Science.gov

Sample records for cathedral rapids fault

  1. The Cathedral as Text.

    ERIC Educational Resources Information Center

    Calkins, Robert G.

    1995-01-01

    Characterizes the medieval cathedral as an architectural encyclopedia, expressing the humanistic concerns, beliefs, and aspirations of the period in which it was built. Explains the theological, political, and social significance of the cathedral's architectural characteristics from the floor plan to the spires. Discusses the process and problems…

  2. Rapid detection of small oscillation faults via deterministic learning.

    PubMed

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  3. Megalithic plan underlying canterbury cathedral.

    PubMed

    Borst, L B

    1969-02-07

    Woodhenge and the Trinity chapel, Canterbury, are strikingly similar in outline. One is megalithic, the other Norman Christian over Saxon Christian. An analysis of the geometry shows that both are based on Pythagorean triangles: Woodhenge with sides, 6, 17.5, and 18.5, and Canterbury with sides 12, 72, and 73 in megalithic yards. The structurally more recent eastern end of Canterbury Cathedral may have been built over and around an older megalithic site. The longitudinal axes of the composite cathedral differ by 2 degrees , and these, if aligned on Betelgeuse, would indicate buried megalithic structures dating from 2300, 1900, and 1500 B.C.

  4. Rapid slip of the Gyaring Co fault in Central Tibet

    NASA Astrophysics Data System (ADS)

    Chung, Lingho; Chen, Yue-Gau; Cao, Zhongquan; Yin, Gongming; Kunz, Alexander; Fan, Anchuan; Wu, Tzu-Shuan; Xu, XiWei

    2015-04-01

    The Gyaring Co fault (GCF) is one of a series of active en echelon faults of the Karakoram-Jiali fault zone (KJFZ) in the Central Tibetan Plateau. It has been reported as a dextral fault, striking N50°-60°W at a rate of ca. 10 to 20 mm/yr (Armijo et al. 1989). Another en echelon fault, Beng Co fault (BCF), was located on the 1951 M8 event also implies the possibility of earthquake hazard at GCF. By interpreting high resolution satellite imageries, we are able to remap ~140 fault traces along the GCF. Combining optically stimulated luminescence (OSL) ages with the offset obtained from satellite imagery analysis and field survey, the slip rate along the GCF can be estimated as 12-17 mm/yr since ca. 80 ka. This study also focuses on a section of the western segment of the GCF, where the slip has been recognized to have occurred at 3.0 ± 1.6 m more than 7 times. This ~3 m slip implies MW 7.2-7.4 earthquakes recurring to the western segment in every 200 yrs, while reaching about MW 7.7 if both segments could break at the same time.

  5. Cathedral house & crocker fence, Taylor Street east and north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cathedral house & crocker fence, Taylor Street east and north elevations, perspective view from the northeast - Grace Cathedral, George William Gibbs Memorial Hall, 1051 Taylor Street, San Francisco, San Francisco County, CA

  6. Fault structures in rapidly quenched Ni-Mo binary alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.

    1986-01-01

    Fault structures in two Ni-Mo alloy ribbons (Ni-28 at. pct Mo and Ni-35 at. pct Mo) cast by a free jet chill block melt spinning process were studied. Thin foils for TEM studies were made by electrochemical thinning using an alcohol/butyl cellosolve/perchloric acid mixture in a twin jet electropolishing device. The samples displayed typical grains containing linear faulted regions on the wheelside of the two alloy ribbons. However, an anomalous diffraction behavior was observed upon continuous tilting of the sample: the network of diffraction spots from a single grain appeared to expand or contract and rotate. This anomalous diffraction behavior was explained by assuming extended spike formation at reciprocal lattice points, resulting in a network of continuous rel rods. The validity of the model was confirmed by observations of a cross section of the reciprocal lattice parallel to the rel rods.

  7. Rapid mapping of ultrafine fault zone topography with structure from motion

    USGS Publications Warehouse

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  8. DISTANT VIEW OF ST. FRANCIS DE SALES CATHEDRAL, LOOKING NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISTANT VIEW OF ST. FRANCIS DE SALES CATHEDRAL, LOOKING NORTH ALONG MARTIN LUTHER KING JR. WAY FROM 14TH STREET - St. Francis de Sales Church, 2100 Martin Luther King, Jr. Way, Oakland, Alameda County, CA

  9. Rapid rotations about a vertical axis in a collisional setting revealed by the Palu Fault, Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Stevens, C.; McCaffrey, R.; Bock, Y.; Genrich, J.; Endang, null; Subarya, C.; Puntodewo, S. S. O.; Fauzi, null; Vigny, C.

    Global Positioning System (GPS) measurements from 1992 to 1995 indicate that the left-lateral Palu fault in central Sulawesi slips at a rate of 38±8 mm/a with a locking depth between 2 and 8 km. From the measured slip rate and the historic seismicity of the fault, we estimate that the Palu fault currently has stored enough strain to produce a Mw>7 earthquake. The Palu and other nearby faults accommodate rapid clockwise rotation of nearly 4°/Ma of E Sulawesi relative to eastern Sunda. The rotation of east Sulawesi transfers E-W shortening between the Pacific and Eurasian plates to N-S subduction of the Celebes Basin beneath Sulawesi.

  10. Similar Fracture Patterns in Human Nose and Gothic Cathedral.

    PubMed

    Lee, Shu Jin; Tse, Kwong Ming; Lee, Heow Pueh

    2015-10-01

    This study proposes that the bony anatomy of the human nose and masonry structure of the Gothic cathedral are geometrically similar, and have common fracture patterns. We also aim to correlate the fracture patterns observed in patients' midface structures with those seen in the Gothic cathedral using computational approach. CT scans of 33 patients with facial fractures were examined and compared with computer simulations of both the Gothic cathedral and human nose. Three similar patterns were found: (1) Cracks of the nasal arch with crumpling of the vertical buttresses akin to the damage seen during minor earthquakes; (2) lateral deviation of the central nasal arch and collapse of the vertical buttresses akin to those due to lateral forces from wind and in major earthquakes; and (3) Central arch collapse seen as a result of collapse under excessive dead weight. Interestingly, the finding of occult nasal and septal fractures in the mandible fractures with absence of direct nasal trauma highlights the possibility of transmission of forces from the foundation to the arch leading to structural failure. It was also found that the structural buttresses of the Gothic cathedral delineate the vertical buttresses in the human midface structure. These morphologic similarities between the human nose and Gothic cathedral will serve as a basis to study the biomechanics of nasal fractures. Identification of structural buttresses in a skeletal structure has important implications for reconstruction as reestablishment of structural continuity restores normal anatomy and architectural stability of the human midface structure.

  11. Cathedrals: Stone Upon Stone. Young Discovery Library Series: 24.

    ERIC Educational Resources Information Center

    Gandiol-Coppin, Brigitte

    Part of an international series of amply illustrated, colorful, small size books for children ages 5 to 10, this volume outlines the step-by-step process of building a cathedral in the Middle Ages. Terms are defined and artisan techniques explained for each step on the way to building the edifice. The text also relates the story of how families…

  12. Automated rapid finite fault inversion for megathrust earthquakes: Application to the Maule (2010), Iquique (2014) and Illapel (2015) great earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2016-04-01

    Rapid estimation of the spatial and temporal rupture characteristics of large megathrust earthquakes by finite fault inversion is important for disaster mitigation. For example, estimates of the spatio-temporal evolution of rupture can be used to evaluate population exposure to tsunami waves and ground shaking soon after the event by providing more accurate predictions than possible with point source approximations. In addition, rapid inversion results can reveal seismic source complexity to guide additional, more detailed subsequent studies. This work develops a method to rapidly estimate the slip distribution of megathrust events while reducing subjective parameter choices by automation. The method is simple yet robust and we show that it provides excellent preliminary rupture models as soon as 30 minutes for three great earthquakes in the South-American subduction zone. This may slightly change for other regions depending on seismic station coverage but method can be applied to any subduction region. The inversion is based on W-phase data since it is rapidly and widely available and of low amplitude which avoids clipping at close stations for large events. In addition, prior knowledge of the slab geometry (e.g. SLAB 1.0) is applied and rapid W-phase point source information (time delay and centroid location) is used to constrain the fault geometry and extent. Since the linearization by multiple time window (MTW) parametrization requires regularization, objective smoothing is achieved by the discrepancy principle in two fully automated steps. First, the residuals are estimated assuming unknown noise levels, and second, seeking a subsequent solution which fits the data to noise level. The MTW scheme is applied with positivity constraints and a solution is obtained by an efficient non-negative least squares solver. Systematic application of the algorithm to the Maule (2010), Iquique (2014) and Illapel (2015) events illustrates that rapid finite fault inversion with

  13. A teleseismic study of the 2002 Denali fault, Alaska, earthquake and implications for rapid strong-motion estimation

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.

    2004-01-01

    Slip histories for the 2002 M7.9 Denali fault, Alaska, earthquake are derived rapidly from global teleseismic waveform data. In phases, three models improve matching waveform data and recovery of rupture details. In the first model (Phase I), analogous to an automated solution, a simple fault plane is fixed based on the preliminary Harvard Centroid Moment Tensor mechanism and the epicenter provided by the Preliminary Determination of Epicenters. This model is then updated (Phase II) by implementing a more realistic fault geometry inferred from Digital Elevation Model topography and further (Phase III) by using the calibrated P-wave and SH-wave arrival times derived from modeling of the nearby 2002 M6.7 Nenana Mountain earthquake. These models are used to predict the peak ground velocity and the shaking intensity field in the fault vicinity. The procedure to estimate local strong motion could be automated and used for global real-time earthquake shaking and damage assessment. ?? 2004, Earthquake Engineering Research Institute.

  14. Finite-fault source inversion using teleseismic P waves: Simple parameterization and rapid analysis

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.

    2013-01-01

    We examine the ability of teleseismic P waves to provide a timely image of the rupture history for large earthquakes using a simple, 2D finite‐fault source parameterization. We analyze the broadband displacement waveforms recorded for the 2010 Mw∼7 Darfield (New Zealand) and El Mayor‐Cucapah (Baja California) earthquakes using a single planar fault with a fixed rake. Both of these earthquakes were observed to have complicated fault geometries following detailed source studies conducted by other investigators using various data types. Our kinematic, finite‐fault analysis of the events yields rupture models that similarly identify the principal areas of large coseismic slip along the fault. The results also indicate that the amount of stabilization required to spatially smooth the slip across the fault and minimize the seismic moment is related to the amplitudes of the observed P waveforms and can be estimated from the absolute values of the elements of the coefficient matrix. This empirical relationship persists for earthquakes of different magnitudes and is consistent with the stabilization constraint obtained from the L‐curve in Tikhonov regularization. We use the relation to estimate the smoothing parameters for the 2011 Mw 7.1 East Turkey, 2012 Mw 8.6 Northern Sumatra, and 2011 Mw 9.0 Tohoku, Japan, earthquakes and invert the teleseismic P waves in a single step to recover timely, preliminary slip models that identify the principal source features observed in finite‐fault solutions obtained by the U.S. Geological Survey National Earthquake Information Center (USGS/NEIC) from the analysis of body‐ and surface‐wave data. These results indicate that smoothing constraints can be estimated a priori to derive a preliminary, first‐order image of the coseismic slip using teleseismic records.

  15. The Sagrada Familia Cathedral where Gaudi envisaged his bell music

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Shigeru; Narita, Takafumi

    2004-05-01

    The Sagrada Familia Cathedral in Barcelona, Spain was constructed in 1882. According to Antoni Gaudi, who worked over its grand plan, the Cathedral was supposed to be a huge musical instrument as a whole in the event of completion. As as result, the music of bells was expected to echo through the air of Barcelona from the belfries. However, Gaudi's true intention cannot be exactly known because the materials prepared by him were destroyed by war fire. If his idea of the Sagrada Familia as an architechtural music instrument is true, an acoustical balance should be considered between the roles of the Cathedral: bell music from the belfries and quiet service in the chapel. Basic structure of the Sagrada Familia seems to be an ensemble of twin towers. Following such speculation, we made a simplified acrylic 1/25-scale model of the lower structure of a twin tower located at the left side of the Birth Gate. The higher structure of this twin tower corresponds to the pinnacle where the bells should be arranged. The lower structure (about 43 m in actual height) has five passages connecting two towers. One of two towers includes five or six tandem columns whose ends are both squeezed to about 1.5 m in diameter. These columns seem to function as a kind of muffler. The location and shape of the roof over the nave is indefinite and tentatively supposed at the top of the lower structure. Based on our scale model, acoustical characteristics of the lower twin-tower structure as a muffler and acoustical differences between the exterior field and nave field will be reported and discussed.

  16. "Friends" of Anglican Cathedrals: Norms and Values. Befriending, Friending or Misnomer?

    ERIC Educational Resources Information Center

    Muskett, Judith A.

    2013-01-01

    Loyal supporters of Anglican cathedrals first subscribed to "Friends" associations in the late 1920s. Yet, in 1937, a journalist in "The Times" portrayed cathedrals as a "queer thing to be a friend of." Drawing on theories of friendship from a range of disciplines, and surveys of what has been proclaimed in the public…

  17. Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Elliott, J. R.; Li, Z.; Parsons, B.

    2013-07-01

    We have measured interseismic deformation across the Ashkabad strike-slip fault using 13 Envisat interferograms covering a total effective timespan of ˜30 years. Atmospheric contributions to phase delay are significant and variable due to the close proximity of the Caspian Sea. In order to retrieve the pattern of strain accumulation, we show it is necessary to use data from Envisat's Medium-Resolution Imaging Spectrometer (MERIS) instrument, as well as numerical weather model outputs from the European Centre for Medium-Range Weather Forecasts (ECMWF), to correct interferograms for differences in water vapor and atmospheric pressure, respectively. This has enabled us to robustly estimate the slip rate and locking depth for the Ashkabad fault using a simple elastic dislocation model. Our data are consistent with a slip rate of 5-12 mm/yr below a locking depth of 5.5-17 km for the Ashkabad fault, and synthetic tests support the magnitude of the uncertainties on these estimates. Our estimate of slip rate is 1.25-6 times higher than some previous geodetic estimates, with implications for both seismic hazard and regional tectonics, in particular supporting fast relative motion between the South Caspian Block and Eurasia. This result reinforces the importance of correcting for atmospheric contributions to interferometric phase for small strain measurements. We also attempt to validate a recent method for atmospheric correction based on ECMWF ERA-Interim model outputs alone and find that this technique does not work satisfactorily for this region when compared to the independent MERIS estimates.

  18. Rapid, decimeter-resolution fault zone topography mapped with Structure from Motion

    NASA Astrophysics Data System (ADS)

    Johnson, K. L.; Nissen, E.; Saripalli, S.; Arrowsmith, R.; McGarey, P.; Scharer, K. M.; Williams, P. L.

    2013-12-01

    Recent advances in the generation of high-resolution topography have revolutionized our ability to detect subtle geomorphic features related to ground-rupturing earthquakes. Currently, the most popular topographic mapping methods are airborne Light Detection And Ranging (LiDAR) and terrestrial laser scanning (TLS). Though powerful, these laser scanning methods have some inherent drawbacks: airborne LiDAR is expensive and can be logistically complicated, while TLS is time consuming even for small field sites and suffers from patchy coverage due to its restricted field-of-view. An alternative mapping technique, called Structure from Motion (SfM), builds upon traditional photogrammetry to reproduce the topography and texture of a scene from photographs taken at varying viewpoints. The improved availability of cheap, unmanned aerial vehicles (UAVs) as camera platforms further expedites data collection by covering large areas efficiently with optimal camera angles. Here, we introduce a simple and affordable UAV- or balloon-based SfM mapping system which can produce dense point clouds and sub-decimeter resolution digital elevation models (DEMs) registered to geospatial coordinates using either the photograph's GPS tags or a few ground control points across the scene. The system is ideally suited for studying ruptures of prehistoric, historic, and modern earthquakes in areas of sparse or low-lying vegetation. We use two sites from southern California faults to illustrate. The first is the ~0.1 km2 Washington Street site, located on the Banning strand of the San Andreas fault near Thousand Palms. A high-resolution DEM with ~700 point/m2 was produced from 230 photos collected on a balloon platform flying at 50 m above the ground. The second site is the Galway Lake Road site, which spans a ~1 km strip of the 1992 Mw 7.3 Landers earthquake on the Emerson Fault. The 100 point/m2 DEM was produced from 267 photos taken with a balloon platform at a height of 60 m above the ground

  19. The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile

    USGS Publications Warehouse

    Wicks, C.; De La, Llera; Lara, L.E.; Lowenstern, J.

    2011-01-01

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile’s southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  20. The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.

    PubMed

    Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob

    2011-10-19

    Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.

  1. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance

    USGS Publications Warehouse

    Pierce, W.G.

    1979-01-01

    extending upward for several tens of meters. North of Republic Mountain a small 25-m-high upper-plate mass, brecciated to some degree throughout, apparently moved some distance along the Heart Mountain fault as brecciated rock. Calcibreccia dikes intrude upward from the underlying 2 m of fault breccia into the lower part of the mass and also from its top into the overlying volcanic rocks; an earthquake-related mechanism most likely accounts for the observed features of this deformed body. Calcibreccia dikes are more common within the bedding-plane phase of the Heart Mountain fault but also occur in its transgressive and former land-surface phases. Evidence that the Wapiti Formation almost immediately buried loose, unconsolidated fault breccia that was the source of the dike rock strongly suggests a rapid volcanic deposition over the area in which clastic dikes occur, which is at least 75 km long. Clastic dikes were injected into both the upper-plate and the volcanic rocks at about the same time, after movement on the Heart Mouuntain fault had ceased, and therefore do not indicate a fluid-flotation mechanism for the Heart Mountain fault. The difference between contacts of the clastic dikes with both indurated and unconsolidated country rock is useful in field mapping at localities where it is difficult to distinguish between volcanic rocks of the Cathedral Cliffs and Lamar River Formations, and the Wapiti Formation. Thus, calcibreccia dikes in the Cathedral Cliffs and Lamar River Formations show a sharp contact because the country rock solidified prior to fault movement, whereas calcibreccia dikes in the Wapiti Formation in many instances show a transitional or semifluid contact because the country rock was still unconsolidated or semifluid at the time of dike injection.

  2. Rapid Slip-Rate and Low Shear Strength of a High Finite-Slip Low-Angle Normal Fault: Normanby Island, Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Little, T. A.; Monteleone, B.; Baldwin, S. L.; Fitzgerald, P. G.

    2006-12-01

    juxtapose them against wider rheologic domains containing more uniform-strength normal faults of smaller offset. The rapidly exhumed mylonites are ideal candidates for recrystallised grain-size paleopiezometry on quartz. The calibration of Stipp and Tullis (2003) was applied to 7 samples to obtain flow stress estimates of 27 ±7 MPa (1σ). We infer that these record differential stress at the time of quenching-in of the fabrics, when they were overprinted by extension gashes near the brittle-ductile transition. For assumed depths of >8 km, these observations require pore fluid pressure ratios >0.85. Prolonged, rapid slip on the Normanby Island fault at low dip was thus assisted by high fluid pressure, perhaps in response to the discharge of hot metamorphic fluids at depth. Because the detachment fault is inferred to reactivate the base of the Papuan ultramafic body, talc-serpentine gouge may also have contributed an intrinsic frictional weakness to this low-angle fault.

  3. Epiphanic Awakenings in Raymond Carver's "Cathedral" and Alice Walker's "Everyday Use"

    ERIC Educational Resources Information Center

    Sadeq, Ala Eddin; Al-Badawi, Mohammed

    2016-01-01

    This paper explores how two short stories from very different backgrounds conclude in a significant epiphany for the characters. Raymond Carver's short story "Cathedral" and Alice Walker's "Everyday Use" are studied to see how the husband in Carver's work is blinder than his visually-impaired overnight guest, and the…

  4. Unusual Rebuilding Method of Historic St Mary's Cathedral in the Capital of Western Australia

    NASA Astrophysics Data System (ADS)

    Wysokowski, Adam

    2016-06-01

    St Mary's Cathedral is the Archbishop church of the Archdiocese in Perth in Western Australia. The presented sacral building was built in neo-Gothic style during the years 1863-1865. Cathedral was officially dedicated and opened for the service on 29th January, 1865. In 1973 was proclaimed the Marian Sanctuary and now represents one of the largest religious facilities in Perth. In 2005, the city authorities, together with the Archdiocese took a collective decision on the necessity of a comprehensive renovation of this sacred object. The renovation was due to the technical condition and the lack of usability of the object. The author of the paper had the opportunity to experience these problems by visiting this place several times, first time in 1989 and next years. Thus, the renovation of the present Cathedral was in its assumption not only to perform maintenance of the building and its specific architectural elements but also to increase its functional features - usable for the faithful and tourists. Reconstruction of St Mary's Cathedral in Perth can be a good example increasing the wider functionality of such facilities while keeping their antique and historical qualities. In this paper the above-mentioned issues will be more widely developed by the author.

  5. An App for the Cathedral in Freiberg--An Interdisciplinary Project Seminar

    ERIC Educational Resources Information Center

    Kröber, Cindy; Münster, Sander

    2014-01-01

    This project seminar aims at creating and evaluating a manual for interdisciplinary projects as part of a learning process. Working together, pedagogies and students from different disciplines assess tools and recommendations for successful collaborations while developing an app for the cathedral in Freiberg. As part of the project the students…

  6. The Grammar School at the Cathedral of the Canary Islands (1563-1851)

    ERIC Educational Resources Information Center

    Vera-Cazorla, Maria Jesus

    2013-01-01

    From 1563 until the death of the last teacher in 1851, there was a prebendary in the Cathedral of the Canary Islands in charge of the education of children. In fact, it could be said that this prebendary was the only continuous secondary school teacher there was in the Canary Islands until the beginning of the nineteenth century when the High…

  7. Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion

    NASA Astrophysics Data System (ADS)

    Tinti, E.; Scognamiglio, L.; Michelini, A.; Cocco, M.

    2016-10-01

    On 24 August 2016 a magnitude ML 6.0 occurred in the Central Apennines (Italy) between Amatrice and Norcia causing nearly 300 fatalities. The main shock ruptured a NNW-SSE striking, WSW dipping normal fault. We invert waveforms from 26 three-component strong motion accelerometers, filtered between 0.02 and 0.5 Hz, within 45 km from the fault. The inferred slip distribution is heterogeneous and characterized by two shallow slip patches updip and NW from the hypocenter, respectively. The rupture history shows bilateral propagation and a relatively high rupture velocity (3.1 km/s). The imaged rupture history produced evident directivity effects both N-NW and SE of the hypocenter, explaining near-source peak ground motions. Fault dimensions and peak slip values are large for a moderate-magnitude earthquake. The retrieved rupture model fits the recorded ground velocities up to 1 Hz, corroborating the effects of rupture directivity and slip heterogeneity on ground shaking and damage pattern.

  8. The effect of air pollution on the stone decay of the Cologne Cathedral

    NASA Astrophysics Data System (ADS)

    Graue, B.; Siegesmund, S.; Licha, T.; Simon, K.; Oyhantcabal, P.; Middendorf, B.

    2012-04-01

    Different building stones of the Cologne Cathedral show a large variation of weathering phenomena. The Drachenfels trachyte, which was the construction material for the medieval part of the cathedral, shows significant surface deterioration, back-weathering coexisting with flaking, crumbling or the massive formation of gypsum crusts. Wolff (1992) first mentioned the negative interferences between the Schlaitdorfer sandstone and the Londorfer basalt lava or the Drachenfels trachyte and the Krensheimer muschelkalk. Crust formation on limestone, sandstone, and volcanic rock from the Cologne Cathedral as well as from the Xanten and Altenberg Cathedral are investigated. These three buildings are located in different areas and exposed to varying industrial, urban, and rural environmental situations. The material investigated range from dark grey to black framboidal crusts. This 3 to 10 mm thick cauliflower-like form of gypsum crust incorporates particles from the pollution fluxes. It covers the stone surface and mainly occurs at sites protected from wind and direct rain. Secondly, thin laminar black crusts trace the stone surface and may cover complete sections of the building's structure not necessarily preferring protected sites. This kind of crust seems to have very strong bonds between the thin black crust and the stone surface. Major and trace element distribution show an enrichment of sulfur, indicating the presence of gypsum, lead and other typical pollutants (arsenic, antimony, bismuth, tin etc.), which generally can be linked to traffic and industry. This indicates that even though the SO2 emission has decreased due to i.e. stronger regulations of waste incineration plants and the ban of leaded petrol, the pollutants are still present in the crusts on the building stones. From systematic SEM observations it becomes evident that the total amount of pollution is less pronounced in the Altenberg and Xanten Cathedrals as compared with the Cologne Cathedral. The

  9. Rapid estimation of fault parameters for tsunami warning along the Mexican subduction zone based on real-time GPS (Invited)

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Melgar, D.; Cruz Atienza, V. M.; Iglesias, A.; Hjorleifsdottir, V.

    2013-12-01

    A reliable and robust tsunami early warning is now possible thanks to the availability of real-time GPS data. With few assumptions regarding the characteristics of the geometry of the subduction interface (dip, width of the seismogenic zone, and maximum depth of the seismically-coupled interface), we can estimate the length, L, and the width, W, of the rupture, as well as its downdip extension, C (Singh et al., 2008; 2012). These are estimated from the amplitude of the observed horizontal displacement along the coast and its fall off with distance, as well as the polarity of the vertical displacement. Based on Okada's (1992) model, we compute the slip D on the fault, to finally obtain the seismic moment, Mo. Pérez-Campos et al. (2013) showed the feasibility of such tsunami early warning for the Mexican subduction zone. Mo could be obtained in ~2 min after origin time from a dense distribution of real-time high-rate GPS stations along the coast. However, the current GPS network is sparse. Despite this, a robust estimate of magnitude Mw can be obtained. For this work, we perform sensitivity tests for Mw and position of the fault with respect to the trench.

  10. Listener perception of and acoustic differences between girl and boy choristers in an English cathedral choir

    NASA Astrophysics Data System (ADS)

    Howard, David; Welch, Graham

    2005-09-01

    For centuries, boy choristers have been singing the top (treble) line in English cathedrals. Girl choristers were first admitted in 1991, and there is a long-running debate as to whether they can carry out this role appropriately. This paper will detail the results from two listening experiments designed to establish whether or not listeners can tell the difference between girl and boy choristers singing the top line in cathedral music. In the first experiment, 189 listeners took part and on average they were able to tell the difference 60% of the time; this was statistically significant over chance. The results suggested that repertoire played a significant part in this ability, and the second experiment was carried out in which the boys and girls sang the same repertoire. Nearly 170 listeners have completed this experiment and, on average, they are making guesses (correct 52% of the time). The paper will discuss the acoustic differences between the stimuli with respect to the singing of boy and girl choristers, while placing the discussion in the context of the English cathedral tradition.

  11. Innovative 3D information system for the restoration and preventive maintenance plan of the Milan Cathedral

    NASA Astrophysics Data System (ADS)

    Giunta, Giuseppe G.; Di Paola, Eleonora; Morlin Visconti Castiglione, Benigno

    2004-02-01

    The restoration and maintenance of architecturally complex monuments need advanced tools for helping the definition of the working plan and for storing analysing and updating all the data produced. In the case of the Gothic Milan Cathedral a three-dimensional metric support has been developed. It comprises several oriented and connected stereoscopic models which makes it possible, through the stereoscopic vision, to navigate through several photograms, to accurately measure the dimension of architectural details, to draw structures with a millimeter precision. In this way a 3D-CAD model of the facade and of the internal walls of the Milan Cathedral have been created. On those vectorial models, it is possible to insert photos, documents, characterisation data and even to draw thematic maps. For instance, the load bearing structures maps have been realised after a GPR (Ground Penetrating Radar) structural survey. These maps provide structural information (e.g. fractures, block thickness and status, lessons, etc.) extremely useful for planning the restoration and maintenance work. The photogrammetric survey has been proceeded by a 3D laser scanning survey, necessary for providing a preliminary model for planning the work until the complete elaboration of the stereoscopic model. All the data have been updated in the georeferenced and integrated 3D data base of the Cathedral, which now constitutes the necessary support for defining the specific operations.

  12. The transmission of masticatory forces and nasal septum: structural comparison of the human skull and Gothic cathedral.

    PubMed

    Hilloowala, Rumy; Kanth, Hrishi

    2007-07-01

    This study extrapolates the transmission of masticatory forces to the cranium based on the architectural principles of Gothic cathedrals. The most significant finding of the study, obtained by analysis of coronal CT scans, is the role of the hard palate, and especially the vomer and the perpendicular plate of the ethmoid in masticatory force transmission. The study also confirms, experimentally, the paths of masticatory forces, cited in literature but based purely on morphological observations. Human skulls and Gothic cathedrals have similar morphological and functional characteristics. The load exerted by the roof of the cathedral is transmitted to the ground by piers and buttresses. These structures also resist the shearing forces exerted by high winds. Similarly, the mid-facial bones of the skull transmit the vertical as well as the lateral masticatory forces from the maxillary dentition to the skull base. The nonload bearing walls and stained glass windows of the cathedral correspond to the translucent wall of the maxilla. The passageway between the aisle and the nave of the cathedral is equivalent to the meatal openings in the lateral wall of the nasal cavity.

  13. Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral

    NASA Astrophysics Data System (ADS)

    Grave, J.; Krage, L.; Lusis, R.; Vitina, I.

    2011-12-01

    The construction of Riga Dome Cathedral and its Capithullum hall were initiated in 1211. Through centuries they were damaged a lot due to migration of soluble salts and moisture. During the last restoration (1888-1891) a lot of mistakes were conceded and subsequently some of probable solutions for restoration were unsuccessful. In 2009 the new restoration stage in Capithullum hall was started. Two types of desalination methods were used in hall - desalination with lime-sand plaster and poultice of lignin. Both quantitative and semiquantitative chemical analyses were performed in order to appreciate the desalination process.

  14. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    PubMed Central

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-01-01

    The western sector of the Qinling–Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous “Yanshanian” intracontinental tectonics and Cenozoic lateral escape triggered by India–Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U–Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U–Th–Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India–Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India–Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau. PMID:27065503

  15. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift.

    PubMed

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-03-17

    The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers ((40)Ar/(39)Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

  16. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift

    NASA Astrophysics Data System (ADS)

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-03-01

    The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

  17. Interacting faults

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2017-04-01

    The way that faults interact with each other controls fault geometries, displacements and strains. Faults rarely occur individually but as sets or networks, with the arrangement of these faults producing a variety of different fault interactions. Fault interactions are characterised in terms of the following: 1) Geometry - the spatial arrangement of the faults. Interacting faults may or may not be geometrically linked (i.e. physically connected), when fault planes share an intersection line. 2) Kinematics - the displacement distributions of the interacting faults and whether the displacement directions are parallel, perpendicular or oblique to the intersection line. Interacting faults may or may not be kinematically linked, where the displacements, stresses and strains of one fault influences those of the other. 3) Displacement and strain in the interaction zone - whether the faults have the same or opposite displacement directions, and if extension or contraction dominates in the acute bisector between the faults. 4) Chronology - the relative ages of the faults. This characterisation scheme is used to suggest a classification for interacting faults. Different types of interaction are illustrated using metre-scale faults from the Mesozoic rocks of Somerset and examples from the literature.

  18. 3-DIMENSIONAL Geometric Survey and Structural Modelling of the Dome of Pisa Cathedral

    NASA Astrophysics Data System (ADS)

    Aita, D.; Barsotti, R.; Bennati, S.; Caroti, G.; Piemonte, A.

    2017-02-01

    This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature.

  19. 3D modeling of the Strasbourg's Cathedral basements for interdisciplinary research and virtual visits

    NASA Astrophysics Data System (ADS)

    Landes, T.; Kuhnle, G.; Bruna, R.

    2015-08-01

    On the occasion of the millennium celebration of Strasbourg Cathedral, a transdisciplinary research group composed of archaeologists, surveyors, architects, art historians and a stonemason revised the 1966-1972 excavations under the St. Lawrence's Chapel of the Cathedral having remains of Roman and medieval masonry. The 3D modeling of the Chapel has been realized based on the combination of conventional surveying techniques for the network creation, laser scanning for the model creation and photogrammetric techniques for the texturing of a few parts. According to the requirements and the end-user of the model, the level of detail and level of accuracy have been adapted and assessed for every floor. The basement has been acquired and modeled with more details and a higher accuracy than the other parts. Thanks to this modeling work, archaeologists can confront their assumptions to those of other disciplines by simulating constructions of other worship edifices on the massive stones composing the basement. The virtual reconstructions provided evidence in support of these assumptions and served for communication via virtual visits.

  20. Crowning the Cathedral of Florence: Brunelleschi Builds His Dome. A Unit of Study for Grades 7-10.

    ERIC Educational Resources Information Center

    Symcox, Linda

    This unit focuses on a dramatic moment in the Renaissance from about 1420 when Filippo Brunelleschi single handedly created, defined, and engineered a new architecture by building the great dome of the cathedral of Santa Maria del Fiore in Florence. The dome became the symbol of Florence's grandeur during the Renaissance, and a model for great…

  1. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  2. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  3. Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981

    SciTech Connect

    Welch, K.M.

    1981-01-01

    The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

  4. Monitoring of the Heat and Moisture Transport through Walls of St. Martin Cathedral Tower in Bratislava

    NASA Astrophysics Data System (ADS)

    Kubičár, Ľudovít; Hudec, Ján; Fidríková, Danica; Štofanik, Vladimír; Dieška, Peter; Vretenár, Viliam

    2014-05-01

    Historic monuments are subject to degradation due to exposition to surrounding meteorological conditions and groundwater. Construction of buildings consists of the plaster and material components that have porous structure. Processes like heat transport, moisture diffusion, moisturizing and drying; freezing and thawing can be found in such structures depending on environmental conditions. Monitoring of the temperature - moisture regime gives a picture on the processes running in the structure. Long term monitoring of the tower of St. Martin Cathedral in Bratislava have been performed under window sill of the belfry in exterior in south orientation. Principle of the hot-ball method is used for monitoring of the temperature and thermal conductivity. The thermal conductivity of the porous system depends on the pore content. Moisture sensors are constructed from the parent material in a form of cylinder. Sensors are calibrated for dry and water saturated stage prior installation in the walls. Monitoring has been carried out in plaster and in the masonry in a distance about 10 cm from the wall surface, where sensors are installed. Information on temperature, moisture and thermal conductivity can be gained from measured signal. Use of two sensors allows estimation on heat and moisture transport through the wall. Monitoring has been performed in the period from April 2013 up to July 2013. Monitored data are correlated to the meteorological data. Details of various effects will be discussed.

  5. Fault Branching

    NASA Astrophysics Data System (ADS)

    Dmowska, R.; Rice, J. R.; Poliakov, A. N.

    2001-12-01

    Theoretical stress analysis for a propagating shear rupture suggests that the propensity of the rupture path to branch is determined by rupture speed and by the preexisting stress state. See Poliakov, Dmowska and Rice (JGR, submitted April 2001, URL below). Deviatoric stresses near a mode II rupture tip are found to be much higher to both sides of the fault plane than directly ahead, when rupture speed becomes close to the Rayleigh speed. However, the actual pattern of predicted Coulomb failure on secondary faults is strongly dependent on the angle between the fault and the direction of maximum compression Smax in the pre-stress field. Steep Smax angles lead to more extensive failure on the extensional side, whereas shallow angles give comparable failure regions on both. Here we test such concepts against natural examples. For crustal thrust faults we may assume that Smax is horizontal. Thus nucleation on a steeply dipping plane, like the 53 ° dip for the 1971 San Fernando earthquake, is consistent with rupture path kinking to the extensional side, as inferred. Nucleation on a shallow dip, like for the 12 ° -18 ° of the 1985 Kettleman Hills event, should activate both sides, as seems consistent with aftershock patterns. Similarly, in a strike slip example, Smax is inferred to be at approximately 60 ° with the Johnson Valley fault where it branched to the extensional side onto the Landers-Kickapoo fault in the 1992 event, and this too is consistent. Further, geological examination of the activation of secondary fault features along the Johnson Valley fault and the Homestead Valley fault consistently shows that most activity occurs on the extensional side. Another strike-slip example is the Imperial Valley 1979 earthquake. The approximate Smax direction is north-south, at around 35 ° with the main fault, where it branched, on the extensional side, onto Brawley fault, again interpretable with the concepts developed.

  6. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  7. Fault mechanics

    SciTech Connect

    Segall, P. )

    1991-01-01

    Recent observational, experimental, and theoretical modeling studies of fault mechanics are discussed in a critical review of U.S. research from the period 1987-1990. Topics examined include interseismic strain accumulation, coseismic deformation, postseismic deformation, and the earthquake cycle; long-term deformation; fault friction and the instability mechanism; pore pressure and normal stress effects; instability models; strain measurements prior to earthquakes; stochastic modeling of earthquakes; and deep-focus earthquakes. Maps, graphs, and a comprehensive bibliography are provided. 220 refs.

  8. Linking groundwater pollution to the decay of 15th-century sculptures in Burgos Cathedral (northern Spain).

    PubMed

    Gázquez, Fernando; Rull, Fernando; Medina, Jesús; Sanz-Arranz, Aurelio; Sanz, Carlos

    2015-10-01

    Precipitation of salts-mainly hydrated Mg-Na sulfates-in building materials is rated as one of the most severe threats to the preservation of our architectural and cultural heritage. Nevertheless, the origin of this pathology is still unknown in many cases. Proper identification of the cause of damage is crucial for correct planning of future restoration actions. The goal of this study is to identify the source of the degradation compounds that are affecting the 15th-century limestone sculptures that decorate the retro-choir of Burgos Cathedral (northern Spain). To this end, detailed characterization of minerals by in situ (Raman spectroscopy) and laboratory techniques (XRD, Raman and FTIR) was followed by major elements (ICP and IC) and isotopic analysis (δ(34)S and δ(15)N) of both the mineral phases precipitated on the retro-choir and the dissolved salts in groundwater in the vicinity of the cathedral. The results reveal unequivocal connection between the damage observed and capillary rise of salts-bearing water from the subsoil. The multianalytical methodology used is widely applicable to identify the origin of common affections suffered by historical buildings and masterpieces.

  9. The Cathedral of St. Giorgio in Ragusa Ibla (Italy): a case study of the use of protective products

    NASA Astrophysics Data System (ADS)

    Barone, Germana; Campani, Elisa; Casoli, Antonella; La Russa, Mauro Francesco; Lo Giudice, Antonino; Mazzoleni, Paolo; Pezzino, Antonino

    2008-06-01

    The Cathedral of St. Giorgio in Ragusa Ibla like the majority of historic buildings in the Ragusa area is constructed mainly from locally outcropping calcarenite belonging to the Ragusa Formation. Through the years, the cathedral has undergone diverse restoration procedures using different protective products , the nature of which was determined by means of Fourier transform infrared spectroscopy (FT-IR) and gas chromatography coupled with mass spectrometry (GC MS). Regardless of these interventions, the materials used today are still subject to diverse forms of alterations and degradation (alveolitation, differential degradation, decohesions, chromatic alterations and the formation of biological patinas correlated to lichen activity), which cause considerable damage to the façade. In this paper, three protective products were tested on the calcarenite of the Ragusa Formation taken from a quarry: a fluorurated elastomer , a fluorurated anionic polyurethane and linseed oil. The protective efficiency was determined, after undergoing UV radiation aging by means of capillary water absorption, porosimetric and colorimetric procedures. The results highlighted a good and persistent protective capability of both the elastomer and the fluorurated polyurethane, whereas, the linseed oil not only provoked strong chromatic variations but also quickly lost its hydro-repellant capacity with aging.

  10. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    SciTech Connect

    Boles, James

    2013-05-24

    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  11. Monitoring Heritage Buildings with Open Source Hardware Sensors: A Case Study of the Mosque-Cathedral of Córdoba.

    PubMed

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Meroño de Larriva, Jose Emilio; Ortíz Cordero, Rafael; Hidalgo Fernández, Rafael Enrique; García-Ferrer, Alfonso

    2016-09-29

    A number of physical factors can adversely affect cultural heritage. Therefore, monitoring parameters involved in the deterioration process, principally temperature and relative humidity, is useful for preventive conservation. In this study, a total of 15 microclimate stations using open source hardware were developed and stationed at the Mosque-Cathedral of Córdoba, which is registered with UNESCO for its outstanding universal value, to assess the behavior of interior temperature and relative humidity in relation to exterior weather conditions, public hours and interior design. Long-term monitoring of these parameters is of interest in terms of preservation and reducing the costs of future conservation strategies. Results from monitoring are presented to demonstrate the usefulness of this system.

  12. Monitoring Heritage Buildings with Open Source Hardware Sensors: A Case Study of the Mosque-Cathedral of Córdoba

    PubMed Central

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Meroño de Larriva, Jose Emilio; Ortíz Cordero, Rafael; Hidalgo Fernández, Rafael Enrique; García-Ferrer, Alfonso

    2016-01-01

    A number of physical factors can adversely affect cultural heritage. Therefore, monitoring parameters involved in the deterioration process, principally temperature and relative humidity, is useful for preventive conservation. In this study, a total of 15 microclimate stations using open source hardware were developed and stationed at the Mosque-Cathedral of Córdoba, which is registered with UNESCO for its outstanding universal value, to assess the behavior of interior temperature and relative humidity in relation to exterior weather conditions, public hours and interior design. Long-term monitoring of these parameters is of interest in terms of preservation and reducing the costs of future conservation strategies. Results from monitoring are presented to demonstrate the usefulness of this system. PMID:27690056

  13. Geophysics: a moving fluid pulse in a fault zone.

    PubMed

    Haney, Matthew M; Snieder, Roel; Sheiman, Jon; Losh, Steven

    2005-09-01

    In the Gulf of Mexico, fault zones are linked with a complex and dynamic system of plumbing in the Earth's subsurface. Here we use time-lapse seismic-reflection imaging to reveal a pulse of fluid ascending rapidly inside one of these fault zones. Such intermittent fault 'burping' is likely to be an important factor in the migration of subsurface hydrocarbons.

  14. A new intelligent hierarchical fault diagnosis system

    SciTech Connect

    Huang, Y.C.; Huang, C.L.; Yang, H.T.

    1997-02-01

    As a part of a substation-level decision support system, a new intelligent Hierarchical Fault Diagnosis System for on-line fault diagnosis is presented in this paper. The proposed diagnosis system divides the fault diagnosis process into two phases. Using time-stamped information of relays and breakers, phase 1 identifies the possible fault sections through the Group Method of Data Handling (GMDH) networks, and phase 2 recognizes the types and detailed situations of the faults identified in phase 1 by using a fast bit-operation logical inference mechanism. The diagnosis system has been practically verified by testing on a typical Taiwan power secondary transmission system. Test results show that rapid and accurate diagnosis can be obtained with flexibility and portability for fault diagnosis purpose of diverse substations.

