Sample records for cathode flow humidity

  1. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  2. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  3. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  4. In situ S-K XANES study of polymer electrolyte fuel cells: changes in the chemical states of sulfonic groups depending on humidity.

    PubMed

    Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi

    2016-09-14

    Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H 2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.

  5. Improvement of water management in a vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Masdar, M. Shahbudin; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O , and methanol, PCH3OH , at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.

  6. Evaluation of Cation Migration in Lanthanum Strontium Cobalt Ferrite Solid Oxide Fuel Cell Cathodes via In-operando X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, John S.; Coyle, Christopher A.; Bonnett, Jeff F.

    2018-01-28

    Anode-supported SOFCs with LSCF-6428 cathodes were operated at various temperatures for hundreds of hours in dry or humid (~3% water) cathode air with continuous cathode XRD. Additionally, one cell in dry air was held at OCV and another had 12% CO2 added to the humid air. Long cumulative XRD count times allowed identification of minor phases at <0.1 wt%. In humid air, performance improved during the first couple of hundred hours and Fe-rich Fe,Co spinel XRD peaks gradually shifted to lower angles while nano-nodules formed on LSCF surfaces. With 12% CO2 added, performance degraded after initial activation, unlike without CO2,more » where stability followed activation. In CO2, LSCF XRD peaks shifted indicating gradual decomposition. In dry air, fast initial degradation that decelerated over time occurred at constant current while the cell at OCV was stable. At OCV and 750°C or at constant current and 700°C in dry air, Fe-rich spinel XRD peaks shifted more slowly than in humid air tests; Co-rich Fe,Co spinel peaks shifted to higher angles; and SEM discovered smaller nano-nodules on LSCF than after humid air tests. At constant current at 750°C and 800°C in dry air, no nano-nodules or gradual changes in the XRD patterns were discovered.« less

  7. Surface area loss mechanisms of Pt3Co nanocatalysts in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Rasouli, S.; Ortiz Godoy, R. A.; Yang, Z.; Gummalla, M.; Ball, S. C.; Myers, D.; Ferreira, P. J.

    2017-03-01

    Pt3Co catalyst nanoparticles of 4.9 nm size present on the cathode side of a PEMFC membrane-electrode assembly (MEA) were analyzed by transmission electron microscopy after 10 K voltage cycles under different operating conditions. The operating conditions include baseline (0.4-0.95 V, 80° C, 100% Relative Humidity (RH)), high potential (0.4-1.05 V, 80° C, 100% RH), high temperature (0.4-0.95 V, 90° C, 100% RH), and low humidity (0.4-0.95 V, 80° C, 30% RH). Particle growth and particle loss to the membrane is more severe in the high potential sample than in the high temperature and baseline MEAs, while no significant particle growth and particle precipitation in the membrane can be observed in the low humidity sample. Particles with different morphologies were seen in the cathode including: 1-Spherical individual particles resulting from modified electro-chemical Ostwald ripening and 2-aggregated and coalesced particles resulting from either necking of two or more particles or preferential deposition of Pt between particles with consequent bridging. The difference in the composition of these morphologies results in composition variations through the cathode from cathode/diffusion media (DM) to the cathode/membrane interface.

  8. Same-View Nano-XAFS/STEM-EDS Imagings of Pt Chemical Species in Pt/C Cathode Catalyst Layers of a Polymer Electrolyte Fuel Cell.

    PubMed

    Takao, Shinobu; Sekizawa, Oki; Samjeské, Gabor; Nagamatsu, Shin-ichi; Kaneko, Takuma; Yamamoto, Takashi; Higashi, Kotaro; Nagasawa, Kensaku; Uruga, Tomoya; Iwasawa, Yasuhiro

    2015-06-04

    We have made the first success in the same-view imagings of 2D nano-XAFS and TEM/STEM-EDS under a humid N2 atmosphere for Pt/C cathode catalyst layers in membrane electrode assemblies (MEAs) of polymer electrolyte fuel cells (PEFCs) with Nafion membrane to examine the degradation of Pt/C cathodes by anode gas exchange cycles (start-up/shut-down simulations of PEFC vehicles). The same-view imaging under the humid N2 atmosphere provided unprecedented spatial information on the distribution of Pt nanoparticles and oxidation states in the Pt/C cathode catalyst layer as well as Nafion ionomer-filled nanoholes of carbon support in the wet MEA, which evidence the origin of the formation of Pt oxidation species and isolated Pt nanoparticles in the nanohole areas of the cathode layer with different Pt/ionomer ratios, relevant to the degradation of PEFC catalysts.

  9. Polyoxometalate flow battery

    DOEpatents

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  10. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  11. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  12. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  13. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  14. Fuel cell with internal flow control

    DOEpatents

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  15. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer

    DOE PAGES

    Zhu, Zonglong; Chueh, Chu -Chen; Lin, Francis; ...

    2016-03-22

    A novel fullerene cathode interlayer is employed to facilitate the fabrication of stable and efficient perovskite solar cells. Here, this modified fullerene surfactant significantly increases air stability of the derived devices due to its hydrophobic characteristics to enable 80% of the initial PCE to be retained after being exposed in ambient condition with 20% relative humidity for 14 days.

  16. Fundamental Impact of Humidity on SOFC Cathode ORR

    DOE PAGES

    Huang, Y. L.; Pellegrinelli, C.; Wachsman, E. D.

    2015-12-17

    Although solid oxide fuel cells (SOFC) have demonstrated excellent performance, the durability of SOFCs under real working conditions is still an issue for commercial deployment. In particular cathode exposure to atmospheric air contaminants, such as humidity, can result in long-term performance degradation issues. Therefore, a fundamental understanding of the interaction between water molecules and cathodes is essential to resolve this issue and further enhance cathode durability. In order to study the effects of humidity on the oxygen reduction reaction (ORR), we used in-situ 18O isotope exchange techniques to probe the exchange of water with two of themost common SOFC cathodemore » materials, (La 0.8Sr 0.2) 0.95MnO 3±δ (LSM) and La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF). In this experiment, heavy water, D 2O (with a mass/charge ratio of m/z = 20), is used to avoid the overlapping of H 2O and the 18O 2 cracking fraction, which both provide a peak at m/z = 18. A series of temperature programmed isotope exchange measurements were performed to comprehensively study the interaction of water with the cathode surface as a function of temperature, oxygen partial pressure, and water vapor concentration. The results suggest that water and O 2 share the same surface exchange sites, leading to competitive adsorption. Our findings show that water prefers to exchange with LSCF at lower temperatures, around 300–450°C. For LSM, O 2 is more favorable than water to be adsorbed on the surface and the presence of O 2 limits water exchange. The experimental data are summarized in a Temperature-PO 2 diagram to help visualize how the exchange of water on each material depends on the operating conditions.« less

  17. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    NASA Astrophysics Data System (ADS)

    Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.

  18. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pivac, Ivan; Šimić, Boris; Barbir, Frano

    2017-10-01

    Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.

  19. Low-Current, Xenon Orificed Hollow Cathode Performance for In-Space Applications

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Gallimore, Alec D.

    2002-01-01

    An experimental investigation of the operating characteristics of 3.2-mm diameter orificed hollow cathodes was conducted to examine low current and low flow rate operation. Cathode power was minimized with an orifice aspect ratio of approximately one and the use of an enclosed keeper. Cathode flow rate requirements were proportional to orifice diameter and the inverse of the orifice length. The minimum power consumption in diode mode was 10-W, and the minimum mass flow rate required for spot-mode emission was approximately 0.08-mg/s. Cathode temperature profiles were obtained using an imaging radiometer and conduction was found to be the dominant heat transfer mechanism from the cathode tube. Orifice plate temperatures were found to be weakly dependent upon the flow rate and strongly dependent upon the current.

  20. Methods and apparatus for using gas and liquid phase cathodic depolarizers

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1998-01-01

    The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.

  1. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  2. Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation

    NASA Astrophysics Data System (ADS)

    Owejan, J. P.; Trabold, T. A.; Gagliardo, J. J.; Jacobson, D. L.; Carter, R. N.; Hussey, D. S.; Arif, M.

    Single fuel cells running independently are often used for fundamental studies of water transport. It is also necessary to assess the dynamic behavior of fuel cell stacks comprised of multiple cells arranged in series, thus providing many paths for flow of reactant hydrogen on the anode and air (or pure oxygen) on the cathode. In the current work, the flow behavior of a fuel cell stack is simulated by using a single-cell test fixture coupled with a bypass flow loop for the cathode flow. This bypass simulates the presence of additional cells in a stack and provides an alternate path for airflow, thus avoiding forced convective purging of cathode flow channels. Liquid water accumulation in the cathode is shown to occur in two modes; initially nearly all the product water is retained in the gas diffusion layer until a critical saturation fraction is reached and then water accumulation in the flow channels begins. Flow redistribution and fuel cell performance loss result from channel slug formation. The application of in-situ neutron radiography affords a transient correlation of performance loss to liquid water accumulation. The current results identify a mechanism whereby depleted cathode flow on a single cell leads to performance loss, which can ultimately cause an operating proton exchange membrane fuel cell stack to fail.

  3. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  4. Fuel cell gas management system

    DOEpatents

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  5. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.

    PubMed

    Ishizaki, So; Fujiki, Itto; Sano, Daisuke; Okabe, Satoshi

    2014-10-07

    Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.

  6. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  7. Metal-air flow batteries using oxygen enriched electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  8. Metal-air flow batteries using oxygen enriched electrolyte

    DOEpatents

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie

    2017-08-01

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  9. Investigation of hollow cathode performance for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1973-01-01

    A parametric investigation of 6.35 mm diameter mercury hollow cathodes was carried out in a bell jar. The parameters that were varied were the amount of initial emissive mix, insert position, emission current, cathode temperature, orifice diameter, and mercury flow rate. Flow characteristic curves and performance as a function of time were obtained for the various cathodes. The results of a 3880 hr life test of a main cathode run at 15 amps emission current with no noticeable changes in keeper and collector voltages are also presented.

  10. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  11. Experimental study on copper cathode erosion rate and rotational velocity of magnetically driven arcs in a well-type cathode non-transferred plasma torch operating in air

    NASA Astrophysics Data System (ADS)

    Chau, S. W.; Hsu, K. L.; Lin, D. L.; Tzeng, C. C.

    2007-04-01

    The cathode erosion rate, arc root velocity and output power of a well-type cathode (WTC), non-transferred plasma torch operating in air are studied experimentally in this paper. An external solenoid to generate a magnetically driven arc and a circular swirler to produce a vortex flow structure are equipped in the studied torch system, which is designed to reduce the erosion rate at the cathode. A least square technique is applied to correlate the system parameters, i.e. current, axial magnetic field and mass flow rate, with the cathode erosion rate, arc root velocity and system power output. In the studied WTC torch system, the cathode erosion has a major thermal erosion component and a minor component due to the ion-bombardment effect. The cathode erosion increases with the increase of current due to the enhancement in both Joule heating and ion bombardment. The axial magnetic field can significantly reduce the cathode erosion by reducing the thermal loading of cathode materials at the arc root and improving the heat transfer to gas near the cathode. But, the rise in the mass flow rate leads to the deterioration of erosion, since the ion-bombardment effect prevails over the convective cooling at the cathode. The most dominant system parameter to influence the arc root velocity is the axial magnetic field, which is mainly contributed to the magnetic force driving the arc. The growth in current has a negative impact on increasing the arc root velocity, because the friction force acting at the spot due to a severe molten condition becomes the dominant component counteracting the magnetic force. The mass flow rate also suppresses the arc root velocity, as a result of which the arc root moves in the direction against that of the swirled working gas. All system parameters such as current, magnetic field and gas flow rate increase with the increase in the torch output power. The experimental evidences suggest that the axial magnetic field is the most important parameter to operate the straight-polarity WTC plasma torch at high output power with a limited cathode erosion rate. This emphasizes the importance of an external magnetic field on a WTC torch system for reducing the erosion at the cathode.

  12. Investigation of hollow cathode performance for 30-cm thrusters

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1973-01-01

    A parametric investigation of 6.35 mm diameter mercury hollow cathodes was carried out in a bell jar. The parameters that were varied were the amount of initial emissive mix, the insert position, the emission current, the cathode temperature, the orifice diameter, and the mercury flow rate. Flow characteristic curves and performance as a function of time were obtained for the various cathodes of interest. Also presented are the results of a 3880 hr life test of a main cathode run at 15 amps emission current with no noticeable changes in keeper and collector voltages.

  13. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.

    Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less

  15. Impact of electrode sequence on electrochemical removal of trichloroethylene from aqueous solution

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Alshawabkeh, Akram N.

    2015-01-01

    The electrode sequence in a mixed flow-through electrochemical cell is evaluated to improve the hydrodechlorination (HDC) of trichloroethylene (TCE) in aqueous solutions. In a mixed (undivided) electrochemical cell, oxygen generated at the anode competes with the transformation of target contaminants at the cathode. In this study, we evaluate the effect of placing the anode downstream from the cathode and using multiple electrodes to promote TCE reduction. Experiments with a cathode followed by an anode (C→A) and an anode followed by a cathode (A→C) were conducted using mixed metal oxide (MMO) and iron as electrode materials. The TCE removal rates when the anode is placed downstream of the cathode (C→A) were 54% by MMO→MMO, 64% by MMO→Fe and 87% by Fe→MMO sequence. Removal rates when the anode is placed upstream of the cathode (A→C) were 38% by MMO→MMO, 58% by Fe→MMO and 69% by MMO→Fe sequence. Placing the anode downstream of the cathode positively improves (by 26%) the degradation of aqueous TCE in a mixed flow-through cell as it minimizes the influence of oxygen generated at the MMO anode on TCE reduction at the cathode. Furthermore, placing the MMO anode downstream of the cathode neutralizes pH and redox potential of the treated solution. Higher flow velocity under the C→A setup increases TCE mass flux reduction rate. Using multiple cathodes and an iron foam cathode up stream of the anode increase the removal rate by 1.6 and 2.4 times, respectively. More than 99% of TCE was removed in the presence of Pd catalyst on carbon and as an iron foam coating. Enhanced reaction rates found in this study imply that a mixed flow-through electrochemical cell with multiple cathodes up stream of an anode is an effective method to promote the reduction of TCE in groundwater. PMID:25931774

  16. Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy

    NASA Astrophysics Data System (ADS)

    Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing

    2018-05-01

    The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.

  17. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  18. Humidity Effect on Nanoscale Electrochemistry in Solid Silver Ion Conductors and the Dual Nature of Its Locality

    DOE PAGES

    Yang, Sangmo; Strelcov, Evgheni; Paranthaman, Mariappan Parans; ...

    2015-01-07

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically non-local cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor.more » We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and non-local) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.« less

  19. Humidity effect on nanoscale electrochemistry in solid silver ion conductors and the dual nature of its locality.

    PubMed

    Yang, Sang Mo; Strelcov, Evgheni; Paranthaman, M Parans; Tselev, Alexander; Noh, Tae Won; Kalinin, Sergei V

    2015-02-11

    Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.

  20. Exploring substrate/ionomer interaction under oxidizing and reducing environments

    DOE PAGES

    Tesfaye, Meron; MacDonald, Andrew N.; Dudenas, Peter J.; ...

    2018-02-09

    Local gas transport limitation attributed to the ionomer thin-film in the catalyst layer is a major deterrent to widespread commercialization of polymer-electrolyte fuel cells. So far functionality and limitations of these thin-films have been assumed identical in the anode and cathode. In this study, Nafion ionomer thin-films on platinum(Pt) support were exposed to H 2 and air as model schemes, mimicking anode and cathode catalyst layers. Findings indicate decreased swelling, increased densification of ionomer matrix, and increased humidity-induced aging rates in reducing environment, compared to oxidizing and inert environments. Observed phenomenon could be related to underlying Pt-gas interaction dictating Pt-ionomermore » behavior. Presented results could have significant implications about the disparate behavior of ionomer thin-film in anode and cathode catalyst layers.« less

  1. 40 CFR 1065.125 - Engine intake air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines with multiple intakes with separate humidity measurements at each intake, use a flow-weighted average humidity for NOX corrections. If individual flows of each intake are not measured, use good engineering judgment to estimate a flow-weighted average humidity. (3) Temperature. Good engineering judgment...

  2. A phenomenological model for orificed hollow cathodes. Ph.D. Thesis, 1 Dec. 1981 - 1 Dec. 1982; [electrostatic thruster

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.

    1982-01-01

    A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.

  3. Fuel cell electrode interconnect contact material encapsulation and method

    DOEpatents

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  4. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  5. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  6. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  7. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.

  8. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate

    PubMed Central

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N.

    2015-01-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min−1) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its advers effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min−1 flow, 500 mA current, and 5 mg L−1 initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  9. Low platinum loading cathode modified with Cs3H2PMo10V2O40 for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Renzi, M.; D'Angelo, G.; Marassi, R.; Nobili, F.

    2016-09-01

    The catalytic activity of commercial Pt nanoparticles mixed with mesoporous polyoxometalate Cs3H2PMo10V2O40 towards oxygen reduction reaction is evaluated. The polyoxometalate co-catalyst is prepared by titration of an aqueous solution of phosphovanadomolibdic acid. SEM micrography shows reduction particle size to less than 300 nm, while XRD confirms that the resulting salt maintains the Kegging structure. The composite catalyst is prepared by mixing the POM salt with Pt/C by sonication. RRDE studies show better kinetics for ORR with low Pt loading at the electrode surface. A MEA is assembled by using a Pt/POM-based cathode, in order to assess performance in a working fuel cell. Current vs. potential curves reveals comparable or better performances at 100%, 62% and 17% relative humidity for the POM-modified MEA with respect to a commercial MEA with higher Pt loading at the cathode. Electrochemical impedance spectroscopy (EIS) confirms better kinetics at low relative humidity. Finally, an accelerated stress test (AST) with square wave (SW) between 0.4 V and 0.8 V is performed to evaluate MEA stability for at least 100 h and make predictions about lifetime, showing that after initial losses the catalytic system can retain stable performance and good morphological stability.

  10. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.

  11. The effect of heat and moisture exchanger and gas flow on humidity and temperature in a circle anaesthetic system.

    PubMed

    Poopalalingam, R; Goh, M H; Chan, Y W

    2002-11-01

    The aim of the study was to measure the humidity and temperature of the inspired gas in a circle absorber system at fresh gas flows of 11/min and 31/min and assess the need of a heat and moisture exchanger (HME). This prospective randomised controlled study received the Hospital Ethics Committee approval and informed consent. Forty adult ASA 1 and 11 patients were randomised into four groups to receive with or without HME fresh gas flow of 1L/min or 3L/min. Temperature and the relative humidity readings were taken at the start and every 10 minutes for the first hour of anaesthesia. There was a significantly higher relative humidity, absolute humidity and temperatures of the inspired gases at fresh gas flow of 1L/min and 3L/min with a HME compared to 3L/min without HME. Patients receiving fresh gas flows of lL/min had higher relative and absolute humidity than patients with fresh gas flows of 3L/min. However, the addition of the HME improved the absolute and relative humidity of the inspired gas in patients receiving fresh gas flow of 3l/min to a comparable level. However, the addition of a HME to a fresh gas flow of 1L/min did not significantly improve the humidity of the inspired gas. This suggests that the inherent humidifying property of the circle system at low fresh gas flow of 1L/min was sufficient in short surgeries lasting less than one hour and that the addition of a HME may not be necessary.

  12. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.

    PubMed

    Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven

    2011-06-01

    The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance. © 2011 American Chemical Society

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshetenko, T. V.; Bender, G.; Bethune, K.

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less

  14. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System.

    PubMed

    Chen, Ling-Hsi; Chen, Chiachung

    2018-02-21

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories.

  15. Uncertainly Analysis of Two Types of Humidity Sensors by a Humidity Generator with a Divided-Flow System

    PubMed Central

    Chen, Ling-Hsi

    2018-01-01

    Humidity measurement is an important technique for the agricultural, foods, pharmaceuticals, and chemical industries. For the sake of convenience, electrical relative humidity (RH) sensors have been widely used. These sensors need to be calibrated to ensure their accuracy and the uncertainty measurement of these sensors has become a major concern. In this study, a self-made divided-flow generator was established to calibrate two types of electrical humidity sensors. The standard reference humidity was calculated from dew-point temperature and air dry-bulb temperature measured by a chilled mirror monitor. This divided-flow generator could produce consistent result of RH measurement results. The uncertainty of the reference standard increased with the increase of RH values. The combined uncertainty with the adequate calibration equations were ranged from 0.82% to 1.45% RH for resistive humidity sensors and 0.63% to 1.4% for capacitive humidity sensors, respectively. This self-made, divided-flow generator, and calibration method are cheap, time-saving, and easy to be used. Thus, the proposed approach can easily be applied in research laboratories. PMID:29466313

  16. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  17. Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field

    PubMed Central

    Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon

    2008-01-01

    Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774

  18. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  19. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.

  20. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  1. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, Roger B.; Dusek, Joseph T.

    1984-01-01

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.

  2. Solid oxide fuel cell having monolithic cross flow core and manifolding

    DOEpatents

    Poeppel, R.B.; Dusek, J.T.

    1983-10-12

    This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.

  3. New design of a PEFC cathode separator of for water management

    NASA Astrophysics Data System (ADS)

    Sugiura, K.; Takahashi, N.; Kamimura, T.

    2017-11-01

    Generally, polymer electrolyte fuel cells (PEFCs) need humidifiers to prevent the drying of the membrane, but this use of humidifiers creates water management issues, such as the flooding/plugging phenomena and decreased system efficiency because of an increase in the electric energy needed for auxiliary equipment. Although most researchers have developed high-temperature membranes that do not need humidifiers, a lot of time is necessary for the development of these membranes, and these membranes drive up costs. Therefore, we propose a new cathode separator design that can recycle water generated by power generation in the same cell and a stack structure that can redistribute water collected in the cathode outlet manifold to drying cells. Because the new cathode separator has a bypass channel from the gas outlet to the gas inlet to transport excess water, a dry part in the gas inlet is supplied with excess water in the gas outlet through the bypass channel even if the PEFC is operated under dry conditions. Excess water in the PEFC stack can be transported from the cell with excess water to the drying cell through the cathode outlet manifold with a porous wall. Therefore, we confirm the influence of the plugging phenomenon in the cathode gas outlet manifold on the cell performance of each cell in the stack. As a result, the cell performance of the new cathode separator design is better than that of the standard separator under the low humidity conditions. We confirm that the plugging phenomenon in the cathode outlet manifold affects the cell performance of each cell in the stack.

  4. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  5. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at neutral buoyancy with seawater if the cell is operated at high reactant utilizations in the SOFC stack for missions longer than 20 hours.

  6. Corrosion Behavior of Weathering Steel Under Thin Electrolyte Layer at Different Relative Humidity

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Liu, Pan; Zhang, Jianqing; Cao, Fahe

    2018-01-01

    The corrosion behavior of weathering steel under thin electrolyte layer (TEL) at different relative humidity (RH) was investigated by cathodic polarization, electrochemical impedance spectroscopy, electrochemical noise, SEM/EDS, XRD and Raman spectroscopy. The results indicate that during the initial stage, the corrosion rate increases as the RH decreases when the initial thickness of TEL is above 100 μm. During the middle and final corrosion stages, the corrosion behavior of weathering steel is influenced by RH, the initial thickness of TEL and corrosion product. The TEL corrosion is divided into three types, and a weathering steel corrosion model under TEL and bulk solution is also proposed.

  7. Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate

    PubMed Central

    LaBelle, Edward V.; May, Harold D.

    2017-01-01

    It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC) foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H2. Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/Lcatholyte/h was achieved with 8 A/Lcatholyte (83.3 A/m2projected surface area of cathode) supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H2 and acetate ranged from approximately 80–100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35–42% with a maximum to acetate of 12%. PMID:28515713

  8. Energy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate.

    PubMed

    LaBelle, Edward V; May, Harold D

    2017-01-01

    It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvanostatic control and continuous media flow through a reticulated vitreous carbon (RVC) foam cathode. The combination of galvanostatic control and the high surface area cathode reduced the electron limitation and the continuous flow overcame the nutrient limitation while avoiding the accumulation of products and potential inhibitors. These conditions were set with the intention of operating the biocathode through the production of H 2 . Biofilm growth occurred on and within the unmodified RVC foam regardless of vigorous H 2 generation on the cathode surface. A maximum volumetric rate or space time yield for acetate production of 0.78 g/L catholyte /h was achieved with 8 A/L catholyte (83.3 A/m 2 projected surface area of cathode) supplied to the continuous flow/culture bioelectrochemical reactors. The total Coulombic efficiency in H 2 and acetate ranged from approximately 80-100%, with a maximum of 35% in acetate. The overall energy efficiency ranged from approximately 35-42% with a maximum to acetate of 12%.

  9. Efficacy of a heat and moisture exchanger in inhalation anesthesia at two different flow rates.

    PubMed

    Yamashita, Koichi; Yokoyama, Takeshi; Abe, Hidehiro; Nishiyama, Tomoki; Manabe, Masanobu

    2007-01-01

    In general anesthesia with endotracheal intubation, a circle system with a heat and moisture exchanger (HME) and a low total flow is often used to prevent hypothermia and to maintain inspired gas humidity. The purpose of the present study was to compare the inspired gas humidity and body temperature, in general anesthesia with or without an HME at two different total flow rates. Eighty patients (American Society of Anesthesiologists [ASA] I or II) scheduled to undergo either orthopedic or head and neck surgery were studied. They were divided into four groups, of 20 patients each: total flow of 2 lxmin(-1) with (group HME2L) or without (group 2L) HME, and a total flow of 4 lxmin(-1) with (group HME4L) or without (group 4L) HME. The relative and absolute humidity and pharyngeal and inspired gas temperatures were measured for 2 h after endotracheal intubation. The relative humidity was not significantly different among groups 2L, HME2L, and HME4L. Group 4L had significantly lower absolute humidity than group 2L. The pharyngeal temperature did not decrease significantly for 2 h in any of the groups. During general anesthesia with a total flow of 2 lxmin(-1) in 2 h, HME might not be necessary, while with a total flow of 4 lxmin(-1), HME could be useful to maintain inspired gas humidity.

  10. Effects of Humidity On the Flow Characteristics of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2002-01-01

    The effects of environmental humidity on the flow characteristics of PS304 feedstock have been investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to a Tom temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative humidity (RH) The results suggest that the feedstock flow is slightly degraded with increasing humidity below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These results offer guidance that enhances the commercial potential for this material system.

  11. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.20 Cold-cathode gas... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... cathode. Exit beam means that portion of the radiation which passes through the aperture resulting from...

  12. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  13. μPIV measurements of two-phase flows of an operated direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens

    2013-05-01

    In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.

  14. Non-Aqueous Primary Li-Air Flow Battery and Optimization of its Cathode through Experiment and Modeling.

    PubMed

    Kim, Byoungsu; Takechi, Kensuke; Ma, Sichao; Verma, Sumit; Fu, Shiqi; Desai, Amit; Pawate, Ashtamurthy S; Mizuno, Fuminori; Kenis, Paul J A

    2017-09-22

    A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wu, S. D.; Lai, L. K.; Chen, C. K.; Lai, D. Y.

    A three-dimensional numerical model is developed to study the electrochemical species characteristics in a free-breathing cathode of a direct methanol fuel cell (DMFC). A perforated current collector is attached to the porous cathode that breathes the fresh air through an array of orifices. The radius of the orifice is varied to examine its effect on the electrochemical performance. Gas flow in the porous cathode is governed by the Darcy equation with constant porosity and permeability. The multi-species diffusive transports in the porous cathode are described using the Stefan-Maxwell equation. Electrochemical reaction on the surfaces of the porous matrices is depicted via the Butler-Volmer equation. The charge transports in the porous matrices are dealt with by Ohm's law. The coupled equations are solved by a finite-element-based CFD technique. Detailed distributions of electrochemical species characteristics such as flow velocities, species mass fractions, species fluxes, and current densities are presented. The optimal breathing-hole radius is derived from the current drawn out of the porous cathode under a fixed overpotential.

  16. Hollow cathode startup using a microplasma discharge

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  17. Methanol sensor operated in a passive mode

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

  18. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    NASA Astrophysics Data System (ADS)

    Jamróz, Piotr; Żyrnicki, Wiesław; Pohl, Paweł

    2012-07-01

    A stable direct current atmospheric pressure glow microdischarge (dc-μAPGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N2, H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000-2600 K) and N2 bands (1600-1950 K) were significantly lower than the excitation temperatures of Ar (7400 K-7800 K) and H (11 000-15 500 K) atoms. Vibrational temperatures of N2, OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350-1750 K) and N2 (400-1350 K) and excitation temperatures of Ar (5200-5500 K) and H (3600-12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the Hβ line and equals to (0.25-1.1) × 1015 cm- 3 and (0.68-1.2) × 1015 cm- 3 in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation properties of the developed excitation microsource. The limit of detection for Na was determined at the level of 3 ng mL- 1.

