336.41 km2 (81.33 %) in 1980 to 280.82 km2 (67.89 %) in 2015 at an average rate 1.59 km2 per annum. The light forest was adjudged to have the highest land cover soil erosion susceptibility. The steepest slope ranges between 70 and 82° (14.34 % of the total land area) and was adjudged to have the highest soil susceptibility to erosion. The total area covered of the loamy soil is 112.37 km2 (27.07 %) with erodibility of 0.7. In all, the overlay of all the variables revealed that 106.66 km2 (25.70 %) and 164.80 km2 (39.7 %) of the basin has a high and very high susceptibility to soil erosion. The over 50 % high susceptibility of catchment has serious negative implications on the surface water in terms of water quality and downstream siltation with great consequences on biodiversity and ecosystem services including domestic and industrial usage.
NASA Astrophysics Data System (ADS)
Verbeiren, Boud; Weerasinghe, Imeshi; Vanderhaegen, Sven; Canters, Frank; Uljee, Inge; Engelen, Guy; Jacquemin, Ingrid; Tychon, Bernard; Vangelis, Harris; Tsakiris, George; Batelaan, Okke; Huysmans, Marijke
2015-04-01
Drought is mainly regarded as a purely natural phenomenon, driven by the natural variation in precipitation or rather the lack of precipitation. Nowadays many river catchments are, however, altered by human activities having direct effects on the catchment landscape and hydrological response. In case of the occurrence of drought events in those catchments it becomes more complex to determine the effects of drought. To what extent is the hydrological response a direct result of the natural phenomenon and what is the role of the human factor? In this study we focus on the effects of droughts on groundwater recharge. Reliable estimation of groundwater recharge in space and time is of utmost importance for sustainable management of groundwater resources. Groundwater recharge forms the main source for replenishing aquifers. The main factors influencing groundwater recharge are the soil and topographic characteristics, land use and climate. While the first two influencing factors are relatively static, the latter two are (highly) dynamic. Differentiating between the contributions of each of these influencing factors to groundwater recharge is a challenging but important task. On the one hand, the occurrence of meteorological drought events is likely to cause direct, potentially deteriorating, effects on groundwater recharge. On the other hand, this is also the case for on-going land-use dynamics such as extensive urbanisation. The presented methodology aims at distinguishing in space and time between climate (drought-related) and land-use (human-induced) effects, enabling to assess the effects of drought on groundwater recharge. The physically-based water balance model WetSpass is used to calculate groundwater recharge in a distributed way (space and time) for the Dijle-Demer catchments in Belgium. The key issue is to determine land-use dynamics in a consistent way. A land-use timeseries is build based on four base maps. Via a change trajectory analysis the consistency of the land-use timeseries is assured. In addition also consistent land-cover fraction maps (vegetated, impervious, bare and open water), obtained from remote sensing, are used. To account for climate variability a distributed meteorological monthly timeseries of 32 years (1980-2011) is considered. A combined drought index approach (RDI, SPI, scPDSI) is used to identify meteorological drought events during this period. WetSpass simulations are used to assess the weight of the influencing factors 'land use' and 'climate' with respect to drought effects on the recharge timeseries. Hereto WetSpass is run several times with different climate input, while the dynamic land-use timeseries (1980-2013) is considered for every scenario. Two simulation runs are used: (1) long-term average climate, representing "normal" conditions for the 32-year period and (2) dynamic climate conditions 1980-2013. The results of both WetSpass simulations enable to assess the drought effect (deviation from normal) on groundwater recharge for each monthly timestep. Results indicate that drought effects occur in the Dijle-Demer catchments and even tend to increase towards the last decade, especially during the 3rd trimester and in the south of the study area. This research is funded within the frame of the SSD Programme of the Belgian Science Policy Office (BELSPO). KEYWORDS: drought, groundwater recharge, climate timeseries, land-use timeseries, trajectory analysis, WetSpass, spatial and temporal distribution
NASA Astrophysics Data System (ADS)
Bouteffeha, Maroua; Dagès, Cécile; Bouhlila, Rachida; Raclot, Damien; Molénat, Jérôme
2013-04-01
In Mediterranean regions, food and water demand increase with population growth leading to considerable changes of the land use and agricultural practices. In North Africa, particularly in the Mediterranean zones, hill reservoirs are water harvesting infrastructures that have been increasingly adopted to mobilize runoff and create alternative water resource that can be used to develop agriculture. Hill reservoirs are also used to prevent from silting of downstream dams. Management of water resources collected in these infrastructures requires a good knowledge of their hydrological functioning. In particular, the rate of water exchanges between the reservoir and the underlying aquifer, called surface-subsurface exchange hereafter, is still an open question. The main purpose of the study is to better know the hydrological functioning of hill reservoirs in quantifying at the annual and intra-annual time scales the flux of surface-subsurface exchange and the uncertainty associated to the flux. The approach is based on the hydrological water balance of the hill reservoir. It was applied to the hill reservoir of the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). The dense monitoring of the observation catchment allowed quantifying the fluxes of all hydrological processes governing the reservoir hydrology, and their associated uncertainties. The water balance was established by considering water inputs (direct rainfall, waddy and hillslope runoff, surface-subsurface exchange), water outputs (evaporation, spillway discharge) and hill reservoir water volume changes. The surface-subsurface exchange component was deduced as the default closure term in the water balance. The results first demonstrate the ability of the proposed approach to estimate the net surface-subsurface exchange flux and its uncertainty at various time scales. Its application on the Kamech catchment for two hydrological years (09/2009-08/2010 and 09/2010-08/2011) shows that the net surface-subsurface exchange flux is positive, i.e. the infiltration from the hill reservoir to the aquifer predominates the discharge from the aquifer to the reservoir. Moreover the surface-subsurface exchange constitutes the main output component in the water balance. The annual surface-subsurface exchange flux appeared almost constant from one year to the other one whatever the hydrological conditions variability over the catchment. Moreover, the analysis of the intra-annual variability shows that the flux was nearly constant within every year. Reference: Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.
Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate
2015-01-01
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.
Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate
2015-01-01
Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813
Overland flow dynamics through visual observation using time-lapse photographs
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2016-04-01
Overland flow process on agricultural land is important to be investigated as it affects the stream discharge and water quality assessment. During rainfall events the formation of overland flow may happen through different processes (i.e. Hortonian or saturation excess overland flow) based on the governing soil hydraulic parameters (i.e. soil infiltration rate, soil water capacity). The dynamics of the soil water state and the processes will affect the surface runoff response which can be analyzed visually by observing the saturation patterns with a camera. Although visual observation was proven useful in laboratory experiments, the technique is not yet assessed for natural rainfall events. The aim of this work is to explore the use of time-lapse photographs of naturally occurring-saturation patterns in understanding the threshold processes of overland flow generation. The image processing produces orthographic projection of the saturation patterns which will be used to assess the dynamics of overland flow formation in relation with soil moisture state and rainfall magnitude. The camera observation was performed at Hydrological Open Air Laboratory (HOAL) catchment at Petzenkirchen, Lower Austria. The catchment covers an area of 66 ha dominated with agricultural land (87%). The mean annual precipitation and mean annual flow at catchment outlet are 750 mm and 4 l/s, respectively. The camera was set to observe the overland flow along a thalweg on an arable field which was drained in 1950s and has advantages of: (1) representing agricultural land as the dominant part of the catchment, (2) adjacent to the stream with clear visibility (no obstructing objects, such as trees), (3) drained area provides extra cases in understanding the response of tile drain outflow to overland flow formation and vice versa, and (4) in the vicinity of TDT soil moisture stations. The camera takes a picture with 1280 x 720 pixels resolution every minute and sends it directly in a PC via fiber-optic network. Exterior orientation is required to project the observed saturation patterns in the photographs onto orthographic map. This was done by georeferencing the on-field GPS points taken throughout the camera field of view to the orthographic map obtained from an airborne laser scanning (ALS) campaign. Based on the projected saturation patterns, the patterns dynamics were analyzed in relation to soil moisture state and rainfall magnitude for events in autumn and winter 2014. From the observed events during saturated soil condition, tile drain flow reacted within one hour after the rain started, while no sign of saturation pattern evolving into overland flow was observed. Within two hours after the rain started, overland flow was fully formed along the thalweg which flowed to the erosion gully and created signal at the discharge station almost immediately. From the surface roughness aspect, field management is an important factor of overland flow development as surface runoff was formed faster along the tractor tracks. In overall, time-lapse photographs have potentials to qualitatively assess the saturation patterns dynamics during rainfall events with high time resolution and wide area coverage.
NASA Astrophysics Data System (ADS)
Lecourt, Grégoire; Revuelto, Jesús; Morin, Samuel; Zin, Isabella; Lafaysse, Matthieu; Condom, Thomas; Six, Delphine; Vionnet, Vincent; Charrois, Luc; Dumont, Marie; Gottardi, Frédéric; Laarman, Olivier; Coulaud, Catherine; Esteves, Michel; Lebel, Thierry; Vincent, Christian
2016-04-01
In Alpine catchments, the hydrological response to meteorological events is highly influenced by the precipitation phase (liquid or solid) and by snow and ice melt. It is thus necessary to simulate accurately the snowpack evolution and its spatial distribution to perform relevant hydrological simulations. This work is focused on the upper Arve Valley (Western Alps). This 205 km2 catchment has large glaciated areas (roughly 32% of the study area) and covers a large range of elevations (1000-4500 m a.s.l.). Snow presence is significant year-round. The area is also characterized by steep terrain and strong vegetation heterogeneity. Modelling hydrological processes in such a complex catchment is therefore challenging. The detailed ISBA land surface model (including the Crocus snowpack scheme) has been applied to the study area using a topography based discretization (classifying terrain by aspect, elevation, slope and presence of glacier). The meteorological forcing used to run the simulations is the reanalysis issued from the SAFRAN model which assimilates meteorological observations from the Meteo-France networks. Conceptual reservoirs with calibrated values of emptying parameters are used to represent the underground water storage. This approach has been tested to simulate the discharge on the Arve catchment and three sub-catchments over 1990-2015. The simulations were evaluated with respect to observed water discharges for several headwaters with varying glaciated areas. They allow to quantify the relative contribution of rainfall, snow and ice melt to the hydrological regime of the basin. Additionally, we present a detailed analysis of several particular flood events. For these events, the ability of the model to correctly represent the catchment behaviour is investigated, looking particularly to the relevance of the simulated snowpack. Particularly, its spatial distribution is evaluated using MODIS snow cover maps, punctual snowpack observations and summer glacier mass balance estimations.
NASA Astrophysics Data System (ADS)
Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther
2010-05-01
Simulation of heavy rain is an established method for studying infiltration characteristics, runoff and erosion behaviour in alpine catchments. Accordingly for characterization and differentiation of various runoff producing areas in alpine catchments transportable spray irrigation installations for large plots have been developed at the BFW, Department of Natural Hazards and Alpine Timberline, in Innsbruck, Austria. One installation has been designed for assessment of surface runoff coefficients under convective torrential rain with applicable precipitation intensities between 30 and 120 mm*h-1 and a plot size between 50 and 100 m2. The second device is used for simulation of persistent rain events (rain intensity about 10 mm*h-1, plot size: 400-1200 m2). Very reasonable results have been achieved during the comparison with spray irrigations from other institutions (e.g. Bavarian Environmental Agency in Munich) in the field. Rain simulations at BFW are mostly combined with comprehensive additional investigations on land-use, vegetation cover, soil physical characteristics, soil humidity, hydrogeology and other features of the test-sites. This allows proper interpretation of the achieved runoff data. At the moment results from more than 280 rain simulations are available from about 25 catchments / regions of the Eastern Alps at the BFW. Results show that the surface runoff coefficient, when runoff is constant at the test site (φconst) increases only slightly between rain intensities from 30 to 120 mm*h-1 (increment is 6%). Therefore φconst shall be used for assessment of runoff behaviour of runoff contributing areas, because it is less dependent form system conditions than φtot. BFW-data have been consolidated with results of the LfU (Bavarian Environmental Agency in Munich) in a data base and formed the basis for the development of a simple code of practice for assessment of surface runoff coefficients in torrential rain. The manual is freely available under: http://bfw.ac.at/rz/bfwcms.web?dok=4342 (in German language). The runoff contributing areas delineated by use of the manual in the field can be compiled in digital surface runoff coefficient maps and surface roughness maps. These maps in Austria form the basis for calculation of recurrent design events by use of precipitation/runoff models (P/R-models) like ZEMOKOST (optimized runtime method after Zeller = ZEller MOdified by KOhl and STepanek) or HEC-HMS. The result is substantial information on runoff disposition in each sub-catchment and hydrographs showing peak runoff and runoff freight. The code of practice for assessment of surface runoff coefficients has become the standard procedure in Austria to derive input parameters for P/R-models in practice. Recent investigations done at the Institute of Geography at the University of Berne show that the code of practice is suitable for application in catchments at the northern edge of the Swiss Alps too.
Microwave soil moisture estimation in humid and semiarid watersheds
NASA Technical Reports Server (NTRS)
O'Neill, P. E.; Jackson, T. J.; Chauhan, N. S.; Seyfried, M. S.
1993-01-01
Land surface hydrologic-atmospheric interactions in humid and semi-arid watersheds were investigated. Active and passive microwave sensors were used to estimate the spatial and temporal distribution of soil moisture at the catchment scale in four areas. Results are presented and discussed. The eventual use of this information in the analysis and prediction of associated hydrologic processes is examined.
A Physical Model for Shallow Groundwater Studies and the Simulation of Land Drain Performance.
ERIC Educational Resources Information Center
Parkinson, Robert; Reid, Ian
1987-01-01
Describes a two-dimensional sand-tank model that illustrates the influence of ground slope on tile drain discharge and the movement of groundwater in general. The model can be used to demonstrate the effect of topography on sub-surface water movement in agricultural catchments, thus it is a useful hydrological teaching aid. (Author/BSR)
NASA Astrophysics Data System (ADS)
Strasser, Ulrich; Formayer, Herbert; Förster, Kristian; Marke, Thomas; Meißl, Gertraud; Schermer, Markus; Stotten, Friederike; Themessl, Matthias
2016-04-01
Future land use in Alpine catchments is controlled by the evolution of socio-economy and climate. Estimates of their coupled development should hence fulfill the principles of plausibility (be convincing) and consistency (be unambiguous). In the project STELLA, coupled future climate and land use scenarios are used as input in a hydrological modelling exercise with the physically-based, distributed water balance model WaSiM. The aim of the project is to quantify the effects of these two framing components on the future water cycle. The test site for the simulations is the catchment of the Brixentaler Ache in Tyrol/Austria (47.5°N, 322 km2). The so-called „storylines" of future coupled climate and forest/land use management, policy, social cooperation, tourism and economy have jointly been developed in an inter- and transdisciplinary assessment with local actors. The climate background is given by simulations for the A1B (temperature conditions like today in Merano/Italy, 46.7°N) and RCP 8.5 (temperature conditions like today in Bologna/Italy, 44.5°N) emission scenarios. These two climate scenarios were combined with three potential socio-economic developments („local"/„glocal"/ „superglobal"), each in a positive and in a negative specification. From these twelve storylines of coupled climate/land use future, a set of four storylines was selected to be used in transient hydrological modelling experiments. Historical simulations of the water balance for the test site reveal the pattern of land use being the most prominent factor for the spatial distribution of its components. A new prototype for a snow-canopy interaction simulation module provides explicit rates of intercepted and sublimated snow from the trees and stems of the different forest stands in the catchment. This new canopy module will be used to model the coupled climate/land use future storylines for the Brixental. The aim is to quantify the effects of climate change and land use on the water balance and streamflow, both separately and in their respective combination.
Influence of land development on stormwater runoff from a mixed land use and land cover catchment.
Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H
2017-12-01
Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE <11) and 2015 (validation: R 2 and NSE>0.5; RMSE <12). For continuous simulation and analyzing LID-BMPs scenarios, the five-year (2011 to 2015) stormwater runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cartwright, Ian; Hofmann, Harald; Gilfedder, Ben
2013-04-01
Understanding whether catchments are in chemical mass balance is important in understand long-term groundwater-surface water interactions. The mass balance of a conservative solute such as Cl in a catchment is: P*Cl(P) = SW*Cl(SW) + GW*Cl(GW) + dST*Cl(ST) where P, SW, and GW, are net precipitation, surface water outflows, and groundwater outflows and dST accounts for changes to water held in storage, primarily in the groundwater system. Cl() is the concentration of Cl in the various water components. Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to water in storage are less well known meaning that it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e., if SW*Cl(SW) > P*Cl(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of water in storage. We apply this technique to several regional-scale catchments (areas up to 15,000 km2) from Victoria, southeast Australia. Cl/Br ratios indicate that the Cl in groundwater and surface water in this region is derived from evapotranspiration of rainfall. Rivers from several catchments in Victoria are saline (Cl >500 mg/L) due mainly to groundwater inflows. Cl concentrations and EC values are well correlated allowing a long-term (up to 25 years) continual record of Cl fluxes to be estimated from sub-daily river discharge and EC data. Many of the rivers export significantly higher volumes of Cl than is delivered via rainfall (up to 1800%). Two scenarios may explain this chemical imbalance. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems re-established. Evapotranspiration and repeated recharge-discharge cycles within these lakes and wetlands produced shallow groundwater with high Cl concentrations that is currently being exported via the re-established river systems. Secondly, in many catchments land-clearing over the last 200 years has resulted in lower evapotranspiration rates and increased recharge. The increased recharge has resulted in a rise of regional water tables and increased baseflow to the rivers. As a consequence, Cl from the groundwater that has relatively long residence time is now being exported. In both cases, the catchments are adjusting to a new hydrological balance and the Cl mass balance indicates that the present patterns of groundwater-surface water interaction are transitory. Both scenarios involve a decrease in evapotranspiration in the catchments that results in groundwater salinities decreasing. Thus, over time, the Cl concentrations in these rivers will decrease as fresher groundwater increasingly forms the baseflow to the rivers and the catchments will tend toward chemical balance; the timescale of change however may be several ka.
NASA Astrophysics Data System (ADS)
Glendell, M.; Brazier, R. E.
2012-04-01
The fluvial export of total organic carbon (particulate and dissolved) plays an important role in the transportation of organic carbon from terrestrial to aquatic ecosystems, with implications for the understanding of the global carbon cycle and calculations of regional carbon budgets. The terrestrial biosphere contains large amounts of stored carbon in the soil and vegetation, thus a small change in the terrestrial carbon pool may have significant implications for atmospheric CO2 concentrations. Since the onset of agriculture, human activities have accelerated soil erosion rates 10- to 100- fold above all estimated natural background levels, especially in the uplands and at lower latitudes, whilst increasing DOC concentrations over the past decades have been reported in rivers across Western Europe and North America, raising concerns about potential destabilisation of the terrestrial soil carbon pool. The increased input of fine sediment and organic carbon into aquatic environments is also an important factor in stream water quality, being responsible for direct ecological effects as well as transport of a range of contaminants. Many factors, such as topography, hydrological regime and vegetation are known to influence the fluvial export of carbon from catchments. However, most work to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of TOC (dissolved and particulate) fluxes from agricultural catchments, particularly during flood events. This research aims to: • Quantify the fluxes of total suspended sediment, total dissolved and total particulate carbon in two adjacent catchments with contrasting land-uses and • Examine the controlling factors of total fluvial carbon fluxes in a semi-natural and agricultural catchment in order to assess the impact of agricultural land-use on fluvial carbon export. The two contrasting study catchments (the Aller and Horner), in south-west England, cover 50km2 and comprise a lower lying agricultural sub-catchment and an upland sub-catchment with extensive native woodland and heather moorland. 24 months of monitoring characterised the water quality status in both catchments, including TSS, POC and DOC in both baseflow and stormflow conditions. Results indicate that the agricultural catchment exports higher TSS and TOC concentrations, instantaneous loads and total loads on a storm-by-storm basis, though these exports are short-lived as the catchment is hydrologically very responsive. The upland/woodland catchment displays more attenuated behaviour, with longer response times and longer duration events. In addition to flux data, geospatial sampling at >200 locations across each catchment characterised the carbon and nitrogen content and bulk density of the soils across four land-use categories. Analysis of these data suggests a strong relationship between TSS and TOC loads during stormflow and the spatial distribution of contributing source areas of soil with high carbon content, erodibility and land-use controls such as soil compaction within the two study catchments.
NASA Astrophysics Data System (ADS)
Looker, N. T.; Kolka, R.; Asbjornsen, H.; Munoz-Villers, L.; Colin, P. O.; Gómez Aguilar, L. R.; Ward, A. B.
2017-12-01
Soil physical properties, such as bulk density (ρb) and penetrability (P), may vary in response to anthropogenic disturbance and are relatively easy to measure. These variables are thus often used as proxies for soil characteristics that more directly govern process rates but are logistically challenging to sample in situ (e.g., hydraulic conductivity). We evaluated within- and among-site variability in the physical condition of the upper soil throughout eight first-order catchments in the volcanic landscape of central Veracruz, Mexico, through nested sampling of ρb, P, and ground cover characteristics. The study catchments spanned a land-use intensity gradient, ranging in dominant cover type from sugarcane to mature cloud forest, with pasture and coffee agroforest as intermediate cover types. Catchments were compared using data collected in forest inventory plots and at points distributed along the topographic position index. Analysis of this hierarchical dataset led to a ranking of catchments in terms of soil physical condition and, importantly, revealed the bias introduced by ignoring the within-catchment variability in response metrics. These results will help optimize soil sampling effort in landscapes with complex topography and land-use/cover distributions.
Spatio-temporal variability of streamwater chemistry within a Peri-urban Mediterranean catchment
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Coelho, Celeste O. A.
2015-04-01
The complex landscape of peri-urban areas, characterized by a mosaic of land-uses and urban fabric, provides different sources of runoff and pollutants which affect stream ecosystems. This study investigates the impact of land-uses and their location within catchments on streamwater quality in a peri-urban Mediterranean catchment, including temporal variations driven by antecedent weather and rainstorm characteristics. The study is based in Ribeira dos Covões, a small (6 km2) catchment in the city of Coimbra, central Portugal. Land-use is dominated by woodland (56%) and urban cover (40%), with a small agriculture area (4%). Streamwater was monitored at the catchment outlet (ESAC) and three upstream locations: Espírito Santo and Porto Bordalo, with similar urban cover (42% and 49%) but different imperviousness (27% and 15%) and lithologies (sandstone versus limestone), and Quinta with lower urban extent (25%) but including a construction site covering 10% of the area. Samples collected throughout ten rainfall events between October 2011 and March 2013 were analysed for natural water chemistry and major pollutants (notably ammonium, nitrates, total phosphorus, COD and metals). In the paper, temporal variations in water quality are explored via hysteresis loop and correlation analysis. Hydrological regime exerted a major influence on water quality. Major nutrients declined within and after the dry summer than in winter events, because of limited dilution by the low stream baseflow. Through the wet season, increasing baseflow led to increased concentrations of major cations (Na, Mg and Ca) because of reduced dilution by solute-poor stormflow. Espírito Santo, the most urbanized sub-catchment, displayed higher concentrations of COD and NO3 (tended to peak with stormflow), but the latter was thought to result from agricultural fields located adjacent the tributary. At the catchment outlet (ESAC), the high Nk and NH4 concentrations exceeded water quality standards (2 mg/l and 1 mg/l) at summer baseflow and at peak flow during late winter storms. Zn, Cu and Cd also attained pollutant levels in late winter storms. When clear-felled areas were located close to tributary watercourses they supplied high suspended sediment concentrations into streamflow, whereas when they were located upslope the impact was minor, due to enhanced opportunities for overland flow retention and infiltration. Artificial drainage systems, however, increase the connectivity between the sources and the stream channel; this explained the greatest turbidity in the Quinta sub-catchment, where sediment was derived from an upslope construction site. Specific loads of water quality parameters (except for suspended sediment) increased with percentage impervious area, but linear relationships were only significant for NO3 and major cations (Na, Mg, Ca and K), possibly due to cement chemical composition. Sources of contaminants include bare surfaces (turbidity), untreated sewage (COD, TP, NH4, Fe and Zn), manure (NH4), industrial pollution (Fe and Zn) and vehicles (metals). The identification of pollutant sources and knowledge about seasonal and within-storm variations are important to establish spatially- and temporally-explicit water management strategies to improve local water quality. Moreover, a better understanding of the potential sources and sinks of pollutants should guide stakeholders to design more sustainable peri-urban areas.
Chloride imbalance in rivers from landscapes undergoing hydrological change
NASA Astrophysics Data System (ADS)
Cartwright, I.; Gilfedder, B.; Hofmann, H.
2012-12-01
There has been much research into the sources of solutes in river systems; however, there has been little emphasis on determining whether medium or large catchments are in long-term chemical balance (i.e., whether the flux of solutes into a catchment is balanced by the export from that catchment). Where surface water and groundwater catchments coincide, the mass balance of a conservative solute (X) is: P*X(P) = SW*X(SW) - GW*X(GW) - ΔST*X(ST) where P, SW, and GW, are precipitation, surface water outflows, and groundwater outflows (in m3/year). ΔST accounts for changes to water held in storage in soils, groundwater, or surface water bodies. X is the concentration of solute X in the various stores (mg/m3). Precipitation and river discharges are commonly well constrained and in many regions there are also rainfall, groundwater, and surface water geochemistry data. Groundwater fluxes and changes to volumes of solutes held in storage are less well known and it is difficult to perform accurate solute balances. However, if the flux of a conservative solute out of a catchment via the river system is larger than the input from rainfall (i.e. where SW*X(SW) > P*X(P)), the catchment is a net exporter of solutes. In turn this implies a change to the amount of water stored in the catchment and/or a change in chemistry of the water in the various stores. We use this approach to assess the chemical balance in several regional-scale catchments (areas up to 15,000 km2) in Victoria, southeast Australia. Rivers from many of these catchments are saline (Total Dissolved Solids, TDS, contents >1000 mg/L). Groundwater in this area is also saline (TDS contents locally up to 100,000 mg/L). Major ion geochemistry indicates that the source of Cl in all catchments dominantly from rainfall and the major geochemical process controlling the salinity of surface water and groundwater is evapotranspiration. Cl concentrations and EC values are well correlated allowing a continual record of Cl fluxes to be estimated from long-term (up to 25 years) sub-daily discharge and EC records. The records span several drought and high rainfall periods allowing variation in individual years to be accounted for. Many of the rivers in southeast Victoria export significantly higher volumes of Cl than is delivered via rainfall (up to ~2700%) with average annual fluxes of up to ~200 kg/ha/year. These catchments are not in chemical balance and are net exporters of solutes. Two scenarios may explain the high rates of Cl export in individual catchments. Firstly, saline marshes and lakes developed on young (<1 Ma) basaltic lava plains have gradually drained as blocked river systems have been re-established. Evapotranspiration within these lakes and wetlands produced high Cl loads in shallow groundwater and soil water that is currently being exported via the river systems. Additionally, in many catchments land-clearing over the last 200 years resulted in increased recharge that has resulted in a rise of the regional water table. In turn this has increased the baseflow component to the rivers and Cl from the groundwater that has relatively long residence time is being exported. In both cases, the catchments are adjusting to a new hydrological balance.