  15. Ground-penetrating radar investigation of St. Leonard's Crypt under the Wawel Cathedral (Cracow, Poland) - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Benedetto, Andrea; Pajewski, Lara; Dimitriadis, Klisthenis; Avlonitou, Pepi; Konstantakis, Yannis; Musiela, Małgorzata; Mitka, Bartosz; Lambot, Sébastien; Żakowska, Lidia

    2016-04-01

    The Wawel ensemble, including the Royal Castle, the Wawel Cathedral and other monuments, is perched on top of the Wawel hill immediately south of the Cracow Old Town, and is by far the most important collection of buildings in Poland. St. Leonard's Crypt is located under the Wawel Cathedral of St Stanislaus BM and St Wenceslaus M. It was built in the years 1090-1117 and was the western crypt of the pre-existing Romanesque Wawel Cathedral, so-called Hermanowska. Pope John Paul II said his first Mass on the altar of St. Leonard's Crypt on November 2, 1946, one day after his priestly ordination. The interior of the crypt is divided by eight columns into three naves with vaulted ceiling and ended with one apse. The tomb of Bishop Maurus, who died in 1118, is in the middle of the crypt under the floor; an inscription "+ MAVRVS EPC MCXVIII +" indicates the burial place and was made in 1938 after the completion of archaeological works which resulted in the discovery of this tomb. Moreover, the crypt hosts the tombs of six Polish kings and heroes: Michał Korybut Wiśniowiecki (King of the Polish-Lithuanian Commonwealth), Jan III Sobieski (King of the Polish-Lithuanian Commonwealth and Commander at the Battle of Vienna), Maria Kazimiera (Queen of the Polish-Lithuanian Commonwealth and consort to Jan III Sobieski), Józef Poniatowski (Prince of Poland and Marshal of France), Tadeusz Kościuszko (Polish general, revolutionary and a Brigadier General in the American Revolutionary War) and Władysław Sikorski (Prime Minister of the Polish Government in Exile and Commander-in-Chief of the Polish Armed Forces). The adjacent six crypts and corridors host the tombs of the other Polish kings, from Sigismund the Old to Augustus II the Strong, their families and several Polish heroes. In May 2015, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" organised and offered a Training School (TS) on the

  16. Synthetic Consolidants Attacked by Melanin-Producing Fungi: Case Study of the Biodeterioration of Milan (Italy) Cathedral Marble Treated with Acrylics▿

    PubMed Central

    Cappitelli, Francesca; Nosanchuk, Joshua D.; Casadevall, Arturo; Toniolo, Lucia; Brusetti, Lorenzo; Florio, Sofia; Principi, Pamela; Borin, Sara; Sorlini, Claudia

    2007-01-01

    Monuments and artistic stone surfaces are often consolidated and protected with synthetic polymers, in particular, acrylics. Although it is generally thought that acrylic polymers are resistant to biodeterioration, we report for the first time the systematic occurrence of dematiaceous meristematic fungi on many marble samples of the cathedral in Milan (Italy) previously treated with this material. Fourier transform infrared spectroscopy applied to the Milan cathedral stone samples revealed characteristic features of biodeteriorated synthetic resins that differentiated them from the aged but nonbiodeteriorated samples. Samples showing biological colonization were analyzed for the presence of fungi. Cultivation and morphological characterization and methods independent from cultivation, such as denaturing gradient gel electrophoresis coupled with partial 18S rRNA gene sequencing and immunofluorescence staining with melanin-binding antibodies, showed that melanin-producing species are heavily present on stone surfaces protected with acrylic resins. This observation raises the question of the effectiveness of acrylics in protecting stone artworks. PMID:17071788

  17. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture.

    PubMed

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-14

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT.

  18. Application of Fault Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of Things (IoT) for Aquaculture

    PubMed Central

    Chen, Yingyi; Zhen, Zhumi; Yu, Huihui; Xu, Jing

    2017-01-01

    In the Internet of Things (IoT) equipment used for aquaculture is often deployed in outdoor ponds located in remote areas. Faults occur frequently in these tough environments and the staff generally lack professional knowledge and pay a low degree of attention in these areas. Once faults happen, expert personnel must carry out maintenance outdoors. Therefore, this study presents an intelligent method for fault diagnosis based on fault tree analysis and a fuzzy neural network. In the proposed method, first, the fault tree presents a logic structure of fault symptoms and faults. Second, rules extracted from the fault trees avoid duplicate and redundancy. Third, the fuzzy neural network is applied to train the relationship mapping between fault symptoms and faults. In the aquaculture IoT, one fault can cause various fault symptoms, and one symptom can be caused by a variety of faults. Four fault relationships are obtained. Results show that one symptom-to-one fault, two symptoms-to-two faults, and two symptoms-to-one fault relationships can be rapidly diagnosed with high precision, while one symptom-to-two faults patterns perform not so well, but are still worth researching. This model implements diagnosis for most kinds of faults in the aquaculture IoT. PMID:28098822

  19. a case of casing deformation and fault slip for the active fault drilling

    NASA Astrophysics Data System (ADS)

    Ge, H.; Song, L.; Yuan, S.; Yang, W.

    2010-12-01

    slip would lead to casing deformation and wellbore instability when drilling through active fault. The Wenchuan Fault Scientific Drilling(WFSD)is a new effort of rapid response survey to the earthquake active fault. This issue should be taken into account for the active fault drilling design.

  20. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  1. The Cathedral of S. Giorgio in Ragusa Ibla (Italy): characterization of construction materials and their chromatic alteration

    NASA Astrophysics Data System (ADS)

    Barone, Germana; La Russa, Mauro Francesco; Lo Giudice, Antonino; Mazzoleni, Paolo; Pezzino, Antonino

    2008-08-01

    The Cathedral of St. Giorgio in Ragusa Ibla (Sicily) is one of the most important Baroque monuments of eastern Sicily. The restoration of the monument underway has put forward notable questions regarding the stone materials used and their state of degradation. The façade appears to be made mainly of a creamy white calcarenite, and of mortars and plasters. However, detailed analysis has highlighted a more complex use of the raw material. The mortar and plaster have a different composition in regards to their architectural use while the natural stone material is distinguished not only by a creamy-white calcarenite but also by a dark coloured bituminous calcarenite (pitch rock), which now appears whiter because of superficial chromatic alterations. This process was reproduced in the laboratory using an accelerated aging technique on samples of bituminous calcarenite, which allowed the cause of the alternation to be identified as photo-oxidation of the asphaltenes. Following this process of photo-oxidation, other forms of chromatic alterations affected the façade (brown orange-coloured patinas). FTIR, Scanning Electron Microscope and thin section microscopic observation allowed the characterization of also the products of this process to be carried out, highlighting the complex mechanism which the processes underwent.

  2. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  3. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    NASA Astrophysics Data System (ADS)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  4. Monitoring of the temperature - moisture regime of critical parts in the tower of the St. Martin Cathedral in Bratislava.

    NASA Astrophysics Data System (ADS)

    Kubicar, L.; Fidríková, D.; Štofanik, V.; Vretenár, V.

    2012-04-01

    Historic monuments are subject to degradation due to exposition to surrounding meteorological conditions and groundwater. Degradation is most often manifested by deterioration of plaster, walls structure and building elements like stones. A significant attention measures are undertaken to prevent degradation of the cultural heritage throughout the world. Our contribution is to monitor the objects for recognition of the critical state when it is necessary to make adjustments to avoid destruction. Buildings consisting from the listed elements belong to porous materials. Moisture diffusion, condensation, etc. attack structure stability of the buildings. Then the moisture diffusion and effects like drying, freezing / thawing belong to the control mechanisms of the degradation. In addition to laboratory experiments concerning the mentioned effects, we simultaneously studied processes by monitoring of the cultural monuments. During monitoring we have identified diffusion of moisture associated with cycle day / night and cycle moisture /drying caused by meteorological precipitation. Long term monitoring is performed in the tower of St. Martin Cathedral in Bratislava under the window sill of the belfry in exterior at three orientations, the north, south and the west. Monitoring is carried out in plaster and in masonry about 10 cm from the wall surface. The thermal conductivity sensors are used for monitoring that operate on the principle of the hot ball method. Then thermal conductivity of porous material is a function of pore content. The sensor has shape of a ball in diameter up to 2 mm in which a heat source as well as a thermometer is integrated into one component. A small heat output is delivered into the surrounding material. The temperature response of the sensor gives information on the thermal conductivity. For use in the preservation of cultural heritage a number of measuring devices have been developed for automatic registration of temperature and moisture in

  5. Fault current limiters using superconductors

    NASA Astrophysics Data System (ADS)

    Norris, W. T.; Power, A.

    Fault current limiters on power systems are to reduce damage by heating and electromechanical forces, to alleviate duty on switchgear used to clear the fault, and to mitigate disturbance to unfaulted parts of the system. A basic scheme involves a super-resistor which is a superconductor being driven to high resistance when fault current flows either when current is high during a cycle of a.c. or, if the temperature of the superconductive material rises, for the full cycle. Current may be commuted from superconductor to an impedance in parallel, thus reducing the energy dispersed at low temperature and saving refrigeration. In a super-shorted transformer the ambient temperature primary carries the power system current; the superconductive secondary goes to a resistive condition when excessive currents flow in the primary. A super-transformer has the advantage of not needing current leads from high temperature to low temperature; it behaves as a parallel super-resistor and inductor. The supertransductor with a superconductive d.c. bias winding is large and has small effect on the rate of fall of current at current zero; it does little to alleviate duty on switchgear but does reduce heating and electromechanical forces. It is fully active after a fault has been cleared. Other schemes depend on rapid recooling of the superconductor to achieve this.

  6. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  7. The San Andreas Fault

    USGS Publications Warehouse

    Schulz, Sandra S.; Wallace, Robert E.

    1993-01-01

    The presence of the San Andreas fault was brought dramatically to world attention on April 18, 1906, when sudden displacement along the fault produced the great San Francisco earthquake and fire. This earthquake, however, was but one of many that have resulted from episodic displacement along the fault throughout its life of about 15-20 million years.

  8. Fault-Tree Compiler

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  9. Fault tolerant control of spacecraft

    NASA Astrophysics Data System (ADS)

    Godard

    Autonomous multiple spacecraft formation flying space missions demand the development of reliable control systems to ensure rapid, accurate, and effective response to various attitude and formation reconfiguration commands. Keeping in mind the complexities involved in the technology development to enable spacecraft formation flying, this thesis presents the development and validation of a fault tolerant control algorithm that augments the AOCS on-board a spacecraft to ensure that these challenging formation flying missions will fly successfully. Taking inspiration from the existing theory of nonlinear control, a fault-tolerant control system for the RyePicoSat missions is designed to cope with actuator faults whilst maintaining the desirable degree of overall stability and performance. Autonomous fault tolerant adaptive control scheme for spacecraft equipped with redundant actuators and robust control of spacecraft in underactuated configuration, represent the two central themes of this thesis. The developed algorithms are validated using a hardware-in-the-loop simulation. A reaction wheel testbed is used to validate the proposed fault tolerant attitude control scheme. A spacecraft formation flying experimental testbed is used to verify the performance of the proposed robust control scheme for underactuated spacecraft configurations. The proposed underactuated formation flying concept leads to more than 60% savings in fuel consumption when compared to a fully actuated spacecraft formation configuration. We also developed a novel attitude control methodology that requires only a single thruster to stabilize three axis attitude and angular velocity components of a spacecraft. Numerical simulations and hardware-in-the-loop experimental results along with rigorous analytical stability analysis shows that the proposed methodology will greatly enhance the reliability of the spacecraft, while allowing for potentially significant overall mission cost reduction.

  10. Depiction of facial nerve paresis in the gallery of portraits carved in stone by George Matthew the Dalmatian on the Sibenik Cathedral dating from the 15th century.

    PubMed

    Skrobonja, Ante; Culina, Tatjana

    2011-06-01

    The introductory segment of this paper briefly describes George Matthew the Dalmatian, the architect who, between 1441 and 1473, oversaw the construction of the Cathedral of St. James in Sibenik, a city on the Croatian side of the Adriatic coast. Of the most impressive details included in this monumental construction and sculptural flamboyant gothic production infused with distinctive Dalmatian spirit is a frieze of 71 stone and three lion portraits encircling the outer apse wall. From the intriguing amalgamation of portraits of anonymous people this master came across in his surrounding, the fiftieth head in the row has been selected for this occasion. On the face of a younger man the authors have recognized and described pathognomonic right-sided facial nerve paresis. The question posed here is whether this is coincidental or it represents the master's courage, given that instead of famous people in the cathedral he situated not only ordinary people but also those "labelled" and traditionally marginalized, thus, in the most beautiful manner, foreshadowing the forthcoming spirit of Humanism and Renaissance in Croatian and European art.

  11. Trishear for curved faults

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. P.

    2013-08-01

    Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.

  12. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1994-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  13. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  14. Self-induced seismicity due to fluid circulation along faults

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Poisson, Blanche; Toussaint, Renaud; Rachez, Xavier; Schmittbuhl, Jean

    2014-03-01

    In this paper, we develop a system of equations describing fluid migration, fault rheology, fault thickness evolution and shear rupture during a seismic cycle, triggered either by tectonic loading or by fluid injection. Assuming that the phenomena predominantly take place on a single fault described as a finite permeable zone of variable width, we are able to project the equations within the volumetric fault core onto the 2-D fault interface. From the basis of this `fault lubrication approximation', we simulate the evolution of seismicity when fluid is injected at one point along the fault to model-induced seismicity during an injection test in a borehole that intercepts the fault. We perform several parametric studies to understand the basic behaviour of the system. Fluid transmissivity and fault rheology are key elements. The simulated seismicity generally tends to rapidly evolve after triggering, independently of the injection history and end when the stationary path of fluid flow is established at the outer boundary of the model. This self-induced seismicity takes place in the case where shear rupturing on a planar fault becomes dominant over the fluid migration process. On the contrary, if healing processes take place, so that the fluid mass is trapped along the fault, rupturing occurs continuously during the injection period. Seismicity and fluid migration are strongly influenced by the injection rate and the heterogeneity.

  15. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    USGS Publications Warehouse

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  16. Isolability of faults in sensor fault diagnosis

    NASA Astrophysics Data System (ADS)

    Sharifi, Reza; Langari, Reza

    2011-10-01

    A major concern with fault detection and isolation (FDI) methods is their robustness with respect to noise and modeling uncertainties. With this in mind, several approaches have been proposed to minimize the vulnerability of FDI methods to these uncertainties. But, apart from the algorithm used, there is a theoretical limit on the minimum effect of noise on detectability and isolability. This limit has been quantified in this paper for the problem of sensor fault diagnosis based on direct redundancies. In this study, first a geometric approach to sensor fault detection is proposed. The sensor fault is isolated based on the direction of residuals found from a residual generator. This residual generator can be constructed from an input-output or a Principal Component Analysis (PCA) based model. The simplicity of this technique, compared to the existing methods of sensor fault diagnosis, allows for more rational formulation of the isolability concepts in linear systems. Using this residual generator and the assumption of Gaussian noise, the effect of noise on isolability is studied, and the minimum magnitude of isolable fault in each sensor is found based on the distribution of noise in the measurement system. Finally, some numerical examples are presented to clarify this approach.

  17. Hydrogen Gas Emissions from Active Faults and Identification of Flow Pathway in a Fault Zone

    NASA Astrophysics Data System (ADS)

    Ishimaru, T.; Niwa, M.; Kurosawa, H.; Shimada, K.

    2010-12-01

    It has been observed that hydrogen gas emissions from the subsurface along active faults exceed atmospheric concentrations (e.g. Sugisaki et. al., 1983). Experimental studies have shown that hydrogen gas is generated in a radical reaction of water with fractured silicate minerals due to rock fracturing caused by fault movement (e.g. Kita et al., 1982). Based on such research, we are studying an investigation method for an assessment of fault activity using hydrogen gas emissions from fracture zones. To start, we have devised portable equipment for rapid and simple in situ measurement of hydrogen gas emissions (Shimada et al., 2008). The key component of this equipment is a commercially available and compact hydrogen gas sensor with an integral data logger operable at atmospheric pressure. In the field, we have drilled shallow boreholes into incohesive fault rocks to depths ranging from 15 to 45 cm using a hand-operated drill with a 9mm drill-bit. Then, we have measured the hydrogen gas concentrations in emissions from active faults such as: the western part of the Atotsugawa fault zone, the Atera fault zone and the Neodani fault in central Japan; the Yamasaki fault zone in southwest Japan; and the Yamagata fault zone in northeast Japan. In addition, we have investigated the hydrogen gas concentrations in emissions from other major geological features such as tectonic lines: the Butsuzo Tectonic Line in the eastern Kii Peninsula and the Atokura Nappe in the Northeastern Kanto Mountains. As a result of the investigations, hydrogen gas concentration in emissions from the active faults was measured to be in the approximate range from 6,000 ppm to 26,000 ppm in two to three hours after drilling. A tendency for high concentrations of hydrogen gas in active faults was recognized, in contrast with low concentrations in emissions from tectonic lines that were observed to be in the range from 730 ppm to 2,000 ppm. It is inferred that the hydrogen gas migrates to ground

  18. How Faults Shape the Earth.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  19. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  20. Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, H.; Schröckenfuchs, T. C.; Decker, K.

    2016-08-01

    This study presents a comparative, field-based hydrogeological characterization of exhumed, inactive fault zones in low-porosity Triassic dolostones and limestones of the Hochschwab massif, a carbonate unit of high economic importance supplying 60 % of the drinking water of Austria's capital, Vienna. Cataclastic rocks and sheared, strongly cemented breccias form low-permeability (<1 mD) domains along faults. Fractured rocks with fracture densities varying by a factor of 10 and fracture porosities varying by a factor of 3, and dilation breccias with average porosities >3 % and permeabilities >1,000 mD form high-permeability domains. With respect to fault-zone architecture and rock content, which is demonstrated to be different for dolostone and limestone, four types of faults are presented. Faults with single-stranded minor fault cores, faults with single-stranded permeable fault cores, and faults with multiple-stranded fault cores are seen as conduits. Faults with single-stranded impermeable fault cores are seen as conduit-barrier systems. Karstic carbonate dissolution occurs along fault cores in limestones and, to a lesser degree, dolostones and creates superposed high-permeability conduits. On a regional scale, faults of a particular deformation event have to be viewed as forming a network of flow conduits directing recharge more or less rapidly towards the water table and the springs. Sections of impermeable fault cores only very locally have the potential to create barriers.

  1. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    SciTech Connect

    Neuhaus, D. )

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic survey covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.

  2. The influence of indoor microclimate on thermal comfort and conservation of artworks: the case study of the cathedral of Matera (South Italy)

    NASA Astrophysics Data System (ADS)

    Cardinale, Tiziana; Rospi, Gianluca; Cardinale, Nicola; Paterino, Lucia; Persia, Ivan

    2014-05-01

    The Matera Cathedral was built in Apulian-Romanesque style in the thirteenth century on the highest spur of the "Civita" that divides "Sassi" district in two parts. The constructive material is the calcareous stone of the Vaglia, extracted from quarries in the area of Matera. The interior is Baroque and presents several artworks, including: mortars covered with a golden patina, a wooden ceiling, painted canvas and painting frescoes, three minor altars and a major altar of precious white marble, a nativity scene made of local painted limestone. The research had to evaluate the indoor microclimate during and after the restoration works, that also concern the installation of floor heating system to heat the indoor environments. Specifically, we have analyzed the thermal comfort and the effect that the artwork and construction materials inside the Cathedral of Matera have undergone. This evaluation was carried out in two different phases: in the first one we have investigated the state of the art (history of the site, constructive typology and artworks); in the second one we have done a systematic diagnosis and an instrumental one. The analysis were carried out in a qualitative and quantitative way and have allowed us to test indoor microclimatic parameters (air temperature, relative humidity and indoor air velocity), surface temperatures of the envelope and also Fanger's comfort indices (PMV and PPD) according to the UNI EN ISO 7730. The thermal mapping of the wall surface and of the artworks, carried out through thermal imaging camera, and the instrumental measurement campaigns were made both before restoration and after installation of the heating system; in addition measurements were taken with system on and off. The analysis thus made possible to verify that the thermo-hygrometric parameters found, as a result of the recovery operations, meet the limits indicated by the regulations and international studies. In this way, we can affirm that the indoor environment

  3. Characterization of leaky faults

    SciTech Connect

    Shan, Chao

    1990-05-01

    Leaky faults provide a flow path for fluids to move underground. It is very important to characterize such faults in various engineering projects. The purpose of this work is to develop mathematical solutions for this characterization. The flow of water in an aquifer system and the flow of air in the unsaturated fault-rock system were studied. If the leaky fault cuts through two aquifers, characterization of the fault can be achieved by pumping water from one of the aquifers, which are assumed to be horizontal and of uniform thickness. Analytical solutions have been developed for two cases of either a negligibly small or a significantly large drawdown in the unpumped aquifer. Some practical methods for using these solutions are presented. 45 refs., 72 figs., 11 tabs.

  4. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  5. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  6. Rough faults, distributed weakening, and off-fault deformation

    NASA Astrophysics Data System (ADS)

    Griffith, W. Ashley; Nielsen, Stefan; di Toro, Giulio; Smith, Steven A. F.

    2010-08-01

    We report systematic spatial variations in fault rocks along nonplanar strike-slip faults cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran wavy fault) and Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia wavy fault). In the case of the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the pseudotachylyte and are especially abundant in extensional fault bends. We argue that the presence of fluids, as illustrated by this example, does not necessarily preclude the development of frictional melt. In the case of the Lobbia fault, pseudotachylyte thickness varies along the length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. We conduct a quantitative analysis of fault roughness, microcrack distribution, stress, and friction along the Lobbia fault. Numerical modeling results show that opening in extensional bends and localized thermal weakening in contractional bends counteract resistance encountered by fault waviness, resulting in an overall weaker fault than suggested by the corresponding static friction coefficient. The models also predict static stress redistribution around bends in the faults which is consistent with distribution of microcracks, indicating significant elastic and inelastic strain energy is dissipated into the wall rocks due to nonplanar fault geometry. Together these observations suggest that damage and energy dissipation occurs along the entire nonplanar fault during slip, rather than being confined to the region close to the dynamically propagating crack tip.

  7. West Coast Tsunami: Cascadia's Fault?

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Bernard, E. N.; Titov, V.

    2013-12-01

    The tragedies of 2004 Sumatra and 2011 Japan tsunamis exposed the limits of our knowledge in preparing for devastating tsunamis. The 1,100-km coastline of the Pacific coast of North America has tectonic and geological settings similar to Sumatra and Japan. The geological records unambiguously show that the Cascadia fault had caused devastating tsunamis in the past and this geological process will cause tsunamis in the future. Hypotheses of the rupture process of Cascadia fault include a long rupture (M9.1) along the entire fault line, short ruptures (M8.8 - M9.1) nucleating only a segment of the coastline, or a series of lesser events of M8+. Recent studies also indicate an increasing probability of small rupture occurring at the south end of the Cascadia fault. Some of these hypotheses were implemented in the development of tsunami evacuation maps in Washington and Oregon. However, the developed maps do not reflect the tsunami impact caused by the most recent updates regarding the Cascadia fault rupture process. The most recent study by Wang et al. (2013) suggests a rupture pattern of high- slip patches separated by low-slip areas constrained by estimates of coseismic subsidence based on microfossil analyses. Since this study infers that a Tokohu-type of earthquake could strike in the Cascadia subduction zone, how would such an tsunami affect the tsunami hazard assessment and planning along the Pacific Coast of North America? The rapid development of computing technology allowed us to look into the tsunami impact caused by above hypotheses using high-resolution models with large coverage of Pacific Northwest. With the slab model of MaCrory et al. (2012) (as part of the USGS slab 1.0 model) for the Cascadia earthquake, we tested the above hypotheses to assess the tsunami hazards along the entire U.S. West Coast. The modeled results indicate these hypothetical scenarios may cause runup heights very similar to those observed along Japan's coastline during the 2011

  8. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  9. Fault weakening and earthquake instability by powder lubrication

    USGS Publications Warehouse

    Reches, Z.; Lockner, D.A.

    2010-01-01

    Earthquake instability has long been attributed to fault weakening during accelerated slip1, and a central question of earthquake physics is identifying the mechanisms that control this weakening2. Even with much experimental effort2-12, the weakening mechanisms have remained enigmatic. Here we present evidence for dynamic weakening of experimental faults that are sheared at velocities approaching earthquake slip rates. The experimental faults, which were made of room-dry, solid granite blocks, quickly wore to form a fine-grain rock powder known as gouge. At modest slip velocities of 10-60mms-1, this newly formed gouge organized itself into a thin deforming layer that reduced the fault's strength by a factor of 2-3. After slip, the gouge rapidly 'aged' and the fault regained its strength in a matter of hours to days. Therefore, only newly formed gouge can weaken the experimental faults. Dynamic gouge formation is expected to be a common and effective mechanism of earthquake instability in the brittle crust as (1) gouge always forms during fault slip5,10,12-20; (2) fault-gouge behaves similarly to industrial powder lubricants21; (3) dynamic gouge formation explains various significant earthquake properties; and (4) gouge lubricant can form for a wide range of fault configurations, compositions and temperatures15. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  10. Measuring fault tolerance with the FTAPE fault injection tool

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    This paper describes FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The major parts of the tool include a system-wide fault-injector, a workload generator, and a workload activity measurement tool. The workload creates high stress conditions on the machine. Using stress-based injection, the fault injector is able to utilize knowledge of the workload activity to ensure a high level of fault propagation. The errors/fault ratio, performance degradation, and number of system crashes are presented as measures of fault tolerance.

  11. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  12. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1993-01-01

    Erroneous measurements in multisensor navigation systems must be detected and isolated. A recursive estimator can find fast growing errors; a least squares batch estimator can find slow growing errors. This process is called fault detection. A protection radius can be calculated as a function of time for a given location. This protection radius can be used to guarantee the integrity of the navigation data. Fault isolation can be accomplished using either a snapshot method or by examining the history of the fault detection statistics.

  13. Fault detection and isolation

    NASA Technical Reports Server (NTRS)

    Bernath, Greg

    1994-01-01

    In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.

  14. Fault zone structure of the Wildcat fault in Berkeley, California - Field survey and fault model test -

    NASA Astrophysics Data System (ADS)

    Ueta, K.; Onishi, C. T.; Karasaki, K.; Tanaka, S.; Hamada, T.; Sasaki, T.; Ito, H.; Tsukuda, K.; Ichikawa, K.; Goto, J.; Moriya, T.

    2010-12-01

    In order to develop hydrologic characterization technology of fault zones, it is desirable to clarify the relationship between the geologic structure and hydrologic properties of fault zones. To this end, we are performing surface-based geologic and trench investigations, geophysical surveys and borehole-based hydrologic investigations along the Wildcat fault in Berkeley,California to investigate the effect of fault zone structure on regional hydrology. The present paper outlines the fault zone structure of the Wildcat fault in Berkeley on the basis of results from trench excavation surveys. The approximately 20 - 25 km long Wildcat fault is located within the Berkeley Hills and extends northwest-southeast from Richmond to Oakland, subparallel to the Hayward fault. The Wildcat fault, which is a predominantly right-lateral strike-slip fault, steps right in a releasing bend at the Berkeley Hills region. A total of five trenches have been excavated across the fault to investigate the deformation structure of the fault zone in the bedrock. Along the Wildcat fault, multiple fault surfaces are branched, bent, paralleled, forming a complicated shear zone. The shear zone is ~ 300 m in width, and the fault surfaces may be classified under the following two groups: 1) Fault surfaces offsetting middle Miocene Claremont Chert on the east against late Miocene Orinda formation and/or San Pablo Group on the west. These NNW-SSE trending fault surfaces dip 50 - 60° to the southwest. Along the fault surfaces, fault gouge of up to 1 cm wide and foliated cataclasite of up to 60 cm wide can be observed. S-C fabrics of the fault gouge and foliated cataclasite show normal right-slip shear sense. 2) Fault surfaces forming a positive flower structure in Claremont Chert. These NW-SE trending fault surfaces are sub-vertical or steeply dipping. Along the fault surfaces, fault gouge of up to 3 cm wide and foliated cataclasite of up to 200 cm wide can be observed. S-C fabrics of the fault

  15. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  16. Hayward Fault, California Interferogram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image of California's Hayward fault is an interferogram created using a pair of images taken by Synthetic Aperture Radar(SAR) combined to measure changes in the surface that may have occurred between the time the two images were taken.

    The images were collected by the European Space Agency's Remote Sensing satellites ERS-1 and ERS-2 in June 1992 and September 1997 over the central San Francisco Bay in California.

    The radar image data are shown as a gray-scale image, with the interferometric measurements that show the changes rendered in color. Only the urbanized area could be mapped with these data. The color changes from orange tones to blue tones across the Hayward fault (marked by a thin red line) show about 2-3centimeters (0.8-1.1 inches) of gradual displacement or movement of the southwest side of the fault. The block west of the fault moved horizontally toward the northwest during the 63 months between the acquisition of the two SAR images. This fault movement is called a seismic creep because the fault moved slowly without generating an earthquake.

    Scientists are using the SAR interferometry along with other data collected on the ground to monitor this fault motion in an attempt to estimate the probability of earthquake on the Hayward fault, which last had a major earthquake of magnitude 7 in 1868. This analysis indicates that the northern part of the Hayward fault is creeping all the way from the surface to a depth of 12 kilometers (7.5 miles). This suggests that the potential for a large earthquake on the northern Hayward fault might be less than previously thought. The blue area to the west (lower left) of the fault near the center of the image seemed to move upward relative to the yellow and orange areas nearby by about 2 centimeters (0.8 inches). The cause of this apparent motion is not yet confirmed, but the rise of groundwater levels during the time between the images may have caused the reversal of a small portion of the subsidence that

  17. Fault tolerant magnetic bearings

    SciTech Connect

    Maslen, E.H.; Sortore, C.K.; Gillies, G.T.; Williams, R.D.; Fedigan, S.J.; Aimone, R.J.

    1999-07-01

    A fault tolerant magnetic bearing system was developed and demonstrated on a large flexible-rotor test rig. The bearing system comprises a high speed, fault tolerant digital controller, three high capacity radial magnetic bearings, one thrust bearing, conventional variable reluctance position sensors, and an array of commercial switching amplifiers. Controller fault tolerance is achieved through a very high speed voting mechanism which implements triple modular redundancy with a powered spare CPU, thereby permitting failure of up to three CPU modules without system failure. Amplifier/cabling/coil fault tolerance is achieved by using a separate power amplifier for each bearing coil and permitting amplifier reconfiguration by the controller upon detection of faults. This allows hot replacement of failed amplifiers without any system degradation and without providing any excess amplifier kVA capacity over the nominal system requirement. Implemented on a large (2440 mm in length) flexible rotor, the system shows excellent rejection of faults including the failure of three CPUs as well as failure of two adjacent amplifiers (or cabling) controlling an entire stator quadrant.

  18. Pen Branch Fault Program

    SciTech Connect

    Price, V.; Stieve, A.L.; Aadland, R.

    1990-09-28

    Evidence from subsurface mapping and seismic reflection surveys at Savannah River Site (SRS) suggests the presence of a fault which displaces Cretaceous through Tertiary (90--35 million years ago) sediments. This feature has been described and named the Pen Branch fault (PBF) in a recent Savannah River Laboratory (SRL) paper (DP-MS-88-219). Because the fault is located near operating nuclear facilities, public perception and federal regulations require a thorough investigation of the fault to determine whether any seismic hazard exists. A phased program with various elements has been established to investigate the PBF to address the Nuclear Regulatory Commission regulatory guidelines represented in 10 CFR 100 Appendix A. The objective of the PBF program is to fully characterize the nature of the PBF (ESS-SRL-89-395). This report briefly presents current understanding of the Pen Branch fault based on shallow drilling activities completed the fall of 1989 (PBF well series) and subsequent core analyses (SRL-ESS-90-145). The results are preliminary and ongoing: however, investigations indicate that the fault is not capable. In conjunction with the shallow drilling, other activities are planned or in progress. 7 refs., 8 figs., 1 tab.

  19. Profiles of volumetric water content in fault zones retrieved from hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP)

    NASA Astrophysics Data System (ADS)

    Lin, Weiren; Matsubayashi, Osamu; Yeh, En-Chao; Hirono, Tetsuro; Tanikawa, Wataru; Soh, Wonn; Wang, Chien-Ying; Song, Sheng-Rong; Murayama, Masafumi

    2008-01-01

    To determine the distribution pattern of water content in the three major fault zones penetrated by the Taiwan Chelungpu-fault Drilling Project (TCDP) hole B, and to assess a rapid, nondestructive water content measurement technique, time domain reflectometry (TDR), we determined the volumetric water content of sequential core samples and found that water content increased toward the center of each of the three fault zones, except in the disk-shaped black material. We observed distinct anomalies in the water content and resistivity profiles, particularly in the shallowest major fault zone (FZB1136), supporting the hypothesis that FZB1136 ruptured during the 1999 Chi-Chi earthquake. This study, the first successful application of the TDR technique to determine water content of core samples, including fault zone samples, collected by an active-fault drilling project, showed that this technique is suitable for measuring water content of fault core samples.

  20. Fault Roughness Records Strength

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Kirkpatrick, J. D.

    2014-12-01

    Fault roughness is commonly ~0.1-1% at the outcrop exposure scale. More mature faults are smoother than less mature ones, but the overall range of roughness is surprisingly limited which suggests dynamic control. In addition, the power spectra of many exposed fault surfaces follow a single power law over scales from millimeters to 10's of meters. This is another surprising observation as distinct structures such as slickenlines and mullions are clearly visible on the same surfaces at well-defined scales. We can reconcile both observations by suggesting that the roughness of fault surfaces is controlled by the maximum strain that can be supported elastically in the wallrock. If the fault surface topography requires more than 0.1-1% strain, it fails. Invoking wallrock strength explains two additional observations on the Corona Heights fault for which we have extensive roughness data. Firstly, the surface is isotropic below a scale of 30 microns and has grooves at larger scales. Samples from at least three other faults (Dixie Valley, Mount St. Helens and San Andreas) also are isotropic at scales below 10's of microns. If grooves can only persist when the walls of the grooves have a sufficiently low slope to maintain the shape, this scale of isotropy can be predicted based on the measured slip perpendicular roughness data. The observed 30 micron scale at Corona Heights is consistent with an elastic strain of 0.01 estimated from the observed slip perpendicular roughness with a Hurst exponent of 0.8. The second observation at Corona Heights is that slickenlines are not deflected around meter-scale mullions. Yielding of these mullions at centimeter to meter scale is predicted from the slip parallel roughness as measured here. The success of the strain criterion for Corona Heights supports it as the appropriate control on fault roughness. Micromechanically, the criterion implies that failure of the fault surface is a continual process during slip. Macroscopically, the

  1. Rapid Acceleration Leads to Rapid Weakening in Earthquake-Like Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-10-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  2. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments.

    PubMed

    Chang, J C; Lockner, D A; Reches, Z

    2012-10-05

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth's crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (M(w)) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake's rupture front quickens dynamic weakening by intense wear of the fault zone.

  3. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    USGS Publications Warehouse

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  4. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  5. Rough Faults, Distributed Weakening, and Off-Fault Deformation

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Nielsen, S. B.; di Toro, G.; Smith, S. A.; Niemeijer, A. R.

    2009-12-01

    We report systematic spatial variations of fault rocks along non-planar strike-slip faults cross-cutting the Lake Edison Granodiorite, Sierra Nevada, California (Sierran Wavy Fault) and the Lobbia outcrops of the Adamello Batholith in the Italian Alps (Lobbia Wavy Fault). In the case of the Sierran fault, pseudotachylyte formed at contractional fault bends, where it is found as thin (1-2 mm) fault-parallel veins. Epidote and chlorite developed in the same seismic context as the pseudotachylyte and are especially abundant in extensional fault bends. We argue that the presence of fluids, as illustrated by this example, does not necessarily preclude the development of frictional melt. In the case of the Lobbia fault, pseudotachylyte is present in variable thickness along the length of the fault, but the pseudotachylyte veins thicken and pool in extensional bends. The Lobbia fault surface is self-affine, and we conduct a quantitative analysis of microcrack distribution, stress, and friction along the fault. Numerical modeling results show that opening in extensional bends and localized thermal weakening in contractional bends counteract resistance encountered by fault waviness, resulting in an overall weaker fault than suggested by the corresponding static friction coefficient. Models also predict stress redistribution around bends in the faults which mirror microcrack distributions, indicating significant elastic and anelastic strain energy is dissipated into the wall rocks due to non-planar fault geometry. Together these observations suggest that, along non-planar faults, damage and energy dissipation occurs along the entire fault during slip, rather than being confined to the region close to the crack tip as predicted by classical fracture mechanics.

  6. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding.

    PubMed

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-07-06

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches.

  7. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding

    PubMed Central

    Wang, Xiang; Zheng, Yuan; Zhao, Zhenzhou; Wang, Jinping

    2015-01-01

    Fault diagnosis is essentially a kind of pattern recognition. The measured signal samples usually distribute on nonlinear low-dimensional manifolds embedded in the high-dimensional signal space, so how to implement feature extraction, dimensionality reduction and improve recognition performance is a crucial task. In this paper a novel machinery fault diagnosis approach based on a statistical locally linear embedding (S-LLE) algorithm which is an extension of LLE by exploiting the fault class label information is proposed. The fault diagnosis approach first extracts the intrinsic manifold features from the high-dimensional feature vectors which are obtained from vibration signals that feature extraction by time-domain, frequency-domain and empirical mode decomposition (EMD), and then translates the complex mode space into a salient low-dimensional feature space by the manifold learning algorithm S-LLE, which outperforms other feature reduction methods such as PCA, LDA and LLE. Finally in the feature reduction space pattern classification and fault diagnosis by classifier are carried out easily and rapidly. Rolling bearing fault signals are used to validate the proposed fault diagnosis approach. The results indicate that the proposed approach obviously improves the classification performance of fault pattern recognition and outperforms the other traditional approaches. PMID:26153771

  8. Diagnosable systems for intermittent faults

    NASA Technical Reports Server (NTRS)

    Mallela, S.; Masson, G. M.

    1978-01-01

    The fault diagnosis capabilities of systems composed of interconnected units capable of testing each other are studied for the case of systems with intermittent faults. A central role is played by the concept of t(i)-fault diagnosability. A system is said to be t(i)-fault diagnosable when it is such that if no more than t(i) units are intermittently faulty then a fault-free unit will never be diagnosed as faulty and the diagnosis at any time is at worst incomplete. Necessary and sufficient conditions for t(i)-fault diagnosability are proved, and bounds for t(i) are established. The conditions are in general more restrictive than those for permanent-fault diagnosability. For intermittent faults there is only one testing strategy (repetitive testing), and consequently only one type of intermittent-fault diagnosable system.

  9. Fault-rock Magnetism from Wenchuan earthquake Fault Scientific Drilling project (WFSD) Implies the Different Slip Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, D.; Li, H.; Lee, T. Q.; Sun, Z.

    2015-12-01

    The 2008 Mw 7.9 Wenchuan Earthquake had caused great human and financial loss, and it had induced two major earthquake surface rupture zones, including the Yingxiu-Beichuan earthquake fault (Y-B F.) and Guanxian-Anxian earthquake fault (G-A F.) earthquake surface rupture zones. After main shock, the Wenchuan earthquake Fault Scientific Drilling project (WFSD) was co-organized by the Ministry of Science and Technology, Ministry of Land and Resources and China Bureau of Seismology, and this project focused on earthquake fault mechanics, earthquake slip process, fault physical and chemical characteristics, mechanical behavior, fluid behavior, fracture energy, and so on. Fault-rocks magnetism is an effective method for the earthquake fault research, such as earthquake slip dynamics. In this study, the fault-rocks from the drilling-hole cores and close to the Wenchuan Earthquake surface rupture zone were used to do the rock-magnetism and discuss the earthquake slip dynamics. The measurement results of magnetic susceptibility (MS) show that the relative high or low MS values are corresponded to the fault-rocks from the Y-B F. and G-A F., respectively. Other rock-magnetism gives more evidence to the magnetic mineral assemblage of fault-rocks from the two earthquake fault zones. The relative high MS in the drilling-holes and trench along the Y-B F. was caused by the new-formed ferrimagnetic minerals during the high temperature and rapid speed earthquake slip process, such as magnetite and hematite, so the Y-B F. had experienced high temperature and rapid speed thermal pressurization earthquake slip mechanism. The relative low MS in the trench along the G-A F. was possible caused by high content of Fe-sulfides, and the G-A F. had possibly experienced the low temperature and slow speed mechanical lubrication earthquake slip mechanism. The different earthquake slip mechanism was possibly controlled by the deep structure of the two earthquake faults, such as the fault

  10. Creeping Faults and Seismicity: Lessons From The Hayward Fault, California

    NASA Astrophysics Data System (ADS)

    Malservisi, R.; Furlong, K. P.; Gans, C.

    While faults remain mostly locked between large strain releasing events, they can dissipate some of the accumulating elastic strain through creep. One such fault that releases a significant fraction of accumulating strain by creep is the Hayward fault in the San Francisco Bay region of California. The seismic risk associated with creeping faults such as the Hayward fault will depend in part on the net rate of moment accu- mulation (slip deficit) on the fault. Using a visco-elastic finite-element model driven by far field plate motions, we have investigated how the specific geometry of locked and free portions of the fault, and the interactions between the fault zone and the sur- rounding lithosphere influence creep on the fault plane and thus the seismic risk. In contrast to previous studies of the effects of the geometry of locked patches on the surface creep rate that specified rates on those patches, we specify only "creepable" regions and allow the system to adjust the creep rate. With our approach, we can infer fault zone geometries and physical properties that can produce the observed surface creep on the Hayward fault letting the rheology, geometry, and mechanics of sys- tem determine patterns of creep on the fault plane. Our results show that the creep rate decreases smoothly moving toward the locked patches. This leads to "creepable" (low friction) areas that accumulate a high slip deficit as compared to other low fric- tion segments of the fault. A comparison of the creep pattern from our results with Hayward fault micro-seismicity indicates that events cluster in the "creepable" re- gions with a creeping-velocity gradient that leads to a significant strain accumulation rate in the elastic material surrounding the creeping fault. This correlation provides an additional tool to map deformation patterns and strain accumulation on the fault. Micro-seismicity, surface deformation, and geodynamic modeling combine to allow us to refine our estimation of net

  11. Changes in fault length distributions due to fault linkage

    NASA Astrophysics Data System (ADS)

    Xu, Shunshan; Nieto-Samaniego, A. F.; Alaniz-Álvarez, S. A.; Velasquillo-Martínez, L. G.; Grajales-Nishimura, J. M.; García-Hernández, J.; Murillo-Muñetón, G.

    2010-01-01

    Fault linkage plays an important role in the growth of faults. In this paper we analyze a published synthetic model to simulate fault linkage. The results of the simulation indicate that fault linkage is the cause of the shallower local slopes on the length-frequency plots. The shallower local slopes lead to two effects. First, the curves of log cumulative number against log length exhibit fluctuating shapes as reported in literature. Second, for a given fault population, the power-law exponents after linkage are negatively related to the linked length scales. Also, we present datasets of fault length measured from four structural maps at the Cantarell oilfield in the southern Gulf of Mexico (offshore Campeche). The results demonstrate that the fault length data, corrected by seismic resolution at the tip fault zone, also exhibit fluctuating curves of log cumulative frequency vs. log length. The steps (shallower slopes) on the curves imply the scale positions of fault linkage. We conclude that fault linkage is the main reason for the fluctuating shapes of log cumulative frequency vs. log length. On the other hand, our data show that the two-tip faults are better for linear analysis between maximum displacement ( D) and length ( L). Evidently, two-tip faults underwent fewer fault linkages and interactions.