  19. Rapid start of oscillations in a magnetron with a "transparent" cathode.

    PubMed

    Fuks, Mikhail; Schamiloglu, Edl

    2005-11-11

    We report on the improvement of conditions for the rapid start of oscillations in magnetrons by increasing the amplitude of the operating wave that is responsible for the capture of electrons into spokes. This amplitude increase is achieved by using a hollow cathode with longitudinal strips removed, thereby making the cathode transparent to the wave electric field with azimuthal polarization. In addition, an optimal choice of the number and position of cathode strips provide favorable prebunching of the electron flow over the cathode for fast excitation of the operating mode. Particle-in-cell simulations of the A6 magnetron demonstrate these advantages of this novel cathode.

  20. Steady state and transient simulation of anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  1. Alternative model of space-charge-limited thermionic current flow through a plasma

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  2. Tracking Electron Uptake from a Cathode into Shewanella Cells: Implications for Energy Acquisition from Solid-Substrate Electron Donors

    PubMed Central

    Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.

    2018-01-01

    ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241

  3. Effects of different fresh gas flows with or without a heat and moisture exchanger on inhaled gas humidity in adults undergoing general anaesthesia: A systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Braz, José R C; Braz, Mariana G; Hayashi, Yoko; Martins, Regina H G; Betini, Marluci; Braz, Leandro G; El Dib, Regina

    2017-08-01

    The minimum inhaled gas absolute humidity level is 20 mgH2O l for short-duration use in general anaesthesia and 30 mgH2O l for long-duration use in intensive care to avoid respiratory tract dehydration. The aim is to compare the effects of different fresh gas flows (FGFs) through a circle rebreathing system with or without a heat and moisture exchanger (HME) on inhaled gas absolute humidity in adults undergoing general anaesthesia. Systematic review and meta-analyses of randomised controlled trials. We defined FGF (l min) as minimal (0.25 to 0.5), low (0.6 to 1.0) or high (≥2). We extracted the inhaled gas absolute humidity data at 60 and 120 min after connection of the patient to the breathing circuit. The effect size is expressed as the mean differences and corresponding 95% confidence intervals (CI). PubMed, EMBASE, SciELO, LILACS and CENTRAL until January 2017. We included 10 studies. The inhaled gas absolute humidity was higher with minimal flow compared with low flow at 120 min [mean differences 2.51 (95%CI: 0.32 to 4.70); P = 0.02] but not at 60 min [mean differences 2.95 (95%CI: -0.95 to 6.84); P = 0.14], and higher with low flow compared with high flow at 120 min [mean differences 7.19 (95%CI: 4.53 to 9.86); P < 0.001]. An inhaled gas absolute humidity minimum of 20 mgH2O l was attained with minimal flow at all times but not with low or high flows. An HME increased the inhaled gas absolute humidity: with minimal flow at 120 min [mean differences 8.49 (95%CI: 1.15 to 15.84); P = 0.02]; with low flow at 60 min [mean differences 9.87 (95%CI: 3.18 to 16.57); P = 0.04] and 120 min [mean differences 7.19 (95%CI: 3.29 to 11.10); P = 0.003]; and with high flow of 2 l min at 60 min [mean differences 6.46 (95%CI: 4.05 to 8.86); P < 0.001] and of 3 l min at 120 min [mean differences 12.18 (95%CI: 6.89 to 17.47); P < 0.001]. The inhaled gas absolute humidity data attained or were near 30 mgH2O l when an HME was used at all FGFs and times. All intubated patients should receive a HME with low or high flows. With minimal flow, a HME adds cost and is not needed to achieve an appropriate inhaled gas absolute humidity.

  4. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  5. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    PubMed

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  6. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  7. Study of a DC gas discharge with a copper cathode in a water flow

    NASA Astrophysics Data System (ADS)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  8. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  9. Magnetically insulated transmission line oscillator

    DOEpatents

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  10. Method and apparatus for rebalancing a redox flow cell system

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F. (Inventor)

    1986-01-01

    A rebalance cell is provided for a REDOX electrochemical system of the type having anode and cathode fluids which are aqueous HCl solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented.

  11. Method and apparatus for rebalancing a REDOX flow cell system

    NASA Technical Reports Server (NTRS)

    Gahn, R. F. (Inventor)

    1985-01-01

    A rebalance cell is provided for a REDOX electrochemical system of the type with anode and cathode fluids which are aqueous HC1 solutions with two metal species in each. The rebalance cell has a cathode compartment and a chlorine compartment separated by an ion permeable membrane. By applying an electrical potential to the rebalance cell while circulating cathode fluid through the cathode compartment and while circulating an identical fluid through the chlorine compartment, any significant imbalance of the REDOX system is prevented.

  12. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    NASA Technical Reports Server (NTRS)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  13. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE PAGES

    Campanell, M. D.

    2018-04-19

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  14. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, M. D.

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  15. Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system.

    PubMed

    Xie, Shan; Liang, Peng; Chen, Yang; Xia, Xue; Huang, Xia

    2011-01-01

    A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC's cathode, and nitrate was electrochemically denitrified in the A-MFC's cathode. The coupled MFC system reached power densities of 14 W/m(3) net cathodic compartment (NCC) and 7.2 W/m(3) NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH(4)(+)-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and assessment of system implementation concerns. This paper will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model barium-oxide-based (BaO) hollow cathode is being performed as part of the development plan. The cathode was operated with an anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 740 hours at the time of this report. Cathode operation (i.e. discharge voltage and orifice temperature) was repeatable during period variation of discharge current and flow rate. The details of the cathode assembly operation during the wear-test will be presented.

  17. Electrogenerative gold recovery from cyanide solutions using a flow-through cell with activated reticulated vitreous carbon.

    PubMed

    Yap, Chin Yean; Mohamed, Norita

    2008-10-01

    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.

  18. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  19. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    PubMed Central

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants. PMID:24982964

  20. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  1. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  2. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  3. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  4. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; Ding, Dong; Wei, Tao

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminantsmore » using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO 2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H 2O, 5% CO 2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO 4 was significantly decreased.« less

  5. The effects of non-invasive respiratory support on oropharyngeal temperature and humidity: a neonatal manikin study.

    PubMed

    Roberts, Calum T; Kortekaas, Rebecca; Dawson, Jennifer A; Manley, Brett J; Owen, Louise S; Davis, Peter G

    2016-05-01

    Heating and humidification of inspired gases is routine during neonatal non-invasive respiratory support. However, little is known about the temperature and humidity delivered to the upper airway. The International Standards Organization (ISO) specifies that for all patients with an artificial airway humidifiers should deliver ≥33 g/m(3) absolute humidity (AH). We assessed the oropharyngeal temperature and humidity during different non-invasive support modes in a neonatal manikin study. Six different modes of non-invasive respiratory support were applied at clinically relevant settings to a neonatal manikin, placed in a warmed and humidified neonatal incubator. Oropharyngeal temperature and relative humidity (RH) were assessed using a thermohygrometer. AH was subsequently calculated. Measured temperature and RH varied between devices. Bubble and ventilator continuous positive airway pressure (CPAP) produced temperatures >34°C and AH >38 g/m(3). Variable flow CPAP resulted in lower levels of AH than bubble or ventilator CPAP, and AH decreased with higher gas flow. High-flow (HF) therapy delivered by Optiflow Junior produced higher AH with higher gas flow, whereas with Vapotherm HF the converse was true. Different non-invasive devices deliver inspiratory gases of variable temperature and humidity. Most AH levels were above the ISO recommendation; however, with some HF and variable flow CPAP devices at higher gas flow this was not achieved. Clinicians should be aware of differences in the efficacy of heating and humidification when choosing modes of non-invasive respiratory support. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    NASA Astrophysics Data System (ADS)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  7. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry.

    PubMed

    Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang

    2018-04-18

    Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.

  8. Computational modeling of transport and electrochemical reactions in proton-exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Um, Sukkee

    A comprehensive, multi-physics computational fuel cell dynamics (CFCD) model integrating electrochemical kinetics, charge transport, mass transport (particularly water transport), and flow dynamics is developed in this thesis. The numerical model is validated against published experimental data and utilized to generate results that reveal the internal operation of a PEM fuel cell. A number of model applications are demonstrated in the present work. First, the CFCD model is applied to explore hydrogen dilution effects in the anode feed. Detailed two-dimensional electrochemical and flow/transport simulations are provided to examine substantial anode concentration polarization due to hydrogen depletion at the reaction sites. A transient simulation of the cell current response to a step change in cell voltage is also attempted to elucidate characteristics of the dynamic response of a fuel cell for the first time. After the two-dimensional computational study, the CFCD model is applied to illustrate three-dimensional interactions between mass transfer and electrochemical kinetics. Emphasis is placed on obtaining a fundamental understanding of fully three-dimensional flow in the air cathode with interdigitated flowfield design and how it impacts the transport and electrochemical reaction processes. The innovative design concept for enhanced oxygen transport to, and effective water removal from the cathode, is explored numerically. Next, an analytical study of water transport is performed to investigate various water transport regimes of practical interest. The axial locations characteristic of anode water loss and cathode flooding are predicted theoretically and compared with numerical results. A continuous stirred fuel cell reactor (CSFCR) model is also proposed for the limiting situation where the anode and cathode sides reach equilibrium in water concentration with a thin ionomer membrane in between. In addition to the analytical solutions, a detailed water transport model extending the CFCD framework is developed in which a unified water equation is arrived at using the equilibrium water uptake curve between the gas and membrane phases. Various modes of water transport, i.e. diffusion, convection, and electro-osmotic drag, are incorporated in the unified water transport equation. This water transport model is then applied to elucidate water management in three-dimensional fuel cells with dry to low humidified inlet gases after its validation against available experimental data with dry oxidant and fuel streams. An internal circulation of water with the aid of counter-flow design is found to be essential for low-humidity operation, for example, in portable application of a PEM fuel cell without external humidifier. Finally, to handle the most important issue associated with PEM fuel cells using reformate gas, namely the CO poisoning anode Pt catalysts, a major modification of the present CFCD model is made to include CO oxidation processes. A four-step CO poisoning mechanism is implemented here and anode species equation for CO is added to model the electro- and chemical-oxidation processes on the anode. Numerical results of CO poisoning effects using a commercial package, STAR-CD, are presented. Basic features of CO poisoning are delineated and discussed. Future research areas of the fuel cell modeling are also indicated. As an example, preliminary results of extending the CFCD model to include heat transfer using a commercial package, FLUENTRTM, are given to demonstrate the need for careful thermal management in a multi-cell stack design.

  9. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid].

    PubMed

    Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua

    2005-08-01

    The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.

  10. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  11. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  12. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  13. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  14. Device and method for measuring the energy content of hot and humid air streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, H. N.; Girod, G. F.; Kent, A. C.

    1985-12-24

    a portable device and method for measuring enthalpy and humidity of humid air from a space or flow channel at temperatures from 80/sup 0/ to 400/sup 0/ F. is described. the device consists of a psychrometer for measuring wet-bulb temperature, a vacuum pump for inducing sample air flow through the unit, a water-heating system for accurate psychrometer readings, an electronic computer system for evaluation of enthalpy and humidity from corrected and averaged values of wet- and dry- bulb temperatures, and a monitor for displaying the values. The device is programmable by the user to modify evaluation methods as necessary.

  15. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  16. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  17. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  18. Life test of a xenon hollow cathode for a space plasma contractor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    A plasma contacting device using a hollow cathode for plasma production has been baselined for use on the Space Station. This application will require reliable, continuous operation of the cathode at electron emission currents of between 0.75 and 10 A for two years (17,500 hours). In order to validate life-time capability, a hollow cathode, operated in a diode configuration, has been tested for more than 8600 hours of stable discharge operation as of March 30, 1994. This cathode is operated at a steady-state emission current of 12.0 and a fixed xenon flow rate of 4.5 sccm. Discharge voltage and cathode temperature have remained relatively stable at approximately 12.9 V and 1260 C during the test. The test has experienced 7 shutdowns to date. In all instances, the cathode was reignited at about 42 V and resumed stable operation. This test represents the longest demonstration of stable operation of high current (greater than 1A) xenon hollow cathodes reported to date.

  19. Fuel cell system combustor

    DOEpatents

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  20. NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR

    DOEpatents

    Rasor, N.S.; Hirsch, R.L.

    1963-12-01

    The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

  1. Determination of effects of turbulence flow in a cathode environment on electricity generation using a tidal mud-based cylindrical-type sediment microbial fuel cell.

    PubMed

    An, Junyeong; Lee, Soo-Jin; Ng, How Yong; Chang, In Seop

    2010-12-01

    We examined the possibility of harvesting electricity from the surface of a tidal mud flat using a cylindrical-type sediment microbial fuel cell (SMFC), a marine mud battery (MMB), which can be applied in a sea environment where the ebb and flow occur due to tidal difference. In addition, we indirectly investigated the influence of ebb and flow in a lab, using aeration, argon gassing, and by agitating the cathodic solution. The MMBs consisted of cylindrical acrylic compartments containing a nylon membrane, an anode, and a cathode in a single body. The MMBs were stuck vertically into an artificial tidal mud flat such that the anode electrode was in direct contact with the tidal mud surface. As a result, the maximum current and power density generated were 35 mA/m(2) and 9 mW/m(2), respectively, thus verifying that it is possible to harvest electricity from the surface of a tidal mud flat using an MMB without burying the anode electrode in the tidal mud. Furthermore, the results of tests using an artificial turbulence flow showed the flow induced by the tidal ebb and flow could allow the performance of MMBs to be enhanced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Estimation of the temporary service life of DC arc plasmatron cathode

    NASA Astrophysics Data System (ADS)

    Kulygin, V. M.; Pereslavtsev, A. V.; Tresvyatskii, S. S.

    2017-09-01

    The service life of the cathode of a DC arc plasmatron continuously working with tubular electrodes that operate in the air has been considered using the semi-phenomenological approach. The thermal emission, that ensures the necessary flow of electrons, and the evaporation of the cathode material, which determines its erosion, have been taken as the basic physical phenomena that constitute the workflow. The relationships that enable the estimation of the cathode's operating time have been obtained using the known regularities of these phenomena and experimental data available in the literature. The resulting evaluations coincide satisfactorily with the endurance test results.

  3. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.

    2017-11-01

    The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.

  4. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  5. Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Castillo, J. R.; Sturgeon, R. E.

    2004-04-01

    Simultaneous measurements of As, Sb, Se, Sn and Ge were performed by inductively coupled plasma atomic emission spectrometry following their electrochemical hydride generation. An electrochemical hydride generator based on a concentric arrangement with a porous cathode, working in a continuous flow mode was used. The effects of sample flow rate, applied current and electrolytic solution concentration on response were studied and their influence on the mechanisms of hydride generation discussed. Four materials, particulate lead, reticulated vitreous carbon (RVC), silver and amalgamated silver were tested as cathode materials. The best results were achieved with particulate lead and RVC cathodes, wherein generation efficiencies higher than 80% were estimated for most of the analytes. In general, limits of detection between 0.1 and 3.6 ng ml -1 and a precision better than 5% were achieved using a lead cathode. The analysis of a marine sediment reference material (PACS-2, NRC) showed good agreement with the certified values for As and Se.

  6. Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.

    PubMed

    Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito

    2011-06-07

    Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.

  7. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0081 ENZYMATIC FUEL CELLS: INTEGRATING FLOW- THROUGH ANODE AND AIR-BREATHING CATHODE INTO A MEMBRANE-LESS BIOFUEL CELL...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01-JUN-2011 Journal Article (POSTPRINT) 01-JAN-2010 -- 31-JAN-2011 Enzymatic Fuel Cells...unlimited. Ref Public Affairs Case # 88ABW-2011-2228, 14 Apr 11. Document contains color images. One of the key goals of enzymatic biofuel cells

  8. Ferroelectric Emission Cathodes for Low-Power Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kovaleski, Scott D.; Burke, Tom (Technical Monitor)

    2002-01-01

    Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.

  9. Electron diffusion through the baffle aperture of a hollow cathode thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1979-01-01

    The use of a hollow cathode in place of an oxide cathode to increase thruster operating lifetimes requires, among other things, the addition of a baffle to restrict the flow of electrons from the hollow cathode. A theoretical model is developed which relates the baffle aperture area of a hollow-cathode thruster to the magnetic flux density and plasma properties in the aperture region, with the result that this model could be used as an aid in thruster design. Extensive Langmuir probing is undertaken to verify the validity of the model and demonstrate its capability. It is shown that the model can be used to calculate the aperture area required to effect discharge operation at a specified discharge voltage and arc current.

  10. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  11. A Self-Contained Experimental Diver Heater

    DTIC Science & Technology

    1977-09-01

    elcroe3f0ansimad4te3sae DD I 4~4731473 EDITIN OFI NOVAS I OBSOETEanclasifie SECURITY DECLASSIFICATION F D AEBONGRAING oId SCHEDUL Port) Unclassified SECURITY... cathodic material, such as iron (forming a galvanic couple), the reaction proceeds much more rapidly and liberates heat at a usable rate. Similar...the process are: 1. Current flows from anode to cathode via the short circuit because of the potential difference. 2. Water is reduced at the cathode

  12. Evaluation of a single cell and candidate materials with high water content hydrogen in a generic solid oxide fuel cell stack test fixture, Part II: materials and interface characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2013-01-01

    A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, andmore » optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.« less

  13. Humidity of anaesthetic gases with respect to low flow anaesthesia.

    PubMed

    Kleemann, P P

    1994-08-01

    It has been demonstrated in an experimental study in swine using the scanning electron microscope that a rebreathing technique utilising minimal fresh gas flowrates significantly improves climatization of anaesthetic gases. Consequently, effects of various anaesthetic techniques on airway climate must be assessed, which covers the need for suitable measuring devices. Basic principles and methods of humidity measurement in flowing anaesthetic gases include gravimetric hygrometry, dew point hygrometry, wet-dry bulb psychrometry, mass spectrometry, spectroscopic hygrometry and electrical hygrometry. A custom-made apparatus for continuous measurement of humidity and temperature in the inspired and expired gas mixtures of a breathing circuit (separated by a valve system, integrated between the endotracheal tube and the Y-piece) is described. Comparative evaluation of this apparatus and the psychrometer was carried out. It could be demonstrated that the apparatus, measuring with capacitive humidity sensors, is more suitable for prolonged use under clinical conditions than the psychrometer. In the second part of the study, climatization of anaesthetic gases under clinical conditions was investigated using fresh gas flowrates of 0.6, 1.5, 3.0 and 6.0 l/min. In the inspiratory limb of the circuit an absolute humidity of 21.3 mg H2O/l and a temperature of 31.5 degrees C were obtained after 120 minutes of minimal flow. Humidity and temperature of inspired air obtained with fresh gas flowrates of 6.0 and 3.0 l/min were found to be inadequate for prolonged anaesthesia. Reducing the fresh gas flow to 1.5 l/min increases heat and moisture content in the respired gases, but conditions are still inadequate for prolonged anaesthesia. Sufficient moisture (> or 20 mg H2O/l) and temperature are obtained under minimal flow conditions after one hour.

  14. Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution

    NASA Astrophysics Data System (ADS)

    Struble, W.; Roering, J. J.

    2017-12-01

    In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.

  15. Humidification of inspired oxygen is increased with pre-nasal cannula, compared to intranasal cannula.

    PubMed

    Dellweg, Dominic; Wenze, Markus; Hoehn, Ekkehard; Bourgund, Olaf; Haidl, Peter

    2013-08-01

    Oxygen therapy is usually combined with a humidification device, to prevent mucosal dryness. Depending on the cannula design, oxygen can be administered pre- or intra-nasally (administration of oxygen in front of the nasal ostia vs cannula system inside the nasal vestibulum). The impact of cannula design on intra-nasal humidity, however, has not been investigated to date. First, to develop a system, that samples air from the nasal cavity and analyzes the humidity of these samples. Second, to investigate nasal humidity during pre-nasal and intra-nasal oxygen application, with and without humidification. We first developed and validated a sampling and analysis system to measure humidity from air samples. By means of this system we measured inspiratory air samples from 12 subjects who received nasal oxygen with an intra-nasal and pre-nasal cannula at different flows, with and without humidification. The sampling and analysis system showed good correlation to a standard hygrometer within the tested humidity range (r = 0.99, P < .001). In our subjects intranasal humidity dropped significantly, from 40.3 ± 8.7% to 35.3 ± 5.8%, 32 ± 5.6%, and 29.0 ± 6.8% at flows of 1, 2, and 3 L, respectively, when oxygen was given intra-nasally without humidification (P = .001, P < .001, and P < .001, respectively). We observed no significant change in airway humidity when oxygen was given pre-nasally without humidification. With the addition of humidification we observed no significant change in humidity at any flow, and independent of pre- or intranasal oxygen administration. Pre-nasal administration of dry oxygen achieves levels of intranasal humidity similar to those achieved by intranasal administration in combination with a bubble through humidifier. Pre-nasal oxygen simplifies application and may reduce therapy cost.

  16. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    PubMed

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  17. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  18. Mach-Number Measurement with Laser and Pressure Probes in Humid Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Herring, G. C.

    2008-01-01

    Mach-number measurements using a nonintrusive optical technique, laser-induced thermal acoustics (LITA), are compared to pressure probes in humid supersonic airflow. The two techniques agree well in dry flow (-35 C dew point), but LITA measurements show about five times larger fractional change in Mach number than that of the pressure-probe when water is purposefully introduced into the flow. Possible reasons for this discrepancy are discussed.

  19. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Chen, Long; Liu, Tong; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang

    2018-01-01

    This study is aimed at improving the electrochemical performance of electrode-supported solid oxide electrolysis cells (SOECs) by optimizing the pore structure of the supports. Two planar NiO-8 mol% yttria-stabilized zirconia supports are prepared, one by the phase-inversion tape casting, and the other by conventional tape casting method using graphite as the pore former. The former contains finger-like straight open large pores, while the latter contains randomly distributed and tortuous pores. The steam electrolysis of the cells with different microstructure cathode supports is measured. The cell supported on the cathode with straight pores shows a high current density of 1.42 A cm-2 and a H2 production rate of 9.89 mL (STP) cm-2 min-1 at 1.3 V and 50 vol % humidity and 750 °C, while the cell supported on the cathode with tortuous pores shows a current density of only 0.91 A cm-2 and a H2 production rate of 6.34 mL cm-2min-1. It is concluded that the introduction of large straight open pores into the cathode support allows fast gas phase transport and thus minimizes the concentration polarization. Furthermore, the straight pores could provide better access to the reaction site (the electrode functional layer), thereby reducing the activation polarization as well.

  20. Recent Studies on Methanol Crossover in Liquid-Feed Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    In this work, the effects of methanol crossover and airflow rates on the cathode potential of an operating direct methanol fuel cell are explored. Techniques for quantifying methanol crossover in a fuel cell and for separating the electrical performance of each electrode in a fuel cell are discussed. The effect of methanol concentration on cathode potential has been determined to be significant. The cathode is found to be mass transfer limited when operating on low flow rate air and high concentrations of methanol. Improvements in cathode structure and operation at low methanol concentration have been shown to result in improved cell performance.

  1. E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters

    PubMed Central

    Gundogdu, Serdar; Sahin, Ozge

    2007-01-01

    Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU) in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF) are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.

  2. The influence of pressure and gas flow on size and morphology of titanium oxide nanoparticles synthesized by hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Gunnarsson, Rickard; Pilch, Iris; Boyd, Robert D.; Brenning, Nils; Helmersson, Ulf

    2016-07-01

    Titanium oxide nanoparticles have been synthesized via sputtering of a hollow cathode in an argon atmosphere. The influence of pressure and gas flow has been studied. Changing the pressure affects the nanoparticle size, increasing approximately proportional to the pressure squared. The influence of gas flow is dependent on the pressure. In the low pressure regime (107 ≤ p ≤ 143 Pa), the nanoparticle size decreases with increasing gas flow; however, at high pressure (p = 215 Pa), the trend is reversed. For low pressures and high gas flows, it was necessary to add oxygen for the particles to nucleate. There is also a morphological transition of the nanoparticle shape that is dependent on the pressure. Shapes such as faceted, cubic, and cauliflower can be obtained.

  3. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  4. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry.

    PubMed

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB 6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10 -6 -10 -3 ) products. Boron (B), tantalum (Ta), and tungsten (W)-originating from the emitter, keeper, and orifice of the hollow cathode-are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  5. Cu--Ni--Fe anode for use in aluminum producing electrolytic cell

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.; Bradford, Donald R; Barnett, Robert J.; Mezner, Michael B.

    2006-07-18

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising the steps of providing a molten salt electrolyte at a temperature of less than 900.degree. C. having alumina dissolved therein in an electrolytic cell having a liner for containing the electrolyte, the liner having a bottom and walls extending upwardly from said bottom. A plurality of non-consumable Cu--Ni--Fe anodes and cathodes are disposed in a vertical direction in the electrolyte, the cathodes having a plate configuration and the anodes having a flat configuration to compliment the cathodes. The anodes contain apertures therethrough to permit flow of electrolyte through the apertures to provide alumina-enriched electrolyte between the anodes and the cathodes. Electrical current is passed through the anodes and through the electrolyte to the cathodes, depositing aluminum at the cathodes and producing gas at the anodes.

  6. Revisiting Theories of Humidity Transduction: A Focus on Electrophysiological Data.

    PubMed

    Tichy, Harald; Hellwig, Maria; Kallina, Wolfgang

    2017-01-01

    Understanding the mechanism of humidity transduction calls for experimental data and a theory to interpret the data and design new experiments. A comprehensive theory of humidity transduction must start with agreement on what humidity parameters are measured by hygroreceptors and processed by the brain. Hygroreceptors have been found in cuticular sensilla of a broad range of insect species. Their structural features are far from uniform. Nevertheless, these sensilla always contain an antagonistic pair of a moist cell and a dry cell combined with a thermoreceptive cold cell. The strategy behind this arrangement remains unclear. Three main models of humidity transduction have been proposed. Hygroreceptors could operate as mechanical hygrometers, psychrometers or evaporation detectors. Each mode of action measures a different humidity parameter. Mechanical hygrometers measure the relative humidity, psychrometers indicate the wet-bulb temperature, and evaporimeters refer to the saturation deficit of the air. Here we assess the validity of the different functions by testing specific predictions drawn from each of the models. The effect of air temperature on the responses to humidity stimulation rules out the mechanical hygrometer function, but it supports the psychrometer function and highlights the action as evaporation rate detector. We suggest testing the effect of the flow rate of the air stream used for humidity stimulation. As the wind speed strongly affects the power of evaporation, experiments with changing saturation deficit at different flow rates would improve our knowledge on humidity transduction.

  7. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    NASA Astrophysics Data System (ADS)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.

    2017-04-01

    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  8. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  9. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    PubMed

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  10. The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode.

    PubMed

    Dzimitrowicz, Anna; Jamroz, Piotr; Greda, Krzysztof; Nowak, Piotr; Nyk, Marcin; Pohl, Pawel

    Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl 4 ) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L -1 of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L -1 , respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h -1 , respectively.

  11. The influence of stabilizers on the production of gold nanoparticles by direct current atmospheric pressure glow microdischarge generated in contact with liquid flowing cathode

    NASA Astrophysics Data System (ADS)

    Dzimitrowicz, Anna; Jamroz, Piotr; Greda, Krzysztof; Nowak, Piotr; Nyk, Marcin; Pohl, Pawel

    2015-04-01

    Gold nanoparticles (Au NPs) were prepared by direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between a miniature argon flow microjet and a flowing liquid cathode. The applied discharge system was operated in a continuous flow liquid mode. The influence of various stabilizers added to the solution of the liquid cathode, i.e., gelatin (GEL), polyvinylpyrrolidone (PVP), or polyvinyl alcohol (PVA), as well as the concentration of the Au precursor (chloroauric acid, HAuCl4) in the solution on the production growth of Au NPs was investigated. Changes in the intensity of the localized surface plasmon resonance (LSPR) band in UV/Vis absorption spectra of solutions treated by dc-μAPGD and their color were observed. The position and the intensity of the LSPR band indicated that relatively small nanoparticles were formed in solutions containing GEL as a capping agent. In these conditions, the maximum of the absorption LSPR band was at 531, 534, and 535 nm, respectively, for 50, 100, and 200 mg L-1 of Au. Additionally, scanning electron microscopy (SEM) and dynamic light scattering (DLS) were used to analyze the structure and the morphology of obtained Au NPs. The shape of Au NPs was spherical and uniform. Their mean size was ca. 27, 73, and 92 nm, while the polydispersity index was 0.296, 0.348, and 0.456 for Au present in the solution of the flowing liquid cathode at a concentration of 50, 100, and 200 mg L-1, respectively. The production rate of synthesized Au NPs depended on the precursor concentration with mean values of 2.9, 3.5, and 5.7 mg h-1, respectively.