NASA Astrophysics Data System (ADS)
Pervez, M. S.; McNally, A.; Arsenault, K. R.
2017-12-01
Convergence of evidence from different agro-hydrologic sources is particularly important for drought monitoring in data sparse regions. In Africa, a combination of remote sensing and land surface modeling experiments are used to evaluate past, present and future drought conditions. The Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) routinely simulates daily soil moisture, evapotranspiration (ET) and other variables over Africa using multiple models and inputs. We found that Noah 3.3, Variable Infiltration Capacity (VIC) 4.1.2, and Catchment Land Surface Model based FLDAS simulations of monthly soil moisture percentile maps captured concurrent drought and water surplus episodes effectively over East Africa. However, the results are sensitive to selection of land surface model and hydrometeorological forcings. We seek to identify sources of uncertainty (input, model, parameter) to eventually improve the accuracy of FLDAS outputs. In absence of in situ data, previous work used European Space Agency Climate Change Initiative Soil Moisture (CCI-SM) data measured from merged active-passive microwave remote sensing to evaluate FLDAS soil moisture, and found that during the high rainfall months of April-May and November-December Noah-based soil moisture correlate well with CCI-SM over the Greater Horn of Africa region. We have found good correlations (r>0.6) for FLDAS Noah 3.3 ET anomalies and Operational Simplified Surface Energy Balance (SSEBop) ET over East Africa. Recently, SSEBop ET estimates (version 4) were improved by implementing a land surface temperature correction factor. We re-evaluate the correlations between FLDAS ET and version 4 SSEBop ET. To further investigate the reasons for differences between models we evaluate FLDAS soil moisture with Advanced Scatterometer and SMAP soil moisture and FLDAS outputs with MODIS and AVHRR normalized difference vegetation index. By exploring longer historic time series and near-real time products we will be aiding convergence of evidence for better understanding of historic drought, improved monitoring and forecasting, and better understanding of uncertainties of water availability estimation over Africa
Hydrological impact of rainwater harvesting in the Modder river basin of central South Africa
NASA Astrophysics Data System (ADS)
Welderufael, W. A.; Woyessa, Y. E.; Edossa, D. C.
2011-05-01
Along the path of water flowing in a river basin are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream catchment. Increased water usage at upstream level is an issue of concern for downstream water availability to sustain ecosystem services. The upstream Modder River basin, located in a semi arid region in the central South Africa, is experiencing intermittent meteorological droughts causing water shortages for agriculture, livestock and domestic purpose. To address this problem a technique was developed for small scale farmers with the objective of harnessing rainwater for crop production. However, the hydrological impact of a wider adoption of this technique by farmers has not been well quantified. In this regard, the SWAT hydrological model was used to simulate the hydrological impact of such practices. The scenarios studied were: (1) Baseline scenario, based on the actual land use of 2000, which is dominated by pasture (combination of natural and some improved grass lands) (PAST); (2) Partial conversion of Land use 2000 (PAST) to conventional agriculture (Agri-CON); and (3) Partial conversion of Land use 2000 (PAST) to in-field rainwater harvesting which was aimed at improving the precipitation use efficiency (Agri-IRWH). SWAT was calibrated using observed daily mean stream flow data of a sub-catchment (419 km2) in the study area. SWAT performed well in simulating the stream flow giving Nash and Sutcliffe (1970) efficiency index of 0.57 for the monthly stream flow calibration. The simulated water balance results showed that the highest peak mean monthly direct flow was obtained on Agri-CON land use (18 mm), followed by PAST (12 mm) and Agri-IRWH land use (9 mm). These were 19 %, 13 % and 11 % of the mean annual rainfall, respectively. The Agri-IRWH scenario reduced direct flow by 38 % compared to Agri-CON. On the other hand it was found that the Agri-IRWH contributed to more groundwater flow (40 mm) compared to PAST (32 mm) and Agri-CON (19 mm) scenarios. These results are in line with the intended purpose of Agri-IRWH. Although there was a visible impact of the rainwater harvesting technique on the water yield when considered on a monthly time frame, the overall result suggests that the water yield of one of the upper Modder River Basin quaternary catchment may not be adversely affected by the Agri-IRWH land use scenario despite its surface runoff abstraction design.
Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction
NASA Astrophysics Data System (ADS)
Baatz, Roland; Hendricks Franssen, Harrie-Jan; Han, Xujun; Hoar, Tim; Reemt Bogena, Heye; Vereecken, Harry
2017-05-01
In situ soil moisture sensors provide highly accurate but very local soil moisture measurements, while remotely sensed soil moisture is strongly affected by vegetation and surface roughness. In contrast, cosmic-ray neutron sensors (CRNSs) allow highly accurate soil moisture estimation on the field scale which could be valuable to improve land surface model predictions. In this study, the potential of a network of CRNSs installed in the 2354 km2 Rur catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested. Data measured by the CRNSs were assimilated with the local ensemble transform Kalman filter in the Community Land Model version 4.5. Data of four, eight and nine CRNSs were assimilated for the years 2011 and 2012 (with and without soil hydraulic parameter estimation), followed by a verification year 2013 without data assimilation. This was done using (i) a regional high-resolution soil map, (ii) the FAO soil map and (iii) an erroneous, biased soil map as input information for the simulations. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the FAO soil map and the biased soil map, soil moisture predictions improved strongly to a root mean square error of 0.03 cm3 cm-3 for the assimilation period and 0.05 cm3 cm-3 for the evaluation period. Improvements were limited by the measurement error of CRNSs (0.03 cm3 cm-3). The positive results obtained with data assimilation of nine CRNSs were confirmed by the jackknife experiments with four and eight CRNSs used for assimilation. The results demonstrate that assimilated data of a CRNS network can improve the characterization of soil moisture content on the catchment scale by updating spatially distributed soil hydraulic parameters of a land surface model.
Detecting changes in water limitation in the West using integrated ecosystem modeling approaches
NASA Astrophysics Data System (ADS)
Poulter, B.; Hoy, J.; Emmett, K.; Cross, M.; Maneta, M. P.; Al-Chokhachy, R.
2016-12-01
Water in the western United States is the critical currency for determining a range of ecosystem services, such as wildlife habitat, carbon sequestration, and timber and water resources for an expanding human population. The current generation of catchment models trades a detailed representation of hydrologic processes for a generalization of vegetation processes and thus ignores many land-surface feedbacks that are driven by physiological responses to atmospheric CO2 and changes in vegetation structure following disturbance and climate change. Here we demonstrate how catchment scale modeling can better couple vegetation dynamics and disturbance processes to reconstruct historic streamflow, stream temperature and vegetation greening for the Greater Yellowstone Ecosystem. Using a new catchment routing model coupled to the LPJ-GUESS dynamic global vegetation model, simulations are made at 1 km spatial resolution using two different climate products. Decreased winter snowpack has led to increasing spring runoff and declines in summertime slow, and increasing the likelihood that stream temperature exceeds thresholds for cold-water fish growth. Since the mid-1980s, vegetation greening is projected by both the model and detected from space-borne normalized difference vegetation index observations. These greening trends are superimposed on a landscape matrix defined by frequent disturbance and intensive land management, making the climate and CO2 fingerprint difficult to discern. Integrating dynamical vegetation models with in-situ and spaceborne measurements to understand and interpret catchment-scale trends in water availability has potential to better disentangle historical climate, CO2, and human drivers and their ecosystem consequences.
Harun, Sahana; Baker, Andy; Bradley, Chris; Pinay, Gilles
2016-01-01
Dissolved organic matter (DOM) was characterised in water samples sampled in the Lower Kinabatangan River Catchment, Sabah, Malaysia between October 2009 and May 2010. This study aims at: (i) distinguishing between the quality of DOM in waters draining palm oil plantations (OP), secondary forests (SF) and coastal swamps (CS) and, (ii) identifying the seasonal variability of DOM quantity and quality. Surface waters were sampled during fieldwork campaigns that spanned the wet and dry seasons. DOM was characterised optically by using the fluorescence Excitation Emission Matrix (EEM), the absorption coefficient at 340 nm and the spectral slope coefficient (S). Parallel Factor Analysis (PARAFAC) was undertaken to assess the DOM composition from EEM spectra and five terrestrial derived components were identified: (C1, C2, C3, C4 and C5). Components C1 and C4 contributed the most to DOM fluorescence in all study areas during both the wet and dry seasons. The results suggest that component C4 could be a significant (and common) PARAFAC signal found in similar catchments. Peak M (C2 and C3) was dominant in all samples collected during wet and dry seasons, which could be anthropogenic in origin given the active land use change in the study area. In conclusion, there were significant seasonal and spatial variations in DOM which demonstrated the effects of land use cover and precipitation amounts in the Kinabatangan catchment.
Schütte, S; Schulze, R E
2017-07-01
Significant land use changes from natural/agricultural to urban land uses have been proposed within the Mpushini/Mkhondeni sub-catchments of the uMngeni Catchment in South Africa. A better understanding of the influences which such land use changes are likely to have on hydrological flows, is required, in order to make informed land use decisions for a sustainable future. As a point of departure, an overview of linkages between urbanisation and hydrological flow responses within this sub-humid study area is given. The urban characteristics of increased impervious areas and the potential return flows from transfers of potable water from outside the catchment were identified as being important in regard to hydrological flow responses. A methodology was developed to model urban response scenarios with urban characteristics as variables, using the daily time-step process based ACRU model. This is a hydrological multi-process model and not an urban hydraulic model and it addresses the landscape as well as the channel components of a catchment, and in addition to runoff components includes evaporation and transpiration losses as outputs. For the study area strong links between proposed urbanisation and hydrological resource flow responses were found, with increases in stormflows, together with increased and more regulated baseflows, and with impacts varying markedly between dry or wet years and by season. The impacts will depend on the fractions of impervious areas, whether or not these are connected to permeable areas, the amount of imported water and water system leaks. Furthermore, the urban hydrological impacts were found to be relatively greater in more arid than humid areas because of changes in the rainfall to runoff conversion. Flow changes due to urbanisation are considered to have important environmental impacts, requiring mitigation. The methodology used in this paper could be used for other urbanising areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Haas, Marcelo B; Guse, Björn; Fohrer, Nicola
2017-07-01
Water quality is strongly affected by nitrate inputs in agricultural catchments. Best Management Practices (BMPs) are alternative practices aiming to mitigate the impacts derived from agricultural activities and to improve water quality. Management activities are influenced by different governmental policies like the Water Framework Directive (WFD) and the Renewable Energy Sources Act (EEG). Their distinct goals can be contrasting and hamper an integrated sustainable development. Both need to be addressed in the actual conjuncture in rural areas. Ecohydrological models like the SWAT model are important tools for land cover and land use changes investigation and the assessment of BMPs implementation effects on water quality. Thus, in this study, buffer strip, fertilization reduction and alternative crops were considered as BMPs and were implemented in the SWAT model for the Treene catchment. Their efficiency in terms of nitrate loads reduction related to implementation costs at the catchment scale was investigated. The practices correspond to the catchment conditions and are based on small and mid areal changes. Furthermore, the BMPs were evaluated from the perspective of ecologic and economic policies. The results evidenced different responses of the BMPs. The critical periods in winter were addressed by most of the BMPs. However, some practices like pasture land increase need to be implemented in greater area for better results in comparison to current activities. Furthermore, there is a greater nitrate reduction potential by combining BMPs containing fertilization reduction, buffer strips and soil coverage in winter. The discussion about efficiency showed the complexity of costs stipulation and the relation with arable land and yield losses. Furthermore, as the government policies can be divergent an integrated approach considering all the involved actors is important and seeks a sustainable development. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Outram, F. N.; Lloyd, C.; Jonczyk, J.; Benskin, C. McW. H.; Grant, F.; Dorling, S. R.; Steele, C. J.; Collins, A. L.; Freer, J.; Haygarth, P. M.; Hiscock, K. M.; Johnes, P. J.; Lovett, A. L.
2013-12-01
The Demonstration Test Catchments (DTC) project is a UK Government funded initiative to test the effectiveness of on-farm mitigation measures designed to reduce agricultural pollution without compromising farm productivity. Three distinct catchments in England have been chosen to test the efficacy of mitigation measures on working farms in small tributary sub-catchments equipped with continuous water quality monitoring stations. The Hampshire Avon in the south is a mixed livestock and arable farming catchment, the River Wensum in the east is a lowland catchment with predominantly arable farming and land use in the River Eden catchment in the north-west is predominantly livestock farming. One of the many strengths of the DTC as a national research platform is that it provides the ability to investigate catchment hydrology and biogeochemical response across different landscapes and geoclimatic characteristics, with a range of differing flow behaviours, geochemistries and nutrient chemistries. Although numerous authors present studies of individual catchment responses to storms, no studies exist of multiple catchment responses to the same rainfall event captured with in situ high-resolution nutrient monitoring at a national scale. This paper brings together findings from all three DTC research groups to compare the response of the catchments to a major storm event in April 2012. This was one of the first weather fronts to track across the country following a prolonged drought period affecting much of the UK through 2011-2012, marking an unusual meteorological transition when a rapid shift from drought to flood risk occurred. The effects of the weather front on discharge and water chemistry parameters, including nitrogen species (NO3-N and NH4-N) and phosphorus fractions (total P (TP) and total reactive P (TRP)), measured at a half-hourly time step are examined. When considered in the context of one hydrological year, flow and concentration duration curves reveal that the weather fronts resulted in extreme flow, nitrate and TP concentrations in all three catchments but with distinct differences in both hydrographs and chemographs. Hysteresis loops constructed from high resolution data are used to highlight an array of potential pollutant sources and delivery pathways. In the Hampshire Avon DTC, transport was dominated by sub-surface processes, where phosphorus, largely in the soluble form, was found to be transport-limited. In the Wensum DTC, transport was largely dominated by rapid sub-surface movement due to the presence of under-drainage, which mobilised large quantities of nitrate during the storm. In the Eden DTC, transport was found to be initially dominated by surface runoff, which switched to subsurface delivery on the falling limb of the hydrograph, with the surface delivery transporting large amounts of particulate phosphorus to the river, with a transport-limited response. The lack of exhaustion of nutrient delivery in response to such extreme flow generation indicates the size of the nutrient pools stored in these catchments, and highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to UK river systems from diffuse agricultural sources.
Siwek, Joanna P; Żelazny, Mirosław; Siwek, Janusz; Szymański, Wojciech
2017-01-01
The purpose of the study was to determine the role of land use, seasonality, and hydrometeorological conditions on the relationship between stream water potassium (K + ) concentration and discharge during different types of floods-short- and long-duration rainfall floods as well as snowmelt floods on frozen and thawed soils. The research was conducted in small catchments (agricultural, woodland, mixed-use) in the Carpathian Foothills (Poland). In the woodland catchment, lower K + concentrations were noted for each given specific runoff value for summer rainfall floods versus snowmelt floods (seasonal effect). In the agricultural and mixed-use catchments, the opposite was true due to their greater ability to flush K + out of the soil in the summer. In the stream draining woodland catchment, higher K + concentrations occurred during the rising limb than during the falling limb of the hydrograph (clockwise hysteresis) for all flood types, except for snowmelt floods with the ground not frozen. In the agricultural catchment, clockwise hystereses were produced for short- and long-duration rainfall floods caused by high-intensity, high-volume rainfall, while anticlockwise hystereses were produced for short- and long-duration rainfall floods caused by low-intensity, low-volume rainfall as well as during snowmelt floods with the soil frozen and not frozen. In the mixed-use catchment, the hysteresis direction was also affected by different lag times for water reaching stream channels from areas with different land use. K + hystereses for the woodland catchment were more narrow than those for the agricultural and mixed-use catchments due to a smaller pool of K + in the woodland catchment. In all streams, the widest hystereses were produced for rainfall floods preceded by a long period without rainfall.
NASA Astrophysics Data System (ADS)
Jewitt, G. P. W.; Garratt, J. A.; Calder, I. R.; Fuller, L.
In arid and semi-arid areas, total evaporation is a major component of the hydrological cycle and seasonal water shortages and drought are common. In these areas, the role of land use and land use change is particularly important and it is imperative that land and water resources are well managed. To aid efficient water management, it is useful to demonstrate how changing land use affects water resources. A convenient framework to consider this is through the use of the ‘blue-water’ and ‘green-water’ classification of Falkenmark, where green-water represents water use by land and blue-water represents runoff. In this study the hydrological response of nine land-use scenarios were simulated for the upper reaches of the Mutale River, an important tributary of the Luvuvhu River in S. Africa. The ACRU and HYLUC land use sensitive hydrological models, were used to investigate the change in blue and green water under the various land-use scenarios. The GIS software ArcGIS(8.3) was used to analyse available spatial data to generate inputs required by the hydrological models. The scenarios investigated included the current land use in the catchment, an increase or decrease in forest cover, and an increase or decrease in the area irrigated. Both models predict that increasing either forestry or irrigation significantly reduces the proportion of blue water in the catchment. The predictions from the models were combined with maps of catchment land use, to illustrate the changes in distribution of green and blue water in a user-friendly manner. The use of GIS in this way is designed to enable policy-makers and managers to quickly assimilate the water resource implication of the land use change.
Storm water contamination and its effect on the quality of urban surface waters.
Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata
2014-10-01
We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.
Church, S.E.; Fey, D. L.; Klein, T.L.; Schmidt, T.S.; Wanty, R.B.; deWitt, E.H.; Rockwell, B.W.; San, Juan C.A.
2009-01-01
The U.S. Geological Survey conducted an environmental assessment of 198 catchments in a 54,000-km2 area of central Colorado, much of which is on Federal land. The Colorado Mineral Belt, a northeast-trending zone of historical base- and precious-metal mining, cuts diagonally across the study area. The investigation was intended to test the hypothesis that degraded water and sediment quality are restricted to catchments in which historical mining has occurred. Water, streambed sediment, and aquatic insects were collected from (1) catchments underlain by single lithogeochemical units, some of which were hydrothermally altered, that had not been prospected or mined; (2) catchments that contained evidence of prospecting, most of which contain hydrothermally altered rock, but no historical mining; and (3) catchments, all of which contain hydrothermally altered rock, where historical but now inactive mines occur. Geochemical data determined from catchments that did not contain hydrothermal alteration or historical mines met water quality criteria and sediment quality guidelines. Base-metal concentrations from these types of catchments showed small geochemical variations that reflect host lithology. Hydrothermal alteration and mineralization typically are associated with igneous rocks that have intruded older bedrock in a catchment. This alteration was regionally mapped and characterized primarily through the analysis of remote sensing data acquired by the ASTER satellite sensor. Base-metal concentrations among unaltered rock types showed small geochemical variations that reflect host lithology. Base-metal concentrations were elevated in sediment from catchments underlain by hydrothermally altered rock. Classification of catchments on the basis of mineral deposit types proved to be an efficient and accurate method for discriminating catchments that have degraded water and sediment quality. Only about 4.5 percent of the study area has been affected by historical mining, whereas a larger part of the study area is underlain by hydrothermally altered rock that has weathered to produce water and sediment with naturally elevated geochemical baselines.
NASA Astrophysics Data System (ADS)
Zhou, H.; Liu, W.; Ning, T.
2017-12-01
Land surface actual evapotranspiration plays a key role in the global water and energy cycles. Accurate estimation of evapotranspiration is crucial for understanding the interactions between the land surface and the atmosphere, as well as for managing water resources. The nonlinear advection-aridity approach was formulated by Brutsaert to estimate actual evapotranspiration in 2015. Subsequently, this approach has been verified, applied and developed by many scholars. The estimation, impact factors and correlation analysis of the parameter alpha (αe) of this approach has become important aspects of the research. According to the principle of this approach, the potential evapotranspiration (ETpo) (taking αe as 1) and the apparent potential evapotranspiration (ETpm) were calculated using the meteorological data of 123 sites of the Loess Plateau and its surrounding areas. Then the mean spatial values of precipitation (P), ETpm and ETpo for 13 catchments were obtained by a CoKriging interpolation algorithm. Based on the runoff data of the 13 catchments, actual evapotranspiration was calculated using the catchment water balance equation at the hydrological year scale (May to April of the following year) by ignoring the change of catchment water storage. Thus, the parameter was estimated, and its relationships with P, ETpm and aridity index (ETpm/P) were further analyzed. The results showed that the general range of annual parameter value was 0.385-1.085, with an average value of 0.751 and a standard deviation of 0.113. The mean annual parameter αe value showed different spatial characteristics, with lower values in northern and higher values in southern. The annual scale parameter linearly related with annual P (R2=0.89) and ETpm (R2=0.49), while it exhibited a power function relationship with the aridity index (R2=0.83). Considering the ETpm is a variable in the nonlinear advection-aridity approach in which its effect has been incorporated, the relationship of precipitation and parameter (αe=1.0×10-3*P+0.301) was developed. The value of αe in this study is lower than those in the published literature. The reason is unclear at this point and yet need further investigation. The preliminary application of the nonlinear advection-aridity approach in the Loess Plateau has shown promising results.
NASA Astrophysics Data System (ADS)
Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik
2017-09-01
Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response as a function of the catchments' elevation and land cover. The forested catchment, located at the higher elevations, had the highest seasonal streamflows. During the wet season, different land covers at the lower elevations were important in defining the streamflow responses between the deforested catchment and the catchment with intermediate forest cover. Streamflows were higher and the rainfall-runoff responses were faster in the deforested catchment than in the intermediate forest cover catchment. During the dry season, the catchments' elevation defined streamflows due to higher water inputs and lower evaporative demand at the higher elevations.
Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale.
Viaud, Valérie; Merot, Philippe; Baudry, Jacques
2004-10-01
Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question. The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow-outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.
The topographic wetness index as a predictor for hot spots of DOC export from catchments
NASA Astrophysics Data System (ADS)
Musolff, Andreas; Oosterwoud, Marieke; Tittel, Jörg; Selle, Benny; Fleckenstein, Jan H.
2015-04-01
Dissolved organic carbon (DOC) concentrations in the discharge of many catchments in Europe and North America are rising. This increase is of concern for the drinking water supply from reservoirs since high DOC concentrations cause additional costs in water treatment and potentially the formation of harmful disinfection by-products. A prerequisite for understanding this increase is the knowledge on the spatial distribution of dominant soil DOC sources within catchments and on mobilization as well as transfer processes to the surface water. A number of studies identified wetland soils as the dominant source with fast mobilization and short transit times to the receiving surface water. However, most studies have either focussed on smaller, hillslope and single catchment or on larger scale multi-catchment assessments. Moreover, information on the distribution of soil types in catchments is not always readily available. This study brings together both types of assessment in a data-driven top-down approach: (i) a detailed survey on DOC concentration and loads over the course of one year within two paired data-rich catchments discharging into a large drinking water reservoir in central Germany and (ii) a database of hydrochemistry and physio-geographic characteristics of 113 catchments draining into 58 reservoirs across Germany over the course of 16 years. The objective is to define hot spots of DOC export within the catchments for both types of assessments (i, ii) and to test the suitability of the topographic wetness index (TWI) as a proxy for well-connected wetland soils at various spatial scales. In the sub-catchments of assessment (i) the spatial variability of concentrations and loads was much smaller than expected. None of the studied sub-catchments was a predominant producer of the total DOC loads exported from the catchments. We found the mean concentrations and loads to be positively correlated with the share of groundwater-dominated soils in the sub-catchments. These soils are distributed in riparian wetlands along all streams within the catchments. As a readily available proxy for wetland soils percentiles of the probability distribution of the TWI in the sub-catchments were found to be good predictors for mean DOC concentrations in catchment outlet as well as for loads. In the larger dataset across Germany (ii) we also found a surprisingly good correlation between the TWI within the catchments and mean DOC concentrations. Thus we can show that, despite the wide range of topographies, land use types, geological setups and climatic conditions within this dataset the dominant source zones of DOC export is well captured by the TWI as a proxy for the share of wetland soils and DOC source zones within the catchments.