  12. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    NASA Astrophysics Data System (ADS)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  13. Application of the fault diagnosis strategy based on hierarchical information fusion in motors fault diagnosis

    NASA Astrophysics Data System (ADS)

    Xia, Li; Fei, Qi

    2006-03-01

    This paper has analyzed merits and demerits of both neural network technique and of the information fusion methods based on the D-S (dempster-shafer evidence) Theory as well as their complementarity, proposed the hierarchical information fusion fault diagnosis strategy by combining the neural network technique and the fused decision diagnosis based on D-S Theory, and established a corresponding functional model. Thus, we can not only solve a series of problems caused by rapid growth in size and complexity of neural network structure with diagnosis parameters increasing, but also can provide effective method for basic probability assignment in D-S Theory. The application of the strategy to diagnosing faults of motor bearings has proved that this method is of fairly high accuracy and reliability in fault diagnosis.

  14. Indoor damage of aged porous natural stone due to thermohygric stress: a case study of opuka stone altar from the St. Vitus Cathedral, Prague (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Prikrylova, Jirina; Racek, Martin; Kreislova, Kateřina; Weishauptova, Zuzana

    2016-04-01

    Opuka stone (extremely fine-grained clayey-calcareous silicite) used for a carved stone altar located in the interior of the St. Vitus Cathedral (Prague, Czech Republic) was affected by decay phenomena (formation of the case-hardened surface, its later blistering, flaking and/or powdering of stone substrate) which are similar to those observed in outdoor environments. Through the detailed analytical study (optical microscopy and scanning electron microscopy with energy dispersive spectrometry and x-ray elemental mapping of cross-sections of surface layers, x-ray diffraction of surface layers, ion-exchange chromatography for water-soluble salts, mercury porosimetry) and analysis of long-term indoor environmental monitoring (temperature, relative humidity, sulphur and nitrogen oxides deposition), it has been found that observed decay phenomena, which are manifested on microscale by brittle damage and formation of mode I (tensile) cracks along the exposed surface of the stone, can be interpreted as a result from thermohygric stress occurring on the interface between case hardened surface layer and stone substrate.

  15. Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation.

    PubMed

    Zarzo, Manuel; Fernández-Navajas, Angel; García-Diego, Fernando-Juan

    2011-01-01

    We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999).

  16. Long-Term Monitoring of Fresco Paintings in the Cathedral of Valencia (Spain) Through Humidity and Temperature Sensors in Various Locations for Preventive Conservation

    PubMed Central

    Zarzo, Manuel; Fernández-Navajas, Angel; García-Diego, Fernando-Juan

    2011-01-01

    We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999). PMID:22164100

  17. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  18. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  19. DIFFERENTIAL FAULT SENSING CIRCUIT

    DOEpatents

    Roberts, J.H.

    1961-09-01

    A differential fault sensing circuit is designed for detecting arcing in high-voltage vacuum tubes arranged in parallel. A circuit is provided which senses differences in voltages appearing between corresponding elements likely to fault. Sensitivity of the circuit is adjusted to some level above which arcing will cause detectable differences in voltage. For particular corresponding elements, a group of pulse transformers are connected in parallel with diodes connected across the secondaries thereof so that only voltage excursions are transmitted to a thyratron which is biased to the sensitivity level mentioned.

  20. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  1. Computer hardware fault administration

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  2. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  3. Fault diagnosis of analog circuits

    NASA Astrophysics Data System (ADS)

    Bandler, J. W.; Salama, A. E.

    1985-08-01

    Theory and algorithms associated with four main categories of modern techniques used to locate faults in analog circuits are presented. These four general approaches are: the fault dictionary (FDA), the parameter identification (PIA), the fault verification (FVA), and the approximation (AA) approaches. The preliminaries and problems associated with the FDA, such as fault dictionary construction, the methods of optimum measurement selection, fault isolation criteria, and efficient methods of fault simulation, are discussed. The PIA techniques that utilize either linear or nonlinear systems of equations for identification of network elements are examined. Description of the FVA includes node-fault diagnosis, branch-fault diagnosis, subnetwork testability conditions, as well as combinatorial techniques, the failure-bound technique, and the network decomposition technique. In the AA, probabilistic methods and optimization-based methods are considered. In addition, the artificial intelligence technique and the different measures of testability are presented. A series of block diagrams is included.

  4. Dynamic Fault Detection Chassis

    SciTech Connect

    Mize, Jeffery J

    2007-01-01

    Abstract The high frequency switching megawatt-class High Voltage Converter Modulator (HVCM) developed by Los Alamos National Laboratory for the Oak Ridge National Laboratory's Spallation Neutron Source (SNS) is now in operation. One of the major problems with the modulator systems is shoot-thru conditions that can occur in a IGBTs H-bridge topology resulting in large fault currents and device failure in a few microseconds. The Dynamic Fault Detection Chassis (DFDC) is a fault monitoring system; it monitors transformer flux saturation using a window comparator and dV/dt events on the cathode voltage caused by any abnormality such as capacitor breakdown, transformer primary turns shorts, or dielectric breakdown between the transformer primary and secondary. If faults are detected, the DFDC will inhibit the IGBT gate drives and shut the system down, significantly reducing the possibility of a shoot-thru condition or other equipment damaging events. In this paper, we will present system integration considerations, performance characteristics of the DFDC, and discuss its ability to significantly reduce costly down time for the entire facility.

  5. Fault-Mechanism Simulator

    ERIC Educational Resources Information Center

    Guyton, J. W.

    1972-01-01

    An inexpensive, simple mechanical model of a fault can be produced to simulate the effects leading to an earthquake. This model has been used successfully with students from elementary to college levels and can be demonstrated to classes as large as thirty students. (DF)

  6. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-02-23

    An apparatus and program product check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  7. Row fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  8. Row fault detection system

    DOEpatents

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2012-02-07

    An apparatus, program product and method check for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  9. Fault-Related Sanctuaries

    NASA Astrophysics Data System (ADS)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  10. Testing fault growth models with low-temperature thermochronology in the northwest Basin and Range, USA

    NASA Astrophysics Data System (ADS)

    Curry, Magdalena A. E.; Barnes, Jason B.; Colgan, Joseph P.

    2016-10-01

    Common fault growth models diverge in predicting how faults accumulate displacement and lengthen through time. A paucity of field-based data documenting the lateral component of fault growth hinders our ability to test these models and fully understand how natural fault systems evolve. Here we outline a framework for using apatite (U-Th)/He thermochronology (AHe) to quantify the along-strike growth of faults. To test our framework, we first use a transect in the normal fault-bounded Jackson Mountains in the Nevada Basin and Range Province, then apply the new framework to the adjacent Pine Forest Range. We combine new and existing cross sections with 18 new and 16 existing AHe cooling ages to determine the spatiotemporal variability in footwall exhumation and evaluate models for fault growth. Three age-elevation transects in the Pine Forest Range show that rapid exhumation began along the range-front fault between approximately 15 and 11 Ma at rates of 0.2-0.4 km/Myr, ultimately exhuming approximately 1.5-5 km. The ages of rapid exhumation identified at each transect lie within data uncertainty, indicating concomitant onset of faulting along strike. We show that even in the case of growth by fault-segment linkage, the fault would achieve its modern length within 3-4 Myr of onset. Comparison with the Jackson Mountains highlights the inadequacies of spatially limited sampling. A constant fault-length growth model is the best explanation for our thermochronology results. We advocate that low-temperature thermochronology can be further utilized to better understand and quantify fault growth with broader implications for seismic hazard assessments and the coevolution of faulting and topography.

  11. Testing fault growth models with low-temperature thermochronology in the northwest Basin and Range, USA

    USGS Publications Warehouse

    Curry, Magdalena A. E.; Barnes, Jason B.; Colgan, Joseph P.

    2016-01-01

    Common fault growth models diverge in predicting how faults accumulate displacement and lengthen through time. A paucity of field-based data documenting the lateral component of fault growth hinders our ability to test these models and fully understand how natural fault systems evolve. Here we outline a framework for using apatite (U-Th)/He thermochronology (AHe) to quantify the along-strike growth of faults. To test our framework, we first use a transect in the normal fault-bounded Jackson Mountains in the Nevada Basin and Range Province, then apply the new framework to the adjacent Pine Forest Range. We combine new and existing cross sections with 18 new and 16 existing AHe cooling ages to determine the spatiotemporal variability in footwall exhumation and evaluate models for fault growth. Three age-elevation transects in the Pine Forest Range show that rapid exhumation began along the range-front fault between approximately 15 and 11 Ma at rates of 0.2–0.4 km/Myr, ultimately exhuming approximately 1.5–5 km. The ages of rapid exhumation identified at each transect lie within data uncertainty, indicating concomitant onset of faulting along strike. We show that even in the case of growth by fault-segment linkage, the fault would achieve its modern length within 3–4 Myr of onset. Comparison with the Jackson Mountains highlights the inadequacies of spatially limited sampling. A constant fault-length growth model is the best explanation for our thermochronology results. We advocate that low-temperature thermochronology can be further utilized to better understand and quantify fault growth with broader implications for seismic hazard assessments and the coevolution of faulting and topography.

  12. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  13. Earthquakes and fault creep on the northern San Andreas fault

    USGS Publications Warehouse

    Nason, R.

    1979-01-01

    At present there is an absence of both fault creep and small earthquakes on the northern San Andreas fault, which had a magnitude 8 earthquake with 5 m of slip in 1906. The fault has apparently been dormant after the 1906 earthquake. One possibility is that the fault is 'locked' in some way and only produces great earthquakes. An alternative possibility, presented here, is that the lack of current activity on the northern San Andreas fault is because of a lack of sufficient elastic strain after the 1906 earthquake. This is indicated by geodetic measurements at Fort Ross in 1874, 1906 (post-earthquake), and 1969, which show that the strain accumulation in 1969 (69 ?? 10-6 engineering strain) was only about one-third of the strain release (rebound) in the 1906 earthquake (200 ?? 10-6 engineering strain). The large difference in seismicity before and after 1906, with many strong local earthquakes from 1836 to 1906, but only a few strong earthquakes from 1906 to 1976, also indicates a difference of elastic strain. The geologic characteristics (serpentine, fault straightness) of most of the northern San Andreas fault are very similar to the characteristics of the fault south of Hollister, where fault creep is occurring. Thus, the current absence of fault creep on the northern fault segment is probably due to a lack of sufficient elastic strain at the present time. ?? 1979.

  14. Older drivers' risks of at-fault motor vehicle collisions.

    PubMed

    Ichikawa, Masao; Nakahara, Shinji; Taniguchi, Ayako

    2015-08-01

    In aging societies, increasing numbers of older drivers are involved in motor vehicle collisions (MVCs), and preserving their safety is a growing concern. In this study, we focused on whether older drivers were more likely to cause MVCs and injuries than drivers in other age groups. To do so we compared at-fault MVC incidence and resulting injury risks by drivers' ages, using data from Japan, a country with a rapidly aging population. The at-fault MVC incidence was calculated based on distance traveled made for non-commercial purposes, and the injury risks posed to at-fault drivers and other road users per at-fault MVCs. We used MVC data for 2010 from the National Police Agency of Japan and driving exposure data from the Nationwide Person Trip Survey conducted by a Japanese governmental ministry in 2010. The at-fault MVC incidence showed a U-shaped curve across the drivers' ages, where teenage and the oldest drivers appeared to be the highest risk groups in terms of causing MVCs, and the incidence was higher for female drivers after age 25. The injury risk older drivers posed to other vehicle occupants because of their at-fault MVCs was lower than for drivers in other age groups, while their own injury risk appeared much higher. As the number of older drivers is increasing, efforts to reduce their at-fault MVCs appear justified.

  15. Battery control and fault detection method

    SciTech Connect

    Bishop, W.S.

    1984-07-11

    This is a method for control, fault detection, fault isolation, and state-of-health monitoring of batteries and battery arrays. The method consists of measuring all of the battery, well, or cell group voltages, using statistics to determine a mean voltage and a standard deviation voltage, then comparing all of the measured voltages to the mean voltage. If the measured voltage deviates from the mean voltage by an arbitrary amount (number of standard deviations) corrective action can be implemented or an alarm signal given. The measurements need to be made rapidly enough to eliminate battery or cell voltage changes due to state of charge or temperature changes and, in most cases, require a computerized data collection/reduction system. Absolute high and/or low voltage limits can be included to prevent catastrophic events. The concept can be expanded to include similar temperature, pressure and/or battery current measurements in an array.

  16. Effect of surrounding fault on distributed fault of blind reverse fault in sedimentary basin - Uemachi Faults, Osaka Basin, Southwest Japan -

    NASA Astrophysics Data System (ADS)

    Inoue, N.

    2012-12-01

    Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin, which has been filled by the Pleistocene Osaka group and the later sediments. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The various geological, geophysical surveys, such as seismic reflection, micro tremor, gravity surveys and deep boreholes, revealed the complex basement configuration along the Uemachi faults. The depth of the basement is shallow in the central part of the Osaka plain. The Uemachi faults are locates on the western side of the basement upland. In the central part of the Uemachi faults, the displacement decreases. The fault model of the Uemachi faults consists of the two parts, the north and south parts. The NE-SW trending branch faults, Suminoe and Sakuragawa flexures, are also recognized based on various surveys around the central part. Kusumoto et al. (2001) reported that surrounding faults enable to form the basement configuration without the Uemachi faults model based on a dislocation model. Inoue et al. (2011) performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted of 7 faults including the Uemachi faults. In this study, the Osaka-wan fault was considered for the dislocation model. The results show the basement configuration including NE-SW branch faults. The basement configuration differs from the subsurface structure derived from the investigation of abundance geotechnical borehole data around the central part of the Uemachi faults. The tectonic developing process including the erosion and sea level change are require to understanding the structure from the basement to the surface of the Uemachi Fault Zone. This research is partly funded by the Comprehensive

  17. Depth Dependence of the Fault Strength in the Creeping Section of the Atotsugawa Fault, Japan

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.; Fukuyama, E.; Kitamura, K.; Takahashi, M.; Masuda, K.

    2005-12-01

    The Atotsugawa fault is located along a highly deformed region in central Japan with 60km long, striking to N60°E and dipping to 90° ± 10°. From the laser distance measurement survey, a creeping section (1.5mm/y) was found in the northeastern part [Geogr. Surv. Inst., 1997]. In this section, a low seismicity area down to a depth of 7km was found above the seismically active region down to 15 km [Ito and Wada, 1999]. In order to investigate the depth dependent feature of the fault strength, we conducted tri-axial friction tests of the Atotsugawa fault gouge under the conditions of 1, 3, 5 and 7km depth. The NIED drilled a borehole in the fault zone down to a depth of 350m in this creeping section [Omura et al., 2004] and obtained core samples consisting of fault gouge, fault breccia and fractured host rocks (granitic rocks and hornblende gneiss). The samples are taken in the gouge zone (8.5mm in thickness) located at a depth of 342 m. The samples were disaggregated in distilled water and passed through a 100μm diameter sieve for the friction tests. From the XRD analysis, the gouge sample consists of quartz, feldspar, smectite, kaolinite and micas. The average grain size in the sample was approximately 16.9μm measured by a laser diffraction particle size analyzer. The friction tests were run using a gas-medium tri-axial apparatus at the AIST, Japan [Masuda et al., 2002]. For each run, 0.5g gouge powder was put between 30° sawcut of an alumina ceramic cylinder (20mm in diameter) and sheared at a constant axial slip rate of 0.1μm/s. Each test was done with pore fluid of distilled water at the temperature-pressure conditions of 1-7 km depths assuming a hydrostatic pore-pressure gradient of 10MPa/km, a lithostatic confining pressure gradient of 26MPa/km and a geothermal gradient of 30°C/km. In all experiments, the friction increases rapidly to an axial displacement of about 0.1mm, and then it gradually increases or becomes steady state. We found a strong depth

  18. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  19. Fault intersections along the Hosgri Fault Zone, Central California

    NASA Astrophysics Data System (ADS)

    Watt, J. T.; Johnson, S. Y.; Langenheim, V. E.

    2011-12-01

    It is well-established that stresses concentrate at fault intersections or bends when subjected to tectonic loading, making focused studies of these areas particularly important for seismic hazard analysis. In addition, detailed fault models can be used to investigate how slip on one fault might transfer to another during an earthquake. We combine potential-field, high-resolution seismic-reflection, and multibeam bathymetry data with existing geologic and seismicity data to investigate the fault geometry and connectivity of the Hosgri, Los Osos, and Shoreline faults offshore of San Luis Obispo, California. The intersection of the Hosgri and Los Osos faults in Estero Bay is complex. The offshore extension of the Los Osos fault, as imaged with multibeam and high-resolution seismic data, is characterized by a west-northwest-trending zone (1-3 km wide) of near vertical faulting. Three distinct strands (northern, central, and southern) are visible on shallow seismic reflection profiles. The steep dip combined with dramatic changes in reflection character across mapped faults within this zone suggests horizontal offset of rock units and argues for predominantly strike-slip motion, however, the present orientation of the fault zone suggests oblique slip. As the Los Osos fault zone approaches the Hosgri fault, the northern and central strands become progressively more northwest-trending in line with the Hosgri fault. The northern strand runs subparallel to the Hosgri fault along the edge of a long-wavelength magnetic anomaly, intersecting the Hosgri fault southwest of Point Estero. Geophysical modeling suggests the northern strand dips 70° to the northeast, which is in agreement with earthquake focal mechanisms that parallel this strand. The central strand bends northward and intersects the Hosgri fault directly west of Morro Rock, corresponding to an area of compressional deformation visible in shallow seismic-reflection profiles. The southern strand of the Los Osos

  20. An analysis of the black crusts from the Seville Cathedral: a challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources.

    PubMed

    Ruffolo, Silvestro A; Comite, Valeria; La Russa, Mauro F; Belfiore, Cristina M; Barca, Donatella; Bonazza, Alessandra; Crisci, Gino M; Pezzino, Antonino; Sabbioni, Cristina

    2015-01-01

    The Cathedral of Seville is one of the most important buildings in the whole of southern Spain. It suffers, like most of the historical buildings located in urban environments, from several degradation phenomena related to the high pollution level. Undoubtedly, the formation of black crusts plays a crucial role in the decay of the stone materials belonging to the church. Their formation occurs mainly on carbonate building materials, whose interaction with a sulfur oxide-enriched atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, forms the black crusts on the stone surface. To better understand the composition and the formation dynamics of this degradation product and to identify the pollutant sources and evaluate their impact on the stone material, an analytical study was carried out on the black crust samples collected from different areas of the building. For a complete characterization of the black crusts, several techniques were used, including laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy, micro infrared spectroscopy, optical and scanning electron microscopy. This battery of tests provided information about the nature and distribution of the mineralogical phases and the elements within the crusts and the crust-substrate interface, contributing to the identification of the major pollution sources responsible for the deterioration of the monument over time. In addition, the results revealed a relation among the height of sampling, the surface exposure and the concentration of heavy metals. Finally, information has been provided about the origin of the concentration gradients of some metals.

  1. Holocene faulting on the Mission fault, northwest Montana

    SciTech Connect

    Ostenaa, D.A.; Klinger, R.E.; Levish, D.R. )

    1993-04-01

    South of Flathead Lake, fault scarps on late Quaternary surfaces are nearly continuous for 45 km along the western flank of the Mission Range. On late Pleistocene alpine lateral moraines, scarp heights reach a maximum of 17 m. Scarp heights on post glacial Lake Missoula surfaces range from 2.6--7.2 m and maximum scarp angles range from 10[degree]--24[degree]. The stratigraphy exposed in seven trenches across the fault demonstrates that the post glacial Lake Missoula scarps resulted from at least two surface-faulting events. Larger scarp heights on late Pleistocene moraines suggests a possible third event. This yields an estimated recurrence of 4--8 kyr. Analyses of scarp profiles show that the age of the most surface faulting is middle Holocene, consistent with stratigraphic evidence found in the trenches. Rupture length and displacement imply earthquake magnitudes of 7 to 7.5. Previous studies have not identified geologic evidence of late Quaternary surface faulting in the Rocky Mountain Trench or on faults north of the Lewis and Clark line despite abundant historic seismicity in the Flathead Lake area. In addition to the Mission fault, reconnaissance studies have located late Quaternary fault scarps along portions of faults bordering Jocko and Thompson Valleys. These are the first documented late Pleistocene/Holocene faults north of the Lewis and Clark line in Montana and should greatly revise estimates of earthquake hazards in this region.

  2. Managing Fault Management Development

    NASA Technical Reports Server (NTRS)

    McDougal, John M.

    2010-01-01

    As the complexity of space missions grows, development of Fault Management (FM) capabilities is an increasingly common driver for significant cost overruns late in the development cycle. FM issues and the resulting cost overruns are rarely caused by a lack of technology, but rather by a lack of planning and emphasis by project management. A recent NASA FM Workshop brought together FM practitioners from a broad spectrum of institutions, mission types, and functional roles to identify the drivers underlying FM overruns and recommend solutions. They identified a number of areas in which increased program and project management focus can be used to control FM development cost growth. These include up-front planning for FM as a distinct engineering discipline; managing different, conflicting, and changing institutional goals and risk postures; ensuring the necessary resources for a disciplined, coordinated approach to end-to-end fault management engineering; and monitoring FM coordination across all mission systems.

  3. Rheological transitions in high-temperature volcanic fault zones

    NASA Astrophysics Data System (ADS)

    Okumura, Satoshi; Uesugi, Kentaro; Nakamura, Michihiko; Sasaki, Osamu

    2015-05-01

    Silicic magma experiences shear-induced brittle fracturing during its ascent, resulting in the formation of a magmatic fault at the conduit margin. Once the fault is formed, frictional behavior of the fault controls the magma ascent process. We observed torsional deformation of a magmatic fault gouge in situ at temperatures of 800 and 900°C using synchrotron radiation X-ray radiography. The torsional deformation rate was set at 0.1-10 rpm, corresponding to equivalent slip velocities of 2.27 × 10-5-1.74 × 10-3 m s-1 and shear strain rates of 0.014-1.16 s-1. The normal stresses used were 1, 5, and 10 MPa. The magmatic fault showed frictional sliding as well as viscous flow even above the glass transition temperature. The transition between frictional sliding and viscous flow depends on temperature, deformation rate, and normal stress on the fault. At 900°C, the fault showed viscous deformation at a normal stress of 10 MPa, while frictional sliding was predominant at 800°C. We propose the ratio of timescales of fault healing and deformation as a criterion for transition between frictional sliding and viscous flow. The experimentally calibrated criterion infers that frictional sliding is predominant from ~500 m in depth during explosive eruption; this may explain rapid magma ascent without efficient outgassing. Frictional heating would in turn enhance fault healing, resulting in the reverse transition from frictional sliding to viscous flow, followed by deceleration of magma ascent. Therefore, cyclic transitions between frictional sliding and viscous flow are a possible explanation for the cyclic behavior of lava effusion.

  4. Fault tolerant control laws

    NASA Technical Reports Server (NTRS)

    Ly, U. L.; Ho, J. K.

    1986-01-01

    A systematic procedure for the synthesis of fault tolerant control laws to actuator failure has been presented. Two design methods were used to synthesize fault tolerant controllers: the conventional LQ design method and a direct feedback controller design method SANDY. The latter method is used primarily to streamline the full-state Q feedback design into a practical implementable output feedback controller structure. To achieve robustness to control actuator failure, the redundant surfaces are properly balanced according to their control effectiveness. A simple gain schedule based on the landing gear up/down logic involving only three gains was developed to handle three design flight conditions: Mach .25 and Mach .60 at 5000 ft and Mach .90 at 20,000 ft. The fault tolerant control law developed in this study provides good stability augmentation and performance for the relaxed static stability aircraft. The augmented aircraft responses are found to be invariant to the presence of a failure. Furthermore, single-loop stability margins of +6 dB in gain and +30 deg in phase were achieved along with -40 dB/decade rolloff at high frequency.

  5. Seismic reflection profiling around the hypocentral area of the 2003 Miyagi-ken Hokubu earthquake (Mj6.4): Reactivated thrust faulting of a Miocene normal fault.

    NASA Astrophysics Data System (ADS)

    Yokokura, T.; Yamaguchi, K.; Kano, N.; Yokota, T.; Tanaka, A.; Ohtaki, T.

    2004-12-01

    The 2003 Miyagi-ken Hokubu (northern Miyagi) earthquake occurred on July 26, which was preceded by the largest foreshock of Mj5.6 and was followed by the largest aftershock of Mj5.5. Although these earthquakes were not so large in magnitude, they caused large damages. The earthquakes occurred just beneath the Asahiyama hills, where exist the active Asahiyama flexure. Aftershock observations delineate a clear fault plane that extends toward the Sue hills in the east, not toward the Asahiyama hills. However neither surface ruptures nor active fault assocciated with the earthquakes were observed in this region. To clarify both the surface extension of the fault and geologic structure of this region, we conducted 17km-long seismic reflection profiling, using a 17.5-ton vibrator. Geologically, this region was subjected rapid EW extension in middle Miocene and thus produced rift basin was filled by the Matsushima-wan Group (syn-rift sediments) which was bounded by a normal fault, the Ishinomaki-wan fault, in the eastern side of the basin. The Matsushima-wan Group was unconformably overlain by the Shida Group (Miocene post-rift sediments). The Shida Group was unconformably overlain by the Pliocene and post-Pliocene sediments. Deformed Pliocene strata show thrust faulting, indicating EW compression after early Pliocene. Detailed data processing reveals that the seismic profile is essentially concordant with the structure inferred from surface geology. A west-dipping fault with about 50 degrees is found beneath the southeastern extension of the Sue hills where the Ishinomaki-wan fault was supposed to extend. The deeper part of the fault extends toward the earthquake fault plane determined by aftershocks and the shallower part shows a thrust-like structure, which indicate basin inversion using this fault. Thus the 2003 Miyagi-ken Hokubu earthquake occurred as reactivated thrust faulting of the Miocene normal fault bounding the eastern side of the rift basin.

  6. Tectonic history and setting of a seismogenic intraplate fault system that lacks microseismicity: The Saline River fault system, southern United States

    NASA Astrophysics Data System (ADS)

    Cox, Randel Tom; Hall, J. Luke; Gardner, Chris S.

    2013-11-01

    Although the northwest-striking Saline River fault system of southeastern Arkansas is not defined by microseismicity, it is associated with sand blows and shows evidence of Pleistocene and Holocene surface ruptures, suggesting a significant seismogenic potential. This fault system is within the northern Gulf of Mexico interior coastal plain, a region only recently recognized as containing seismogenic faults. To better characterize this active fault system, we reconstructed its post-Paleozoic history using petroleum and coal industry wire-line well log and seismic reflection subsurface data. The Saline river fault system initiated as a series of northwest-striking grabens during Triassic/Jurassic uplift and incipient Gulf of Mexico rifting along the basement Alabama-Oklahoma transform margin of the North American Proterozoic craton. During post-rift subsidence, these grabens were buried by Gulf sediments until mid-Cretaceous uplift and igneous activity resulted in minor extensional reactivation of graben faults. Faulting style changed from extension to transpression during the Late Cretaceous due to compression of eastern North America as the North Atlantic rapidly widened and due to thermal weakening of the Alabama-Oklahoma transform lithospheric discontinuity as it obliquely crossed a mantle hot spot. In the Late Cretaceous, graben faults experienced contractional reactivation and steep, deeply-rooted transpressional faults developed within and parallel to the graben system. These transpressional faults locally displace Eocene, Pleistocene, and Holocene sediments. Fault activity continues on the Saline River fault system due to thin crust along the Alabama-Oklahoma transform and to high heat flow, which act together to weaken the crust and promote seismogenic tectonism. The fault system may lack appreciable microseismicity because the aftershock sequence of the last large earthquake has had time to dissipate.

  7. An expert system for fault diagnosis in a Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    The detection and diagnosis of SSME faults in an early stage is important in order to allow enough time for fault preventive or corrective measurements. Since most of the faults in a complex system like SSME develop rapidly, early detection and diagnosis of faults is critical for the survival of space vehicles. An expert system has been designed for automatic learning, detection, identification, verification, and correction of anomalous propulsion system operations. This paper describes an innovative machine learning approach which is employed for the automatic training of this expert system.

  8. The San Andreas Fault 'Supersite' (Invited)

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.

    2013-12-01

    struck in 1992 (Landers), 1994 (Northridge) and 1999 (Hector Mine) as well as the 2010 El Mayor - Cucapah (EM-C) earthquake (just south of the US-Mexico border). Of these four notable events, all produced extensive surface faulting except for the 1994 Northridge event, which was close to the Los Angeles urban area on a buried thrust fault. Northridge caused by far the most destruction, topping $20B (US) and resulting in 57 fatalities due to its location under an urban area. The Landers, Hector Mine and EM-C events occurred in desert areas away from major urban centers, and each proved to be a new and unique test-bed for making rapid progress in earthquake science and creative use of geodetic imagery. InSAR studies were linked to GPS deformation and mapping of surface ruptures and seismicity in a series of important papers about these earthquakes. The hazard in California remains extremely high, with tens of millions of people living in close proximity to the San Andreas Fault system as it runs past both San Francisco and Los Angeles. Dense in-situ networks of seismic and geodetic instruments are continually used for research and earthquake monitoring, as well as development of an earthquake early warning capability. Principles of peer review from funding agencies and open data availability will be observed for all data. For all of these reasons, the San Andreas Fault system is highly appropriate for consideration as a world-class permanent Supersite in the GEO framework.

  9. Efficient Synchronization Stability Metrics for Fault Clearing

    SciTech Connect

    Backhaus, Scott N.; Chertkov, Michael; Bent, Russell Whitford; Bienstock, Daniel; Krishnamurthy, Dvijotham

    2015-02-12

    Direct methods can provide rapid screening of the dynamical security of large numbers fault and contingency scenarios by avoiding extensive time simulation. We introduce a computationally-efficient direct method based on optimization that leverages efficient cutting plane techniques. The method considers both unstable equilibrium points and the effects of additional relay tripping on dynamical security[1]. Similar to other direct methods, our approach yields conservative results for dynamical security, however, the optimization formulation potentially lends itself to the inclusion of additional constraints to reduce this conservatism.

  10. Mechanical stratigraphy and normal faulting

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Morris, Alan P.; McGinnis, Ronald N.; Smart, Kevin J.; Wigginton, Sarah S.; Hill, Nicola J.

    2017-01-01

    Mechanical stratigraphy encompasses the mechanical properties, thicknesses, and interface properties of rock units. Although mechanical stratigraphy often relates directly to lithostratigraphy, lithologic description alone does not adequately describe mechanical behavior. Analyses of normal faults with displacements of millimeters to 10's of kilometers in mechanically layered rocks reveal that mechanical stratigraphy influences nucleation, failure mode, fault geometry, displacement gradient, displacement distribution, fault core and damage zone characteristics, and fault zone deformation processes. The relationship between normal faulting and mechanical stratigraphy can be used either to predict structural style using knowledge of mechanical stratigraphy, or conversely to interpret mechanical stratigraphy based on characterization of the structural style. This review paper explores a range of mechanical stratigraphic controls on normal faulting illustrated by natural and modeled examples.

  11. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  12. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  13. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  14. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  15. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  16. 20 CFR 404.507 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Fault. 404.507 Section 404.507 Employees... Officer § 404.507 Fault. Fault as used in without fault (see § 404.506 and 42 CFR 405.355) applies only to the individual. Although the Administration may have been at fault in making the overpayment,...

  17. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  18. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Sibson, R. H.; Renner, J.; Toy, V. G.; di Toro, G.; Smith, S. A.

    2010-12-01

    In this study, we introduce work which aims assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ1 - σ3) and σ3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ3', versus load-weakening (equivalent to a normal fault) with reducing σ3' under constant σ1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ1 , ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we also experimentally explore the reshear of natural pseudotachylytes (PSTs) from two different fault zones; the Gole Larghe Fault, Adamello, Italy in which the PSTs are in relatively isotropic Tonalite (at lab sample scale) and the Alpine Fault, New Zealand in which the PSTs are in highly anisotropic foliated shist. We test whether PSTs will reshear in both rock types under the right conditions, or whether new fractures in the wall rock will form in preference to reactivating the PST (PST shear strength is higher than that of the host rock). Are PSTs representative of one slip event?

  19. Fault trees and sequence dependencies

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Boyd, Mark A.; Bavuso, Salvatore J.

    1990-01-01

    One of the frequently cited shortcomings of fault-tree models, their inability to model so-called sequence dependencies, is discussed. Several sources of such sequence dependencies are discussed, and new fault-tree gates to capture this behavior are defined. These complex behaviors can be included in present fault-tree models because they utilize a Markov solution. The utility of the new gates is demonstrated by presenting several models of the fault-tolerant parallel processor, which include both hot and cold spares.

  20. SEISMOLOGY: Watching the Hayward Fault.

    PubMed

    Simpson, R W

    2000-08-18

    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  1. Fault-Tree Compiler Program

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1992-01-01

    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  2. Pulsed strain release on the Altyn Tagh fault, northwest China

    NASA Astrophysics Data System (ADS)

    Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.

    2017-02-01

    Earthquake recurrence models assume that major surface-rupturing earthquakes are followed by periods of reduced rupture probability as stress rebuilds. Although purely periodic, time- or slip-predictable rupture models are known to be oversimplifications, a paucity of long records of fault slip clouds understanding of fault behavior and earthquake recurrence over multiple ruptures. Here, we report a 16 kyr history of fault slip-including a pulse of accelerated slip from 6.4 to 6.0 ka-determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip fault (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/-0.9 mm /a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-rupturing earthquakes or a single large >Mw 8.2 earthquake. The clustered earthquake scenario implies rapid re-rupture of a fault reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it ruptured much of the ATF with slip similar to, or exceeding, the largest documented historical ruptures. Both scenarios indicate fault rupture behavior that deviates from classic time- or slip-predictable models.

  3. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, J.S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  4. Cross-Cutting Faults

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows cross-cutting fault scarps among graben features in northern Tempe Terra. Graben form in regions where the crust of the planet has been extended; such features are common in the regions surrounding the vast 'Tharsis Bulge' on Mars.

    Location near: 43.7oN, 90.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  5. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  6. Nonlinear Fault Diagnosis,

    DTIC Science & Technology

    1981-05-01

    Systems, New York, Marcel Dekker, (to appear). 3. Desoer , C.A. and S.E. Kuh, Basic Circuit Theory, McGraw-Hill, New York, 1969, pp. 423-425. 130 NONLINEAR...DIAGNOSIS A 7*ssior For 1 MU3 CRA&T IY’IC TAB Ju-st i.cat IC- P.U A: CONTENTS Fault Diagnosis in Electronic Circuits , R. Saeks and R.-w. Liu...Vincentelli and R. Saeks .............. 61 Multitest Diagnosibility of Nonlinear Circuits and Systems, A. Sangiovanni-Vincentelli and R. Saeks

  7. Perspective View, Garlock Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast

  8. Integrated design of fault reconstruction and fault-tolerant control against actuator faults using learning observers

    NASA Astrophysics Data System (ADS)

    Jia, Qingxian; Chen, Wen; Zhang, Yingchun; Li, Huayi

    2016-12-01

    This paper addresses the problem of integrated fault reconstruction and fault-tolerant control in linear systems subject to actuator faults via learning observers (LOs). A reconfigurable fault-tolerant controller is designed based on the constructed LO to compensate for the influence of actuator faults by stabilising the closed-loop system. An integrated design of the proposed LO and the fault-tolerant controller is explored such that their performance can be simultaneously considered and their coupling problem can be effectively solved. In addition, such an integrated design is formulated in terms of linear matrix inequalities (LMIs) that can be conveniently solved in a unified framework using LMI optimisation technique. At last, simulation studies on a micro-satellite attitude control system are provided to verify the effectiveness of the proposed approach.

  9. a Geometrical Similarity Pattern as AN Experimental Model for Shapes in Architectural Heritage: a Case Study of the Base of the Pillars in the Cathedral of Seville and the Church of Santiago in Jerez, Spain

    NASA Astrophysics Data System (ADS)

    Moyano, J. J.; Barrera, J. A.; Nieto, J. E.; Marín, D.; Antón, D.

    2017-02-01

    This paper proposes a procedure for the search of a geometrical similarity pattern in architectural heritage by means of calculating probability indexes to support hypotheses initially endorsed by documentary sources. The buildings analysed are the Cathedral of Seville and the Church of Santiago, in Jerez, Spain. The 3D models of their selected pillars are obtained by means of Terrestrial Laser Scanning (TLS), Optical Scanning (OS) and photogrammetry through image-based modelling software (SFM-IBM). To this end, a procedure for the comparison of shapes is established. It is based on similarity statistics, the determination of homologous points and the agreement of characteristic sections. Here, two key aspects are considered: on the one hand, the metric standpoint; on the other hand, historical-graphical features of the 3D models: composition, techniques, styles, and historical-graphical documentary sources. Thus, putting aside the mere dimensional analysis, the sections are compared with graphical patterns and models of which the same authorship - stonemasons working in that age - is accurately known. As a result, the outcomes of this research reveal the geometrical similarity between the elements of the pillars of the Cathedral of Seville and the Church of Santiago.

  10. AGSM Functional Fault Models for Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  11. Fault Branching and Rupture Directivity

    NASA Astrophysics Data System (ADS)

    Dmowska, R.; Rice, J. R.; Kame, N.

    2002-12-01

    Can the rupture directivity of past earthquakes be inferred from fault geometry? Nakata et al. [J. Geogr., 1998] propose to relate the observed surface branching of fault systems with directivity. Their work assumes that all branches are through acute angles in the direction of rupture propagation. However, in some observed cases rupture paths seem to branch through highly obtuse angles, as if to propagate ``backwards". Field examples of that are as follows: (1) Landers 1992. When crossing from the Johnson Valley to the Homestead Valley (HV) fault via the Kickapoo (Kp) fault, the rupture from Kp progressed not just forward onto the northern stretch of the HV fault, but also backwards, i.e., SSE along the HV [Sowers et al., 1994, Spotila and Sieh, 1995, Zachariasen and Sieh, 1995, Rockwell et al., 2000]. Measurements of surface slip along that backward branch, a prominent feature of 4 km length, show right-lateral slip, decreasing towards the SSE. (2) At a similar crossing from the HV to the Emerson (Em) fault, the rupture progressed backwards along different SSE splays of the Em fault [Zachariasen and Sieh, 1995]. (3). In crossing from the Em to Camp Rock (CR) fault, again, rupture went SSE on the CR fault. (4). Hector Mine 1999. The rupture originated on a buried fault without surface trace [Li et al., 2002; Hauksson et al., 2002] and progressed bilaterally south and north. In the south it met the Lavic Lake (LL) fault and progressed south on it, but also progressed backward, i.e. NNW, along the northern stretch of the LL fault. The angle between the buried fault and the northern LL fault is around -160o, and that NNW stretch extends around 15 km. The field examples with highly obtuse branch angles suggest that there may be no simple correlation between fault geometry and rupture directivity. We propose that an important distinction is whether those obtuse branches actually involved a rupture path which directly turned through the obtuse angle (while continuing

  12. The Growth of Simple Mountain Ranges: 2. Geomorphic Evolution at Fault Linkage Sites

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; Densmore, A. L.; Davis, A. M.; Gupta, S.

    2002-12-01

    Large normal faults grow partly through linkage of fault segments and partly by fault tip propagation. The process by which fault segments interact and link is critical to understanding how topography is created along fault-bounded ranges. Structural studies and numerical models have shown that fault linkage is accompanied by localised increased displacement rate, which in turn drives rapid base level fall at the evolving range front. The changes in both along-strike fault structure and base level are most pronounced at and adjacent to sites of fault linkage. These areas, known as relay zones, thus preserve clues to both the tectonic history and the geomorphic evolution of large fault-bounded mountain ranges. We discuss the temporal and spatial constraints on the evolution of footwall-range topography, by comparing a number of active fault linkage sites, using field and DEM observations of the spatial pattern of footwall denudation. In particular, we focus on sites in Pleasant Valley, Nevada (Pearce and Tobin fault segments) and in the northeastern Basin and Range (the Beaverhead fault, Idaho, and the Star Valley fault, Wyoming). The study areas represent different stages in the structural and geomorphic evolution of relay zones, and allow us to propose a developmental model of large fault evolution and landscape response. Early in the growth of fault segments into an overlapping geometry, catchments may form within the evolving relay. However, increasing displacement rate associated with fault interaction and linkage makes these catchments prone to capture by streams that have incised headward from the range front. This scenario leads to locally increased footwall denudation in the vicinity of the capture site. Longitudinal profiles of streams differ with respect to position along relays and whether or not any particular stream has been able to capture early-formed drainages. The restricted space between interacting en echelon fault segments helps preserve close

  13. Overview of the Southern San Andreas Fault Model

    USGS Publications Warehouse

    Weldon, Ray J.; Biasi, Glenn P.; Wills, Chris J.; Dawson, Timothy E.

    2008-01-01

    This appendix summarizes the data and methodology used to generate the source model for the southern San Andreas fault. It is organized into three sections, 1) a section by section review of the geological data in the format of past Working Groups, 2) an overview of the rupture model, and 3) a manuscript by Biasi and Weldon (in review Bulletin of the Seismological Society of America) that describes the correlation methodology that was used to help develop the ?geologic insight? model. The goal of the Biasi and Weldon methodology is to quantify the insight that went into developing all A faults; as such it is in concept consistent with all other A faults but applied in a more quantitative way. The most rapidly slipping fault and the only known source of M~8 earthquakes in southern California is the San Andreas fault. As such it plays a special role in the seismic hazard of California, and has received special attention in the current Working Group. The underlying philosophy of the current Working Group is to model the recurrence behavior of large, rapidly slipping faults like the San Andreas from observed data on the size, distribution and timing of past earthquakes with as few assumptions about underlying recurrence behavior as possible. In addition, we wish to carry the uncertainties in the data and the range of reasonable extrapolations from the data to the final model. To accomplish this for the Southern San Andreas fault we have developed an objective method to combine all of the observations of size, timing, and distribution of past earthquakes into a comprehensive set of earthquake scenarios that each represent a possible history of earthquakes for the past ~1400 years. The scenarios are then ranked according to their overall consistency with the data and then the frequencies of all of the ruptures permitted by the current Working Group?s segmentation model are calculated. We also present 30-yr conditional probabilities by segment and compare to previous

  14. Central Asia Active Fault Database

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  15. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland)

    NASA Astrophysics Data System (ADS)

    Kristensen, Thomas B.; Rotevatn, Atle; Peacock, David C. P.; Henstra, Gijs A.; Midtkandal, Ivar; Grundvåg, Sten-Andreas

    2016-11-01

    Structurally controlled, syn-rift, clastic depocentres are of economic interest as hydrocarbon reservoirs; understanding the structure of their bounding faults is of great relevance, e.g. in the assessment of fault-controlled hydrocarbon retention potential. Here we investigate the structure of the Dombjerg Fault Zone (Wollaston Forland, NE Greenland), a syn-rift border fault that juxtaposes syn-rift deep-water hanging-wall clastics against a footwall of crystalline basement. A series of discrete fault strands characterize the central fault zone, where discrete slip surfaces, fault rock assemblages and extreme fracturing are common. A chemical alteration zone (CAZ) of fault-related calcite cementation envelops the fault and places strong controls on the style of deformation, particularly in the hanging-wall. The hanging-wall damage zone includes faults, joints, veins and, outside the CAZ, disaggregation deformation bands. Footwall deformation includes faults, joints and veins. Our observations suggest that the CAZ formed during early-stage fault slip and imparted a mechanical control on later fault-related deformation. This study thus gives new insights to the structure of an exposed basin-bounding fault and highlights a spatiotemporal interplay between fault damage and chemical alteration, the latter of which is often underreported in fault studies. To better elucidate the structure, evolution and flow properties of faults (outcrop or subsurface), both fault damage and fault-related chemical alteration must be considered.