  12. The cathode material for a plasma-arc heater

    NASA Astrophysics Data System (ADS)

    Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.

    1983-11-01

    The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.

  13. SOFC seal and cell thermal management

    DOEpatents

    Potnis, Shailesh Vijay [Neenah, WI; Rehg, Timothy Joseph [Huntington Beach, CA

    2011-05-17

    The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.

  14. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    PubMed

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  15. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    PubMed Central

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  16. Annular arc accelerator shock tube

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P. (Inventor)

    1976-01-01

    An annular arc accelerator shock tube employs a cold gas driver to flow a stream of gas from an expansion section through a high voltage electrode section to a test section, thus driving a shock wave in front of it. A glow discharge detects the shock wave and actuates a trigger generator which in turn fires spark-gap switches to discharge a bank of capacitors across a centered cathode and an annular anode in tandem electrode sections. The initial shock wave passes through the anode section from the cathode section thereby depositing energy into the flow gas without the necessity of any diaphragm opening in the gas flow from the expansion section through the electrode sections.

  17. Optimization of a rod pinch diode radiography source at 2.3 MV

    NASA Astrophysics Data System (ADS)

    Menge, P. R.; Johnson, D. L.; Maenchen, J. E.; Rovang, D. C.; Oliver, B. V.; Rose, D. V.; Welch, D. R.

    2003-08-01

    Rod pinch diodes have shown considerable capability as high-brightness flash x-ray sources for penetrating dynamic radiography. The rod pinch diode uses a small diameter (0.4-2 mm) anode rod extended through a cathode aperture. When properly configured, the electron beam born off of the aperture edge can self-insulate and pinch onto the tip of the rod creating an intense, small x-ray source. Sandia's SABRE accelerator (2.3 MV, 40 Ω, 70 ns) has been utilized to optimize the source experimentally by maximizing the figure of merit (dose/spot diameter2) and minimizing the diode impedance droop. Many diode parameters have been examined including rod diameter, rod length, rod material, cathode aperture diameter, cathode thickness, power flow gap, vacuum quality, and severity of rod-cathode misalignment. The configuration producing the greatest figure of merit uses a 0.5 mm diameter gold rod, a 6 mm rod extension beyond the cathode aperture (diameter=8 mm), and a 10 cm power flow gap to produce up to 3.5 rad (filtered dose) at 1 m from a 0.85 mm x-ray on-axis spot (1.02 mm at 3° off axis). The resultant survey of parameter space has elucidated several physics issues that are discussed.

  18. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    PubMed

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Quantification of ionic transport within thermally-activated batteries using electron probe micro-analysis

    DOE PAGES

    Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; ...

    2016-04-30

    The transient transport of electrolytes in thermally-activated batteries is studied in this paper using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure ofmore » the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10 -1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Finally, using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.« less

  20. Control Valve Trajectories for SOFC Hybrid System Startup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorrell, Megan; Banta, Larry; Rosen, William

    2012-07-01

    Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valvesmore » and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.« less

  1. An evaluation of 2 new devices for nasal high-flow gas therapy.

    PubMed

    Waugh, Jonathan B; Granger, Wesley M

    2004-08-01

    The traditional nasal cannula with bubble humidifier is limited to a maximum flow of 6 L/min to minimize the risk of complications. We conducted a bench study of 2 new Food and Drug Administration-approved nasal cannula/humidifier products designed to deliver at flows> 6 L/min. Using a digital psychrometer we measured the relative humidity and temperature of delivered gas from each device, at 5 L/min increments over the specified functional high-flow range. The Salter Labs unit achieved 72.5-78.7% relative humidity (5-15 L/min range) at ambient temperature (21-23 degrees C). The Vapotherm device achieved 99.9% relative humidity at a temperature setting of 37 degrees C (5-40 L/min). Both devices meet minimum humidification standards and offer practical new treatment options. The patient-selection criteria are primarily the severity of the patient's condition and cost.

  2. Gas diffusion layers coated with a microporous layer containing hydrophilic carbon nanotubes for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions

    NASA Astrophysics Data System (ADS)

    Kitahara, Tatsumi; Nakajima, Hironori; Okamura, Kosuke

    2015-06-01

    Gas diffusion layers (GDLs) coated with a hydrophobic microporous layer (MPL) composed of carbon black and polytetrafluoroethylene (PTFE) have been commonly used to improve the water management characteristics of polymer electrolyte fuel cells (PEFCs). However, the hydrophobic MPL coated GDL designed to prevent dehydration of the membrane under low humidity conditions is generally inferior at reducing flooding under high humidity conditions. It is therefore important to develop a robust MPL coated GDL that can enhance the PEFC performance regardless of the humidity conditions. In the present study, a GDL coated with an MPL containing hydrophilic carbon nanotubes (CNTs) was developed. The less hydrophobic pores incorporating CNTs are effective at conserving the membrane humidity under low humidity conditions. The MPL with CNTs is also effective at expelling excess water from the catalyst layer while maintaining oxygen flow pathways from the GDL substrate, allowing the mean flow pore diameter to be decreased to 2 μm without reducing the ability of the MPL to prevent flooding under high humidity conditions. An MPL coated GDL with a CNT content of 4 mass% exhibits significantly higher performance under both low and high humidity conditions than a hydrophobic MPL coated GDL.

  3. The HelCat Helicon-Cathode Device at UNM

    NASA Astrophysics Data System (ADS)

    Cyrin, Bricette; Watts, Christopher; Gilmore, Mark; Hayes, Tiffany; Kelly, Ralph; Leach, Christopher; Lynn, Alan; Sanchez, Andrew; Xie, Shuangwei; Yan, Lincan; Zhang, Yue

    2009-11-01

    The HelCat helicon-cathode device is a dual-source linear plasma device for investigating a wide variety of basic plasma phenomena. HelCat is 4 m long, 50 cm diameter, with axial magnetic field < 2.2 kG. An RF helicon source is at one end of the device, and a thermionic BaO-Ni cathode is at the other end. Current research topics include the relationship of turbulence to sheared plasma flows, deterministic chaos, Alfv'en wave propagation and damping, and merging plasma interaction. We present an overview of the ongoing research, and focus on recent results of merging helicon and cathode plasma. We will present some really cool movies.

  4. Revisiting Theories of Humidity Transduction: A Focus on Electrophysiological Data

    PubMed Central

    Tichy, Harald; Hellwig, Maria; Kallina, Wolfgang

    2017-01-01

    Understanding the mechanism of humidity transduction calls for experimental data and a theory to interpret the data and design new experiments. A comprehensive theory of humidity transduction must start with agreement on what humidity parameters are measured by hygroreceptors and processed by the brain. Hygroreceptors have been found in cuticular sensilla of a broad range of insect species. Their structural features are far from uniform. Nevertheless, these sensilla always contain an antagonistic pair of a moist cell and a dry cell combined with a thermoreceptive cold cell. The strategy behind this arrangement remains unclear. Three main models of humidity transduction have been proposed. Hygroreceptors could operate as mechanical hygrometers, psychrometers or evaporation detectors. Each mode of action measures a different humidity parameter. Mechanical hygrometers measure the relative humidity, psychrometers indicate the wet-bulb temperature, and evaporimeters refer to the saturation deficit of the air. Here we assess the validity of the different functions by testing specific predictions drawn from each of the models. The effect of air temperature on the responses to humidity stimulation rules out the mechanical hygrometer function, but it supports the psychrometer function and highlights the action as evaporation rate detector. We suggest testing the effect of the flow rate of the air stream used for humidity stimulation. As the wind speed strongly affects the power of evaporation, experiments with changing saturation deficit at different flow rates would improve our knowledge on humidity transduction. PMID:28928673

  5. Compact Rare Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this configuration with possibly an even longer emitter life. This cathode is specifically designed to integrate on the centerline of a high-power Hall thruster, thus eliminating the asymmetries in the plasma discharge common to cathodes previously mounted externally to the thruster s magnetic circuit. An alternative configuration for the cathode uses an external propellant feed. This diverts a fraction of the total cathode flow to an external feed, which can improve the cathode coupling efficiency at lower total mass flow rates. This can improve the overall thruster efficiency, thereby decreasing the required propellant loads for different missions. Depending on the particular mission, reductions in propellant loads can lead to mission enabling capabilities by allowing launch vehicle step-down, greater payload capability, or by extending the life of a spacecraft.

  6. Responses of sap flow, leaf gas exchange and growth of hybrid aspen to elevated atmospheric humidity under field conditions

    PubMed Central

    Niglas, Aigar; Kupper, Priit; Tullus, Arvo; Sellin, Arne

    2014-01-01

    An increase in average air temperature and frequency of rain events is predicted for higher latitudes by the end of the 21st century, accompanied by a probable rise in air humidity. We currently lack knowledge on how forest trees acclimate to rising air humidity in temperate climates. We analysed the leaf gas exchange, sap flow and growth characteristics of hybrid aspen (Populus tremula × P. tremuloides) trees growing at ambient and artificially elevated air humidity in an experimental forest plantation situated in the hemiboreal vegetation zone. Humidification manipulation did not affect the photosynthetic capacity of plants, but did affect stomatal responses: trees growing at elevated air humidity had higher stomatal conductance at saturating photosynthetically active radiation (gs sat) and lower intrinsic water-use efficiency (IWUE). Reduced stomatal limitation of photosynthesis in trees grown at elevated air humidity allowed slightly higher net photosynthesis and relative current-year height increments than in trees at ambient air humidity. Tree responses suggest a mitigating effect of higher air humidity on trees under mild water stress. At the same time, trees at higher air humidity demonstrated a reduced sensitivity of IWUE to factors inducing stomatal closure and a steeper decline in canopy conductance in response to water deficit, implying higher dehydration risk. Despite the mitigating impact of increased air humidity under moderate drought, a future rise in atmospheric humidity at high latitudes may be disadvantageous for trees during weather extremes and represents a potential threat in hemiboreal forest ecosystems. PMID:24887000

  7. Electrochemical cell for rebalancing REDOX flow system

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1979-01-01

    An electrically rechargeable REDOX cell or battery system including one of more rebalancing cells is described. Each rebalancing cell is divided into two chambers by an ion permeable membrane. The first chamber is fed with gaseous hydrogen and a cathode fluid which is circulated through the cathode chamber of the REDOX cell is also passed through the second chamber of the rebalancing cell. Electrochemical reactions take place on the surface of insert electrodes in the first and second chambers to rebalance the electrochemical capacity of the anode and cathode fluids of the REDOX system.

  8. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  9. Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration

    2016-09-01

    Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.

  10. Lithiation-Assisted Strengthening Effect and Reactive Flow in Bulk and Nano-Confined Sulfur Cathodes of Lithium-Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Wang, Mingchao; Yu, Jingui; Lin, Shangchao

    Sulfur (S) serves as a promising cathode material in Li-ion batteries owing to its abundance on earth, low cost and high theoretical specific capacity 1670 mAhg-1, which is 3-5 times higher than that of current commercial Li-ion batteries. Nowadays, the most popular strategies of using S cathode are based on producing nanostructured carbon matrices (i.e. hollow carbon nanospheres and nanofibers) to sustain S cathode loading. However, the possible stress evolution and mechanical degradation of the confined S cathode in those carbon matrices have never been explored before. In addition, the associated structural and conductivity changes of the confined S cathode during the lithiation/delithiation process plays a significant role in the battery performance. With the above in mind, here we conduct reactive molecular dynamics simulations to investigate the microstructural and stress evolution of the confined S cathode during lithiation/delithiation process. Simulation results indicate an unusual stress relaxation state in LixS compounds at lower Li concentrations (x >0.7). The strength of corresponding Li-S compounds also increases with respect to the Li concentration.

  11. Enhanced MEA Performance for PEMFCs under Low Relative Humidity and Low Oxygen Content Conditions via Catalyst Functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Le; Yang, Fan; Xie, Jian

    2017-01-01

    This work demonstrates that functionalizing annealed-Pt/Ketjen black EC300j (a-Pt/KB) and dealloyed-PtNi/Ketjen black EC300j (d-PtNi/KB) catalysts using p-phenyl sulfonic acid can effectively enhance performance in the membrane electrode assemblies (MEAs) of proton exchange membrane fuel cells (PEMFCs). The functionalization increased the size of both Pt and PtNi catalyst particles and resulted in the further leaching of Ni from the PtNi catalyst while promoting the formation of nanoporous PtNi nanoparticles. The size of the SO3H-Pt/KB and SO3H-PtNi/KB carbon-based aggregates decreased dramatically, leading to the formation of catalyst layers with narrower pore size distributions.MEA tests highlighted the benefits of the surface functionalization, inmore » which the cells with SO3H-Pt/KB and SO3H-PtNi/KB cathode catalysts showed superior high current density performance under reduced RH conditions, in comparison with cells containing annealed Pt/KB (a-Pt/KB) and de-alloyed PtNi/KB (d-PtNi/KB) catalysts. The performance improvement was particularly evident when using reactant gases with low relative humidity, indicating that the hydrophilic functional groups on the carbon improved the water retention in the cathode catalyst layer. These results show a new avenue for enhancing catalyst performance for the next generation of catalytic materials for PEMFCs.« less

  12. RHETT/EPDM Flight Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Manzella, David; Patterson, Michael; Pastel, Michael

    1997-01-01

    Under the sponsorship of the BMDO Russian Hall Electric Thruster Technology program two xenon hollow cathodes, a flight unit and a flight spare were fabricated, acceptance tested and delivered to the Naval Research Laboratory for use on the Electric Propulsion Demonstration Module. These hollow cathodes, based on the International Space Station plasma contactor design, were fabricated at the NASA Lewis Research Center for use with a D-55 anode layer thruster in the first on-orbit operational application of this technology. The 2.2 Ampere nominal emission current of this device was obtained with a xenon flow rate of 0.6 mg/s. Ignition of the cathode discharge was accomplished through preheating the active electron emitter with a resistive heating element before application of a 650 volt ignition pulse between the emitter and an external starting electrode. The successful acceptance testing of the Electric Propulsion Demonstration Module utilizing these cathodes demonstrated the suitability of cathodes based on barium impregnated inserts in an enclosed keeper configuration for use with Hall thruster propulsion systems.

  13. Electrical Characteristics of a Seawater MHD Thruster

    DTIC Science & Technology

    1990-06-01

    rt tt % t1r (4k aia. da O :hityc, F iY#) 4.S7 ’outin, iljxJm mbr pud.ar v ~& OUi f th 4 fi.Lii1 11U.1, .1 :Ufrtt Of 10 4TIpt ure 1 ftn II 1 ( I- 4...cathode- the top surface as the anode; the sidewalls were made from non-conducting materials. This channel was fully submerged in the water flow. A...were fulls submerged in the water flow were also mnvestigated isee Fig 2(h). For both channels the bottom wall wa-as the cathode. the top wall the anode

  14. Culvert flow in small drainages in montane tropical forests: observations from the Luquillo Experimental Forest of Puerto Rico.

    Treesearch

    F. N. Scatena

    1990-01-01

    This paper describe the hydraulics of unsubmerged flow for 5 culverts in the Luiquillo Esperimental Forest of Puerto Rico. A General equation based on empirical data is presented to estimate culvert discharge during unsubmerged conditions. Large culverts are needed in humid tropical montane areas than in humid temperatute watersheds and are usually appropriate only...

  15. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  16. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Technical Reports Server (NTRS)

    Batra, R.; Marino, D.

    1986-01-01

    The cathode life test program sponsored by NASA Lewis Research Center at Watkins-Johnson Company has been in continuous operation since 1972. Its primary objective has been to evaluate the long life capability of barium dispenser cathodes to produce emission current densities of 2 A sq. cm. or more in an operational environment simulating that of a highpower microwave tube. The life test vehicles were equipped with convergent flow electron guns, drift space tubes with solenoid magnets for electron beam confinement and water-cooled depressed collectors. A variety of cathode types has been tested, including GE Tungstate, Litton Impregnated, Philips Type B and M, Semicon types S and M, and Spectra-Mat Type M. Recent emphasis has been on monitoring the performance of Philips Type M cathodes at 2 A sq. cm. and Sprectra-Mat and Semicon Type M cathodes at 4 A sq. cm. These cathodes have been operated at a constant current of 616 mA and a cathode anode voltage on the order of 10 kV. Cathode temperatures were maintained at 1010 C true as measured from black body holes in the backs of the cathodes. This report presents results of the cathode life test program from July l982 through April l986. The results include hours of operation and performance data in the form of normalized emission current density versus temperature curves (Miram plots).

  17. Observation of airplane flow fields by natural condensation effects

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.; Rumsey, Christopher L.

    1988-01-01

    In-flight condensation patterns can illustrate a variety of airplane flow fields, such as attached and separated flows, vortex flows, and expansion and shock waves. These patterns are a unique source of flow visualization that has not been utilized previously. Condensation patterns at full-scale Reynolds number can provide useful information for researchers experimenting in subscale tunnels. It is also shown that computed values of relative humidity in the local flow field provide an inexpensive way to analyze the qualitative features of the condensation pattern, although a more complete theoretical modeling is necessary to obtain details of the condensation process. Furthermore, the analysis revealed that relative humidity is more sensitive to changes in local static temperature than to changes in pressure.

  18. Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.

    2016-01-01

    The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.

  19. A 13000-hour test of a mercury hollow cathode

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1973-01-01

    A mercury-fed hollow cathode was tested for 12,979 hours in a bell jar at SERT 2 neutralizer operating conditions. The net electron current drawn to a collector was 0.25 ampere at average collector voltages between 21.8 and 36.7 volts. The mercury flow rate was varied from 5.6 to 30.8 equivalent milliamperes to give stable operation at the desired electrode voltages and currents. Variations with time in the neutralizer discharge characteristics were observed and hypothesized to be related to changes in the cathode orifice dimensions and the availability of electron emissive material. A facility failure caused abnormal test conditions for the last 876 hours and led to the cathode heater failure which concluded the test.

  20. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with long cathodes in a high power, quasi-steady MPD discharge show that the critical current for the onset of voltage fluctuations, which was previously shown to be a function of cathode area, approaches an asymptote for cathodes of very large surface area. Floating potential measurements and photographs of the discharge luminosity indicate that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance. Photoelectric measurements of particular argon neutral and ion transitions show that the higher electronic states are populated more heavily than would be calculated on the basis of Saha-Boltzmann equilibrium at the local electron temperature and number density. Preliminary optical depth measurements show that for a current of 4 kA and an argon mass flow of 12 g/sec, a population inversion exists between the upper and lower states of the 4880 A argon ion transition.

  1. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  2. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, Steven T.; Contolini, Robert J.; Bernhardt, Anthony F.

    1992-01-01

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed.

  3. Method and apparatus for spatially uniform electropolishing and electrolytic etching

    DOEpatents

    Mayer, S.T.; Contolini, R.J.; Bernhardt, A.F.

    1992-03-17

    In an electropolishing or electrolytic etching apparatus the anode is separated from the cathode to prevent bubble transport to the anode and to produce a uniform current distribution at the anode by means of a solid nonconducting anode-cathode barrier. The anode extends into the top of the barrier and the cathode is outside the barrier. A virtual cathode hole formed in the bottom of the barrier below the level of the cathode permits current flow while preventing bubble transport. The anode is rotatable and oriented horizontally facing down. An extended anode is formed by mounting the workpiece in a holder which extends the electropolishing or etching area beyond the edge of the workpiece to reduce edge effects at the workpiece. A reference electrode controls cell voltage. Endpoint detection and current shut-off stop polishing. Spatially uniform polishing or etching can be rapidly performed. 6 figs.

  4. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  5. A computational fluid dynamics approach to nucleation in the water-sulfuric acid system.

    PubMed

    Herrmann, E; Brus, D; Hyvärinen, A-P; Stratmann, F; Wilck, M; Lihavainen, H; Kulmala, M

    2010-08-12

    This study presents a computational fluid dynamics modeling approach to investigate the nucleation in the water-sulfuric acid system in a flow tube. On the basis of an existing experimental setup (Brus, D.; Hyvärinen, A.-P.; Viisanen, Y.; Kulmala, M.; Lihavainen, H. Atmos. Chem. Phys. 2010, 10, 2631-2641), we first establish the effect of convection on the flow profile. We then proceed to simulate nucleation for relative humidities of 10, 30, and 50% and for sulfuric acid concentration between 10(9) to 3 x 10(10) cm(-3). We describe the nucleation zone in detail and determine how flow rate and relative humidity affect its characteristics. Experimental nucleation rates are compared to rates gained from classical binary and kinetic nucleation theory as well as cluster activation theory. For low RH values, kinetic theory yields the best agreement with experimental results while binary nucleation best reproduces the experimental nucleation behavior at 50% relative humidity. Particle growth is modeled for an example case at 50% relative humidity. The final simulated diameter is very close to the experimental result.

  6. Hydroxyl Tagging Velocimetry in Cavity-Piloted Mach 2 Combustor (Postprint)

    DTIC Science & Technology

    2006-01-01

    combustor with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H...grid of OH tracked by planar laser -induced fluorescence to yield about 120 velocity vectors of the two-dimensional flow over a fixed time delay...with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H + OH to

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Seong Lee

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less

  8. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new ormore » updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.« less

  9. Acetate enhances startup of a H₂-producing microbial biocathode.

    PubMed

    Jeremiasse, Adriaan W; Hamelers, Hubertus V M; Croese, Elsemiek; Buisman, Cees J N

    2012-03-01

    H(2) can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease MEC capital costs, a cathode is needed that is made of low-cost material and produces H(2) at high rate. A microbial biocathode is a low-cost candidate, but suffers from a long startup and a low H(2) production rate. In this study, the effects of cathode potential and carbon source on microbial biocathode startup were investigated. Application of a more negative cathode potential did not decrease the startup time of the biocathode. If acetate instead of bicarbonate was used as carbon source, the biocathode started up more than two times faster. The faster startup was likely caused by a higher biomass yield for acetate than for bicarbonate, which was supported by thermodynamic calculations. To increase the H(2) production rate, a flow through biocathode fed with acetate was investigated. This biocathode produced 2.2 m(3) H(2) m(-3)  reactor day(-1) at a cathode potential of -0.7 V versus NHE, which was seven times that of a parallel flow biocathode of a previous study. Copyright © 2011 Wiley Periodicals, Inc.

  10. Electrochemically-induced reduction of nitrate in aqueous solution

    PubMed Central

    Rajic, Lj.; Berroa, D.; Gregor, S.; Elbakri, S.; MacNeil, M.; Alshawabkeh, A.N.

    2018-01-01

    In this study, we evaluated the removal of nitrate from synthetic groundwater by a cathode followed by an anode electrode sequence in the electrochemical flow-through reactor. We also tested the feasibility of the used electrode sequence to minimize the production of ammonia during the nitrate reduction. The performance of monometallic Fe, Cu, Ni and carbon foam cathodes was tested under different current intensities, flow rates/regimes and the presence of Pd and Ag catalyst coating. With the use of monometallic Fe and an increase in current intensity from 60 mA to 120 mA, the nitrate removal rate increased from 7.6% to 25.0%, but values above 120 mA caused a decrease in removal due to excessive gas formation at the electrodes. Among tested materials, monometallic Fe foam cathode showed the highest nitrates removal rate and increased significantly in the presence of Pd catalyst: from 25.0% to 39.8%. Further, the circulation under 3 mL min−1 elevated the nitrate removal by 33% and the final nitrate concentration fell below the maximum contaminant level of 10 mg L−1 nitrate–nitrogen (NO3-N). During the treatment, the yield of ammonia production after the cathode was 92±4% while after the anode (Ti/IrO2/Ta2O5), the amount of ammonia significantly declined to 50%. The results proved that flow-through, undivided electrochemical systems can be used to remove nitrate from groundwater with the possibility of simultaneously controlling the generation of ammonia. PMID:29657554

  11. Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass.

    PubMed

    Gregory, Jeremy R; Nadeau, Marie-Claude; Kirchain, Randolph E

    2009-12-15

    This paper presents an analysis of the material recovery system for leaded glass from cathode ray tubes (CRTs) using a dynamic material flow analysis. In particular, the global mass flow of primary and secondary CRT glass and the theoretical capacities for using secondary CRT glass to make new CRT glass are analyzed. The global mass flow analysis indicates that the amount of new glass required is decreasing, but is much greater than the amount of secondary glass collected, which is increasing. The comparison of the ratio of secondary glass collected to the amount of new glass required from the mass flow analysis indicates that the material recovery system is sustainable for the foreseeable future. However, a prediction of the time at which the market for secondary glass will collapse due to excess capacity is not possible at the moment due to several sources of uncertainty.

  12. Application of a demountable water-cooled hollow-cathode lamp to atomic-fluorescence spectrometry.

    PubMed

    Rossi, G; Omenetto, N

    1969-02-01

    A demountable water-cooled hollow-cathode lamp has been investigated as a primary source in atomic fluorescence spectrometry. The discharge current ranged from 300 to 500 mA, and the flowing argon pressure between 0.4 and 4 mbar. Sensitivities ranging from 0.03 to 2 mug ml were obtained for 12 elements. The performances of the hollow-cathode lamp and those of the customary metal vapour discharge lamps for thallium, indium and gallium are compared. The role of the narrowness of the exciting lines in increasing the signal-to-scattering ratios is stressed.

  13. A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-free Atmosphere.

    PubMed

    Obermaier, Michael; Bandarenka, Aliaksandr S; Lohri-Tymozhynsky, Cyrill

    2018-03-21

    Electrochemical impedance spectroscopy (EIS) is an indispensable tool for non-destructive operando characterization of Polymer Electrolyte Fuel Cells (PEFCs). However, in order to interpret the PEFC's impedance response and understand the phenomena revealed by EIS, numerous semi-empirical or purely empirical models are used. In this work, a relatively simple model for PEFC cathode catalyst layers in absence of oxygen has been developed, where all the equivalent circuit parameters have an entire physical meaning. It is based on: (i) experimental quantification of the catalyst layer pore radii, (ii) application of De Levie's analytical formula to calculate the response of a single pore, (iii) approximating the ionomer distribution within every pore, (iv) accounting for the specific adsorption of sulfonate groups and (v) accounting for a small H 2 crossover through ~15 μm ionomer membranes. The derived model has effectively only 6 independent fitting parameters and each of them has clear physical meaning. It was used to investigate the cathode catalyst layer and the double layer capacitance at the interface between the ionomer/membrane and Pt-electrocatalyst. The model has demonstrated excellent results in fitting and interpretation of the impedance data under different relative humidities. A simple script enabling fitting of impedance data is provided as supporting information.

  14. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  15. Independent testing of the Fisher & Paykel Healthcare MR860 Laparoscopic Humidification System.

    PubMed

    Sammour, Tarik; Kahokehr, Arman; Hill, Andrew G

    2010-08-01

    In laparoscopic surgery CO2 is commonly insufflated at room temperature, with a relative humidity approaching 0%. There has been an increase in utilization of devices to warm and humidify the insufflated gas to avoid potential detrimental effects caused by desiccation. Available data on the performance of these devices are limited. We aimed to conduct independent testing of the Fisher & Paykel MR860 Laparoscopic Humidification System at variable flow rates. A 2.5l insulated chamber was constructed and a digital thermo-hygrometer placed inside it. The humidifier water vessel was weighed and exactly 30.0g of water poured in. 50.0L of CO2 was insufflated into the chamber via the humidifier at 2.0L/min, 4.0l/min, 6.0l/min, 8.0l/min, and 10l/min using a laparoscopic insufflator. Measurements of temperature and humidity in the chamber were taken at 30 second intervals. After 50.0l of gas was insufflated the water left in the humidifier was weighed, and this was used to calculate the mean absolute humidity of the insufflated gas by the gravimetric method. At every flow rate, > 98.0% relative humidity was achieved in the chamber after less than 30 seconds of insufflation. Using the gravimetric estimate, the humidifier was able to saturate 50.0l of CO2 to close to saturation humidity at every flow rate tested. The Fisher & Paykel MR860 Laparoscopic Humidification System effectively humidifies insufflated CO2 at a range of flow rates commonly used in the surgical setting.