NASA Astrophysics Data System (ADS)
Florian, Mallet; Vincent, Marc; Johnny, Douvinet; Philippe, Rossello; Bouteiller Caroline, Le; Jean-Philippe, Malet; Julien, Gance
2015-04-01
Runoff generation in the headwater catchments in various land use conditions still remain a core issue in catchment hydrology (Uhlenbrook S. et al., 2003). Vegetation has a strong impact on flows distribution (interception, infiltration, evapotranspiration, runoff) but the relative influence of these mechanisms according to geomorphological determinants is still not totally understood. The "ORE Draix" located in the Alpes-de-Haute-Provence (France) allows to study these parameters using experimental watersheds equipped with a long term monitoring instrumentation (rainfall, streamflow, water, soil and air temperature, soil erosion, soil moisture...). These marl torrential watersheds have a peculiar hydrological behavior during flood events with large outflow differences between the wooded and the bare areas. We try to identify the runoff production factors by studying water storage/drainage processes within the first 30 cm depth of soil (Wilson et al., 2003, Western et al., 2004). Soil moisture can explain runoff during floods, that's why we try to upscale this variable at the watershed level. Unlike studies on soil moisture monitoring in agricultural context (flat areas), conventional remote sensing methods are difficult to apply to the badlands (elevation between 1500 masl and 1800 masl, approximately 1km² areas, steep slopes, various land uses) (Bagdhadi, 2005). This difficulty can be overcome by measuring soil moisture at different spatial (point, plot, slope, catchment) and time scales (event, season, year) using innovative approaches. In this context, we propose a monitoring of soil moisture based on geostatistical treatments crossed with measurements at different scales. These measures are provided from ground and airborne sensors deployment. Point measurements are ensured at a very high time frequency using capacitance probes. At an intermediate level, a slope is equipped with a DTS sensor (distributed temperature sensing) to obtain a 2D estimate of soilwater flow of from the surface to - 30 cm. Another distributed approach will be carried out from a measurement of cosmic neutrons mitigation (Cosmic ray sensor) to estimate a soil moisture averaged value over 40 ha (Zreda et al., 2012). Finally, the smallest scale (slope and catchment) will be approached using remote sensing with a drone and/or satellite imagery (IR, passive and active microwave). This concatenation of scales with different combinations of time steps should enable us to better understand the hydrological dynamics in torrential environments. It aims at mapping the stormflow generation on a catchment at the flood scale and defining the main determinants of surface runoff. These results may contribute to the improvement of runoff simulation and flood prediction. References : Uhlenbrook S., J.J. McDonnell and C. Leibundgut, 2003. Preface: Runoff generation implications for river basin modelling. Hydrological Processes, Special Issue, 17: 197-198. Andrew W. Western, Sen-Lin Zhou, Rodger B. Grayson, Thomas A. MacMahon, Günter Blöshl, David J. Wilson, 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology 286. Zreda, M., Shuttleworth WJ., Zeng X., Zweck C., Desilets D., Franz TE. et al., 2012. COSMOS: the COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 16(11): 4079-4099.
Managing perennial revegetation in a changing climate: some lessons from ecohydrology.
NASA Astrophysics Data System (ADS)
Smettem, K. R.; Waring, R.; Harper, R. J.; Callow, J. N.
2011-12-01
Interest in understanding the impacts of land use and climate change on ecosystem processes has emerged as a major area of research spanning the biological and physical sciences. South-West Australia faces a drying climate under all Global Climate Model (GCM) scenarios and over the last three decades there has already been a major decline in the volume of surface water resources available for the metropolitan water supply of the region. Climate change has been superimposed on major land use changes that have altered the water and salt balances of many catchments in this part of Australia. In the drier agricultural regions of South-West Australia that experience an annual water deficit, land clearing has resulted in increased groundwater recharge and there has been ongoing interest in the use of perennial vegetation to control groundwater rise by enhancing transpiration losses. Ecological optimality provides a first-order framework for understanding the relation between climate, leaf area index and biomass, which in turn influences catchment evapotranspiration (ET) and carbon sequestration. We review the results from a number of revegetation studies to understand the factors limiting the growth and survival of woody perennials in the landscape. By examining the inter-annual variations in leaf area index of native forested catchments using data from NASA's MODIS Moderate Resolution Imaging Spectroradiometer, we first relate LAI to climate indices and then develop allometric equations to estimate wood mass and carbon storage. Assuming that native perennial vegetation is in dynamic equilibrium with climate and provides a 'reference' state , we identify conditions under which perennial revegetation schemes can be deliberately designed to move outside the ecologically optimal range to achieve specific land management objectives.
NASA Technical Reports Server (NTRS)
Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.
2015-01-01
The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.
Scenario Tools For Efficient Eutrophication Management
NASA Astrophysics Data System (ADS)
Arheimer, B.; Vastra SP3 Team
Several possible measures are available to reduce diffuse (non-point source) nutri- ent load to surface water and thereby reduce eutrophication. Such measures include changed arable practices and constructions of wetlands and buffer zones in the land- scape, as well as managing lake ecosystems. In some cases, such as for wetlands, there is an intense debate regarding the efficiency of their nutrient reducing capability. In ad- dition, the combined effect of several measures in a catchment is not necessarily equal to their sum. It is therefore important to apply a holistic and integrated catchment approach when applying and evaluating different management strategies. To facili- tate such catchment analyses, the Swedish water management research programme (VASTRA) develop modelling tools addressing both phosphorus (P) and nitrogen (N) dynamics in catchments. During the last three years decision support tools for N man- agement in rivers and lakes have been developed (e.g., HBV-N, BIOLA) and applied in scenarios to demonstrate the effect of various reducing measures. At present, similar tools for P are under development. This presentation will demonstrate the VASTRA tool-box and its applications for efficient eutrophication management.
NASA Astrophysics Data System (ADS)
Mugo, R. M.; Korme, T.; Farah, H.; Nyaga, J. W.; Irwin, D.; Flores, A.; Limaye, A. S.; Artis, G.
2014-12-01
Lake Victoria (LV) is an important freshwater resource in East Africa, covering 68,800 km2, and a catchment that spans 193,000km2. It is an important source of food, energy, drinking and irrigation water, transport and a repository for agricultural, human and industrial wastes generated from its catchment. For such a lake, and a catchment transcending 5 international boundaries, collecting data to guide informed decision making is a hard task. Remote sensing is currently the only tool capable of providing information on environmental changes at high spatio-temporal scales. To address the problem of information availability for LV, we tackled two objectives; (1) we analyzed water quality parameters retrieved from MODIS data, and (2) assessed land cover changes in the catchment area using Landsat data. We used L1A MODIS-Aqua data to retrieve lake surface temperature (LST), total suspended matter (TSM), chlorophyll-a (CHLa) and diffuse attenuation coefficient (KD490) in four temporal periods i.e. daily, weekly, monthly and seasonal scales. An Empirical Orthogonal Function (EOF) analysis was done on monthly data. An analysis of land cover change was done using Landsat data for 3 epochs in order to assess if land degradation contributes to water quality changes. Our results indicate that MODIS-Aqua data provides synoptic views of water quality changes in LV at different temporal scales. The Winam Gulf in Kenya, the shores of Jinja town in Uganda, as well as the Mwanza region in Tanzania represent water quality hotspots due to their relatively high TSM and CHLa concentrations. High levels of KD490 in these areas would also indicate high turbidity and thus low light penetration due to the presence of suspended matter, algal blooms, and/or submerged vegetation. The EOF analysis underscores the areas where LST and water color variability are more significant. The changes can be associated with corresponding land use changes in the catchment, where for instance wetlands are converted to croplands. On-going dissemination of our findings together with capacity building efforts with the three main fishery and research institutions working in the lake, will enable informed decision making for the water management of LV. Enhanced capacity in trans-boundary water resources research is critical for successful decision making.
Wang, Xuelei; Wang, Qiao; Yang, Shengtian; Zheng, Donghai; Wu, Chuanqing; Mannaerts, C M
2011-06-01
Nitrogen (N) removal by vegetation uptake is one of the most important functions of riparian buffer zones in preventing non-point source pollution (NSP), and many studies about N uptake at the river reach scale have proven the effectiveness of plants in controlling nutrient pollution. However, at the watershed level, the riparian zones form dendritic networks and, as such, may be the predominant spatially structured feature in catchments and landscapes. Thus, assessing the functions of riparian system at the basin scale is important. In this study, a new method coupling remote sensing and ecological models was used to assess the N removal by riparian vegetation on a large spatial scale. The study site is located around the Guanting reservoir in Beijing, China, which was abandoned as the source water system for Beijing due to serious NSP in 1997. SPOT 5 data was used to map the land cover, and Landsat-5 TM time series images were used to retrieve land surface parameters. A modified forest nutrient cycling and biomass model (ForNBM) was used to simulate N removal, and the modified net primary productivity (NPP) module was driven by remote sensing image time series. Besides the remote sensing data, the necessary database included meteorological data, soil chemical and physical data and plant nutrient data. Pot and plot experiments were used to calibrate and validate the simulations. Our study has proven that, by coupling remote sensing data and parameters retrieval techniques to plant growth process models, catchment scale estimations of nitrogen uptake rates can be improved by spatial pixel-based modelling. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao
2018-04-01
As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.
NASA Astrophysics Data System (ADS)
Walsh, Rory; Nainar, Anand; Bidin, Kawi; Higton, Sam; Annammala, Kogilavani; Blake, William; Luke, Sarah; Murphy, Laura; Perryman, Emily; Wall, Katy; Hanapi, Jamil
2016-04-01
The last three decades have seen a combination of logging and land-use change across most of the rainforest tropics. This has involved conversion to oil palm across large parts of SE Asia. Although much is now known about the hydrological and sediment transport impacts of logging, relatively little is known about how impacts of oil palm conversion compare with those of logging. Furthermore little is known about the impacts of both on river morphology and water quality. This paper reports some findings of the first phase of a ten-year large-scale manipulative multi-catchment experiment (part of the SAFE - Stability of Altered Forest Ecosystems - Project), based in the upper part of the Brantian Catchment in Sabah, Malaysian Borneo; the project is designed to assess the degree to which adverse impacts of oil palm conversion (on erosion, downstream channel change, water quality and river ecology) might be reduced by retaining buffer zones of riparian forest of varying width from zero to 120 metres. Ten 2 km2 catchments of contrasting land use history have been instrumented since 2011 to record discharge, turbidity, conductivity and water temperature at 5-minute intervals. These comprise 6 repeat-logged catchments being subjected in 2015-16 to conversion to oil palm with varying riparian forest widths; a repeat-logged 'control' catchment; an old regrowth catchment; an oil palm catchment; and a primary forest catchment. In addition, (1) monthly water samples from the catchments have been analysed for nitrates and phosphates, (2) channel cross-sectional change along each stream has been monitored at six-monthly intervals and (3) supplementary surveys have been made of downstream bankfull channel cross-sectional size and water chemistry at a wider range of catchment sites, and (4) sediment cores have been taken and contemporary deposition monitored at a hierarchical network of sites in the large Brantian catchment for geochemical analysis and dating to establish the history of sedimentation and inferred changes in upstream sediment sources. Effects on river ecology were also assessed. This paper summarises the key findings to date, focussing on differences in suspended sediment dynamics, downstream bankfull channel size and shape, and pollution between oil palm catchments, and catchments under post-logging and primary rainforest.
NASA Astrophysics Data System (ADS)
Li, Qiaoling; Li, Zhijia; Zhu, Yuelong; Deng, Yuanqian; Zhang, Ke; Yao, Cheng
2018-06-01
Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.
Maina, Joseph; de Moel, Hans; Vermaat, Jan E; Bruggemann, J Henrich; Guillaume, Mireille M M; Grove, Craig A; Madin, Joshua S; Mertz-Kraus, Regina; Zinke, Jens
2012-10-01
Understanding the linkages between coastal watersheds and adjacent coral reefs is expected to lead to better coral reef conservation strategies. Our study aims to examine the main predictors of environmental proxies recorded in near shore corals and therefore how linked near shore reefs are to the catchment physical processes. To achieve these, we developed models to simulate hydrology of two watersheds in Madagascar. We examined relationships between environmental proxies derived from massive Porites spp. coral cores (spectral luminescence and barium/calcium ratios), and corresponding time-series (1950-2006) data of hydrology, climate, land use and human population growth. Results suggest regional differences in the main environmental drivers of reef sedimentation: on annual time-scales, precipitation, river flow and sediment load explained the variability in coral proxies of river discharge for the northeast region, while El Niño-Southern Oscillation (ENSO) and temperature (air and sea surface) were the best predictors in the southwest region. Copyright © 2012 Elsevier Ltd. All rights reserved.
Preface [to special section on recent Loch Vale Watershed research
Baron, Jill S.; Williams, Mark W.
2000-01-01
Catchment-scale intensive and extensive research conducted over the last decade shows that our understanding of the biogeochemical and hydrologic processes in subalpine and alpine basins is not yet sufficiently mature to model and predict how biogeochemical transformations and surface water quality will change in response to climatic or human-driven changes in energy, water, and chemicals. A better understanding of these processes is needed for input to decision-making regulatory agencies and federal land managers. In recognition of this problem the National Research Council [1998] has identified as a critical research need an improved understanding of how global change will affect biogeochemical interactions with the hydrologic cycle and biogeochemical controls over the transport of water, nutrients, and materials from land to freshwater ecosystems. Improved knowledge of alpine and subalpine ecosystems is particularly important since high-elevation catchments are very sensitive to small changes in the flux of energy, chemicals, and water. Furthermore, alpine ecosystems may act as early warning indicators for ecosystem changes at lower elevations.
Terêncio, D P S; Sanches Fernandes, L F; Cortes, R M V; Moura, J P; Pacheco, F A L
2018-02-01
Rainwater harvesting (RWH) is used to support small-scale agriculture and handle seasonal water availability, especially in regions where populations are scattered or the costs to develop surface or groundwater resources are high. However, questions may arise as whether this technique can support larger-scale irrigation projects and in complement help the struggle against wildfires in agro-forested watersheds. The issue is relevant because harvested rainwater in catchments is usually accumulated in small-capacity reservoirs created by small-height dams. In this study, a RWH site allocation method was improved from a previous model, by introducing the dam wall height as evaluation parameter. The studied watershed (Sabor River basin) is mostly located in the Northeast of Portugal. This is a rural watershed where agriculture and forestry uses are dominant and where ecologically relevant regions (e.g., Montezinho natural park) need to be protected from wildfires. The study aimed at ranking 384 rainfall collection sub-catchments as regards installation of RWH sites for crop irrigation and forest fire combat. The height parameter was set to 3m because this value is a reference to detention basins that hold sustainability values (e.g., landscape integration, environmental protection), but the irrigation capacity under these settings was smaller than 10ha in 50% of cases, while continuous arable lands in the Sabor basin cover on average 222ha. Besides, the number of sub-catchments capable to irrigate the average arable land was solely 7. When the dam wall height increased to 6 and 12m, the irrigation capacity increased to 46 and 124 sub-catchments, respectively, meaning that more engineered dams may not always ensure all sustainability values but warrant much better storage. The limiting parameter was the dam wall height because 217 sub-catchments were found to drain enough water for irrigation and capable to store it if proper dam wall heights were used. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial and temporal dynamics of nitrate fluxes in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Muller, C.; Musolff, A.; Strachauer, U.; Brauns, M.; Tarasova, L.; Merz, R.; Knoeller, K.
2017-12-01
Spatially and temporally variable and often superimposing processes like mobilization and turnover of N-species strongly affect nitrate fluxes at catchment outlets. It remains thus challenging to determine dominant nitrate sources to derive an effective river management. Here, we combine data sets from two spatially highly resolved key-date monitoring campaigns of nitrate fluxes along a mesoscale catchment in Germany with four years of monitoring data from two representative sites within the catchment. The study area is characterized by a strong land use gradient from pristine headwaters to lowland sub-catchments with intense agricultural land use and wastewater sources. Flow conditions were assessed by a hydrograph separation showing the clear dominance of base flow during both investigations. However, the absolute amounts of discharge differed significantly from each other (outlet: 1.42 m³ s-1 versus 0.43 m³ s-1). Nitrate concentration and flux in the headwater was found to be low. In contrast, nitrate loads further downstream originate from anthropogenic sources such as effluents from wastewater treatment plants (WWTP) and agricultural land use. The agricultural contribution did not vary in terms of nitrate concentration and isotopic signature between the years but in terms of flux. The contrasting amounts of discharge between the years led to a strongly increased relative wastewater contribution with decreasing discharge. This was mainly manifested in elevated δ18O-NO3- values downstream from the wastewater discharge. The four-year monitoring at two sides clearly indicates the chemostatic character of the agricultural N-source and its distinct, yet stable isotopic fingerprint. Denitrification was found to play no dominant role only for controlling nitrate loads in the river. The spatially highly resolved monitoring approach helped to accurately define hot spots of nitrate inputs into the stream while the long-term information allowed a classification of the results with respect to the seasonal N-dynamics in the catchment.
Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams.
Four, Brian; Arce, Evelyne; Danger, Michaël; Gaillard, Juliette; Thomas, Marielle; Banas, Damien
2017-02-01
Extensive fish production systems in continental areas are often created by damming headwater streams. However, these lentic systems favour autochthonous organic matter production. As headwater stream functioning is essentially based on allochthonous organic matter (OM) supply, the presence of barrage fishponds on headwater streams might change the main food source for benthic communities. The goal of this study was thus to identify the effects of barrage fishponds on the functioning of headwater streams. To this end, we compared leaf litter breakdown (a key ecosystem function in headwater streams), their associated invertebrate communities and fungal biomass at sites upstream and downstream of five barrage fishponds in two dominant land use systems (three in forested catchments and two in agricultural catchments). We observed significant structural and functional differences between headwater stream ecosystems in agricultural catchments and those in forested catchments. Leaf litter decay was more rapid in forest streams, with a moderate, but not significant, increase in breakdown rate downstream from the barrage fishponds. In agricultural catchments, the trend was opposite with a 2-fold lower leaf litter breakdown rate at downstream sites compared to upstream sites. Breakdown rates observed at all sites were closely correlated with fungal biomass and shredder biomass. No effect of barrage fishponds were observed in this study concerning invertebrate community structure or functional feeding groups especially in agricultural landscapes. In forest streams, we observed a decrease in organic pollution (OP)-intolerant taxa at downstream sites that was correlated with an increase in OP-tolerant taxa. These results highlighted that the influence of barrage fishponds on headwater stream functioning is complex and land use dependent. It is therefore necessary to clearly understand the various mechanisms (competition for food resources, complementarities between autochthonous and allochthonous OM) that control ecosystem functioning in different contexts in order to optimize barrage fishpond management.
NASA Astrophysics Data System (ADS)
Mockler, Eva; Deakin, Jenny; Archbold, Marie; Daly, Donal; Bruen, Michael
2017-04-01
More than half of the river and lake water bodies in Europe are at less than good ecological status or potential, and diffuse pollution from agriculture remains a major, but not the only, cause of this poor performance. In Ireland, it is evident that agri-environmental policy and land management practices have, in many areas, reduced nutrient emissions to water, mitigating the potential impact on water quality. However, additional measures may be required in order to further decouple the relationship between agricultural productivity and emissions to water, which is of vital importance given the on-going agricultural intensification in Ireland. Catchment management can be greatly supported by modelling, which can reduce the resources required to analyse large amounts of information and can enable investigations and measures to be targeted. The Source Load Apportionment Model (SLAM) framework was developed to support catchment management in Ireland by characterising the contributions from various sources of phosphorus (P) and nitrogen (N) emissions to water. The SLAM integrates multiple national spatial datasets relating to nutrient emissions to surface water, including land use and physical characteristics of the sub-catchments to predict emissions from point (wastewater, industry discharges and septic tank systems) and diffuse sources (agriculture, forestry, peatlands, etc.). The annual nutrient emissions predicted by the SLAM were assessed against nutrient monitoring data for 16 major river catchments covering 50% of the area of Ireland. At national scale, results indicate that the total average annual emissions to surface water in Ireland are over 2,700 t yr-1 of P and 80,000 t yr-1 of N. The SLAM results include the proportional contributions from individual sources at a range of scales from sub-catchment to national, and show that the main sources of P are from wastewater and agriculture, with wide variations across the country related to local anthropogenic pressures and the hydrogeological setting. Agriculture is the main source of N emissions to water across all regions of Ireland. The SLAM results have been incorporated into an Integrated Catchment Management process and used in conjunction with monitoring data and local knowledge during the characterisation of all Irish water bodies by the Environmental Protection Agency. This demonstrates the successful integration of research into catchment management to inform the identification of (i) the sources of nutrients at regional and local scales and (ii) the potential significant pressures and appropriate mitigation measures.
Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...
Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P
2017-09-01
Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.
Qin, Yunbin; Xin, Zhongbao; Yu, Xinxiao; Xiao, Yuling
2014-01-01
Understanding effects of land-use changes driven by the implementation of the “Grain for Green” project and the corresponding changes in soil organic carbon (SOC) storage is important in evaluating the environmental benefits of this ecological restoration project. The goals of this study were to quantify the current soil organic carbon density (SOCD) in different land-use types [cultivated land, abandoned land (cessation of farming), woodland, wild grassland and orchards] in a catchment of the loess hilly and gully region of China to evaluate the benefits of SOC sequestration achieved by vegetation restoration in the past 10 years as well as to discuss uncertain factors affecting future SOC sequestration. Based on soil surveys (N = 83) and laboratory analyses, the results show that the topsoil (0–20 cm) SOCD was 20.44 Mg/ha in this catchment. Using the SOCD in cultivated lands (19.08 Mg/ha) as a reference, the SOCD in woodlands and abandoned lands was significantly higher by 33.81% and 8.49%, respectively, whereas in orchards, it was lower by 10.80%. The correlation analysis showed that SOC and total nitrogen (TN) were strongly correlated (R 2 = 0.98) and that the average C∶N (SOC∶TN) ratio was 9.69. With increasing years since planting, the SOCD in woodlands showed a tendency to increase; however, no obvious difference was observed in orchards. A high positive correlation was found between SOCD and elevation (R 2 = 0.395), but a low positive correlation was found between slope and SOCD (R2 = 0.170, P = 0.127). In the past 10 years of restoration, SOC storage did not increase significantly (2.74% or 3706.46 t) in the catchment where the conversion of cultivated land to orchards was the primary restoration pattern. However, the potential contribution of vegetation restoration to SOC sequestration in the next several decades would be massive if the woodland converted from the cropland is well managed and maintained. PMID:24926873
NASA Astrophysics Data System (ADS)
Jackson-Blake, L. A.; Sample, J. E.; Wade, A. J.; Helliwell, R. C.; Skeffington, R. A.
2017-07-01
Catchment-scale water quality models are increasingly popular tools for exploring the potential effects of land management, land use change and climate change on water quality. However, the dynamic, catchment-scale nutrient models in common usage are complex, with many uncertain parameters requiring calibration, limiting their usability and robustness. A key question is whether this complexity is justified. To explore this, we developed a parsimonious phosphorus model, SimplyP, incorporating a rainfall-runoff model and a biogeochemical model able to simulate daily streamflow, suspended sediment, and particulate and dissolved phosphorus dynamics. The model's complexity was compared to one popular nutrient model, INCA-P, and the performance of the two models was compared in a small rural catchment in northeast Scotland. For three land use classes, less than six SimplyP parameters must be determined through calibration, the rest may be based on measurements, while INCA-P has around 40 unmeasurable parameters. Despite substantially simpler process-representation, SimplyP performed comparably to INCA-P in both calibration and validation and produced similar long-term projections in response to changes in land management. Results support the hypothesis that INCA-P is overly complex for the study catchment. We hope our findings will help prompt wider model comparison exercises, as well as debate among the water quality modeling community as to whether today's models are fit for purpose. Simpler models such as SimplyP have the potential to be useful management and research tools, building blocks for future model development (prototype code is freely available), or benchmarks against which more complex models could be evaluated.
A simple topography-driven, calibration-free runoff generation model
NASA Astrophysics Data System (ADS)
Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H. H. G.
2017-12-01
Determining the amount of runoff generation from rainfall occupies a central place in rainfall-runoff modelling. Moreover, reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we created a new method to estimate runoff generation - HAND-based Storage Capacity curve (HSC) which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and partially the saturated areas of catchments. We then coupled the HSC model with the Mass Curve Technique (MCT) method to estimate root zone storage capacity (SuMax), and obtained the calibration-free runoff generation model HSC-MCT. Both the two models (HSC and HSC-MCT) allow us to estimate runoff generation and simultaneously visualize the spatial dynamic of saturated area. We tested the two models in the data-rich Bruntland Burn (BB) experimental catchment in Scotland with an unusual time series of the field-mapped saturation area extent. The models were subsequently tested in 323 MOPEX (Model Parameter Estimation Experiment) catchments in the United States. HBV and TOPMODEL were used as benchmarks. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB catchment compared with TOPMODEL which is based on the topographic wetness index (TWI). The HSC also outperformed HBV and TOPMODEL in the MOPEX catchments for both calibration and validation. Despite having no calibrated parameters, the HSC-MCT model also performed comparably well with the calibrated HBV and TOPMODEL, highlighting the robustness of the HSC model to both describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate the SuMax. Moreover, the HSC-MCT model facilitated effective visualization of the saturated area, which has the potential to be used for broader geoscience studies beyond hydrology.
NASA Astrophysics Data System (ADS)
Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.
2012-04-01
A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.
NASA Astrophysics Data System (ADS)
Prasetyo, Yudo; Ardi Gunawan, Setyo; Maksum, Zia Ul
2016-11-01
Semarang is the biggest city in central Java-Indonesia which has a rapid and massive infrastructure development nowadays. In order to control water resources and flood, the local goverment has been built east and west flood canal in Kaligarang and West Semarang River. One of main problem in Semarang city is the lack of fresh water in dry season because ground water is not rechargeable well. Rechargeable groundwater ability depends on underground water recharge rate and catchment area condition. The objective of the study is to determine condition and classification of water catchment area in Semarang city. The catchment area conditions will be determine by five parameters as follows soil type, land use, slope, ground water potential and rainfall intensity. In this study, we use three methods approach to solve the problem which is segmentation classification to acquire land use classification from high resolution imagery using nearest neighborhood algorithm, Interferometric Synthetic Aperture Radar (SAR) to derive DTM from SAR Imagery and multi criteria weighting and spatial analysis using GIS method. There are three types optical image (ALOS PRISM, SPOT-6 and ALOS PALSAR) to calculate water catchment area condition in Semarang city. For final result, this research will divide the water catchment into six criteria as follows good, naturally normal, early critical, a little bit critical, critical and very critical condition. The result shows that water catchment area condition is in an early critical condition around 2607,523 Ha (33,17 %), naturally normal condition around 1507,674 Ha (19,18 %), a little bit critical condition around 1452,931 Ha (18,48 %), good with 1157,04 Ha (14,72 %), critical with 1058,639 Ha (13,47 %) and very critical with 75,0387 Ha (0,95 %). The distribution of water catchment area conditions in West and East Flood Canal have an irreguler pattern. In northern area of watershed consists of begin to critical, naturally normal and good condition. Meanwhile in southern area of watershed consists of a little bit critical, critical and very critical condition.
TUM Critical Zone Observatory, Germany
NASA Astrophysics Data System (ADS)
Völkel, Jörg; Eden, Marie
2014-05-01
Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.
Monitoring and Simulating Water, Carbon and Nitrogen Dynamics over Catchments in Eastern Asia
NASA Astrophysics Data System (ADS)
Wang, Q.; Xiao, Q.; Liu, C.; Watanabe, M.