  16. Fault Management Design Strategies

    NASA Technical Reports Server (NTRS)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  17. Colorado Regional Faults

    DOE Data Explorer

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Colorado Geological Survey (CGS) Publication Date: 2012 Title: Regional Faults Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the regional faults of Colorado Spatial Domain: Extent: Top: 4543192.100000 m Left: 144385.020000 m Right: 754585.020000 m Bottom: 4094592.100000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  18. SFT: Scalable Fault Tolerance

    SciTech Connect

    Petrini, Fabrizio; Nieplocha, Jarek; Tipparaju, Vinod

    2006-04-15

    In this paper we will present a new technology that we are currently developing within the SFT: Scalable Fault Tolerance FastOS project which seeks to implement fault tolerance at the operating system level. Major design goals include dynamic reallocation of resources to allow continuing execution in the presence of hardware failures, very high scalability, high efficiency (low overhead), and transparency—requiring no changes to user applications. Our technology is based on a global coordination mechanism, that enforces transparent recovery lines in the system, and TICK, a lightweight, incremental checkpointing software architecture implemented as a Linux kernel module. TICK is completely user-transparent and does not require any changes to user code or system libraries; it is highly responsive: an interrupt, such as a timer interrupt, can trigger a checkpoint in as little as 2.5μs; and it supports incremental and full checkpoints with minimal overhead—less than 6% with full checkpointing to disk performed as frequently as once per minute.

  19. A survey of an introduction to fault diagnosis algorithms

    NASA Technical Reports Server (NTRS)

    Mathur, F. P.

    1972-01-01

    This report surveys the field of diagnosis and introduces some of the key algorithms and heuristics currently in use. Fault diagnosis is an important and a rapidly growing discipline. This is important in the design of self-repairable computers because the present diagnosis resolution of its fault-tolerant computer is limited to a functional unit or processor. Better resolution is necessary before failed units can become partially reuseable. The approach that holds the greatest promise is that of resident microdiagnostics; however, that presupposes a microprogrammable architecture for the computer being self-diagnosed. The presentation is tutorial and contains examples. An extensive bibliography of some 220 entries is included.

  20. Accelerometer having integral fault null

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  1. Naval Weapons Center Active Fault Map Series.

    DTIC Science & Technology

    1987-08-31

    SECURITY CLASSIFICATION OF ’MiS PACE NWC TP 6828 CONTENTS Introduction . . . . . . . . . . . . . . . . . ........... 2 Active Fault Definition ...established along the trace of the Little Take fault zone, within the City of Ridgecrest. ACTIVE FAULT DEFINITION Although it is a commonly used term...34active fault" lacks a pre- cise and universally accepted definition . Most workers, however, accept the following: "Active fault - a fault along

  2. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    NASA Astrophysics Data System (ADS)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  3. Experimental Fault Reactivation on Favourably and Unfavourably Oriented Faults

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Renner, J.; Sibson, R. H.

    2011-12-01

    In this study, we assess the loading of faults to failure under different stress regimes in a triaxial deformation apparatus, both in dry and saturated conditions. We explore experimentally the reshear of an existing fault in various orientations for particular values of (σ_1 - σ_3) and σ_3' for contrasting loading systems - load-strengthening (equivalent to a thrust fault) with σ1' increasing at constant σ_3', versus load-weakening (equivalent to a normal fault) with reducing σ_3' under constant σ_1'. Experiments are conducted on sawcut granite samples with fault angles at a variety of orientations relative to σ_1, ranging from an optimal orientation for reactivation to lockup angles where new faults are formed in preference to reactivating the existing sawcut orientation. Prefailure and postfailure behaviour is compared in terms of damage zone development via monitoring variations in ultrasonic velocity and acoustic emission behaviour. For example, damage surrounding unfavourably oriented faults is significantly higher than that seen around favourably orientated faults due to greater maximum stresses attained prior to unstable slip, which is reflected by the increased acoustic emission activity leading up to failure. In addition, we explore reshear conditions under an initial condition of (σ_1' = σ_3'), then inducing reshear on the existing fault first by increasing σ_1'(load-strengthening), then by decreasing σ_3' (load-weakening), again comparing relative damage zone development and acoustic emission levels. In saturated experiments, we explore the values of pore fluid pressure (P_f) needed for re-shear to occur in preference to the formation of a new fault. Typically a limiting factor in conventional triaxial experiments performed in compression is that P_f cannot exceed the confining pressure (σ_2 and σ_3). By employing a sample assembly that allows deformation while the loading piston is in extension, it enables us to achieve pore pressures in

  4. Synchronized sampling improves fault location

    SciTech Connect

    Kezunovic, M.; Perunicic, B.

    1995-04-01

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  5. Frictional Heterogeneities Along Carbonate Faults

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Carpenter, B. M.; Scuderi, M.; Tesei, T.

    2014-12-01

    The understanding of fault-slip behaviour in carbonates has an important societal impact as a) a significant number of earthquakes nucleate within or propagate through these rocks, and b) half of the known petroleum reserves occur within carbonate reservoirs, which likely contain faults that experience fluid pressure fluctuations. Field studies on carbonate-bearing faults that are exhumed analogues of currently active structures of the seismogenic crust, show that fault rock types are systematically controlled by the lithology of the faulted protolith: localization associated with cataclasis, thermal decomposition and plastic deformation commonly affect fault rocks in massive limestone, whereas distributed deformation, pressure-solution and frictional sliding along phyllosilicates are observed in marly rocks. In addition, hydraulic fractures, indicating cyclic fluid pressure build-ups during the fault activity, are widespread. Standard double direct friction experiments on fault rocks from massive limestones show high friction, velocity neutral/weakening behaviour and significant re-strengthening during hold periods, on the contrary, phyllosilicate-rich shear zones are characterized by low friction, significant velocity strengthening behavior and no healing. We are currently running friction experiments on large rock samples (20x20 cm) in order to reproduce and characterize the interaction of fault rock frictional heterogeneities observed in the field. In addition we have been performing experiments at near lithostatic fluid pressure in the double direct shear configuration within a pressure vessel to test the Rate and State friction stability under these conditions. Our combination of structural observations and mechanical data have been revealing the processes and structures that are at the base of the broad spectrum of fault slip behaviors recently documented by high-resolution geodetic and seismological data.

  6. Constraint of fault parameters inferred from nonplanar fault modeling

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Madariaga, Raul; Fukuyama, Eiichi

    2003-02-01

    We study the distribution of initial stress and frictional parameters for the 28 June 1992 Landers, California, earthquake through dynamic rupture simulation along a nonplanar fault system. We find that observational evidence of large slip distribution near the ground surface requires large nonzero cohesive forces in the depth-dependent friction law. This is the only way that stress can accumulate and be released at shallow depths. We then study the variation of frictional parameters along the strike of the fault. For this purpose we mapped into our segmented fault model the initial stress heterogeneity inverted by Peyrat et al. [2001] using a planar fault model. Simulations with this initial stress field improved the overall fit of the rupture process to that inferred from kinematic inversions, and also improved the fit to the ground motion observed in Southern California. In order to obtain this fit, we had to introduce an additional variations of frictional parameters along the fault. The most important is a weak Kickapoo fault and a strong Johnson Valley fault.

  7. Faulted Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    27 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the layered, sedimentary rock outcrops that occur in a crater located at 8oN, 7oW, in western Arabia Terra. Dark layers and dark sand have enhanced the contrast of this scene. In the upper half of the image, one can see numerous lines that off-set the layers. These lines are faults along which the rocks have broken and moved. The regularity of layer thickness and erosional expression are taken as evidence that the crater in which these rocks occur might once have been a lake. The image covers an area about 1.9 km (1.2 mi) wide. Sunlight illuminates the scene from the lower left.

  8. Arc fault detection system

    DOEpatents

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  9. Arc fault detection system

    DOEpatents

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  10. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    SciTech Connect

    Reheis, M.C.

    1991-09-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs.

  11. Improving Multiple Fault Diagnosability using Possible Conflicts

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Biswas, Gautam; Koutsoukos, Xenofon; Pulido, Belarmino

    2012-01-01

    Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can manifest in many different ways as observable fault signature sequences. This decreases diagnosability of multiple faults, and therefore leads to a loss in effectiveness of the fault isolation step. We develop a qualitative, event-based, multiple fault isolation framework, and derive several notions of multiple fault diagnosability. We show that using Possible Conflicts, a model decomposition technique that decouples faults from residuals, we can significantly improve the diagnosability of multiple faults compared to an approach using a single global model. We demonstrate these concepts and provide results using a multi-tank system as a case study.

  12. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    SciTech Connect

    Cumbest, R.J.

    2000-11-14

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion.

  13. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.

    PubMed

    Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M

    2017-03-21

    Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic (36)Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The (36)Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10(4) yr; 10(2) km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  14. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults

    NASA Astrophysics Data System (ADS)

    Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.

    2017-03-01

    Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.

  15. Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults

    PubMed Central

    Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.

    2017-01-01

    Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr; 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting. PMID:28322311

  16. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    USGS Publications Warehouse

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  17. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  18. Granular Packings and Fault Zones

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Herrmann, H. J.; Timonen, J.

    2000-01-01

    The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The packing fails through formation of shear bands or faults. During failure there is a separation of the system into two grain-packing states. In a shear band, local ``rotating bearings'' are spontaneously formed. The bearing state is favored in a shear band because it has a low stiffness against shearing. The ``seismic activity'' distribution in the packing has the same characteristics as that of the earthquake distribution in tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the San Andreas Fault.

  19. Method of locating ground faults

    NASA Astrophysics Data System (ADS)

    Patterson, Richard L.; Rose, Allen H.; Cull, Ronald C.

    1994-11-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  20. Finding faults with the data

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Rudolph Giuliani and Hillary Rodham Clinton are crisscrossing upstate New York looking for votes in the U.S. Senate race. Also cutting back and forth across upstate New York are hundreds of faults of a kind characterized by very sporadic seismic activity according to Robert Jacobi, professor of geology at the University of Buffalo (UB), who conducted research with fellow UB geology professor John Fountain."We have proof that upstate New York is crisscrossed by faults," Jacobi said. "In the past, the Appalachian Plateau—which stretches from Albany to Buffalo—was considered a pretty boring place structurally without many faults or folds of any significance."

  1. Modern glacial outwash sand along the Denali Fault: Thermochronological constraints on strike-slip fault and glacier interaction

    NASA Astrophysics Data System (ADS)

    Benowitz, J.; Layer, P. W.; O'Sullivan, P. B.; Vanlaningham, S.; Herreid, S. J.

    2010-12-01

    The interplay between tectonic and climatic processes on exhumation patterns is a fundamental question in current tectonic research. There has been a special focus on the affect of glacial processes on exhumation patterns in tectonically active orogens. Conclusions about exhumation extent related to late Cenozoic climatic forcing are often complicated by the possibility of movement along unknown ice-covered faults in glaciated mountain belts. In this study we investigate the interaction between glacial processes and the ice-covered Denali fault through detrital geochronology of modern glacier outwash sediments. The narrow high-relief Alaska Range provides a unique opportunity to examine the interaction of Pliocene-Quaternary glaciation with a known large-scale intercontinental strike-slip fault on long term exhumation patterns. Key attributes of the research area are a comprehensive bedrock thermochronology record of long-term rapid/deep exhumation (~24 Ma to present/~14 km), the orogen’s tectonic relationship with the ice covered Denali Fault, a preponderance of highly erosive surge-type glaciers along the Fault trace and a ~350 km transect of easily accessible sampling sites. By comparing U-Pb zircon emplacement ages (~70 Ma to ~38 Ma) and 40Ar/39Ar mica exhumation ages (~33 Ma to ~18 Ma) from bedrock samples with sub-glacial 40Ar/39Ar mica single grain fusion age distributions from glacial outwash sand we can differentiate between predicted cooling age patterns. We can distinguish between three different scenarios from the full data set: a) Outwash data slightly younger than bedrock data set-This would imply same trend as bedrock samples, where as biotite and muscovite samples get younger as you approach the Denali Fault in agreement with dip-slip on the Denali Fault is a significant contributor to topographic development in the region. b) Outwash data same or older then bedrock data set-This would imply structures splaying off the Denali Fault are

  2. Measurements of Bismuth-214 in Soils to Locate Fault Traces

    NASA Astrophysics Data System (ADS)

    Labrecque, J. J.; Melo, L.; Cordoves, P. R.; Urbani, F.

    2004-05-01

    A simple and rapid technique to determine the relative counts of Bi-214 in surface soils to locate active fault traces of the El Pilar Fault in the state of Sucre, Venezuela will be presented. The method employed 300 seconds of measuring time using a portable differential gamma ray spectrometer on site. Three transects across the El Pilar fault that had very different geological aspects were studied. The first two at San Miguel and Guaraphiche showed clear positive anomalies at the fault trace, while a large positive anomaly was seen by radon-222 measurements at the San Miguel site and a small negative anomaly at the Guarpiche site. At the Las Toscanas site neither the measurements of the relative Bi-214 or the relative counts of radon-222 could confirm the fault trace, it has been suggested that since all the value of radon-222 and Bi-214 along this transect were high, that all of the measuring points were over very fracture soils. One of the advantages of this technique in respect to determining radon-222 in soil-gas is that no soil-gas probes are required to be inserted in the soil and the problem to know which is the appropriate depth. Finally, it has been suggested that measurements of 1000 seconds would be preferred rather than 300 seconds for future studies even though this would limit the number of measurements to about 20 per day.

  3. Moment accumulation rate on faults in California inferred from viscoelastic earthquake cycle models (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, K. M.

    2009-12-01

    Calculations of moment accumulation rates on active faults require knowledge of long-term fault slip rates and the area of the fault that is locked interseismically. These parameters are routinely estimated from geodetic data using elastic block models with back slip on dislocations in an elastic half-space. Yet, the elastic models are inconsistent with studies that infer postseismic viscous flow in the lower crust and mantle occurring for decades following large earthquakes. Viscous flow in the lower crust and mantle generates rapid, localized deformation early in the earthquake cycle and slower, more diffuse deformation later in the cycle. Elastic models which neglect this time-dependent flow process may lead to biased estimates of fault slip rates and locking distribution. To address this issue we have developed a three-dimensional earthquake cycle model consisting of fault-bounded blocks in an elastic crust overlying a viscoelastic lower crust and uppermost mantle. It is a kinematic model in which long-term motions of fault-bounded blocks is imposed. Interseismic locking of faults and associated deformation is modeled with steady back-slip on faults and imposed periodic earthquakes. Creep on unlocked portions of the faults occurs at constant stress and therefore the instantaneous creep rate is proportional to the instantaneous stressing rate on the fault. We compare geologic slip rate estimates in southern California with model estimates using GPS data and show that elastic block models underpredict slip rates on several faults that are late in the earthquake cycle and overpredict slip rates on faults that are early in the earthquake cycle. The viscoelastic cycle model, constrained by earthquake timing from the geologic record, predicts fault slip rates that are entirely consistent with geologic estimates for all major faults in southern California. For northern California, fault slip rate estimates using geodetic data appear not to be strongly dependent on

  4. Tracing young faults in the Atlantic Coastal Plain sediments: Use of composite refraction-reflection stack sections

    SciTech Connect

    Stephenson, D.E. ); Coruh, C.; Costain, J.K.; Domoracki, W.J. )

    1994-03-01

    Study of the basement faults that penetrate upward into the Atlantic Coastal Plain sediments might constrain the timing of deformation in the form of folding and faulting. Composite refraction-reflection stack sections are produced by reprocessing available seismic data to investigate basement faults that penetrate upward into Atlantic coastal Plain sediments near Aiken, South Carolina. The purpose of the refraction stack was to recover events as shallow as possible while reprocessing of the reflected arrivals was designed to image reflections from depths as deep as the Moho. Seismic data processing for refracted head wave arrivals produced refraction stack sections that constrain the upward penetration depth of the faults image and interpreted in crystalline basement and Triassic sediments. The faulting, in general, is not limited to the Triassic Dunbarton basin, which is interpreted to be bounded by reverse (at the NW) faults. Other faults are also imaged in the sediments and extend upward. Displacement imaged along faults decreases rapidly upward from the basement. The composite refraction-reflection stack sections exhibit that the depth of upward penetration of the faults varies: most of them are associated with deformation at times as small as 50 ms two-way time (about 25 m), while two faults (the Atta and Steel Creek) penetrate to depths that include a shallow refracted horizon. Imbricated upper crustal structures, the buried Triassic Dunbarton basin, and reverse and normal faults suggest that the subsurface is overprinted by compression followed by extension and later by compression.

  5. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  6. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  7. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  8. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  9. 22 CFR 17.3 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the...

  10. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  11. 20 CFR 410.561b - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see §...

  12. Crystal fractionation in the friction melts of seismic faults (Alpine Fault, New Zealand)

    NASA Astrophysics Data System (ADS)

    Warr, Laurence N.; van der Pluijm, Ben A.

    2005-06-01

    Compositional variations are documented in friction melts along the Hari Hari section of the Alpine Fault, New Zealand, with multiple stages of melt injection into quartzo-feldspathic schists. Intermediate to felsic melts were heterogeneous in composition, but all fractions show a common trend, with a tendency for the younger melt layers and glasses to be more alkali - (Na + K) and Si-enriched, while being depleted in mafic (Fe + Mg + Mn) components. These changes are attributed primarily to crystal fractionation of the melt during transport. Farther traveled molten layers were on the whole less viscous, mostly due to a higher melt-to-clast ratio; however, compositional change, together with a decrease in volatile content, produced a progressively more viscous liquid melt with time. The glass phase is interpreted as a remnant of this high viscosity felsic residual melt that was preserved during final quenching. Following initial failure, the formation of largely phyllosilicate-derived, volatile-rich, lower viscosity melt corresponds with a phase of fault weakening. Subsequent rapid crystal fractionation during melt transport, the loss of volatiles and freezing of residual melt contributed to the strengthening of the fault during seismic slip.

  13. Rifting and Faulting on icy Satellites

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2003-12-01

    Two kinds of rifting have been identified on the icy Galilean satellites [1,2]. Europa possesses ˜10~km wide extensional bands, characterized by very high degrees of local extension, internal deformation on a lengthscale of ˜~100~m, and a general resemblance to mid-ocean ridges on Earth [3]. Ganymede has ˜100~km wide areas of grooved terrain, characterized by km-scale tilted fault blocks [4,5], lower degrees of local extension (stretching factor <1.6 [5]) and a general resemblance to continental rifts on Earth [1]. The characteristic spacing of faults on Europa and Ganymede has been used to infer the depth to the brittle-ductile transition (BDT), which depends on the strain rate and the shell thickness [4,6]. Here I present another constraint on these quantities, obtained by considering the circumstances under which narrow (Europa-style) or wide (Ganymede-style) rifts may form. The model is based on an analysis of terrestrial continent rifting [7]. When an ice shell is extended, the thermal gradient increases and it becomes weaker, favouring further extension. The extension also gives rise to lateral shell thickness variations, which oppose further extension. However, these lateral thickness variations may be removed if the base of the ice shell can flow rapidly. If lateral flow is rapid, narrow zones of extension and high stretching factors are generated. If lateral flow is slow, wider rifts and lower stretching factors are favoured. Thick ice shells or high strain rates favour narrow rifts; thin ice shells or low strain rates favour wide rifts. The existence of wide rifts on Ganymede is consistent with a conductive shell thickness of 4-8~km at the time of rifting, and agrees with previous estimates of strain rates [8]. To produce narrow rifting and the inferred BDT depth on Europa requires a larger shell thickness (8-20~km) and a strain rate >= 10-15~s-1. Based on the likely shell thicknesses, the inferred strain rates for Europa and Ganymede can be explained

  14. Displacement Addition on Linking Extensional Fault Arrays in the Canyonlands Graben, Utah

    NASA Astrophysics Data System (ADS)

    Commins, D. C.; Gupta, S.; Cartwright, J. A.; Phillips, W. M.

    2003-12-01

    Studies of brittle fault populations over the past decade have revealed that large extensional faults grow by the lengthening, interaction and physical linkage of en echelon fault segments. However, the temporal evolution of displacement accumulation during segment interaction and linkage is difficult to unravel due to a lack of direct observation during each stage in the fault array development. The process of profile re-adjustment prevents reconstruction of the growth history of a fault from its final configuration, and as a result, several models for the growth trajectory of a fault array undergoing linkage are possible. Observational data with which to constrain the relative timing and mode of displacement accumulation during the linkage process are currently lacking. We use the deformation of late Pleistocene-Holocene stream systems by the growth of a active normal faults in The Grabens, Canyonlands National Park, Utah to constrain the mode of growth of fault arrays. Coupling fault displacement data with geomorphic analysis of deformed present-day and palaeo-streams, permits sequential reconstruction of both simple 2-segment fault arrays and complex multi-segment populations from their initial component segments to the present day displacement geometry. In particular, these data provide information on the relative rates of displacement addition. For example, the presence of waterfalls where streams cross fault scarps indicates abrupt rates of displacement accumulation which we can relate to the hard linkage process. The reconstruction of both three- and six-segment faults reveal common aspects of displacement distribution through time: (1) Displacement accumulation occurs almost entirely in the interaction and linkage phase. (2) Interaction between segments causes enhanced displacement addition in overlap zones. (3) Despite interaction in the soft-linkage stage, faults do not achieve a characteristic profile during this phase (4) Displacement accrues rapidly

  15. Borehole water and hydrologic model around the Nojima fault, SW Japan

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Ueda, A.; Ohtani, T.; Takahashi, M.; Ito, H.; Tanaka, H.; Boullier, Anne-Marie

    2007-10-01

    The active fault drilling at Nojima Hirabayashi after the 1995 Hyogoken-nanbu (Kobe) earthquake (M JMA = 7.2) provides us with a unique opportunity to investigate subsurface fault structure and the in-situ properties of fault and fluid. The borehole intersected the fault gouge of the Nojima fault at a depth interval of 623 m to 625 m. The lithology is mostly Cretaceous granodiorite with some porphyry dikes. The fault core is highly permeable due to fracturing. The borehole water was sampled in 1996 and 2000 from the depth interval between 630 and 650 m, just below the fault core. The chemical and isotopic compositions were analyzed. Carbon and oxygen isotope ratios of carbonates from the fault core were analyzed to estimate the origin of fluid. The following conclusions were obtained. (1) The ionic and isotopic compositions of borehole water did not change from 1996 to 2000. They are mostly derived from local ground water as mentioned by Sato and Takahashi [Sato, T., Takahashi, M., 2000. Chemical and isotopic compositions of groundwater obtained from the Hirabayashi well. Geological Survey of Japan Interim Report No. EQ/00/1, 187-192.]. (2) Geochemical speciation revealed that the borehole water was derived from a relatively deep reservoir, which may be situated at a depth of 3 to 4 km where the temperature is about 80-90 °C. (3) The shallower part of the Nojima fault (shallower than the reservoir depth) has not been healed from the hydrological viewpoints 5 years after the event, in contrast to the rapid healing detected by S wave splitting [Tadokoro, K., Ando, M., 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys. Res. Lett., 29, 10.1029/2001GL013644.]. (4) Precipitation of calcite from the present borehole water since drilling supports the idea of precipitation of some calcite in coseismic hydraulic fractures in the fault core [Boullier, A-M., Fujimoto, K., Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P

  16. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    NASA Astrophysics Data System (ADS)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  17. The fault-tree compiler

    NASA Technical Reports Server (NTRS)

    Martensen, Anna L.; Butler, Ricky W.

    1987-01-01

    The Fault Tree Compiler Program is a new reliability tool used to predict the top event probability for a fault tree. Five different gate types are allowed in the fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N gates. The high level input language is easy to understand and use when describing the system tree. In addition, the use of the hierarchical fault tree capability can simplify the tree description and decrease program execution time. The current solution technique provides an answer precise (within the limits of double precision floating point arithmetic) to the five digits in the answer. The user may vary one failure rate or failure probability over a range of values and plot the results for sensitivity analyses. The solution technique is implemented in FORTRAN; the remaining program code is implemented in Pascal. The program is written to run on a Digital Corporation VAX with the VMS operation system.

  18. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  19. Spontaneous rupture on irregular faults

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2014-12-01

    It is now know (e.g. Robinson et al., 2006) that when ruptures propagate around bends, the rupture velocity decrease. In the extreme case, a large bend in the fault can stop the rupture. We develop a 2-D finite difference method to simulate spontaneous dynamic rupture on irregular faults. This method is based on a second order leap-frog finite difference scheme on a uniform mesh of triangles. A relaxation method is used to generate an irregular fault geometry-conforming mesh from the uniform mesh. Through this numerical coordinate mapping, the elastic wave equations are transformed and solved in a curvilinear coordinate system. Extensive numerical experiments using the linear slip-weakening law will be shown to demonstrate the effect of fault geometry on rupture properties. A long term goal is to simulate the strong ground motion near the vicinity of bends, jogs, etc.

  20. Weakening inside incipient thrust fault

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Tesei, T.; Collettini, C.; Oliot, E.

    2013-12-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that nucleate along décollement levels. Geological and geophysical evidence suggests that these faults might be weak because of a combination of processes such as pressure-solution, phyllosilicates reorientation and delamination, and fluid pressurization. In this study we aim to decipher the processes and the kinetics responsible for weakening of tectonic décollements. We studied the Millaris thrust (Southern Pyrenees): a fault representative of a décollement in its incipient stage. This fault accommodated a total shortening of about 30 meters and is constituted by a 10m thick, intensively foliated phyllonite developed inside a homogeneous marly unit. Detailed chemical and mineralogical analyses have been carried out to characterize the mineralogical change, the chemical transfers and volume change in the fault zone compared to non-deformed parent sediments. We also carried out microstructural analysis on natural and experimentally deformed rocks. Illite and chlorite are the main hydrous minerals. Inside fault zone, illite minerals are oriented along the schistosity whereas chlorite coats the shear surfaces. Mass balance calculations demonstrated a volume loss of up to 50% for calcite inside fault zone (and therefore a relative increase of phyllosilicates contents) because of calcite pressure solution mechanisms. We performed friction experiments in a biaxial deformation apparatus using intact rocks sheared in the in-situ geometry from the Millaris fault and its host sediments. We imposed a range of normal stresses (10 to 50 MPa), sliding velocity steps (3-100 μm/s) and slide-hold slide sequences (3 to 1000 s hold) under saturated conditions. Mechanical results demonstrate that both fault rocks and parent sediments are weaker than average geological materials (friction μ<<0.6) and have velocity-strengthening behavior because of the presence of phyllosilicate horizons. Fault rocks are

  1. ARGES: an Expert System for Fault Diagnosis Within Space-Based ECLS Systems

    NASA Technical Reports Server (NTRS)

    Pachura, David W.; Suleiman, Salem A.; Mendler, Andrew P.

    1988-01-01

    ARGES (Atmospheric Revitalization Group Expert System) is a demonstration prototype expert system for fault management for the Solid Amine, Water Desorbed (SAWD) CO2 removal assembly, associated with the Environmental Control and Life Support (ECLS) System. ARGES monitors and reduces data in real time from either the SAWD controller or a simulation of the SAWD assembly. It can detect gradual degradations or predict failures. This allows graceful shutdown and scheduled maintenance, which reduces crew maintenance overhead. Status and fault information is presented in a user interface that simulates what would be seen by a crewperson. The user interface employs animated color graphics and an object oriented approach to provide detailed status information, fault identification, and explanation of reasoning in a rapidly assimulated manner. In addition, ARGES recommends possible courses of action for predicted and actual faults. ARGES is seen as a forerunner of AI-based fault management systems for manned space systems.

  2. Fault Tree Analysis: A Bibliography

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Fault tree analysis is a top-down approach to the identification of process hazards. It is as one of the best methods for systematically identifying an graphically displaying the many ways some things can go wrong. This bibliography references 266 documents in the NASA STI Database that contain the major concepts. fault tree analysis, risk an probability theory, in the basic index or major subject terms. An abstract is included with most citations, followed by the applicable subject terms.

  3. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  4. Normal fault earthquakes or graviquakes

    PubMed Central

    Doglioni, C.; Carminati, E.; Petricca, P.; Riguzzi, F.

    2015-01-01

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors. PMID:26169163

  5. Normal fault earthquakes or graviquakes.

    PubMed

    Doglioni, C; Carminati, E; Petricca, P; Riguzzi, F

    2015-07-14

    Earthquakes are dissipation of energy throughout elastic waves. Canonically is the elastic energy accumulated during the interseismic period. However, in crustal extensional settings, gravity is the main energy source for hangingwall fault collapsing. Gravitational potential is about 100 times larger than the observed magnitude, far more than enough to explain the earthquake. Therefore, normal faults have a different mechanism of energy accumulation and dissipation (graviquakes) with respect to other tectonic settings (strike-slip and contractional), where elastic energy allows motion even against gravity. The bigger the involved volume, the larger is their magnitude. The steeper the normal fault, the larger is the vertical displacement and the larger is the seismic energy released. Normal faults activate preferentially at about 60° but they can be shallower in low friction rocks. In low static friction rocks, the fault may partly creep dissipating gravitational energy without releasing great amount of seismic energy. The maximum volume involved by graviquakes is smaller than the other tectonic settings, being the activated fault at most about three times the hypocentre depth, explaining their higher b-value and the lower magnitude of the largest recorded events. Having different phenomenology, graviquakes show peculiar precursors.

  6. Passive fault current limiting device

    DOEpatents

    Evans, D.J.; Cha, Y.S.

    1999-04-06

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  7. Passive fault current limiting device

    DOEpatents

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  8. Software Fault Tolerance: A Tutorial

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2000-01-01

    Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.

  9. Fault diagnosis of power systems

    SciTech Connect

    Sekine, Y. ); Akimoto, Y. ); Kunugi, M. )

    1992-05-01

    Fault diagnosis of power systems plays a crucial role in power system monitoring and control that ensures stable supply of electrical power to consumers. In the case of multiple faults or incorrect operation of protective devices, fault diagnosis requires judgment of complex conditions at various levels. For this reason, research into application of knowledge-based systems go an early start and reports of such systems have appeared in may papers. In this paper, these systems are classified by the method of inference utilized in the knowledge-based systems for fault diagnosis of power systems. The characteristics of each class and corresponding issues as well as the state-of-the-art techniques for improving their performance are presented. Additional topics covered are user interfaces, interfaces with energy management systems (EMS's), and expert system development tools for fault diagnosis. Results and evaluation of actual operation in the field are also discussed. Knowledge-based fault diagnosis of power systems will continue to disseminate.

  10. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  11. Tutorial: Advanced fault tree applications using HARP

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne Bechta; Bavuso, Salvatore J.; Boyd, Mark A.

    1993-01-01

    Reliability analysis of fault tolerant computer systems for critical applications is complicated by several factors. These modeling difficulties are discussed and dynamic fault tree modeling techniques for handling them are described and demonstrated. Several advanced fault tolerant computer systems are described, and fault tree models for their analysis are presented. HARP (Hybrid Automated Reliability Predictor) is a software package developed at Duke University and NASA Langley Research Center that is capable of solving the fault tree models presented.

  12. Error latency estimation using functional fault modeling

    NASA Technical Reports Server (NTRS)

    Manthani, S. R.; Saxena, N. R.; Robinson, J. P.

    1983-01-01

    A complete modeling of faults at gate level for a fault tolerant computer is both infeasible and uneconomical. Functional fault modeling is an approach where units are characterized at an intermediate level and then combined to determine fault behavior. The applicability of functional fault modeling to the FTMP is studied. Using this model a forecast of error latency is made for some functional blocks. This approach is useful in representing larger sections of the hardware and aids in uncovering system level deficiencies.

  13. Developing Fault Models for Space Mission Software

    NASA Technical Reports Server (NTRS)

    Nikora, Allen P.; Munson, John C.

    2003-01-01

    A viewgraph presentation on the development of fault models for space mission software is shown. The topics include: 1) Goal: Improve Understanding of Technology Fault Generation Process; 2) Required Measurement; 3) Measuring Structural Evolution; 4) Module Attributes; 5) Principal Components of Raw Metrics; 6) The Measurement Process; 7) View of Structural Evolution at the System and Module Level; 8) Identifying and Counting Faults; 9) Fault Enumeration; 10) Modeling Fault Content; 11) Modeling Results; 12) Current and Future Work; and 13) Discussion and Conclusions.

  14. Heat flow and energetics of the San Andreas Fault Zone

    NASA Astrophysics Data System (ADS)

    Lachenbruch, Arthur H.; Sass, J. H.

    1980-11-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate (1) there is no evidence for local factional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, (2) average heat flow is high (˜2 HFU, ˜80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were ≲100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. Explanations for the low dynamic friction fall into two intergradational classes: those in which the fault is weak all of the time and those in which it is weak only during earthquakes (possibly just large ones). The first class includes faults containing anomalously weak gouge materials and faults containing materials with normal frictional properties under near-lithostatic steady state fluid pressures. In the second class, weakening is caused by the event (for example, a thermally induced increase in fluid pressure, dehydration of clay minerals, or acoustic fluidization). In this class, unlike the first, the average strength and ambient tectonic shear stress may be large, ˜1 kbar, but the stress allocated to elastic radiation (the apparent stress) must be of similar magnitude, an apparent contradiction with seismic estimates. Unless seismic radiation is underestimated for large earthquakes, it is difficult to justify average tectonic stresses on the main trace of the San Andreas fault in excess of

  15. Fault Management Guiding Principles

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  16. Critical fault patterns determination in fault-tolerant computer systems

    NASA Technical Reports Server (NTRS)

    Mccluskey, E. J.; Losq, J.

    1978-01-01

    The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics.

  17. Fault branching and rupture directivity

    NASA Astrophysics Data System (ADS)

    Fliss, Sonia; Bhat, Harsha S.; Dmowska, Renata; Rice, James R.

    2005-06-01

    Could the directivity of a complex earthquake be inferred from the ruptured fault branches it created? Typically, branches develop in forward orientation, making acute angles relative to the propagation direction. Direct backward branching of the same style as the main rupture (e.g., both right lateral) is disallowed by the stress field at the rupture front. Here we propose another mechanism of backward branching. In that mechanism, rupture stops along one fault strand, radiates stress to a neighboring strand, nucleates there, and develops bilaterally, generating a backward branch. Such makes diagnosing directivity of a past earthquake difficult without detailed knowledge of the branching process. As a field example, in the Landers 1992 earthquake, rupture stopped at the northern end of the Kickapoo fault, jumped onto the Homestead Valley fault, and developed bilaterally there, NNW to continue the main rupture but also SSE for 4 km forming a backward branch. We develop theoretical principles underlying such rupture transitions, partly from elastostatic stress analysis, and then simulate the Landers example numerically using a two-dimensional elastodynamic boundary integral equation formulation incorporating slip-weakening rupture. This reproduces the proposed backward branching mechanism based on realistic if simplified fault geometries, prestress orientation corresponding to the region, standard lab friction values for peak strength, and fracture energies characteristic of the Landers event. We also show that the seismic S ratio controls the jumpable distance and that curving of a fault toward its compressional side, like locally along the southeastern Homestead Valley fault, induces near-tip increase of compressive normal stress that slows rupture propagation.

  18. Geodetic evidence for aseismic reverse creep across the Teton fault, Teton Range, Wyoming

    SciTech Connect

    Sylvester, A.G. ); Byrd, J.O.D.; Smith R.B. )

    1991-06-01

    The valley block (hanging wall) of the central segment of the Teton fault rose 8 {plus minus} 0.7 mm during 1988 and 1989, relative to the mountain block west of the fault, a displacement opposite to that expected on a normal fault. The height change is based on first-order leveling data over a 21.2 km-long fault-crossing line of 42 permanent bench marks established and initially surveyed in 1988 and resurveyed in 1989. The rapid height change took place across a 1,200 m-wide zone coincident with the steep escarpment at the base of the range front including the surface trace of the east-dipping Teton fault, a major, active, range-front normal fault bounding the east side of the Teton Range at the northeastern edge of the Basin and Range province. The total stratigraphic offset across the fault, as much as 9 km, accumulated over the last 7 to 9 million years. Quaternary fault scarps, up to 52 m in height, cut Pinedale (about 14,000 yr) glacial and younger fluvial-alluvial deposits, indicating that the Teton fault has been the locus of several large, scarp-forming earthquakes in the past 14,000 years, and it exhibits up to 25 m of latest Quarternary displacement where crossed by the level line. Although the relative uplift of the hanging wall may be local and unique to the Teton fault, this unexpected observation of aseismic, reverse creep may have a variety of tectonic and non-tectonic causes, including hydrologic effects, aseismic fault creep or tilt, and pre-seismic dilation.

  19. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  20. Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data

    USGS Publications Warehouse

    Haeussler, Peter J.

    2009-01-01

    The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.

  1. Complexity of the deep San Andreas Fault zone defined by cascading tremor

    NASA Astrophysics Data System (ADS)

    Shelly, David R.

    2015-02-01

    Weak seismic vibrations--tectonic tremor--can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  2. Anisotropy of permeability in faulted porous sandstones

    NASA Astrophysics Data System (ADS)

    Farrell, N. J. C.; Healy, D.; Taylor, C. W.

    2014-06-01

    Studies of fault rock permeabilities advance the understanding of fluid migration patterns around faults and contribute to predictions of fault stability. In this study a new model is proposed combining brittle deformation structures formed during faulting, with fluid flow through pores. It assesses the impact of faulting on the permeability anisotropy of porous sandstone, hypothesising that the formation of fault related micro-scale deformation structures will alter the host rock porosity organisation and create new permeability pathways. Core plugs and thin sections were sampled around a normal fault and oriented with respect to the fault plane. Anisotropy of permeability was determined in three orientations to the fault plane at ambient and confining pressures. Results show that permeabilities measured parallel to fault dip were up to 10 times higher than along fault strike permeability. Analysis of corresponding thin sections shows elongate pores oriented at a low angle to the maximum principal palaeo-stress (σ1) and parallel to fault dip, indicating that permeability anisotropy is produced by grain scale deformation mechanisms associated with faulting. Using a soil mechanics 'void cell model' this study shows how elongate pores could be produced in faulted porous sandstone by compaction and reorganisation of grains through shearing and cataclasis.

  3. Fault seal analysis in the North Sea

    SciTech Connect

    Knott, S.D. )

    1993-05-01

    The majority of North Sea structural traps requires that at least one fault be a sealing fault. Over 400 faults from 101 exploration targets and 25 oil and gas fields were analyzed in a regional study of the North Sea. The faults cut clastic successions from a variety of depositional environments (marine, paralic, and nonmarine). The emphasis of the study was on fault-related seals that act as pressure or migration barriers over geologic time. Parameters such as fault strike and throw, reservoir thickness, depth, net-to-gross ratio, porosity, and net sand connectivity were plotted against seal performance to define trends and correlations to predict fault seal characteristics. A correlation appears to exist between fault orientation and sealing, although this is not statistically significant. Sealing is proportional to fault throw norminalized as a fraction of the reservoir thickness. The great majority of faults with throw greater than the thickness of the reservoir interval were sealing faults. The most useful parameters in fault seal prediction are fault displacement, net-to-gross ratio, and net sand connectivity. The conclusions of this study have general applicability to fault seal prediction in exploration, development, and production of hydrocarbons in clastic successions in the North Sea and perhaps other areas as well. 15 refs., 19 figs., 1 tab.

  4. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    PubMed

    Ding, Bo; Fang, Huajing

    2017-03-31

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system.

  5. PC-based fault finder

    SciTech Connect

    Bengiamin, N.N. ); Jensen, C.A. . Electrical Engineering Dept. Otter Tail Power Co., Fergus Falls, MN . System Protection Group); McMahon, H. )

    1993-07-01

    Electric utilities are continually pressed to stay competitive while meeting the increasing demand of today's sophisticated customer. Advances in electron equipment and the improved array of electric driven devices are setting new standards for improved reliability and quality of service. Besides the specifications on voltage and frequency regulation and the permitted harmonic content, to name a few, the number and duration of service interruptions have a dramatic direct effect on the customer. Accurate fault locating reduces transmission line patrolling and is of particular significance in repairing long lines in rough terrain. Shortened outage times, reduced equipment degrading and stress on the system, fast restored service, and improved revenue are immediate outcomes of fast fault locating which insure minimum loss of system security. This article focuses on a PC-based (DOS) computer program that has unique features for identifying the type of fault and its location on overhead transmission/distribution lines. Balanced and unbalanced faults are identified and located accurately while accounting for changes in conductor sizes and network configuration. The presented concepts and methodologies have been spurred by Otter Tail Power's need for an accurate fault locating scheme to accommodate multiple feeders with mixed lone configurations. A case study based on a section of the Otter Tail network is presented to illustrate the features and capabilities of the developed software.

  6. Quaternary faults of west Texas

    SciTech Connect

    Collins, E.W.; Raney, J.A. . Bureau of Economic Geology)

    1993-04-01

    North- and northwest-striking intermontane basins and associated normal faults in West Texas and adjacent Chihuahua, Mexico, formed in response to Basin and Range tectonism that began about 24 Ma ago. Data on the precise ages of faulted and unfaulted Quaternary deposits are sparse. However, age estimates made on the basis of field stratigraphic relationships and the degree of calcic soil development have helped determine that many of the faults that bound the basin margins ruptured since the middle Pleistocene and that some faults probably ruptured during the Holocene. Average recurrence intervals between surface ruptures since the middle Pleistocene appear to be relatively long, about 10,000 to 100,000 yr. Maximum throw during single rupture events have been between 1 and 3 m. Historic seismicity in West Texas is low compared to seismicity in many parts of the Basin and Range province. The largest historic earthquake, the 1931 Valentine earthquake in Ryan Flat/Lobo Valley, had a magnitude of 6.4 and no reported surface rupture. The most active Quaternary faults occur within the 120-km-long Hueco Bolson, the 70-km-long Red Light Bolson, and the > 200-km-long Salt Basins/Wild Horse Flat/Lobo Valley/Ryan Flat.

  7. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  8. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  9. Where's the Hayward Fault? A Green Guide to the Fault

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip

  10. Reconsidering Fault Slip Scaling

    NASA Astrophysics Data System (ADS)

    Gomberg, J. S.; Wech, A.; Creager, K. C.; Obara, K.; Agnew, D. C.