  16. Observation of reflected waves on the SABRE positive polarity inductive adder MITL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Poukey, J.W.; Mendel, C.W.

    We are studying the coupling of extraction applied-B ion diodes to Magnetically Insulated Transmission Line (MITLs) on the SABRE (Sandia Accelerator and Beam Research Experiment, 6 MV, 300 kA) positive polarity inductive voltage adder. Our goal is to determine conditions under which efficient coupling occurs. The best total power efficiency for an ideal ion diode load (i.e., without parasitic losses) is obtained by maximizing the product of cathode current and gap voltage. MITLs require that the load impedance be undermatched to the self-limited line operating impedance for efficient transfer of power to ion diodes, independent of transit time isolation, andmore » even in the case of multiple cathode system with significant vacuum electron flow. We observe that this undermatched condition results in a reflected wave which decreases the line voltage and gap electron sheath current, and increases the anode and cathode current in a time-dependent way. The MITL diode coupling is determined by the flow impedance at the adder exit. We also show that the flow impedance increases along the extension MITL on SABRE. Experimental measurements of current and peak voltage are compared to analytical models and TWOQUICK 2.5-D PIC code simulations.« less

  17. Performance Characteristics of a DME Propellant Arcjet Thruster

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beeppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    This paper describes the influence of cathode configuration on performance of an arcjet thruster using dimethyl ether (DME) propellant. DME, an ether compound, has suitable characteristics for a space propulsion system; DME is storable in a liquid state without being kept under a high pressure, and requires no sophisticated temperature management such as a cryogenic device. DME can be gasified and liquefied simply by adjusting temperature whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of a 1-kW class DME arcjet thruster is measured at a discharge current of 13 A, DME mass flow rates ranging 15 to 60 mg/s under three cathode configurations: flat-tip rods of 2 and 4 mm in diam. and 4-mm-diam. rod having a cavity of 2 mm in diameter. Thrust measurements show that thrust is increased with propellant mass flow rate. Among the tested cathodes, the flat-tip rod of 4 mm in diam. with 55 mg/s DME flow rate yielded the highest performance: specific impulse of 330 s, thrust of 0.18 N, discharge power of 1400 W and specific power of 25 MJ/kg.

  18. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.

    PubMed

    Almatouq, Abdullah; Babatunde, Akintunde O

    2016-03-29

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.

  19. Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng

    2017-02-01

    Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the MREC, electrical potential generated by the exoelectrogens and the salinity-gradient between salt and fresh water were utilized to drive the high-rate H2O2 production. Operational parameters such as air flow rate, pH, cathodic potential, flow rate of salt and fresh water were investigated. The optimal H2O2 production was observed at salt and fresh water flow rate of 0.5 mL min-1, air flow rate of 12-20 mL min-1, cathode potential of -0.485 ± 0.025 V (vs Ag/AgCl). The maximum H2O2 accumulated concentration of 778 ± 11 mg L-1 was obtained at corresponding production rate of 11.5 ± 0.5 mg L-1 h-1. The overall energy input for the synthesis process was 0.45 ± 0.03 kWh kg-1 H2O2. Cathode potential was the key factor for H2O2 production, which was mainly affected by the air flow rate. This work for the first time proved the potential of MREC as an efficient platform technology for simultaneous electrosynthesis of valuable chemicals and utilization of salinity-gradient energy.

  20. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaponenko, I., E-mail: iaroslav.gaponenko@unige.ch; Gamperle, L.; Herberg, K.

    2016-06-15

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variationmore » of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.« less

  1. Sensitivity Testing of the NSTAR Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Anderson, John; Brophy, John

    2007-01-01

    During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.

  2. Intraperitoneal temperature and desiccation during endoscopic surgery. Intraoperative humidification and cooling of the peritoneal cavity can reduce adhesions.

    PubMed

    Corona, Roberta; Verguts, Jasper; Koninckx, Robert; Mailova, Karina; Binda, Maria Mercedes; Koninckx, Philippe R

    2011-10-01

    This study was conducted to document quantitatively the intraperitoneal temperature and desiccation during laparoscopic surgery. The temperature, relative humidity, and flow rate were measured in vitro and during laparoscopic surgery, at the entrance and at the exit of the abdomen. This permitted us to calculate desiccation for various flow rates using either dry CO(2) or CO(2) humidified with 100% relative humidity at any preset temperature between 25 and 37°C. The study showed that desiccation, both in vitro and in vivo, varies as expected with the flow rates and relative humidity while intraperitoneal temperature varies mainly with desiccation. Temperature regulation of bowels is specific and drops to the intraperitoneal temperature without affecting core body temperature. With a modified humidifier, desiccation could be eliminated while maintaining the intraperitoneal temperature between 31 to 32°C. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. In vitro evaluation of heat and moisture exchangers designed for spontaneously breathing tracheostomized patients.

    PubMed

    Brusasco, Claudia; Corradi, Francesco; Vargas, Maria; Bona, Margherita; Bruno, Federica; Marsili, Maria; Simonassi, Francesca; Santori, Gregorio; Severgnini, Paolo; Kacmarek, Robert M; Pelosi, Paolo

    2013-11-01

    Heat and moisture exchangers (HMEs) are commonly used in chronically tracheostomized spontaneously breathing patients, to condition inhaled air, maintain lower airway function, and minimize the viscosity of secretions. Supplemental oxygen (O2) can be added to most HMEs designed for spontaneously breathing tracheostomized patients. We tested the efficiency of 7 HMEs designed for spontaneously breathing tracheostomized patients, in a normothermic model, at different minute ventilations (VE) and supplemental O2 flows. HME efficiency was evaluated using an in vitro lung model at 2 VE (5 and 15 L/min) and 4 supplemental O2 flows (0, 3, 6, and 12 L/min). Wet and dry temperatures of the inspiratory flow were measured, and absolute humidity was calculated. In addition, HME efficiency at 0, 12, and 24 h use was evaluated, as well as resistance to flow at 0 and 24 h. The progressive increase in O2 flow from 0 to 12 L/min was associated with a reduction in temperature and absolute humidity. Under the same conditions, this effect was greater at lower VE. The HME with the best performance provided an absolute humidity of 26 mg H2O/L and a temperature of 27.8 °C. No significant changes in efficiency or resistance were detected during the 24 h evaluation. The efficiency of HMEs in terms of temperature and absolute humidity is significantly affected by O2 supplementation and V(E).

  4. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  5. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  6. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  7. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  8. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  9. Fuel-cell engine stream conditioning system

    DOEpatents

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  10. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.

    PubMed

    Najafabadi, Amin Taheri; Leeuwner, Magrieta J; Wilkinson, David P; Gyenge, Előd L

    2016-07-07

    The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  12. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  13. The Humidity in a Low-Flow Dräger Fabius Anesthesia Workstation with or without Thermal Insulation or a Heat and Moisture Exchanger: A Prospective Randomized Clinical Trial.

    PubMed

    de Oliveira, Sergius A R; Lucio, Lorena M C; Modolo, Norma S P; Hayashi, Yoko; Braz, Mariana G; de Carvalho, Lídia R; Braz, Leandro G; Braz, José Reinaldo C

    2017-01-01

    During anesthesia, as compared with intensive care, the time of the tracheal intubation is much shorter. An inhaled gas minimum humidity of 20 mgH2O.L-1 is recommended to reduce the deleterious effects of dry gas on the airways during anesthesia with tracheal intubation. The Fabius GS Premium® anesthesia workstation (Dräger Medical, Lübeck, Germany) has a built-in hotplate to heat gases in the breathing circuit. A heat and moisture exchanger (HME) is used to further heat and humidify the inhaled gas. The humidity of the gases in the breathing circuit is influenced by the ambient temperature. We compared the humidity of the inhaled gases from a low-flow Fabius anesthesia workstation with or without thermal insulation (TI) of the breathing circuit and with or without an HME. We conducted a prospective randomized trial in 41 adult female patients who underwent elective abdominal surgery. The patients were allocated into four groups according to the devices used to ventilate their lungs using a Dräger Fabius anesthesia workstation with a low gas flow (1 L.min-1): control, with TI, with an HME or with TI and an HME (TIHME). The mean temperature and humidity of the inhaled gases were measured during 2-h after connecting the patients to the breathing circuit. The mean inhaled gas temperature and absolute humidity were higher in the HME (29.2±1.3°C; 28.1±2.3 mgH2O·L-1) and TIHME (30.1±1.2°C; 29.4±2.0 mgH2O·L-1) groups compared with the control (27.5±1.0°C; 25.0±1.8 mgH2O·L-1) and TI (27.2±1.1°C; 24.9±1.8 mgH2O·L-1) groups (P = 0.003 and P<0.001, respectively). The low-flow Fabius GS Premium breathing circuit provides the minimum humidity level of inhaled gases to avoid damage to the tracheobronchial epithelia during anesthesia. TI of the breathing circuit does not increase the humidity of the inhaled gases, whereas inserting an HME increases the moisture of the inhaled gases closer to physiological values.

  14. A diffusive ink transport model for lipid dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b

  15. Membraneless laminar flow cell for electrocatalytic CO 2 reduction with liquid product separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flowmore » cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.« less

  16. Membraneless laminar flow cell for electrocatalytic CO 2 reduction with liquid product separation

    DOE PAGES

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; ...

    2017-03-16

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flowmore » cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.« less

  17. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  18. Study on the water flooding in the cathode of direct methanol fuel cells.

    PubMed

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  19. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer.

    PubMed

    Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H

    2014-10-06

    The iron-reducing bacterium Shewanella oneidensis MR-1 has a dual directional electronic conduit involving 40 heme redox centers in flavin-binding outer-membrane c-type cytochromes (OM c-Cyts). While the mechanism for electron export from the OM c-Cyts to an anode is well understood, how the redox centers in OM c-Cyts take electrons from a cathode has not been elucidated at the molecular level. Electrochemical analysis of live cells during switching from anodic to cathodic conditions showed that altering the direction of electron flow does not require gene expression or protein synthesis, but simply redox potential shift about 300 mV for a flavin cofactor interacting with the OM c-Cyts. That is, the redox bifurcation of the riboflavin cofactor in OM c-Cyts switches the direction of electron conduction in the biological conduit at the cell-electrode interface to drive bacterial metabolism as either anode or cathode catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Maleki, Erfan; Maleki, Nasim

    2016-08-01

    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.

  1. Optical fiber sensor for breathing diagnostics

    NASA Astrophysics Data System (ADS)

    Claus, Richard O.; Distler, T.; Mecham, J. B.; Davis, B.; Arregui, F. J.; Matias, I. R.

    2004-06-01

    We report improvements of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Recent work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from such a multicomponent film that occurs as a function of humidity and various chemicals. We briefly review that prior work as a way to introduce more recent developments. The paper then discusses the application of these humidity sensors to the analysis of air flow associated with breathing [1]. We have designed the sensor thin film materials to enable the detection of relative humidity over a wide range, from approximately 5 to 95%, and for response times as short as several microseconds. This fast response time allows the near real-time analysis of air flow and water vapor transport during a single breath, with the advantage of very small size. The use of multiple sensors spaced a known distance apart allows the measurement of flow velocity, and recent work indicates a variation in sensor response versus coating thickness.

  2. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study.

    PubMed

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  3. Performance characteristics of quasi-steady MPD discharges. [spacecraft plasma propulsion thrust efficiency and specific impulse

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; Jahn, R. G.; Clark, K. E.; Von Jaskowsky, W. F.

    1976-01-01

    The onset of voltage fluctuations in a multi-megawatt quasi-steady MPD accelerator, indicative of increased cathode ablation and a consequent degradation of performance, is found to be a function of cathode size. With longer cathodes, this onset shifts to substantially higher powers per unit mass flow and the plasma exhaust velocity can be increased to values previously thought inaccessible to accelerators of this class. Centerline velocities up to 30 km/sec have been measured in argon, which for the observed exhaust profiles translate into specific impulses up to 2400 sec and corresponding thrust efficiencies above 30%.

  4. Development of Portable Flow-Through Electrochemical Sanitizing Unit to Generate Near Neutral Electrolyzed Water.

    PubMed

    Zhang, Jufang; Yang, Hongshun; Chan, Joel Zhi Yang

    2018-03-01

    We developed a portable flow-through, electrochemical sanitizing unit to produce near neutral pH electrolyzed water (producing NEW). Two methods of redirecting cathode yields back to the anode chamber and redirecting anode yields the cathode chamber were used. The NEW yields were evaluated, including: free available chlorine (FAC), oxidation-reduction potential (ORP), and pH. The performances of 2 electrodes (RuO 2 -IrO 2 /TiO 2 and IrO 2 -Ta 2 O 5 /TiO 2 ) were investigated. The unit produced NEW at pH 6.46 to 7.17, an ORP of 805.5 to 895.8 mV, and FAC of 3.7 to 82.0 mg/L. The NEW produced by redirecting cathode yields had stronger bactericidal effects than the NEW produced by redirecting anode yields or NEW produced by mixing the commercial unit's anode and cathode product (P < 0.05). Electron spin resonance results showed hydroxyl free radicals and superoxide anion free radicals were present in the NEW produced by developed unit. The NEW generator is a promising sanitizing unit for consumers and the food industry to control foodborne pathogens. Current commercial NEW-producing units are quite large and are not convenient for family using. The developed portable flow-through, NEW-producing unit has great potential in a wide range of applications, such as organic farm, households, and small food industries. The examined sanitizing treatments showed effective control of Escherichia coli O157:H7 and Listeria monocytogenes. © 2018 Institute of Food Technologists®.

  5. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  6. In-plane and through-plane non-uniform carbon corrosion of polymer electrolyte fuel cell cathode catalyst layer during extended potential cycles

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourov; Ohashi, Hidenori; Tabata, Hiroshi; Hashimasa, Yoshiyuki; Yamaguchi, Takeo

    2017-09-01

    The impact of electrochemical carbon corrosion via potential cycling durability tests mimicking start-stop operation events on the microstructure of the cathode catalyst layer in polymer electrolyte fuel cells (PEFCs) is investigated using focused ion beam (FIB) fabrication without/with the pore-filling technique and subsequent scanning electron microscope (SEM) observations. FIB/SEM investigations without pore-filling reveals that the durability test induces non-uniform cathode shrinking across the in-plane direction; the thickness of the catalyst layer decreases more under the gas flow channel compared to the area under the rim of the flow field. Furthermore, FIB/SEM investigations with the pore-filling technique reveal that the durability test also induces non-uniform cathode shrinking in the through-plane direction; the pores in the area close to the membrane are more shrunken compared with those close to the microporous layer. In particular, a thin area (1-1.5 μm) close to the membrane is found to be severely damaged; it includes closed pores that hinder mass transport through the catalyst layer. It is suggested that uneven carbon corrosion and catalyst layer compaction are responsible for the performance loss during potential cycling operation of PEFCs.

  7. The temperature and humidity in a low-flow anesthesia workstation with and without a heat and moisture exchanger.

    PubMed

    de Castro, Jair; Bolfi, Fernanda; de Carvalho, Lidia R; Braz, Jose R C

    2011-09-01

    The Dräger Primus anesthesia workstation has a built-in hotplate to heat the patient's exhaled gas. The fresh gas flow is mixed with the heated exhaled gas as they pass through the soda lime canister. A heat and moisture exchanger (HME) may also be used to further heat and humidify the inhaled gas. In this study we measured the temperature and humidity of the inhaled gas coming from the Dräger Primus with or without a HME. Thirty female patients were randomly divided into 2 groups and their lungs ventilated by the Primus Dräger anesthesia workstation with or without a HME. The humidity and temperature of the inhaled gas were measured 15, 30, 60, 90, and 120 minutes after connecting the patient to the breathing circuit. After 120 minutes of ventilation with a low-flow breathing circuit, the temperatures of inhaled gas were 25°C ± 1°C and 30°C ± 2°C without and with HME, respectively, with a statistically significant difference between groups (P < 0.001) with 95% confidence interval (CI) of 3.80°C to 6.40°C; and the absolute humidity values of the inhaled gas were 20.5 ± 3.6 mgH(2)O · L(-1) and 30 ± 2 mgH(2)O · L(-1) without and with HME, respectively, with a statistically significant difference between groups (P < 0.001) with 95% CI of 7.37°C to 13.03°C. The Primus anesthesia workstation partially humidifies the inspired gas when a low fresh gas flow is used. Insertion of an HME increases the humidity in inhaled gas, bringing it close to physiological values.

  8. Pulse ignition characterization of mercury ion thruster hollow cathode using an improved pulse ignitor

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Gruber, R. P.

    1978-01-01

    An investigation of the high voltage pulse ignition characteristics of the 8 cm mercury ion thruster neutralizer cathode identified a low rate of voltage rise and long pulse duration as desirable factors for reliable cathode starting. Cathode starting breakdown voltages were measured over a range of mercury flow rates and tip heater powers for pulses with five different rates of voltage rise. Breakdown voltage requirements for the fastest rising pulse (2.5 to 3.0 kV/micro sec) were substantially higher (2 kV or more) than for the slowest rising pulse (0.3 to 0.5 kV/micro sec) for the same starting conditions. Also described is an improved, low impedance pulse ignitor circuit which reduces power losses and eliminates problems with control and packaging associated with earlier designs.

  9. Low pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, Daniel S.

    1985-01-01

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  10. Low-pressure spark gap triggered by an ion diode

    DOEpatents

    Prono, D.S.

    1982-08-31

    Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.

  11. Testing Iodine as a New Fuel for Cathodes

    NASA Astrophysics Data System (ADS)

    Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace

    2017-11-01

    The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.

  12. Cathode degradation and erosion in high pressure arc discharges

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.; Nakanishi, S.

    1984-01-01

    The various processes which control cathode erosion and degradation were identified and evaluated. A direct current arc discharge was established between electrodes in a pressure-controlled gas flow environment. The cathode holder was designed for easy testing of various cathode materials. The anode was a water cooled copper collector electrode. The arc was powered by a dc power supply with current and voltage regulated cross-over control. Nitrogen and argon were used as propellants and the materials used were two percent thoriated tungsten, barium oxide impregnated porous tungsten, pure tungsten and lanthanum hexaboride. The configurations used were cylindrical solid rods, wire bundles supported by hollow molybdenum tubes, cylindrical hollow tubes, and hollow cathodes of the type used in ion thrusters. The results of the mass loss tests in nitrogen indicated that pure tungsten eroded at a rate more than 10 times faster than the rates of the impregnated tungsten materials. It was found that oxygen impurities of less than 0.5 percent in the nitrogen increased the mass loss rate by a factor of 4 over high purity nitrogen. At power levels less than 1 kW, cathode size and current level did not significantly affect the mass loss rate. The hollow cathode was found to be operable in argon and in nitrogen only at pressures below 400 and 200 torr, respectively.

  13. Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, M.I.; /MIT; Convery, M.

    2005-12-15

    The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, asmore » it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be varied from almost dry to almost fully saturated. With the sensor calibrated, a set of sensors was used to measure humidity vs. time in the LSTs. The sensors were placed in two sets of LST modules, one gas line flowing through each set. These modules were tested for count rate v. voltage while simultaneously measuring relative humidity in each module. One set produced expected readings, while the other showed the spike in count rate. The relative humidity in the two sets of modules looked very similar, but it rose significantly for modules further along the gas chain.« less

  14. Effect of Particle Size and Operating Conditions on Pt 3Co PEMFC Cathode Catalyst Durability

    DOE PAGES

    Gummalla, Mallika; Ball, Sarah; Condit, David; ...

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt 3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes withmore » the smallest Pt 3Co particle size was the highest and that of the largest Pt 3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt 3Co over the 4.9 nm Pt 3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt 3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  15. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode.

    PubMed

    Zhu, Feng; Wang, Wancheng; Zhang, Xiaoyan; Tao, Guanhong

    2011-08-01

    A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m(2). Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Sustainable green technology on wastewater treatment: The evaluation of enhanced single chambered up-flow membrane-less microbial fuel cell.

    PubMed

    Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur

    2018-04-01

    This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained. Copyright © 2017. Published by Elsevier B.V.

  17. [Humidification and heating of anesthetic gases during pediatric anesthesia using the Cicero Anesthesia Workstation].

    PubMed

    Strauss, J M; Hausdörfer, J; Hagemann, H; Schröder, D

    1992-09-01

    A series of 52 infants underwent general or urological surgery; all were ventilated with the CICERO. Two different flows of fresh gas were used. In group I (n = 21) the fresh gas flow was set exactly at the level of the minute volume, representing a half-open, non-rebreathing system. In group II (n = 31) the fresh gas flow was adjusted to 10% of the required minute volume. Temperature and relative humidity of the inspired gas were measured continuously close to the tracheal tube. Anaesthesia was accomplished with 2 vol% isoflurane, 21-30 vol% oxygen in nitrous oxide. The results were compared with those achieved with our time-tested paediatric equipment, a SERVO 900D ventilator with a Fisher-Paykel humidifier (Group III, n = 35). Using a high fresh gas flow, no increase in relative humidity in the inspired gas could be detected. The values varied between 12% and 25% (group I). Reducing the flow of fresh gas as indicated above resulted in an increase in the relative humidity (group II). Over the evaluated period of 2 h, humidity increased slowly from an initial mean value of 20% to a maximum of something over 70%. Using the SERVO 900D ventilator combined with the Fisher-Paykel humidifier, humidity reached a value of greater 90% within 10 min after activation of the heated cascade. Humidity in the inspired gas should exceed 70% to avoid damage to infant airways. This will not be attained until after more than 2 h with unaided breathing systems, by when most operations performed on paediatric patients will already be over. Condensed water may aspirated by small infants. This potentially dangerous situation was only encountered in the CICERO circuit, and not in the system protected by the Fisher-Paykel cascade. Dry gases can result in thickened mucous and in obstruction of a small tracheal tube, which requires emergency reintubation. With artificial airways dry gases damage the ciliated epithelia of the trachea and cause loss of water and body heat. The temperature of the "cold" gases varied within a range of 21-33 degrees C and could not be adjusted by the anaesthetist. In the CICERO system, heating the gases at the valve only prevents mechanical failure caused by water condensation. In pediatric anaesthesia, variable heating and non-condensing humidity are essential. The dry and heated gases of the CICERO are not acceptable in the daily practice of paediatric anaesthesia.

  18. Optical fiber sensors for breathing diagnostics

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Claus, Richard O.; Mecham, Jeffrey B.; Vercellino, M.; Arregui, Francisco J.; Matias, Ignacio R.

    2002-03-01

    We report the application of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Prior work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from the film that occurs as a function of humidity. We will briefly review that prior work as a way to introduce more recent developments. This paper will then discuss the application of these sensors to the analysis of air flow. We have designed the sensor thin film materials for the detection of relative humidity over a wide range, from approximately 10 to 95%, and for response times as short as several tens of milliseconds. This very fast response time allows the near real-time analysis of air flow and humidity during a single breath, with the advantage of very small size.

  19. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating.

    PubMed

    Chang, Dongsook; Huang, Aaron; Olsen, Bradley D

    2017-01-01

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein-polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air-film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Requirements for long-life operation of inert gas hollow cathodes: Preliminary report

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10(exp -3)sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  1. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  2. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  3. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    PubMed

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On the coupling of hydride generation with atmospheric pressure glow discharge in contact with the flowing liquid cathode for the determination of arsenic, antimony and selenium with optical emission spectrometry.

    PubMed

    Greda, Krzysztof; Jamroz, Piotr; Jedryczko, Dominika; Pohl, Pawel

    2015-05-01

    The miniaturized atmospheric pressure glow discharge (APGD) sustained between a liquid flowing cathode and a He nozzle jet anode was combined with hydride generation (HG) to improve the performance of the determination of As, Sb and Se with optical emission spectrometry (OES). As(III), Sb(III) and Se(IV) species were converted into volatile hydrides in the reaction with NaBH4 and right after that they were delivered to the near-anode region of APGD through the nozzle. The transport efficiency of As, Sb and Se to the discharge was several times higher, while intensities of atomic emission lines of As, Sb and Se were improved 3 orders of magnitude (as compared to intensities acquired for the near-cathode region in a APGD system with a typical introduction of analytes through sputtering of the flowing liquid cathode). The effect of the concentration of NaBH4 and HCl in a sample solution, the discharge current, the flow rate of He carrier/jet-supporting and He shielding gases on the emission yield coming from As, Sb, Se, He and H atomic lines and OH and N2 band heads as well as the electron number density was thoroughly studied. Under compromised conditions, limits of detection (3σ criterion) of As, Sb and Se were respectively 4.2, 1.2 and 3.1 µg L(-1). Usefulness of the method was confirmed by the analysis of Sniadecki and Marchlewski highly mineralized spring waters (Kudowa Zdroj, Poland) on the content of As, Sb and Se. Recoveries of elements added to these spring waters were within 90.3-103.7% proving good accuracy of the HG-APGD-OES method. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  6. Patterns in the sky: Natural visualization of aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.

    1994-01-01

    The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.

  7. Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.

    2003-01-01

    We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.

  8. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  9. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOEpatents

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  10. Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack

    NASA Astrophysics Data System (ADS)

    Gillespie, M. I.; Kriek, R. J.

    2017-12-01

    A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.

  11. Design, Development, and Testing of a Water Vapor Exchanger for Spacecraft Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Micka, Daniel J.; Chepko, Ariane B.; Rule, Kyle C.; Anderson, Molly S.

    2016-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Maximizing the use of regenerative systems and conserving water are critical considerations. This paper describes the design, development, and testing of an innovative water vapor exchanger (WVX) that can minimize the amount of water absorbed in, and vented from, regenerative CO2 removal systems. Key design requirements for the WVX are high air flow capacity (suitable for a crew of six), very high water recovery, and very low pressure losses. We developed fabrication and assembly methods that enable high-efficiency mass transfer in a uniform and stable array of Nafion tubes. We also developed analysis and design methods to compute mass transfer and pressure losses. We built and tested subscale units sized for flow rates of 2 and 5 cu ft/min (3.4–8.5 cu m/hr). Durability testing demonstrated that a stable core geometry was sustained over many humid/dry cycles. Pressure losses were very low (less than 0.5 in. H2O (125 Pa) total) and met requirements at prototypical flow rates. We measured water recovery efficiency across a range of flow rates and humidity levels that simulate the range of possible cabin conditions. We measured water recovery efficiencies in the range of 80 to 90%, with the best efficiency at lower flow rates and higher cabin humidity levels. We compared performance of the WVX with similar units built using an unstructured Nafion tube bundle. The WVX achieves higher water recovery efficiency with nearly an order of magnitude lower pressure drop than unstructured tube bundles. These results show that the WVX provides uniform flow through flow channels for both the humid and dry streams and can meet requirements for service on future exploration spacecraft. The WVX technology will be best suited for long-duration exploration vehicles that require regenerative CO2 removal systems while needing to conserve water.

  12. Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials

    NASA Astrophysics Data System (ADS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Appetecchi, Giovanni B.; Winter, Martin; Passerini, Stefano

    2014-01-01

    Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4 V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O2 or Li(Ni0.8Co0.15Al0.05)O2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI)2/composite cathode batteries at temperatures as low as 40 °C revealed high delivered capacities. However, in comparison with LiFePO4, the 4 V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3 V. Moreover, the presence of Pyr14TFSI in the 4 V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector.

  13. Direct measurements of anode/cathode gap plasma in cylindrically imploding loads on the Z machine

    NASA Astrophysics Data System (ADS)

    Porwitzky, A.; Dolan, D. H.; Martin, M. R.; Laity, G.; Lemke, R. W.; Mattsson, T. R.

    2018-06-01

    By deploying a photon Doppler velocimetry based plasma diagnostic, we have directly observed low density plasma in the load anode/cathode gap of cylindrically converging pulsed power targets. The arrival of this plasma is temporally correlated with gross current loss and subtle power flow differences between the anode and the cathode. The density is in the range where Hall terms in the electromagnetic equations are relevant, but this physics is lacking in the magnetohydrodynamics codes commonly used to design, analyze, and optimize pulsed power experiments. The present work presents evidence of the importance of physics beyond traditional resistive magnetohydrodynamics for the design of pulsed power targets and drivers.

  14. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  15. The Use of Laser-Induced Fluorescence to Characterize Discharge Cathode Erosion in a 30 cm Ring-Cusp Ion Thruster

    NASA Technical Reports Server (NTRS)

    Sovey, James S. (Technical Monitor); Williams, George J., Jr.