2006-05-01
There is an emergency need to support decision-making in water environment management in Eastern Asia. For sound management and decision making of sustainable water use, the catchment ecosystem assessment, emphasizing biophysical and biogeochemical processes and human interactions, is a key task. For this task, an integrated ecosystem model has been developed to estimate the spatial and temporal distributions of the water, carbon and nutrient cycles over catchment scales. The model integrated both a distributed hydrologic model (Nakayama and Watanabe, 2004) and an ecosystem model, BIOME-BGC (Running and Coughlan, 1988), which has been modified and validated for various ecosystems by using the APEIS-FLUX datasets in China (Wang and Watanabe, 2005). The model has been applied to catchments in China, such as the Changjiang River and the Yellow River. The MODIS satellite data products, such as leaf area index (LAI), vegetation index (VI) and land surface temperature (LST) were used as the input parameters. By using the integrated model, the future changes in water, carbon and nitrogen cycle can be predicted based on scenarios, such as the decrease in crop production due to water shortage, and the increase in temperature and CO2 concentration, as well as the land use/cover changes. The model was validated by the measured values of soil moisture, and river flow discharge throughout the year, showing that this model achieves a fairly high accuracy. As an example, we applied the integrated model to simulate the daily water vapor, carbon and nitrogen fluxes over the Changjiang River Basin. The Changjiang River is ranked third in length and is the largest river in terms of water discharge over the Euro-Asian continent. The drainage basin of the Changjiang supplies 5-10% of the total world population with water resources and nutrition and irrigates 40% of China's national crop production. Moreover, the materials carried by the Changjiang River have a significant influence on the coastal environment. Simulation results showed that enhanced atmospheric CO2 concentrations and especially increased nitrogen application had a marked effect on the simulated water and carbon sequestration capacity and played a prominent role in increasing this capacity. Finally, the model has been applied to evaluate the impact of land cover change from 1980 to 2000 on water, carbon and nitrogen fluxes over larger river basins in China.
NASA Astrophysics Data System (ADS)
Dolan, Tom; Pullan, Stephanie; Whelan, Mick; Parsons, David
2013-04-01
Diffuse inputs from agriculture are commonly the main source of pesticide contamination in surface water and may have implications for the quality of treated drinking water. After privatisation in 1991, UK water companies primarily focused on the provision of sufficient water treatment to reduce the risk of non-compliance with the European Drinking Water Directive (DWD), under which all pesticide concentrations must be below 0.1µg/l and UK Water Supply Regulations for the potable water they supply. Since 2000, Article 7 of the Water Framework Directive (WFD) has begun to drive a prevention-led approach to compliance with the DWD. As a consequence water companies are now more interested in the quality of 'raw' (untreated) water at the point of abstraction. Modelling (based upon best available estimates of cropping, pesticide use, weather conditions, pesticide characteristics, and catchment characteristics) and monitoring of raw water quality can both help to determine the compliance risks associated with the quality of this 'raw' water resource. This knowledge allows water companies to prioritise active substances for action in their catchments, and is currently used in many cases to support the design of monitoring programmes for pesticide active substances. Additional value can be provided if models are able to help to identify the type and scale of catchment management interventions required to achieve DWD compliance for pesticide active substances through pollution prevention at source or along transport pathways. These questions were explored using a simple catchment-scale pesticide fate and transport model. The model employs a daily time-step and is semi-lumped with calculations performed for soil type and crop combinations, weighted by their proportions within the catchment. Soil properties are derived from the national soil database and the model can, therefore, be applied to any catchment in England and Wales. Various realistic catchment management intervention scenarios were explored (including changes to land use and pesticide usage) with the aim of providing a useful input to the debate between water companies, their regulators and pesticide users over the scale of catchment management required to support both DWD and WFD Article 7 compliance.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Biederman, J. A.; Condon, K.; Chorover, J.; McIntosh, J. C.; Meixner, T.; Perdrial, J. N.
2013-12-01
Increasing variability in climate is expected to alter the amount and form of terrestrial carbon in stream water both directly, through changes in the magnitude and timing of discharge, and indirectly through changes in land cover following disturbance (e.g. drought, fire, or insect driven mortality). Predicting how these changes will impact individual stream-catchment ecosystems however, is hampered by a lack of concurrent observations on both dissolved and particulate carbon flux across a range of spatial, temporal, and discharge scales. Because carbon is strongly coupled to most biogeochemical reactions within both aquatic and terrestrial ecosystems, this represents a critical unknown in predicting the response of catchment-ecosystems to concurrent changes in climate and land cover. This presentation will address this issue using a meta-analysis of dissolved organic, dissolved inorganic, and particulate organic carbon fluxes from multiple locations, including undisturbed sites along a climate gradient from desert rivers to seasonally snow-covered, forested mountain catchments, and sites disturbed by both fire and extensive, insect driven mortality. Initial analyses suggest that dissolved (organic and inorganic) and particulate fluxes respond differently to various types of disturbance and depend on interactions between changes in size of mobile carbon pools and changes in hydrologic routing of carbon to streamwater. Anomalously large fluxes of both dissolved and particulate organic matter are associated with episodic changes in hydrologic routing (e.g. storm floods; snowmelt) that connect normally hydrologically isolated carbon pools (e.g. surficial hillslope soils) with surface water. These events are often of short duration as the supply of mobile carbon is exhausted in short term flushing response. In contrast, disturbances that increase the size of the mobile carbon pool (e.g. widespread vegetation mortality) result smaller proportional increases in concentrations, but these elevated concentrations persist for a longer period of time as increased solute sources are transported to surface water through persistent, subsurface flowpaths.
Soil erosion rates (particulate and dissolved fluxes) variations in a temperate river basin
NASA Astrophysics Data System (ADS)
Cerdan, Olivier; Gay, Aurore; Négrel, Philippe; Pételet-Giraud, Emmanuelle; Salvador Blanes, Sébastien; Degan, Francesca
2015-04-01
Soil erosion is one of the major drivers of landscape evolution in Western Europe. However, depending on the land use characteristics and on the geological and topographical settings, miscellaneous forms of erosion may lead to a very diverse morphological evolution. To understand these landscape evolutions different scientific questions remain to be answered or quantified. The main difficulty arises from the nonlinear interactions between different erosional processes that act at different temporal and spatial scales. This study proposes to investigate different datasets describing particulate and dissolved sediment fluxes within a French River basin (The Loire River) at different spatial scales and at temporal scales ranging from the flood event to several decades. The particulate sediment load values at the outlet of the catchments range from 2.5 102 to 8.6 105 t yr-1, and the sediment yield values range from 2.9 to 32.4 t km 2 yr-1. Sediment exports from the Loire and Brittany river basins are low compared with mountainous regions and European exports. However, a strong spatial variability within this territory exists. The expected results on the sediment yield spatial pattern distribution and the correlation between SY values and basin sizes are not observed. An analysis of the sediment yield values at different time steps shows a strong effect of the seasonal availability of detached particles to be transported. High concentrations of suspended sediments during the winter and lower values during the summer and autumn are observed. Inter-annual variations are also observed, with export values varying by a factor 2 to 10 between years for one catchment. The influence of rainfall on the sediment exports is predominant, but investigations on physical characteristics of each catchment (e.g., lithology, slope, land use) are required to better understand the production and transfer processes within a drainage basin. These inter-annual variations imply that long-term data are required to provide mean SY values representative of the catchment functioning. From our calculations, 18 complete years of data are required to obtain a mean sediment yield value with less than 10% of variation on average around the mean. The specific dissolved fluxes vary from 13.7 to 199.9 t.km-2. t yr-1. Contrary to particulate matters, the impact of the lithology is illustrated by higher total dissolved solid fluxes on limestone catchments compared with graniteous or schisteous catchments. Nitrates and ammonium are indicators of anthropogenic perturbation and their fluxes vary respectively from 0.4 to 31.4 t.km-2. yr-1 and from 7.8*10-3 to 7.7 t.km-2. yr-1 and evolve differently according to land uses: nitrates fluxes are lower in the upstream Loire and higher downstream in the region where agricultural pressure is higher. The analysis of these datasets at different spatial and temporal scales permits to identify some of the dominant processes, and also to distinguish natural from anthropogenic influences. Concerning upland physical soil surface erosion rates, we find that the average travel distance of eroded particles may be limited, implying a strong decrease in physical erosion rates when moving from the local scale (m²) to the river basin scale (> 103 km²). Chemical erosion rates are less sensitive to scale and can either decrease or increase with increasing area in function of lithology, land management and topography. The results also highlight the predominant role of surface connectivity to characterize the fraction of sediment exported out of river drainage areas by physical soil surface erosion. For the export of dissolved sediment originating from weathering processes, the catchment physiography and connectivity does no longer play the dominant role. A direct link between soil production rates and exported dissolved fluxes tends to show that, contrary to the suspended particles, which are transport-limited, the dissolved matter seems to be supply-limited.
NASA Astrophysics Data System (ADS)
Fryirs, K.
2010-12-01
Fluvial systems are key elements that drive Earth surface change because they convey most of the global fluxes of water and sediment from land to oceans. Fluvial fluxes of water and sediment also drive a significant proportion of the terrestrial biochemical cycling of carbon, nutrients and pollutants. Understanding the internal dynamics of the sediment cascade is therefore critical to forecasting how environmental change, whether driven by extrinsic climate change, or intrinsic human-disturbance, might affect biochemical fluxes. To understand the internal dynamics of sediment flux requires a framework that can incorporate the various processes involved in the movement of sediment from the source area through the basin system to the outlet, and can take account of spatial variability within the system and the timeframes over which these processes operate. Traditionally a sediment budget approach has been used to quantify the sediment being supplied, transported and stored in various parts of catchments. In more recent years, a more sophisticated approach to analysis of catchment linkages and (dis)connectivity has been developed that incorporates both spatial and temporal variability in the operation of the sediment cascade. This framework is based on an understanding of longitudinal, lateral and vertical linkages in sediment flux in catchments, and where blockages occur to disrupt these linkages. These blockages have been termed buffers, barriers and blankets (Fryirs et al 2007). Depending on the position of these blockages, and their sediment residence time, various parts of catchment may be actively contributing sediment to the catchment sediment cascade and be switched on, or inactive and switched off. The degree of spatial connectivity determines the effective catchment area. The breaching capacity of buffers, barriers and blankets determines the effective timescale over which certain parts of a catchment are switched on. The sediment residence time and thresholds of stability dictate the timeframe over which certain parts of catchments are actively contributing sediment to the cascade. The manifestation of geomorphic change, and response times to disturbance can be modeled within such a framework. The notion that certain sediment sources and transport mechanisms may be switched on or switched off under various climate change scenarios can also be examined using this framework. Fryirs, K., Brierley, G. J., Preston, N. J. and Kasai, M. 2007. Buffers, barriers and blankets: The (dis)connectivity of catchment-scale sediment cascades. Catena, 70, 49-67
Probability based hydrologic catchments of the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Hudson, B. D.
2015-12-01
Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.
Connectivity of surface flow and sediments in a small upland catchment
NASA Astrophysics Data System (ADS)
Lexartza-Artza, I.; Wainwright, J.
2009-04-01
The study of connectivity can help understand complex systems in which different factors interact to influence water-transfer pathways across the landscape. Changes in the catchment can affect connectivity, which in turn can have significant effects on catchment processes and network structure. Furthermore, the potential negative effects of the transfer of nutrients, pollutants and sediments by water from land to water bodies make it necessary to improve our understanding of connectivity. This need is reinforced by increasing demands of legislation such as the Water Framework Directive for effective Integrated Catchment Management in which whole systems are considered rather than their individual parts separately. Thus, connectivity can potentially be a useful concept to assess more effectively the effects that changes can have in complex systems, and could provide useful knowledge for decision makers. Field-based approaches to connectivity, needed to gain a useful understanding of real systems, need to include both the structural and functional aspects of connectivity, as the interaction between function and structure has to be understood to examine the complexity of the relationships between factors influencing pathways and transfer processes. This has to be taken into consideration, therefore, when designing and carrying studies to assess connectivity of flow networks that can provide context-specific data necessary to inform modelling approaches. The Ingbirchworth Catchment, in the uplands of the River Don, England, is used to assess the feedbacks between the different factors influencing transfer networks and the spatial and temporal variability in dynamic and non-linear process responses across the landscape. An especial focus has been given to land-use change, as one of the variables that might have a considerable influence on runoff generation and pathways. This 8.5 km2 catchment shares many characteristics with many others in the River Don uplands, including the presence of small reservoirs that regulate the flow, a number of which have experienced pollution problems. A range of agricultural uses create a patchwork landscape in this area that is part of the Catchment Sensitive Farming programme. Using a nested approach, a baseline structure on which to develop a context-specific field approach and to acquire the data necessary to assess connectivity in the system has been followed. An initial and then iterative description of the catchment structure and characteristics has been carried, together with a study of the catchment history and sedimentation record. These allow the definition of the relevant landscape units, identification of elements that might influence connectivity and inference of potential past changes of flow pathways. Through event monitoring at different landscape settings and scales, both structural and functional aspects are considered together and the variability and changes in the flow network are shown. The knowledge obtained is being used to assess the roles of the identified elements in relation to connectivity and to recognize the interactions and feedbacks between different system components.
Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.
2017-12-01
In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.
NASA Astrophysics Data System (ADS)
Benning, R.; Schwärzel, K.; Feger, K. H.
2012-04-01
Regional climate change scenarios for Central Europe predict both an overall increase in temperature and alterations in annual precipitation regimes. For large parts of Central Europe, climate change is expected to result in an increase in winter precipitation and a decrease in summer precipitation. In addition, an increase in extreme conditions, such as heat waves, prolonged drought periods, and heavy rainfall events are predicted. This research examines the potential impacts of increased heavy rainfall events on matter export from small catchment areas, and how different vegetation cover and land management options effects these exports. In order to evaluate the export of matter from different land-use types in the Eastern Ore Mountains (Saxony, NE Germany, 50° 48'18.06" North, 13° 36'24.54" East), study sites were established in three small catchments with homogeneous land-use. These study areas are each sub-catchments of the Ammelsdorf catchment, which provides inflow to the Lehnmühle reservoir (a major water supply for the city of Dresden). Each sub catchment represents one of the three main land-use types in the catchment area of the reservoir: crops (winter oilseed rape, winter wheat), grasslands, and forests (primarily spruce). Since November 2009 the discharge from these sub catchments has been continuously measured and water quality was analyzed on a weekly basis. During peak flow events, discharge was collected using automatic water samplers, which allowed for high temporal resolution analysis of matter export during these periods to be made. During the 2010 and 2011 hydrological years, several heavy rainfall events occurred which have been evaluated. During a 110-hour long precipitation event (P = 170 mm) between 37 and 81 water samples per sub catchment were collected and analyzed. The resulting export of dissolved phosphorus (ortho-PO4-) and dissolved organic carbon (DOC) from the sub catchments during this event is provided in the results. In addition, the matter export resulting from a 59-hour precipitation event (P = 39 mm, between 31 and 48 analyzed water samples per sub catchment) is presented. The contribution of these two events to the annual export of ortho-PO4- and DOC will be discussed.
Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z
2007-12-01
Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.
NASA Astrophysics Data System (ADS)
Wozniak, E.; Nasilowska, S.; Jarocinska, A.; Igras, J.; Stolarska, M.; Bernoussi, A. S.; Karaczun, Z.
2012-04-01
The aim of the performed research was to determine catchments under the nitrogen pressure in Poland in period of 2007-2010. National Water Management Authority in Poland uses the elaborated methodology to fulfil requirements of Nitrate Directive and Water Framework Directive. Multicriteria GIS analysis was conducted on the base on various types of environmental data, maps and remote sensing products. Final model of real agricultural pressure was made using two components: (i) potential pressure connected with agriculture (ii) the vulnerability of the area. The agricultural pressure was calculated using the amount of nitrogen in fertilizers and the amount of nitrogen produced by animal breeding. The animal pressure was based on the information about the number of bred animals of each species for communes in Poland. The spatial distribution of vegetation pressure was calculated using kriging for the whole country base on the information about 5000 points with the amount of nitrogen dose in fertilizers. The vulnerability model was elaborated only for arable lands. It was based on the probability of the precipitation penetration to the ground water and runoff to surface waters. Catchment, Hydrogeological, Soil, Relief or Land Cover maps allowed taking into account constant environmental conditions. Additionally information about precipitation for each day of analysis and evapotranspiration for every 16-day period (calculated from satellite images) were used to present influence of meteorological condition on vulnerability of the terrain. The risk model is the sum of the vulnerability model and the agricultural pressure model. In order to check the accuracy of the elaborated model, the authors compared the results with the eutrophication measurements. The model accuracy is from 85,3% to 91,3%.
Decreasing soil erosion rates with evolving land-use techniques in a central European catchment
NASA Astrophysics Data System (ADS)
Larsen, Annegret; Heckmann, Tobias; Hans-Rudolf, Bork; Alexander, Fuelling
2015-04-01
Agricultural societies around the world have caused accelerated soil erosion. Soil erosion and a decrease in soil fertility may also have caused the abandonment of entire landscapes and the collapse of civilizations. In central Europe, Medieval land-use is thought to have lead to the largest loss of top soil in history, which in turn lead to a malnutrition of the population and abandonment of agricultural land. However, this might be only part of the picture, as people are also able to adapt to changing environmental conditions, including the type of land-use they adopt. Within a catchment in the central European mountain belt, we were able to distinguish the evolution between three main types of land-use techniques between ~ 900 AD and 1950 AD: horticulture, agriculture and shifting cultivation. We were able to relate these techniques with different soil erosion rates, which differ by an order of magnitude, ranging from 0.83 ± 0.09 mm/yr to 1.62 ± 0.17 mm/yr. Using high-resolution surface data and chrono-stratigraphical methods in combination with soil charcoal analysis, we were able to reconstruct past land-use techniques on a local scale. This illustrates that less erosive and more sustainable techniques were developed through time, and hypothesize that people were able to adapt to the less favorable environmental conditions by changing the cultivation techniques. Although cultural adaptation to changing environmental conditions has been extensively discussed, this study is able to quantitatively demonstrate improved soil management with evolving land-use in central Europe.
Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany
NASA Astrophysics Data System (ADS)
Lam, Q. D.; Schmalz, B.; Fohrer, N.
2012-05-01
SummaryThe pollution of rivers and streams with agro-chemical contaminants has become one of the most crucial environmental problems in the world. The assessment of spatial and temporal variations of water quality influenced by point and diffuse source pollution is necessary to manage the environment sustainably in various watershed scales. The overall objectives of this study were to assess the transferability of parameter sets between lowland catchments on different scales using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to evaluate the temporal and spatial patterns of water quality in the whole catchments before and after implementation of best management practices (BMPs). The study area Kielstau catchment is located in Northern Germany as typical example of lowland - flood plain landscape. Sandy, loamy and peat soils are characteristic for this area. Land use is dominated by arable land and pasture. In this study we examined two catchment areas including Kielstau catchment 50 km2 and its subcatchment, namely Moorau, with the area of 7.6 km2. The water quality of these catchments is not only influenced by diffuse sources from agricultural areas but also by point sources from municipal wastewater treatment plants (WWTPs). Diffuse sources as well as punctual entries from the WWTPs are considered in the model set-up. For this study, the calibration and validation of the model were carried out in a daily time step for flow and nutrients. The results indicate that the parameter sets could be transferred in lowland catchments with similar environmental conditions. Shallow groundwater is the major contributor to total nitrate load in the stream accounting for about 93% of the total nitrate load, while only about 7% originates in surface runoff and lateral flow. The study also indicates that applying a spatially distributed modeling approach was an appropriate method to generate source maps showing the spatial distribution of TN load from hydrologic response units (HRUs) as well as from subbasins and to identify the crucial pollution areas within a watershed whose management practices can be improved to control more effectively nitrogen loading to water bodies.
NASA Astrophysics Data System (ADS)
Chantha, Oeurng; Sabine, Sauvage; José-Miguel, Sánchez-Pérez
2010-05-01
Suspended sediment transport from agricultural catchments to stream networks is responsible for aquatic habitat degradation, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, heavy metals and other toxic substances). Quantifying and understanding the dynamics of suspended sediment transfer from agricultural land to watercourses is essential in controlling soil erosion and in implementing appropriate mitigation practices to reduce stream suspended sediment and associated pollutant loads, and hence improve surface water quality downstream. Gascogne area, southwest France, has been dominated by anthropogenic activities particularly intensive agriculture causing severe erosion in recent decades. This leads to a major threat to surface water quality due to soil erosion. Therefore, the catchment water quality has been continuously monitored since January 2007 and the historical data of hydrology and suspended sediment has existed since 1998. In this study, the Soil and Water Assessment Tool (SWAT 2005) was applied to assess hydrology, suspended sediment and particulate organic carbon in this catchment Agricultural management practices (crop rotation, planting date, fertilizer quantity and irrigations) were taken into the model for simulation period of 11 years (July, 1998 to March, 2009). The investigation was conducted using a 11-year streamflow and two years of suspended sediment record from January 2007 to March 2009. Modelling strategy with dominant landuse and soil type was chosen in this study. The SWAT generally performs satisfactorily and could simulate both daily and monthly runoff and sediment yield. The simulated daily and monthly runoff matched the observed values satisfactorily (ENash>0.5). For suspended sediment simulation, the simulated values were compared with the observed continuous suspended sediment derived from turbidity data. Based on the relationship between SSC and POC (R2 = 0.93), POC was modelled by simulated SSC from SWAT. The model predicted that the average annual catchment rainfall of the 11-year evaluation period (726 mm) with evapotranspiration (78.3%), percolation/groundwater recharge (14.1%), transmission loss (0.5%), and yielding surface runoff (7.1%). The simulated average total water yield of 11 years accounted for 138 mm (observed=133mm) and annual sediment yield varying from 4766 t to 123000 t (Mean= 48 t km-2). The annual yield of particulate organic carbon ranged from 120 t to 3100 t (Mean=1.2 t km-2).
Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water.
Sterk, Ankie; Schijven, Jack; de Roda Husman, Ana Maria; de Nijs, Ton
2016-05-15
Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by, for instance, bathing or drinking-water consumption. An increase in runoff, and associated wash-off of animal faeces from fields, is assumed to contribute to the increase of disease outbreaks during periods of high precipitation. Climate change is expected to increase winter precipitation and extreme precipitation events during summer, but has simultaneously also other effects such as temperature rise and changes in evapotranspiration. The question is to what extent the combination of these effects influence the input of zoonotic pathogens to the surface waters. To quantitatively analyse the impacts of climate change on pathogen runoff, pathogen concentrations reaching surface waters through runoff were calculated by combining an input model for catchment pathogen loads with the Wageningen Lowland Runoff Simulator (WALRUS). Runoff of Cryptosporidium and Campylobacter was evaluated under different climate change scenarios and by applying different scenarios for sources of faecal pollution in the catchments, namely dairy cows and geese and manure fertilization. Model evaluation of these scenarios shows that climate change has little overall impact on runoff of Campylobacter and Cryptosporidium from land to the surface waters. Even though individual processes like runoff fluxes, pathogen release and dilution are affected, either positively or negatively, the net effect on the pathogen concentration in surface waters and consequently also on infection risks through recreation seems limited. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
C, N, P export regimes from headwater catchments to downstream reaches
NASA Astrophysics Data System (ADS)
Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.
2017-12-01
Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.
NASA Astrophysics Data System (ADS)
Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle
2014-05-01
Over the past 20 years, there has been increasing evidence of the strong impact of human activities on the landscape, specifically on soil erosion due to the removal of natural vegetation cover for agricultural and urban purposes. The results question the widespread hypothesis of a steady state landscape since it appears that the balance between soil production and erosion may be broken altering the interactions between chemical, physical and biological processes in both soil and landscape system. Yet, the relationship between this accelerated erosion and the carbon dynamics at the landscape scale remains an important area of investigation. Recent attempts to combine geomorphic models, soil redistribution and carbon dynamic has proved themselves valuable in term of supporting the importance of lateral fluxes as a crucial control of carbon dynamic at the landscape scale. We use the SPEROS LT model, a modified version of SPEROS-C which includes dynamic land use and soil physical properties, to assess the impact of historical land use conversion on sediment and carbon fluxes in the Dijle catchment. This particular location has experienced a significant human impact since the Roman period, undergoing heavy deforestation and expansion of agricultural lands followed by a period of abandonment. The last 400 to 500 years saw a dramatic increase in the intensity of land use conversion associated to population growth leading to forest cleaning and urbanization. Our main objective is to validate the combined geomorphic and soil carbon turnover process descriptions of the model. Historical land use proportions are based on existing literature estimations and spatial assignation of the land conversion relies on simple allocation rules based on criteria such as slope or soil texture. Land use scenarios are constructed for the last 2000 years. We confront the model results with observations and perform a sensitivity analysis. The results indicate that the general trends in sediment production and deposition, as well as soil carbon storage are well predicted by the model. We discuss the key-parameters of the model and the implications of past erosion-deposition for the future C budget of the Dijle catchment.