    2015-12-01

    The scaling of fault slip events given by the relationship between the scalar moment M0, and duration T, potentially provides key constraints on the underlying physics controlling slip. Many studies have suggested that measurements of M0 and T are related as M0=KfT3 for 'fast' slip events (earthquakes) and M0=KsT for 'slow' slip events, in which Kf and Ks are proportionality constants, although some studies have inferred intermediate relations. Here 'slow' and 'fast' refer to slip front propagation velocities, either so slow that seismic radiation is too small or long period to be measurable or fast enough that dynamic processes may be important for the slip process and measurable seismic waves radiate. Numerous models have been proposed to explain the differing M0-T scaling relations. We show that a single, simple dislocation model of slip events within a bounded slip zone may explain nearly all M0-T observations. Rather than different scaling for fast and slow populations, we suggest that within each population the scaling changes from M0 proportional to T3 to T when the slipping area reaches the slip zone boundaries and transitions from unbounded, 2-dimensional to bounded, 1-dimensional growth. This transition has not been apparent previously for slow events because data have sampled only the bounded regime and may be obscured for earthquakes when observations from multiple tectonic regions are combined. We have attempted to sample the expected transition between bounded and unbounded regimes for the slow slip population, measuring tremor cluster parameters from catalogs for Japan and Cascadia and using them as proxies for small slow slip event characteristics. For fast events we employed published earthquake slip models. Observations corroborate our hypothesis, but highlight observational difficulties. We find that M0-T observations for both slow and fast slip events, spanning 12 orders of magnitude in M0, are consistent with a single model based on dislocation

  11. Quantifying Morphologic Changes in a Low Gradient River Crossing Southeast Louisiana Fault Zones

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Gasparini, N. M.; Dawers, N. H.

    2011-12-01

    impact on the river, it is likely that that fluvial migration rates are rapid enough to erase any signature of the accumulated throw from the faults. With continued analysis, our goal is to develop a reliable method for using alluvial rivers to help unravel the history of fault systems in low gradient landscapes, with possible applications for detecting regions vulnerable to fault-related subsidence.

  12. Transient Faults in Computer Systems

    NASA Technical Reports Server (NTRS)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  13. InSAR measurements around active faults: creeping Philippine Fault and un-creeping Alpine Fault

    NASA Astrophysics Data System (ADS)

    Fukushima, Y.

    2013-12-01

    Recently, interferometric synthetic aperture radar (InSAR) time-series analyses have been frequently applied to measure the time-series of small and quasi-steady displacements in wide areas. Large efforts in the methodological developments have been made to pursue higher temporal and spatial resolutions by using frequently acquired SAR images and detecting more pixels that exhibit phase stability. While such a high resolution is indispensable for tracking displacements of man-made and other small-scale structures, it is not necessarily needed and can be unnecessarily computer-intensive for measuring the crustal deformation associated with active faults and volcanic activities. I apply a simple and efficient method to measure the deformation around the Alpine Fault in the South Island of New Zealand, and the Philippine Fault in the Leyte Island. I use a small-baseline subset (SBAS) analysis approach (Berardino, et al., 2002). Generally, the more we average the pixel values, the more coherent the signals are. Considering that, for the deformation around active faults, the spatial resolution can be as coarse as a few hundred meters, we can severely 'multi-look' the interferograms. The two applied cases in this study benefited from this approach; I could obtain the mean velocity maps on practically the entire area without discarding decorrelated areas. The signals could have been only partially obtained by standard persistent scatterer or single-look small-baseline approaches that are much more computer-intensive. In order to further increase the signal detection capability, it is sometimes effective to introduce a processing algorithm adapted to the signal of interest. In an InSAR time-series processing, one usually needs to set the reference point because interferograms are all relative measurements. It is difficult, however, to fix the reference point when one aims to measure long-wavelength deformation signals that span the whole analysis area. This problem can be

  14. Seismic slip propagation along a fault in the Shimanto accretionary prism detected by vitrinite reflectance studies

    NASA Astrophysics Data System (ADS)

    Kitamura, M.; Mukoyoshi, H.; Hirose, T.

    2011-12-01

    Quantitative assessment of heat generation along faults during fault movement is of primary importance in understanding the dynamics of earthquakes. Last several years localized heat anomaly in a fault zone due to rapid seismic sliding has been detected by various analyses of fault zone materials, such as ferromagnetic resonance signal (Fukuchi et al., 2005), trace elements and isotopes (e.g., Ishikawa et al., 2008) and mineralogical change of clay (e.g., Hirono et al., 2008) and vitrinite reflectance (O'Hara, 2004). Here we report a heat anomaly found in a fault zone in the Shimanto accretionary complex by vitrinite reflectance measurements. Mature faults in nature mostly experience multiple seismic events, resulting in integrated heat anomaly. Thus, in addition to vitrinite reflectance measurements across natural faults, we performed high-velocity friction experiments on a mixture of quartz and vitrinite grains to evaluate how multiple rapid-slip events affect vitrinite reflectance in a fault zone. A localized heat anomaly is found in one of fault zones which are developed within a mélange unit in the Cretaceous Shimanto belt, SW Japan. A principle slip zone with thickness of ~5 mm forms within cataclastic damage zone with thickness of ~3 m. The slip zone is mainly composed of well-foliated clay minerals. Host rocks are characterized by a block-in-matrix texture: aligned sandstone and chert blocks embedded in mudstone matrix. We measured vitrinite reflectance across the fault zone by the same method as reported in Sakaguchi et al., (2011). The measurement reveals that the principle slip zone underwent localized temperature of more than 220°C, while background temperature of both damage zone and host rocks is ~170°C. Since fault motion along most active faults occurs seismological, that inevitably generates frictional heat, the localized heat anomaly is possibly caused by the rapid seismic slip. In order to evaluate the change in vitrinite reflectance by

  15. Growth of faults in crystalline rock

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2009-04-01

    The growth of faults depends on the coupled interplay of the distribution of slip, fault geometry, the stress field in the host rock, and deformation of the host rock, which commonly is manifest in secondary fracturing. The distribution of slip along a fault depends highly on its structure, the stress perturbation associated with its interaction with nearby faults, and its strength distribution; mechanical analyses indicate that the first two factors are more influential than the third. Slip distribution data typically are discrete, but commonly are described, either explicitly or implicitly, using continuous interpolation schemes. Where the third derivative of a continuous slip profile is discontinuous, the compatibility conditions of strain are violated, and fracturing and perturbations to fault geometry should occur. Discontinuous third derivatives accompany not only piecewise linear functions, but also functions as seemingly benign as cubic splines. The stress distribution and fracture distribution along a fault depends strongly on how the fault grows. Evidence to date indicates that a fault that nucleates along a pre-existing, nearly planar joint or a dike typically develops secondary fractures only near its tipline when the slip is small relative to the fault length. In contrast, stress concentrations and fractures are predicted where a discontinuous or non-planar fault exhibits steps and bends; field observations bear this prediction out. Secondary fracturing influences how faults grow by creating damage zones and by linking originally discontinuous elements into a single fault zone. Field observations of both strike-slip faults and dip-slip faults show that linked segments usually will not be coplanar; elastic stress analyses indicate that this is an inherent tendency of how three-dimensional faults grow. Advances in the data we collect and in the rigor and sophistication of our analyses seem essential to substantially advance our ability to successfully

  16. Late Quaternary Deformation Along the Wairarapa Fault, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Schermer, E. R.; Little, T. A.

    2006-12-01

    strike-slip fault splay. New14C ages are consistent with the most recent event occurring in 1855 and suggest one earlier event. The range-bounding trace of the WH thrust appears to have been abandoned in the Holocene, with deformation occuring both west and east of this fault. Thus southern end of the Wairarapa fault consists of at least three active structures: 1) A western oblique-slip fault (or fault zone) that has ruptured repeatedly in the Holocene, including 1855, uplifting the Rimutaka anticline and accommodating large-magnitude strike-slip. Details of the 1855 event are obscured by landsliding in the Rimutaka range but the uplift is recorded by a flight of beach ridges at Turakirae Head; 2) a middle strike-slip strand that in part coincides with the projected trace of the abandoned WH thrust: 3) an eastern blind thrust that initiated after 9 ka and that has an unknown rupture history. Uplift with respect to sea level on the middle and eastern strands of the WH fault zone totals ~1mm/yr over the last 125 ka, and is indistinguishable in rate from that measured along the main (strike- slip) part of the Wairarapa fault to the north. To the west of the WH fault, the crest of the Rimutaka anticline at the coast is uplifting at 3 times this rate, (McSaveny et al., in press). The relationship between this locally enhanced rate of coastal uplift at the southern end of the Wairarapa fault zone, and the WH fault is apparently complex and changing rapidly in time, but has important implications for understanding seismic hazard and tectonics of this part of the Hikurangi margin.

  17. Implications of fault constitutive properties for earthquake prediction.

    PubMed

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  18. Heat flow and energetics of the San Andreas fault zone.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1980-01-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors

  19. An experimental study of memory fault latency

    NASA Technical Reports Server (NTRS)

    Chillarege, Ram; Iyer, Ravi K.

    1989-01-01

    The difficulty with the measurement of fault latency is due to the lack of observability of the fault occurrence and error generation instants in a production environment. The authors describe an experiment, using data from a VAX 11/780 under real workload, to study fault latency in the memory subsystem accurately. Fault latency distributions are generated for stuck-at-zero (s-a-0) and stuck-at-one (s-a-1) permanent fault models. The results show that the mean fault latency of an s-a-0 fault is nearly five times that of the s-a-1 fault. An analysis of variance is performed to quantify the relative influence of different workload measures on the evaluated latency.

  20. Detection of faults and software reliability analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1987-01-01

    Specific topics briefly addressed include: the consistent comparison problem in N-version system; analytic models of comparison testing; fault tolerance through data diversity; and the relationship between failures caused by automatically seeded faults.

  1. Parametric Modeling and Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva; Ju, Jianhong

    2000-01-01

    Fault tolerant control is considered for a nonlinear aircraft model expressed as a linear parameter-varying system. By proper parameterization of foreseeable faults, the linear parameter-varying system can include fault effects as additional varying parameters. A recently developed technique in fault effect parameter estimation allows us to assume that estimates of the fault effect parameters are available on-line. Reconfigurability is calculated for this model with respect to the loss of control effectiveness to assess the potentiality of the model to tolerate such losses prior to control design. The control design is carried out by applying a polytopic method to the aircraft model. An error bound on fault effect parameter estimation is provided, within which the Lyapunov stability of the closed-loop system is robust. Our simulation results show that as long as the fault parameter estimates are sufficiently accurate, the polytopic controller can provide satisfactory fault-tolerance.

  2. Solar Dynamic Power System Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  3. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    NASA Astrophysics Data System (ADS)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  4. A Thermal Technique of Fault Nucleation, Growth, and Slip

    NASA Astrophysics Data System (ADS)

    Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.

    2009-12-01

    -Coulomb strength criterion with standard Byerlee parameters, a fault will initiate before the net tension occurs. After a new fault is created, hot fluid can be injected into the boreholes to increase the temperature and reverse the direction of fault slip. This process can be repeated to study the formation of gouge, and how the properties of gouge control fault slip and associated seismicity. Instrumenting the site with arrays of geophones, tiltmeters, strain gauges, and displacement transducers as well as back mining - an opportunity provided by the DUSEL project - can reveal details of the fault geometry and gouge. We also expect to find small faults (with cm-scale displacement) during construction of DUSEL drifts. The same thermal technique can be used to induce slip on one of them and compare the “man-made” and natural gouges. The thermal technique appears to be a relatively simple way to rapidly change the stress field and either create slip on existing fractures or create new faults at scales up to 10 m or more.

  5. Mapping Active Faults and Tectonic Geomorphology offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hart, P. E.; Sliter, R. W.; Wong, F. L.

    2009-12-01

    In June 2008, and July 2009, the USGS conducted two high-resolution, marine, seismic-reflection surveys across the continental shelf and upper slope between Piedras Blancas and Point Sal, central California, in order to better characterize regional earthquake sources. More than 1,300 km of single-channel seismic data were acquired aboard the USGS R/V Parke Snavely using a 500-joule mini-sparker source fired at a 0.5-second shot interval and recorded with a 15-meter streamer. Most tracklines were run perpendicular to the coast at 800-meter spacing, extending from the nearshore (~ 10-15 m water depth) to as far as 20 km offshore. Sub-bottom imaging varies with substrate, ranging from outstanding (100 to 150 m of penetration) in inferred Quaternary shallow marine, shelf and upper slope deposits to poor (0 to 10 m) in the Mesozoic basement rocks. Marine magnetic data were collected simultaneously on this survey, and both data sets are being integrated with new aeromagnetic data, publicly available industry seismic-reflection data, onshore geology, seismicity, and high-resolution bathymetry. Goals of the study are to map geology, structure, and sediment distribution; to document fault location, length, segmentation, shallow geometry and structure; and to identify possible sampling targets for constraining fault slip rates, earthquake recurrence, and tsunami hazard potential. The structure and tectonic geomorphology of the >100-km-long, right-lateral, Hosgri fault zone and its connections to the Los Osos, Pecho, Oceano and other northwest-trending inboard faults are the focus of this ongoing work. The Hosgri fault forms the eastern margin of the offshore Santa Maria basin and coincides in places with the outer edge of the narrow (5- to 15-km-wide), structurally complex continental shelf. The Hosgri is imaged as a relatively continuous, vertical fault zone that extends upward to the seafloor; varies significantly and rapidly along strike; and incorporates numerous

  6. Scandinavian postglacial faults and their physical connection to present day seismicity

    NASA Astrophysics Data System (ADS)

    Arvidsson, R.

    2015-12-01

    In Scandinavia large earthquakes up to M~8.2 occurred 9500 yBP due to rapid deglaciation leaving fault scarps with lengths up to 160km and vertical offsets of at least 10 m. Today a lion share of local earthquakes are located to the vicinity of the faults. I show here from Coulomb failure stress modeling a physical connection between clustering of recent earthquakes and high Coulomb failure stresses around the faults. This can be interpreted In such a fashion that the location of the current earthquakes resembles locations of aftershock sequences. The explanation is that when these faults where formed it was due to state of stress in the crust at time of deglaciation, different from today's conditions. The crust was heavily depressed at deglaciation about 250 m in the region and due of the receding icesheet the crust was subjected to high stresses resulting in fault motion. This fault motion occurred in order to minimize state of stress at deglaciation. However, this state of stress has since changed with the regional postglacial uplift and thus today these faults remain as perturbations in the crust with concentrations of high stresses. I elaborate on this mechanism. I also advocate that this correlation between high stressed fault areas and locations of earthquakes indicates that seismicity within stable continental regions like Scandinavia might be caused by previous crustal disturbances that show local perturbations of the stress field. Therefore if faults are favorably oriented in the present stress field they can be released by brittle earthquake faulting . Thus past transient tectonic events can explain part of the stable continental region's seismicity. This may be of large importance to assessment of seismic hazard within stable continental regions particularly for critical structures like e.g., nuclear waste deposits and hydroelectric dams.

  7. Coefficient of Variation Estimates for the Plate Boundary Fault System of California

    NASA Astrophysics Data System (ADS)

    Biasi, G. P.; Scharer, K. M.

    2015-12-01

    The number of high-quality paleoseismic records on major strike-slip faults of California has increased in recent years to the point that patterns in earthquake recurrence are emerging. The degree of predictability in time intervals between ground-rupturing earthquakes can be measured by the CoV (coefficient of variation). The CoV approximately normalizes for mean recurrence, and is thus useful to isolate the temporal variability of earthquake records. CoV estimates are themselves uncertain because input dates are actually probability distributions and because paleoseismic records are short and not necessarily representative samples from the underlying recurrence distribution. Radiocarbon dating uncertainty can be incorporated by sampling from event PDFs and compiling sample CoV estimates. Uncertainty due to the brevity of the site event record is larger, and neglect of it can lead to improbable estimates. Long records are now available on the San Andreas and San Jacinto faults in Southern California, and the San Andreas and Hayward faults in northern California. These faults accommodate most of the Pacific-North American relative plate motion in their respective regions. CoV estimates from sites with 8 or more events cluster around 0.63, but are as low as 0.4 for the southern Hayward fault. Sites with fewer events give similar estimates, though with lower resolution. The one prominent outlier, Burro Flats, with a CoV near 1.0, is in a region of severe fault complexity and rapid fault-normal compression. Quasi-periodic recurrence is emerging as a general property for these plate boundary faults. Some individual site records allow that, at low probabilities, recurrence could be random in time. When the ensemble is considered together, however, it is improbable that we would see the observed degree of agreement among boundary fault paleoseismic records; the more likely explanation is that quasi-periodic recurrence is a real property of the boundary fault system.

  8. Hydraulic Diagnostics and Fault Isolation Test Program.

    DTIC Science & Technology

    1987-02-13

    and Fault Isolation Test Program was to demonstrate and evaluate the practicality of a fault detection and isolation system on an aircraft. The...system capable of fault detection and isolation in a hydraulic subsystem through the use of sensors and a microprocessor (Fig. 1). The microprocessor...DISCUSSION 2.1 DESCRIPTION OF HYDRAULIC SYSTEM SIMULATOR The fault detection and isolation test arrangement consisted of a high pressure, lightweight

  9. MOS integrated circuit fault modeling

    NASA Technical Reports Server (NTRS)

    Sievers, M.

    1985-01-01

    Three digital simulation techniques for MOS integrated circuit faults were examined. These techniques embody a hierarchy of complexity bracketing the range of simulation levels. The digital approaches are: transistor-level, connector-switch-attenuator level, and gate level. The advantages and disadvantages are discussed. Failure characteristics are also described.

  10. Deep pulverization along active faults ?

    NASA Astrophysics Data System (ADS)

    Doan, M.

    2013-12-01

    Pulverization is a intensive damage observed along some active faults. Rarely found in the field, it has been associated with dynamic damage produced by large earthquakes. Pulverization has been so far only described at the ground surface, consistent with the high frequency tensile loading expected for earthquake occurring along bimaterial faults. However, we discuss here a series of hints suggesting that pulverization is expected also several hundred of meters deep. In the deep well drilled within Nojima fault after the 1995 Kobe earthquake, thin sections reveal non localized damage, with microfractured pervading a sample, but with little shear disturbing the initial microstructure. In the SAFOD borehole drilled near Parkfield, Wiersberg and Erzinger (2008) made gas monitoring while drilling found large amount of H2 gas in the sandstone west to the fault. They attribute this high H2 concentration to mechanochemical origin, in accordance with some example of diffuse microfracturing found in thin sections from cores of SAFOD phase 3 and from geophysical data from logs. High strain rate experiments in both dry (Yuan et al, 2011) and wet samples (Forquin et al, 2010) show that even under confining pressures of several tens of megapascals, diffuse damage similar to pulverization is possible. This could explain the occurrence of pulverization at depth.

  11. Implementing fault-tolerant sensors

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith

    1989-01-01

    One aspect of fault tolerance in process control programs is the ability to tolerate sensor failure. A methodology is presented for transforming a process control program that cannot tolerate sensor failures to one that can. Additionally, a hierarchy of failure models is identified.

  12. Tsunamis and splay fault dynamics

    USGS Publications Warehouse

    Wendt, J.; Oglesby, D.D.; Geist, E.L.

    2009-01-01

    The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time-dependent boundary condition for a 2D shallow-water hydrodynamic tsunami calculation. We find that if me stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami man in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest mat dynamic earthquake modeling may be a useful tool in tsunami researcn. Copyright 2009 by the American Geophysical Union.

  13. Fault Tolerant Frequent Pattern Mining

    SciTech Connect

    Shohdy, Sameh; Vishnu, Abhinav; Agrawal, Gagan

    2016-12-19

    FP-Growth algorithm is a Frequent Pattern Mining (FPM) algorithm that has been extensively used to study correlations and patterns in large scale datasets. While several researchers have designed distributed memory FP-Growth algorithms, it is pivotal to consider fault tolerant FP-Growth, which can address the increasing fault rates in large scale systems. In this work, we propose a novel parallel, algorithm-level fault-tolerant FP-Growth algorithm. We leverage algorithmic properties and MPI advanced features to guarantee an O(1) space complexity, achieved by using the dataset memory space itself for checkpointing. We also propose a recovery algorithm that can use in-memory and disk-based checkpointing, though in many cases the recovery can be completed without any disk access, and incurring no memory overhead for checkpointing. We evaluate our FT algorithm on a large scale InfiniBand cluster with several large datasets using up to 2K cores. Our evaluation demonstrates excellent efficiency for checkpointing and recovery in comparison to the disk-based approach. We have also observed 20x average speed-up in comparison to Spark, establishing that a well designed algorithm can easily outperform a solution based on a general fault-tolerant programming model.

  14. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  15. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  16. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  17. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  18. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  19. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  20. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  1. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  2. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  3. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  4. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  5. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  6. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 2 2013-01-01 2013-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  7. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 2 2014-01-01 2014-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  8. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  9. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  10. 5 CFR 845.302 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission...

  11. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  12. 20 CFR 255.11 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than...

  13. 5 CFR 831.1402 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 2 2012-01-01 2012-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The...

  14. 40 CFR 258.13 - Fault areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in...

  15. Measurement and application of fault latency

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y.-H.

    1986-01-01

    The time interval between the occurrence of a fault and the detection of the error caused by the fault is divided by the generation of that error into two parts: fault latency and error latency. Since the moment of error generation is not directly observable, all related works in the literature have dealt with only the sum of fault and error latencies, thereby making the analysis of their separate effects impossible. To remedy this deficiency, (1) a new methodology for indirectly measuring fault latency is presented; the distribution of fault latency is derived from the methodology; and (3) the knowledge of fault latency is applied to the analysis of two important examples. The proposed methodology has been implemented for measuring fault latency in the Fault-Tolerant Multiprocessor (FTMP) at the NASA Airlab. The experimental results show wide variations in the mean fault latencies of different function circuits within FTMP. Also, the measured distributions of fault latency are shown to have monotone hazard rates. Consequently, Gamma and Weibull distributions are selected for the least-squares fit as the distribution of fault latency.

  16. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  17. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  18. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  19. Ground Fault--A Health Hazard

    ERIC Educational Resources Information Center

    Jacobs, Clinton O.

    1977-01-01

    A ground fault is especially hazardous because the resistance through which the current is flowing to ground may be sufficient to cause electrocution. The Ground Fault Circuit Interrupter (G.F.C.I.) protects 15 and 25 ampere 120 volt circuits from ground fault condition. The design and examples of G.F.C.I. functions are described in this article.…

  20. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  1. Fault Diagnosis in HVAC Chillers

    NASA Technical Reports Server (NTRS)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  2. The Fethiye-Burdur Fault Zone: A component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Hall, J.; Aksu, A. E.; Elitez, I.; Yaltırak, C.; Çifçi, G.

    2014-11-01

    The Hellenic and Cyprus Arcs, that mark the convergent boundary of the African and Aegean-Anatolian plates, are offset along a subduction transform edge propagator ('STEP') fault running NE-SW along the Pliny and Strabo Trenches. The continuation of the fault to the northeast through the Rhodes Basin and into SW Anatolia is assessed. Seismic reflection profiles show that the structural architecture of the northern sector of the Rhodes Basin includes a large crustal-scale fold-thrust belt which is overprinted by numerous faults with small extensional stratigraphic separations. A protracted episode of convergence in the Miocene resulted in the development of a prominent NE-SW-striking and NW-verging fold-thrust belt in the Rhodes Basin. The absence of evaporites in the Rhodes Basin and several seaward prograded vertically stacked Quaternary delta successions resting at 2500-3500 m water depth collectively suggest that the Rhodes Basin must have remained above the depositional base of marine evaporite environment during the Messinian and that the region must have subsided very rapidly during the Pliocene-Quaternary. During the Pliocene-Quaternary, a NE-SW-trending belt developed across the Rhodes Basin: while the structural framework of this belt was characterised by reactivated thrusts in the central portion of the basin, a prominent zone of NE-SW-striking and NW- and SE-dipping faults with extensional separations developed in the northern portion of the basin. Two seismic profiles running parallel to the present-day coastline provide the much needed linkage between the Fethiye-Burdur Fault Zone onland and the reactivated thrusts in central Rhodes Basin, and show that the Pliocene-Quaternary zone of high-angle faults with extensional separations clearly link with the similarly trending and dipping strike-slip faults onland in the Eşen Valley, thus providing the continuity between the Pliny-Strabo Trenches in the southwest and the Fethiye-Burdur Fault Zone in the

  3. Dislocation model for aseismic fault slip in the transverse ranges of Southern California

    NASA Technical Reports Server (NTRS)

    Cheng, A.; Jackson, D. D.; Matsuura, M.

    1985-01-01

    Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.

  4. Numerical model of formation of a 3-D strike-slip fault system

    NASA Astrophysics Data System (ADS)

    Chemenda, Alexandre I.; Cavalié, Olivier; Vergnolle, Mathilde; Bouissou, Stéphane; Delouis, Bertrand

    2016-01-01

    The initiation and the initial evolution of a strike-slip fault are modeled within an elastoplasticity constitutive framework taking into account the evolution of the hardening modulus with inelastic straining. The initial and boundary conditions are similar to those of the Riedel shear experiment. The models first deform purely elastically. Then damage (inelastic deformation) starts at the model surface. The damage zone propagates both normal to the forming fault zone and downwards. Finally, it affects the whole layer thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and vertically, while others die. The faults first propagate in-plane, but then rapidly change direction to make a larger angle with the shear axis. New fault segments form as well, resulting in complex 3-D fault zone architecture. Different fault segments accommodate strike-slip and normal displacements, which results in the formation of valleys and rotations along the fault system.

  5. Novel neural networks-based fault tolerant control scheme with fault alarm.

    PubMed

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  6. The Heart Mountain fault: Implications for the dynamics of decollement

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1985-01-01

    The Hart Mountain docollement in Northwestern Wyoming originally comprised a plate of rock up to 750m thick and 1300 sq kilometers in area. This plate moved rapidly down a slope no steeper than 2 deg. during Early Eocene time, transporting some blocks at least 50m from their original positions. Sliding occurred just before a volcanic erruption and was probably accompanied by seismic events. The initial movement was along a bedding plane fault in the Bighorn Dolomite, 2 to 3 meters above its contact with the Grove Creek member of the Snowy Range formation. The major pecularity of this fault is that it lies in the strong, cliff-forming Bighorn Dolomite, rather than in the weaker underlying shales. The dynamics of decollement are discussed.

  7. Fault Tolerance Assistant (FTA): An Exception Handling Programming Model for MPI Applications

    SciTech Connect

    Fang, Aiman; Laguna, Ignacio; Sato, Kento; Islam, Tanzima; Mohror, Kathryn

    2016-05-23

    Future high-performance computing systems may face frequent failures with their rapid increase in scale and complexity. Resilience to faults has become a major challenge for large-scale applications running on supercomputers, which demands fault tolerance support for prevalent MPI applications. Among failure scenarios, process failures are one of the most severe issues as they usually lead to termination of applications. However, the widely used MPI implementations do not provide mechanisms for fault tolerance. We propose FTA-MPI (Fault Tolerance Assistant MPI), a programming model that provides support for failure detection, failure notification and recovery. Specifically, FTA-MPI exploits a try/catch model that enables failure localization and transparent recovery of process failures in MPI applications. We demonstrate FTA-MPI with synthetic applications and a molecular dynamics code CoMD, and show that FTA-MPI provides high programmability for users and enables convenient and flexible recovery of process failures.

  8. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  9. Multiple Fault Isolation in Redundant Systems

    NASA Technical Reports Server (NTRS)

    Pattipati, Krishna R.

    1997-01-01

    Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.

  10. Experiments in fault tolerant software reliability

    NASA Technical Reports Server (NTRS)

    Mcallister, David F.; Vouk, Mladen A.

    1989-01-01

    Twenty functionally equivalent programs were built and tested in a multiversion software experiment. Following unit testing, all programs were subjected to an extensive system test. In the process sixty-one distinct faults were identified among the versions. Less than 12 percent of the faults exhibited varying degrees of positive correlation. The common-cause (or similar) faults spanned as many as 14 components. However, a majority of these faults were trivial, and easily detected by proper unit and/or system testing. Only two of the seven similar faults were difficult faults, and both were caused by specification ambiguities. One of these faults exhibited variable identical-and-wrong response span, i.e. response span which varied with the testing conditions and input data. Techniques that could have been used to avoid the faults are discussed. For example, it was determined that back-to-back testing of 2-tuples could have been used to eliminate about 90 percent of the faults. In addition, four of the seven similar faults could have been detected by using back-to-back testing of 5-tuples. It is believed that most, if not all, similar faults could have been avoided had the specifications been written using more formal notation, the unit testing phase was subject to more stringent standards and controls, and better tools for measuring the quality and adequacy of the test data (e.g. coverage) were used.

  11. Tool for Viewing Faults Under Terrain

    NASA Technical Reports Server (NTRS)

    Siegel, Herbert, L.; Li, P. Peggy

    2005-01-01

    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  12. Fault diagnosis for magnetic bearing systems

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; King, Yueh-Hsun; Lee, Rong-Mao

    2009-05-01

    A full fault diagnosis for active magnetic bearing (AMB) and rotor systems to monitor the closed-loop operation and analyze fault patterns on-line in case any malfunction occurs is proposed in this paper. Most traditional approaches for fault diagnosis are based on actuator or sensor diagnosis individually and can solely detect a single fault at a time. This research combines two diagnosis methodologies by using both state estimators and parameter estimators to detect, identify and analyze actuators and sensors faults in AMB/rotor systems. The proposed fault diagnosis algorithm not only enhances the diagnosis accuracy, but also illustrates the capability to detect multiple sensors faults which occur concurrently. The efficacy of the presented algorithm has been verified by computer simulations and intensive experiments. The test rig for experiments is equipped with AMB, interface module (dSPACE DS1104), data acquisition unit MATLAB/Simulink simulation environment. At last, the fault patterns, such as bias, multiplicative loop gain variation and noise addition, can be identified by the algorithm presented in this work. In other words, the proposed diagnosis algorithm is able to detect faults at the first moment, find which sensors or actuators under failure and identify which fault pattern the found faults belong to.

  13. A Quaternary fault database for central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  14. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  15. Alp Transit: Crossing Faults 44 and 49

    NASA Astrophysics Data System (ADS)

    El Tani, M.; Bremen, R.

    2014-05-01

    This paper describes the crossing of faults 44 and 49 when constructing the 57 km Gotthard base tunnel of the Alp Transit project. Fault 44 is a permeable fault that triggered significant surface deformations 1,400 m above the tunnel when it was reached by the advancing excavation. The fault runs parallel to the downstream face of the Nalps arch dam. Significant deformations were measured at the dam crown. Fault 49 is sub-vertical and permeable, and runs parallel at the upstream face of the dam. It was necessary to assess the risk when crossing fault 49, as a limit was put on the acceptable dam deformation for structural safety. The simulation model, forecasts and action decided when crossing over the faults are presented, with a brief description of the tunnel, the dam, and the monitoring system.

  16. Naval weapons center active fault map series

    NASA Astrophysics Data System (ADS)

    Roquemore, G. R.; Zellmer, J. T.

    1987-08-01

    The NWC Active Fault Map Series shows the locations of active faults and features indicative of active faulting within much of Indian Wells Valley and portions of the Randsburg Wash/Mojave B test range areas of the Naval Weapons Center. Map annotations are used extensively to identify criteria employed in identifying the fault offsets, and to present other valuable data. All of the mapped faults show evidence of having moved during about the last 12,500 years or represent geologically young faults that occur within seismic gaps. Only faults that offset the surface or show other evidence of surface deformation were mapped. A portion of the City of Ridgecrest is recommended as being a Seismic Hazard Special Studies Zone in which detailed earthquake hazard studies should be required.

  17. Arc burst pattern analysis fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1997-01-01

    A method and apparatus are provided for detecting an arcing fault on a power line carrying a load current. Parameters indicative of power flow and possible fault events on the line, such as voltage and load current, are monitored and analyzed for an arc burst pattern exhibited by arcing faults in a power system. These arcing faults are detected by identifying bursts of each half-cycle of the fundamental current. Bursts occurring at or near a voltage peak indicate arcing on that phase. Once a faulted phase line is identified, a comparison of the current and voltage reveals whether the fault is located in a downstream direction of power flow toward customers, or upstream toward a generation station. If the fault is located downstream, the line is de-energized, and if located upstream, the line may remain energized to prevent unnecessary power outages.

  18. Multiple sensor fault diagnosis for dynamic processes.

    PubMed

    Li, Cheng-Chih; Jeng, Jyh-Cheng

    2010-10-01

    Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology.

  19. Evolution of the Permeability Architecture of the Baton Rouge Fault Zone, Louisiana Gulf Coastal Plain

    NASA Astrophysics Data System (ADS)

    Hanor, J. S.; Chamberlain, E. L.; Tsai, F. T.

    2011-12-01

    The Baton Rouge fault is a west-east trending, south-dipping listric fault in Louisiana, which offsets a thick sequence of unconsolidated siliciclastic sediments, the upper kilometer of which includes the Baton Rouge aquifer system. The Baton Rouge aquifer system consists of a series of complexly interbedded fluvial-deltaic sands and mudstones ranging in age from the late Miocene to the Pleistocene and dipping to the south. The high proportion of mudstones in the stratigraphic section, approximately 55 percent, reflects deposition in a rapidly aggrading setting. The fault was reactivated in the early Pleistocene, and the aquifer sands are offset by the same slip, 120 m. The fault is of significant hydrogeologic and environmental importance because it marks a sharp boundary between fresh water sands to the north and brackish water sands to the south. Large withdrawal of fresh water has resulted in the migration of brackish waters to the north from the fault and the progressive salinization of the groundwater supply. Migration of salt water up the fault and/or across the fault have been proposed as causes. Understanding the permeability architecture of the fault zone is of critical importance in developing strategies for controlling salinization. We have made an evaluation of the possible present permeability of the fault zone using an algorithm developed by Bense and Person [2006] which is based on the amount of slip on a fault and the clay-content of the sedimentary units flanking a fault. The algorithm provides an estimation of the present width and permeability of the fault zone and how the permeability architecture has evolved with time as offset on the fault has progressively increased. The basic geologic input is lithostratigraphy derived from SP-resistivity logs from wells immediately north and south of the fault over a 425 m high by 34 km wide area of the fault plane. The results of our calculations are as follows: the average fault zone width increases as a

  20. Effective heterogeneity controlling premonitory slip on laboratory faults

    NASA Astrophysics Data System (ADS)

    Selvadurai, P. A.; Glaser, S.; Parker, J.

    2015-12-01

    Using a direct shear friction apparatus, we characterize factors controlling rheological differences along a PMMA-PMMA fault in the laboratory. Rheological differences on natural faults are believed to be a controlling factor to aseismic transients (slow slip) in nature. Asperity sizes and locations were measured using a pressure sensitive film at high (σn = 0.8 MPa) and low (σn = 0.4 MPa) nominal normal stress levels. Faults confined to low and high normal stress experienced lower and higher 'effective heterogeneity,' quantified using a characteristic elastic correlation length λc [Braun and Peyrard, 2012]. The fault was sheared at a constant far-field velocity VLP under constant normal stress σn. Non-uniform premonitory slip accumulated along the fault prior to rapid sliding. Slow events (SE), which were characterized as local increases in slip rate, were observed when the effective heterogeneity was increased. These events nucleated from the weaker central section of the fault propagating outwards at speeds between 0.84 mm/s to 26.5 mm/s over times 406 s and 11 s. The rupture growth rates were dependent on the load-point velocity VLP driving the system to failure. Slip rates, which increased within the SE, were also dependent on the load-point velocity. The evolution of slip rates versus time was similar to the 2013-2014 Boso slow slip event [Fukuda et al., 2014]. The slow event culminated with rapid slip rate deceleration sufficient to generate seismicity measured by an array of acoustic emission sensors. Deceleration of the SE (left panel of figure) shows a lower-frequency event (~ 60 - 350 Hz). In Detail A, we show the smaller, high-frequency events (~ 300 - 500 kHz) were superimposed on the larger, low-frequency signal. These events only occurred at higher levels of effective heterogeneity and demonstrate interactions between larger/slow and localized/fast slip. References: Braun, O. M. & M. Peyrard (2012), 'Crack in the frictional interface as a

  1. Silica Lubrication in Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Rowe, C. D.; Rempe, M.; Lamothe, K.; Kirkpatrick, J. D.; White, J. C.; Mitchell, T. M.; Andrews, M.; Di Toro, G.

    2013-12-01

    Silica-rich rocks are common in the crust, so silica lubrication may be important for causing fault weakening during earthquakes if the phenomenon occurs in nature. In laboratory friction experiments on chert, dramatic shear weakening has been attributed to amorphization and attraction of water from atmospheric humidity to form a 'silica gel'. Few observations of the slip surfaces have been reported, and the details of weakening mechanism(s) remain enigmatic. Therefore, no criteria exist on which to make comparisons of experimental materials to natural faults. We performed a series of friction experiments, characterized the materials formed on the sliding surface, and compared these to a geological fault in the same rock type. Experiments were performed in the presence of room humidity at 2.5 MPa normal stress with 3 and 30 m total displacement for a variety of slip rates (10-4 - 10-1 m/s). The friction coefficient (μ) reduced from >0.6 to ~0.2 at 10-1 m/s, but only fell to ~0.4 at 10-2 - 10-4 m/s. The slip surfaces and wear material were observed using laser confocal Raman microscopy, electron microprobe, X-ray diffraction, and transmission electron microscopy. Experiments at 10-1 m/s formed wear material consisting of ≤1 μm powder that is aggregated into irregular 5-20 μm clumps. Some material disaggregated during analysis with electron beams and lasers, suggesting hydrous and unstable components. Compressed powder forms smooth pavements on the surface in which grains are not visible (if present, they are <100 nm). Powder contains amorphous material and as yet unidentified crystalline and non-crystalline forms of silica (not quartz), while the worn chert surface underneath shows Raman spectra consistent with a mixture of quartz and amorphous material. If silica amorphization facilitates shear weakening in natural faults, similar wear materials should be formed, and we may be able to identify them through microstructural studies. However, the sub

  2. A “mesh” of crossing faults: Fault networks of southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.

    2009-12-01

    Detailed geologic mapping of active fault systems in the western Salton Trough and northern Peninsular Ranges of southern California make it possible to expand the inventory of mapped and known faults by compiling and updating existing geologic maps, and analyzing high resolution imagery, LIDAR, InSAR, relocated hypocenters and other geophysical datasets. A fault map is being compiled on Google Earth and will ultimately discriminate between a range of different fault expressions: from well-mapped faults to subtle lineaments and geomorphic anomalies. The fault map shows deformation patterns in both crystalline and basinal deposits and reveals a complex fault mesh with many curious and unexpected relationships. Key findings are: 1) Many fault systems have mutually interpenetrating geometries, are grossly coeval, and allow faults to cross one another. A typical relationship reveals a dextral fault zone that appears to be continuous at the regional scale. In detail, however, there are no continuous NW-striking dextral fault traces and instead the master dextral fault is offset in a left-lateral sense by numerous crossing faults. Left-lateral faults also show small offsets where they interact with right lateral faults. Both fault sets show evidence of Quaternary activity. Examples occur along the Clark, Coyote Creek, Earthquake Valley and Torres Martinez fault zones. 2) Fault zones cross in other ways. There are locations where active faults continue across or beneath significant structural barriers. Major fault zones like the Clark fault of the San Jacinto fault system appears to end at NE-striking sinistral fault zones (like the Extra and Pumpkin faults) that clearly cross from the SW to the NE side of the projection of the dextral traces. Despite these blocking structures, there is good evidence for continuation of the dextral faults on the opposite sides of the crossing fault array. In some instances there is clear evidence (in deep microseismic alignments of

  3. Pore pressure changes induced by slip on permeable and impermeable faults

    NASA Astrophysics Data System (ADS)

    Rudnicki, J. W.; Hsu, Tze-Chi

    1988-04-01

    Pore pressure changes due to a ramp introduction of slip on permeable and impermeable faults in a fluid-saturated rock mass are calculated for the purpose of evaluating water well level fluctuations. The calculations demonstrate the importance of coupling between deformation and fluid diffusion at observation points less than 5(4ct0)½, where c is the diffusivity and t0 is the rise time. The decay of pore pressure in the results here is due entirely to fluid mass diffusion. An approach that neglects diffusion and assumes that the pore pressure is proportional to the mean normal stress would predict a ramp pore pressure response. At distances greater than 5(4ct0)½ the pore pressure decays so slowly that the neglect of diffusion may be appropriate. For both permeable and impermeable faults, the pore pressure decays more rapidly for shorter slip zone lengths and longer rise times. However, the pore pressure change calculated for the impermeable fault is larger, particularly for observation points near the fault, and decays less rapidly than for the permeable fault. These differences suggest that fault permeability can be a significant factor in the response of water wells near faults and care should be used in inferring details of the slip distribution if hydrologic conditions are not known. These results are applied to a water well level change observed by Lippincott et al. A satisfactory fit to the data is obtained by uniform slip over a fault length of about 1.5 km and a rise time of 8 hours. Although the slip magnitude is not well constrained by the fit, the range of possible values includes the 0.5 to 1.0 cm inferred by Lippincott et al. using a different approach.

  4. From Fault Seal to Fault Leak: Effect of Mechanical Stratigraphy on the Evolution of Transport Processes in Fault Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Urai, J. L.; Schmatz, J.; van Gent, H. W.; Abe, S.; Holland, M.

    2009-12-01

    Predictions of the transport properties of faults in layered sequences are usually based on geometry and lithology of the faulted sequence. Mechanical properties and fault resealing processes are used much less frequently. Based on laboratory, field and numerical studies we present a model, which takes into account these additional factors. When the ratio of rock strength and in-situ mean effective stress is high enough to allow hybrid failure, dilatant fracture networks will form in that part of the sequence which meets this condition, dramatically increasing permeability along the fault, with possibility of along-fault fluid flow and vertical transport of fine grained sediment to form clay gouge in dilatant jogs. A key parameter here is the 3D connectivity of the dilatant fracture network. In systems where fracturing is non-dilatant and the mechanical contrast between the layers is small, the fault zones are relatively simple in structure, with complexity concentrated in relay zones between segments at different scales. With increasing mechanical contrast between the layers (and the presence of preexisting fractures), patterns of localization and fault zone structure become increasingly complex. Mechanical mixing in the fault gouge is a major process especially when one of the lithologies is highly permeable. Reworking of wall rocks composed of hard claystones produces a low-permeability clay gouge in critical state. Circulating supersaturated fluids in the fault zone produce vein networks, which reseal the fault zone, typically in a cyclic fashion.

  5. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  6. Fault linkage: Three-dimensional mechanical interaction between echelon normal faults

    NASA Astrophysics Data System (ADS)

    Crider, Juliet G.; Pollard, David D.