    2004-01-01

    Relative erosion rates and impingement ion production mechanisms have been identified for the discharge cathode of a 30 cm ion engine using laser-induced fluorescence (LIF). Mo and W erosion products as well as neutral and singly ionized xenon were interrogated. The erosion increased with both discharge current and voltage and spatially resolved measurements agreed with observed erosion patters. Ion velocity mapping identified back-flowing ions near the regions of erosion with energies potentially sufficient to generate the level of observed erosion. Ion production regions downstream of the cathode were indicated and were suggested as possible sources of the erosion causing ions.

  16. Progress and recent developments in sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1991-01-01

    Significant strides have been made in the development of high-temperature rechargeable sodium batteries utilizing transition metal chloride cathodes in the last decade, mainly due to the expertise available on Na/S batteries. These systems have already performed attractively in the various feasibility studies and have an excellent safety record. Despite the encouraging figures obtained for specific energies, certain design changes such as modifying the geometry of the beta alumina electrolyte and optimization of the porous cathodes for enhanced electrolyte flow need to be made to achieve high power densities required in applications such as electric vehicles and space. The chemistry of MCl2 cathodes, electrode fabrication, and design options are discussed, and performance data are examined.

  17. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  18. Evaluation of Cathode Air Flow Transients in a SOFC/GT Hybrid System Using Hardware in the Loop Simulation.

    PubMed

    Zhou, Nana; Yang, Chen; Tucker, David

    2015-02-01

    Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

  19. Evaluating Humidity Recovery Efficiency of Currently Available Heat and Moisture Exchangers: A Respiratory System Model Study

    PubMed Central

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers’ humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers. PMID:19578664

  20. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  1. Filters for blocking macroparticles in plasma deposition apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anders, Andre; Kolbeck, Jonathan

    This disclosure provides systems, methods, and apparatus related to blocking macroparticles in deposition processes utilizing plasmas. In one aspect, an apparatus includes a cathode, a substrate holder, a first magnet, a second magnet, and a structure. The cathode is configured to generate a plasma. The substrate holder is configured to hold a substrate. The first magnet is disposed proximate a first side of the cathode. The second magnet is disposed proximate a second side of the substrate holder. A magnetic field exists between the first magnet and the second magnet and a flow of the plasma substantially follows the magneticmore » field. The structure is disposed between the second side of the cathode and the first side of the substrate holder and is positioned proximate a region where the magnetic field between the first magnet and the second magnet is weak.« less

  2. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  3. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  4. The Humidity in a Low-Flow Dräger Fabius Anesthesia Workstation with or without Thermal Insulation or a Heat and Moisture Exchanger: A Prospective Randomized Clinical Trial

    PubMed Central

    de Oliveira, Sergius A. R.; Lucio, Lorena M. C.; Modolo, Norma S. P.; Hayashi, Yoko; Braz, Mariana G.; de Carvalho, Lídia R.; Braz, Leandro G.; Braz, José Reinaldo C.

    2017-01-01

    Background During anesthesia, as compared with intensive care, the time of the tracheal intubation is much shorter. An inhaled gas minimum humidity of 20 mgH2O.L-1 is recommended to reduce the deleterious effects of dry gas on the airways during anesthesia with tracheal intubation. The Fabius GS Premium® anesthesia workstation (Dräger Medical, Lübeck, Germany) has a built-in hotplate to heat gases in the breathing circuit. A heat and moisture exchanger (HME) is used to further heat and humidify the inhaled gas. The humidity of the gases in the breathing circuit is influenced by the ambient temperature. We compared the humidity of the inhaled gases from a low-flow Fabius anesthesia workstation with or without thermal insulation (TI) of the breathing circuit and with or without an HME. Methods We conducted a prospective randomized trial in 41 adult female patients who underwent elective abdominal surgery. The patients were allocated into four groups according to the devices used to ventilate their lungs using a Dräger Fabius anesthesia workstation with a low gas flow (1 L.min-1): control, with TI, with an HME or with TI and an HME (TIHME). The mean temperature and humidity of the inhaled gases were measured during 2-h after connecting the patients to the breathing circuit. Results The mean inhaled gas temperature and absolute humidity were higher in the HME (29.2±1.3°C; 28.1±2.3 mgH2O·L-1) and TIHME (30.1±1.2°C; 29.4±2.0 mgH2O·L-1) groups compared with the control (27.5±1.0°C; 25.0±1.8 mgH2O·L-1) and TI (27.2±1.1°C; 24.9±1.8 mgH2O·L-1) groups (P = 0.003 and P<0.001, respectively). Conclusions The low-flow Fabius GS Premium breathing circuit provides the minimum humidity level of inhaled gases to avoid damage to the tracheobronchial epithelia during anesthesia. TI of the breathing circuit does not increase the humidity of the inhaled gases, whereas inserting an HME increases the moisture of the inhaled gases closer to physiological values. PMID:28129353

  5. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrowinning apparatus and process

    DOEpatents

    Buschmann, Wayne E [Boulder, CO

    2012-06-19

    Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.

  7. TRANSVERSE IMPEDANCE OF THE SQUID GIANT AXON DURING CURRENT FLOW

    PubMed Central

    Cole, Kenneth S.; Baker, Richard F.

    1941-01-01

    The change in the transverse impedance of the squid giant axon caused by direct current flow has been measured at frequencies from 1 kc. per second to 500 kc. per second. The impedance change is equivalent to an increase of membrane conductance at the cathode to a maximum value approximately the same as that obtained during activity and a decrease at the anode to a minimum not far from zero. There is no evidence of appreciable membrane capacity change in either case. It then follows that the membrane has the electrical characteristics of a rectifier. Interpreting the membrane conductance as a measure of ion permeability, this permeability is increased at the cathode and decreased at the anode. PMID:19873233

  8. An electrogenerative process for the recovery of gold from cyanide solutions.

    PubMed

    Yap, C Y; Mohamed, N

    2007-04-01

    Traditional methods for the recovery of gold from electronic scrap by hydrometallurgy were cyanidation followed by adsorption on activated carbon or cementation onto zinc dust and by electrowinning. In our studies, a static batch electrochemical reactor operating in an electrogenerative mode was used in gold recovery from cyanide solutions. A spontaneous chemical reaction will take place in the reactor and generate an external flow of current. In this present work, a static batch cell with an improved design using three-dimensional cathodes namely porous graphite and reticulated vitreous carbon (RVC) and two-dimensional cathode materials, copper and stainless steel plates were coupled with a zinc anode. The electrogenerative system was demonstrated and the performance of the system using various cathode materials for gold recovery was evaluated. The system resulted in more than 90% gold being recovered within 3h of operation. Activated RVC serves as a superior cathode material having the highest recovery rate with more than 99% of gold being recovered in 1h of operation. The morphology of gold deposits on various cathode materials was also investigated.

  9. Study of the ionization rate of the released deuterium in vacuum arc discharges with metal deuteride cathodes

    NASA Astrophysics Data System (ADS)

    Liu, Fei-Xiang; Long, Ji-Dong; Zheng, Le; Dong, Pan; Li, Chen; Chen, Wei

    2018-02-01

    The ionization rate of the released deuterium from a metal deuteride cathode in vacuum arc discharges is investigated by both experiments and modeling analysis. Experimental results show that the deuterium ionization rate increases from 2% to 30% with the increasing arc current in the range of 2-100 A. Thus the full ionization assumption, as is widely used in arc plasma simulations, is not satisfied for the released deuterium at low discharge current. According to the modeling results, the neutral-to-ion conversion efficiency for the deuterium traveling across the cathodic spot region can be significantly less than one, due to the fast plasma expansion and rarefaction in the vacuum. In addition, the model also reveals that, unlike the metal atoms which are mainly ionized in the sheath region and flow back to the cathode, the deuterium ionization primarily occurs in the quasi-neutral region and moves towards the anode. Consequently, the cathodic sheath layer acts like a filter that increases the deuterium fraction beyond the sheath region.

  10. Using computer models to design gully erosion control structures for humid northern Ethiopia

    USDA-ARS?s Scientific Manuscript database

    Classic gully erosion control measures such as check dams have been unsuccessful in halting gully formation and growth in the humid northern Ethiopian highlands. Gullies are typically formed in vertisols and flow often bypasses the check dams as elevated groundwater tables make gully banks unstable....

  11. A multiple-cathode, high-power, rectangular ion thruster discharge chamber of increasing thruster lifetime

    NASA Astrophysics Data System (ADS)

    Rovey, Joshua Lucas

    Ion thrusters are high-efficiency, high-specific impulse space propulsion systems proposed for deep space missions requiring thruster operational lifetimes of 7--14 years. One of the primary ion thruster components is the discharge cathode assembly (DCA). The DCA initiates and sustains ion thruster operation. Contemporary ion thrusters utilize one molybdenum keeper DCA that lasts only ˜30,000 hours (˜3 years), so single-DCA ion thrusters are incapable of satisfying the mission requirements. The aim of this work is to develop an ion thruster that sequentially operates multiple DCAs to increase thruster lifetime. If a single-DCA ion thruster can operate 3 years, then perhaps a triple-DCA thruster can operate 9 years. Initially, a multiple-cathode discharge chamber (MCDC) is designed and fabricated. Performance curves and grid-plane current uniformity indicate operation similar to other thrusters. Specifically, the configuration that balances both performance and uniformity provides a production cost of 194 W/A at 89% propellant efficiency with a flatness parameter of 0.55. One of the primary MCDC concerns is the effect an operating DCA has on the two dormant cathodes. Multiple experiments are conducted to determine plasma properties throughout the MCDC and near the dormant cathodes, including using "dummy" cathodes outfitted with plasma diagnostics and internal plasma property mapping. Results are utilized in an erosion analysis that suggests dormant cathodes suffer a maximum pre-operation erosion rate of 5--15 mum/khr (active DCA maximum erosion is 70 mum/khr). Lifetime predictions indicate that triple-DCA MCDC lifetime is approximately 2.5 times longer than a single-DCA thruster. Also, utilization of new keeper materials, such as carbon graphite, may significantly decrease both active and dormant cathode erosion, leading to a further increase in thruster lifetime. Finally, a theory based on the near-DCA plasma potential structure and propellant flow rate effects is developed to explain active DCA erosion. The near-DCA electric field pulls ions into the DCA such that they bombard and erode the keeper. Charge-exchange collisions between bombarding ions and DCA-expelled neutral atoms reduce erosion. The theory explains ion thruster long-duration wear-test results and suggests increasing propellant flow rate may eliminate or reduce DCA erosion.

  12. Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture

    NASA Astrophysics Data System (ADS)

    Ahmed Rudwan, M.; Gabriel, S. B.

    2002-01-01

    Investigation of the discharge characteristics of the T6 hollow cathode operating on several inert Xenon is currently the propellant of choice for gridded ion thrusters. But in order to make deep space missions feasible, an increase in the Specific Impulse (SI) that these thrusters can achieve is necessary. One method of achieving this is to use a propellant with a lower atomic mass (e.g. argon), as the propellant exhaust velocity is inversely proportional to the square root of the propellant mass. However, the feasibility of operating the hollow cathode using these alternative propellants has to be demonstrated. Moreover, interest in decreasing the propellant cost in missions and ground testing (especially life tests) have led to the comprehensive discharge characterisation of several gases that will be presented in this paper. A Kr/Xe mixture in the naturally occurring ratio, for example, could offer a 15 times cost saving when compared to pure xenon and 2-3 times cost saving when compared to pure krypton. The T6 hollow cathode discharge behaviour as well as its initiation characteristics have been studied. The tests were carried out in diode configuration using a T6 hollow cathode with an enclosed keeper design employing xenon, krypton, argon and a Kr/Xe mix. The discharge initiation tests were undertaken with a view to investigate some of the factors thought to influence the starting potential such as mass flow rate and tip temperature. It was found that, for mass flow rates ranging from 0.2-1.1 mg/s and cathode tip temperatures ranging from 900-1300oC, the breakdown potential was less than 50V for argon, less than 25V for krypton, less than 21V for xenon and less than 35V for the Kr/Xe mix. The discharge initiation results were then compared to those obtained by Fearn et al. with a T5 cathode operating on mercury and with a T6 cathode utilising an open keeper design using xenon propellant. The xenon breakdown potentials were found to be lower than those obtained with an open keeper design by as much as 4V. Steady state discharge behaviour was also investigated in a range of operating conditions. Spot to plume mode transitions were observed in argon, krypton and Kr/Xe discharges for the first time.

  13. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  14. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  15. Anode Fall As Relevant to Plasma Thrusters.

    DTIC Science & Technology

    1997-06-01

    considered, whether induced or external magnetic fields are included, as to how the flow chemistry is modeled, among others. For the cathode, sheath...the extent of the anode fall region, a region where flow chemistry becomes paramount, determining plasma equilibrium. But is the anode fall stable...i * =n* * = =0 and when the plasma boundary is approached. The latter condition immediately emphasizes the flow chemistry , ionization and

  16. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts

    NASA Astrophysics Data System (ADS)

    Malko, Daniel; Lopes, Thiago; Ticianelli, Edson A.; Kucernak, Anthony

    2016-08-01

    The effect of the ionomer to carbon (I/C) ratio on the performance of single cell polymer electrolyte fuel cells is investigated for three different types of non-precious metal cathodic catalysts. Polarisation curves as well as impedance spectra are recorded at different potentials in the presence of argon or oxygen at the cathode and hydrogen at the anode. It is found that a optimised ionomer content is a key factor for improving the performance of the catalyst. Non-optimal ionomer loading can be assessed by two different factors from the impedance spectra. Hence this observation could be used as a diagnostic element to determine the ideal ionomer content and distribution in newly developed catalyst-electrodes. An electrode morphology based on the presence of inhomogeneous resistance distribution within the porous structure is suggested to explain the observed phenomena. The back-pressure and relative humidity effect on this feature is also investigated and supports the above hypothesis. We give a simple flowchart to aid optimisation of electrodes with the minimum number of trials.

  17. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers

    PubMed Central

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    The electrochemical migration (ECM) behavior of copper-clad laminate (PCB-Cu) and electroless nickel/immersion gold printed circuit boards (PCB-ENIG) under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material) between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH) environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed. PMID:28772497

  18. All-optical graphene oxide humidity sensors.

    PubMed

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-12-17

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH.

  19. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less

  20. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.

    2000-01-01

    Free-standing magnetoelastic thick-film sensors have a characteristic resonant frequency that can be determined by monitoring the magnetic flux emitted from the sensor in response to a time varying magnetic field. This property allows the sensors to be monitored remotely without the use of direct physical connections, such as wires, enabling measurement of environmental parameters from within sealed, opaque containers. In this work, we report on application of magnetoelastic sensors to measurement of atmospheric pressure, fluid-flow velocity, temperature, and mass load. Mass loading effects are demonstrated by fabrication of a remote query humidity sensor, made by coating the magnetoelastic thick film with a thin layer of solgel deposited Al2O3 that reversibly changes mass in response to humidity. c2000 Elsevier Science S.A. All rights reserved.

  1. Results from Evaluation of Representative ASME AG-1 Section FK Radial Flow Dimple Pleated HEPA Filters Under Elevated Conditions - 12002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giffin, Paxton K.; Parsons, Michael S.; Rickert, Jaime G.

    The American Society of Mechanical Engineers (ASME) has recently added Section FK establishing requirements for radial flow HEPA filters to the Code on Nuclear Air and Gas Treatment (AG-1). Section FK filters are expected to be a major element in the HEPA filtration systems across the US Department of Energy (DOE) complex. Radial flow filters have been used in Europe for some time, however a limited amount of performance evaluation data exists with respect to these new AG-1 Section FK units. In consultation with a technical working group, the Institute for Clean Energy Technology (ICET) at Mississippi State University (MSU)hasmore » evaluated a series of representative AG-1 Section FK dimple pleated radial flow HEPA filters. The effects of elevated relative humidity and temperature conditions on these filters are particularly concerning. Results from the evaluation of Section FK filters under ambient conditions have been presented at the 2011 waste management conference. Additions to the previous test stand to enable high temperature and high humidity testing, a review of the equipment used, the steps taken to characterize the new additions, and the filter test results are presented in this study. Test filters were evaluated at a volumetric flow rate of 56.6 m{sup 3}/min (2000 cfm) and were challenged under ambient conditions with Alumina, Al(OH){sub 3}, until reaching a differential pressure of 1 kPa (4 in. w.c.), at which time the filters were tested, unchallenged with aerosol, at 54 deg. C (130 deg. F) for approximately 1 hour. At the end of that hour water was sprayed near the heat source to maximize vaporization exposing the filter to an elevated relative humidity up to 95%. Collected data include differential pressure, temperature, relative humidity, and volumetric flow rate versus time. (authors)« less

  2. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  3. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    NASA Astrophysics Data System (ADS)

    Lanas, Vanessa; Ahn, Yongtae; Logan, Bruce E.

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode.

  4. Apollo/Saturn C00.00.19.3 operations and maintenance. Cathodic protection of communication cables

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Operating and maintenance instructions for cathodic protection of communication cables at the Cape Kennedy Launch Complex are presented. The system is designed to prevent or arrest corrosion of communication cables buried in soil or submerged in water by impressing sufficient direct current from the rectifier through the anodes to the cable. This process neutralizes or counteracts current flowing from the cable into the soil or water, thus preventing or arresting corrosion of the cable sheath material.

  5. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    PubMed Central

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-01-01

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design. PMID:28281646

  6. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    NASA Astrophysics Data System (ADS)

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun

    2017-03-01

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.

  7. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Ying; Zhang, Fenghua; Wang, Meng

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less

  8. Reversible Humidity Sensitive Clothing for Personal Thermoregulation

    DOE PAGES

    Zhong, Ying; Zhang, Fenghua; Wang, Meng; ...

    2017-03-10

    Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less

  9. A diffusive ink transport model for lipid dip-pen nanolithography.

    PubMed

    Urtizberea, A; Hirtz, M

    2015-10-14

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.

  10. A newly developed tool for intra-tracheal temperature and humidity assessment in laryngectomized individuals: the Airway Climate Explorer (ACE)

    PubMed Central

    Zuur, J. K.; Muller, S. H.; de Jongh, F. H. C.; van der Horst, M. J.; Shehata, M.; van Leeuwen, J.; Sinaasappel, M.

    2007-01-01

    The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics. The ACE consists of a small diameter, heated air-sampling catheter connected to a heated sensor house, containing a humidity sensor. Air is sucked through the catheter by a controlled-flow pump. Validation was performed in a climate chamber using a calibrated reference sensor and in a two-flow system. Additionally, the analyser was tested in vivo. Over the clinically relevant range of humidity values (5–42 mg H2O/l air) the sensor output highly correlates with the reference sensor readings (R2 > 0.99). The 1–1/e response times are all <0.5 s. A first in vivo pilot measurement was successful. The newly developed, verified, fast-responding ACE is suitable for postlaryngectomy airway climate assessment. PMID:17629761

  11. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  12. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  13. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  14. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  15. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  16. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  17. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox-Flow Battery.

    PubMed

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D; Martin, Norbert; Schubert, Ulrich S

    2017-04-01

    By combining a viologen unit and a 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) radical in one single combi-molecule, an artificial bipolar redox-active material, 1-(4-(((1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)oxy)carbonyl)benzyl)-1'-methyl-[4,4'-bipyridine]-1,1'-diium-chloride ( VIOTEMP ), was created that can serve as both the anode (-0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water-based redox-flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox-flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity-inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented.

  18. Direct Conversion of Wheat Straw into Electricity with a Biomass Flow Fuel Cell Mediated by Two Redox Ion Pairs.

    PubMed

    Gong, Jian; Liu, Wei; Du, Xu; Liu, Congmin; Zhang, Zhe; Sun, Feifei; Yang, Le; Xu, Dong; Guo, Hua; Deng, Yulin

    2017-02-08

    In this paper, a biomass flow fuel cell to directly convert wheat straw to electricity at low temperature (80-90 °C) and atmospheric pressure is presented. Two redox ion pairs, Fe 3+ /Fe 2+ and VO 2 + /VO 2+ , acting as redox catalysts and charge carriers, were used in the anode and cathode flow tanks, respectively. The wheat straw was first oxidized by Fe 3+ in the anode tank at approximately 100 °C. The reduced Fe 2+ in the anode was used to construct a fuel cell with VO 2 + in the cathode. The VO 2 + ions were reduced to VO 2+ and regenerated to VO 2 + by oxygen oxidation. The wheat straw flow fuel cell showed a power output of 100 mW cm -2 . Mediated with liquid Fe 3+ carriers, the solid powder of wheat straw could be gradually degraded into low-molecular-weight organic molecules and even oxidized to CO 2 at the anode without using noble-metal catalysts. The overpotential for the electrodes of the flow fuel cell was examined and the energy cost was estimated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  20. Experimental investigation of a throttlable 15 cm hollow cathode ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1972-01-01

    The use of dished high perveance grids on a 15 cm modified SERT 2 thruster is shown to facilitate throttled operation over a beam current range from 60 to 600 mA. Effects of increasing the radial component of the magnetic field in the main discharge chamber and decreasing the dimensions of the cathode discharge region are examined and found to degrade performance to the extent that primary electrons are forced in toward the center-line of the thruster. Studies of the baffle aperture region of two thrusters indicate that the electric potential gradient vector is perpendicular to the local magnetic field lines when the thruster is operating properly. The correlation between the shape of the ion beam current density and that of the ion density at the screen grid within the thruster is shown to be 94%. Additional experimental studies on maximum propellant utilization, plasma ion production cost, neutral density in the cathode discharge region, double ion production in hollow cathode thrusters and thermal flow meter performance are discussed.

  1. Ion and advanced electric thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1980-01-01

    A phenomenological model of the orificed, hollow cathode based on the field enhanced, thermionic mechanism of electron emission is presented. High frequency oscillations associated with the orificed, hollow cathode are shown to be a consequence of current flow through the cathode orifice. A procedure for Langmuir probing of the hollow cathode discharge and analyzing the resulting probe characteristics is discussed. The results of sputter yield measurements made for molybdenum, tantalum, type 304 stainless steel and copper surfaces being bombarded by low energy argon or mercury ions are also given. The effects of nitrogen and alternated copper layers on the sputter yields of molybdenum, tantalum and 304 stainless steel are also discussed. A dynamic model of electrothermal rocket and ramjet thrusters is developed. The gross performance of these devices is compared to that of an electromagnetic gun for the case of a high acceleration, Earth launch mission. The theoretical performance of electrothermal rockets and ramjets is shown to be comparable to that of the electromagnetic gun.

  2. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  3. All-Optical Graphene Oxide Humidity Sensors

    PubMed Central

    Lim, Weng Hong; Yap, Yuen Kiat; Chong, Wu Yi; Ahmad, Harith

    2014-01-01

    The optical characteristics of graphene oxide (GO) were explored to design and fabricate a GO-based optical humidity sensor. GO film was coated onto a SU8 polymer channel waveguide using the drop-casting technique. The proposed sensor shows a high TE-mode absorption at 1550 nm. Due to the dependence of the dielectric properties of the GO film on water content, this high TE-mode absorption decreases when the ambient relative humidity increases. The proposed sensor shows a rapid response (<1 s) to periodically interrupted humid air flow. The transmission of the proposed sensor shows a linear response of 0.553 dB/% RH in the range of 60% to 100% RH. PMID:25526358

  4. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Li, Nan; An, Jingkun; Zhou, Lean; Li, Tian; Li, Junhui; Feng, Cuijuan; Wang, Xin

    2016-02-01

    Carbon black and graphite hybrid air-cathode is proved to be effective for H2O2 production in bioelectrochemical systems. The optimal mass ratio of carbon black to graphite is 1:5 with the highest H2O2 yield of 11.9 mg L-1 h-1 cm-2 (12.3 mA cm-2). Continuous flow is found to improve the current efficiency due to the avoidance of H2O2 accumulation. In the biological system, the highest H2O2 yield reaches 3.29 mg L-1h-1 (0.079 kg m-3day-1) with a current efficiency of 72%, which is higher than the abiotic system at the same current density. H2O2 produced in this system is mainly from the oxygen diffused through this air-cathode (>66%), especially when a more negative cathode potential is applied (94% at -1.0 V). This hybrid air-cathode has advantages of high H2O2 yield, high current density and no need of aeration, which make the synthesis of H2O2 more efficient and economical.

  5. Interferences in electrochemical hydride generation of hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.

    2001-12-01

    Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.

  6. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  7. Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2018-01-01

    Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.

  8. Hollow cathode restartable 15 cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    The effects of substituting high perveance dished grids for low perveance flat ones on performance variables and plasma properties within a 15 cm modified SERT II thruster are discussed. Results suggest good performance may be achieved as an ion thruster is throttled if the screen grid transparency is decreased with propellant flow rate. Thruster startup tests, which employ a pulsed high voltage tickler electrode between the keeper and the cathode to initiate the discharge, are described. High startup reliability at cathode tip temperatures of about 500 C without excessive component wear over 2000 startup cycles is demonstrated. Testing of a single cusp magnetic field concept of discharge plasma containment is discussed. A theory which explains the observed behavior of the device is presented and proposed thruster modifications and future testing plans are discussed.

  9. High voltage coaxial switch

    DOEpatents

    Rink, J.P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.

  10. High voltage coaxial switch

    DOEpatents

    Rink, John P.

    1983-07-19

    A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.

  11. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Design and development of a micro-thermocouple sensor for determining temperature and relative humidity patterns within an airstream.

    PubMed

    Eisner, A D; Martonen, T B

    1989-11-01

    This paper describes the production and calibration of a miniature psychrometer treated with a specially developed porous coating. The investigation was conducted to determine localized patterns of rapidly changing temperature and relative humidity in dynamic flowing gas environments (e.g., with particular attention to future applications to the human respiratory system). The technique involved the use of dry miniature thermocouples and wetted miniature thermocouples coated with boron nitride to act as a wicking material. A precision humidity generator was developed for calibrating the psychrometer. It was found that, in most cases, the measured and expected (i.e., theoretically predicted) relative humidity agreed to within 0.5 to 1.0 percent relative humidity. Procedures that would decrease this discrepancy even further were pinpointed, and advantages of using the miniature psychrometer were assessed.

  13. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    NASA Astrophysics Data System (ADS)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  14. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE PAGES

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.; ...

    2018-02-09

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  15. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  16. Salt taste inhibition by cathodal current.

    PubMed

    Hettinger, Thomas P; Frank, Marion E

    2009-09-28

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.

  17. Potential Dependence of Pt and Co Dissolution from Platinum-Cobalt Alloy PEFC Catalysts Using Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Rajesh K.; Papadias, Dionissios D.; Kariuki, Nancy N.

    An electrochemical flow cell system with catalyst-ionomer ink deposited on glassy carbon is used to investigate the aqueous stability of commercial PtCo alloys under cyclic potentials. An on-line inductively coupled plasma-mass spectrometer, capable of real-time measurements, is used to resolve the anodic and cathodic dissolution of Pt and Co during square-wave and triangle-wave potential cycles. We observe Co dissolution at all potentials, distinct peaks in anodic and cathodic Pt dissolution rates above 0.9 V, and potential-dependent Pt and Co dissolution rates. The amount of Pt that dissolves cathodically is smaller than the amount that dissolves anodically if the upper potentialmore » limit (UPL) is lower than 0.9 V. At the highest UPL investigated, 1.0 V, the cathodic dissolution greatly exceeds the anodic dissolution. A non-ideal solid solution model indicates that the anodic dissolution can be associated with the electrochemical oxidation of Pt and PtOH to Pt 2+, and the cathodic dissolution to electrochemical reduction of a higher Pt oxide, PtO x (x > 1), to Pt 2+. Pt also dissolves oxidatively during the cathodic scans but in smaller amounts than due to the reductive dissolution of PtO x. The relative amounts Pt dissolving oxidatively as Pt and PtOH depend on the potential cycle and UPL.« less

  18. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    PubMed Central

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  19. Regenerable Nickel-Functionalized Activated Carbon Cathodes Enhanced by Metal Adsorption to Improve Hydrogen Production in Microbial Electrolysis Cells.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Logan, Bruce E

    2018-06-07

    While nickel is a good alternative to platinum as a catalyst for the hydrogen evolution reaction, it is desirable to reduce the amount of nickel needed for cathodes in microbial electrolysis cells (MECs). Activated carbon (AC) was investigated as a cathode base structure for Ni as it is inexpensive and an excellent adsorbent for Ni, and it has a high specific surface area. AC nickel-functionalized electrodes (AC-Ni) were prepared by incorporating Ni salts into AC by adsorption, followed by cathode fabrication using a phase inversion process using a poly(vinylidene fluoride) (PVDF) binder. The AC-Ni cathodes had significantly higher (∼50%) hydrogen production rates than controls (plain AC) in smaller MECs (static flow conditions) over 30 days of operation, with no performance decrease over time. In larger MECs with catholyte recirculation, the AC-Ni cathode produced a slightly higher hydrogen production rate (1.1 ± 0.1 L-H 2 /L reactor /day) than MECs with Ni foam (1.0 ± 0.1 L-H 2 /L reactor /day). Ni dissolution tests showed that negligible amounts of Ni were lost into the electrolyte at pHs of 7 or 12, and the catalytic activity was restored by simple readsorption using a Ni salt solution when Ni was partially removed by an acid wash.