Yates, Christopher A; Johnes, Penny J; Spencer, Robert G M
2016-11-01
Two lowland catchments in the U.K. were sampled throughout 2010-11 to investigate the dominant controls on dissolved organic matter quantity and composition. The catchments had marked differences in terms of nutrient status, land cover and contrasting lithologies resulting in differences in the dominant flow pathways (groundwater vs. surface water dominated). The Upper Wylye is a chalk stream with a baseflow index of 0.98, draining a catchment dominated by intensive agricultural production. Millersford Brook is a lowland peat catchment with a baseflow index of 0.43, draining a semi-natural catchment with heather moorland and coniferous forest. Samples were collected weekly between October 2010 and September 2011 from eleven sampling locations. Samples were analysed to determine dissolved organic carbon, nitrogen and phosphorus fractions with DOM composition evaluated via the DOC:DON ratio, DOC:DOP ratio, specific UV absorption at 254nm, absorbance ratio (a250:a365) and the spectral slope parameter between 350 and 400nm (S350-400). Significant differences were observed in all determinands between the catchments, over time, and spatially along nutrient enrichment and geoclimatic gradients. Seasonal variation in preferential flow pathways mobilising groundwater-derived DOM were identified as likely controls on the delivery of DOM in the permeable chalk dominated catchment. Steeper S350-400 values and elevated a250:a365 ratios in this catchment suggest material of a lower bulk aromatic C content and molecular weight delivered during the winter months when compared to the summer. DOC:DON ratios were markedly lower in the chalk catchment than the peatland catchment, reflecting the paucity of organic matter within the mineral soils of the chalk landscape, and higher fertiliser application rates. This manuscript highlights that DOM composition varies according to catchment landscape character and hydrological function. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Donohue, Randall; Yang, Yuting; McVicar, Tim; Roderick, Michael
2016-04-01
A fundamental question in climate and ecosystem science is "how does climate regulate the land surface carbon budget?" To better answer that question, here we develop an analytical model for estimating mean annual terrestrial gross primary productivity (GPP), which is the largest carbon flux over land, based on a rate-limitation framework. Actual GPP (climatological mean from 1982 to 2010) is calculated as a function of the balance between two GPP potentials defined by the climate (i.e., precipitation and solar radiation) and a third parameter that encodes other environmental variables and modifies the GPP-climate relationship. The developed model was tested at three spatial scales using different GPP sources, i.e., (1) observed GPP from 94 flux-sites, (2) modelled GPP (using the model-tree-ensemble approach) at 48654 (0.5 degree) grid-cells and (3) at 32 large catchments across the globe. Results show that the proposed model could account for the spatial GPP patterns, with a root-mean-square error of 0.70, 0.65 and 0.3 g C m-2 d-1 and R2 of 0.79, 0.92 and 0.97 for the flux-site, grid-cell and catchment scales, respectively. This analytical GPP model shares a similar form with the Budyko hydroclimatological model, which opens the possibility of a general analytical framework to analyze the linked carbon-water-energy cycles.
Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems
Bode, Michael; Atkinson, Scott; Klein, Carissa J.; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P.
2017-01-01
Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions—protection on land, protection in the ocean, restoration on land, or restoration in the ocean—to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social–ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land–ocean systems can proceed without complex modelling. PMID:28877168
Tattari, Sirkka; Koskiaho, Jari; Kosunen, Maiju; Lepistö, Ahti; Linjama, Jarmo; Puustinen, Markku
2017-03-01
Long-term data from a network of intensively monitored research catchments in Finland was analysed. We studied temporal (1981-2010) and spatial variability in nitrogen (N) and phosphorus (P), from 1987 losses, both from agricultural and forestry land. Based on trend analysis, total nitrogen (TN) concentrations increased in two of the four agricultural sites and in most of the forested sites. In agricultural catchments, the total phosphorus (TP) trends were decreasing in two of the four catchments studied. Dissolved P (DRP) concentrations increased in two catchments and decreased in one. The increase in DRP concentration can be a result of reducing erosion by increased non-plough cultivation and direct sowing. In forested catchments, the TP trends in 1987-2011 were significantly decreasing in three of the six catchments, while DRP concentrations decreased significantly in all sites. At the same time, P fertilisation in Finnish forests has decreased significantly, thus contributing to these changes. The mean annual specific loss for agricultural land was on average 15.5 kg ha -1 year -1 for N and 1.1 kg ha -1 year -1 for P. In the national scale, total TN loading from agriculture varied between 34,000-37,000 t year -1 and total P loading 2400-2700 t year -1 . These new load estimates are of the same order than those reported earlier, emphasising the need for more efforts with wide-ranging and carefully targeted implementation of water protection measures.
NASA Astrophysics Data System (ADS)
Jacobs, Suzanne R.; Weeser, Björn; Guzha, Alphonce C.; Rufino, Mariana C.; Butterbach-Bahl, Klaus; Windhorst, David; Breuer, Lutz
2018-03-01
Land use change alters nitrate (NO3-N) dynamics in stream water by changing nitrogen cycling, nutrient inputs, uptake and hydrological flow paths. There is little empirical evidence of these processes for East Africa. We collected a unique 2 year high-resolution data set to assess the effects of land use (i.e., natural forest, smallholder agriculture and commercial tea plantations) on NO3-N dynamics in three subcatchments within a headwater catchment in the Mau Forest Complex, Kenya's largest tropical montane forest. The natural forest subcatchment had the lowest NO3-N concentrations (0.44 ± 0.043 mg N L-1) with no seasonal variation. NO3-N concentrations in the smallholder agriculture (1.09 ± 0.11 mg N L-1) and tea plantation (2.13 ± 0.19 mg N L-1) subcatchments closely followed discharge patterns, indicating mobilization of NO3-N during the rainy seasons. Hysteresis patterns of rainfall events indicate a shift from subsurface flow in the natural forest to surface runoff in agricultural subcatchments. Distinct peaks in NO3-N concentrations were observed during rainfall events after a longer dry period in the forest and tea subcatchments. The high-resolution data set enabled us to identify differences in NO3-N transport of catchments under different land use, such as enhanced NO3-N inputs to the stream during the rainy season and higher annual export in agricultural subcatchments (4.9 ± 0.3 to 12.0 ± 0.8 kg N ha-1 yr-1) than in natural forest (2.6 ± 0.2 kg N ha-1 yr-1). This emphasizes the usefulness of our monitoring approach to improve the understanding of land use effects on riverine N exports in tropical landscapes, but also the need to apply such methods in other regions.
Understanding fine sediment and phosphorous delivery in upland catchments
NASA Astrophysics Data System (ADS)
Perks, M. T.; Reaney, S. M.
2013-12-01
The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (< 2 mm) and associated pollutants (such as phosphorous). Most recent Environment Agency (EA) data reveals that 60% of monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring station at the 12.5 km2 outlet provides flow, turbidity, total phosphorous (TP), total reactive phosphorous (TRP), conductivity, temperature and pH measurements at 15-minute intervals. Within this catchment, two additional monitoring stations along adjacent tributaries with catchment areas of 2.3 km2 and 3.8 km2 provide continuous flow and turbidity data with soluble reactive phosphorous and TP collected during storms. Collection and analysis of this data over two full hydrological years has proved effective in; a) producing load estimates; b) producing better assessments of the magnitude and duration of aquatic organisms exposure to detrimental levels of suspended sediment and phosphorous; c) exploring the processes responsible for the delivery and transfer of fine sediment and phosphorous to and from the channel and; d) enhancing our understanding and prediction of the fluvial sediment system. The process understanding achieved using this monitoring framework has facilitated the production of a mitigation plan for the Morland catchment. Following this plan, a range of measures are currently being implemented to reduce the movement of diffuse pollutants across the hillslopes and channels whilst in-stream monitoring continues. The adopted mitigation measures may act as a trial for other upland catchments facing similar pressures.
NASA Astrophysics Data System (ADS)
Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.
2010-12-01
After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.
NASA Astrophysics Data System (ADS)
Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
2014-11-01
The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.
Modelling metaldehyde in catchments: a River Thames case-study.
Lu, Q; Whitehead, P G; Bussi, G; Futter, M N; Nizzetto, L
2017-04-19
The application of metaldehyde to agricultural catchment areas to control slugs and snails has caused severe problems for drinking water supply in recent years. In the River Thames catchment, metaldehyde has been detected at levels well above the EU and UK drinking water standards of 0.1 μg l -1 at many sites across the catchment between 2008 and 2015. Metaldehyde is applied in autumn and winter, leading to its increased concentrations in surface waters. It is shown that a process-based hydro-biogeochemical transport model (INCA-contaminants) can be used to simulate metaldehyde transport in catchments from areas of application to the aquatic environment. Simulations indicate that high concentrations in the river system are a direct consequence of excessive application rates. A simple application control strategy for metaldehyde in the Thames catchment based on model results is presented.
Nitrogen attenuation along delivery pathways in agricultural catchments
NASA Astrophysics Data System (ADS)
McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.
2014-05-01
Hillslope hydrologic systems and in particular near-stream saturated zones are active sites of nitrogen (N) biogeochemical dynamics. The efficiency of N removal and the ratio of reaction products (nitrous oxide and dinitrogen) in groundwater is highly variable and depends upon aquifer hydrology, mineralogy, dissolved oxygen, energy sources and redox chemistry. There are large uncertainties in the closing of N budgets in agricultural catchments. Spatial and temporal variability in groundwater physico-chemistry, catchment hydrology and land-use gives rise to hotspots and hot moments of N attenuation. In addition the production, consumption and movement of denitrification products remains poorly understood. The focus of this study is to develop a holistic understanding of N dynamics in groundwater as it moves from the top of the hillslope to the stream. This includes saturated groundwater flow, exchange at the groundwater-surface water interface and hyporheic zone flow. This project is being undertaken in two ca. 10km2 Irish catchments, characterised by permeable soils. One catchment is dominated by arable land overlying slate bedrock and the other by grassland overlying sandstone. Multi-level monitoring wells have been installed at the upslope, midslope and bottom of each hillslope. The piezometers are screened to intercept the subsoil, weathered bedrock and competent bedrock zones. Groundwater samples for nitrate (NO3-N) nitrite (NO2-N), ammonium (NH4-N) and total nitrogen are collected on a monthly basis while dissolved gas concentrations are collected seasonally. Groundwater NO3-N profiles from monitoring data to date in both catchments differ markedly. Although the two catchments had similar 3 year mean concentrations of 6.89 mg/L (arable) and 6.24 mg/L (grassland), the grassland catchment had higher spatial and temporal variation. The arable catchment showed relatively homogenous NO3-N concentrations in all layers and zones (range: 1.2 - 12.13 mg/L, SD = 1.60 mg/L). Whereas in the grassland catchment NO3-N concentrations ranged from 0.001 - 23.9 mg/L (SD = 4.40 mg/L) with elevated concentrations in the midslope and upslope zones and groundwater at the hillslope bottom which were consistently close to the limits of detection, indicating a potential denitrifying zone. Using a combination of groundwater flow modelling (Visual Modflow-Flex), high density spatial and temporal sampling and push pull tracer techniques; it is aimed to contribute to the wider understanding of N dynamics in terms of the individual environmental parameters affecting N attenuation, spatial and temporal variability in denitrification rates and gaseous emissions along the hillslope flow path.
Assessment of environmental impacts following alternative agricultural policy scenarios.
Bárlund, I; Lehtonen, H; Tattari, S
2005-01-01
Abstract Finnish agriculture is likely to undergo major changes in the near and intermediate future. The ifuture policy context can be examined at a general level by strategic scenario building. Computer-based modelling in combination with agricultural policy scenarios can in turn create a basis for the assessments of changes in environmental quality following possible changes in Finnish agriculture. The analysis of economic consequences is based on the DREMFIA model, which is applied to study effects of various agricultural policies on land use, animal production, and farmers' income. The model is suitable for an impact analysis covering an extended time span--here up to the year 2015. The changes in land use, obtained with the DREMFIA model assuming rational economic behaviour, form the basis when evaluating environmental impacts of different agricultural policies. The environmental impact assessment is performed using the field scale nutrient transport model ICECREAM. The modelled variables are nitrogen and phosphorus losses in surface runoff and percolation. In this paper the modelling strategy will be presented and highlighted using two case study catchments with varying environmental conditions and land use as an example. In addition, the paper identifies issues arising when connecting policy scenarios with impact modelling.
NASA Astrophysics Data System (ADS)
Shu, L.; Duffy, C.
2015-12-01
It is commonly held that land cover and land use changes from agriculture and urbanization impact the terrestrial water cycle primarily through changes in the land surface and canopy energy balance. Another, and in some cases more important factor is the role that landuse changes have on soil structure, compaction, and loss of carbon on hydrologic performance. The consequential change on soil properties, such as aggregation of soil particles, reduction of voids, impacts on matrix conductivity and macropore fractions, alter the hydrological processes in a watershed. Macropores promote rapid water and gas movement under wet conditions while the soil matrix preserves the water-holding capacity necessary for plant growth. The physically-based Penn State Integrated Hydrologic Model (PIHM) simulates water movement in soil with Richard's equation using an effective matrix-macropore conductivity. The model is able to capture the preferential flow and soil water storage in vertical and horizontal directions. Soil degradation leads to a reduction of the macropore fraction with dramatic changes in overall hydrologic performance under urban development and agricultural landuse practices. The effects on the terrestrial water cycle in the catchment reduce infiltration, soil water availability, recharge and subsurface baseflow to streams, while increasing heavy surface runoff and erosion. The Lancaster area and surrounding watershed in eastern Pennsylvania, USA is a benchmark watershed comprised of urban (24%), agricultural (58%) and forest lands (18%) respectively. After parameter estimation from national geospatial soils, landuse and historical climate reanalysis, three landuse scenarios were developed. 1) Pre-development forest landuse (<1700 AD), (2) deforestation for agriculture and light urban landuse (1700-1900), (3) urban-suburban development (1900-pres.). The watershed model was used to evaluate hydrologic changes due to landuse change and soil degradation. The effects of macropore reduction and compaction on hydrologic performance were found to be of the same order or greater magnitude than for changes in landuse practices alone. The research, funded by the US EPA, illustrates the complex interaction of landuse and soil changes on the terrestrial water cycle.
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.
2016-12-01
Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence these high-resolution processes must be studied in conjunction, rather than in isolation, to understand system dynamics and critically to evaluate effective mitigation schemes.
Streamflow variation of forest covered catchments
NASA Astrophysics Data System (ADS)
Gribovszki, Z.; Kalicz, P.; Kucsara, M.
2003-04-01
Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).
Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania
NASA Astrophysics Data System (ADS)
Kashaigili, J. J.; Majaliwa, A. M.
Malagarasi river catchment represents one of the largest and most significant transboundary natural ecosystems in Africa. The catchment constitutes about one third of the catchment area of Lake Tanganyika and contains ecosystems of both national and international importance (i.e. Muyovozi Wetland Ramsar site). It has been increasingly said that increased anthropogenic activities have had negative impacts on the Muyovozi wetland in particular and other catchment resources. Nevertheless, these beliefs are little supported by quantitative data. A study on the dynamics of land use and cover in the Malagarasi river catchment therefore investigated long-term and seasonal changes that have occurred as a result of human activities in the area for the periods between 1984 and 2001. Landsat TM and ETM+ images were used to locate and quantify the changes. Perceptions of local people on historical changes and drivers for the changes were also collected and integrated in the assessment. The study revealed a significant change in land use and cover within a period of 18 year. Between 1984 and 2001, the woodland and wetland vegetation covers declined by 0.09% and 2.51% per year. Areas with settlements and cultivation increased by 1.05% annually while bushed grassland increased at 1.93% annually. The perceived principal drivers for the changes were found to include fire, cultivation along rivers and lake shores, overgrazing, poor law enforcement, insufficient knowledge on environmental issues, increasing poverty, deforestation and population growth. The human population growth rate stands at 4.8% against a national figure of 2.9%. The most perceived environmental problems include drying of streams and rivers, change in rainfall, loss of soil fertility, soil erosion and reduced crop yield. The study concludes that, there has been significant changes in land use and cover in the catchment and these require concerted actions to reverse the changes. The study highlights the importance of integrating remote sensing and local knowledge in understanding the dynamics catchment resources and generating information that could be used to overcome the catchment management problems.
NASA Technical Reports Server (NTRS)
Stieglitz, Marc; Ducharne, Agnes; Koster, Randy; Suarez, Max; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.
NASA Astrophysics Data System (ADS)
Roebeling, P. C.; Brito, A. G.; Rocha, J.; Alves, H.; Mamede, J.
2012-04-01
Worldwide, aquatic and coastal ecosystems are affected by point and diffuse source water pollution originating from rural, urban and industrial land uses in catchments, even though these ecosystems are of vital importance from an environmental and economic perspective. Integrated Catchment and Coastal Zone Management (ICCZM) specifically takes into account this inherent relationship between terrestrial land use, surface and ground water pollution, aquatic and coastal ecosystem state, and associated environmental values. To warrant sustainable regional economic development, we need to balance the marginal costs from terrestrial water pollution abatement and the associated marginal benefits from aquatic and coastal resource appreciation. In doing so, however, we need to differentiate between intra- and trans-boundary catchments because benefactors and beneficiaries from water quality improvement are not one and the same. In trans-boundary catchments, private (national) welfare maximizing rates of water quality improvement differ across nations as benefits from water quality improvement generally accrue to one nation while the costs are paid by multiple nations. While approaches for water quality management in linked catchment and coastal socio-ecological systems are fairly recent though existent, water quality management in trans-boundary catchments poses additional challenges. The objective of this paper is to develop and apply a deterministic optimal control approach that allows us to explore private and social welfare maximizing rates of water pollution abatement in linked catchment and coastal socio-ecological systems. For a case study of the Minho region in the Iberian Peninsula, we estimate nation-specific water pollution abatement cost (based on management practice adoption) and benefit (based on aquatic and coastal environmental values) functions, to determine as well as compare private (national) and social (trans-national) welfare maximizing rates of water pollution abatement. The presented approach differs from existing approaches in a number of ways. First, we explicitly present an analytical derivation of private (national) and social (trans-national) welfare maximizing rates of water pollution abatement using nation-specific abatement cost functions. Second, the analytical optimal control approach provides an elegant and easily understandable solution concept that contributes to the development of efficient water quality improvement targets. Finally, we go beyond the usual cost-effectiveness analysis based on arbitrary 'tolerable' or target levels of pollution as we specifically account for the negative external costs of increased water pollution in the downstream aquatic and coastal environment. Results for the Minho region show that some private (national) welfare gains can be obtained through the adoption of win-win management practices, leading to a 12% reduction in the annual rate of water pollution and an almost 7% increase in annual regional income. Maximum social (trans-national) welfare gains can, however, be obtained through the adoption of win-win and lose-win management practices across Spain and Portugal, leading to a 36% reduction in water pollution and a 14% increase in regional income. Yet, non-cooperation in water pollution mitigation would only lead to a 16%-32% reduction in water pollution and a 8%-13% increase in regional income. Hence, social (trans-national) welfare losses from non-cooperation between Spain and Portugal would equate to between 16 and 81 million Euros per year.
NASA Astrophysics Data System (ADS)
Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina
2016-04-01
Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the area.
NASA Astrophysics Data System (ADS)
Hale, V. Cody; McDonnell, Jeffrey J.
2016-02-01
The effect of bedrock permeability and underlying catchment boundaries on stream base flow mean transit time (MTT) and MTT scaling relationships in headwater catchments is poorly understood. Here we examine the effect of bedrock permeability on MTT and MTT scaling relations by comparing 15 nested research catchments in western Oregon; half within the HJ Andrews Experimental Forest and half at the site of the Alsea Watershed Study. The two sites share remarkably similar vegetation, topography, and climate and differ only in bedrock permeability (one poorly permeable volcanic rock and the other more permeable sandstone). We found longer MTTs in the catchments with more permeable fractured and weathered sandstone bedrock than in the catchments with tight, volcanic bedrock (on average, 6.2 versus 1.8 years, respectively). At the permeable bedrock site, 67% of the variance in MTT across catchments scales was explained by drainage area, with no significant correlation to topographic characteristics. The poorly permeable site had opposite scaling relations, where MTT showed no correlation to drainage area but the ratio of median flow path length to median flow path gradient explained 91% of the variance in MTT across seven catchment scales. Despite these differences, hydrometric analyses, including flow duration and recession analysis, and storm response analysis, show that the two sites share relatively indistinguishable hydrodynamic behavior. These results show that similar catchment forms and hydrologic regimes hide different subsurface routing, storage, and scaling behavior—a major issue if only hydrometric data are used to define hydrological similarity for assessing land use or climate change response.
Heterogeneity and scaling land-atmospheric water and energy fluxes in climate systems
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, three modeling experiments were performed and are reviewed in the paper. The first is concerned with the aggregation of parameters and inputs for a terrestrial water and energy balance model. The second experiment analyzed the scaling behavior of hydrologic responses during rain events and between rain events. The third experiment compared the hydrologic responses from distributed models with a lumped model that uses spatially constant inputs and parameters. The results show that the patterns of small scale variations can be represented statistically if the scale is larger than a representative elementary area scale, which appears to be about 2 - 3 times the correlation length of the process. For natural catchments this appears to be about 1 - 2 sq km. The results concerning distributed versus lumped representations are more complicated. For conditions when the processes are nonlinear, then lumping results in biases; otherwise a one-dimensional model based on 'equivalent' parameters provides quite good results. Further research is needed to fully understand these conditions.
2015-09-21
vehicles, environmental sensor networks, distributed hydrologic modeling, vegetation dynamics, soil moisture, evapotranspiration , remote sensing, North...Received Paper 1.00 5.00 3.00 8.00 9.00 E. Vivoni, J. Rodriguez, C. Watts. On the spatiotemporal variability of soil moisture and evapotranspiration ...Vegetation Impacts on Evapotranspiration and Its Partitioning at the Catchment Scale during SMEX04–NAME, Journal of Hydrometeorology, (10 2012
Saygın, Selen Deviren; Basaran, Mustafa; Ozcan, Ali Ugur; Dolarslan, Melda; Timur, Ozgur Burhan; Yilman, F Ebru; Erpul, Gunay
2011-09-01
Land degradation by soil erosion is one of the most serious problems and environmental issues in many ecosystems of arid and semi-arid regions. Especially, the disturbed areas have greater soil detachability and transportability capacity. Evaluation of land degradation in terms of soil erodibility, by using geostatistical modeling, is vital to protect and reclaim susceptible areas. Soil erodibility, described as the ability of soils to resist erosion, can be measured either directly under natural or simulated rainfall conditions, or indirectly estimated by empirical regression models. This study compares three empirical equations used to determine the soil erodibility factor of revised universal soil loss equation prediction technology based on their geospatial performances in the semi-arid catchment of the Saraykoy II Irrigation Dam located in Cankiri, Turkey. A total of 311 geo-referenced soil samples were collected with irregular intervals from the top soil layer (0-10 cm). Geostatistical analysis was performed with the point values of each equation to determine its spatial pattern. Results showed that equations that used soil organic matter in combination with the soil particle size better agreed with the variations in land use and topography of the catchment than the one using only the particle size distribution. It is recommended that the equations which dynamically integrate soil intrinsic properties with land use, topography, and its influences on the local microclimates, could be successfully used to geospatially determine sites highly susceptible to water erosion, and therefore, to select the agricultural and bio-engineering control measures needed.
NASA Astrophysics Data System (ADS)
Neal, C.; Hill, T.; Hill, S.; Reynolds, B.
Acid Neutralization Capacity (ANC) data for ephemeral stream and shallow groundwater for the catchments of the upper River Severn show a highly heterogeneous system of within-catchment water flow pathways and chemical weathering on scales of less than 100m. Ephemeral streams draining permeable soils seem to be supplied mainly from shallow groundwater sources. For these streams, large systematic differences in pH and alkalinity occur due to the variability of the groundwater sources and variability in water residence times. However, the variability cannot be gauged on the basis of broad based physical information collected in the field as geology, catchment gradients and forest structure are very similar. In contrast, ephemeral streams draining impermeable soils are of more uniform chemistry as surface runoff is mainly supplied from the soil zone. Groundwater ANC varies considerably over space and time. In general, the groundwaters have higher ANCs than the ephemeral streams. This is due to increased chemical weathering from the inorganic materials in the lower soils and groundwater areas and possibly longer residence times. However, during the winter months the groundwater ANCs tend to be at their lowest due to additional event driven acidic soil water contributions and intermediate groundwater residence times. The results indicate the inappropriateness of a blanket approach to classifying stream vulnerability to acidification simply on the basis of soil sensitivity. However, the results may well indicate good news for the environmental management of acidic and acid sensitive systems. For example, they clearly indicate a large potential supply of weathering components within the groundwater zone to reduce or mitigate the acidifying effects of land use change and acidic deposition without the environmental needs for Aiming. Furthermore, the high variability of ephemeral stream runoff means that certain areas of catchments where there are specific problems associated with acidification can be identified for focused remediation work for the situation where liming is required. The case for focused field campaigns and caution against over reliance on blanket modelling approaches is suggested. The results negate the conventional generalizations within hydrology of how water moves through catchments to generate streamflow events (from Hortonian overland flow to catchment contributing areas).
Historical land-use influences the long-term stream turbidity response to a wildfire.
Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris
2014-02-01
Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.
A cloud based tool for knowledge exchange on local scale flood risk.
Wilkinson, M E; Mackay, E; Quinn, P F; Stutter, M; Beven, K J; MacLeod, C J A; Macklin, M G; Elkhatib, Y; Percy, B; Vitolo, C; Haygarth, P M
2015-09-15
There is an emerging and urgent need for new approaches for the management of environmental challenges such as flood hazard in the broad context of sustainability. This requires a new way of working which bridges disciplines and organisations, and that breaks down science-culture boundaries. With this, there is growing recognition that the appropriate involvement of local communities in catchment management decisions can result in multiple benefits. However, new tools are required to connect organisations and communities. The growth of cloud based technologies offers a novel way to facilitate this process of exchange of information in environmental science and management; however, stakeholders need to be engaged with as part of the development process from the beginning rather than being presented with a final product at the end. Here we present the development of a pilot Local Environmental Virtual Observatory Flooding Tool. The aim was to develop a cloud based learning platform for stakeholders, bringing together fragmented data, models and visualisation tools that will enable these stakeholders to make scientifically informed environmental management decisions at the local scale. It has been developed by engaging with different stakeholder groups in three catchment case studies in the UK and a panel of national experts in relevant topic areas. However, these case study catchments are typical of many northern latitude catchments. The tool was designed to communicate flood risk in locally impacted communities whilst engaging with landowners/farmers about the risk of runoff from the farmed landscape. It has been developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. The pilot tool combines cloud based services, local catchment datasets, a hydrological model and bespoke visualisation tools to explore real time hydrometric data and the impact of flood risk caused by future land use changes. The novel aspects of the pilot tool are; the co-evolution of tools on a cloud based platform with stakeholders, policy and scientists; encouraging different science disciplines to work together; a wealth of information that is accessible and understandable to a range of stakeholders; and provides a framework for how to approach the development of such a cloud based tool in the future. Above all, stakeholders saw the tool and the potential of cloud technologies as an effective means to taking a whole systems approach to solving environmental issues. This sense of community ownership is essential in order to facilitate future appropriate and acceptable land use management decisions to be co-developed by local catchment communities. The development processes and the resulting pilot tool could be applied to local catchments globally to facilitate bottom up catchment management approaches. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Anthropogenic nitrogen sources and exports in a village-scale catchment in Southeast China.