    1998-10-01

    Field observations of two overlapping normal faults and associated deformation document features common to many normal-fault relay zones: a topographic ramp between the fault segments, tapering slip on the faults as they enter the overlap zone, and associated fracturing, especially at the top of the ramp. These observations motivate numerical modeling of the development of a relay zone. A three-dimensional boundary element method numerical model, using simple fault-plane geometries, material properties, and boundary conditions, reproduces the principal characteristics of the observed fault scarps. The model, with overlapping, semicircular fault segments under orthogonal extension, produces a region of high Coulomb shear stress in the relay zone that would favor fault linkage at the center to upper relay ramp. If the fault height is increased, the magnitude of the stresses in the relay zone increases, but the position of the anticipated linkage does not change. The amount of fault overlap changes the magnitude of the Coulomb stress in the relay zone: the greatest potential for fault linkage occurs with the closest underlapping fault tips. Ultimately, the mechanical interaction between segments of a developing normal-fault system promote the development of connected, zigzagging fault scarps.

  7. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  8. Fault trees and imperfect coverage

    NASA Technical Reports Server (NTRS)

    Dugan, Joanne B.

    1989-01-01

    A new algorithm is presented for solving the fault tree. The algorithm includes the dynamic behavior of the fault/error handling model but obviates the need for the Markov chain solution. As the state space is expanded in a breadth-first search (the same is done in the conversion to a Markov chain), the state's contribution to each future state is calculated exactly. A dynamic state truncation technique is also presented; it produces bounds on the unreliability of the system by considering only part of the state space. Since the model is solved as the state space is generated, the process can be stopped as soon as the desired accuracy is reached.

  9. Fault Injection Techniques and Tools

    NASA Technical Reports Server (NTRS)

    Hsueh, Mei-Chen; Tsai, Timothy K.; Iyer, Ravishankar K.

    1997-01-01

    Dependability evaluation involves the study of failures and errors. The destructive nature of a crash and long error latency make it difficult to identify the causes of failures in the operational environment. It is particularly hard to recreate a failure scenario for a large, complex system. To identify and understand potential failures, we use an experiment-based approach for studying the dependability of a system. Such an approach is applied not only during the conception and design phases, but also during the prototype and operational phases. To take an experiment-based approach, we must first understand a system's architecture, structure, and behavior. Specifically, we need to know its tolerance for faults and failures, including its built-in detection and recovery mechanisms, and we need specific instruments and tools to inject faults, create failures or errors, and monitor their effects.

  10. Earthquake nucleation on faults with rate-and state-dependent strength

    USGS Publications Warehouse

    Dieterich, J.H.

    1992-01-01

    Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 115-134. Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading conditions and constitutive parameters which include Dc, the characteristic slip distance. If slip starts on a patch that exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement are proportional to Dc, the moment of premonitory slip scales by D3c. The scaling of Dc is currently an open question. Unless Dc for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the possibility that Dc in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions of the smallest

  11. Data and Visualizations in the Southern California Earthquake Center's Fault Information System

    NASA Astrophysics Data System (ADS)

    Perry, S.

    2003-12-01

    The Southern California Earthquake Center's Fault Information System (FIS) provides a single point of access to fault-related data and models from multiple databases and datasets. The FIS is built of computer code, metadata and Web interfaces based on Web services technology, which enables queries and data interchange irrespective of computer software or platform. Currently we have working prototypes of programmatic and browser-based access. The first generation FIS may be searched and downloaded live, by automated processes, as well as interactively, by humans using a browser. Users get ascii data in plain text or encoded in XML. Via the Earthquake Information Technology (EIT) Interns (Juve and others, this meeting), we are also testing the effectiveness of querying multiple databases using a fault database ontology. For more than a decade, the California Geological Survey (CGS), SCEC, and the U. S. Geological Survey (USGS) have put considerable, shared resources into compiling and assessing published fault data, then providing the data on the Web. Several databases now exist, with different formats, datasets, purposes, and users, in various stages of completion. When fault databases were first envisioned, the full power of today's internet was not yet recognized, and the databases became the Web equivalents of review papers, where one could read an overview summation of a fault, then copy and paste pertinent data. Today, numerous researchers also require rapid queries and downloads of data. Consequently, the first components of the FIS are MySQL databases that deliver numeric values from earlier, text-based databases. Another essential service provided by the FIS is visualizations of fault representations such as those in SCEC's Community Fault Model. The long term goal is to provide a standardized, open-source, platform-independent visualization technique. Currently, the FIS makes available fault model viewing software for users with access to Matlab or Java3D

  12. Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples

    NASA Astrophysics Data System (ADS)

    Ikari, Matt J.; Carpenter, Brett M.; Vogt, Christoph; Kopf, Achim J.

    2016-09-01

    The central San Andreas Fault in California is known as a creeping fault, however recent studies have shown that it may be accumulating a slip deficit and thus its seismogenic potential should be seriously considered. We conducted laboratory friction experiments measuring time-dependent frictional strengthening (healing) on fault zone and wall rock samples recovered during drilling at the San Andreas Fault Observatory at Depth (SAFOD), located near the southern edge of the creeping section and in the direct vicinity of three repeating microearthquake clusters. We find that for hold times of up to 3000 s, frictional healing follows a log-linear dependence on hold time and that the healing rate is very low for a sample of the actively shearing fault core, consistent with previous results. However, considering longer hold times up to ∼350,000 s, the healing rate accelerates such that the data for all samples are better described by a power law relation. In general, samples having a higher content of phyllosilicate minerals exhibit low log-linear healing rates, and the notably clay-rich fault zone sample also exhibits strong power-law healing when longer hold times are included. Our data suggest that weak faults, such as the creeping section of the San Andreas Fault, can accumulate interseismic shear stress more rapidly than expected from previous friction data. Using the power-law dependence of frictional healing on hold time, calculations of recurrence interval and stress drop based on our data accurately match observations of discrete creep events and repeating Mw = 2 earthquakes on the San Andreas Fault.

  13. Paleoearthquake recurrence on the East Paradise fault zone, metropolitan Albuquerque, New Mexico

    USGS Publications Warehouse

    Personius, Stephen F.; Mahan, Shannon

    2000-01-01

    A fortuitous exposure of the East Paradise fault zone near Arroyo de las Calabacillas has helped us determine a post-middle Pleistocene history for a long-forgotten Quaternary fault in the City of Albuquerque, New Mexico. Mapping of two exposures of the fault zone allowed us to measure a total vertical offset of 2.75 m across middle Pleistocene fluvial and eolian deposits and to estimate individual surface-faulting events of about 1, 0.5, and 1.25 m. These measurements and several thermoluminescence ages allow us to calculate a long-term average slip rate of 0.01 ± 0.001 mm/yr and date two surface-faulting events to 208 ± 25 ka and 75 ± 7 ka. The youngest event probably occurred in the late Pleistocene, sometime after 75 ± 7 ka. These data yield a single recurrence interval of 133 ± 26 ka and an average recurrence interval of 90 ± 10 ka. However, recurrence intervals are highly variable because the two youngest events occurred in less than 75 ka. Offsets of 0.5-1.25 m and a fault length of 13-20 km indicate that surface-rupturing paleoearthquakes on the East Paradise fault zone had probable Ms or Mw magnitudes of 6.8-7.0. Although recurrence intervals are long on the East Paradise fault zone, these data are significant because they represent some of the first published slip rate, paleoearthquake magnitude, and recurrence information for any of the numerous Quaternary faults in the rapidly growing Albuquerque-Rio Rancho metropolitan area.

  14. Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Mong-Han; Tung, Hsin; Fielding, Eric J.; Huang, Hsin-Hua; Liang, Cunren; Huang, Chung; Hu, Jyr-Ching

    2016-07-01

    Rapid shortening in convergent mountain belts is often accommodated by slip on faults at multiple levels in upper crust, but no geodetic observation of slip at multiple levels within hours of a moderate earthquake has been shown before. Here we show clear evidence of fault slip within a shallower thrust at 5-10 km depth in SW Taiwan triggered by the 2016 Mw 6.4 MeiNong earthquake at 15-20 km depth. We constrain the primary coseismic fault slip with kinematic modeling of seismic and geodetic measurements and constrain the triggered slip and fault geometry using synthetic aperture radar interferometry. The shallower thrust coincides with a proposed duplex located in a region of high fluid pressure and high interseismic uplift rate, and may be sensitive to stress perturbations. Our results imply that under tectonic conditions such as high-background stress level and high fluid pressure, a moderate lower crustal earthquake can trigger faults at shallower depth.

  15. Delineating a shallow fault zone and dipping bed rock strata using multichannal analysis of surface waves with a land streamer

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Lacombe, P.; Johnson, C.D.; Lane, J.W.

    2006-01-01

    The multichannel analysis of surface waves (MASW) seismic method was used to delineate a fault zone and gently dipping sedimentary bedrock at a site overlain by several meters of regolith. Seismic data were collected rapidly and inexpensively using a towed 30-channel land streamer and a rubberband-accelerated weight-drop seismic source. Data processed using the MASW method imaged the subsurface to a depth of about 20 m and allowed detection of the overburden, gross bedding features, and fault zone. The fault zone was characterized by a lower shear-wave velocity (Vs) than the competent bedrock, consistent with a large-scale fault, secondary fractures, and in-situ weathering. The MASW 2D Vs section was further interpreted to identify dipping beds consistent with local geologic mapping. Mapping of shallow-fault zones and dipping sedimentary rock substantially extends the applications of the MASW method. ?? 2006 Society of Exploration Geophysicists.

  16. Inverter Ground Fault Overvoltage Testing

    SciTech Connect

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  17. Folding above faults, Rocky Mountains

    SciTech Connect

    McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Asymmetric folds formed above basement faults can be observed throughout the Rocky Mountains. Several previous interpretations of the folding process made the implicit assumption that one or both fold hinges migrated or rolled'' through the steep forelimb of the fold as the structure evolved (rolling hinge model). Results of mapping in the Bighorn and Seminoe Mountains, WY, and Sangre de Cristo Range, CO, do not support this hypothesis. An alternative interpretation is presented in which fold hinges remained fixed in position during folding (fixed hinge model). Mapped folds share common characteristics: (1) axial traces of the folds intersect faults at or near the basement/cover interface, and diverge from faults upsection; (2) fold hinges are narrow and interlimb angles cluster around 80--100[degree] regardless of fold location; (3) fold shape is typically angular, despite published cross sections that show concentric folds; and, (4) beds within the folds show thickening and/or thinning, most commonly adjacent to fold hinges. The rolling hinge model requires that rocks in the fold forelimbs bend through narrow fold hinges as deformation progressed. Examination of massive, competent rock units such as the Ord. Bighorn Dolomite, Miss. Madison Limestone, and, Penn. Tensleep Sandstone reveals no evidence of the extensive internal deformation that would be expected if hinges rolled through rocks of the forelimb. The hinges of some folds (e.g. Golf Creek anticline, Bighorn Mountains) are offset by secondary faults, effectively preventing the passage of rocks from backlimb to forelimb. The fixed hinge model proposes that the fold hinges were defined early in fold evolution, and beds were progressively rotated and steepened as the structure grew.

  18. Fault Tolerance of Neural Networks

    DTIC Science & Technology

    1994-07-01

    Systematic Ap - proach, Proc. Government Microcircuit Application Conf. (GOMAC), San Diego, Nov. 1986. [10] D.E.Goldberg, Genetic Algorithms in Search...s l m n ttempt to develop fault tolerant neural networks. The lows. Given a well-trained network, we first eliminate temp todevlopfaut tlernt eurl ...both ap - proaches, and this resulted in very slight improve- ments over the addition/deletion procedure. 103 Fisher’s Iris data in average case Fisher’s

  19. CONTROL AND FAULT DETECTOR CIRCUIT

    DOEpatents

    Winningstad, C.N.

    1958-04-01

    A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.

  20. Watching Faults Grow in Sand

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  1. Fault detection using genetic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; B. Jack, Lindsay; Nandi, Asoke K.

    2005-03-01

    Genetic programming (GP) is a stochastic process for automatically generating computer programs. GP has been applied to a variety of problems which are too wide to reasonably enumerate. As far as the authors are aware, it has rarely been used in condition monitoring (CM). In this paper, GP is used to detect faults in rotating machinery. Featuresets from two different machines are used to examine the performance of two-class normal/fault recognition. The results are compared with a few other methods for fault detection: Artificial neural networks (ANNs) have been used in this field for many years, while support vector machines (SVMs) also offer successful solutions. For ANNs and SVMs, genetic algorithms have been used to do feature selection, which is an inherent function of GP. In all cases, the GP demonstrates performance which equals or betters that of the previous best performing approaches on these data sets. The training times are also found to be considerably shorter than the other approaches, whilst the generated classification rules are easy to understand and independently validate.

  2. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  3. Fault tolerant operation of switched reluctance machine

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  4. A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault Tolerant MPI

    SciTech Connect

    Hursey, Joshua J; Naughton, III, Thomas J; Vallee, Geoffroy R; Graham, Richard L

    2011-01-01

    The lack of fault tolerance is becoming a limiting factor for application scalability in HPC systems. The MPI does not provide standardized fault tolerance interfaces and semantics. The MPI Forum's Fault Tolerance Working Group is proposing a collective fault tolerant agreement algorithm for the next MPI standard. Such algorithms play a central role in many fault tolerant applications. This paper combines a log-scaling two-phase commit agreement algorithm with a reduction operation to provide the necessary functionality for the new collective without any additional messages. Error handling mechanisms are described that preserve the fault tolerance properties while maintaining overall scalability.

  5. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  6. A Quaternary Fault Database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, S.; Ehlers, T. A.; Bendick, R.; Stübner, K.; Strube, T.

    2015-09-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for Central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for Central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic and structural characteristics, short descriptions, narrative comments and references to peer-reviewed publications. The interactive map displays 1196 fault segments and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 122 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. This work has implications for seismic hazard studies in Central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  7. Seismological Constraints on Fault Plane Curvature

    NASA Astrophysics Data System (ADS)

    Reynolds, K.

    2015-12-01

    The down-dip geometry of seismically active normal faults is not well known. Many examples of normal faults with down-dip curvature exist, such as listric faults revealed in cross-section or in seismic reflection data, or the exposed domes of core complexes. However, it is not understood: (1) whether curved faults fail in earthquakes, and (2) if those faults have generated earthquakes, is the curvature a primary feature of the rupture or due to later modification of the plane? Even if an event is surface-rupturing, because of the limited depth-extent over which observations can be made, it is difficult to reliably constrain the change in dip with depth (if any) and therefore the fault curvature. Despite the uncertainty in seismogenic normal fault geometries, published slip inversions most commonly use planar fault models. We investigate the seismological constraints on normal fault geometry using a forward-modelling approach and present a seismological technique for determining down-dip geometry. We demonstrate that complexity in the shape of teleseismic body waveforms may be used to investigate the presence of down-dip fault plane curvature. We have applied this method to a catalogue of continental and oceanic normal faulting events. Synthetic models demonstrate that the shapes of SH waveforms at along-strike stations are particularly sensitive to fault plane geometry. It is therefore important to consider the azimuthal station coverage before modelling an event. We find that none of the data require significant down-dip curvature, although the modelling results for some events remain ambiguous. In some cases we can constrain that the down-dip fault geometry is within 20° of planar.

  8. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.

  9. Perspective View, San Andreas Fault

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault in an image created with data from NASA's shuttle Radar Topography Mission (SRTM), which will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, California, about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. This area is at the junction of two large mountain ranges, the San Gabriel Mountains on the left and the Tehachapi Mountains on the right. Quail Lake Reservoir sits in the topographic depression created by past movement along the fault. Interstate 5 is the prominent linear feature starting at the left edge of the image and continuing into the fault zone, passing eventually over Tejon Pass into the Central Valley, visible at the upper left.

    This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994

  10. Rapid Network Design

    DTIC Science & Technology

    2013-09-01

    packet- switched networks are extremely prone to human design faults, which can adversely affect the reliability of the network. This thesis proposes an...network devices and create a functioning packet- switch network. network design , network topology, packet- switching networks, routing protocols, data... switched networks are extremely prone to human design faults, which can adversely affect the reliability of the network. This thesis proposes an

  11. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  12. Primary and secondary faulting in the Najd fault system, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Moore, John McMahon

    1979-01-01

    The Najd fault system is a major transcurrent (strike-slip) fault system of Proterozoic age in the Arabian Shield. The system is a braided complex of parallel and curved en echelon faults. Complex arrays of secondary structures including strike-slip, oblique-slip, thrust, and normal faults, together with folds and dike swarms, are associated with some major faults, particularly near their terminations. The secondary structures indicate that compressional and extensional and dilational conditions existed synchronously in different parts of the fault zone. The outcrop traces of faults and syntectonic dikes have been used to interpret the configuration of principal compressive stresses during formation of parts of the secondary fracture systems. Second-order deformation was a series of separate events in a complex episodic faulting history. Comparison with model studies indicates that master faults extended in length in stages and periodically developed arrays of secondary structures. Propagation of the major faults took place along splay trajectories, which inter-connected to form a subparallel sheeted and braided zone. Interpretation of the aeromagnetic maps indicates that the Najd system is broader at depth than the outcropping fault complex, and that more continuous structures underlie arrays of faults at surface. The fault pattern is mechanically explicable in terms of simple shear between rigid blocks beneath the exposed structures.

  13. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    USGS Publications Warehouse

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  14. The Energetics of Gravity Driven Faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.

    2007-12-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In displacement-bounded faulting, locked-in elastic strain energy is transformed into seismic waves plus work done in the fault zone. Elastic rebound is an example of displacement-bounded faulting. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into seismic waves plus work done in the fault zone and half goes into an increase in locked-in elastic strain. In displacement-bounded faulting the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the topography and internal stress-causing density variations is equally split between the seismic waves plus work done in the fault zone and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are a little more

  15. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  16. Fault Model Development for Fault Tolerant VLSI Design

    DTIC Science & Technology

    1988-05-01

    it minimizes the number of bridging 5 % -W V,. Pi’%A faults but because of the ease with which the layout principles can be automated . This implies a...diffusion over a significant portion. Thus, it turns out .. 4 that the layout chosen on the basis of easy automation is also efficient in terms of...34, Proo. 24th ACM/IEEE . Design Automation Conference, June 1987, pp 244-250. 106 ii * . .A 16. [Reddy,19861 Sudhakar M. Reddy and Madhukar M. Reddy

  17. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1990-01-01

    The use of back-to-back, or comparison, testing for regression test or porting is examined. The efficiency and the cost of the strategy is compared with manual and table-driven single version testing. Some of the key parameters that influence the efficiency and the cost of the approach are the failure identification effort during single version program testing, the extent of implemented changes, the nature of the regression test data (e.g., random), and the nature of the inter-version failure correlation and fault-masking. The advantages and disadvantages of the technique are discussed, together with some suggestions concerning its practical use.

  18. The 1992 Landers earthquake and surface faulting

    USGS Publications Warehouse

    Rymer, Michael J.

    1992-01-01

    Faulting associated with the June 28, 992, earthquake near Landers, California, broke the surface of the ground over a length of more than 70 km, the longest surface rupture in the United States since the great San Francisco quake of 1906. the strongest shaking associated with this magnitude 7.6 (MS) earthquake, the largest in the contiguous 48 states in the last 40 years, occurred in a sparsely populated sections of the Mojave Desert more than 200 km east of Los Angeles. the earthquake began with a sudden slip on the Johnson Valley fault about 10 km southwest of Landers. The initial fault movement probably occurred at a depth of less than 10 km. Surface faulting then propagated over 70 km to the north and northeast. The faulting linked preexisting faults-some previously known and mapped and others previously unknown-into a complex, coherent rupture zone. 

  19. New results in fault latency modelling

    NASA Technical Reports Server (NTRS)

    Mcgough, J. G.; Swern, F. L.; Bavuso, S.

    1983-01-01

    Studies carried out by McGough and Swern (1981, 1983) are summarized. In these studies, an avionics processor was simulated and a series of fault injection experiments was carried out to determine the degree of fault latency in a redundant flight control system that employed comparison monitoring as the exclusive means of failure detection. A determination was also made of the fault coverage of a typical self-test program. The summary presented stresses that a self-test program should be designed to capitalize on the hardware mechanization of the processor. If this is not done, subtests tend to repeatedly exercise the same hardware components while neglecting to exercise a substantial proportion of the remainder. It is also pointed out that fault latency is relatively independent of both the length and instruction mix of a program. A significant difference is found in fault coverage assessed using pin-level and gate-level fault models.

  20. Fault-tolerant dynamic task graph scheduling

    SciTech Connect

    Kurt, Mehmet C.; Krishnamoorthy, Sriram; Agrawal, Kunal; Agrawal, Gagan

    2014-11-16

    In this paper, we present an approach to fault tolerant execution of dynamic task graphs scheduled using work stealing. In particular, we focus on selective and localized recovery of tasks in the presence of soft faults. We elicit from the user the basic task graph structure in terms of successor and predecessor relationships. The work stealing-based algorithm to schedule such a task graph is augmented to enable recovery when the data and meta-data associated with a task get corrupted. We use this redundancy, and the knowledge of the task graph structure, to selectively recover from faults with low space and time overheads. We show that the fault tolerant design retains the essential properties of the underlying work stealing-based task scheduling algorithm, and that the fault tolerant execution is asymptotically optimal when task re-execution is taken into account. Experimental evaluation demonstrates the low cost of recovery under various fault scenarios.

  1. Holocene fault scarps near Tacoma, Washington, USA

    USGS Publications Warehouse

    Sherrod, B.L.; Brocher, T.M.; Weaver, C.S.; Bucknam, R.C.; Blakely, R.J.; Kelsey, H.M.; Nelson, A.R.; Haugerud, R.

    2004-01-01

    Airborne laser mapping confirms that Holocene active faults traverse the Puget Sound metropolitan area, northwestern continental United States. The mapping, which detects forest-floor relief of as little as 15 cm, reveals scarps along geophysical lineaments that separate areas of Holocene uplift and subsidence. Along one such line of scarps, we found that a fault warped the ground surface between A.D. 770 and 1160. This reverse fault, which projects through Tacoma, Washington, bounds the southern and western sides of the Seattle uplift. The northern flank of the Seattle uplift is bounded by a reverse fault beneath Seattle that broke in A.D. 900-930. Observations of tectonic scarps along the Tacoma fault demonstrate that active faulting with associated surface rupture and ground motions pose a significant hazard in the Puget Sound region.

  2. In-circuit fault injector user's guide

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1987-01-01

    A fault injector system, called an in-circuit injector, was designed and developed to facilitate fault injection experiments performed at NASA-Langley's Avionics Integration Research Lab (AIRLAB). The in-circuit fault injector (ICFI) allows fault injections to be performed on electronic systems without special test features, e.g., sockets. The system supports stuck-at-zero, stuck-at-one, and transient fault models. The ICFI system is interfaced to a VAX-11/750 minicomputer. An interface program has been developed in the VAX. The computer code required to access the interface program is presented. Also presented is the connection procedure to be followed to connect the ICFI system to a circuit under test and the ICFI front panel controls which allow manual control of fault injections.

  3. Performance Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2005-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. In this paper, an FTC analysis framework is provided to calculate the upper bound of an induced-L(sub 2) norm of an FTC system with existence of false identification and detection time delay. The upper bound is written as a function of a fault detection time and exponential decay rates and has been used to determine which FTC law produces less performance degradation (tracking error) due to false identification. The analysis framework is applied for an FTC system of a HiMAT (Highly Maneuverable Aircraft Technology) vehicle. Index Terms fault tolerant control system, linear parameter varying system, HiMAT vehicle.

  4. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.

  5. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault

    USGS Publications Warehouse

    Yue, Y.; Graham, S.A.; Ritts, B.D.; Wooden, J.L.

    2005-01-01

    rapidly growing evidence for Cenozoic strike-slip activity on the Alxa-East Mongolia fault and mid-Miocene exhumation of northern Tibet supports it. ?? 2005 Elsevier B.V. All rights reserved.

  6. Approximate active fault detection and control

    NASA Astrophysics Data System (ADS)

    Škach, Jan; Punčochář, Ivo; Šimandl, Miroslav

    2014-12-01

    This paper deals with approximate active fault detection and control for nonlinear discrete-time stochastic systems over an infinite time horizon. Multiple model framework is used to represent fault-free and finitely many faulty models. An imperfect state information problem is reformulated using a hyper-state and dynamic programming is applied to solve the problem numerically. The proposed active fault detector and controller is illustrated in a numerical example of an air handling unit.

  7. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  8. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  9. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  10. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  11. 31 CFR 29.522 - Fault.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at...

  12. Hydrogen Embrittlement And Stacking-Fault Energies

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  13. Experimental investigations of mechanical healing of a simulated fault gouge

    NASA Astrophysics Data System (ADS)

    Messen, Y. H.; Corfdir, A.; Schmittbuhl, J.; Toussaint, R.

    2009-04-01

    In order to investigate the effect of fast healing from mechanical perturbations on the frictional behavior of fault surfaces, slide-hold-slide (SHS) experiments are often run in which holds are preceded by a rapid reduction of the shear stress, that triggers an increase of shear strength when resuming shear (i.e. The Tightening-up effect of unloading or Tu-effect). We present laboratory investigation where we explore the role of slip and stress perturbations before resuming the general loading of the frictional interface. Tests are performed with the Annular Simple Shear Apparatus (Navier/CERMES, Ecole des Ponts ParisTech, France) for studying such mechanical healing of a simulated fault gouge. A 100mm thick annular sample of siliceous sand (0.6mm diameter) is submitted to shear by the mean of a rotating cylinder in a semi-Couette geometry. We show that rather than small shear stress perturbations, small back-slips are responsible for significant restrengthening of the interface. Shear stress perturbations that do not lead to any significant inelastic back-slips, however, do not lead to restrengthening. A robust linear relationship between the amount of the back-slip and the strength increase is surprisingly obtained. This result suggests that small perturbations of the contact status in the granular assembly of gouge particles have a major influence on the fault restrengthening. Small displacements might have a much larger effect on the force chain transfer than stress perturbations.

  14. An Aspect-Oriented Approach to Assessing Fault Tolerance

    DTIC Science & Technology

    2014-10-01

    this paper, we present a fault tolerance assessment framework designed for distributed systems that provides automated injection of faults without... fault tolerance techniques work. Ensuring fault tolerance in military communication systems is particularly important due to the inevitability of...changes to client or server code and automated assessment of whether the injected faults are tolerated. The framework applies aspect-oriented

  15. Estimating the distribution of fault latency in a digital processor

    NASA Technical Reports Server (NTRS)

    Ellis, Erik L.; Butler, Ricky W.

    1987-01-01

    Presented is a statistical approach to measuring fault latency in a digital processor. The method relies on the use of physical fault injection where the duration of the fault injection can be controlled. Although a specific fault's latency period is never directly measured, the method indirectly determines the distribution of fault latency.

  16. Development and implementation of a power system fault diagnosis expert system

    SciTech Connect

    Minakawa, T.; Ichikawa, Y.; Kunugi, M.; Wada, N.; Shimada, K.; Utsunomiya, M.

    1995-05-01

    This paper describes a fault diagnosis expert system installed at the tohoku Electric Power Company. The main features of this system are careful selection of the inferencing input data, rapid inferencing, integration of the expert system with other systems in a practical structure, and the adoption of a domain shell. This system aims for improved practicability by using time-tagged data from circuit breakers, protective relays, and automatic reclosing relays in addition to the input data used in earlier systems. Furthermore, this system also uses data from fault detection systems that locate fault points within electric stations. This system uses an AI-specific back-end processor to perform inferencing rapidly. Additionally, this fault diagnosis expert system is interfaced and integrated with a restorative operations expert system, an intelligent alarm processing system, and a protective relay setting and management system. Authors developed and adopted a power system fault diagnosis domain shell to ease system development, and used the protective relay operation simulation function of a protective relay setting and management system for system verification.

  17. Processes of sedimentation associated with fault-controlled trough across a shelf

    SciTech Connect

    Rees, M.N.

    1985-02-01

    Western North America was a rapidly subsiding, passive continental margin during the Cambrian. During the Middle Cambrian, a belt of carbonate deposition dominated the central shelf. It was bounded by fine-grained terrigenous sediments that accumulated in deep water to the west and in shallow water to the east. Movement along a high-angle fault that extended across the shelf produced a conspicuous embayment into the carbonate belt in Nevada and Utah during the middle Middle Cambrian. This fault movement controlled basin geometry and distribution of carbonate and shale lithofacies on the shelf for at least the next 40 m.y. The embayment was an asymmetrical trough that deepened and widened as it extended some 400 km westward toward the edge of the continent. South of its abrupt southern margin, which marked the position of the fault, shallow subtidal and peritidal sediments accumulated throughout the Middle Cambrian. The northern flank of the embayment was a drowned platform that sloped gently southward into the trough axis. On this ramp, a carbonate platform was rapidly reestablished through vertical accretion and progradation. In the trough axis, which lay near the faulted margin, sediments representing anoxic and deep-water environments accumulated throughout the middle and late Middle Cambrian. Sedimentation rates in this axial region were inadequate to reestablish a shallow-water depositional setting because of reactivation of faulting and because the trough acted as a sediment bypass zone.

  18. Applications of Fault Detection in Vibrating Structures

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Hogge, Edward; Quach, Cuong C.; Vazquez, Sixto L.; Russell, Andrew; Hill, Boyd L.

    2012-01-01

    Structural fault detection and identification remains an area of active research. Solutions to fault detection and identification may be based on subtle changes in the time series history of vibration signals originating from various sensor locations throughout the structure. The purpose of this paper is to document the application of vibration based fault detection methods applied to several structures. Overall, this paper demonstrates the utility of vibration based methods for fault detection in a controlled laboratory setting and limitations of applying the same methods to a similar structure during flight on an experimental subscale aircraft.

  19. Chip level simulation of fault tolerant computers

    NASA Technical Reports Server (NTRS)

    Armstrong, J. R.

    1983-01-01

    Chip level modeling techniques, functional fault simulation, simulation software development, a more efficient, high level version of GSP, and a parallel architecture for functional simulation are discussed.

  20. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  1. Block rotations, fault domains and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.; Ron, H.

    1987-01-01

    Much of the earth's crust is broken by sets of parallel strike-slip faults which are organized in domains. A simple kinematic model suggests that when subject to tectonic strain, the faults, and the blocks bound by them, rotate. The rotation can be estimated from the structurally-determined fault slip and fault spacing, and independently from local deviations of paleomagnetic declinations from global values. A rigorous test of this model was carried out in northern Israel, where good agreement was found between the two rotations.

  2. Active faults in southeastern Harris County, Texas

    NASA Technical Reports Server (NTRS)

    Clanton, U. S.; Amsbury, D. L.

    1975-01-01

    Aerial color infrared photography was used to investigate active faults in a complex graben in southeastern Harris County, Tex. The graben extends east-west across an oil field and an interstate highway through Ellington Air Force Base (EAFB), into the Clear Lake oil field and on to LaPorte, Tex. It was shown that the fault pattern at EAFB indicates an appreciable horizontal component associated with the failure of buildings, streets, and runways. Another fault system appears to control the shoreline configuration of Clear Lake, with some of the faults associated with tectonic movements and the production of oil and gas, but many related to extensive ground water withdrawal.

  3. Faults Discovery By Using Mined Data

    NASA Technical Reports Server (NTRS)

    Lee, Charles

    2005-01-01

    Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.

  4. Sensor and sensorless fault tolerant control for induction motors using a wavelet index.

    PubMed

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state.

  5. Sensor and Sensorless Fault Tolerant Control for Induction Motors Using a Wavelet Index

    PubMed Central

    Gaeid, Khalaf Salloum; Ping, Hew Wooi; Khalid, Mustafa; Masaoud, Ammar

    2012-01-01

    Fault Tolerant Control (FTC) systems are crucial in industry to ensure safe and reliable operation, especially of motor drives. This paper proposes the use of multiple controllers for a FTC system of an induction motor drive, selected based on a switching mechanism. The system switches between sensor vector control, sensorless vector control, closed-loop voltage by frequency (V/f) control and open loop V/f control. Vector control offers high performance, while V/f is a simple, low cost strategy with high speed and satisfactory performance. The faults dealt with are speed sensor failures, stator winding open circuits, shorts and minimum voltage faults. In the event of compound faults, a protection unit halts motor operation. The faults are detected using a wavelet index. For the sensorless vector control, a novel Boosted Model Reference Adaptive System (BMRAS) to estimate the motor speed is presented, which reduces tuning time. Both simulation results and experimental results with an induction motor drive show the scheme to be a fast and effective one for fault detection, while the control methods transition smoothly and ensure the effectiveness of the FTC system. The system is also shown to be flexible, reverting rapidly back to the dominant controller if the motor returns to a healthy state. PMID:22666016

  6. Software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1993-01-01

    Strategies and tools for the testing, risk assessment and risk control of dependable software-based systems were developed. Part of this project consists of studies to enable the transfer of technology to industry, for example the risk management techniques for safety-concious systems. Theoretical investigations of Boolean and Relational Operator (BRO) testing strategy were conducted for condition-based testing. The Basic Graph Generation and Analysis tool (BGG) was extended to fully incorporate several variants of the BRO metric. Single- and multi-phase risk, coverage and time-based models are being developed to provide additional theoretical and empirical basis for estimation of the reliability and availability of large, highly dependable software. A model for software process and risk management was developed. The use of cause-effect graphing for software specification and validation was investigated. Lastly, advanced software fault-tolerance models were studied to provide alternatives and improvements in situations where simple software fault-tolerance strategies break down.

  7. Depositional history and fault-related studies, Bolinas Lagoon, California

    USGS Publications Warehouse

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  8. Earthquake Swarms and Aseismic Slip on Transform Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Collins, J. A.

    2009-12-01

    Swarms of ordinary earthquakes are common in environments where slow aseismic slip events are observed, such as strike-slip faults in the Salton Trough and oceanic transform faults. Although in some tectonic settings, the driving mechanisms that cause seismic swarms are well understood (i.e. magma intrusion in regions of volcanism), oceanic transform boundaries currently lack the geophysical data to constrain a distinct driving process. To identify the mechanisms that cause earthquake swarms on strike-slip faults, we use relative earthquake locations to quantify the spatial and temporal characteristics of swarms along Southern California and East Pacific Rise transforms. Swarms in these regions exhibit distinctive characteristics, including a relatively narrow range of hypocentral migration velocities, on the order of a kilometer per hour. This rate corresponds to the rupture propagation velocity of shallow creep transients that are sometimes observed geodetically in conjunction with swarms, and is significantly faster than the earthquake migration rates typically associated with fluid diffusion. Each of the swarms we examine also covers a large spatial area relative to its total seismic moment release and fails to decay in time according to standard aftershock scaling laws. Moreover, assuming the Salton Trough faults fail under hydrostatic conditions, the observed migration rate is consistent with laboratory values of the rate-state friction parameter b (0.01). Additionally, we present the first characterization of an oceanic transform fault swarm using data from a local ocean bottom seismometer array. The December 2008 Gofar Transform swarm lasted ~2 days and had at least 12 Mw>4.0 earthquakes. Using the local OBS data, we have detected and located over 5000 microearthquakes that occurred during this episode. This swarm nucleated close to the ridge-transform intersection and rapidly propagated ~10 km towards the center of the transform. The propagation rate (~0

  9. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  10. Fault rheology beyond frictional melting

    PubMed Central

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E.; Hess, Kai-Uwe; Dingwell, Donald B.

    2015-01-01

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or “pseudotachylytes.” It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics. PMID:26124123

  11. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  12. Review: Evaluation of Foot-and-Mouth Disease Control Using Fault Tree Analysis.

    PubMed

    Isoda, N; Kadohira, M; Sekiguchi, S; Schuppers, M; Stärk, K D C

    2015-06-01

    An outbreak of foot-and-mouth disease (FMD) causes huge economic losses and animal welfare problems. Although much can be learnt from past FMD outbreaks, several countries are not satisfied with their degree of contingency planning and aiming at more assurance that their control measures will be effective. The purpose of the present article was to develop a generic fault tree framework for the control of an FMD outbreak as a basis for systematic improvement and refinement of control activities and general preparedness. Fault trees are typically used in engineering to document pathways that can lead to an undesired event, that is, ineffective FMD control. The fault tree method allows risk managers to identify immature parts of the control system and to analyse the events or steps that will most probably delay rapid and effective disease control during a real outbreak. The present developed fault tree is generic and can be tailored to fit the specific needs of countries. For instance, the specific fault tree for the 2001 FMD outbreak in the UK was refined based on control weaknesses discussed in peer-reviewed articles. Furthermore, the specific fault tree based on the 2001 outbreak was applied to the subsequent FMD outbreak in 2007 to assess the refinement of control measures following the earlier, major outbreak. The FMD fault tree can assist risk managers to develop more refined and adequate control activities against FMD outbreaks and to find optimum strategies for rapid control. Further application using the current tree will be one of the basic measures for FMD control worldwide.

  13. Detection of CMOS bridging faults using minimal stuck-at fault test sets

    NASA Technical Reports Server (NTRS)

    Ijaz, Nabeel; Frenzel, James F.

    1993-01-01

    The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.

  14. Transform fault earthquakes in the North Atlantic - Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1988-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  15. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Sharan; Zhao, Qing

    2016-12-01

    This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.

  16. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    PubMed

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%.

  17. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  18. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  19. Heating and Weakening of Major Faults During Seismic Rupture

    NASA Astrophysics Data System (ADS)

    Rice, J. R.

    2007-12-01

    The absence of significant heat flow from major fault zones, and scarcity of evidence for their seismic melting, means that during earthquake slip such zones could not retain shear strength comparable to the typically high static friction strength of rocks. One line of explanation is that they are actually statically weak, which could be because materials of exceptionally low friction (smectites, talc) accumulate along fault zones, or perhaps because pore pressure within the fault core is far closer to lithostatic than hydrostatic. Without dismissing either, the focus here is on how thermal processes during the rapid slips of seismic rupture can weaken a fault which is indeed statically strong. (The discussion also leaves aside another kind of non- thermal dynamic weakening, possible when there is dissimilarity in seismic properties across the fault, and/or in poroelastic properties and permeability within fringes of damaged material immediately adjoining the slip surface. Spatially nonuniform mode II slip like near a propagating rupture front may then induce a substantial reduction in the effective normal stress \\barσ.) The heating and weakening processes to be discussed divide roughly into two camps: (1) Those which are expected to be active from the start of seismic slip, and hence will be present in all earthquakes; and (2) Those that kick-in after threshold conditions of rise of temperature T or accumulation of slip are reached, and hence become a feature of larger, or at least deeper slipping, earthquakes. It has been argued that the two major players of (1) are as follows: (1.1) Flash heating and weakening of frictional contact asperities in rapid slip [Rice, 1999, 2006; Tullis and Goldsby, 2003; Goldsby and Hirth, 2006; Beeler et al., 2007; Yuan and Prakash, 2007]. That gives a strong velocity-weakening character to the friction coefficient, which is consistent with inducing self-healing rupture modes [Noda et al., 2006; Lu et al., 2007]. It is a process

  20. Implications of fault constitutive properties for earthquake prediction

    USGS Publications Warehouse

    Dieterich, J.H.; Kilgore, B.

    1996-01-01

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance D(c), apparent fracture energy at a rupture front, time- dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of D, apply to faults in nature. However, scaling of D(c) is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  1. Generation and propagation of stick-slip waves over a fault with rate-independent friction

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Iuliia; Dyskin, Arcady; Pasternak, Elena

    2014-05-01

    Earthquakes generated at faults are either produced by rapid (sometimes supersonic) propagation of shear cracks/ruptures along the fault or originated in the stick-slip sliding over the fault. In some cases, supersonic (faster than the shear wave velocity) propagation of earthquake-generating shear ruptures or sliding is observed. This gave rise to the concept of supersonic shear crack propagation, much researched in the literature. Here we consider another mechanisms of supersonic sliding propagation. We concentrate on the stick-slip sliding as the earthquake mechanism. It is conventionally assumed that the mechanism of stick-slip lies in intermittent change between static and kinetic friction and the rate dependence of the friction coefficient. However the accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in the velocity of sliding even if the friction coefficient is constant. These oscillations resemble stick-slip movement, but they manifest themselves in terms of sliding velocity rather than displacement. Furthermore, over long faults the sliding exhibits wave-like propagation. We developed a model that shows that the zones of non-zero sliding velocities propagate along the fault with the velocity of p-wave. The mechanism of such fast movement is in the fact that sliding of every element of the rock at the fault surface creates normal (tensile/compressive) stresses in the neighbouring elements (normal stresses on the planes normal to the fault surface). The strains associated with these stresses are controlled by the Young's modulus rather than shear modulus resulting in the p-wave velocity of propagation of the sliding zone. This results in the observed supersonic (with respect to the s-waves) propagation of the apparent shear rupture. Keywords: Stick-slip, Rate-independent friction, Supersonic propagation.

  2. Seismic images and fault relations of the Santa Monica thrust fault, West Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.

    2001-01-01

    In May 1997, the US Geological Survey (USGS) and the University of Southern California (USC) acquired high-resolution seismic reflection and refraction images on the grounds of the Wadsworth Veterans Administration Hospital (WVAH) in the city of Los Angeles (Fig. 1a,b). The objective of the seismic survey was to better understand the near-surface geometry and faulting characteristics of the Santa Monica fault zone. In this report, we present seismic images, an interpretation of those images, and a comparison of our results with results from studies by Dolan and Pratt (1997), Pratt et al. (1998) and Gibbs et al. (2000). The Santa Monica fault is one of the several northeast-southwest-trending, north-dipping, reverse faults that extend through the Los Angeles metropolitan area (Fig. 1a). Through much of area, the Santa Monica fault trends subparallel to the Hollywood fault, but the two faults apparently join into a single fault zone to the southwest and to the northeast (Dolan et al., 1995). The Santa Monica and Hollywood faults may be part of a larger fault system that extends from the Pacific Ocean to the Transverse Ranges. Crook et al. (1983) refer to this fault system as the Malibu Coast-Santa Monica-Raymond-Cucamonga fault system. They suggest that these faults have not formed a contiguous zone since the Pleistocene and conclude that each of the faults should be treated as a separate fault with respect to seismic hazards. However, Dolan et al. (1995) suggest that the Hollywood and Santa Monica faults are capable of generating Mw 6.8 and Mw 7.0 earthquakes, respectively. Thus, regardless of whether the overall fault system is connected and capable of rupturing in one event, individually, each of the faults present a sizable earthquake hazard to the Los Angeles metropolitan area. If, however, these faults are connected, and they were to rupture along a continuous fault rupture, the resulting hazard would be even greater. Although the Santa Monica fault represents

  3. Fault Management Techniques in Human Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    O'Hagan, Brian; Crocker, Alan

    2006-01-01

    This paper discusses human spaceflight fault management operations. Fault detection and response capabilities available in current US human spaceflight programs Space Shuttle and International Space Station are described while emphasizing system design impacts on operational techniques and constraints. Preflight and inflight processes along with products used to anticipate, mitigate and respond to failures are introduced. Examples of operational products used to support failure responses are presented. Possible improvements in the state of the art, as well as prioritization and success criteria for their implementation are proposed. This paper describes how the architecture of a command and control system impacts operations in areas such as the required fault response times, automated vs. manual fault responses, use of workarounds, etc. The architecture includes the use of redundancy at the system and software function level, software capabilities, use of intelligent or autonomous systems, number and severity of software defects, etc. This in turn drives which Caution and Warning (C&W) events should be annunciated, C&W event classification, operator display designs, crew training, flight control team training, and procedure development. Other factors impacting operations are the complexity of a system, skills needed to understand and operate a system, and the use of commonality vs. optimized solutions for software and responses. Fault detection, annunciation, safing responses, and recovery capabilities are explored using real examples to uncover underlying philosophies and constraints. These factors directly impact operations in that the crew and flight control team need to understand what happened, why it happened, what the system is doing, and what, if any, corrective actions they need to perform. If a fault results in multiple C&W events, or if several faults occur simultaneously, the root cause(s) of the fault(s), as well as their vehicle-wide impacts, must be

  4. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  5. Paleoseismicity of two historically quiescent faults in Australia: Implications for fault behavior in stable continental regions

    USGS Publications Warehouse

    Crone, A.J.; De Martini, P. M.; Machette, M.M.; Okumura, K.; Prescott, J.R.