  20. Test Results of a 200 W Class Hall Thruster

    NASA Technical Reports Server (NTRS)

    Jacobson, David; Jankovsky, Robert S.

    1999-01-01

    The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.

  1. Cathodic protection of a remote river pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, B.A.

    1994-03-01

    The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.

  2. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, C.R.; Rockett, P.D.

    1987-08-04

    An x-ray source is disclosed having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events. 5 figs.

  3. Movable anode x-ray source with enhanced anode cooling

    DOEpatents

    Bird, Charles R.; Rockett, Paul D.

    1987-01-01

    An x-ray source having a cathode and a disc-shaped anode with a peripheral surface at constant radius from the anode axis opposed to the cathode. The anode has stub axle sections rotatably carried in heat conducting bearing plates which are mounted by thermoelectric coolers to bellows which normally bias the bearing plates to a retracted position spaced from opposing anode side faces. The bellows cooperate with the x-ray source mounting structure for forming closed passages for heat transport fluid. Flow of such fluid under pressure expands the bellows and brings the bearing plates into heat conducting contact with the anode side faces. A worm gear is mounted on a shaft and engages serrations in the anode periphery for rotating the anode when flow of coolant is terminated between x-ray emission events.

  4. Multi-fluid modelling of pulsed discharges for flow control applications

    NASA Astrophysics Data System (ADS)

    Poggie, J.

    2015-02-01

    Experimental evidence suggests that short-pulse dielectric barrier discharge actuators are effective for speeds corresponding to take-off and approach of large aircraft, and thus are a fruitful direction for flow control technology development. Large-eddy simulations have reproduced some of the main fluid dynamic effects. The plasma models used in such simulations are semi-empirical, however, and need to be tuned for each flowfield under consideration. In this paper, the discharge physics is examined in more detail with multi-fluid modelling, comparing a five-moment model (continuity, momentum, and energy equations) to a two-moment model (continuity and energy equations). A steady-state, one-dimensional discharge was considered first, and the five-moment model was found to predict significantly lower ionisation rates and number densities than the two-moment model. A two-dimensional, transient discharge problem with an elliptical cathode was studied next. Relative to the two-moment model, the five-moment model predicted a slower response to the activation of the cathode, and lower electron velocities and temperatures as the simulation approached steady-state. The primary reason for the differences in the predictions of the two models can be attributed to the effects of particle inertia, particularly electron inertia in the cathode layer. The computational cost of the five-moment model is only about twice that of the simpler variant, suggesting that it may be feasible to use the more sophisticated model in practical calculations for flow control actuator design.

  5. The design of an electron gun switchable between immersed and Brillouin flow.

    PubMed

    Becker, R; Kester, O

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A∕cm(2) at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB(6) as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A∕cm(2). By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself--remember the "super-compression" reported on CRYEBIS-I--any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  6. Artificial Fruit: Postharvest Online Monitoring of Agricultural Food by Measuring Humidity and Temperature

    NASA Astrophysics Data System (ADS)

    Hübert, T.; Lang, C.

    2012-09-01

    An online monitoring of environmental and inherent product parameters is required during transportation and storage of fruit and vegetables to avoid quality degradation and spoilage. The control of transpiration losses is suggested as an indicator for fruit freshness by humidity measurements. For that purpose, an electronic sensor is surrounded by a wet porous fiber material which is in contact with the outer atmosphere. Transpiration reduces the water content of the porous material and thus also the internal water activity. The sensor system, known as "artificial fruit," measures the relative humidity and temperature inside the wet material. Humidity and temperature data are collected and transmitted on demand by a miniaturized radio communication unit. The decrease in the measured relative humidity has been calibrated against the mass loss of tomatoes under different external influencing parameters such as temperature, humidity, and air flow. Current battery life allows the sensor system, embedded in a fruit crate, to transmit data on transpiration losses via radio transmission for up to two weeks.

  7. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates and... flow and volatile organic compound content under varying liquid level conditions (dynamic and static... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  8. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specifications shall be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates..., including flow and volatile organic compound content under varying liquid level conditions (dynamic and... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  9. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates and... flow and volatile organic compound content under varying liquid level conditions (dynamic and static... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  10. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  11. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico

    Treesearch

    A. C. Gellis; NO-VALUE

    2013-01-01

    The significant characteristics controlling the variability in storm-generated suspended-sediment loads and concentrations were analyzed for four basins of differing land use (forest, pasture, cropland, and urbanizing) in humid-tropical Puerto Rico. Statistical analysis involved stepwise regression on factor scores. The explanatory variables were attributes of flow,...

  12. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  13. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

    NASA Astrophysics Data System (ADS)

    Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.

    2017-02-01

    Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.

  14. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    PubMed

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Heat and mass transfer analogy for condensation of humid air in a vertical channel

    NASA Astrophysics Data System (ADS)

    Desrayaud, G.; Lauriat, G.

    This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.

  16. Investigation of flows in LAPD and their relation to edge turbulence and intermittency

    NASA Astrophysics Data System (ADS)

    Schaffner, D.; Carter, T. A.; Friedman, B.; Vincena, S.; Auerbach, D. W.; Popovich, P.

    2009-11-01

    We report on measurements of spontaneous flows and turbulence in the Large Plasma Device (LAPD) at UCLA. Measurements of perpendicular and parallel flow using a six-sided Mach probe reveal edge-localized perpendicular flows. The source of this flow is under investigation and may be generated by boundary effects or turbulent processes. Particular cases where a plasma depletion zone is created, including inserting a blocking disk within the cathode region and forming a compressed column, are used to analyze the effects on plasma flows. Ultimately, the relationship between the flows, turbulence and intermittency---the formation of blobs---is sought.

  17. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  18. An Approach Toward Replacing Vanadium: A Single Organic Molecule for the Anode and Cathode of an Aqueous Redox‐Flow Battery

    PubMed Central

    Janoschka, Tobias; Friebe, Christian; Hager, Martin D.; Martin, Norbert

    2017-01-01

    Abstract By combining a viologen unit and a 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO) radical in one single combi‐molecule, an artificial bipolar redox‐active material, 1‐(4‐(((1‐oxyl‐2,2,6,6‐tetramethylpiperidin‐4‐yl)oxy)carbonyl)benzyl)‐1′‐methyl‐[4,4′‐bipyridine]‐1,1′‐diium‐chloride (VIOTEMP), was created that can serve as both the anode (−0.49 V) and cathode (0.67 V vs. Ag/AgCl) in a water‐based redox‐flow battery. While it mimics the redox states of flow battery metals like vanadium, the novel aqueous electrolyte does not require strongly acidic media and is best operated at pH 4. The electrochemical properties of VIOTEMP were investigated by using cyclic voltammetry, rotating disc electrode experiments, and spectroelectrochemical methods. A redox‐flow battery was built and the suitability of the material for both electrodes was demonstrated through a polarity‐inversion experiment. Thus, an organic aqueous electrolyte system being safe in case of cross contamination is presented. PMID:28413754

  19. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    NASA Astrophysics Data System (ADS)

    Ren, Lijiao; Ahn, Yongtae; Hou, Huijie; Zhang, Fang; Logan, Bruce E.

    2014-07-01

    Power production of four hydraulically connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical circuits (individual), and when four anodes were wired together and connected to four cathodes all wired together (combined), in fed-batch or continuous flow conditions. Power production under these different conditions could not be made based on a single resistance, but instead required polarization tests to assess individual performance relative to the combined MFCs. Based on the power curves, power produced by the combined MFCs (2.12 ± 0.03 mW, 200 Ω) was the same as the summed power (2.13 mW, 50 Ω) produced by the four individual reactors in fed-batch mode. With continuous flow through the four MFCs, the maximum power (0.59 ± 0.01 mW) produced by the combined MFCs was slightly lower than the summed maximum power of the four individual reactors (0.68 ± 0.02 mW). There was a small parasitic current flow from adjacent anodes and cathodes, but overall performance was relatively unaffected. These findings demonstrate that optimal power production by reactors hydraulically and electrically connected can be predicted from performance by individual reactors.

  20. An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges

    NASA Astrophysics Data System (ADS)

    Codron, Douglas A.

    Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS). Such studies have provided a qualitative understanding of the typical pathways in which thorium diffuses and how it is normally redistributed along the cathode surface. Lastly, the erosion rates of both pure and thoriated tungsten cathodes were measured after various run times by use of an analytical scale. These measurements have revealed the ability of thoriated tungsten cathodes to run as long as that of pure tungsten but with significantly less material erosion.

  1. Electrodeionization Using Microseparated Bipolar Membranes

    NASA Technical Reports Server (NTRS)

    Lyons, Donald; Jackson, George; Andrews, Craig C.; Tennakoon, Charles L, K.; Singh, Waheguru; Hitchens, G. Duncan; Jabs, Harry; Chepin, James F.; Archer, Shivaun; Gonzalez-Martinez, Anukia; hide

    2004-01-01

    An electrochemical technique for deionizing water, now under development, is intended to overcome a major limitation of prior electrically-based water-purification techniques. The limitation in question is caused by the desired decrease in the concentration of ions during purification: As the concentration of ions decreases, the electrical resistivity of the water increases, posing an electrical barrier to the removal of the remaining ions. In the present technique, this limitation is overcome by use of electrodes, a flowfield structure, and solid electrolytes configured to provide conductive paths for the removal of ions from the water to be deionized, even when the water has already been purified to a high degree. The technique involves the use of a bipolar membrane unit (BMU), which includes a cation-exchange membrane and an anion-exchange membrane separated by a nonconductive mesh that has been coated by an ionically conductive material (see figure). The mesh ensures the desired microseparation between the ion-exchange membranes: The interstices bounded by the inner surfaces of the membranes and the outer surfaces of the coated mesh constitute a flow-field structure that allows the water that one seeks to deionize (hereafter called "process water" for short) to flow through the BMU with a low pressure drop. The flow-field structure is such that the distance between any point in the flow field and an ionically conductive material is small; thus, the flow-field structure facilitates the diffusion of molecules and ions to and from the ion-exchange membranes. The BMU is placed between an anode and a cathode, but not in direct contact with these electrodes. Instead, the space between the anion-exchange membrane and the anode is denoted the anode compartment and is filled with an ionic solution. Similarly, the space between the cation-exchange membrane and the cathode is denoted the cathode compartment and is filled with a different ionic solution. The electrodes are made of titanium coated with platinum.

  2. The humidity in a Dräger Primus anesthesia workstation using low or high fresh gas flow and with or without a heat and moisture exchanger in pediatric patients.

    PubMed

    Bicalho, Gustavo P; Braz, Leandro G; de Jesus, Larissa S B; Pedigone, Cesar M C; de Carvalho, Lídia R; Módolo, Norma S P; Braz, José R C

    2014-10-01

    An inhaled gas absolute humidity of 20 mg H2O·L is the value most considered as the threshold necessary for preventing the deleterious effects of dry gas on the epithelium of the airways during anesthesia. Because children have small minute ventilation, we hypothesized that the humidification of a circle breathing system is lower in children compared with adults. The Primus anesthesia workstation (Dräger Medical, Lübeck, Germany) has a built-in hotplate to heat the patient's exhaled gases. A heat and moisture exchanger (HME) is a device that can be used to further humidify and heat the inhaled gases during anesthesia. To evaluate the humidifying properties of this circle breathing system during pediatric anesthesia, we compared the temperature and humidity of inhaled gases under low or high fresh gas flow (FGF) conditions and with or without an HME. Forty children were randomly allocated into 4 groups according to the ventilation of their lungs by a circle breathing system in a Dräger Primus anesthesia workstation with low (1 L·min) or high (3 L·min) FGF without an HME (1L and 3L groups) or with an HME (Pall BB25FS, Pall Biomedical, East Hills, NY; HME1L and HME3L groups). The temperature and absolute humidity of inhaled gases were measured at 10, 20, 40, 60, and 80 minutes after connecting the patient to the breathing circuit. The mean inhaled gas temperature was higher in HME groups (HME1L: 30.3°C ± 1.1°C; HME3L: 29.3°C ± 1.2°C) compared with no-HME groups (1L: 27.0°C ± 1.2°C; 3L: 27.1°C ± 1.5°C; P < 0.0001). The mean inhaled gas absolute humidity was higher in HME than no-HME groups and higher in low-flow than high-flow groups ([HME1L: 25 ± 1 mg H2O·L] > [HME3L: 23 ± 2 mg H2O·L] > [1L: 17 ± 1 mg H2O·L] > [3L: 14 ± 1 mg H2O·L]; P < 0.0001). In a pediatric circle breathing system, the use of neither high nor low FGF provides the minimum humidity level of the inhaled gases thought to reduce the risk of dehydration of airways. Insertion of an HME increases the humidity and temperature of the inhaled gases, bringing them closer to physiological values. The use of a low FGF enhances the HME efficiency and consequently increases the inhaled gas humidity values. Therefore, the association of an HME with low FGF in the breathing circuit is the most efficient way to conserve the heat and the moisture of the inhaled gas during pediatric anesthesia.

  3. Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating

    NASA Astrophysics Data System (ADS)

    Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.

    2013-07-01

    CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  4. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  5. Ion acoustic turbulence in a 100-A LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Mikellides, Ioannis G.; Goebel, Dan M.

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB6 hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.

  6. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    PubMed

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  7. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    PubMed

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  8. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  9. Use of Normothermic Default Humidifier Settings Causes Excessive Humidification of Respiratory Gases During Therapeutic Hypothermia.

    PubMed

    Tanaka, Shoichiro; Iwata, Sachiko; Kinoshita, Masahiro; Tsuda, Kennosuke; Sakai, Sayaka; Saikusa, Mamoru; Shindo, Ryota; Harada, Eimei; Okada, Junichiro; Hisano, Tadashi; Kanda, Hiroshi; Maeno, Yasuki; Araki, Yuko; Ushijima, Kazuo; Sakamoto, Teruo; Yamashita, Yushiro; Iwata, Osuke

    2016-12-01

    Adult patients frequently suffer from serious respiratory complications during therapeutic hypothermia. During therapeutic hypothermia, respiratory gases are humidified close to saturated vapor at 37°C (44 mg/L) despite that saturated vapor reduces considerably depending on temperature reduction. Condensation may cause serious adverse events, such as bronchial edema, mucosal dysfunction, and ventilator-associated pneumonia during cooling. To determine clinical variables associated with inadequate humidification of respiratory gases during cooling, humidity of inspiratory gases was measured in 42 cumulative newborn infants who underwent therapeutic hypothermia. Three humidifier settings of 37-default (chamber outlet, 37°C; distal circuit, 40°C), 33.5-theoretical (chamber outlet, 33.5°C; distal circuit, 36.5°C), and 33.5-adjusted (optimized setting to achieve 36.6 mg/L using feedback from a hygrometer) were tested to identify independent variables of excessively high humidity >40.7 mg/L and low humidity <32.9 mg/L. The mean (SD) humidity at the Y-piece was 39.2 (5.2), 33.3 (4.1), and 36.7 (1.2) mg/L for 37-default, 33.5-theoretical, and 33.5-adjusted, respectively. The incidence of excessive high humidity was 10.3% (37-default, 31.0%; 33.5-theoretical, 0.0%; 33.5-adjusted, 0.0%), which was positively associated with the use of a counter-flow humidifier (p < 0.001), 37-default (compared with 33.5-theoretical and 33.5-adjusted, both p < 0.001) and higher fraction of inspired oxygen (p = 0.003). The incidence of excessively low humidity was 17.5% (37-default, 7.1%; 33.5-theoretical, 45.2%; 33.5-adjusted, 0.0%), which was positively associated with the use of a pass-over humidifier and 33.5-theoretical (both p < 0.001). All patients who used a counter-flow humidifier achieved the target gas humidity at the Y-piece (36.6 ± 0.5 mg/L) required for 33.5-adjusted with 33.5-theoretical. During cooling, 37-default is associated with excessively high humidity, whereas 33.5-theoretical leads to excessively low humidity. Future studies are needed to assess whether a new regimen with optimized Y-piece temperature and humidity control reduces serious respiratory adverse events during cooling.

  10. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector.

    PubMed

    Zhao, Yu; Hong, Misun; Bonnet Mercier, Nadège; Yu, Guihua; Choi, Hee Cheul; Byon, Hye Ryung

    2014-02-12

    A lithium-iodine (Li-I2) cell using the triiodide/iodide (I3(-)/I(-)) redox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (∼ 330 W h kg(-1) and ∼ 650 W h L(-1), respectively, from saturated I2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I3(-)/I(-) aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I3(-)/I(-) redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.

  11. Advanced electric propulsion research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    Results are presented which show that hollow cathodes can be operated on ammonia but that sustained operation in the high pressures where arcjet thrusters operate (of the order of 1000 Torr) is difficult to achieve. The concept of using contoured, fine wire meshes attached across the screen grid apertures in an ion thruster to effect control of the ion beam divergence is introduced. The concept is compared to conventional (free sheath) ion extraction and is shown to be potentially attractive. The performance related effects of changing the anode and cathode locations and of interchanging hollow cathode and refractory filament electron sources within an 8-cm diameter, argon, ring cusp ion thruster discharge chamber are examined. The effects induced in discharge chamber performance by changes in magnetic field strength and configuration and in propellant flow distribution are also measured. Results are presented in terms of changes in the parameters that describe the effectiveness of primary electron utilization and ion extraction into the beam. The apparatus and instrumentation used to study hollow cathode operation at high electron emission levels (of the order of 100 A) is described.

  12. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O2 , S, Se, Te, I2 , Br2 ) Batteries.

    PubMed

    Xu, Jiantie; Ma, Jianmin; Fan, Qinghua; Guo, Shaojun; Dou, Shixue

    2017-07-01

    Recent advances and achievements in emerging Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O 2 (S) batteries. In terms of the emerging Li-X (Se, Te, I 2 , Br 2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I 2 (Br 2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O 2 , S, Se, Te, I 2 , Br 2 ) batteries is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  14. Biobatteries and biofuel cells with biphenylated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Krzysztof; Kizling, Michał; Majdecka, Dominika; Żelechowska, Kamila; Biernat, Jan F.; Rogalski, Jerzy; Bilewicz, Renata

    2014-03-01

    Single-walled carbon nanotubes (SWCNTs) covalently biphenylated are used for the construction of cathodes in a flow biobattery and in flow biofuel cell. Zinc covered with a hopeite layer is the anode in the biobattery and glassy carbon electrode covered with bioconjugates of single-walled carbon nanotubes with glucose oxidase and catalase is the anode of the biofuel cell. The potentials of the electrodes are measured vs. the Ag/AgCl reference electrode under changing loads of the fuel cell/biobattery. The power density of the biobattery with biphenylated nanotubes at the cathode is ca. 0.6 mW cm-2 and the open circuit potential is ca. 1.6 V. In order to obtain larger power densities and voltages three biobatteries are connected in a series which leads to the open circuit potential of ca. 4.8 V and power density 2.1 mW cm-2 at 3.9 V under 100 kΩ load. The biofuel cell shows power densities of ca. 60 μW cm-2 at 20 kΩ external resistance but the open circuit potential for such biofuel cell is only 0.5 V. The biobattery showing significantly larger power densities and open circuit voltages are especially useful for testing novel cathodes and applications such as powering units for clocks and sensing devices.

  15. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  16. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    NASA Astrophysics Data System (ADS)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  17. Metal-supported solid oxide fuel cells operated in direct-flame configuration

    DOE PAGES

    Tucker, Michael C.; Ying, Andrew S.

    2017-08-19

    Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less

  18. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, A.V.

    1983-10-12

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  19. Solid oxide fuel cell having compound cross flow gas patterns

    DOEpatents

    Fraioli, Anthony V.

    1985-01-01

    A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.

  20. On the Choice of Variable for Atmospheric Moisture Analysis

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; DaSilva, Arlindo M.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudorelative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent covariances. In the presence of multivariate (temperature-moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity-temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity-temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis is easily implemented in an existing moisture analysis system, by simply scaling observed-minus background moisture residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward.

  1. Modeling and Simulation of the Transient Response of Temperature and Relative Humidity Sensors with and without Protective Housing

    PubMed Central

    Rocha, Keller Sullivan Oliveira; Martins, José Helvecio; Martins, Marcio Arêdes; Ferreira Tinôco, Ilda de Fátima; Saraz, Jairo Alexander Osorio; Filho, Adílio Flauzino Lacerda; Fernandes, Luiz Henrique Martins

    2014-01-01

    Based on the necessity for enclosure protection of temperature and relative humidity sensors installed in a hostile environment, a wind tunnel was used to quantify the time that the sensors take to reach equilibrium in the environmental conditions to which they are exposed. Two treatments were used: (1) sensors with polyvinyl chloride (PVC) enclosure protection, and (2) sensors with no enclosure protection. The primary objective of this study was to develop and validate a 3-D computational fluid dynamics (CFD) model for analyzing the temperature and relative humidity distribution in a wind tunnel using sensors with PVC enclosure protection and sensors with no enclosure protection. A CFD simulation model was developed to describe the temperature distribution and the physics of mass transfer related to the airflow relative humidity. The first results demonstrate the applicability of the simulation. For verification, a sensor device was successfully assembled and tested in an environment that was optimized to ensure fast change conditions. The quantification setup presented in this paper is thus considered to be adequate for testing different materials and morphologies for enclosure protection. The results show that the boundary layer flow regime has a significant impact on the heat flux distribution. The results indicate that the CFD technique is a powerful tool which provides a detailed description of the flow and temperature fields as well as the time that the relative humidity takes to reach equilibrium with the environment in which the sensors are inserted. PMID:24851994

  2. Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.

    2018-05-01

    To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.

  3. The synthesis method for design of electron flow sources

    NASA Astrophysics Data System (ADS)

    Alexahin, Yu I.; Molodozhenzev, A. Yu

    1997-01-01

    The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.

  4. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOEpatents

    George, Thomas J.; Meacham, G. B. Kirby

    2002-03-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  5. Planar fuel cell utilizing nail current collectors for increased active surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Thomas J.; Meacham, G.B. Kirby

    1999-11-26

    A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.

  6. The design of an electron gun switchable between immersed and Brillouin flowa)

    NASA Astrophysics Data System (ADS)

    Becker, R.; Kester, O.

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A/cm2 at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB6 as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A/cm2. By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself - remember the "super-compression" reported on CRYEBIS-I - any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  7. Xenon excimer emission from pulsed high-pressure capillary microdischarges

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Petzenhauser, Isfried; Frank, Klaus; Giapis, Konstantinos P.

    2007-06-01

    Intense xenon vacuum ultraviolet (VUV) emission is observed from a high-pressure capillary cathode microdischarge in direct current operation, by superimposing a high-voltage pulse of 50ns duration. Under stagnant gas conditions, the total VUV light intensity increases linearly with pressure from 400 to 1013mbar for a fixed voltage pulse. At fixed pressure, however, the VUV light intensity increases superlinearly with voltage pulse height ranging from 08to2.8kV. Gains in emission intensity are obtained by inducing gas flow through the capillary cathode, presumably because of excimer dimer survival due to gas cooling.

  8. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; Lü, Zhe; Ai, Na; Chen, Xiangjun; Hu, Jinyan; Huang, Xiqiang; Su, Wenhui

    Sm 0.2Ce 0.8O 1.9 (SDC)-impregnated La 0.7Sr 0.3MnO 3 (LSM) composite cathodes were fabricated on anode-supported yttria-stabilized zirconia (YSZ) thin films. Electrochemical performances of the solid oxide fuel cells (SOFCs) were investigated in the present study. Four single cells, i.e., Cell-1, Cell-2, Cell-3 and Cell-4 were obtained after the fabrication of four different cathodes, i.e., pure LSM and SDC/LSM composites in the weight ratios of 25/75, 36/64 and 42/58, respectively. Impedance spectra under open-circuit conditions showed that the cathode performance was gradually improved with the increasing SDC loading. Similarly, the maximum power densities (MPD) of the four cells were increased with the SDC amount below 700 °C. Whereas, the cell performance of Cell-4 was lower than that of Cell-3 at 800 °C, arising from the increased concentration polarization at high current densities. This was caused by the lowered porosity with the impregnation cycle. This disadvantage could be suppressed by lowering the operating temperature or by increasing the oxygen concentration at the cathode side. The ratio of electrode polarization loss in the total voltage drop versus current density showed that the cell performance was primarily determined by the electrode polarization. The contribution of the ohmic resistance was increased when the operating temperature was lowered. When a 100 ml min -1 oxygen flow was introduced to the cathode side, Cell-3 produced MPDs of 1905, 1587 and 1179 mW cm -2 at 800, 750 and 700 °C, respectively. The high cell outputs demonstrated the merits of the novel and effective SDC-impregnated LSM cathodes.

  9. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.

    PubMed

    Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Quantifying Aerosol Delivery in Simulated Spontaneously Breathing Patients With Tracheostomy Using Different Humidification Systems With or Without Exhaled Humidity.

    PubMed

    Ari, Arzu; Harwood, Robert; Sheard, Meryl; Alquaimi, Maher Mubarak; Alhamad, Bshayer; Fink, James B

    2016-05-01

    Aerosol and humidification therapy are used in long-term airway management of critically ill patients with a tracheostomy. The purpose of this study was to determine delivery efficiency of jet and mesh nebulizers combined with different humidification systems in a model of a spontaneously breathing tracheotomized adult with or without exhaled heated humidity. An in vitro model was constructed to simulate a spontaneously breathing adult (tidal volume, 400 mL; breathing frequency, 20 breaths/min; inspiratory-expiratory ratio, 1:2) with a tracheostomy using a teaching manikin attached to a test lung through a collecting filter (Vital Signs Respirgard II). Exhaled heat and humidity were simulated using a cascade humidifier set to deliver 37°C and >95% relative humidity. Albuterol sulfate (2.5 mg/3 mL) was administered with a jet nebulizer (AirLife Misty Max) operated at 10 L/min and a mesh nebulizer (Aeroneb Solo) using a heated pass-over humidifier, unheated large volume humidifier both at 40 L/min output and heat-and-moisture exchanger. Inhaled drug eluted from the filter was analyzed via spectrophotometry (276 nm). Delivery efficiency of the jet nebulizer was less than that of the mesh nebulizer under all conditions (P < .05). Aerosol delivery with each nebulizer was greatest on room air and lowest when heated humidifiers with higher flows were used. Exhaled humidity decreased drug delivery up to 44%. The jet nebulizer was less efficient than the mesh nebulizer in all conditions tested in this study. Aerosol deposition with each nebulizer was lowest with the heated humidifier with high flow. Exhaled humidity reduced inhaled dose of drug compared with a standard model with nonheated/nonhumidified exhalation. Further clinical research is warranted to understand the impact of exhaled humidity on aerosol drug delivery in spontaneously breathing patients with tracheostomy using different types of humidifiers. Copyright © 2016 by Daedalus Enterprises.

  11. The Iodine Satellite (iSat) Propellant Feed System - Design and Demonstration

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Seixal, Joao F.; Mauro, Stephanie; Burt, Adam O.; Martinez, Armando; Peeples, Steven R.