Cao, Wenzhi; Hong, Huasheng; Zhang, Yuzhen; Chen, Nengwang; Zeng, Yue; Wang, Weiping
2006-01-01
An experimental village-scale catchment was selected for investigation of nitrogen (N) sources and exports. The mean N application rate over the catchment was 350.2 kg N ha(-1), but this rate varied spatially and temporally. The N leaching loss rate varied from 8.1 to 52.7 kg N ha(-1) under different land use regimes. The average N leaching loss rate was 13.4 kg N ha(-1) over the whole catchment, representing about 3.8% of the total N inputs. The N export rate through stormflows was 28.8 kg N ha(-1), about 8.2% of the total N inputs. Seasonal patterns showed that 95% of N exports through stormflows occurred during July to September in 2002. Overall, the maximum riverine N exports were 12.1% of total N inputs and 15.5% of the inorganic fertilizer N applied. Understanding N sources and exports in a village-scale catchment can provide a knowledge base for amelioration of diffuse agricultural pollution.
Malik, Mohammad Imran; Bhat, M Sultan
2014-12-01
The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km(2). The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.
NASA Astrophysics Data System (ADS)
Malik, Mohammad Imran; Bhat, M. Sultan
2014-12-01
The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km2. The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.
The role of land use changes in the distribution of shallow landslides.
Persichillo, Maria Giuseppina; Bordoni, Massimiliano; Meisina, Claudia
2017-01-01
The role of land use dynamics on shallow landslide susceptibility remains an unresolved problem. Thus, this work aims to assess the influence of land use changes on shallow landslide susceptibility. Three shallow landslide-prone areas that are representative of peculiar land use settings in the Oltrepò Pavese (North Apennines) are analysed: the Rio Frate, Versa and Alta Val Tidone catchments. These areas were affected by widespread land abandonment and modifications in agricultural practices from 1954 to 2012 and relevant shallow landslide phenomena in 2009, 2013 and 2014. A multi-temporal land use change analysis allows us to evaluate the degree of transformation in the three investigated areas and the influence of these changes on the susceptibility to shallow landslides. The results show that the three catchments were characterised by pronounced land abandonment and important changes in agricultural practices. In particular, abandoned cultivated lands that gradually recovered through natural grasses, shrubs and woods were identified as the land use change classes that were most prone to shallow landslides. Additionally, the negative qualities of the agricultural maintenance practices increased the surface water runoff and consequently intensified erosion processes and instability phenomena. Although the land use was identified as the most important predisposing factor in all the study areas, some cases existed in which the predisposition of certain areas to shallow landslides was influenced by the combined effect of land use changes and the geological conditions, as highlighted by the high susceptibility of slopes that are characterised by adverse local geological (thick soils derived from clayey-marly bedrocks) and geomorphological (slope angle higher than 25°) conditions. Thus, the achieved results are particularly useful to understand the best land conservation strategies to be adopted to reduce instability phenomena and the consequent economic losses in areas that are strongly linked to agricultural land use in these territories. Copyright © 2016 Elsevier B.V. All rights reserved.
Mattsson, Tuija; Lehtoranta, Jouni; Ekholm, Petri; Palviainen, Marjo; Kortelainen, Pirkko
2017-12-01
Climate change influences the volume and seasonal distribution of runoff in the northern regions. Here, we study how the seasonal variation in the runoff affects the concentrations and export of terminal electron acceptors (i.e. TEAs: NO 3 , Mn, Fe and SO 4 ) in different boreal land-cover classes. Also, we make a prediction how the anticipated climate change induced increase in runoff will alter the export of TEAs in boreal catchments. Our results show that there is a strong positive relationship between runoff and the concentration of NO 3 -N, Mn and Fe in agricultural catchments. In peaty catchments, the relationship is poorer and the concentrations of TEAs tend to decrease with increasing runoff. In forested catchments, the correlation between runoff and TEA concentrations was weak. In most catchments, the concentrations of SO 4 decrease with an increase in runoff regardless of the land cover or season. The wet years export much higher amounts of TEAs than the dry years. In southern agricultural catchments, the wet years increased the TEA export for both spring (January-May) and autumn (September-December) periods, while in the peaty and forested catchments in eastern and northern Finland the export only increased in the autumn. Our predictions for the year 2099 indicate that the export of TEAs will increase especially from agricultural but also from forested catchments. Additionally, the predictions show an increase in the export of Fe and SO 4 for all the catchments for the autumn. Thus, the climate induced change in the runoff regime is likely to alter the exported amount of TEAs and the timing of the export downstream. The changes in the amounts and timing in the export of TEAs have a potential to modify the mineralization pathways in the receiving water bodies, with feedbacks in the cycling of C, nutrients and metals in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Restoration of active gully systems following the implementation of bioengineering techniques.
NASA Astrophysics Data System (ADS)
Borja, Pablo; Vanacker, Veerle; Govers, Gerard
2015-04-01
Intensive land use in the central parts of the Andean basin has led to widespread land degradation. The formation of badlands dates back from the 1950s and 1960s. Several studies indicate that human activities have accelerated mountain erosion rates by up to 100 times. In this study, we have evaluated the effects of bio-engineering works aiming to stabilize degraded catchments. Five micro-catchments (0.2 up to 5 ha) have been selected within a 3 km2 area in the lower part of the Loreto catchment (Southern Ecuadorian Andes). The five micro-catchments differ in vegetation cover and implementation of bio-engineering works. The experimental design consisted of three micro-catchments: (1) DI with conservation works, (2) DF with reforestation by Eucalyptus sp and (3) DT with no conservation works. Two micro-catchments have been monitored in an agricultural area: with (AI) and without (AT) bio-engineering works in the active gullies. Small checkdams were constructed in the gully floors of two of the micro-catchments in the badland area (DI) and the agricultural area (AI). The checkdams are made of wood and tires. Water flow has been measured in every micro-catchment, while sediment traps were constructed to monitor sediment transport. Results show that bio-engineering techniques are effective to stabilize active gullies. Deposition of sediments in manmade dams is strongly dependent on previous rainfall events, as well as gully channel slope, and its vegetation cover. From the experimental data, an I30 max threshold value was determined. Above this threshold value, all micro-catchments are actively contributing sediment to the main river system. The checkdams built with wood and tires have an efficiency of 70%, and were shown to be very effective to stabilize active gullies in bad lands through significant reduction (about 62%) of the amount of sediment exported from the micro-catchments. Key words: degraded soils, erosion, sediment, restoration, reforestation
NASA Astrophysics Data System (ADS)
Lin, H.; Baldwin, D. C.; Smithwick, E. A. H.
2015-12-01
Predicting root zone (0-100 cm) soil moisture (RZSM) content at a catchment-scale is essential for drought and flood predictions, irrigation planning, weather forecasting, and many other applications. Satellites, such as the NASA Soil Moisture Active Passive (SMAP), can estimate near-surface (0-5 cm) soil moisture content globally at coarse spatial resolutions. We develop a hierarchical Ensemble Kalman Filter (EnKF) data assimilation modeling system to downscale satellite-based near-surface soil moisture and to estimate RZSM content across the Shale Hills Critical Zone Observatory at a 1-m resolution in combination with ground-based soil moisture sensor data. In this example, a simple infiltration model within the EnKF-model has been parameterized for 6 soil-terrain units to forecast daily RZSM content in the catchment from 2009 - 2012 based on AMSRE. LiDAR-derived terrain variables define intra-unit RZSM variability using a novel covariance localization technique. This method also allows the mapping of uncertainty with our RZSM estimates for each time-step. A catchment-wide satellite-to-surface downscaling parameter, which nudges the satellite measurement closer to in situ near-surface data, is also calculated for each time-step. We find significant differences in predicted root zone moisture storage for different terrain units across the experimental time-period. Root mean square error from a cross-validation analysis of RZSM predictions using an independent dataset of catchment-wide in situ Time-Domain Reflectometry (TDR) measurements ranges from 0.060-0.096 cm3 cm-3, and the RZSM predictions are significantly (p < 0.05) correlated with TDR measurements [r = 0.47-0.68]. The predictive skill of this data assimilation system is similar to the Penn State Integrated Hydrologic Modeling (PIHM) system. Uncertainty estimates are significantly (p < 0.05) correlated to cross validation error during wet and dry conditions, but more so in dry summer seasons. Developing an EnKF-model system that downscales satellite data and predicts catchment-scale RZSM content is especially timely, given the anticipated release of SMAP surface moisture data in 2015.
NASA Astrophysics Data System (ADS)
Vlek, Lulseged Tamene, Quang Bao Le, Jens Liebe, Paul L. G.
2009-04-01
Although many soil/water-landscape studies have been published in the last two decades, progress in developing operational tools for supporting landscape planning to minimize land and water degradation in developing regions is still modest. Some of the existing tools are very data demanding and/or too complicated to be useful to data scarce regions. A research group at the Center for Development Research (ZEF), University of Bonn has developed a LAndscape Management and Planning Tool (LAMPT) to facilitate land management decision making and landscape planning by optimization. Firstly, we used the Revised Universal Soil Loss Equation (RUSLE) and a Distributed Sediment Delivery Model (DSDM) in a GIS environment to estimate the spatial distribution of areas experiencing different levels of soil loss in the White Volta basin. The RUSLE is employed to map the spatial patterns of major sediment source areas based on data calibrated for the study region. As RUSLE only estimates the potential gross erosion of each grid cell, a DSDM is used to estimate the sediment delivery efficiency of each cell using flow distance and velocity along the flow path. The combined models allow a classification of sub-watersheds experiencing different levels of soil loss using a soil tolerance threshold suitable for the study areas (Burkina Faso and Ghana). The result shows that the majority of areas around north-eastern and eastern parts of the White Volta basin (mainly south-eastern Burkina Faso and upper east region of Ghana) are associated with high levels of sediment yield (over 15 t ha-1 yr-1). The main reason could be high population pressure, poor surface cover and relatively high slope of some of the areas in Ghana. On the other hand, the north-western and southern parts of the basin experience low levels of sediment yield (less than 5 t ha-1 yr-1) mainly due to their flat terrain and good surface cover that encourage sediment deposition rather than erosion. We revealed that a GIS-based soil erosion and sediment delivery model can successfully be used for identifying and prioritizing critical sub-watersheds for management purposes. Such a tool can be of significance in developing areas where problems are severe but resources are scarce. Next, we implemented the RUSLE-DSDM model into NetLogo, an agent-based programming platform, producing a LAMPT's prototype. The operational model was designed in such a way that fast and robust sensitivity analyses can be performed, after users are allowed to (i) select and set different physical parameters, and (ii) choose different sets of land-use management and planning options. The physical parameters choice meets the scientific needs of landscape modelers in their exploration of adequate values of the many parameters in soil/sedimentation models that are often not well-calibrated in developing regions. The latter is expected to meet the needs of practitioners in catchment management and planning. As the tool allows front-end users to handle the selection of management/planning options, and provide a fast and responsive outputs (in terms of both maps and graphs), LAMPT can assist in effective multi-stakeholder negotiations over land-use planning where the minimization the degradation of land/water resources is the ultimate goal. The LAMPT model can be easily coupled with LUDAS, an agent-based land-use change model using the same platform, to comprehensively simulate environment-community loops. During the further development of LAMPT, the research team intends to follow a participatory approach to enhance the relevance of the tool to local community needs. To plausibly calibrate LAMPT at the catchment/community levels in the data scarce environment of West Africa, additional long-term research catchments are essential.
Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment
NASA Astrophysics Data System (ADS)
Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav
2010-05-01
Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis
Numerical Modelling of Freshwater Inputs in the Shelf Area of the Ofanto River (Southern Italy)
NASA Astrophysics Data System (ADS)
Verri, G.; Pinardi, N.; Tribbia, J. J.; Gochis, D.; Bryan, F.; Tseng, Y. H.; Navarra, A.; Coppini, G.
2016-02-01
The aim of this study is to understand and to assess the effects of river freshwater release on the ocean circulation and dynamics focusing on the shelf area near estuaries. A sensitivity study to different modelling approaches, which point to the representation of the dynamics of the river inflow, are presented. The modeling strategy we chose consists of an integrated modeling chain including the atmosphere, the hydrology/hydraulics and the estuarine dynamics in order to force our regional ocean model at the Ofanto outlet in a reliable way. This meteo-hydrological modeling chain allows us to take into account all the physical processes involved in the local water cycle of the Ofanto catchment such as the rainfall, the land surface infiltration/evaporation, the partitioning of total runoff into surface and subsurface runoff and the channel streamflow. In order to achieve our goal, we chose the Ofanto river catchment and its estuary as case study. The Ofanto river is a torrential river flowing across the Southern Italy and ending in the Adriatic Sea; its annual averaged discharge is low (15 m3s-1 following Raicich, 1996) but may significantly increase when heavy rain events occur. In details our regional ocean model is a finite difference numerical model based on NEMO code (Madec, G., 2008) and implemented in the Central Mediterranean Sea with 2km as horizontal resolution. The meteo-hydrological modeling chain consists of: 1) the WRF-ARW model (Skamarock et al., 2008) including NOAH-MP as Land Surface Submodel,; 2) WRF-HYDRO model (Gochis D., et al., 2013) representing the hydrology/hydraulics component with 200m as horizontal resolution, simulating the streamflow discharge along the Ofanto river network.; 3) finally an estuarine box model (Garvine et al., 2006) is inserted downstream of WRF-Hydro and upstream of the regional ocean model. A set of sensitivity experiments has been performed aiming to evaluate the capability of the regional ocean model to decribe the Ofanto river plume by providing hindcast discharge and salinity from the estuary model at the river mouth with different methods. The time window of the simulations covers the first three months of year 2011, since 4 heavy rain events affected the Ofanto catchment in this period.
River-groundwater connectivity and nutrient dynamics in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico
2017-04-01
Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest gains were observed downstream of where the Selke River leaves the Harz Mountains and enters the alluvial plains. At this location, land use, hydrogeological setup and river slope as well as average slope of the contributing catchment area change significantly. Downstream of this point 15N isotope values were also significantly higher, suggesting higher denitrification activity in the deeper aquifers of lower catchment. While specific discharge (discharge per catchment area) was 3 times higher in the upper catchment, nitrate mass flux per area was more than 3 times higher in lower catchment compared to the respective other part of the catchment. We conclude that catchment morphology, (hydro)geology and hydrology control river-groundwater connectivity while the interplay with land use controls in stream nitrate concentrations. Repeated sampling campaigns will allow assessing seasonal changes in solute inputs and turnover. References Frei, S. & Gilfedder, B.S. (2015): FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resources Research, DOI: 10.1002/2015WR017212.
NASA Astrophysics Data System (ADS)
Stamm, C.; Scheidegger, R.; Bader, H. P.
2012-04-01
Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed representation of the routing in the stream was essential. Overall, the study demonstrated that the simulation of micropollutants at the watershed scale can be strongly hampered by input uncertainty regarding the use of the chemicals. Under such conditions the level of process-representation in the Rexpo sub-models is superfluous. For practical applications, one should address the question how to simply the approach while still maintaining the essential parts.
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
NASA Technical Reports Server (NTRS)
Houborg, Rasmus; Rodell, Matthew; Lawrimore, Jay; Li, Bailing; Reichle, Rolf; Heim, Richard; Rosencrans, Matthew; Tinker, Rich; Famiglietti, James S.; Svoboda, Mark;
2011-01-01
NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations of the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including groundwater. The U.S. and North American Drought Monitors rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors by filling this observational gap. GRACE TWS data were assimilating into the Catchment Land Surface Model using an ensemble Kalman smoother enabling spatial and temporal downscaling and vertical decomposition into soil moisture and groundwater components. The Drought Monitors combine several short- and long-term drought indicators expressed in percentiles as a reference to their historical frequency of occurrence. To be consistent, we generated a climatology of estimated soil moisture and ground water based on a 60-year Catchment model simulation, which was used to convert seven years of GRACE assimilated fields into drought indicator percentiles. At this stage we provide a preliminary evaluation of the GRACE assimilated moisture and indicator fields.
Role of land use change in landslide-related sediment fluxes in tropical mountain regions
NASA Astrophysics Data System (ADS)
Guns, M.; Vanacker, V.; Demoulin, A.
2012-04-01
Tropical mountain regions are characterised by high denudation rates. Landslides are known to be recurrent phenomena in active mountain belts, but their contribution to the overall sedimentary fluxes is not yet well known. Previous studies on sedimentary cascades have mostly focused on natural environments, without considering the impact of human and/or anthropogenic disturbances on sedimentary budgets. In our work, we hypothesise that human-induced land use change might alter the sediment cascade through shifts in the landslide magnitude-frequency relationship. We have tested this assumption in the Virgen Yacu catchment (approximately 11km2), in the Ecuadorian Cordillera Occidental. Landslide inventories and land use maps were established based on a series of sequential aerial photos (1963, 1977, 1984 and 1989), a HR Landsat image (2001) and a VHR WorldView2 image (2010). Aerial photographs were ortho-rectified, and coregistred with the WorldView2 satellite image. Field campaigns were realised in 2010 and 2011 to collect field-based data on landslide type and geometry (depth, width and length). This allowed us to establish an empirical relationship between landslide area and volume, which was then applied to the landslide inventories to estimate landslide-related sediment production rates for various time periods. The contribution of landslides to the overall sediment flux of the catchment was estimated by comparing the landslide-related sediment production to the total sediment yield. The empirical landslide area-volume relationship established here for the Ecuadorian Andes is similar to that derived for the Himalayas. It suggests that landslides are the main source of sediment in this mountainous catchment. First calculations indicate that human-induced land use change alters the magnitude-frequency relationship through strong increase of small landslides.
NASA Astrophysics Data System (ADS)
Milzow, Christian; Bauer-Gottwein, Peter
2010-05-01
The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important source of economic income for Botswana. A second hydrological model simulating flow through the wetlands is used to study the impact of catchment runoff changes on the hydrology and ecology of the wetlands. The final goal of the project is to demonstrate the relation between economic benefits of water abstractions in the upstream and downstream environmental impact. Furthermore the results will provide a basis for defining adequate compensations for upstream stakeholders who forego benefits of agricultural intensification to ensure the conservation of downstream ecosystem services.
Effects of harvest on carbon and nitrogen dynamics in a Pacific Northwest forest catchment
We used a new ecohydrological model, Visualizing Ecosystems for Land Management Assessments (VELMA), to analyze the effects of forest harvest on catchment carbon and nitrogen dynamics. We applied the model to a 10 ha headwater catchment in the western Oregon Cascade Range where t...
Designing a suite of measurements to understand the critical zone
NASA Astrophysics Data System (ADS)
Brantley, Susan L.; DiBiase, Roman A.; Russo, Tess A.; Shi, Yuning; Lin, Henry; Davis, Kenneth J.; Kaye, Margot; Hill, Lillian; Kaye, Jason; Eissenstat, David M.; Hoagland, Beth; Dere, Ashlee L.; Neal, Andrew L.; Brubaker, Kristen M.; Arthur, Dan K.
2016-03-01
Many scientists have begun to refer to the earth surface environment from the upper canopy to the depths of bedrock as the critical zone (CZ). Identification of the CZ as an integral object worthy of study implicitly posits that the study of the whole earth surface will provide benefits that do not arise when studying the individual parts. To study the CZ, however, requires prioritizing among the measurements that can be made - and we do not generally agree on the priorities. Currently, the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is expanding from a small original focus area (0.08 km2, Shale Hills catchment), to a larger watershed (164 km2, Shavers Creek watershed) and is grappling with the prioritization. This effort is an expansion from a monolithologic first-order forested catchment to a watershed that encompasses several lithologies (shale, sandstone, limestone) and land use types (forest, agriculture). The goal of the project remains the same: to understand water, energy, gas, solute, and sediment (WEGSS) fluxes that are occurring today in the context of the record of those fluxes over geologic time as recorded in soil profiles, the sedimentary record, and landscape morphology. Given the small size of the Shale Hills catchment, the original design incorporated measurement of as many parameters as possible at high temporal and spatial density. In the larger Shavers Creek watershed, however, we must focus the measurements. We describe a strategy of data collection and modeling based on a geomorphological and land use framework that builds on the hillslope as the basic unit. Interpolation and extrapolation beyond specific sites relies on geophysical surveying, remote sensing, geomorphic analysis, the study of natural integrators such as streams, groundwaters or air, and application of a suite of CZ models. We hypothesize that measurements of a few important variables at strategic locations within a geomorphological framework will allow development of predictive models of CZ behavior. In turn, the measurements and models will reveal how the larger watershed will respond to perturbations both now and into the future.
Assimilation of Surface Temperature in Land Surface Models
NASA Technical Reports Server (NTRS)
Lakshmi, Venkataraman
1998-01-01
Hydrological models have been calibrated and validated using catchment streamflows. However, using a point measurement does not guarantee correct spatial distribution of model computed heat fluxes, soil moisture and surface temperatures. With the advent of satellites in the late 70s, surface temperature is being measured two to four times a day from various satellite sensors and different platforms. The purpose of this paper is to demonstrate use of satellite surface temperature in (a) validation of model computed surface temperatures and (b) assimilation of satellite surface temperatures into a hydrological model in order to improve the prediction accuracy of soil moistures and heat fluxes. The assimilation is carried out by comparing the satellite and the model produced surface temperatures and setting the "true"temperature midway between the two values. Based on this "true" surface temperature, the physical relationships of water and energy balance are used to reset the other variables. This is a case of nudging the water and energy balance variables so that they are consistent with each other and the true" surface temperature. The potential of this assimilation scheme is demonstrated in the form of various experiments that highlight the various aspects. This study is carried over the Red-Arkansas basin in the southern United States (a 5 deg X 10 deg area) over a time period of a year (August 1987 - July 1988). The land surface hydrological model is run on an hourly time step. The results show that satellite surface temperature assimilation improves the accuracy of the computed surface soil moisture remarkably.
The Significance of Land Cover Delineation on Soil Erosion Assessment.
Efthimiou, Nikolaos; Psomiadis, Emmanouil
2018-04-25
The study aims to evaluate the significance of land cover delineation on soil erosion assessment. To that end, RUSLE (Revised Universal Soil Loss Equation) was implemented at the Upper Acheloos River catchment, Western Central Greece, annually and multi-annually for the period 1965-92. The model estimates soil erosion as the linear product of six factors (R, K, LS, C, and P) considering the catchment's climatic, pedological, topographic, land cover, and anthropogenic characteristics, respectively. The C factor was estimated using six alternative land use delineations of different resolution, namely the CORINE Land Cover (CLC) project (2000, 2012 versions) (1:100,000), a land use map conducted by the Greek National Agricultural Research Foundation (NAGREF) (1:20,000), a land use map conducted by the Greek Payment and Control Agency for Guidance and Guarantee Community Aid (PCAGGCA) (1:5,000), and the Landsat 8 16-day Normalized Difference Vegetation Index (NDVI) dataset (30 m/pixel) (two approximations) based on remote sensing data (satellite image acquired on 07/09/2016) (1:40,000). Since all other factors remain unchanged per each RUSLE application, the differences among the yielded results are attributed to the C factor (thus the land cover pattern) variations. Validation was made considering the convergence between simulated (modeled) and observed sediment yield. The latter was estimated based on field measurements conducted by the Greek PPC (Public Power Corporation). The model performed best at both time scales using the Landsat 8 (Eq. 13) dataset, characterized by a detailed resolution and a satisfactory categorization, allowing the identification of the most susceptible to erosion areas.
NASA Astrophysics Data System (ADS)
Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.
2016-12-01
The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.
NASA Astrophysics Data System (ADS)
Jonczyk, J.; Quinn, P. F.; Haygarth, P.; Reaney, S.; Wilkinson, M.; Burke, S.; McGonigle, D.; Harris, B.
2010-12-01
The Demonstration Test Catchment (DTC) initiative is a five year project to address pollution issues in catchments. The initiative will study the wider environmental problems suffered by catchments which are under intense farming pressures and potential climate change impacts. The UK Department for Food, Agriculture and Rural Affairs (Defra) in partnership with the Environment Agency for England and Wales (EA) have funded this initiative to answer key policy concerns in catchments. The first key step has been the establishment of a ‘research platform’ at three catchments in the UK (The Eden, Wensum and Hampshire Avon) whereby funding of 9.3 million dollars has gone into funding new equipment and pollution sampling regimes have been established. Within each catchment between three and four, 8-10km2 sub-catchments have been established. The experimental design and thinking for DTCs will be explained fully in this paper. The next phase of the project will install an extensive suite of land management and pollution mitigation interventions. In parallel to this monitoring work, a full knowledge exchange package will seek to engage with farmers, the rural community and understand the governance regime at the broader catchment scale. There is also a need for a modelling component to upscale the findings to the whole of the UK. Whilst this is an ambitious goal, there is a very basic commitment of working with rural communities to come up with real solutions that will help underpin effective policy making for the future. The research platform covers a multi-scale approach to the monitoring strategy that will allow local grouping of mitigation measures to be studied local in terms of impact and propagated to the catchment scale. Even with high level of funding, the DTC can only fully instrument a catchment of 8-10km2. Beyond this scale, the EA and the standard catchment monitoring will continue as normal. The focus here is to prove that mitigation can be achieved within smaller land units that have a clear catchment scale benefit. This will provide the evidence base for future policy which is of use to all location in the UK. Hence, the need to have suite of parameters that can be evaluated has given rise to specific experimental design. Fundamental to this is to use continuous telemetered sampling at as many location as possible, including field laboratories capable of measuring, Nitrate, Ammonia, Total Phosphorus, dissolved phosphorus, suspended sediment and chlorophyll a. Standard hydro-metrological equipment is also fully telemetered. The goal is to allow all the data to be freely available to all end users via an internet data portal. The long term goal is to invite experts from many environmental and social sciences to work at the established research platform and ultimately give a better understanding of what a healthy catchment should be like. Being able to communicate this point to both local and national audiences will also be made and will link closely to the UK Virtual Observatory project funded by the NERC.
NASA Astrophysics Data System (ADS)
Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.
2011-12-01
The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.
NASA Astrophysics Data System (ADS)
Padrón, Ryan S.; Gudmundsson, Lukas; Greve, Peter; Seneviratne, Sonia I.