    2003-01-01

    Paleoseismic studies of two historically aseismic Quaternary faults in Australia confirm that cratonic faults in stable continental regions (SCR) typically have a long-term behavior characterized by episodes of activity separated by quiescent intervals of at least 10,000 and commonly 100,000 years or more. Studies of the approximately 30-km-long Roopena fault in South Australia and the approximately 30-km-long Hyden fault in Western Australia document multiple Quaternary surface-faulting events that are unevenly spaced in time. The episodic clustering of events on cratonic SCR faults may be related to temporal fluctuations of fault-zone fluid pore pressures in a volume of strained crust. The long-term slip rate on cratonic SCR faults is extremely low, so the geomorphic expression of many cratonic SCR faults is subtle, and scarps may be difficult to detect because they are poorly preserved. Both the Roopena and Hyden faults are in areas of limited or no significant seismicity; these and other faults that we have studied indicate that many potentially hazardous SCR faults cannot be recognized solely on the basis of instrumental data or historical earthquakes. Although cratonic SCR faults may appear to be nonhazardous because they have been historically aseismic, those that are favorably oriented for movement in the current stress field can and have produced unexpected damaging earthquakes. Paleoseismic studies of modern and prehistoric SCR faulting events provide the basis for understanding of the long-term behavior of these faults and ultimately contribute to better seismic-hazard assessments.

  6. Fault Tolerant Homopolar Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Li, Ming-Hsiu; Palazzolo, Alan; Kenny, Andrew; Provenza, Andrew; Beach, Raymond; Kascak, Albert

    2003-01-01

    Magnetic suspensions (MS) satisfy the long life and low loss conditions demanded by satellite and ISS based flywheels used for Energy Storage and Attitude Control (ACESE) service. This paper summarizes the development of a novel MS that improves reliability via fault tolerant operation. Specifically, flux coupling between poles of a homopolar magnetic bearing is shown to deliver desired forces even after termination of coil currents to a subset of failed poles . Linear, coordinate decoupled force-voltage relations are also maintained before and after failure by bias linearization. Current distribution matrices (CDM) which adjust the currents and fluxes following a pole set failure are determined for many faulted pole combinations. The CDM s and the system responses are obtained utilizing 1D magnetic circuit models with fringe and leakage factors derived from detailed, 3D, finite element field models. Reliability results are presented vs. detection/correction delay time and individual power amplifier reliability for 4, 6, and 7 pole configurations. Reliability is shown for two success criteria, i.e. (a) no catcher bearing contact following pole failures and (b) re-levitation off of the catcher bearings following pole failures. An advantage of the method presented over other redundant operation approaches is a significantly reduced requirement for backup hardware such as additional actuators or power amplifiers.

  7. Illuminating Northern California's Active Faults

    NASA Astrophysics Data System (ADS)

    Prentice, Carol S.; Crosby, Christopher J.; Whitehill, Caroline S.; Arrowsmith, J. Ramón; Furlong, Kevin P.; Phillips, David A.

    2009-02-01

    Newly acquired light detection and ranging (lidar) topographic data provide a powerful community resource for the study of landforms associated with the plate boundary faults of northern California (Figure 1). In the spring of 2007, GeoEarthScope, a component of the EarthScope Facility construction project funded by the U.S. National Science Foundation, acquired approximately 2000 square kilometers of airborne lidar topographic data along major active fault zones of northern California. These data are now freely available in point cloud (x, y, z coordinate data for every laser return), digital elevation model (DEM), and KMZ (zipped Keyhole Markup Language, for use in Google Earth™ and other similar software) formats through the GEON OpenTopography Portal (http://www.OpenTopography.org/data). Importantly, vegetation can be digitally removed from lidar data, producing high-resolution images (0.5- or 1.0-meter DEMs) of the ground surface beneath forested regions that reveal landforms typically obscured by vegetation canopy (Figure 2).

  8. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  9. New mapping and structural constraints on the Queen Charlotte-Fairweather Fault system, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Levoir, M. A.; Roland, E. C.; Gulick, S. P.; Haeussler, P. J.; Christeson, G. L.; Van Avendonk, H. J.

    2013-12-01

    ) Pacific Plate underthrusting beneath North America; or 2) crustal shortening via smaller, localized thrust faults. The underthrusting model assumes oblique slip along fault planes that transition to a lesser dip with increasing depth, whereas the local-thrust model requires strain partitioning via a series of thrust faults proximal to and inland from the main strike-slip trace. We provide insight into this system with improved surficial fault geometries that illuminate Queen Charlotte Fault structure in the context of the two recent earthquakes. We present these data in conjunction with preliminary aftershock locations and focal mechanisms for the 05 January 2013 Craig earthquake (obtained from a joint University of Texas-USGS OBS rapid-response survey), which offer new information about the seemingly changing along-strike dip and planar structure of the southern Queen Charlotte Fault. Additionally, we can now better constrain the Queen Charlotte's northern structure in relation with the Chatham Strait and Fairweather transforms.

  10. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    NASA Astrophysics Data System (ADS)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    Subsidence has been a common occurrence in several cities in central Mexico for the past three decades. This process causes substantial damage to the urban infrastructure and housing in several cities and it is a major factor to be considered when planning urban development, land-use zoning and hazard mitigation strategies. Since the early 1980's the city of Morelia in Central Mexico has experienced subsidence associated with groundwater extraction in excess of natural recharge from rainfall. Previous works have focused on the detection and temporal evolution of the subsidence spatial distribution. The most recent InSAR analysis confirms the permanence of previously detected rapidly subsiding areas such as the Rio Grande Meander area and also defines 2 subsidence patches previously undetected in the newly developed suburban sectors west of Morelia at the Fraccionamiento Del Bosque along, south of Hwy. 15 and another patch located north of Morelia along Gabino Castañeda del Rio Ave. Because subsidence-induced, shallow faulting develops at high horizontal strain localization, newly developed a subsidence areas are particularly prone to faulting and fissuring. Shallow faulting increases groundwater vulnerability because it disrupts discharge hydraulic infrastructure and creates a direct path for transport of surface pollutants into the underlying aquifer. Other sectors in Morelia that have been experiencing subsidence for longer time have already developed well defined faults such as La Colina, Central Camionera, Torremolinos and La Paloma faults. Local construction codes in the vicinity of these faults define a very narrow swath along which housing construction is not allowed. In order to better characterize these fault systems and provide better criteria for future municipal construction codes we have surveyed the La Colina and Torremolinos fault systems in the western sector of Morelia using seismic tomographic techniques. Our results indicate that La Colina Fault

  11. Intermittent/transient fault phenomena in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.

    1977-01-01

    An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.

  12. Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry.

    PubMed

    Nagel, Michael; Michalski, Alexander; Kurz, Heinrich

    2011-06-20

    We demonstrate in a first experimental study the application of novel micro-machined optoelectronic probes for a time-domain reflectometry-based localization of discontinuities and faults in electronic structures at unprecedented resolution and accuracy (± 0.55 µm). Thanks to the THz-range bandwidth of our optoelectronic system--including the active probes used for pulse injection and detection--the spatial resolution and precision of high-end all-electronic detection systems is surpassed by more than one order of magnitude. The new analytic technology holds great promise for rapid and precise fault detection and location in advanced (3D) integrated semiconductor chips and packages.

  13. Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2012-01-01

    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.

  14. On-Board Real-Time State and Fault Identification for Rovers

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    2000-01-01

    For extended autonomous operation, rovers must identify potential faults to determine whether its execution needs to be halted or not. At the same time, rovers present particular challenges for state estimation techniques: they are subject to environmental influences that affect senior readings during normal and anomalous operation, and the sensors fluctuate rapidly both because of noise and because of the dynamics of the rover's interaction with its environment. This paper presents MAKSI, an on-board method for state estimation and fault diagnosis that is particularly appropriate for rovers. The method is based on a combination of continuous state estimation, wing Kalman filters, and discrete state estimation, wing a Markov-model representation.

  15. Modern Glacial Outwash Sand Thermochronology Along the Denali Fault: Constraints on Strike-slip Fault and Glacier Erosion Dynamics

    NASA Astrophysics Data System (ADS)

    Benowitz, J.; Layer, P. W.

    2011-12-01

    development in the region. b) Outwash data same or older then bedrock data set-This would imply structures that are not located in the modern "glacier trench valley" are predominately responsible for exhumation in the region. c) Outwash data significantly younger than bedrock data set-This would imply some other process is occurring- potentially a glacier/strike-slip fault exhumation feedback loop or unmapped subglacial active structures. Preliminary glacial outwash sand results (110 biotite 40Ar/39Ar single grain ages) from the Black Rapids Glacier strongly mimic the biotite 40Ar/39Ar age histogram from the up drainage bedrock age data set. This result not only favors the strong tectonic influenced scenario "b," but also further demonstrates that modern glacial outwash micas have undergone little alteration. Preliminary results also favor a dominant northside of the Denali Fault source, implying either sub-glacial channel unconnectivity or significantly higher modern erosion rates on the northside of the fault associated with regionally greater tectonic forcing.

  16. Implementation of a model based fault detection and diagnosis technique for actuation faults of the SSME

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1991-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the Space Shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the Space Shuttle Main Engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  17. Fault-tolerant software - Experiment with the sift operating system. [Software Implemented Fault Tolerance computer

    NASA Technical Reports Server (NTRS)

    Brunelle, J. E.; Eckhardt, D. E., Jr.

    1985-01-01

    Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.

  18. The width of fault zones in a brittle-viscous lithosphere: Strike-slip faults

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.

    1991-01-01

    A fault zone in an ideal brittle material overlying a very weak substrate could, in principle, consist of a single slip surface. Real fault zones have a finite width consisting of a number of nearly parallel slip surfaces on which deformation is distributed. The hypothesis that the finite width of fault zones reflects stresses due to quasistatic flow in the ductile substrate of a brittle surface layer is explored. Because of the simplicity of theory and observations, strike-slip faults are examined first, but the analysis can be extended to normal and thrust faulting.

  19. Glossary of fault and other fracture networks

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2016-11-01

    Increased interest in the two- and three-dimensional geometries and development of faults and other types of fractures in rock has led to an increasingly bewildering terminology. Here we give definitions for the geometric, topological, kinematic and mechanical relationships between geological faults and other types of fractures, focussing on how they relate to form networks.

  20. Diagnostics Tools Identify Faults Prior to Failure

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  1. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  2. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  3. Intermittent/transient faults in digital systems

    NASA Technical Reports Server (NTRS)

    Masson, G. M.; Glazer, R. E.

    1982-01-01

    Containment set techniques are applied to 8085 microprocessor controllers so as to transform a typical control system into a slightly modified version, shown to be crashproof: after the departure of the intermittent/transient fault, return to one proper control algorithm is assured, assuming no permanent faults occur.

  4. Late Cenozoic intraplate faulting in eastern Australia

    NASA Astrophysics Data System (ADS)

    Babaahmadi, Abbas; Rosenbaum, Gideon

    2014-12-01

    The intensity and tectonic origin of late Cenozoic intraplate deformation in eastern Australia is relatively poorly understood. Here we show that Cenozoic volcanic rocks in southeast Queensland have been deformed by numerous faults. Using gridded aeromagnetic data and field observations, structural investigations were conducted on these faults. Results show that faults have mainly undergone strike-slip movement with a reverse component, displacing Cenozoic volcanic rocks ranging in ages from ˜31 to ˜21 Ma. These ages imply that faulting must have occurred after the late Oligocene. Late Cenozoic deformation has mostly occurred due to the reactivation of major faults, which were active during episodes of basin formation in the Jurassic-Early Cretaceous and later during the opening of the Tasman and Coral Seas from the Late Cretaceous to the early Eocene. The wrench reactivation of major faults in the late Cenozoic also gave rise to the occurrence of brittle subsidiary reverse strike-slip faults that affected Cenozoic volcanic rocks. Intraplate transpressional deformation possibly resulted from far-field stresses transmitted from the collisional zones at the northeast and southeast boundaries of the Australian plate during the late Oligocene-early Miocene and from the late Miocene to the Pliocene. These events have resulted in the hitherto unrecognized reactivation of faults in eastern Australia.

  5. Interactive Instruction in Solving Fault Finding Problems.

    ERIC Educational Resources Information Center

    Brooke, J. B.; And Others

    1978-01-01

    A training program is described which provides, during fault diagnosis, additional information about the relationship between the remaining faults and the available indicators. An interactive computer program developed for this purpose and the first results of experimental training are described. (Author)

  6. Training for Skill in Fault Diagnosis

    ERIC Educational Resources Information Center

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  7. Measurement selection for parametric IC fault diagnosis

    NASA Technical Reports Server (NTRS)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  8. The cost of software fault tolerance

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1982-01-01

    The proposed use of software fault tolerance techniques as a means of reducing software costs in avionics and as a means of addressing the issue of system unreliability due to faults in software is examined. A model is developed to provide a view of the relationships among cost, redundancy, and reliability which suggests strategies for software development and maintenance which are not conventional.

  9. Fault detection with principal component pursuit method

    NASA Astrophysics Data System (ADS)

    Pan, Yijun; Yang, Chunjie; Sun, Youxian; An, Ruqiao; Wang, Lin

    2015-11-01

    Data-driven approaches are widely applied for fault detection in industrial process. Recently, a new method for fault detection called principal component pursuit(PCP) is introduced. PCP is not only robust to outliers, but also can accomplish the objectives of model building, fault detection, fault isolation and process reconstruction simultaneously. PCP divides the data matrix into two parts: a fault-free low rank matrix and a sparse matrix with sensor noise and process fault. The statistics presented in this paper fully utilize the information in data matrix. Since the low rank matrix in PCP is similar to principal components matrix in PCA, a T2 statistic is proposed for fault detection in low rank matrix. And this statistic can illustrate that PCP is more sensitive to small variations in variables than PCA. In addition, in sparse matrix, a new monitored statistic performing the online fault detection with PCP-based method is introduced. This statistic uses the mean and the correlation coefficient of variables. Monte Carlo simulation and Tennessee Eastman (TE) benchmark process are provided to illustrate the effectiveness of monitored statistics.

  10. Runtime Speculative Software-Only Fault Tolerance

    DTIC Science & Technology

    2012-06-01

    5.6.2 Memory consumption . . . . . . . . . . . . . . . . . . . . . . . . 61 5.6.3 Power consumption...Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2.2 Physical Memory Usage . . . . . . . . . . . . . . . . . . . . . . . 69 6.2.3 Power ...overhead for RSFT with and without fault recovery. . . . 70 6.5 Physical memory overhead for RSFT with and without fault recovery. . . . 72 6.6 Power

  11. Architectural Characteristics and Distribution of Hydromechanical Properties within a Small Strike-Slip Fault Zone in a Carbonates Reservoir: Impact on fault stability, induced seismicity, and leakage during CO2 injection

    NASA Astrophysics Data System (ADS)

    Jeanne, P.; Cappa, F.; Guglielmi, Y.; Rinaldi, A. P.

    2014-12-01

    Within the LSBB National Underground Research Laboratory (France), we performed an in situ multidisciplinary and multi-scale analysis of a small fault zone intersecting a layered carbonates reservoir. The study area is located in a gallery at 250 m depth in the unsaturated and unaltered zone of the reservoir. In order to study the distribution of the fault zone properties, we took advantage of the gallery wall and of three vertical 20 m long boreholes located near the fault core, in the damage zone, and in the host rock. Geological, petrophysical (porosity observations and measurements), geotechnical (Q-value) and geophysical measurements (acoustic velocities, uniaxial compressive strength, electrical resistivity, borehole logging), and injection tests were conducted at various scales. We show that horizontal and vertical variations in hydromechanical properties within the damage zone are related to the initial petrophysical properties of the host rock. In the initial low-porosity and fractured layers, the deformations are accommodated by fractures and micro-cracks extending significantly from the fault core. In these layers, the Young modulus of the rock mass (Em) is low and the permeability of the rock mass (Km) is high. In the initial porous and low fractured layers, deformations are accommodated by micro-mechanical processes resulting in a decrease in micro-porosity near the fault core. There is a rapid attenuation of the damage zone. In these layers, Em is high and Km is low. The seismic signature of this kind of fault is complex and the seismic visibility low making them hard to detect. Finally, to assess fault zone stability in case of CO2 injection and the risk of CO2 leakage through the fault itself, we performed some geomechanical numerical simulations and some field hydromechanical tests. We show that the presence of hydromechanical heterogeneity favors the fluid accumulation but strengthen the fault zone and impede fluid migration upward along the fault.

  12. Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Dolan, James F.; McAuliffe, Lee J.; Rhodes, Edward J.; McGill, Sally F.; Zinke, Robert

    2016-07-01

    Pronounced variations in fault slip rate revealed by new measurements along the Garlock fault have basic implications for understanding how faults store and release strain energy in large earthquakes. Specifically, dating of a series of 26.0+3.5/-2.5 m fault offsets with a newly developed infrared-stimulated luminescence method shows that the fault was slipping at >14.0+2.2/-1.8 mm /yr, approximately twice as fast as the long-term average rate, during a previously documented cluster of four earthquakes 0.5-2.0 ka. This elevated late Holocene rate must be balanced by periods of slow or no slip such as that during the ca. 3300-yr-long seismic lull preceding the cluster. Moreover, whereas a comparison of paleoseismic data and stress modeling results suggests that individual Garlock earthquakes may be triggered by periods of rapid San Andreas fault slip or very large-slip events, the ;on-off; behavior of the Garlock suggests a longer-term mechanism that may involve changes in the rate of elastic strain accumulation on the fault over millennial time scales. This inference is consistent with most models of the geodetic velocity field, which yield slip-deficit rates that are much slower than the average latest Pleistocene-early Holocene (post-8-13 ka) Garlock slip rate of 6.5 ± 1.5 mm /yr. These observations indicate the occurrence of millennia-long strain ;super-cycles; on the Garlock fault that may be associated with temporal changes in elastic strain accumulation rate, which may in turn be controlled by variations in relative strength of the various faults in the Garlock-San Andreas-Eastern California Shear Zone fault system and/or changes in relative plate motion rates.

  13. Investigation of an Advanced Fault Tolerant Integrated Avionics System

    DTIC Science & Technology

    1986-03-01

    Fault Detection and Isolation 50 5.4.2 Cockpit Fault Monitoring and Reconfiguration 53 Logical...Management Design Considerations 5.2.2.1 Authority Hierarchy Redundancy management involves not only fault detection and isolation but action to deselect... Fault Detection and Isolation in the event of a fault in an active channel, three events must transpire: a) The fault must be detected, b) The

  14. Geophysical characterization of buried active faults: the Concud Fault (Iberian Chain, NE Spain)

    NASA Astrophysics Data System (ADS)

    Pueyo Anchuela, Óscar; Lafuente, Paloma; Arlegui, Luis; Liesa, Carlos L.; Simón, José L.

    2016-11-01

    The Concud Fault is a 14-km-long active fault that extends close to Teruel, a city with about 35,000 inhabitants in the Iberian Range (NE Spain). It shows evidence of recurrent activity during Late Pleistocene time, posing a significant seismic hazard in an area of moderate-to-low tectonic rates. A geophysical survey was carried out along the mapped trace of the southern branch of the Concud Fault to evaluate the geophysical signature from the fault and the location of paleoseismic trenches. The survey identified a lineation of inverse magnetic dipoles at residual and vertical magnetic gradient, a local increase in apparent conductivity, and interruptions of the underground sediment structure along GPR profiles. The origin of these anomalies is due to lateral contrast between both fault blocks and the geophysical signature of Quaternary materials located above and directly south of the fault. The spatial distribution of anomalies was successfully used to locate suitable trench sites and to map non-exposed segments of the fault. The geophysical anomalies are related to the sedimentological characteristics and permeability differences of the deposits and to deformation related to fault activity. The results illustrate the usefulness of geophysics to detect and map non-exposed faults in areas of moderate-to-low tectonic activity where faults are often covered by recent pediments that obscure geological evidence of the most recent earthquakes. The results also highlight the importance of applying multiple geophysical techniques in defining the location of buried faults.

  15. Fault structure, frictional properties and mixed-mode fault slip behavior

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Niemeijer, André; Viti, Cecilia; Smith, Steven A. F.; Marone, Chris

    2011-11-01

    Recent high-resolution GPS and seismological data reveal that tectonic faults exhibit complex, multi-mode slip behavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. The physical processes responsible for this range of behavior and the mechanisms that dictate fault slip rate or rupture propagation velocity are poorly understood. One avenue for improving knowledge of these mechanisms involves coupling direct observations of ancient faults exhumed at the Earth's surface with laboratory experiments on the frictional properties of the fault rocks. Here, we show that fault zone structure has an important influence on mixed-mode fault slip behavior. Our field studies depict a complex fault zone structure where foliated horizons surround meter- to decameter-sized lenses of competent material. The foliated rocks are composed of weak mineral phases, possess low frictional strength, and exhibit inherently stable, velocity-strengthening frictional behavior. In contrast, the competent lenses are made of strong minerals, possess high frictional strength, and exhibit potentially unstable, velocity-weakening frictional behavior. Tectonic loading of this heterogeneous fault zone may initially result in fault creep along the weak and frictionally stable foliated horizons. With continued deformation, fault creep will concentrate stress within and around the strong and potentially unstable competent lenses, which may lead to earthquake nucleation. Our studies provide field and mechanical constraints for complex, mixed-mode fault slip behavior ranging from repeating earthquakes to transient slip, episodic slow-slip and creep events.

  16. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  17. Modeling fault among motorcyclists involved in crashes.

    PubMed

    Haque, Md Mazharul; Chin, Hoong Chor; Huang, Helai

    2009-03-01

    Singapore crash statistics from 2001 to 2006 show that the motorcyclist fatality and injury rates per registered vehicle are higher than those of other motor vehicles by 13 and 7 times, respectively. The crash involvement rate of motorcyclists as victims of other road users is also about 43%. The objective of this study is to identify the factors that contribute to the fault of motorcyclists involved in crashes. This is done by using the binary logit model to differentiate between at-fault and not-at-fault cases and the analysis is further categorized by the location of the crashes, i.e., at intersections, on expressways and at non-intersections. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Time trend effect shows that not-at-fault crash involvement of motorcyclists has increased with time. The likelihood of night time crashes has also increased for not-at-fault crashes at intersections and expressways. The presence of surveillance cameras is effective in reducing not-at-fault crashes at intersections. Wet-road surfaces increase at-fault crash involvement at non-intersections. At intersections, not-at-fault crash involvement is more likely on single-lane roads or on median lane of multi-lane roads, while on expressways at-fault crash involvement is more likely on the median lane. Roads with higher speed limit have higher at-fault crash involvement and this is also true on expressways. Motorcycles with pillion passengers or with higher engine capacity have higher likelihood of being at-fault in crashes on expressways. Motorcyclists are more likely to be at-fault in collisions involving pedestrians and this effect is higher at night. In multi-vehicle crashes, motorcyclists are more likely to be victims than at-fault. Young and older riders are more likely to be at-fault in crashes than middle-aged group of riders. The findings of this study will help

  18. Active faulting in the Walker Lane

    NASA Astrophysics Data System (ADS)

    Wesnousky, Steven G.

    2005-06-01

    Deformation across the San Andreas and Walker Lane fault systems accounts for most relative Pacific-North American transform plate motion. The Walker Lane is composed of discontinuous sets of right-slip faults that are located to the east and strike approximately parallel to the San Andreas fault system. Mapping of active faults in the central Walker Lane shows that right-lateral shear is locally accommodated by rotation of crustal blocks bounded by steep-dipping east striking left-slip faults. The left slip and clockwise rotation of crustal blocks bounded by the east striking faults has produced major basins in the area, including Rattlesnake and Garfield flats; Teels, Columbus and Rhodes salt marshes; and Queen Valley. The Benton Springs and Petrified Springs faults are the major northwest striking structures currently accommodating transform motion in the central Walker Lane. Right-lateral offsets of late Pleistocene surfaces along the two faults point to slip rates of at least 1 mm/yr. The northern limit of northwest trending strike-slip faults in the central Walker Lane is abrupt and reflects transfer of strike-slip to dip-slip deformation in the western Basin and Range and transformation of right slip into rotation of crustal blocks to the north. The transfer of strike slip in the central Walker Lane to dip slip in the western Basin and Range correlates to a northward broadening of the modern strain field suggested by geodesy and appears to be a long-lived feature of the deformation field. The complexity of faulting and apparent rotation of crustal blocks within the Walker Lane is consistent with the concept of a partially detached and elastic-brittle crust that is being transported on a continuously deforming layer below. The regional pattern of faulting within the Walker Lane is more complex than observed along the San Andreas fault system to the west. The difference is attributed to the relatively less cumulative slip that has occurred across the Walker

  19. Shear heating by translational brittle reverse faulting along a single, sharp and straight fault plane

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2017-02-01

    Shear heating by reverse faulting on a sharp straight fault plane is modelled. Increase in temperature ( T i ) of faulted hangingwall and footwall blocks by frictional/shear heating for planar rough reverse faults is proportional to the coefficient of friction ( μ), density and thickness of the hangingwall block ( ρ). T i increases as movement progresses with time. Thermal conductivity ( K i ) and thermal diffusivity (ki^' }) of faulted blocks govern T i but they do not bear simple relation. T i is significant only near the fault plane. If the lithology is dry and faulting brings adjacent hangingwall and footwall blocks of the same lithology in contact, those blocks undergo the same rate of increase in shear heating per unit area per unit time.

  20. Tuning of fault tolerant control design parameters.

    PubMed

    DeLima, Pedro G; Yen, Gary G

    2008-01-01

    This paper presents two major contributions in the field of fault tolerant control. First, it gathers points of concern typical to most fault tolerant control applications and translates the chosen performance metrics into a set of six practical design specifications. Second, it proposes initialization and tuning procedures through which a particular fault tolerant control architecture not only can be set to comply with the required specifications, but also can be tuned online to compensate for a total of twelve properties, such as the noise rejection levels for fault detection and diagnosis signals. The proposed design is realized over a powerful architecture that combines the flexibility of adaptive critic designs with the long term memory and learning capabilities of a supervisor. This paper presents a practical design procedure to facilitate the applications of a fundamentally sound fault tolerant control architecture in real-world problems.

  1. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Koga, Dennis (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  2. Maneuver Classification for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.

    2003-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data provide a reasonable match to known examples of proper operation. In the domain of fault detection in aircraft, identifying all possible faulty and proper operating modes is clearly impossible. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. To develop such a system, we use flight data collected under a controlled test environment, subject to many sources of variability. We explain where our classifier fits into the envisioned fault detection system as well as experiments showing the promise of this classification subsystem.

  3. Classification of Aircraft Maneuvers for Fault Detection

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Irem Y.; Tumer, Kagan; Huff, Edward M.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated fault detection is an increasingly important problem in aircraft maintenance and operation. Standard methods of fault detection assume the availability of either data produced during all possible faulty operation modes or a clearly-defined means to determine whether the data is a reasonable match to known examples of proper operation. In our domain of fault detection in aircraft, the first assumption is unreasonable and the second is difficult to determine. We envision a system for online fault detection in aircraft, one part of which is a classifier that predicts the maneuver being performed by the aircraft as a function of vibration data and other available data. We explain where this subsystem fits into our envisioned fault detection system as well its experiments showing the promise of this classification subsystem.

  4. Fault analysis of multichannel spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  5. Holocene fault scarps in the Western Alps

    NASA Astrophysics Data System (ADS)

    Hippolyte, J. C.

    2003-04-01

    In the Tarentaise Valley, Goguel (1969) had described recent fault scarps. The present work shows that they are normal faults indicating a SE-directed trend of extension in agreement with recent microseismicity data (Sue et al., 1999). It is proposed that they reflect the Quaternary normal reactivation of the "Front du Houiller" thrust fault. In the Belledonne external crystalline massif, Bordet (1970) had observed from helicopter three main fault scarps that he interpreted as active SE-dipping reverse faults. Partly owing to the difficulties of access this area was not visited until now. Field observations reveal that these faults dip in fact 61-68° to the NW, and are normal faults. The faults scarps are 1 to 13 meters high. These faults, together with at least 10 newly discovered conjugate SE-dipping normal fault scarps of 0.5 to 18 meters high, form an about 2 km wide fault zone along the "Synclinal Median" (S.M.) fault. They attest for the activity of this 70 km-long NNE-striking main fault running in the middle of the Belledonne Massif. Its activity is confirmed by major faceted spurs at the La Perche, the La Perrière and the Claran passes, and by ruptures cutting moraines. Other fault scarps are discovered in the whole Belledonne massif showing in particular that the Font-de-France fault, a 60 km-long SE-dipping fault, is also active. All the observed active faults are normal. Their offsets of mountains slopes, of screes and of rock glacier morphologies demonstrate their activity during the Holocene. They indicate a present SE-directed extension in agreement with recent GPS data (Calais et al., 2002). This mapping shows that the present extensional deformation of the Alps is not limited to the west by the "Frontal Pennine thrust" (Sue et al., 1999) but affects also the external Alps. Taking into account focal plane mechanisms, extension affects at least 70 % of the Western Alps. Some scarps have been sampled for Beryllium cosmogenic dating. However

  6. Self-triggering superconducting fault current limiter

    DOEpatents

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  7. Quantifying fault recovery in multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Malek, Miroslaw; Harary, Frank

    1990-01-01

    Various aspects of reliable computing are formalized and quantified with emphasis on efficient fault recovery. The mathematical model which proves to be most appropriate is provided by the theory of graphs. New measures for fault recovery are developed and the value of elements of the fault recovery vector are observed to depend not only on the computation graph H and the architecture graph G, but also on the specific location of a fault. In the examples, a hypercube is chosen as a representative of parallel computer architecture, and a pipeline as a typical configuration for program execution. Dependability qualities of such a system is defined with or without a fault. These qualities are determined by the resiliency triple defined by three parameters: multiplicity, robustness, and configurability. Parameters for measuring the recovery effectiveness are also introduced in terms of distance, time, and the number of new, used, and moved nodes and edges.

  8. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  9. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  10. Rapid ductile afterslip from coseismic heating

    NASA Astrophysics Data System (ADS)

    Platt, J. D.; Meade, B. J.; Savage, H. M.; Rowe, C. D.

    2015-12-01

    Earthquakes are typically followed by months of afterslip, the total of which is generally an order of magnitude smaller than the seismic slip. The classic model for afterslip envisions seismic slip transferring stress to adjacent regions, driving accelerated stable sliding that expands the rupture area. However, a small proportion of earthquakes exhibit unusually large and rapid afterslip in the hours immediately following rupture. Here we present a new model that bridges the transition from seismic to postseismic deformation and may explain these observations of rapid afterslip. Seismic slip produces a significant temperature rise that slowly diffuses into the surrounding material following the cessation of seismic slip. Any process with strong temperature dependence is more sensitive to this heat transient than to the ambient temperatures present during the interseismic period. Coupling the temperature evolution of a fault to a ductile flow law we model postseismic deformation during the heat transient. Our idea of coseismic heating enhancing ductile flow is supported by field observations of micro-shear zones adjacent to psuedotachylyte veins. Enhanced ductility is largely confined to the zone that deformed seismically, making our model equivalent to rapid afterslip. Combining analytic and numerical methods we solve for the total afterslip in terms of the slip rate and fault strength during seismic slip and the ductile flow parameters. Our results are sensitive to the assumed rheology and deforming zone thickness, and while total afterslip is generally small some plausible parameter ranges predict afterslip comparable to or greater than the seismic slip developing over timescales shorter than an hour. We demonstrate that rapid afterslip can drive significant frictional heating, leading to a thermal runaway instability that produces a near total postseismic stress drop. To conclude we investigate the tsunami magnitude that rapid afterslip could produce.

  11. Methodology for Designing Fault-Protection Software

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin

    2006-01-01

    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.

  12. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    NASA Astrophysics Data System (ADS)

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant

  13. Knowledge acquisition and rapid protyping of an expert system: Dealing with real world problems

    NASA Technical Reports Server (NTRS)

    Bailey, Patrick A.; Doehr, Brett B.

    1988-01-01

    The knowledge engineering and rapid prototyping phases of an expert system that does fault handling for a Solid Amine, Water Desorbed CO2 removal assembly for the Environmental Control and Life Support System for space based platforms are addressed. The knowledge acquisition phase for this project was interesting because it could not follow the textbook examples. As a result of this, a variety of methods were used during the knowledge acquisition task. The use of rapid prototyping and the need for a flexible prototype suggested certain types of knowledge representation. By combining various techniques, a representative subset of faults and a method for handling those faults was achieved. The experiences should prove useful for developing future fault handling expert systems under similar constraints.

  14. An observer based approach for achieving fault diagnosis and fault tolerant control of systems modeled as hybrid Petri nets.

    PubMed

    Renganathan, K; Bhaskar, VidhyaCharan

    2011-07-01

    In this paper, we propose an approach for achieving detection and identification of faults, and provide fault tolerant control for systems that are modeled using timed hybrid Petri nets. For this purpose, an observer based technique is adopted which is useful in detection of faults, such as sensor faults, actuator faults, signal conditioning faults, etc. The concepts of estimation, reachability and diagnosability have been considered for analyzing faulty behaviors, and based on the detected faults, different schemes are proposed for achieving fault tolerant control using optimization techniques. These concepts are applied to a typical three tank system and numerical results are obtained.

  15. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  16. Robot Position Sensor Fault Tolerance

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.

    1997-01-01

    Robot systems in critical applications, such as those in space and nuclear environments, must be able to operate during component failure to complete important tasks. One failure mode that has received little attention is the failure of joint position sensors. Current fault tolerant designs require the addition of directly redundant position sensors which can affect joint design. A new method is proposed that utilizes analytical redundancy to allow for continued operation during joint position sensor failure. Joint torque sensors are used with a virtual passive torque controller to make the robot joint stable without position feedback and improve position tracking performance in the presence of unknown link dynamics and end-effector loading. Two Cartesian accelerometer based methods are proposed to determine the position of the joint. The joint specific position determination method utilizes two triaxial accelerometers attached to the link driven by the joint with the failed position sensor. The joint specific method is not computationally complex and the position error is bounded. The system wide position determination method utilizes accelerometers distributed on different robot links and the end-effector to determine the position of sets of multiple joints. The system wide method requires fewer accelerometers than the joint specific method to make all joint position sensors fault tolerant but is more computationally complex and has lower convergence properties. Experiments were conducted on a laboratory manipulator. Both position determination methods were shown to track the actual position satisfactorily. A controller using the position determination methods and the virtual passive torque controller was able to servo the joints to a desired position during position sensor failure.

  17. Preliminary Stress Calculations and 3-Dimensional Mohr Circle Diagrams for a Proposed Borehole to be Drilled into the Tohoku Fault Zone, Japan

    NASA Astrophysics Data System (ADS)

    Nale, S.; Brodsky, E. E.

    2011-12-01

    Rapid response drilling of recently ruptured faults can provide important information about faulting and rupture processes of large earthquakes that cannot be directly obtained by other means. Quickly following a large seismic event, drilling operations can acquire measurements of temperature, stress and geologic data to study the fault friction, strength and healing, stress changes, and physical and chemical properties of a fault. The great Tohoku-Oki earthquake (Mw 9.0) of March 11, 2011 is unique in both its large magnitude and that the fault ruptured updip to the surface of the trench. Seismic reflection surveys from before and after the event show that at 7 kilometers ocean depth, the fault would be intersected by a drill hole at approximately 900 meters below the sea floor. There is great potential for a large amount of information to be learned of faulting and earthquake mechanisms in subduction zone thrust faults from rapid response drilling into the Tohoku fault. As of yet, no drilling has been done for any purposes at the ocean depth of the Tohoku fault zone. To determine the feasibility of a borehole to be drilled into the Tohoku fault for research purposes, calculations must be completed to model the stresses acting on the wellbore in the pressure conditions at the drilling depth, up to 7.9 kilometers below sea level. Mohr diagrams demonstrate under what conditions the borehole will collapse in on itself. Effective stresses (σ1, σ2 and σ3) acting on the fault were calculated, from which the stresses acting on the wellbore walls (σθθ, σrr and σzz) were obtained. Calculations for the hoop (circumferential) stress, σθθ, radial stress, σrr, and stress acting parallel to the wellbore axis, σzz, were made based on assumed values for the Tohoku fault zone (i.e. coefficient of friction, cohesion, pore pressure, fault dip, rock density, and depth). For these experiments, two end members were considered involving (1) an optimally dipping reverse

  18. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    NASA Astrophysics Data System (ADS)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  19. Application of damping mechanism model and stacking fault probability in Fe-Mn alloy

    SciTech Connect

    Huang, S.K.; Wen, Y.H.; Li, N. Teng, J.; Ding, S.; Xu, Y.G.

    2008-06-15

    In this paper, the damping mechanism model of Fe-Mn alloy was analyzed using dislocation theory. Moreover, as an important parameter in Fe-Mn based alloy, the effect of stacking fault probability on the damping capacity of Fe-19.35Mn alloy after deep-cooling or tensile deformation was also studied. The damping capacity was measured using reversal torsion pendulum. The stacking fault probability of {gamma}-austenite and {epsilon}-martensite was determined by means of X-ray diffraction (XRD) profile analysis. The microstructure was observed using scanning electronic microscope (SEM). The results indicated that with the strain amplitude increasing above a critical value, the damping capacity of Fe-19.35Mn alloy increased rapidly which could be explained using the breakaway model of Shockley partial dislocations. Deep-cooling and suitable tensile deformation could improve the damping capacity owning to the increasing of stacking fault probability of Fe-19.35Mn alloy.

  20. The End Of Chi-Shan Fault:Tectonic of Transtensional Fault

    NASA Astrophysics Data System (ADS)

    Chou, H.; Song, G.

    2011-12-01

    Chishan fault is an active strike-slip fault that located at the Southwestern Taiwan and extend to the offshore area of SouShan in Kaohsiung. The strike and dip of the fault is N80E,50N. It's believed that the Wushan Formation of Chishan fault, which is composed of sandstone, thrusts upon the Northwestern Kutingkeng Formation, which is composed of mudstone. Chishan fault is acting as a reversal fault with sinistral motion. (Tsan and Keng,1968; Hsieh, 1970; Wen-Pu Geng, 1981). This left-lateral strike-slip fault extend to shelf break and stop, with a transtensional basin at the termination. The transtensional basin has stopped extending to open sea, whereas it is spreading toward the inshore area. Therefore, we can know that a young extensional activity is developing at the offshore seabed of Tsoying Naval Port and the activity is relative to the transtension of left-lateral fault. ( Gwo-Shyh Song, 2010). Tectonic of transtensional basin deformed in strike-slip settings overland have been described by many authors, but the field outcrop could be distoryed by Weathering and made the tectonic features incomplete. Hence, this research use multibeam bathymetry and 3.5-kHz sub-bottom profiler data data collected from the offshore extended part of Chishan fault in Kaohsiung to define the transtensional characteristics of Chishan fault. At first, we use the multibeam bathymetry data to make a Geomorphological map of our research area and we can see a triangulate depressed area near shelf break. Then, we use Fledermaus to print 3D diagram for understanding the distribution of the major normal faults(fig.1). Furthermore, we find that there are amount of listric normal fault and the area between the listric faults is curving. After that, we use the 3.5-kHz sub-bottom profiler data to understand the subsurface structure of the normal faults and the curved area between the listric normal fault, which seems to be En e'chelon folds. As the amount of displacement on the wrench

  1. High Resolution Seismic Imaging of Fault Zones: Methods and Examples From The San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Prentice, C. S.; Sickler, R. R.; Criley, C.

    2011-12-01

    Seismic imaging of fault zones at shallow depths is challenging. Conventional seismic reflection methods do not work well in fault zones that consist of non-planar strata or that have large variations in velocity structure, two properties that occur in most fault zones. Understanding the structure and geometry of fault zones is important to elucidate the earthquake hazard associated with fault zones and the barrier effect that faults impose on subsurface fluid flow. In collaboration with the San Francisco Public Utilities Commission (SFPUC) at San Andreas Lake on the San Francisco peninsula, we acquired combined seismic P-wave and S-wave reflection, refraction, and guided-wave data to image the principal strand of the San Andreas Fault (SAF) that ruptured the surface during the 1906 San Francisco earthquake and additional fault strands east of the rupture. The locations and geometries of these fault strands are important because the SFPUC is seismically retrofitting the Hetch Hetchy water delivery system, which provides much of the water for the San Francisco Bay area, and the delivery system is close to the SAF at San Andreas Lake. Seismic reflection images did not image the SAF zone well due to the brecciated bedrock, a lack of layered stratigraphy, and widely varying velocities. Tomographic P-wave velocity images clearly delineate the fault zone as a low-velocity zone at about 10 m depth in more competent rock, but due to soil saturation above the rock, the P-waves do not clearly image the fault strands at shallower depths. S-wave velocity images, however, clearly show a diagnostic low-velocity zone at the mapped 1906 surface break. To image the fault zone at greater depths, we utilized guided waves, which exhibit high amplitude seismic energy within fault zones. The guided waves appear to image the fault zone at varying depths depending on the frequency of the seismic waves. At higher frequencies (~30 to 40 Hz), the guided waves show strong amplification at the

  2. The role of antecedent drainage networks and isolated normal fault propagation on basin stratigraphy

    NASA Astrophysics Data System (ADS)

    Finch, E.; Brocklehurst, S. H.; Gawthorpe, R.