    2017-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm3 and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high Delta V maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. One of the systems under development to support such a technology is the propellant feed system, which must be capable of storing solid iodine propellant, applying heat to sublime the stored solid into the vapor phase, and then control the flow of low-pressure gaseous iodine to both the thruster and cathode. In a test conducted in 2016, a first-generation iodine propellant feed system was integrated with a cathode and Hall thruster. While this test had to be terminated, the feed system in this first test was able to support both cathode and integrated cathode and thruster operation prior to the termination of the test. In the present paper, we describe work performed since that initial integrated test. The effort uses lessons learned from the previous integrated test, retiring risk associated with the iodine propellant feed system, answering open design-space questions, and demonstrating iodine flow control in an integrated system. The work is undertaken at both the component level and then at the integrated subsystem level to systematically improve the feed system design, improving the hardware fidelity so the appearance and operation of the system are as flight-like as possible. At the component level, the work focuses on the propellant tank, the feed system tubing, the valves used to control the flow to the cathode and thruster, and the heaters that maintain the temperature of the flowpaths and keep iodine from redepositing and clogging the system. Work on the propellant reservoir focuses on fabricating a tank that matches the geometry of the flight design, which allows for the identification of flight tank fabrication issues that may arise and permits thermal testing of a tank possessing the same size and thermal mass as the flight design, which can be used to anchor thermal modeling of the component. This is critical for finalizing the tank heater power requirements that feed into the heater design. All metallic materials in the feed system are hastelloy or Inconel, as these materials are resistant to chemical attack by the highly-reactive iodine vapor. The tubing in the iodine feed system must possess ports to permit a neutral gas purge of the system that clear impurities after iodine is loaded into the propellant tank. A procedure is discussed whereby these ports are crimped and sealed after the purge process is completed so as to not re-expose the iodine system to air. The valves are a critical component for control of the flow to the thruster and the cathode. Significant effort has gone into upgrading the materials of the valves to make them more resistant to chemical attack and into developing an understanding of the use of these valves during the startup and operation of the cathode and thruster. The heaters that line the entire feed system are designed to draw minimal power from the power processing unit (PPU) while still having the capacity to maintain all the feed system components at the temperatures required to discourage iodine deposition inside components downstream of the propellant tank exit. The heaters possess two separate resistive traces, giving the design redundancy should a failure occur in the primary heater circuit of one of the heater zones. The task of operating a feed system in conjunction with a thruster and cathode is undertaken in a series of sub-steps. The system is first assembled and operated on xenon gas, using the valves for cathode startup and thruster control based on measurement of the discharge current. After startup and control on xenon are demonstrated, the thruster will be transitioned to iodine operation, demonstrating thruster startup and feed system control while using a xenon-fed cathode. Finally, the last step is to integrate an iodine-compatible cathode with the system, demonstrate autonomous cathode start-up with open-loop control and thruster start-up with closed-loop control for multiple cycles.

  12. Heat Waves

    MedlinePlus

    ... This typically occurs when people exercise heavily or work in a hot, humid place where body fluids are lost through heavy sweating. Blood flow to the skin increases, causing blood flow to decrease to the vital organs. This ... cool the body, stops working. The body temperature can rise so high that ...

  13. Mixed Conducting Electrodes for Better AMTEC Cells

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Williams, Roger; Homer, Margie; Lara. Liana

    2003-01-01

    Electrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles. An understanding of the roles played by the two types of conduction in the cathode of a sodium-based AMTEC cell is prerequisite to understanding the advantages afforded by these materials. In a sodium-based AMTEC cell, the anode face of an anode/solid-electrolyte/cathode sandwich is exposed to Na vapor at a suitable pressure. Upon making contact with the solid electrolyte on the anode side, Na atoms oxidize to form Na+ ions and electrons. Na+ ions then travel through the electrolyte to the cathode. Na+ ions leave the electrolyte at the cathode/electrolyte interface and are reduced by electrons that have been conducted through an external electrical load from the anode to the cathode. Once the Na+ ions have been reduced to Na atoms, they travel through the cathode to vaporize into a volume where the Na vapor pressure is much lower than it is on the anode side. Thus, the cathode design is subject to competing requirements to be thin enough to allow transport of sodium to the low-pressure side, yet thick enough to afford adequate electronic conductivity. The concept underlying the development of the present mixed conducting electrode materials is the following: The constraint on the thickness of the cathode can be eased by incorporating Na+ -ionconducting material to facilitate transport of sodium through the cathode in ionic form. At the same time, by virtue of the electronically conducting material mixed with the ionically conducting material, reduction of Na+ ions to Na atoms can take place throughout the thickness of the cathode. The net effect is to reduce the diffusion and flow resistance to sodium through the electrode while reducing the electronic resistance by providing shorter conduction paths for electrons. Reduced resistance to both sodium transport and electronic conductivity results in an increase in electric power output.

  14. The effect of coherent stirring on the advection–condensation of water vapour

    PubMed Central

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  15. The effect of coherent stirring on the advection-condensation of water vapour

    NASA Astrophysics Data System (ADS)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  16. The effect of coherent stirring on the advection-condensation of water vapour.

    PubMed

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  17. Combined effect of moisture and electrostatic charges on powder flow

    NASA Astrophysics Data System (ADS)

    Rescaglio, Antonella; Schockmel, Julien; Vandewalle, Nicolas; Lumay, Geoffroy

    2017-06-01

    It is well known in industrial applications involving powders and granular materials that the relative air humidity and the presence of electrostatic charges influence drastically the material flowing properties. The relative air humidity induces the formation of capillary bridges and modify the grain surface conductivity. The presence of capillary bridges produces cohesive forces. On the other hand, the apparition of electrostatic charges due to the triboelectric effect at the contacts between the grains and at the contacts between the grains and the container produces electrostatic forces. Therefore, in many cases, the powder cohesiveness is the result of the interplay between capillary and electrostatic forces. Unfortunately, the triboelectric effect is still poorly understood, in particular inside a granular material. Moreover, reproducible electrostatic measurements are difficult to perform. We developed an experimental device to measures the ability of a powder to charge electrostatically during a flow in contact with a selected material. Both electrostatic and flow measurements have been performed in different hygrometric conditions. The correlation between the powder electrostatic properties, the hygrometry and the flowing behavior are analyzed.

  18. Integrated structure vacuum tube: A Concept

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J.

    1974-01-01

    Cathode emission is made to occur by heating entire structure to 600 C, and positive potential is applied to anode with negative potential on grids. Electron flow takes place from ring to circular anode through electric field produced by grids.

  19. Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand

    NASA Astrophysics Data System (ADS)

    Juangjandee, Warangkana

    2017-10-01

    Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.

  20. The influence of oxygen additions on argon-shielded gas metal arc welding processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, P.G.; Murphy, A.B.; Szekely, J.

    1995-02-01

    It has been observed experimentally that small additions of oxygen to the argon shielding gas affect the general operation of GMAW processes. By theoretically modeling the arc column, it is shown that the addition of 2 to 5% oxygen to argon has an insignificant effect on the arc characteristics. This corresponds to the minor changes in the thermophysical transport and thermodynamic properties caused by the oxygen addition. Therefore, it is concluded that the addition of oxygen to the argon shielding gas mainly affects the anode and the cathode regions. From the literature, it was found that the formation of oxidesmore » initiates arcing at the cathode and decreases the movement of the cathode spots. These oxides can also improve the wetting conditions at the workpiece and the electrode. Finally, oxygen is found to affect the surface tension gradient and thereby the convective flow of liquid metal in the weld pool.« less

  1. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  2. Development of coin-type cell and engineering of its compartments for rechargeable seawater batteries

    NASA Astrophysics Data System (ADS)

    Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik

    2018-01-01

    Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.

  3. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  4. An investigation of energy balances in palladium cathode electrolysis experiments

    NASA Astrophysics Data System (ADS)

    Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.

    1990-09-01

    A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.

  5. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  6. Atmospheric Pressure Method and Apparatus for Removal of Organic Matter with Atomic and Ionic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1997-01-01

    A gas stream containing ionic and atomic oxygen in inert gas is used to remove organic matter from a substrate. The gas stream is formed by flowing a mixture of gaseous oxygen in an inert gas such as helium at atmospheric pressure past a high voltage, current limited, direct current arc which contacts the gas mixture and forms the ionic and atomic oxygen. The arc is curved at the cathode end and the ionic oxygen formed by the arc nearer to the anode end of the arc is accelerated in a direction towards the cathode by virtue of its charge. The relatively high mass to charge ratio of the ionic oxygen enables at least some of it to escape the arc before contacting the cathode and it is directed onto the substrate. This is useful for cleaning delicate substrates such as fine and historically important paintings and delicate equipment and the like.

  7. Evaluation of an active humidification system for inspired gas.

    PubMed

    Roux, Nicolás G; Plotnikow, Gustavo A; Villalba, Darío S; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto

    2015-03-01

    The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate.

  8. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  9. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  10. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    NASA Astrophysics Data System (ADS)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; David, Robert O.; Kanji, Zamin A.; Wang, Chien; Rösch, Michael; Cziczo, Daniel J.

    2017-09-01

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements made with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. We find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. We suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.

  11. Product study of oleic acid ozonolysis as function of humidity

    NASA Astrophysics Data System (ADS)

    Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M.

    The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC-MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.

  12. Oil well flow assurance through static electric potential: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.

  13. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    PubMed

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  14. Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete.

    PubMed

    Sua-iam, Gritsada; Makul, Natt

    2013-10-15

    For several decades, cathode ray tubes (CRTs) were the primary display component of televisions and computers. The CRT glass envelope contains sufficient levels of lead oxide (PbO) to be considered hazardous, and there is a need for effective methods of permanently encapsulating this material during waste disposal. We examined the effect of adding limestone powder (LS) on the fresh and cured properties of self-compacting concrete (SCC) mixtures containing waste CRT glass. The SCC mixtures were prepared using Type 1 Portland cement at a constant cement content of 600 kg/m(3) and a water-to-cement ratio (w/c) of 0.38. CRT glass waste cullet was blended with river sand in proportions of 20 or 40% by weight. To suppress potential viscosity effects limestone powder was added at levels of 5, 10, or 15% by weight. The slump flow time, slump flow diameter, V-funnel flow time, Marsh cone flow time, and setting time of the fresh concrete were tested, as well as the compressive strength and ultrasonic pulse velocity of the hardened concrete. Addition of limestone powder improved the fresh and hardened properties. Pb leaching levels from the cured concrete were within US EPA allowable limits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.

    PubMed

    Feindel, Kirk W; Bergens, Steven H; Wasylishen, Roderick E

    2006-11-01

    Proton ((1)H) NMR microscopy is used to investigate in-situ the distribution of water throughout a self-humidifying proton-exchange membrane fuel cell, PEMFC, operating at ambient temperature and pressure on dry H(2)(g) and O(2)(g). The results provide the first experimental images of the in-plane distribution of water within the PEM of a membrane electrode assembly in an operating fuel cell. The effect of gas flow configuration on the distribution of water in the PEM and cathode flow field is investigated, revealing that the counter-flow configurations yield a more uniform distribution of water throughout the PEM. The maximum power output from the PEMFC, while operating under conditions of constant external load, occurs when H(2)O(l) is first visible in the (1)H NMR image of the cathode flow field, and subsequently declines as this H(2)O(l) continues to accumulate. The (1)H NMR microscopy experiments are in qualitative agreement with predictions from several theoretical modeling studies (e.g., Pasaogullari, U.; Wang, C. Y. J. Electrochem. Soc. 2005, 152, A380-A390), suggesting that combined theoretical and experimental approaches will constitute a powerful tool for PEMFC design, diagnosis, and optimization.

  16. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    NASA Astrophysics Data System (ADS)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  17. Design of a LaB 6 gun using EGN2 and INTMAG

    NASA Astrophysics Data System (ADS)

    Becker, R.; Herrmannsfeldt, W. B.

    1990-12-01

    In order to launch a high-density electron beam to be focused in the 5 T superconducting solenoid of the Frankfurt EBIS [R. Becker et al., Nucl. Instr. and Meth. B24 (1987) 838], an electron gun has been designed, with a 0.5 mm diameter LaB 6 cathode (FEI Comp., Beaverton, USA) in a 70 mm diameter electrode geometry. The emitting surface is placed in the axial fringing field of the solenoid, modified by an axial shielding disk and a bucking coil, to provide either immersed flow or Brillouin flow conditions for the focused beam. Since the cathode diameter is small as compared to the electrodes, a new feature of EGN2 [W.B. Herrmannsfeldt, SLAC-331 (1988)] had to be used in order to have a sufficient number of meshes along the emitting surface. By starting a field line in the large geometry, a curved Neumann boundary is found for a subdivided part of the gun, which represents the influence of the larger part. EGN2 writes the coordinates of this field line on a file, which can be used by POLYGON [R. Becker, Nucl. Instr. and Meth. B42 (1989) 162] (a boundary setup program for EGN2) to define a curved Neumann boundary. By this procedure, it becomes possible to get a reliable simulation of the emission properties of a small cathode in large gun electrodes. The magnetostatic field calculations have been performed with INTMAG [R. Becker, Nucl. Instr. and Meth. B42 (1989) 303], which is a new program of the boundary element method type. Due to the integration calculus, the results do not need smoothing or "Maxwellisation" for the use in EGN2, where the off-axis fields are evaluated by radial expansion. INTMAG provides an output file, which is suitably formatted to be read in by EGN2. The gun design is based on space-charge-limited emission, but no Pierce-type electrode has been provided in the vicinity of the cathode; instead a Wehnelt electrode on negative bias with respect to the cathode is used to create the correct Pierce-type equipotential in free space, ending on the cathode edge with the correct angle. This gives an additional adjustment tool, if the axial position of the gun is not perfect and it relaxes the radial tolerance requirements considerably.

  18. Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes.

    PubMed

    Bade, Sri Ganesh R; Li, Junqiang; Shan, Xin; Ling, Yichuan; Tian, Yu; Dilbeck, Tristan; Besara, Tiglet; Geske, Thomas; Gao, Hanwei; Ma, Biwu; Hanson, Kenneth; Siegrist, Theo; Xu, Chengying; Yu, Zhibin

    2016-02-23

    Printed organometal halide perovskite light-emitting diodes (LEDs) are reported that have indium tin oxide (ITO) or carbon nanotubes (CNTs) as the transparent anode, a printed composite film consisting of methylammonium lead tribromide (Br-Pero) and poly(ethylene oxide) (PEO) as the emissive layer, and printed silver nanowires as the cathode. The fabrication can be carried out in ambient air without humidity control. The devices on ITO/glass have a low turn-on voltage of 2.6 V, a maximum luminance intensity of 21014 cd m(-2), and a maximum external quantum efficiency (EQE) of 1.1%, surpassing previous reported perovskite LEDs. The devices on CNTs/polymer were able to be strained to 5 mm radius of curvature without affecting device properties.

  19. Fine PM measurements: personal and indoor air monitoring.

    PubMed

    Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H

    2002-12-01

    This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.

  20. Pprogramming biomaterial bioresorption profile by embedding hydrolytic enzymes on polymer matrix

    NASA Astrophysics Data System (ADS)

    Ganesh, Manoj

    A unique strategy to control bioresorbable polymer lifetime by embedding enzymes in polymer matrices has been developed. Lipase from Candida Antarctica Lipase B (CALB) is surfactant paired enabling it to be organo-soluble and active for hydrolysis of the polymer matrix. The ion-paired lipase prepared by this technique is embedded within the poly(caprolactone) (PCL) matrix. Degradation studies of enzyme embedded PCL films were performed in three different incubation conditions namely i) batch; ii) continuous flow; iii) static (controlled humidity). In our batch studies ion paired CALB (6.5 and 1.65% (w/w)) was reported to degrade the PCL films in 1 day and 18 days respectively. Enzyme-catalyzed degradation of PCL films with embedded CALB (1.6 %-by-wt) under continuous fluid exchange (flow) conditions and in controlled humidity desiccators were also determined. At 0.2 mL/min flow rate, film weight loss reached 85% in 3 days relative to static incubations where 70% degradation occurred in 9 days. However, further increase in flow rate from 0.2 to 0.5 mL/min results in slower weight loss (7 days, 70%) as increased flow rate appears to negatively influence enzyme stability. The removal of degradation products is more efficient leading to formation of a porous matrix where SEM cross sectional images show larger better defined pores under continuous flow conditions. 1.6% CALB-embedded PCL films were incubated in desiccators set at 20, 75 and 95% relative humidity (RH). Water uptake and molecular weight change at 20% RH were insignificant. However, at 75 and 95% RH, by 28 days, %-water content increased to 0.30 and 0.82, and film Mn decreased by 25% to 59300 and 58% to 33900, respectively. From studies performed in embedded enzymatic polymer systems, we have extended our work to develop a new method for micro contact printing (μCP), which involves enzymes that has site-specific recognition domains for the polymer substrates. We have shown that degradation can occur under ambient conditions, at temperature 37 deg C and 30% humidity. A patterned degradation at this micron level wherein PCL films are degraded only along the areas of contact by stamping with CALB has not been reported by soft lithography using PDMS stamp.

  1. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  2. Computer image processing of up-draft flow motion and severe storm formation observed from satellite

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1985-01-01

    Special rapid-scan satellite visible and infrared observations have been used to study the life cycle of the clouds from the initiation of updraft flow motion in the atmosphere, the condensation of humid air, the formation of clouds, the development of towering cumulus, the penetration of the tropopause, the collapsing of an overshooting turret, and the dissipation of cloud. The infrared image provides an indication of the equivalent blackbody temperature of the observed cloud tops. By referencing the temperature, height and humidity profiles from rawinsonde observations as the background meteorological data for the instability of the air mass to the satellite infrared data sets at different time periods, the development of convective clouds can be studied in detail.

  3. Continuous standalone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2012-08-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry highly charged cloud droplets (maximum diameter approximately 25 μm) with minimum losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was > 94% during these five months.

  4. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  5. Pd-loaded carbon felt as the cathode for selective dechlorination of 2,4-dichlorophenoxyacetic acid in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsyganok, A.I.; Yamanaka, Ichiro; Otsuka, Kiyoshi

    1998-11-01

    Electrocatalytic reductive dehalogenation of 2,4-dichlorophenoxyacetic acid (2,4-D) to phenoxyacetic acid in aqueous solution containing MeOH, trifluoroacetic acid, and tetraalkylammonium salt was studied. A Teflon-made two-compartment flow-through cell with a permeable carbon felt cathode and a platinum foil anode was employed. Several noble metals were tested as electrocatalysts. Palladium-loaded carbon felt was found to be the most suitable significantly enhanced its electrocatalytic activity toward 2,4-D dechlorination. The reaction was hypothesized to proceed at carbon-palladium interface areas through 4-chlorine cleavage to form 2-chlorophenoxyacetic acid as the main reaction intermediate.

  6. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Wallace, J.; Brookhart, M.; Clark, M.; Collins, C.; Ding, W. X.; Flanagan, K.; Khalzov, I.; Li, Y.; Milhone, J.; Nornberg, M.; Nonn, P.; Weisberg, D.; Whyte, D. G.; Zweibel, E.; Forest, C. B.

    2014-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ˜14 m3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (MA2=(v/vA)2>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.

  7. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of analytical performance for the simultaneous detection of trace Cu, Co and Ni by using liquid cathode glow discharge-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Zhang, Xiaomin; Lu, Quanfang; Sun, Duixiong; Wang, Xing; Zhu, Shuwen; Zhang, Zhichao; Yang, Wu

    2018-07-01

    In this paper, a novel liquid cathode glow discharge (LCGD) was established as a micro-plasma excitation source of atomic emission spectrometry (AES) for simultaneous detection of trace Cu, Co and Ni in aqueous solution. In order to evaluate the analytical performance, the operating parameters such as discharge voltage, supporting electrolyte, solution pH and flow rate were thoroughly investigated. The results showed that the optimal conditions are 640 V discharge voltage, pH = 1 HNO3 as supporting electrolyte and 4.5 mL min-1 flow rate. The R2 of Cu, Co and Ni are 0.9977, 0.9991 and 0.9977, respectively. The relative standard deviation (RSD) is 1.4% for Cu, 3.2% for Co and 0.8% for Ni. Under this condition, the power of LCGD is below 55 W and the plasma is quite stable. The limits of detections (LODs) for Cu, Co and Ni are 0.380, 0.080, and 0.740 mg L-1, respectively, which are basically consistent with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). Compared with ICP-AES, the LCGD-AES has small size, low power consumption, no inert gas requirement and low cost in set-up. It may be developed as a portable instrument for in-site and real-time monitoring of metals in solution samples with further improvement.

  9. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  10. FIRE_AX_UW_C131A

    Atmospheric Science Data Center

    2015-11-25

    ... Hot-Wire Hygrometer RMS Pressure Var Platinum Resistance Pyranometer Radiometer Reverse Flow Spatial ... Parameters:  Condensation Nuclei Dew/Frost Point Temperature Droplet Concentration Humidity Irradiance Liquid Water ...

  11. A Novel Scale Up Model for Prediction of Pharmaceutical Film Coating Process Parameters.

    PubMed

    Suzuki, Yasuhiro; Suzuki, Tatsuya; Minami, Hidemi; Terada, Katsuhide

    2016-01-01

    In the pharmaceutical tablet film coating process, we clarified that a difference in exhaust air relative humidity can be used to detect differences in process parameters values, the relative humidity of exhaust air was different under different atmospheric air humidity conditions even though all setting values of the manufacturing process parameters were the same, and the water content of tablets was correlated with the exhaust air relative humidity. Based on this experimental data, the exhaust air relative humidity index (EHI), which is an empirical equation that includes as functional parameters the pan coater type, heated air flow rate, spray rate of coating suspension, saturated water vapor pressure at heated air temperature, and partial water vapor pressure at atmospheric air pressure, was developed. The predictive values of exhaust relative humidity using EHI were in good correlation with the experimental data (correlation coefficient of 0.966) in all datasets. EHI was verified using the date of seven different drug products of different manufacturing scales. The EHI model will support formulation researchers by enabling them to set film coating process parameters when the batch size or pan coater type changes, and without the time and expense of further extensive testing.

  12. Analytical interpretation of arc instabilities in a DC plasma spray torch: the role of pressure

    NASA Astrophysics Data System (ADS)

    Rat, V.; Coudert, J. F.

    2016-06-01

    Arc instabilities in a plasma spray torch are investigated experimentally and theoretically thanks to a linear simplified analytical model. The different parameters that determine the useful properties of the plasma jet at the torch exit, such as specific enthalpy and speed, but also pressure inside the torch and time variations of the flow rate are studied. The work is particularly focused on the link between the recorded arc voltage and the pressure in the cathode cavity. A frequency analysis of the recorded voltage and pressure allows the separation of different contributions following their spectral characteristics and highlights a resonance effect due to Helmholtz oscillations; these oscillations are responsible for the large amplitude fluctuations of all the parameters investigated. The influence of heat transfer, friction forces and residence time of the plasma in the nozzle are taken into account, thanks to different characteristics’ times. The volume of the cathode cavity in which the cold gas is stored before entering the arc region appears to be of prime importance for the dynamics of instabilities, particularly for the non-intuitive effect that induces flow-rate fluctuations in spite of the fact that the torch is fed at a constant flow rate.

  13. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors

    PubMed Central

    Almatouq, Abdullah; Babatunde, Akintunde O.

    2016-01-01

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584

  14. Performance evaluation of the Russian SPT-100 thruster at NASA LeRC

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; Hamley, John A.; Haag, Thomas W.

    1994-01-01

    Performance measurements of a Russian flight-model SPT-100 thruster were obtained as part of a comprehensive program to evaluate engineering issues pertinent to integration with Western spacecraft. Power processing was provided by a US Government developed laboratory power conditioner. When received the thruster had been subjected to only a few hours of acceptance testing by the manufacturer. Accumulated operating time during this study totalled 148 h and included operation of both cathodes. Cathode flow fraction was controlled both manually and using the flow splitter contained within the supplied xenon flow controller. Data were obtained at current levels ranging from 3 A to 5 A and thruster voltages ranging from 200 V to 300 V. Testing centered on the design power of 1.35 kW with a discharge current of 4.5 A. The effects of facility pressure on thruster operation were examined by varying the pressure via injection of xenon into the vacuum chamber. The facility pressure had a significant effect on thruster performance and stability at the conditions tested. Periods of current instabilities were noted throughout the testing period and became more frequent as testing progressed. Performance during periods of stability agreed with previous data obtained in Russian laboratories.

  15. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  16. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  17. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Alan; Colbow, Vesna; Harvey, David

    2013-01-01

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stressmore » test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.« less

  18. Dose uniformity of budesonide Easyhaler® under simulated real-life conditions and with low inspiration flow rates.

    PubMed

    Haikarainen, Jussi; Rytilä, Paula; Roos, Sirkku; Metsärinne, Sirpa; Happonen, Anita

    2017-01-01

    Budesonide Easyhaler® multidose dry powder inhaler is approved for the treatment of asthma. Objectives were to determine the delivered dose (DD) uniformity of budesonide Easyhaler® in simulated real-world conditions and with different inspiration flow rates (IFRs). Three dose delivery studies were performed using 100, 200, and 400 µg/dose strengths of budesonide. Dose uniformity was assessed during in-use periods of 4-6 months after exposure to high temperature (30°C) and humidity (60% relative humidity) and after dropping and vibration testing. The influence of various IFRs (31, 43, and 54 L/min) on the DD was also investigated. Acceptable dose uniformity was declared when mean DD were within 80-120% of expected dose; all data reported descriptively. DD was constant (range: 93-109% of expected dose) at all in-use periods and after exposure to high temperature and humidity for a duration of up to 6 months. DD post-dropping and -vibration were unaffected (range 98-105% of expected dose). Similarly, DD was constant and within 10% of expected dose across all IFRs. Results indicate that budesonide Easyhaler® delivers consistently accurate doses in various real-life conditions. Budesonide Easyhaler® can be expected to consistently deliver a uniform dose and improve asthma control regardless of high temperature and humidity or varying IFR.

  19. Laboratory Studies of Temperature and Relative Humidity Dependence of Aerosol Nucleation during the TANGENT 2017 IOP Study

    NASA Astrophysics Data System (ADS)

    Ouyang, Q.; Tiszenkel, L.; Stangl, C. M.; Krasnomowitz, J.; Johnston, M. V.; Lee, S.

    2017-12-01

    In this poster, we will present recent measurements of temperature and relative humidity dependence of aerosol nucleation of sulfuric acid under the conditions representative of the ground level to the free troposphere. Aerosol nucleation is critically dependent on temperature, but the current global aerosol models use nucleation algorithms that are independent of temperature and relative humidity due to the lack of experimental data. Thus, these models fail to simulate nucleation in a wide range of altitude and latitude conditions. We are currently conducting the Tandem Aerosol Nucleation and Growth Environment Tube (TANGENT) the intense observation period (IOP) experiments to investigate the aerosol nucleation and growth properties independently, during nucleation and growth. Nucleation takes place from sulfuric acid, water and some base compounds in a fast flow nucleation tube (FT-1). Nucleation precursors are detected with two chemical ionization mass spectrometers (CIMS) and newly nucleated particles are measured with a particle size magnifier (PSM) and a scanning mobility particle sizers (SMPS). Then these particles grow further in the second flow tube (FT-2) in the presence of oxidants of biogenic organic compounds. Chemical compositions of grown particles are further analyzed with a nano-aerosol mass spectrometer (NAMS). Our experimental results will provide a robust algorithm for aerosol nucleation and growth rates as a function of temperature and relative humidity.

  20. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a resistance of unknown origin, was shown to directly or indirectly scale with Pt loading. A lack of understanding of the mechanism responsible for such resistance is noted, and several possible theories have been proposed. This lack of fundamental understanding of the origins of this resistance adds complexity to computational models which are designed to capture performance behavior with ultra-low loading electrodes. By employing the OME flow field as a tool to study this phenomena, the origins of the transport resistance appearing at ultra-low Platinum (Pt) loading is proposed to be an increase in oxygen dilution resistance through water film.

  1. Optimization and modeling of flow characteristics of low-oil DDGS using regression techniques

    USDA-ARS?s Scientific Manuscript database

    Storage conditions such as temperature, relative humidity (RH), consolidation pressure (CP), and time affect flow behavior of bulk solids like distillers dried grains with solubles (DDGS), which is widely used as animal feed by the U.S. cattle and swine industries. The typical dry grind DDGS product...

  2. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  3. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  4. EFFECTS OF REACTION PARAMETERS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE RATE AND BY-PRODUCTS

    EPA Science Inventory

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas prod...

  5. The Influence of Electrode and Channel Configurations on Flow Battery Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, RM; Perry, ML

    2014-05-21

    Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society.more » All rights reserved.« less

  6. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell

    NASA Technical Reports Server (NTRS)

    Kang, M. P.; Winnick, J.

    1985-01-01

    The performance of a molten carbonate carbon dioxide concentrator (MCCDC) cell, as a device for removal of CO2 from manned spacecraft cabins without fuel expenditure, is investigated. The test system consists of an electrochemical cell (with an Li2CO3-38 mol pct K2CO3 membrane contained in a LiAlO2 matrix), a furnace, and a flow IR analyzer for monitoring CO2. Operation of the MCCDC-driven cell was found to be suitable for the task of CO2 removal: the cell performed at extremely low CO2 partial pressures (at or above 0.1 mm Hg); cathode CO2 efficiencies of 97 percent were achieved with 0.25 CO2 inlet concentration at 19 mA sq cm, at temperatures near 873 K. Anode concentrations of up to 5.8 percent were obtained. Simple cathode and anode performance equations applied to correlate cell performance agreed well with those measured experimentally. A flow diagram for the process is included.