2017-11-01
The long-term surface water balance over land is described by the partitioning of precipitation (P) into runoff and evapotranspiration (ET), and is commonly characterized by the ratio ET/P. The ratio between potential evapotranspiration (PET) and P is explicitly considered to be the primary control of ET/P within the Budyko framework, whereas all other controls are often integrated into a single parameter, ω. Although the joint effect of these additional controlling factors of ET/P can be significant, a detailed understanding of them is yet to be achieved. This study therefore introduces a new global data set for the long-term mean partitioning of P into ET and runoff in 2,733 catchments, which is based on in situ observations and assembled from a systematic examination of peer-reviewed studies. A total of 26 controls of ET/P that are proposed in the literature are assessed using the new data set. Results reveal that: (i) factors controlling ET/P vary between regions with different climate types; (ii) controls other than PET/P explain at least 35% of the ET/P variance in all regions, and up to ˜90% in arid climates; (iii) among these, climate factors and catchment slope dominate over other landscape characteristics; and (iv) despite the high attention that vegetation-related indices receive as controls of ET/P, they are found to play a minor and often nonsignificant role. Overall, this study provides a comprehensive picture on factors controlling the partitioning of P, with valuable insights for model development, watershed management, and the assessment of water resources around the globe.
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Gupta, M.; Bolten, J. D.
2016-12-01
The Mekong river is the world's eighth largest in discharge with draining an area of 795,000 km² from the Eastern watershed of the Tibetan Plateau to the Mekong Delta including, Myanmar, Laos PDR, Thailand, Cambodia, Vietnam and three provinces of China. The populations in these countries are highly dependent on the Mekong River and they are vulnerable to the availability and quality of the water resources within the Mekong River Basin. Soil moisture is one of the most important hydrological cycle variables and is available from passive microwave satellite sensors (such as AMSR-E, SMOS and SMAP), but their spatial resolution is frequently too coarse for effective use by land managers and decision makers. The merging of satellite observations with numerical models has led to improved land surface predictions. Although performance of the models have been continuously improving, the laboratory methods for determining key hydraulic parameters are time consuming and expensive. The present study assesses a method to determine the effective soil hydraulic parameters using a downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E). The soil moisture downscaling algorithm is based on a regression relationship between 1-km MODIS land surface temperature and 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) to produce an enhanced spatial resolution ASMR-E-based soil moisture product. Since the optimized parameters are based on the near surface soil moisture information, further constraints are applied during the numerical simulation through the assimilation of GRACE Total Water Storage (TWS) within the land surface model. This work improves the hydrological fluxes and the state variables are optimized and the optimal parameter values are then transferred for retrieving hydrological fluxes. To evaluate the performance of the system in helping improve simulation accuracy and whether they can be used to obtain soil moisture profiles at poorly gauged catchments the root mean square error (RMSE) and Mean Bias error (MBE) are used to measure the performance of the simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Melkamu; Ye, Sheng; Li, Hongyi
2014-07-19
Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurfacemore » flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.« less
NASA Astrophysics Data System (ADS)
Birch, A. L.; Stallard, R. F.; Barnard, H. R.
2017-12-01
While relationships between land use/land cover and hydrology are well studied and understood in temperate parts of the world, little research exists in the humid tropics, where hydrologic research is often decades behind. Specifically, quantitative information on how physical and biological differences across varying land covers influence runoff generation and hydrologic flowpaths in the humid tropics is scarce; frequently leading to poorly informed hydrologic modelling and water policy decision making. This research effort seeks to quantify how tropical land cover change may alter physical hydrologic processes in the economically important Panama Canal Watershed (Republic of Panama) by separating streamflow into its different runoff components using end member mixing analysis. The samples collected for this project come from small headwater catchments of four varying land covers (mature tropical forest, young secondary forest, active pasture, recently clear-cut tropical forest) within the Smithsonian Tropical Research Institute's Agua Salud Project. During the past three years, samples have been collected at the four study catchments from streamflow and from a number of water sources within hillslope transects, and have been analyzed for stable water isotopes, major cations, and major anions. Major ion analysis of these samples has shown distinct geochemical differences for the potential runoff generating end members sampled (soil moisture/ preferential flow, groundwater, overland flow, throughfall, and precipitation). Based on this finding, an effort was made from May-August 2017 to intensively sample streamflow during wet season storm events, yielding a total of 5 events of varying intensity in each land cover/catchment, with sampling intensity ranging from sub-hourly to sub-daily. The focus of this poster presentation will be to present the result of hydrograph separation's done using end member mixing analysis from this May-August 2017 storm dataset. Expected results presented will yield an increase in the quantitative understanding of how land cover may influence physical hydrologic flowpaths and runoff generation in the humid tropics.
SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments
NASA Astrophysics Data System (ADS)
Fu, Congsheng; James, April L.; Yao, Huaxia
2014-04-01
Canadian Shield catchments are under increasing pressure from various types of development (e.g., mining and increased cottagers) and changing climate. Within the southern part of the Canadian Shield, catchments are generally characterized by shallow forested soils with high infiltration rates and low bedrock infiltration, generating little overland flow, and macropore and subsurface flow are important streamflow generation processes. Large numbers of wetlands and lakes are also key physiographic features, and snow-processes are critical to catchment modeling in this climate. We have revised the existing, publicly available SWAT (version 2009.10.1 Beta 3) to create SWAT-CS, a version representing hydrological processes dominating Canadian Shield catchments, where forest extends over Precambrian Shield bedrock. Prior to this study, very few studies applying SWAT to Canadian Shield catchments exist (we have found three). We tested SWAT-CS using the Harp Lake catchment dataset, an Ontario Ministry of Environment research station located in south-central Ontario. Simulations were evaluated against 30 years of observational data, including streamflow from six headwater sub-catchments (0.1-1.9 km2), outflow from Harp Lake (5.4 km2) and five years of weekly snow water equivalent (SWE). The best Nash-Sutcliffe efficiency (NSE) results for daily streamflow calibration, daily streamflow validation, and SWE were 0.60, 0.65, and 0.87, respectively, for sub-catchment HP4 (with detailed land use and soil data). For this range of catchment scales, land cover and soil properties were found to be transferable across sub-catchments with similar physiographic features, namely streamflow from the remaining five sub-catchments could be modeled well using sub-catchment HP4 parameterization. The Harp Lake outflow was well modeled using the existing reservoir-based target release method, generating NSEs of 0.72 and 0.67 for calibration and verification periods respectively. With significant changes to the infiltration module (introducing macropore flow and reduced bedrock percolation), more than 90% of interflow was generated close to the soil-bedrock interface and the contribution of groundwater flow to total runoff was reduced to small amounts, consistent with hydrological process understanding in this terrain. These two changes also allowed for a positive linear relationship between NSE of SWE and Q, whereas prior to these changes there was a negative relationship. With these key revisions to the infiltration and bedrock percolations modules, it is concluded that SWAT-CS can reasonably capture key hydrological processes within Canadian Shield catchments. Further testing will examine water quality modeling and larger-scale applications.
NASA Astrophysics Data System (ADS)
Daniel, F. B.; Griffith, M. B.; Troyer, M. E.; Lazorchak, J. E.
2005-05-01
The northern half of the Little Miami River watershed (LMRW) was graded by the Wisconsinan glacier; the southern half lies beyond the glacier terminus and is set in an older, Illinoisan landscape. Benthic invertebrates were collected in 35 headwater streams (sub-watersheds) in the LMRW for four consecutive years and the land cover was quantified at three spatial scales (the catchment, the riparian corridor, and sampled reach) for each sub-watershed. In the northern sub-watersheds (N=19) a significantly greater percentage of land surface is committed to row crop agriculture and significantly lesser percent is covered in permanent grasses or forest relative to those in the south (N=16). Analysis of the invertebrate samples showed that Ephemeroptera, Plecoptera, and Trichoptera (EPT) constituted a significantly greater proportion of those assemblages collected from the southern sub-watersheds compared to those from the northern section In contrast, Coleoptera (Cole) and Odonata (Odon) were significantly increased in the northern streams. Approximately 60 % of the variation in the invertebrate assemblages, e.g., the ratio of EPT/(EPT+Cole+Odon), at these sites can be accounted for by consideration of land cover at either the catchment or riparian scale but not at the reach scale.
The River EdenDTC Project: A National Demonstration Test Catchment
NASA Astrophysics Data System (ADS)
Benskin, C.; Surridge, B.; Deasy, C.; Woods, C.; Rimmer, D.; Lees, E.; Owens, G.; Jonczyk, J.; Quinton, J.; Wilkinson, M.; Perks, M.; Quinn, P.; Barker, P.; Haygarth, P.; Burke, S.; Reaney, S.; Watson, N.
2012-04-01
Our environment is a complex system of interactions between natural process and anthropogenic activities that disrupt them. It is crucial to manage the balance for continued food production whilst maintaining the quality of the environment. The challenges we face include managing the impact of agricultural land use on aquatic quality and biodiversity as an integral system, rather than as separate issues. In order to do this, it is critical to understand how the different components are linked - how does land use affect our water courses and ground water, and their associated ecosystems, and how can the impact of agricultural land use on these systems be minimised? Regulating farm nutrient management through measures that minimise sources, their exposure to mobilisation, and reduce drainage pathways to water courses are all fundamental to the UK's approach to meeting the Water Framework Directive objective of achieving 'good ecological status' in all surface and groundwater bodies by 2015. The EdenDTC project is part of a 5-year national Demonstration Test Catchments (DTC) environmental scheme, aiming to understand the above issues through combining scientific research with local knowledge and experience from multiple stakeholders. The DTC project is a 5-year initiative by Defra, Welsh Assembly Government and the Environment Agency, which encompasses a research platform covering three distinct river catchments: the Eden in Cumbria; the Wensum in Norfolk; and the Avon in Hampshire. Within the EdenDTC, the impact and effects of multiple diffuse pollutants on ecosystems and sustainable food production are being studied on a river catchment scale. Three 10 km2 focus catchments, selected to represent the different farming practices and geologies observed across the Eden, have been instrumented to record the dynamics of agricultural diffuse pollution at multiple scales. Within each focus catchment, two sub-catchments were selected: one control and one mitigation, in which a number of existing and novel mitigation measures will be tested. A number of on-farm measures, aimed at reducing agricultural diffuse pollution, will be evaluated by monitoring their effect on water quality and associated biodiversity. In order to achieve this, state of the art hydro-meteorological logging systems have been installed. The outlets of the focus catchments each have a 'high-tech' multi-parameter station that will provide data for total P, soluble reactive P, nitrate, ammonium, temperature, conductivity, dissolved oxygen, turbidity, pH and flow. At the sub-catchment scale are 10 sub-stations, which provide a record of turbidity and water level. All are continuously sampling at 15 minute intervals and are telemetered. The goal is to give an abundance of high quality, multi-scale continuous data provided in real time. Additional storm sampling is being performed at all stations using automatic water samplers, and monthly spot samples are also analysed for each site. The information gathered at these different scales is hoped to improve the effectiveness/efficiency of schemes such as the England Catchment Sensitive Farming Delivery Initiative (ECSFDI). It is also hoped that many of the mitigation features will be multipurpose, having positive effects on flooding, carbon sequestration, habitat creation and biodiversity.
Modeling the effect of terraces on land degradation in tropical upland agricultural area
NASA Astrophysics Data System (ADS)
Christanto, N.; Shrestha, D. P.; Jetten, V. G.; Setiawan, A.
2012-04-01
Java, the most populated Island in Indonesia, in the pas view decades suffer land degradation do to extreme weather, population pressure and landuse/cover change. The study area, Serayu sub-catchment, as part of Serayu catchment is one of the representative example of Indonesia region facing land use change and land degradation problem. The study attempted to simulate the effect of terraces on land degradation (Soil erosion and landslide hazard) in Serayu sub-catchment using deterministic modeling by means of PCRaster® simulation. The effect of the terraces on tropical upland agricultural area is less studied. This paper will discuss about the effect of terraces on land degradation assessment. Detail Dem is extremely difficult to obtain in developing country like Indonesia. Therefore, an artificial DEM which give an impression of the terraces was built. Topographical maps, Ikonos Image and average of height distribution based on field measurement were used to build the artificial DEM. The result is used in STARWARS model as an input. In combine with Erosion model and PROBSTAB, soil erosion and landslide hazard were quantified. The models were run in two different environment based on the: 1) normal DEM 2.) Artificial DEM (with terraces impression). The result is compared. The result shows that the models run in an artificial DEM give a significant increase on the probability of failure by 20.5%. In the other hand, the erosion rate has fall by 11.32% as compared to the normal DEM. The result of hydrological sensitivity analysis shows that soil depth was the most sensitive parameter. For the slope stability modeling, the most sensitive parameter was slope followed by friction angle and cohesion. The erosion modeling, the model was sensitive to the vegetation cover, soil erodibility followed by BD and KSat. Model validations were applied to assess the accuracy of the models. However, the results of dynamic modeling are ideal for land degradation assessment. Dynamic modeling software such as PC Raster® which is open source and free are reliable alternative to other commercial software
NASA Astrophysics Data System (ADS)
Tang, Ting; Seuntjens, Piet; van Griensven, Ann; Bronders, Jan
2016-04-01
Urban areas can significantly contribute to pesticide contamination in surface water. However, pesticide behaviours in urban areas, particularly on hard surfaces, are far less studied than those in agricultural areas. Pesticide application on hard surfaces (e.g. roadsides and walkways) is of particular concern due to the high imperviousness and therefore high pesticide runoff potential. Experimental studies have shown that pesticide behaviours on and interactions with hard surfaces are important factors controlling the pesticide runoff potential, and therefore the magnitude and timing of peak concentrations in surface water. We conceptualized pesticide behaviours on hard surfaces and incorporated the conceptualization into a new pesticide runoff model. The pesticide runoff model was implemented in a catchment hydrological model WetSpa-Python (Water and Energy Transfer between Soil, Plants and Atmosphere, Python version). The conceptualization for pesticide processes on hard surfaces accounts for the differences in pesticide behaviour on different hard surfaces. Four parameters are used to describe the partitioning and wash-off of each pesticide on hard surfaces. We tested the conceptualization using experimental dataset for five pesticides on two types of hard surfaces, namely concrete and asphalt. The conceptualization gave good performance in accounting for the wash-off pattern for the modelled pesticides and surfaces, according to quantitative evaluations using the Nash-Sutcliffe efficiency and percent bias. The resulting pesticide runoff model WetSpa-PST (WetSpa for PeSTicides) can simulate pesticides and their metabolites at the catchment scale. Overall, it includes four groups of pesticide processes, namely pesticide application, pesticide interception by plant foliage, pesticide processes on land surfaces (including partitioning, degradation and wash-off on hard surface; partitioning, dissipation, infiltration and runoff in soil) and pesticide processes in depression storage (including degradation, infiltration and runoff). Processes on hard surfaces employs the conceptualization described in the paragraph above. The WetSpa-PST model can account for various spatial details of the urban features in a catchment, such as asphalt, concrete and roof areas. The distributed feature also allows users to input detailed pesticide application data of both non-point and point origins. Thanks to the Python modelling framework prototype used in the WetSpa-Python model, processes in the WetSpa-PST model can be simulated at different time steps depending on data availability and the characteristic temporal scale of each process. This helps to increase the computational accuracy during heavy rainfall events, especially for the associated fast transport of pesticides into surface water. Overall, the WetSpa-PST model has good potential in predicting effects of management options on pesticide releases from heavily urbanized catchments.
NASA Astrophysics Data System (ADS)
Bormann, H.; Faß, T.; Giertz, S.; Junge, B.; Diekkrüger, B.; Reichert, B.; Skowronek, A.
This paper presents the concept, first results and perspectives of the hydrological sub-project of the IMPETUS-Benin project which is part of the GLOWA program funded by the German ministry of education and research. In addition to the research concept, first results on field hydrology, pedology, hydrogeology and hydrological modelling are presented, focusing on the understanding of the actual hydrological processes. For analysing the processes a 30 km 2 catchment acting as a super test site was chosen which is assumed to be representative for the entire catchment of about 15,000 km 2. First results of the field investigations show that infiltration, runoff generation and soil erosion strongly depend on land cover and land use which again influence the soil properties significantly. A conceptual hydrogeological model has been developed summarising the process knowledge on runoff generation and subsurface hydrological processes. This concept model shows a dominance of fast runoff components (surface runoff and interflow), a groundwater recharge along preferential flow paths, temporary interaction between surface and groundwater and separate groundwater systems on different scales (shallow, temporary groundwater on local scale and permanent, deep groundwater on regional scale). The findings of intensive measurement campaigns on soil hydrology, groundwater dynamics and soil erosion have been integrated into different, scale-dependent hydrological modelling concepts applied at different scales in the target region (upper Ouémé catchment in Benin, about 15,000 km 2). The models have been applied and successfully validated. They will be used for integrated scenario analyses in the forthcoming project phase to assess the impacts of global change on the regional water cycle and on typical problem complexes such as food security in West African countries.
NASA Astrophysics Data System (ADS)
Valent, P.; Rončák, P.; Maliariková, M.; Behan, Š.
2016-12-01
The way land is used has a significant impact on many hydrological processes that determine the generation of flood runoff or soil erosion. Advancements in remote sensing which took place in the second half of the 20th century have led to the rise of a new research area focused on analyses of land use changes and their impact on hydrological processes. This study deals with an analysis of the changes in land use over a period of almost three centuries in the Myjava River catchment, which has an outlet at Šaštín-Stráže. In order to obtain information about the way the land was used in the past, three historical mappings representing various periods were used: the first (1st) military mapping (1764-1787), second (2nd) military mapping (1807-1869), and a military topographic mapping (1953-1957). The historical mappings have been manually vectorised in an ArcGIS environment to identify various land use categories. The historical evolution of land use was further compared with a concurrent land use mapping, which was undertaken in 2010 and exploited remote sensing techniques. The study also quantifies the impact of these changes on the long-term catchment runoff as well as their impact on flows induced by extreme precipitation events. This analysis was performed using the WetSpa distributed hydrological model, which enables the simulation of catchment runoff in a daily time step. The analysis showed that the selected catchment has undergone significant changes in land use, mainly characterized by massive deforestation at the end of the 18th century and land consolidation in the middle of the 20th century induced by communist collectivisation. The hydrological simulations demonstrated that the highest and lowest mean annual runoffs were simulated in the first (1st military mapping) and the last (concurrent land use monitoring) time intervals respectively with the smallest and largest percentages of forested areas.
NASA Astrophysics Data System (ADS)
Marko, K.; Zulkarnain, F.; Kusratmoko, E.
2016-11-01
Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.
Identification of nitrate sources and discharge-depending nitrate dynamics in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Mueller, Christin; Strachauer, Ulrike; Brauns, Mario; Musolff, Andreas; Kunz, Julia Vanessa; Brase, Lisa; Tarasova, Larisa; Merz, Ralf; Knöller, Kay
2017-04-01
During the last decades, nitrate concentrations in surface and groundwater have increased due to land use change and accompanying application of fertilizer in agriculture as well as increased atmospheric deposition. To mitigate nutrient impacts on downstream aquatic ecosystems, it is important to quantify potential nitrate sources, instream nitrate processing and its controls in a river system. The objective of this project is to characterize and quantify (regional) scale dynamics and trends in water and nitrogen fluxes of the entire Holtemme river catchment in central Germany making use of isotopic fingerprinting methods. Here we compare two key date sampling campaigns in 2014 and 2015, with spatially highly resolved measurements of discharge at 23 sampling locations including 11 major tributaries and 12 locations at the main river. Additionally, we have data from continuous runoff measurements at 10 locations operated by the local water authorities. Two waste water treatment plants contribute nitrogen to the Holtemme stream. This contribution impacts nitrate loads and nitrate isotopic signatures depending on the prevailing hydrological conditions. Nitrogen isotopic signatures in the catchment are mainly controlled by different sources (nitrified soil nitrogen in the headwater and manure/ effluents from WWTPs in the lowlands) and increase with raising nitrate concentrations along the main river. Nitrate loads at the outlet of the catchment are extremely different between both sampling campaigns (2014: NO3- = 97 t a-1, 2015: NO3- = 5 t a-1) which is associated with various runoff (2014: 0.8 m3 s-1, 2015: 0.2 m3 s-1). In 2015, the inflow from WWTP's raises the NO3- loads and enriches δ18O-NO3 values. Generally, oxygen isotope signatures from nitrate are more variable and are controlled by biogeochemical processes in concert with the oxygen isotopic composition of the ambient water. Elevated δ18O-NO3 in 2015 are most likely due to higher temperatures and lower discharge resulting in a higher impact of evaporation on water isotopes and a higher/different level of biological activity (esp. in the WWTP). Enriched isotope values for nitrogen and oxygen are not indicative of a significant impact of bacterial denitrification, because they are accompanied by increased nitrate concentrations (1 to 16 mg L-1). Based on the presented study, 50 % of the nitrate export from the Holtemme river catchment can be attributed to WWTP effluent. The remaining amount is related to agricultural land use. Consequently, nitrate load reduction in the river system cannot rely on internal processing but needs to be regulated by preventive measures especially by an improved wastewater treatment and land use management.
Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon
2014-01-01
Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.
Role of the check dam in land development on the Loess Plateau, China
NASA Astrophysics Data System (ADS)
Xu, Xiang-Zhou; Zhang, Luo-Hao; Zhu, Tongxin; Dang, Tian-Min; Zhang, Hong-Wu; Xu, Shi-Guo
2017-04-01
Check dam is one of the most effective measures to reduce flow connectivity, which can retain soil and water, and increase land productivity. More than 100,000 check dams have been built on the Loess Plateau since 1950s. However, quantifying the effect of check dams on water resources and water environments remains a challenge. In this study, an in-depth field investigation together with a credible statistical analysis was carried out in two representative catchments on the Loess Plateau, Nanxiaohegou Catchment and Jiuyuangou Catchment, to assess the effectiveness of check dams in soil, water and nutrients conservation. The results show: (1) Check dam plays an important role in conserving water, soil, and nutrients on the Loess Plateau. About half of the total transported water and more than 80 % of the total transported soil and nutrients, had been locally retained in the selected catchments. Hence check dams had a significant benefit to improve soil fertility in the small watersheds, and reducing water pollution downstream of dams. (2) Compared to terrace farmlands, forest lands and grasslands, check-dam lands were much more important in conserving water, soil and nutrients in the catchments. Nearly 50% of the reduced water and more than 70% of the stored soil and nutrients in the study catchments were solely retained by the check dams, whereas the area of the dam lands was less than 7% of the total conservation land area. (3) Check dams are still effective in large storms even if dams were damaged by floods. It is often assumed that check dams could only retain sediment in small flood events whereas most of the stored soil may be washed out as the dams may be destroyed in a disastrous flood. Furthermore, if a major check dam, namely the key project dam, was built in the gully outlet, the flood could be controlled, and thereupon the dam-break can be also avoided. We suggest that a compensation and incentive policy be implemented on dam building to realize the sustainable development of local economy and ecological environment.
Climate, runoff and landuse trends in the Owo River Catchment in Nigeria
NASA Astrophysics Data System (ADS)
Adegun, O.; Odunuga, S.; Ajayi, O. S.
2015-06-01
The Owo River is an important surface water source in Lagos particularly to the western section. It is the source of direct water intake for water supply by Lagos State Water Corporation to Amuwo-Odofin, Ojo and parts of Badagry Local Government Areas. This paper examines the complex interactions and feedbacks between many variables and processes within that catchment and analyses the future ability of this semi-urban watershed in sustaining water supply in the face of cumulative environmental change. Stationarity analysis on rainfall, change detection analysis and morphometry analysis were combined to analyse the non-stationarity of Owo River catchment. On rainfall trend analysis, since the correlation coefficient (0.38) with test statistic of 2.17 did not satisfy the test condition we concluded that there is trend and that rainfall in the watershed is not stationary. The dominant land use impacting on the bio-geochemical fluxes is built up area (including structures and paved surfaces) which grew from about 142.92 km2 (12.20%) in 1984 to 367.22 km2 (31.36%) in 2013 recording gain of 224.3 km2 at average growth rate of 7.73 km2 per annum. Total length of streams within the catchment reduced from 622.24 km in 1964 to 556 km in 2010, while stream density reduced from 0.53 in 1964 to 0.47 in 2010 an indication of shrinking hydrological network. The observed trends in both natural and anthropogenic processes indicated non-stationarity of the hydrological fluxes within the Catchment and if this continues, the urban ecosystem services of water supply will be compromised.
Tang, Ting; Stamm, Christian; van Griensven, Ann; Seuntjens, Piet; Bronders, Jan
2017-11-01
To properly estimate and manage pesticide occurrence in urban rivers, it is essential, but often highly challenging, to identify the key pesticide transport pathways in association to the main sources. This study examined the concentration-discharge hysteresis behaviour (hysteresis analysis) for three pesticides and the parent-metabolite concentration dynamics for two metabolites at sites with different levels of urban influence in a mixed land use catchment (25 km 2 ) within the Swiss Greifensee area, aiming to identify the dominant pesticide transport pathways. Combining an adapted hysteresis classification framework with prior knowledge of the field conditions and pesticide usage, we demonstrated the possibility of using hysteresis analysis to qualitatively infer the dominant pesticide transport pathway in mixed land-use catchments. The analysis showed that hysteresis types, and therefore the dominant transport pathway, vary among pesticides, sites and rainfall events. Hysteresis loops mostly correspond to dominant transport by flow components with intermediate response time, although pesticide sources indicate that fast transport pathways are responsible in most cases (e.g. urban runoff and combined sewer overflows). The discrepancy suggests the fast transport pathways can be slowed down due to catchment storages, such as topographic depressions in agricultural areas, a wastewater treatment plant (WWTP) and other artificial storage units (e.g. retention basins) in urban areas. Moreover, the WWTP was identified as an important factor modifying the parent-metabolite concentration dynamics during rainfall events. To properly predict and manage pesticide occurrence in catchments of mixed land uses, the hydrological delaying effect and chemical processes within the artificial structures need to be accounted for, in addition to the catchment hydrology and the diversity of pesticide sources. This study demonstrates that in catchments with diverse pesticide sources and complex transport mechanisms, the adapted hysteresis analysis can help to improve our understanding on pesticide transport behaviours and provide a basis for effective management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mattsson, Tuija; Kortelainen, Pirkko; Räike, Antti; Lepistö, Ahti; Thomas, David N
2015-03-01
Climate change scenarios for northern boreal regions indicate that there will be increasing temperature and precipitation, and the changes are expected to be larger in winter than in summer. These precipitation and discharge patterns, coupled with shorter ice cover/soil frost periods in the future would be expected to contribute significantly to changing flow paths of organic matter over a range of land use patterns. In order to study the impact of climate change on the seasonality of organic matter export we compared total organic carbon (TOC) and total organic nitrogen (TON) concentrations and export, during different seasons and climatically different years, over 12 years for 30 Finnish rivers separated into forest, agriculture and peat dominated catchments. The mean monthly TOC concentrations were highest during autumn and there was also a peak in May during the highest flow period. The mean monthly concentrations of TON were lowest during winter, increased in spring and remaining high throughout summer and autumn. The TOC/TON ratios were lowest during summer and highest during winter, and in all seasons the ratios were lowest in catchments with a high proportion of agricultural land and highest in peat-dominated catchments. The seasonality of TOC and TON exports reflected geographical location, hydrology and land use patterns. Most of the TOC and TON were transported during the high flow following the spring snowmelt and during rainfall in autumn. In all catchments the relative importance of the spring snowmelt decreased in wet and warm years. However, in peat-dominated catchments the proportion of spring period was over 30% of the annual export even in these wet and warm years, while in other catchments the proportion was about 20%. This might be linked to the northern location of the peat-dominated catchments and the permanent snow cover and spring snowmelt, even in warm years. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Worrall, F.; Howden, N. J. K.; Burt, T. P.