    2010-12-01

    The stratigraphy of an extensional basin reflects a history of fault activity, erosion, drainage network evolution, and sediment transport and deposition. Here a three-dimensional numerical model of erosion and clastic sedimentation is applied to investigate the effect of displacement on a normal fault to the distribution of deposition in an extensional basin. Material is eroded from the hinterland through a stream-power incision law and deposited in the basin using a modified diffusion algorithm. Experiments are implemented for 3Ma, in which the initial 1Ma are used to permit a drainage network to evolve to a topographic steady state. This system is then perturbed by the introduction of a propagating isolated normal fault at varying displacement rates (1.0m/kyr - 2.0m/kyr) to demonstrate the influence of fault propagation on drainage capture, network re-organisation, sediment routing and deposition. Faster displacement rates and smaller antecedent drainage networks cause footwall-derived deltas to be cut-off more rapidly from the hinterland source area. Drainage networks are re-organised such that sediment is then transported around the fault tips into axially sourced deltas. Sediments may continue to be deposited in the hanging wall at the fault centre, but this material has not been sourced directly from the adjacent footwall, even though the stratigraphic architecture might suggest that this is the case. Drainage networks are modified by drainage reversals in the antecedent channels, and the development of areas of abandoned/trapped drainage. These changes in sediment supply due to network re-organisation are also reflected in the basin stratigraphy, with rapid back-stepping of deltas when the source is removed in the adjacent footwall. Later incision and headward erosion of the footwall channels may cause re-capture of earlier channels, while network re-organisation may also cause depositional in-filling of earlier channels. The drainage divide shifts

  3. Pattern Recognition Application of Support Vector Machine for Fault Classification of Thyristor Controlled Series Compensated Transmission Lines

    NASA Astrophysics Data System (ADS)

    Yashvantrai Vyas, Bhargav; Maheshwari, Rudra Prakash; Das, Biswarup

    2016-06-01

    Application of series compensation in extra high voltage (EHV) transmission line makes the protection job difficult for engineers, due to alteration in system parameters and measurements. The problem amplifies with inclusion of electronically controlled compensation like thyristor controlled series compensation (TCSC) as it produce harmonics and rapid change in system parameters during fault associated with TCSC control. This paper presents a pattern recognition based fault type identification approach with support vector machine. The scheme uses only half cycle post fault data of three phase currents to accomplish the task. The change in current signal features during fault has been considered as discriminatory measure. The developed scheme in this paper is tested over a large set of fault data with variation in system and fault parameters. These fault cases have been generated with PSCAD/EMTDC on a 400 kV, 300 km transmission line model. The developed algorithm has proved better for implementation on TCSC compensated line with its improved accuracy and speed.

  4. Episodic activity of a dormant fault in tectonically stable Europe: The Rauw fault (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Verbeeck, Koen; Wouters, Laurent; Vanneste, Kris; Camelbeeck, Thierry; Vandenberghe, Dimitri; Beerten, Koen; Rogiers, Bart; Schiltz, Marco; Burow, Christoph; Mees, Florias; De Grave, Johan; Vandenberghe, Noël

    2017-03-01

    Our knowledge about large earthquakes in stable continental regions comes from studies of faults that generated historical surface rupturing earthquakes or were identified by their recent imprint in the morphology. Here, we evaluate the co-seismic character and movement history of the Rauw fault in Belgium, which lacks geomorphological expression and historical/present seismicity. This 55-km-long normal fault, with known Neogene and possibly Early Pleistocene activity, is the largest offset fault west of the active Roer Valley Graben. Its trace was identified in the shallow subsurface based on high resolution geophysics. All the layers within the Late Pliocene Mol Formation (3.6 to 2.59 Ma) are displaced 7 m vertically, without growth faulting, but deeper deposits show increasing offset. A paleoseismic trench study revealed cryoturbated, but unfaulted, late glacial coversands overlying faulted layers of Mol Formation. In-between those deposits, the fault tip was eroded, along with evidence for individual displacement events. Fragmented clay gouge observed in a micromorphology sample of the main fault evidences co-seismic faulting, as opposed to fault creep. Based on optical and electron spin resonance dating and trench stratigraphy, the 7 m combined displacement is bracketed to have occurred between 2.59 Ma and 45 ka. The regional presence of the Sterksel Formation alluvial terrace deposits, limited to the hanging wall of the Rauw fault, indicates a deflection of the Meuse/Rhine confluence (1.0 to 0.5 Ma) by the fault's activity, suggesting that most of the offset occurred prior to/at this time interval. In the trench, Sterksel Formation is eroded but reworked gravel testifies for its former presence. Hence, the Rauw fault appears as typical of plate interior context, with an episodic seismic activity concentrated between 1.0 and 0.5 Ma or at least between 2.59 Ma to 45 ka, possibly related to activity variations in the adjacent, continuously active Roer Valley

  5. Dissecting Oceanic Detachment Faults: Fault Zone Geometry, Deformation Mechanisms, and Nature of Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Bonnemains, D.; Escartin, J.; Verlaguet, A.; Andreani, M.; Mevel, C.

    2015-12-01

    To understand the extreme strain localization at long-lived oceanic detachment faults rooting deeply below the axis, we present results of geological investigations at the 13°19'N detachment along the Mid-Atlantic Ridge, conducted during the ODEMAR cruise (Nov-Dec13, NO Pourquoi Pas?) with ROV Victor6000 (IFREMER). During this cruise we investigated and sampled the corrugated fault to understand its geometry, nature of deformation, and links to fluid flow. We identified and explored 7 fault outcrops on the flanks of microbathymetric striations subparallel to extension. These outcrops expose extensive fault planes, with the most prominent ones extending 40-90m laterally, and up to 10 m vertically. These fault surfaces systematically show subhorizontal striations subparallel to extension, and define slabs of fault-rock that are flat and also striated at sample scale. Visual observations show a complex detachment fault zone, with anastomosing fault planes at outcrop scale (1-10 m), with a highly heterogeneous distribution of deformation. We observe heterogeneity in fault-rock nature at outcrop scale. In situ samples from striated faults are primarily basalt breccias with prior green-schist facies alteration, and a few ultramafic fault-rocks that show a complex deformation history, with early schistose textures, brittlely reworked as clasts within the fault. The basalt breccias show variable silicification and associated sulfides, recording important fluid-rock interactions during exhumation. To understand the link between fluid and deformation during exhumation, we will present microstructural observation of deformation textures, composition, and distribution and origin of quartz and sulfides, as well as constraints on the temperature of silicifying fluids from fluid inclusions in quartz. These results allow us to characterize in detail the detachment fault zone geometry, and investigate the timing of silicification relative to deformation.

  6. Poro-Elasto-Plastic Off-Fault Response and Dynamics of Earthquake Faulting

    NASA Astrophysics Data System (ADS)

    Hirakawa, Evan Tyler

    Previous models of earthquake rupture dynamics have neglected interesting deformational properties of fault zone materials. While most current studies involving off-fault inelastic deformation employ simple brittle failure yield criteria such as the Drucker-Prager yield criterion, the material surrounding the fault plane itself, known as fault gouge, has the tendency to deform in a ductile manner accompanied by compaction. We incorporate this behavior into a new constitutive model of undrained fault gouge in a dynamic rupture model. Dynamic compaction of undrained fault gouge occurs ahead of the rupture front. This corresponds to an increase in pore pressure which preweakens the fault, reducing the static friction. Subsequent dilatancy and softening of the gouge causes a reduction in pore pressure, resulting in fault restrengthening and brief slip pulses. This leads to localization of inelastic failure to a narrow shear zone. We extend the undrained gouge model to a study of self-similar rough faults. Extreme compaction and dilatancy occur at restraining and releasing bends, respectively. The consequent elevated pore pressure at restraining bends weakens the fault and allows the rupture to easily pass, while the decrease in pore pressure at releasing bends dynamically strengthens the fault and slows rupture. In comparison to other recent models, we show that the effects of fault roughness on propagation distance, slip distribution, and rupture velocity are diminished or reversed. Next, we represent large subduction zone megathrust earthquakes with a dynamic rupture model of a shallow dipping fault underlying an accretionary wedge. In previous models by our group [Ma, 2012; Ma and Hirakawa, 2013], inelastic deformation of wedge material was shown to enhance vertical uplift and potential tsunamigenesis. Here, we include a shallow region of velocity strengthening friction with a rate-and-state framework. We find that coseismic increase of the basal friction drives

  7. Experimental study on propagation of fault slip along a simulated rock fault

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.

    2015-12-01

    Around pre-existing geological faults in the crust, we have often observed off-fault damage zone where there are many fractures with various scales, from ~ mm to ~ m and their density typically increases with proximity to the fault. One of the fracture formation processes is considered to be dynamic shear rupture propagation on the faults, which leads to the occurrence of earthquakes. Here, I have conducted experiments on propagation of fault slip along a pre-cut rock surface to investigate the damaging behavior of rocks with slip propagation. For the experiments, I used a pair of metagabbro blocks from Tamil Nadu, India, of which the contacting surface simulates a fault of 35 cm in length and 1cm width. The experiments were done with the similar uniaxial loading configuration to Rosakis et al. (2007). Axial load σ is applied to the fault plane with an angle 60° to the loading direction. When σ is 5kN, normal and shear stresses on the fault are 1.25MPa and 0.72MPa, respectively. Timing and direction of slip propagation on the fault during the experiments were monitored with several strain gauges arrayed at an interval along the fault. The gauge data were digitally recorded with a 1MHz sampling rate and 16bit resolution. When σ is 4.8kN is applied, we observed some fault slip events where a slip nucleates spontaneously in a subsection of the fault and propagates to the whole fault. However, the propagation speed is about 1.2km/s, much lower than the S-wave velocity of the rock. This indicates that the slip events were not earthquake-like dynamic rupture ones. More efforts are needed to reproduce earthquake-like slip events in the experiments. This work is supported by the JSPS KAKENHI (26870912).

  8. Characterization of slow slip rate faults in humid areas: Cimandiri fault zone, Indonesia

    NASA Astrophysics Data System (ADS)

    Marliyani, G. I.; Arrowsmith, J. R.; Whipple, K. X.

    2016-12-01

    In areas where regional tectonic strain is accommodated by broad zones of short and low slip rate faults, geomorphic and paleoseismic characterization of faults is difficult because of poor surface expression and long earthquake recurrence intervals. In humid areas, faults can be buried by thick sediments or soils; their geomorphic expression subdued and sometimes undetectable until the next earthquake. In Java, active faults are diffused, and their characterization is challenging. Among them is the ENE striking Cimandiri fault zone. Cumulative displacement produces prominent ENE oriented ranges with the southeast side moving relatively upward and to the northeast. The fault zone is expressed in the bedrock by numerous NE, west, and NW trending thrust- and strike-slip faults and folds. However, it is unclear which of these structures are active. We performed a morphometric analysis of the fault zone using 30 m resolution Shuttle Radar Topography Mission digital elevation model. We constructed longitudinal profiles of 601 bedrock rivers along the upthrown ranges along the fault zone, calculated the normalized channel steepness index, identified knickpoints and use their distribution to infer relative magnitudes of rock uplift and locate boundaries that may indicate active fault traces. We compare the rock uplift distribution to surface displacement predicted by elastic dislocation model to determine the plausible fault kinematics. The active Cimandiri fault zone consists of six segments with predominant sense of reverse motion. Our analysis reveals considerable geometric complexity, strongly suggesting segmentation of the fault, and thus smaller maximum earthquakes, consistent with the limited historical record of upper plate earthquakes in Java.

  9. Data fault detection in medical sensor networks.

    PubMed

    Yang, Yang; Liu, Qian; Gao, Zhipeng; Qiu, Xuesong; Meng, Luoming

    2015-03-12

    Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians' diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren't changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M). Its mechanism includes: (1) use of a dynamic-local outlier factor (D-LOF) algorithm to identify outlying sensed data vectors; (2) use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3) the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M.

  10. Formal Validation of Fault Management Design Solutions

    NASA Technical Reports Server (NTRS)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  11. On-line diagnosis of unrestricted faults

    NASA Technical Reports Server (NTRS)

    Meyer, J. F.; Sundstrom, R. J.

    1974-01-01

    A formal model for the study of on-line diagnosis is introduced and used to investigate the diagnosis of unrestricted faults. A fault of a system S is considered to be a transformation of S into another system S' at some time tau. The resulting faulty system is taken to be the system which looks like S up to time tau, and like S' thereafter. Notions of fault tolerance error are defined in terms of the resulting system being able to mimic some desired behavior as specified by a system similar to S. A notion of on-line diagnosis is formulated which involves an external detector and a maximum time delay within which every error caused by a fault in a prescribed set must be detected. It is shown that if a system is on-line diagnosable for the unrestricted set of faults then the detector is at least as complex, in terms of state set size, as the specification. The use of inverse systems for the diagnosis of unrestricted faults is considered. A partial characterization of those inverses which can be used for unrestricted fault diagnosis is obtained.

  12. Extension and contraction of faulted marker planes

    NASA Astrophysics Data System (ADS)

    Jackson, Marie D.; Delaney, Paul T.

    1985-08-01

    We present graphical and analytical methods to determine the extensional or contractional separation of a faulted planar marker using commonly measured field data: fault attitude, slip direction, and bedding or other marker-plane attitude. This determination is easily accomplished for horizontal markers. Faults with normal components of slip extend the markers and indicate extensional tectonics; those with reverse components are contractional. Although the methods quantify this simple relation for horizontal markers, they are most useful in rocks with planar fabrics of steep dip where marker separation cannot be uniquely determined from map or outcrop patterns alone and where faults with normal components of dip slip can contract markers and those with reverse components can extend them. The methods rely on two parameters: (1) the angle between normals to the marker and fault planes and (2) the angle between the slip direction and intersection of the marker and fault. This second parameter measures the obliquity of slip relative to the directions of maximum extensional or contractional separation of the marker, and for a horizontal marker, it is equivalent to the rake of the slip direction. The graphical method requires stereographic projections routinely used for faulting data; the analytical method is programmable on a calculator. *Present address: Department of Applied Earth Sciences, Stanford University, Stanford, California 94035

  13. First LiDAR images of the Alpine Fault, central South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Langridge, R. M.; Toy, V. G.; Barth, N.; de Pascale, G. P.; Sutherland, R.; Farrier, T.

    2010-12-01

    In central South Island, New Zealand, the dextral-reverse Alpine fault forms the principal component of the Australia-Pacific plate boundary. The fault typically accommodates slip rates of the order of ~27-29 mm/yr (dextral) and up to 6-11 mm/yr (reverse), mostly uplifting Pacific plate rocks that form the Southern Alps. However, the associated high relief, rapid uplift and erosion and high rainfall and accompanying dense temperate rainforest along the western side of the island has typically hampered geological efforts to better understand the neotectonics of the Alpine fault. LiDAR data have been acquired over a 34 km stretch of the fault between Whataroa in the northeast and Franz Josef in the southwest to test the viability of this technique under dense vegetation and in steep, dissected terrain. LiDAR has been collected from a fixed wing base (1300m above ground level) at a frequency of 70k Hz, with 33.5 Hz scan frequency and a 39° field of view. We employed a strategy of flying a dense pattern of 6 flight lines across a swath width of 1.3 km. This creates areas of both single and double overlap coverage that have allowed for accurate landscape models to be created. Results show that this strategy has provided an optimum level of forest penetration and ground returns. Initial results show remarkable level of detail in DEM’s of the landscape along the Alpine fault. Examples of results presented here include: Franz Josef, where the fault traverses the township; and Gaunt Creek, where a Deep Fault Drilling Project will be sited in early 2011.

  14. Transition Zone of the Cascadia Subduction Fault: Insights from Seismic Imaging of Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    2012-12-01

    Transition zone lies between the updip locked and downdip freely slipping zone, and presumably marks the downdip extent of rupture during large megathrust earthquakes. Tectonic behavior of the transition zone and its possible implications on the occurrence of destructive megathurst earthquakes, however, remain poorly understood mainly due to lack of seismic events in this zone. Slow earthquakes, marked by seismically observed tremor and geodetically observed slow slip, occur in the transition zone offering a unique window to this zone, and allow us to study the dynamics of this enigmatic part of the fault. I developed a novel multi beam-backprojection (MBBP) algorithm to image slow earthquakes with high resolution using small-aperture seismic arrays. Application of MBBP technique on slow earthquakes in Cascadia indicates that the majority of the tremor is located near the plate interface [Ghosh et al., JGR, 2012]. Spatiotemporal distribution of tremor is fairly complex, and strikingly different over different time scales. Transition zone appears to be characterized by several patches with dimension of tens of kilometers. The patches behave like asperities, and possibly represent more seismic part of the fault embedded within a relatively aseismic background. Tremor asperities are spatially stable and marked by prolific tremor activity. These tremor asperities seem to control evolution of slow earthquakes and likely represent rheological and/or frictional heterogeneity on the fault plane. In addition, structural features on the fault plane of the transition zone seem to play an important role in shaping the characteristics of the seismic energy radiated from here. Dynamically evolving state-of-stress during slow earthquakes and its interaction with the fault structures possibly govern near-continuous rapid streaking of tremor [Ghosh et al., G-cubed, 2010] and diverse nature of tremor propagations observed over different time scales. Overall, slow quakes are giving

  15. Numerical simulation of coastal flooding after potential reactivation of an active normal fault in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Yu-Chang; Kuo, Chih-Yu; Chang, Kuo-Jen; Chen, Rou-Fei; Hsieh, Yu-Chung

    2016-04-01

    Rapid coastal flooding from seawards may be resulted from storm surge, tsunamis, and sudden land subsidence due to fault activities. Many observations and numerical modeling of flooding have been made for cases resulted from storm surge and tsunami events; however, coastal flooding caused by a potential normal faulting event nearby coastal areas is rarely reported. In addition to the earthquake hazards from fault rupturing and ground shaking, the accompanied hazards of earthquake-induced flooding is also important to be investigated. The Jinshan area in northern Taiwan was reported to have been flooded by a tsunami event in the year of 1867 possibly resulted from the reactivation of the Shanchiao normal fault offshore. Historical records have shown that the Shanchiao Fault that extends from Shulin along the western edge of the Taipei Basin to the town of Jinshan may have also ruptured in the year of 1694. The rupturing event has created a depression on the western side of the Taipei Basin that was later filled by sea water called the Taipei Lake. The geological conditions in northern Taiwan provide an opportunity for numerically simulating the dynamic processes of sea water flooding nearby the coastal area immediately after an earthquake-induced normal faulting event. In this study, we focused on the potential active normal faulting that may occur and result in an expected catastrophic flooding in lowland area of Jinshan in northern Taiwan. We applied the continuum shallow water equation to evaluate the unknown inundation processes including location, extent, velocity and water depths after the flooding initiated and the final state of the flooding event. The modeling results were well compared with borehole observations of the extent of previous flooding events possibly due to tsunami events. In addition, the modeling results may provide a future basis for safety evaluation of the two nuclear power plants nearby the region.

  16. Normal faulting in the Simav graben of western Turkey reassessed with calibrated earthquake relocations

    NASA Astrophysics Data System (ADS)

    Karasözen, Ezgi; Nissen, Edwin; Bergman, Eric A.; Johnson, Kendra L.; Walters, Richard J.

    2016-06-01

    Western Turkey has a long history of large earthquakes, but the responsible faults are poorly characterized. Here we reassess the past half century of instrumental earthquakes in the Simav-Gediz region, starting with the 19 May 2011 Simav earthquake (Mw 5.9), which we image using interferometric synthetic aperture radar and regional and teleseismic waveforms. This event ruptured a steep, planar normal fault centered at 7-9 km depth but failed to break the surface. However, relocated main shock and aftershock hypocenters occurred beneath the main slip plane at 10-22 km depth, implying rupture initiation in areas of low coseismic slip. These calibrated modern earthquakes provide the impetus to relocate and reassess older instrumental events in the region. Aftershocks of the 1970 Gediz earthquake (Mw 7.1) form a narrow band, inconsistent with source models that invoke low-angle detachment faulting, and may include events triggered dynamically by the unilateral main shock rupture. Epicenters of the 1969 Demirci earthquakes (Mw 5.9, 6.0) are more consistent with slip on the south dipping Akdağ fault than the larger, north dipping Simav fault. A counterintuitive aspect of recent seismicity across our study area is that the largest event (Mw 7.1) occurred in an area of slower extension and indistinct surface faulting, yet ruptured the surface, while recent earthquakes in the well-defined and more rapidly extending Simav graben are smaller (Mw <6.0) and failed to produce surface breaks. Though our study area bounds a major metamorphic core complex, there is no evidence for involvement of low-angle normal faulting in any of the recent large earthquakes.

  17. The mechanics of gravity-driven faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.; Barrows, V.

    2010-04-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone). In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic rebound the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. Mechanical analysis has shown the intensity of the gravitational tectonic stress that is associated with the regional topography and lateral density variations that actually exist is comparable with the stress drops that are commonly associated with tectonic earthquakes; both are in the range of tens of bar to several hundred bar. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the stress-causing topography and lateral density variations is equally split between the earthquake and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity

  18. Tunable architecture for aircraft fault detection

    NASA Technical Reports Server (NTRS)

    Ganguli, Subhabrata (Inventor); Papageorgiou, George (Inventor); Glavaski-Radovanovic, Sonja (Inventor)

    2012-01-01

    A method for detecting faults in an aircraft is disclosed. The method involves predicting at least one state of the aircraft and tuning at least one threshold value to tightly upper bound the size of a mismatch between the at least one predicted state and a corresponding actual state of the non-faulted aircraft. If the mismatch between the at least one predicted state and the corresponding actual state is greater than or equal to the at least one threshold value, the method indicates that at least one fault has been detected.

  19. Cooperative human-machine fault diagnosis

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  20. Cooperative Human-Machine Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Remington, Roger; Palmer, Everett

    1987-02-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  1. An aircraft sensor fault tolerant system

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Lancraft, R. E.

    1982-01-01

    The design of a sensor fault tolerant system which uses analytical redundancy for the Terminal Configured Vehicle (TCV) research aircraft in a Microwave Landing System (MLS) environment was studied. The fault tolerant system provides reliable estimates for aircraft position, velocity, and attitude in the presence of possible failures in navigation aid instruments and onboard sensors. The estimates, provided by the fault tolerant system, are used by the automated guidance and control system to land the aircraft along a prescribed path. Sensor failures are identified by utilizing the analytic relationship between the various sensor outputs arising from the aircraft equations of motion.

  2. The San Andreas Fault System, California

    USGS Publications Warehouse

    Wallace, Robert E.

    1990-01-01

    Maps of northern and southern California printed on flyleaf inside front cover and on adjacent pages show faults that have had displacement within the past 2 million years. Those that have had displacement within historical time are shown in red. Bands of red tint emphasize zones of historical displacement; bands of orange tint emphasize major faults that have had Quaternary displacement before historical time. Faults are dashed where uncertain, dotted where covered by sedimentary deposits, and queried when doubtful. Arrows indicate direction of relative movement; sawteeth on upper plate of thrust fault. These maps are reproductions, in major part, of selected plates from the "Fault Map of California," published in 1975 by the California Division of Mines and Geology at a scale of 1:750,000; the State map was compiled and data interpreted by Charles W. Jennings. New data about faults, not shown on the 1975 edition, required modest revisions, primarily additions however, most of the map was left unchanged because the California Division of Mines and Geology is currently engaged in a major revision and update of the 1975 edition. Because of the reduced scale here, names of faults and places were redrafted or omitted. Faults added to the reduced map are not as precise as on the original State map, and the editor of this volume selected certain faults and omitted others. Principal regions for which new information was added are the region north of the San Francisco Bay area and the offshore regions.Many people have contributed to the present map, but the editor is solely responsible for any errors and omissions. Among those contributing informally, but extensively, and the regions to which each contributed were G.A. Carver, onland region north of lat 40°N.; S.H. Clarke, offshore region north of Cape Mendocino; R.J. McLaughlin, onland region between lat 40°00' and 40°30' N. and long 123°30' and 124°30' W.; D.S. McCulloch offshore region between lat 35° and 40° N

  3. Geofluid Dynamics of Faulted Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Garven, G.; Jung, B.; Boles, J. R.

    2014-12-01

    Faults are known to affect basin-scale groundwater flow, and exert a profound control on petroleum migration/accumulation, the PVT-history of hydrothermal fluids, and the natural (submarine) seepage from offshore reservoirs. For example, in the Santa Barbara basin, measured gas flow data from a natural submarine seep area in the Santa Barbara Channel helps constrain fault permeability k ~ 30 millidarcys for the large-scale upward migration of methane-bearing formation fluids along one of the major fault zones. At another offshore site near Platform Holly, pressure-transducer time-series data from a 1.5 km deep exploration well in the South Ellwood Field demonstrate a strong ocean tidal component, due to vertical fault connectivity to the seafloor. Analytical solutions to the poroelastic flow equation can be used to extract both fault permeability and compressibility parameters, based on tidal-signal amplitude attenuation and phase shift at depth. These data have proven useful in constraining coupled hydrogeologic 2-D models for reactive flow and geomechanical deformation. In a similar vein, our studies of faults in the Los Angeles basin, suggest an important role for the natural retention of fluids along the Newport-Inglewood fault zone. Based on the estimates of fault permeability derived above, we have also constructed new two-dimensional numerical simulations to characterize large-scale multiphase flow in complex heterogeneous and anisotropic geologic profiles, such as the Los Angeles basin. The numerical model was developed in our lab at Tufts from scratch, and based on an IMPES-type algorithm for a finite element/volume mesh. This numerical approach allowed us model large differentials in fluid saturation and relative permeability, caused by complex geological heterogeneities associated with sedimentation and faulting. Our two-phase flow models also replicated the formation-scale patterns of petroleum accumulation associated with the basin margin, where deep

  4. Cooperative application/OS DRAM fault recovery.

    SciTech Connect

    Ferreira, Kurt Brian; Bridges, Patrick G.; Heroux, Michael Allen; Hoemmen, Mark; Brightwell, Ronald Brian

    2012-05-01

    Exascale systems will present considerable fault-tolerance challenges to applications and system software. These systems are expected to suffer several hard and soft errors per day. Unfortunately, many fault-tolerance methods in use, such as rollback recovery, are unsuitable for many expected errors, for example DRAM failures. As a result, applications will need to address these resilience challenges to more effectively utilize future systems. In this paper, we describe work on a cross-layer application/OS framework to handle uncorrected memory errors. We illustrate the use of this framework through its integration with a new fault-tolerant iterative solver within the Trilinos library, and present initial convergence results.

  5. Mechanical Models of Fault-Related Folding

    SciTech Connect

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  6. Fault tolerance and testing for WSI systems

    NASA Astrophysics Data System (ADS)

    Ptak, Alan W.; McLeod, R. D.

    Fault tolerance and testing for wafer scale integration (WSI) processor arrays using boundary scan and built-in self-test (BIST) technology are discussed. A test strategy for verification of all components within an integrated circuit wafer is presented, and a fault tolerance technique using semi-concurrent fault detection is described. The test strategy consists of four steps taken to verify test bus continuity, boundary scan register continuity, interconnection network connectivity, and processor element integrity. The component-level area overhead for boundary scan and BIST is modest for present-day fabrication processes, and will diminish to an insignificant level as integrated circuit fabrication technology continues to improve.

  7. Efficient fault diagnosis of helicopter gearboxes

    NASA Technical Reports Server (NTRS)

    Chin, H.; Danai, K.; Lewicki, D. G.

    1993-01-01

    Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training.

  8. Negative Selection Algorithm for Aircraft Fault Detection

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    We investigated a real-valued Negative Selection Algorithm (NSA) for fault detection in man-in-the-loop aircraft operation. The detection algorithm uses body-axes angular rate sensory data exhibiting the normal flight behavior patterns, to generate probabilistically a set of fault detectors that can detect any abnormalities (including faults and damages) in the behavior pattern of the aircraft flight. We performed experiments with datasets (collected under normal and various simulated failure conditions) using the NASA Ames man-in-the-loop high-fidelity C-17 flight simulator. The paper provides results of experiments with different datasets representing various failure conditions.

  9. Fault roughness evolution with slip (Gole Larghe Fault Zone, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Spagnuolo, E.; Di Toro, G.; Nielsen, S. B.; Griffith, W. A.

    2011-12-01

    Fault surface roughness is a principal factor influencing fault and earthquake mechanics. However, little is known on roughness of fault surfaces at seismogenic depths, and particularly on how it evolves with accumulating slip. We have studied seismogenic fault surfaces of the Gole Larghe Fault Zone, which exploit precursor cooling joints of the Adamello tonalitic pluton (Italian Alps). These faults developed at 9-11 km and 250-300°C. Seismic slip along these surfaces, which individually accommodated from 1 to 20 m of net slip, resulted in the production of cm-thick cataclasites and pseudotachylytes (solidified melts produced during seismic slip). The roughness of fault surfaces was determined with a multi-resolution aerial and terrestrial LIDAR and photogrammetric dataset (Bistacchi et al., 2011, Pageoph, doi: 10.1007/s00024-011-0301-7). Fault surface roughness is self-affine, with Hurst exponent H < 1, indicating that faults are comparatively smoother at larger wavelengths. Fault surface roughness is inferred to have been inherited from the precursor cooling joints, which show H ≈ 0.8. Slip on faults progressively modified the roughness distribution, lowering the Hurst exponent in the along-slip direction up to H ≈ 0.6. This behaviour has been observed for wavelengths up to the scale of the accumulated slip along each individual fault surface, whilst at larger wavelengths the original roughness seems not to be affected by slip. Processes that contribute to modify fault roughness with slip include brittle failure of the interacting asperities (production of cataclasites) and frictional melting (production of pseudotachylytes). To quantify the "wear" due to these processes, we measured, together with the roughness of fault traces and their net slip, the thickness and distribution of cataclasites and pseudotachylytes. As proposed also in the tribological literature, we observe that wearing is scale dependent, as smaller wavelength asperities have a shorter

  10. Depth-dependent structure of the Landers fault zone from trapped waves generated by aftershocks

    NASA Astrophysics Data System (ADS)

    Li, Yong-Gang; Vidale, John E.; Aki, Keiiti; Xu, Fei

    2000-03-01

    We delineate the internal structure of the Johnson Valley and Kickapoo faults (Landers southern rupture) at seismogenic depth using fault zone trapped waves generated by aftershocks. Trapped waves recorded at the dense linear seismic arrays deployed across and along the surface breaks of the 1992 M7.5 Landers earthquake show large amplitudes and dispersive wave trains following the S waves. Group velocities of trapped waves measured from multiple band-pass-filtered seismograms for aftershocks occurring at different depths between 1.8 km and 8.2 km show an increase in velocity with depth. Velocities range from 1.9 km/s at 4 Hz to 2.6 km/s at 1 Hz for shallow events, while for deep events, velocities range from 2.3 km/s at 4 Hz to 3.1 km/s at 1 Hz. Coda-normalized amplitude spectra of trapped waves peak in amplitudes at 3-4 Hz for stations located close to the fault trace. The amplitude decays rapidly with the station offset from the fault zone. Normalized amplitudes also decrease with distance along the fault, giving an apparent Q of 30 for shallow events and 50 for deep events. We evaluated depth-dependent fault zone structure and its uncertainty from these measurements plus our previous results from near-surface explosion-excited trapped waves [Li et al., 1999] in a systematic model parameter-searching procedure using a three-dimensional (3-D) finite difference computer code [Graves, 1996]. Our best model of the Landers fault zone is 250 m wide at the surface, tapering to 100-150 m at 8.2 km depth. The shear velocity within the fault zone increases from 1.0 to 2.5 km/s and Q increases from 20 to 60 in this depth range. Fault zone shear velocities are reduced by 35 to 45% from those of the surrounding rock and also vary along the fault zone with an increase of ˜10% near ends of the southern rupture zone.

  11. Neotectonics of Asia: Thin-shell finite-element models with faults

    NASA Technical Reports Server (NTRS)

    Kong, Xianghong; Bird, Peter

    1994-01-01

    As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the

  12. A Tool to Assist Pressure Management by Detecting and Localizing Low Permeability Faults

    NASA Astrophysics Data System (ADS)

    Vilarrasa, V.; Bustarret, G.; Laloui, L.

    2015-12-01

    Fluid injection and its subsequent induced seismicity have significantly increased recently. Injection of fluids due to wastewater disposal, geothermal energy, seasonal natural gas storage and geologic carbon storage causes pressure buildup, which reduces the effective stresses. This reduction brings the stress state closer to failure conditions, which may yield shear slip of pre-existing fractures or faults. Shear slip induces seismic events, which in some cases are felt by the local population. Felt induced seismicity negatively affects public acceptance and may lead to the closure of injection projects. To avoid inducing felt seismic events, a good pressure management is crucial. We propose a methodology to identify and locate undetected low permeability faults using diagnostic plots. This method is useful to assist decision making to adopt the proper mitigation measures to keep overpressure below the maximum sustainable injection pressure when a low permeability fault is causing an additional overpressure within the injection formation. Diagnostic tools allow a rapid identification of the divergence between the pressure measurements and the expected overpressure evolution in a homogeneous aquifer. The divergence time is an indicator of the presence of a low permeability fault and can be used to determine its position. We formulate the problem in its dimensionless form, so it can be generalized to all injection sites. We apply our methodology to water and CO2 injection through a horizontal well in a confined aquifer that has a fault parallel to the well. Nevertheless, the methodology can be extended to other geometrical configurations and geological settings.

  13. Fault diagnosis of the polypropylene production process (UNIPOL PP) using ANFIS.

    PubMed

    Lau, C K; Heng, Y S; Hussain, M A; Mohamad Nor, M I

    2010-10-01

    The performance of a chemical process plant can gradually degrade due to deterioration of the process equipment and unpermitted deviation of the characteristic variables of the system. Hence, advanced supervision is required for early detection, isolation and correction of abnormal conditions. This work presents the use of an adaptive neuro-fuzzy inference system (ANFIS) for online fault diagnosis of a gas-phase polypropylene production process with emphasis on fast and accurate diagnosis, multiple fault identification and adaptability. The most influential inputs are selected from the raw measured data sets and fed to multiple ANFIS classifiers to identify faults occurring in the process, eliminating the requirement of a detailed process model. Simulation results illustrated that the proposed method effectively diagnosed different fault types and severities, and that it has a better performance compared to a conventional multivariate statistical approach based on principal component analysis (PCA). The proposed method is shown to be simple to apply, robust to measurement noise and able to rapidly discriminate between multiple faults occurring simultaneously. This method is applicable for plant-wide monitoring and can serve as an early warning system to identify process upsets that could threaten the process operation ahead of time.

  14. Fault-tolerant quantum computation with asymmetric Bacon-Shor codes

    NASA Astrophysics Data System (ADS)

    Brooks, Peter; Preskill, John

    2012-02-01

    Bacon-Shor codes are quantum subsystem codes which are constructed by combining together two quantum repetition codes, one protecting against Z (phase) errors and the other protecting against X (bit flip) errors. In many situations, for example flux qubits, the noise is biased such that faults that produce Z errors are much more common than faults that produce X errors; in these cases it is natural to consider an asymmetric Bacon-Shor code where the code protecting against Z errors is longer than the code protecting against X errors. This work describes fault-tolerant constructions for gadgets that achieve universal fault-tolerant quantum computation using asymmetric Bacon-Shor codes. Gadgets take advantage of the Bacon-Shor structure by breaking up into parallel smaller gadgets that act on a single row or column, with majority voting of the separate results. For a bias of ɛ/ɛ' = 10^4, we prove a threshold around 2.5 x10-3. The effective error strength is shown to decrease rapidly (faster than polynomial) with decreasing ɛ. Therefore it may be practical to use Bacon-Shor codes directly with no additional concatenation. This could greatly reduce the resource overhead required for fault-tolerant computation with biased noise.

  15. Exhumation along the Fairweather fault, southeastern Alaska, based on low-temperature thermochronometry

    USGS Publications Warehouse

    McAleer, R.J.; Spotila, J.A.; Enkelmann, E.; Berger, A.L.

    2009-01-01

    The southern Alaskan syntaxis marks the spectacular junction between the >1000-km-long Pacific-North America transform margin and the Chugach-St. Elias belt, where subduction and terrane accretion drive rapid convergent deformation and rock uplift. New low-temperature thermochronometry reveals that intense orogenic deformation is not restricted to one side of the syntaxis but extends nearly 300 km south along the dextral Fairweather fault. Apatite and zircon (U-Th)/He ages as young as 0.9 and 2.0 Ma suggest maximum exhumation rates of nearly 2 mm/a in close proximity (0.5 mm/a along the entire plate margin. We estimate that long-term rock uplift accommodates ???3 mm/a of fault-normal convergence in this area. This suggests that the Fairweather fault is slightly transpressive and highly partitioned, analogous to the central San Andreas fault. This convergence only accounts for ???1/5 of the obliquity between Pacific plate motion and the continental margin, however, implying the deficit is taken up by 1-2 cm/a thrust-sinistral motion along the offshore Transition fault. Additionally, thermochronometry shows a marked increase in bedrock cooling coincident with onset of heavy glaciation, similar to what has been observed in other parts of the Pacific Northwest. The tectonically active Fairweather corridor is distinguished, however, by the magnitude of the acceleration and the depth of exhumation since Pliocene climate change. Copyright 2009 by the American Geophysical Union.

  16. Present Geodetic Slip Rate of Being Co Fault Zone in Central Lhasa Block, Tibet

    NASA Astrophysics Data System (ADS)

    Tian, Yunfeng; Li, Yongsheng; Luo, Yi; Jiang, Wenliang; Jiang, Hongbo; Jiao, Qisong; Shen, Wenhao; Wang, Dehua; Li, Qiang; Zhang, Jingfa

    2016-08-01

    Synchronous with a series of large scale S-N rift systems in southern Tibet, the "chord" connecting the eastern and western Himalayan syntaxes, which is known as KJFZ (Karakorum Jiali Fault Zone), is supposed to experience rapid (10-20mm/a) right-lateral strike slip (Armijo et al., 1989), accommodating the E-W extension and S-N shortening of Tibetan plateau between Himalayan arc in the south and Tarim basin in the north.The Jiali fault and Beng Co fault consist of the easternmost segment of KJFZ, and they interplay with the Yadong-Gulu rift near the Gulu county.However, because of the harsh environment and the sparse modern geodetic network in this region, the recent activity of Beng Co fault zone is not well known, especially for the southeast segment (i.e. southeast the Beng Co lake). Therefore, we use both GNSS and InSAR techniques to study the current activity of Beng Co fault system.

  17. Reconfigurable fault-tolerant multiprocessor system for real-time control

    SciTech Connect

    Kao, M.L.

    1986-01-01

    Real-time control applications place stringent constraints in computers controlling them since the failure of a computer could result in costly damages and even loss of human lives. Fault-tolerant computers, therefore, have been always in high demand in critical avionic and aerospace applications. However, the use of redundancy techniques to achieve fault tolerance in industrial applications has only recently become feasible due to the rapid decrease in cost and increase in performance of microprocessors. As more and more robots are being built to replace human beings in dangerous and difficult tasks, the need for a reliable computer for robotics control increases. This need, in particular, motivated the research described in this dissertation - the design and implementation of a reconfigurable fault-tolerant multiprocessor system (the FREMP system). The FREMP system consists of four processing units (PUs) and three common parallel buses. Each PU is a combination of an Intel 86/30 single board computer and a custom fault detection/masking circuit board (FDM board). A hardware/software combined scheme was devised to detect faults and correct errors. This scheme has shown to be more efficient than software voting while maintaining the flexibility of software approaches. Time-frame scheduling was adopted to schedule tasks for execution.

  18. Symmetrical and Unsymmetrical Fault Currents of a Wind Power Plant: Preprint

    SciTech Connect

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    This paper investigates the short-circuit behavior of a wind power plant for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. The size of wind power plants (WPPs) keeps getting bigger and bigger. The number of wind plants in the U.S. has increased very rapidly in the past 10 years. It is projected that in the U.S., the total wind power generation will reach 330 GW by 2030. As the importance of WPPs increases, planning engi-neers must perform impact studies used to evaluate short-circuit current (SCC) contribution of the plant into the transmission network under different fault conditions. This information is needed to size the circuit breakers, to establish the proper sys-tem protection, and to choose the transient suppressor in the circuits within the WPP. This task can be challenging to protec-tion engineers due to the topology differences between different types of wind turbine generators (WTGs) and the conventional generating units. This paper investigates the short-circuit behavior of a WPP for different types of wind turbines. Both symmetrical faults and unsymmetrical faults are investigated. Three different soft-ware packages are utilized to develop this paper. Time domain simulations and steady-state calculations are used to perform the analysis.

  19. PUBLISHER'S NOTE: Rapid Communications Rapid Communications

    NASA Astrophysics Data System (ADS)

    Miller, Tom

    2009-09-01

    As part of a general review of Superconductor Science and Technology, we have been examining the scope for Rapid Communications (RAPs). We recognize these articles make up an important part of the journal representing the latest state-of-the-art research in superconductivity. To reflect this, we have devised a new scope for this article type: 'Rapid Communications. The journal offers open access to outstanding short articles (no longer than 5 journal pages or 4500 words including figures) reporting new and timely developments in superconductivity and its applications. These articles should report very substantial new advances in superconductivity to the readers of Superconductor Science and Technology, but are not expected to meet any requirement of 'general interest'. RAPs will be processed quickly (average receipt to online publication for RAPs is around 60 days) and are permanently free to read in the electronic journal. Authors submitting a RAP should provide reasons why the work is urgent and requires rapid publication. Each RAP will be assessed for suitability by our Reviews and Rapid Communications Editor before full peer review takes place.' The essential points are: They should report very substantial new advances in superconductivity and its application; They must be no longer than 5 journal pages long (approx. 4500 words); Average publication time for a Rapid Communication is 60 days; They are free to read. As mentioned in the previous publisher's announcement (2009 Supercond. Sci. Technol. 22 010101), each submitted Rapid Communication must come with a letter justifying why it should be prioritized over regular papers and will be pre-assessed by our Reviews and Rapid Communications Editor. In addition, we will work with the authors of any Rapid Communication to promote and raise the visibility of the work presented in it. We will be making further changes to the journal in the near future and we write to you accordingly. Thank you for your kind

  20. Physical and Mechanical Properties of the Mozumi Fault, Japan: Petrophysics of a Fine-Grained Fault Zone

    NASA Astrophysics Data System (ADS)

    Isaacs, A. J.; Evans, J. P.; Kolesar, P. T.

    2005-12-01

    The Mozumi-Sokenobu fault, a right-lateral strike-slip fault in north-central Honshu, Japan is intersected by the Active Fault Survey Tunnel. This tunnel allows for direct observation of the fault at a depth of 300-400 m below the ground surface. Within the tunnel, the Mozumi fault cuts Jurassic Tetori Group sandstone and shale. We have characterized microstructures, mineralogy, geochemistry, and elastic properties of fault rock samples from the Mozumi fault. These data can be combined to illustrate the in-situ macroscopic hydro-mechanical structure of the fault. Core samples from the main Mozumi fault zone intersected by the Active Fault Survey Tunnel borehole A were analyzed and compared to wireline logs for a petrophysical study of the fault zone rocks. Microstructures, mineralogy, and geochemistry of Mozumi fault rocks indicate syn-tectonic fluid flow and multiple deformation events. Resistivity and sonic log values are depressed through the main fault zone. Likewise, the seismic p and s wave velocity values are decreased across the main fault relative to the surrounding rock. Calculated values for Young's modulus and Poisson's ratio fall at the top of or above the experimentally derived range for elastic moduli of siltstone, shale, and sandstone. Smaller scale variations across the fault zone itself are also present. Samples of foliated fault rocks containing predominantly muscovite have intermediate values for elastic moduli and seismic velocity relative to other fault zone samples used in this study. Fault rocks significantly depleted in oxides relative to host rock samples and containing mixed clays have higher resistivity than surrounding fault rocks and intermediate permeability values. These variations in physical and mechanical properties throughout the fault zone coincide with the complex fault-parallel combined conduit/barrier permeability structure of the Mozumi fault zone.