2012-10-01
SummaryThis paper analyses the world's longest fluvial record of water hardness and calcium (Ca) concentration. We used records of permanent and temporary hardness and river flow for the UK's River Thames (catchment area 9998 km2) to estimate annual Ca flux from the river since 1883. The Thames catchment has a mix of agricultural and urban land use; it is dominated by mineral soils with groundwater contributing around 60% of river flow. Since the late 1800s, the catchment has undergone widespread urbanisation and climate warming, but has also been subjected to large-scale land-use change, especially during World War II and agricultural intensification in the 1960s. Here, we use a range of time series methods to explore the relative importance of these drivers in determining catchment-scale biogeochemical response. Ca concentrations in the Thames rose to a peak in the late 1980s (106 mg Ca/l). The flux of Ca peaked in 1916 at 385 ktonnes Ca/yr; the minimum was in 1888 at 34 ktonnes Ca/yr. For both the annual average Ca concentration and the annual flux of Ca, there were significant increases with time; a significant positive memory effect relative to the previous year; and significant correlation with annual water yield. No significant correlation was found with either temperature or land use, but sulphate deposition was found to be significant. It was also possible, for a shorter time series, to show a significant relationship with inorganic nitrogen inputs into the catchment. We suggest that ionic inputs did not acidify the mineral soils of the catchment but did cause the leaching of metals, so we conclude that the decline in river Ca concentrations is caused by the decline in both S and N inputs.
The hydrologic and fluvial processes in urban and agricultural atchments (Kielce, Poland)
NASA Astrophysics Data System (ADS)
Ciupa, T.
2003-04-01
The aim of the study is to elucidate the bahavior of river-beds system in conditions of environmental stress, and particularly in the urbanized landscape in the Kielce vicinity (Central Poland). Two neighboring catchments were selected for the study, both located in the urbanized landscape, namely those of Silnica and Sufraganiec streams. These catchments have similar surfaces nevertheless they differ each other in the area of land use patterns. Silnica catchment embraces mainly build-up area however the Sufraganiec one consists largely of open agricultural spaces and woodland. Quite different situation has been noticed along the middle and lower part of Silnica, that is to say in the urbanized area. The high water waves last there for no more than one hour but their heights are much more greater. Water infiltration in these areas is strongly limited due to the fact that the area is mostly paved. Below the Kielce storage reservoir, the Silnica river constitutes the mere drain channel. Decrease in water velocity below the city center as well as an unnaturally huge charge of the transported matter is the reason that the materials from the city is accumulated in form of sand banks, shoals and oxbows. These forms are seasonally covered with vegetation that additionally intercepts the matters transported during high water stages. Intensity of human induced changes in river beds and fluvial processes shows to be proportional to the level of modification in the urbanized landscape. Silnica catchment has been modified mainly due to the growth of paved surfaces and the drainage network development. As a consequence, the surface runoff has been accelerated and the energy of fluvial processes enlarged.
Identifying the impacts of land use on water and nutrient cycling in the South-West Mau, Kenya
NASA Astrophysics Data System (ADS)
Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Rufino, Mariana
2016-04-01
The Mau Forest is the largest closed canopy forest system and indigenous montane forest in Kenya, covering approximately 400,000 ha. It is the source of twelve major rivers in the Rift Valley and Western Kenya and one of Kenya's five 'water towers' that provide around 10 million people with fresh water. Significant areas have been affected by deforestation and land use changes in the past decades, resulting in a loss of approx. 25% of the forest area. Recent changes in downstream water supply are discussed to be attributed to land use change, though compelling scientific evidence is still lacking. The study area is located in the South-West Mau as a part of the Sondu River basin that drains into Lake Victoria. This area has suffered a forest loss of 25% through conversion of natural forest to smallholder agriculture and tea/tree plantations. A nested catchment approach has been applied, whereby automatic measurement equipment for monitoring discharge, turbidity, nitrate, total and dissolved organic carbon, electrical conductivity and water temperature at a 10 minute interval has been set up at the outlets of three sub-catchments of 27 - 36 km² and the outlet of the 1023 km² major catchment. The dominant land use in the sub-catchments is either natural forest, tea/tree plantation or smallholder agriculture. The river data is complemented by six precipitation gauging stations and three climate stations, that all measure at the same interval. Installed during October 2014, the systems have collected high resolution data for one and a half year now. The high resolution dataset is being analysed for patterns in stream flow and water quality during dry and wet seasons as well as diurnal cycling of nitrate. The results of the different sub-catchments are compared to identify the role of land use in water and nutrient cycling. First results of the high temporal resolution data already indicate that the different types of land use affect the stream nitrate concentration. In addition to that the high resolution allows to investigate diurnal patterns, showing a shift in nitrate concentrations between wet and dry seasons. Additional spatial stream water snapshot sampling campaigns within the major catchment, as well as sampling for End Member Mixing Analysis (EMMA) and analysis of stable isotopes of precipitation, throughfall, stream water and soil and ground water is ongoing and will provide further information to increase our understanding of hydrological and biogeochemical processes and how these are affected by land use in the Mau Forest. We will report results from six snapshot sampling campaigns that depict the impact of tea/tree plantations on nitrate concentrations and an influence of land use on catchment specific discharge.
Spatio-temporal models to determine association between Campylobacter cases and environment
Sanderson, Roy A; Maas, James A; Blain, Alasdair P; Gorton, Russell; Ward, Jessica; O’Brien, Sarah J; Hunter, Paul R; Rushton, Stephen P
2018-01-01
Abstract Background Campylobacteriosis is a major cause of gastroenteritis in the UK, and although 70% of cases are associated with food sources, the remainder are probably associated with wider environmental exposure. Methods In order to investigate wider environmental transmission, we conducted a spatio-temporal analysis of the association of human cases of Campylobacter in the Tyne catchment with weather, climate, hydrology and land use. A hydrological model was used to predict surface-water flow in the Tyne catchment over 5 years. We analysed associations between population-adjusted Campylobacter case rate and environmental factors hypothesized to be important in disease using a two-stage modelling framework. First, we investigated associations between temporal variation in case rate in relation to surface-water flow, temperature, evapotranspiration and rainfall, using linear mixed-effects models. Second, we used the random effects for the first model to quantify how spatial variation in static landscape features of soil and land use impacted on the likely differences between subcatchment associations of case rate with the temporal variables. Results Population-adjusted Campylobacter case rates were associated with periods of high predicted surface-water flow, and during above average temperatures. Subcatchments with cattle on stagnogley soils, and to a lesser extent sheep plus cattle grazing, had higher Campylobacter case rates. Conclusions Areas of stagnogley soils with mixed livestock grazing may be more vulnerable to both Campylobacter spread and exposure during periods of high rainfall, with resultant increased risk of human cases of the disease. PMID:29069406
NASA Astrophysics Data System (ADS)
Braud, I.; Chancibault, K.; Debionne, S.; Lieme Kouyi, G.; Sarrazin, B.; Jacqueminet, C.
2009-04-01
Due to the development of urbanisation and the associated pollutions, peri-urban rivers face an increasing pressure on the receiving waters and an enhancement of floods. In order to limit the risks and define adapted management scenarios, it is important to identify the key factors over which action is possible. In particular, due to the Water Framework Directive, discharge of polluted water into rivers must be limited and actions must be undertaken in order to restore the ecological quality of water. In this context, integrated modelling tools, taking into account anthropogenic effects on the water cycle are interesting as they provide ways to test and evaluate the efficiency of different management scenarios. However improvements are still required to derive tools allowing a continuous and long term modelling of the hydrological cycle in peri-urban areas. The models must take into account the surface heterogeneity (mixture of rural and urbanised areas), and also the natural and artificial water pathways, which influence the water quality. These questions are the focus of the AVuPUR (Assessing the Vulnerability of Peri-Urban Rivers) project. Its aims are 1) to provide a better description of the heterogeneity of peri-urban catchments and of the associated water pathways using field survey, GIS and remote sensing analysis of high resolution images; 2) to provide long term detailed simulation models of the hydrological cycle in peri-urban catchments to increase our understanding of the processes involved; 3) to improve existing hydrological models with a better handling of the urbanised areas in order to derive tools usable by stakeholders; 4) to run long term simulations of the hydrological cycle using past and future land-use and climate scenarios and quantify the impact on the hydrological regime. The project focuses on two experimental catchments: the Yzeron catchment (147 km2), a peri-urban catchment located in the west of Lyon (south-east of France) and the Chézine catchment (34 km2) located close to the city of Nantes (west of France). Both catchments are part of hydrometeorological observatories which ensures a long-term monitoring of the catchments. Both catchments experience a rapid increase of urbanisation. They are located in two contrasted climates and physiographic contexts: Mediterranean type climate and marked topography for the Yzeron catchment and oceanic climate with rather flat areas for the Chézine catchment. This will allow testing the robustness and transferability of the developed approaches. The presentation will focus on the data which are currently acquired in the framework of the project: rainfall, streamflow, water levels in ephemeral reaches, lidar survey, geophysical surveys, infiltration tests. A diachronic analysis of land use since the 50th is also performed using satellite and aerial photographs. Some work is also planned to determine future land use scenarios of urbanisation and water management. Urban data bank provided by the Grand Lyon and Nantes-Métropole services are also analysed in order to document the change in water pathways due to urbanisation. The paper will present an overview of these data and first results of their analysis in terms of hydrological functioning and water pathways. The modelling strategy, which will rely on these data, will also be presented.
Understanding sediment sources in a peri-urban Mediterranean catchment using geochemical tracers
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Kikuchi, Ryunosuke; Blake, Will
2016-04-01
One of the main physical environmental impacts of urbanization is an increase in suspended sediment concentrations and loads, particularly in the constructional phase. Impacts in peri-urban catchments characterized by a mosaic of urban and non-urban landscape elements with varying roles in acting as sources and sinks of overland flow and slope wash have received little attention, particularly in Mediterranean environments. The present study uses a sediment 'fingerprinting' approach to determine the main sediment sources in the peri-urban Ribeira dos Covões catchment (6.2km2) in Portugal and how they change during storm events following contrasting antecedent weather. The catchment, rural until 1972, underwent discontinuous urbanization in 1973-1993, followed by an urban consolidation phase. Currently, its land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels. Distinct urban patterns include some well-defined urban residential centres, but also areas of discontinuous urban sprawl. Since 2010, a major road was built and an enterprise park has been under construction, covering 1% and 5% of the catchment, respectively. The catchment has a Mediterranean climate. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils are generally deep (>3.0m), but shallow (<0.4m) on steeper limestone terrain. The catchment has an average slope of 9° , but includes steep slopes of up to 46° . The sediment fingerprinting methodology involved characterizing the chemical properties of sediments from individual upstream sub-catchments and comparing these to the properties of downstream transported fluvial material. Three fine bed-sediment sampling surveys were carried out after (i) a long dry period (21/09/2012), (ii) a winter storm of relatively high rainfall intensity (23.2mm day-1) (19/02/2015), and (iii) after several storms in Spring (22/04/2015). All samples were oven-dried (at 38° C) and sieved to obtain different particle size fractions (0.125-2.000mm, 0.063-0.125mm and <0.063mm). Seventeen stream sites were sampled plus a sample of sediment from a road surface immediately it entered the stream network. The elemental composition (40 elements) of each size fraction was assessed using a Niton X-ray fluorescence elemental analyser. Results show that rock type has a profound influence on the geochemical properties of bed-sediments. Catchment outlet sediment collected after the summer and a storm of high rainfall intensity following dry weather displayed geochemical properties closer to those of sediment from sandstone sub-catchments, and in particularly sediment from the enterprise park under construction. After the storm that followed very wet weather, however, limestone areas became of much greater significance as sediment sources, probably because of the high soil saturation. At limestone stream sites receiving runoff from the newly constructed road, fine bed-sediment geochemistry was found to be similar to that of road sediment, indicating a high contribution of this source. These results are supported by spatio-temporal differences in streamflow and suspended sediment concentrations at instrumented monitoring stations. It is concluded that this methodology represents a potentially useful tool to enable river managers to detect and assess sediment sources in urbanized and partly urbanized catchments, and to supporting them in designing and implementing effective land-use mosaics and site-specific measures to mitigate erosion.
NASA Astrophysics Data System (ADS)
Shrestha, R. R.; Rode, M.
2008-12-01
Concentration of reactive chemicals has different chemical signatures in baseflow and surface runoff. Previous studies on nitrate export from a catchment indicate that the transport processes are driven by subsurface flow. Therefore nitrate signature can be used for understanding the event and pre-event contributions to streamflow and surface-subsurface flow interactions. The study uses flow and nitrate concentration time series data for understanding the relationship between these two variables. Unsupervised artificial neural network based learning method called self organizing map is used for the identification of clusters in the datasets. Based on the cluster results, five different pattern in the datasets are identified which correspond to (i) baseflow, (ii) subsurface flow increase, (iii) surface runoff increase, (iv) surface runoff recession, and (v) subsurface flow decrease regions. The cluster results in combination with a hydrologic model are used for discharge separation. For this purpose, a multi-objective optimization tool NSGA-II is used, where violation of cluster results is used as one of the objective functions. The results show that the use of cluster results as supplementary information for the calibration of a hydrologic model gives a plausible simulation of subsurface flow as well total runoff at the catchment outlet. The study is undertaken using data from the Weida catchment in the North-Eastern Germany, which is a sub-catchment of the Weisse Elster river in the Elbe river basin.
NASA Astrophysics Data System (ADS)
Bucała-Hrabia, Anna; Kijowska-Strugała, Małgorzata; Demczuk, Piotr
2017-04-01
Intensity of soil erosion is mainly depends on land cover changes, soil properties, heavy rainfalls and slope gradients. This study compared the influence of land use changes on soil erosion in the Homerka catchment, an area of 19.3 km2 located in the West Polish Carpathians, using GIS techniques such the Revised Universal Soil Loss Equation (RUSLE) method and cartographic materials from 1977, 1987, 1996 and 2009. RUSLE is the most common method which allows to predict the average size of the soil erosion due to specific soil properties, relief as well as rainfall erosivity factor. The period between 1977 and 2009 covers the transformation of the Polish economy from a communist system to a free-market economy after 1989. The analysis indicates an increase in the forest area of the Homerka catchment by 18.14% and a decrease of cultivated land by 82.64%. The grasslands did not change significantly in their area, however, their spatial pattern was very dynamic related to their reduction due to forest expansion and enlargement due to cultivated land abandonment.
Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia
NASA Astrophysics Data System (ADS)
Ismail, W. R.; Hashim, M.
2015-03-01
The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.
Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E
2018-05-01
Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.
Landscape dynamics in the Otterbach catchment (Bavarian Forest, Southern Germany)
NASA Astrophysics Data System (ADS)
Schwindt, Daniel; Scheck, Sebastian; Scholz, Emanuel; Waltl, Peter; Völkel, Jörg
2017-04-01
As part of the TUM-CZO (TU-Munich Critical Zone Observatory), the Otterbach Valley has been focus of numerous research approaches, focusing on soil carbon dynamics, hydrological processes as well as landscape dynamics. Aim of this contribution is the reconstruction of the landscape evolution of the Otterbach catchment in context with anthropogenic land use and natural process dynamics. Therefore, studies focus on alluvial and colluvial sediments which are usually regarded as correlated with anthropogenically induced erosion. Located in the western Bavarian Forest the Otterbach is a creek of 2nd stream order and runs directly into the Danube River. Geologically, most parts of the catchment are composed of granitic rocks, mylonites and saprolites. While agricultural land use is dominant in the upper and lower reaches of the Otterbach, the steep middle reaches are forested, floodplains are used as grasslands. Settlement history points out that the forest of the so-called "Thiergarten", covering large parts of the catchment, has been used invariably for forestry, makes this study site valuable for the reconstruction of anthropogenic impact on landscape evolution. Characterization of the shallow subsurface is based on the analysis of soil pits (up to 2 m depth), core samples (up to 18 m depth) and geophysical measurements (electrical resistivity tomography, seismic refraction tomography). Temporal contextualization of sediments is achieved using radiocarbon dating. As a result of illuvial processes, clay curtains are observed almost continuously up to 18 m depth within the slope sediments, suggesting a genesis during Pleistocene warm stages. Radiocarbon dating in the alluvial floodplain point to pronounced sedimentary relocation processes between around 2.400 and 1.000 BP. This emphasizes the importance of naturally caused process dynamics as population density in the surroundings of the Otterbach catchment was low during this period and the area was mostly forested. With close proximity and interlockings between slope sediments relict river terraces and Holocene alluvial sediments investigations allow for a reconstruction of the palaeoenviroment in context with land use and human dynamics in the catchment of the Otterbach valley.
NASA Astrophysics Data System (ADS)
Ficklin, D. L.; Abatzoglou, J. T.
2017-12-01
The spatial variability in the balance between surface runoff (Q) and evapotranspiration (ET) is critical for understanding water availability. The Budyko framework suggests that this balance is solely a function of aridity. Observed deviations from this framework for individual watersheds, however, can vary significantly, resulting in uncertainty in using the Budyko framework in ungauged catchments and under future climate and land use scenarios. Here, we model the spatial variability in the partitioning of precipitation into Q and ET using a set of climatic, physiographic, and vegetation metrics for 211 near-natural watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. Using a generalized additive model, we found that precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow explained 81.2% of the variability in ω. This ω model applied to the Budyko framework explained 97% of the spatial variability in long-term Q for an independent set of near-natural watersheds. The developed ω model was also used to estimate the entire CONUS surface water balance for both contemporary and mid-21st century conditions. The contemporary CONUS surface water balance compared favorably to more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western US. The Budyko framework using the modeled ω lends itself to an alternative approach for assessing the potential response of catchment water balance to climate change to complement other approaches.
River water quality changes in New Zealand over 26 years: response to land use intensity
NASA Astrophysics Data System (ADS)
Julian, Jason P.; de Beurs, Kirsten M.; Owsley, Braden; Davies-Colley, Robert J.; Ausseil, Anne-Gaelle E.
2017-02-01
Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity - the inputs (fertilizer, livestock) and activities (vegetation removal) of land use - is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) - consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use-water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34/77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27/77 catchments, which we largely attribute to increased cattle density and legacy nutrients that have built up on intensively managed grasslands and plantation forests since the 1950s and are slowly leaking to the rivers. Despite recent improvements in water quality for some NZ rivers, these legacy nutrients and continued agricultural intensification are expected to pose broad-scale environmental problems for decades to come.
NASA Astrophysics Data System (ADS)
Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.
2017-12-01
The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi-year time-series of daily total and liquid precipitation, and snow water equivalent suggest a recent (post-2010) transition to a more rainfall-controlled runoff regime.
NASA Astrophysics Data System (ADS)
Selle, B.; Schwientek, M.
2012-04-01
Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables and environmental tracers indicating groundwater age were analysed for deep groundwater from production wells. For deep groundwater, we found that microbial turnover was stronger influenced by local availability of energy sources than by travel times of groundwater to the wells. Groundwater quality primarily reflected the input of pollutants determined by landuse, e.g. agrochemicals. We concluded that for water quality in the Ammer catchment, conservative mixing of waters with different origin is more important than reactive transport processes along the flow path.
Bartley, Rebecca; Thompson, Chris; Croke, Jacky; Pietsch, Tim; Baker, Brett; Hughes, Kate; Kinsey-Henderson, Anne
2018-06-01
Sediment runoff has been cited as a major contributor to the declining health of the Great Barrier Reef (GBR), however, climate and land use drivers have not been jointly evaluated. This study used alluvial archives from fluvial benches in two tributaries of the Upper Burdekin catchment together with the best available land use history and climate proxy records to provide insights into the timing of depositional events in this region over the past 500 years. This study suggests that mining and the increased runoff variability in the latter half of the nineteenth century are the likely sources of the original excess sediment that was used to build the bench features in these catchments. Grazing also contributed to increased bench sedimentation prior to 1900, however, the contribution of grazing was likely more significant in the second half of the 20th century, and continues to be a dominant land use contributor today. Copyright © 2018 Elsevier Ltd. All rights reserved.
Progress in and prospects for fluvial flood modelling.
Wheater, H S
2002-07-15
Recent floods in the UK have raised public and political awareness of flood risk. There is an increasing recognition that flood management and land-use planning are linked, and that decision-support modelling tools are required to address issues of climate and land-use change for integrated catchment management. In this paper, the scientific context for fluvial flood modelling is discussed, current modelling capability is considered and research challenges are identified. Priorities include (i) appropriate representation of spatial precipitation, including scenarios of climate change; (ii) development of a national capability for continuous hydrological simulation of ungauged catchments; (iii) improved scientific understanding of impacts of agricultural land-use and land-management change, and the development of new modelling approaches to represent those impacts; (iv) improved representation of urban flooding, at both local and catchment scale; (v) appropriate parametrizations for hydraulic simulation of in-channel and flood-plain flows, assimilating available ground observations and remotely sensed data; and (vi) a flexible decision-support modelling framework, incorporating developments in computing, data availability, data assimilation and uncertainty analysis.
Macroinvertebrate assemblages associated with patterns in land use and water quality
Carlisle, Daren M.; Stewart, Paul M.; Butcher, Jason T.; Simon, Thomas P.
2003-01-01
Most national parks were designated to preserve significant natural resources. Park borders often reflect political rather than ecological boundaries. Consequently, catchments of many streams are only partially within park boundaries, and are therefore subject to land use changes and potential contamination from non-point sources outside the park. The National Park Service has initiated a program to monitor natural resources, particularly those at risk from land use changes surrounding the parks. This effort requires the identification of response signatures indicative of the ecological effects of human activities. The goal of this chapter is to identify a biological response signature (e.g., indicator assemblages) for tributary streams in Cuyahoga Valley National Park. More than 20 first to fourth order tributary streams enter the Cuyahoga River within park boundaries. Many of these catchments are outside park boundaries and under suburban development. The purpose of this research is to provide park managers with a monitoring tool for identifying the extent and degree of aquatic resource degradation due to land use changes in tributary catchments.
Temporal changes in potential regulating ecosystem services driven by urbanization
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Amorim, Inês; Pires, Evanilton; Kalantari, Zahra; Walsh, Rory; Ferreira, António
2017-04-01
Ecosystem services (ES) are understood to be the capacity of the landscape of a particular area to provide goods and services to society. In terms of human benefits, four categories of ES are usually considered: provisioning (e.g. seafood), regulating (e.g. climate regulation, air quality, water purification and natural hazard protection), supporting (e.g. maintenance of biodiversity), and cultural (e.g. recreation). The potential supply of ecosystem services has receive increasing interest as a tool for natural resource management. Nevertheless, the capacity to supply ES depends on biophysical conditions, as well as climate and land-use changes, induced by human activities. This study aims to investigate the potential for regulating ecosystem service supply of a Portuguese peri-urban catchment, and attempts to understand the temporal changes in ES over the last decades driven by urbanization. The study was developed in Ribeira dos Covões catchment (6.2 km2), in Portugal. Due to its proximity to Coimbra, a major city in the central region of Portugal, the catchment has undergone major land-use changes over the last half-century. Since 1958, the agricultural area, comprising mainly olives and arable land, has declined from 48% to 4%, due to increases in urban land (from 8% to 40%) and forest (from 44% to 53%), as well as a temporary creation of open spaces (from 0% to 3%). The nature of forest cover also changed, from native species, such as oaks (Quercus sp.), to commercial timber plantations, mostly of Pinus pinaster L. and Eucaliptus globulus L.. Urbanization became more pronounced after 1973, exhibiting a discontinuous pattern until 1995, and then later more continuous urban areas through the infilling of areas between the earlier urban cores. Quantification of regulating ES in the study catchment was achieved using GIS techniques, in order to gain a spatial dimension of ES distribution (Burkhard et al., 2009). Mapping ecosystem service capacities at a 5×5m resolution involved the use of CORINE land cover data and aerial photographs, available for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012. The resulting land-use maps include 11 land cover classes: equipment and infrastructure, discontinuous urban fabric, continuous urban fabric, natural areas with shrubs and herbaceous plants, softwoods, hardwoods, mixed forest, permanent crops, arable land, bare soil and water bodies. Quantitative assessment of regulating services of these land-use classes was achieved based on interviews with 31 experts. Each expert prepared a matrix using a scale from "0" to "5", where "0" refers to the land cover as having no capacity to provide regulating services, while 5 indicates that the land cover provides a wide range of ecosystem services. A final matrix was prepared based on mean values of all the experts. This matrix was then integrated with the land-use maps of different years to generate a spatially explicit potential ecosystem service supply model. The results showed decreasing ecosystem regulation services over time, mainly due to increasing urban area but also changes on forest types. The methodology used can be easily applied to test distinct urbanization scenarios, thus, providing a valuable support for urban planning.