  7. Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges

    NASA Astrophysics Data System (ADS)

    Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.

    2013-01-01

    Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.

  8. High power Nb-doped LiFePO4 Li-ion battery cathodes; pilot-scale synthesis and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Johnson, Ian D.; Blagovidova, Ekaterina; Dingwall, Paul A.; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.

    2016-09-01

    High power, phase-pure Nb-doped LiFePO4 (LFP) nanoparticles are synthesised using a pilot-scale continuous hydrothermal flow synthesis process (production rate of 6 kg per day) in the range 0.01-2.00 at% Nb with respect to total transition metal content. EDS analysis suggests that Nb is homogeneously distributed throughout the structure. The addition of fructose as a reagent in the hydrothermal flow process, followed by a post synthesis heat-treatment, affords a continuous graphitic carbon coating on the particle surfaces. Electrochemical testing reveals that cycling performance improves with increasing dopant concentration, up to a maximum of 1.0 at% Nb, for which point a specific capacity of 110 mAh g-1 is obtained at 10 C (6 min for the charge or discharge). This is an excellent result for a high power cathode LFP based material, particularly when considering the synthesis was performed on a large pilot-scale apparatus.

  9. Formation of 1.4 MeV runaway electron flows in air using a solid-state generator with 10 MV/ns voltage rise rate

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.; Pedos, M. S.; Rukin, S. N.; Rostov, V. V.; Romanchenko, I. V.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2018-04-01

    Fulfillment of the condition that the voltage rise time across an air gap is comparable with the time of electron acceleration from a cathode to an anode allows a flow of runaway electrons (REs) to be formed with relativistic energies approaching that determined by the amplitude of the voltage pulse. In the experiment described here, an RE energy of 1.4 MeV was observed by applying a negative travelling voltage pulse of 860-kV with a maximum rise rate of 10 MV/ns and a rise time of 100-ps. The voltage pulse amplitude was doubled at the cathode of the 2-cm-long air gap due to the delay of conventional pulsed breakdown. The above-mentioned record-breaking voltage pulse of ˜120 ps duration with a peak power of 15 GW was produced by an all-solid-state pulsed power source utilising pulse compression/sharpening in a multistage gyromagnetic nonlinear transmission line.

  10. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  11. Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.

    PubMed

    González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G

    2007-04-01

    The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.

  12. Evaluation of an Active Humidification System for Inspired Gas

    PubMed Central

    Roux, Nicolás G.; Villalba, Darío S.; Gogniat, Emiliano; Feld, Vivivana; Ribero Vairo, Noelia; Sartore, Marisa; Bosso, Mauro; Scapellato, José L.; Intile, Dante; Planells, Fernando; Noval, Diego; Buñirigo, Pablo; Jofré, Ricardo; Díaz Nielsen, Ernesto

    2015-01-01

    Objectives The effectiveness of the active humidification systems (AHS) in patients already weaned from mechanical ventilation and with an artificial airway has not been very well described. The objective of this study was to evaluate the performance of an AHS in chronically tracheostomized and spontaneously breathing patients. Methods Measurements were quantified at three levels of temperature (T°) of the AHS: level I, low; level II, middle; and level III, high and at different flow levels (20 to 60 L/minute). Statistical analysis of repeated measurements was performed using analysis of variance and significance was set at a P<0.05. Results While the lowest temperature setting (level I) did not condition gas to the minimum recommended values for any of the flows that were used, the medium temperature setting (level II) only conditioned gas with flows of 20 and 30 L/minute. Finally, at the highest temperature setting (level III), every flow reached the minimum absolute humidity (AH) recommended of 30 mg/L. Conclusion According to our results, to obtain appropiate relative humidity, AH and T° of gas one should have a device that maintains water T° at least at 53℃ for flows between 20 and 30 L/m, or at T° of 61℃ at any flow rate. PMID:25729499

  13. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers

    DOE PAGES

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.; ...

    2017-09-14

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  14. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  15. The Iodine Satellite (iSAT) Propellant Feed System - Design and Development

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Seixal, Joao F.; Mauro, Stephanie L.; Burt, Adam O.; Martinez, Armando; Martin, Adam K.

    2017-01-01

    The development, modeling, and testing of components and subsystems required to feed iodine propellant to a 200-W Hall thruster and cathode are described. This work aims to address design deficiencies and issues associated with the propellant feed system that were revealed by an integrated thruster-cathode-feed system test. The feed system design is modified to use materials that are more resistant to the highly-reactive nature of iodine propellant. Dynamic modeling indicates that the inclusion of additional constraints on feed system tubing will reduce the vibrationally-induced stresses that occur during launch. Full spacecraft thermal modeling show that the feed system heater power levels are sufficient to heat the tank and propellant lines to operating temperatures, where iodine in the tank is sublimed to supply propellant for operation and the tubing is elevated in temperature to keep propellant from redepositing to block the flow. Experiments are conducted to demonstrate that is it possible through the application of heating to clear an iodine deposit blocking the flow. Deposits in the low-pressure portion of the system near the exit to vacuum are shown to be relatively easy to remove in this manner while blockages forming upstream nearer to the higher-pressure propellant tank require significantly more effort to remove. Fluid flow modeling of the feed system is performed, exhibiting some qualitative agreement with experimental data. However, the highly viscous nature of the fluid flow and the dependence of the component flow coefficients on the Reynolds number are likely causes of the generally-poor quantitative agreement between the modeling results and experimentally-measured fluid flow properties.

  16. Groundwater Recharge and Flow Processes in Taihang Mountains, a Semi-humid Region, North China

    NASA Astrophysics Data System (ADS)

    Sakakibara, Koichi; Tsujimura, Maki; Song, Xianfang; Zhang, Jie

    2015-04-01

    Groundwater flow/recharge variations in time and space are crucial for effective water management especially in semi-arid and semi-humid regions. In order to reveal comprehensive groundwater flow/recharge processes in a catchment with a large topographical relief and seasonal hydrological variations, intensive field surveys were undertaken at 4 times in different seasons (June 2011, August 2012, November 2012, February 2014) in the Wangkuai watershed, Taihang mountains, which is a main groundwater recharge area of the North China Plain. The groundwater, spring, stream water and reservoir water were taken, and inorganic solute constituents and stable isotopes of oxygen-18 and deuterium were determined on all water samples. Also, the stream flow rate and the depth of groundwater table were observed. The stable isotopic compositions and inorganic solute constituents in the groundwater are depleted and shown similar values as those of the surface water at the mountain-plain transitional area. Additionally, the groundwater in the vicinity of the Wangkuai Reservoir presents clearly higher stable isotopic compositions and lower d-excess than those of the stream water, indicating the groundwater around the reservoir is affected by evaporation same as the Wangkuai Reservoir itself. Hence, the surface water in the mountain-plain transitional area and Wangkuai Reservoir are principal groundwater recharge sources. An inversion analysis and simple mixing model were applied in the Wangkuai watershed using stable isotopes of oxygen-18 and deuterium to construct a groundwater flow model. The model shows that multi-originated groundwater flows from upstream to downstream along topography with certain mixing. In addition, the groundwater recharge occurs dominantly at the altitude from 421 m to 953 m, and the groundwater recharge rate by the Wangkuai Reservoir is estimated to be 2.4 % of the total groundwater recharge in the Wangkuai watershed. Therefore, the stream water and reservoir water in the mountain-plain transitional area plays an important role of groundwater recharge in semi-arid and semi-humid regions.

  17. Evaluation of the response of tritium-in-air instrumentation to HT in dry and humid conditions and to HTO vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, H.; Dean, J.; Privas, E.

    2015-03-15

    Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses amore » P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)« less

  18. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  19. Combined current collector and electrode separator

    DOEpatents

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  20. Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).

    PubMed

    Song, Jing; Liu, Lifen; Yang, Fenglin; Ren, Nanqi; Crittenden, John

    2013-11-01

    A three-chambered membrane bio-chemical reactor (TC-MBCR) was developed. The stainless steel membrane modules were used as cathodes and iron plates in the middle chamber served as the anode. The TC-MBCR was able to reduce fouling, remove triclosan (TCS) from a synthetic wastewater treatment and enhance electricity generation by ~60% compared with the cell voltage before TCS addition. The TC-MBCR system generated a relatively stable power output (cell voltage ~0.2V) and the corrosion of iron plates contributed to electricity generation together with microbes on iron anode. The permeation flow from anode to cathode chamber was considered important in electricity generation. In addition, the negatively charged cathode membrane and Fe(2+)/Fe(3+) released by iron plates mitigated membrane fouling by approximately 30%, as compared with the control. The removal of COD and total phosphorus was approximately 99% and 90%. The highest triclosan removal rate reached 97.9%. Copyright © 2013. Published by Elsevier Ltd.

  1. Combined current collector and electrode separator

    DOEpatents

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  2. Full-color laser cathode ray tube (L-CRT) projector

    NASA Astrophysics Data System (ADS)

    Kozlovskiy, Vladimir; Nasibov, Alexander S.; Popov, Yuri M.; Reznikov, Parvel V.; Skasyrsky, Yan K.

    1995-04-01

    A full color TV projector based on three laser cathode-ray tubes (L-CRT) is described. A water-cooled laser screen (LS) is the radiation element of the L-CRT. We have produced three main colors (blue, green and red) by using the LS made of three II-VI compounds: ZnSe ((lambda) equals 475 nm), CdS ((lambda) equals 530 nm) and ZnCdSe (630 nm). The total light flow reaches 1500 Lm, and the number of elements per line is not less than 1000. The LS efficiency may be about 10 Lm/W. In our experiments we have tested new electron optics: - (30 - 37) kV are applied to the cathode unit of the electron gun; the anode of the e-gun and the e-beam intensity modulator are under low potential; the LS has a potential + (30 - 37) kV. The accelerating voltage is divided into two parts, and this enables us to diminish the size and weight of the projector.

  3. Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity

    NASA Astrophysics Data System (ADS)

    Kobylkevich, Brian M.; Sarkar, Anyesha; Carlberg, Brady R.; Huang, Ling; Ranjit, Suman; Graham, David M.; Messerli, Mark A.

    2018-05-01

    Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.

  4. Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells

    DOE PAGES

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; ...

    2017-05-06

    Additive manufacturing (AM) technology is capable of fast and low-cost prototyping from complex 3D digital models. To take advantage of this technology, a stainless steel (SS) plate with parallel flow field served as a combination of a cathode bipolar plate and a current distributor; it was fabricated using selective laser melting (SLM) techniques and investigated in a proton exchange membrane electrolyzer cell (PEMEC) in-situ for the first time. The experimental results show that the PEMEC with an AM SS cathode bipolar plate can achieve an excellent performance for hydrogen production for a voltage of 1.779 V and a current densitymore » of 2.0 A/cm 2. The AM SS cathode bipolar plate was also characterized by SEM and EDS, and the results show a uniform elemental distribution across the plate with very limited oxidization. As a result, this research demonstrates that AM method could be a route to aid cost-effective and rapid development of PEMECs.« less

  5. Reversing the direction of galvanotaxis with controlled increases in boundary layer viscosity.

    PubMed

    Kobylkevich, Brian M; Sarkar, Anyesha; Carlberg, Brady R; Huang, Ling; Ranjit, Suman; Graham, David M; Messerli, Mark A

    2018-03-09

    Weak external electric fields (EFs) polarize cellular structure and direct most migrating cells (galvanotaxis) toward the cathode, making it a useful tool during tissue engineering and for healing epidermal wounds. However, the biophysical mechanisms for sensing weak EFs remain elusive. We have reinvestigated the mechanism of cathode-directed water flow (electro-osmosis) in the boundary layer of cells, by reducing it with neutral, viscous polymers. We report that increasing viscosity with low molecular weight polymers decreases cathodal migration and promotes anodal migration in a concentration dependent manner. In contrast, increased viscosity with high molecular weight polymers does not affect directionality. We explain the contradictory results in terms of porosity and hydraulic permeability between the polymers rather than in terms of bulk viscosity. These results provide the first evidence for controlled reversal of galvanotaxis using viscous agents and position the field closer to identifying the putative electric field receptor, a fundamental, outside-in signaling receptor that controls cellular polarity for different cell types.

  6. Electric Field and Current Transport Mechanisms in Schottky CdTe X-ray Detectors under Perturbing Optical Radiation

    PubMed Central

    Cola, Adriano; Farella, Isabella

    2013-01-01

    Schottky CdTe X-ray detectors exhibit excellent spectroscopic performance but suffer from instabilities. Hence it is of extreme relevance to investigate their electrical properties. A systematic study of the electric field distribution and the current flowing in such detectors under optical perturbations is presented here. The detector response is explored by varying experimental parameters, such as voltage, temperature, and radiation wavelength. The strongest perturbation is observed under 850 nm irradiation, bulk carrier recombination becoming effective there. Cathode and anode irradiations evidence the crucial role of the contacts, the cathode being Ohmic and the anode blocking. In particular, under irradiation of the cathode, charge injection occurs and peculiar kinks, typical of trap filling, are observed both in the current-voltage characteristic and during transients. The simultaneous access to the electric field and the current highlights the correlation between free and fixed charges, and unveils carrier transport/collection mechanisms otherwise hidden. PMID:23881140

  7. Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye

    Additive manufacturing (AM) technology is capable of fast and low-cost prototyping from complex 3D digital models. To take advantage of this technology, a stainless steel (SS) plate with parallel flow field served as a combination of a cathode bipolar plate and a current distributor; it was fabricated using selective laser melting (SLM) techniques and investigated in a proton exchange membrane electrolyzer cell (PEMEC) in-situ for the first time. The experimental results show that the PEMEC with an AM SS cathode bipolar plate can achieve an excellent performance for hydrogen production for a voltage of 1.779 V and a current densitymore » of 2.0 A/cm 2. The AM SS cathode bipolar plate was also characterized by SEM and EDS, and the results show a uniform elemental distribution across the plate with very limited oxidization. As a result, this research demonstrates that AM method could be a route to aid cost-effective and rapid development of PEMECs.« less

  8. Physical and technological principles of designing layer-gradient multicomponent surfaces by combining the methods of ion-diffusion saturation and magnetron- and vacuum-arc deposition

    NASA Astrophysics Data System (ADS)

    Savostikov, V. M.; Potekaev, A. I.; Tabachenko, A. N.

    2011-12-01

    Using a technological system proposed by the authors, a combined process is developed for formation of stratified-gradient surface layers and multicomponent coatings. It is implemented under the conditions of a combined serial-parallel operation of a hot-cathode gas plasma generator and a duomagnetron with two targets and two electric-arc evaporators. The extended functional potential is ensured by using advanced multi-element and multi-phase cathode targets made of borides, carbides, silicides, and sulfides of metals produced by the SHS-process followed by their immediate compaction. The variations in composition, structure, and physicomechanical properties in the cross-section of the stratified-gradient surface layers and coating is provided by a predetermined alternating replacement of the sputtered cathode targets of the plasma sources, the plasma flow intensity ratios, and variation in the particle energy incident on the substrate, which is determined by the accelerating voltage on the substrate.

  9. Serially connected solid oxide fuel cells having monolithic cores

    DOEpatents

    Herceg, J.E.

    1985-05-20

    Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  10. Characterization of a microbial fuel cell with reticulated carbon foam electrodes.

    PubMed

    Lepage, Guillaume; Albernaz, Fabio Ovenhausen; Perrier, Gérard; Merlin, Gérard

    2012-11-01

    A microbial fuel cell with open-pore reticulated vitreous carbon electrodes is studied to assess the suitability of this material in a batch mode, in the perspective of flow-through reactors for wastewater treatment with electricity generation. The cell shows good stability and fair robustness in regards to substrate cycles. A power density of 40 W/m(3) is reached. The cell efficiency is mainly limited by cathodic transfers, representing 85% of the global overpotential in open circuit. Through impedance spectrocopy, equivalent circuit modeling reveals the complex nature of the bioelectrochemical phenomena. The global electrical behavior of the cell seems to result in the addition of three anodic and two cathodic distinct phenomena. On the cathode side, the Warburg element in the model is related to the diffusion of oxygen. Warburg resistance and time are respectively 2.99 kΩ cm(2) and 16.4s, similar to those published elsewhere. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  12. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology.

    PubMed

    Bhattacharjee, N; Horowitz, L F; Folch, A

    2016-10-17

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  13. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    PubMed

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    PubMed

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.

  15. Hydrological regime as key to the morpho-texture and activity of braided streams

    NASA Astrophysics Data System (ADS)

    Storz-Peretz, Y.; Laronne, J. B.

    2012-04-01

    Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow recession is responsible for deposition of finer sediment with minimal winnowing in the branch channels. Therefore, channels are finer-grained than the bars. This process is associated with the mid-channel deposition of central bars. However, the steeper chutes and coarser anabranches are associated with erosive braiding processes, such as chute cutoffs and multiple bar dissection, allowing winnowing to occur also during rapid recession. Hence coarser-grained anabranches in drylands are essentially chutes. Lengthy flow recession in humid braided channels allows winnowing of fines, thereby generating armored channels, the finer sedimentary particles often deposited downstream as unit bars. Therefore, channels are coarser-grained than the bars they surround. Even though the steep Saisera is in a humid region, its hydrological regime is ephemeral with rapid and short recessions, responsible for a morpho-texture similar to that of dryland braided streams. Hence, the hydrologic regimen is a key to understanding the morpho-textural character of braided channels and for the higher activity of the ephemeral unarmoured channels in sub-barful events compared to their humid counterparts.

  16. Ammonia Offgassing from SA9T

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Nolek, Sara D.; Wheeler, Raymond M.

    2011-01-01

    NH3 is a degradation product of SA9T, a solid-amine sorbent developed by Hamilton Sundstrand, that is continually emitted into the gas stream being conditioned by this sorbent. NH3 offgassing rates were measured using FTIR spectroscopy using a packed bed at similar contact times as offgassing tests conducted at Hamilton Sundstrand and at the Ames Research Center. The bed was challenged with moist air at several flow rates and humidities and NH3 concentration of the effluent was measured for several hours. The NH3 offgassing rates in open-loop testing were calculated from the steady state outlet NH3 concentration and flow rate. NH3 offgassing rates from SA9T were found to be influenced by the contact time with the adsorbent (flow rate) and by the humidity of the inlet gas stream, which are consistent with previous studies. Closed-loop vacuum-swing adsorption cycling rates verified that NH3 offgassing continues when a constant source of water vapor is present.

  17. The Salty Science of the Aluminum-Air Battery

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-12-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true, but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using copper cathode, aluminum anode, and saltwater.

  18. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  19. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix

    2017-07-01

    Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.

  20. Conceptual design and experiments of electrochemistry-flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil.

    PubMed

    Li, Dong; Sun, Delin; Hu, Siyang; Hu, Jing; Yuan, Xingzhong

    2016-02-01

    A conceptual design and experiments, electrochemistry-flushing (E-flushing), using electrochemistry to enhance flushing efficiency for the remediation of Cr(Ⅵ)-contaminated soil is presented. The rector contained three compartments vertically superposed. The upper was airtight cathode compartment containing an iron-cathode. The middle was soil layer. The bottom was anode compartment containing an iron-anode and connected to a container by circulation pumps. H2 and OH(-) ions were produced at cathode. H2 increased the gas pressure in cathode compartment and drove flushing solution into soil layer forming flushing process. OH(-) ions entered into soil layer by eletromigration and hydraulic flow to enhance the desorption of Cr(Ⅵ). High potential gradient was applied to accelerate the electromigration of desorbed Cr(Ⅵ) ions and produced joule heat to increase soil temperature to enhance Cr(Ⅵ) desorption. In anode compartment, Fe(2+) ions produced at iron-anode reduced the desorbed Cr(Ⅵ) into Cr(3+) ions, which reacted with OH(-) ions forming Cr(OH)3. Experimental results show that Cr(Ⅵ) removal efficiency of E-flushing experiments was more than double of flushing experiments and reached the maximum of removal efficiency determined by desorption kinetics. All electrochemistry processes were positively used in E-flushing technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Baffle aperture design study of hollow cathode equipped ion thrusters. M.S. Thesis Technical Report, 1 Dec. 1979 - 1 Oct. 1980

    NASA Technical Reports Server (NTRS)

    Brophy, J. R., Jr.; Wilbur, P. J.

    1980-01-01

    A simple theoretical model which can be used as an aid in the design of the baffle aperture region of a hollow cathode equipped ion thruster was developed. An analysis of the ion and electron currents in both the main and cathode discharge chambers is presented. From this analysis a model of current flow through the aperture, which is required as an input to the design model, was developed. This model was verified experimentally. The dominant force driving electrons through the aperture was the force due to the electrical potential gradient. The diffusion process was modeled according to the Bolm diffusion theory. A number of simplifications were made to limit the amount of detailed plasma information required as input to the model to facilitate the use of the model in thruster design. This simplified model gave remarkably consistant results with experimental results obtained with a given thruster geometry over substantial changes in operating conditions. The model was uncertain to about a factor of two for different thruster cathode region geometries. The design usefulness was limited by this factor of two uncertainty and by the accuracy to which the plasma parameters required as inputs to the model were specified.

  2. Method for reducing fuel cell output voltage to permit low power operation

    DOEpatents

    Reiser, Carl A.; Landau, Michael B.

    1980-01-01

    Fuel cell performance is degraded by recycling a portion of the cathode exhaust through the cells and, if necessary, also reducing the total air flow to the cells for the purpose of permitting operation below a power level which would otherwise result in excessive voltage.

  3. TCE TRANSPORT AND DEGRADATION IN SOIL USING ELECTROOSMOSIS

    EPA Science Inventory

    Laboratory experiments were used to characterize the transport and chemical transformation of TCE in undisturbed soil cores. Electroosmotic fluid flow was vertically downwards from anode to cathode. A voltage of 1.4 V/cm was applied to the soil for 4 weeks. More than 95% of the T...

  4. Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, Y.W.; Pruess, K.

    1991-06-01

    Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity ofmore » the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.« less

  5. Simultaneous particle image velocimetry and chemiluminescence visualization of millisecond-pulsed current-voltage-induced perturbations of a premixed propane/air flame

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob; Kostka, Stanislav; Lynch, Amy; Ganguly, Biswa

    2011-09-01

    The effects of millisecond-wide, pulsed current-voltage-induced behavior in premixed laminar flames have been investigated through the simultaneous collection of particle image velocimetry (PIV) and chemiluminescence data with particular attention paid to the onset mechanisms. Disturbances caused by applied voltages of 2 kV over a 30-mm gap to a downward propagating, atmospheric pressure, premixed propane/air flame with a flow speed near 2 m/s and an equivalence ratio of 1.06 are investigated. The combined PIV and chemiluminescence-based experimental data show the observed disturbance originates only in or near the cathode fall region very close to the burner base. The data also suggest that the coupling mechanism responsible for the flame disturbance behavior is fluidic in nature, developing from the radial positive chemi-ion distribution and an ion-drift current-induced net body force that acts along the annular space discharge distribution in the reaction zone in or near the cathode fall. This net body force causes a reduction in flow speed above these near cathodic regions causing the base of the flame to laterally spread. Also, this effect seems to produce a velocity gradient leading to the transition of a laminar flame to turbulent combustion for higher applied current-voltage conditions as shown in previous work (Marcum and Ganguly in Combust Flame 143:27-36, 2005; Schmidt and Ganguly in 48th AIAA aerospace sciences meeting. Orlando, 2010).

  6. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  7. The Madison plasma dynamo experiment: A facility for studying laboratory plasma astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C. M.; Brookhart, M.; Collins, C.

    2014-01-15

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-β phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains ∼14 m{sup 3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB{sub 6}) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressuremore » Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB{sub 6} cathodes are positioned in the magnetized edge to drive toroidal rotation through J × B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M{sub A}{sup 2}=(v/v{sub A}){sup 2}>1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.« less

  8. [Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method].

    PubMed

    Miao, Bo; Meng, Ping; Zhang, Jin Song; He, Fang Jie; Sun, Shou Jia

    2017-07-18

    The water sources and transpiration of poplar trees in Zhangbei County were measured using stable hydrogen isotope and thermal dissipation method. The differences in water relationships between dieback and non-dieback poplar trees were analyzed. The results showed that the dieback trees mainly used shallow water from 0-30 cm soil layer during growing season while the non-dieback trees mainly used water from 30-80 cm soil layer. There was a significant difference in water source between them. The non-dieback trees used more water from middle and deep soil layers than that of the dieback trees during the dry season. The percentage of poplar trees using water from 0-30 cm soil layer increased in wet season, and the increase of dieback trees was higher than that of non-dieback trees. The contributions of water from 30-180 cm soil layer of dieback and non-dieback trees both decreased in wet season. The sap flow rate of non-dieback trees was higher than that of dieback trees. There was a similar variation tend of sap flow rate between dieback and non-dieback trees in different weather conditions, but the start time of sap flow of non-dieback trees was earlier than that of dieback trees. Correlation analysis showed that the sap flow rate of either dieback or non-dieback poplar trees strongly related to soil temperature, wind speed, photosynthetically active radiation, relative humidity and air temperature. The sap flow rate of die-back poplar trees strongly negatively related to soil temperature and relative humidity, and strongly positively related to the other factors. The sap flow rate of non-dieback poplar trees only strongly negatively related to relative humidity but positively related to the other factors. The results revealed transpiration of both poplar trees was easily affected by environmental factors. The water consumption of dieback trees was less than non-dieback trees because the cumulative sap flow amount of dieback trees was lower. Reduced transpiration of dieback trees couldn't help to prevent poplar forest declining due to shallow water source.

  9. Simultaneous Online Measurement of H2O and CO2 in the Humid CO2 Adsorption/Desorption Process.

    PubMed

    Yu, Qingni; Ye, Sha; Zhu, Jingke; Lei, Lecheng; Yang, Bin

    2015-01-01

    A dew point meter (DP) and an infrared (IR) CO2 analyzer were assembled in a humid CO2 adsorption/desorption system in series for simultaneous online measurements of H2O and CO2, respectively. The humidifier, by using surface-flushing on a saturated brine solution was self-made for the generation of humid air flow. It was found that by this method it became relatively easy to obtain a low H2O content in air flow and that its fluctuation could be reduced compared to the bubbling method. Water calibration for the DP-IR detector is necessary to be conducted for minimizing the measurement error of H2O. It demonstrated that the relative error (RA) for simultaneous online measurements H2O and CO2 in the desorption process is lower than 0.1%. The high RA in the adsorption of H2O is attributed to H2O adsorption on the transfer pipe and amplification of the measurement error. The high accuracy of simultaneous online measurements of H2O and CO2 is promising for investigating their co-adsorption/desorption behaviors, especially for direct CO2 capture from ambient air.

  10. Polymer Coatings Reduce Electro-osmosis

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  11. Fuel cell and membrane therefore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aindow, Tai-Tsui

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially alignedmore » with the high value direction of the flow field plate.« less

  12. Generator of the low-temperature heterogeneous plasma flow

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  13. Record rates of pressurized gas-flow in the great horsetail, Equisetum telmateia. Were Carboniferous Calamites similarly aerated?

    PubMed

    Armstrong, Jean; Armstrong, William

    2009-01-01

    Significant pressurized (convective) ventilation has been demonstrated in some flowering wetland plants, for example water-lilies and reeds, but not previously in nonflowering plants. Here we investigated convective flows in the great horsetail, Equisetum telmateia, and the possibility that convections aerated the massive rhizomes of the Calamites, extinct giant horsetails of the Carboniferous. Convection in E. telmateia was examined in relation to induction sites, anatomical pathways, relative humidity (RH), external wind-speed, diurnal effects, rhizome resistance and pressure-gradients. A mathematical model, incorporating Calamite aeration anatomy, was applied in assessing potentials for convective aeration. Individual shoots of E. telmateia generated extremely high rates of humidity-induced convection: < or = 120 cm(3) min(-1) (internal wind-velocity: 10 cm s(-1)) with rates proportional to branch numbers and 1/RH. Flows passed through branches, stem and rhizome via low-resistance lacunae (vallecular canals) and vented via stubble. Stomata supported internal pressures up to 800 Pa. Anatomically, E. telmateia resembles the Calamites and modelling predicted possible flows of 70 l min(-1) per Calamite tree. This is the first demonstration of significant convective flow in a nonflowering species, indicating that plant ventilation by a type of 'molecular gas-pump' may date back 350 million yr or more. Stomatal form and low-resistance pathways may facilitate high flow rates.

  14. Effect of Fluid Flow on Zinc Electrodeposits from Acid Chloride Electrolytes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Abdelmassir, A. A.

    1982-01-01

    Zinc was deposited potentiostatically from acid chloride baths. Once bath chemistry and electrochemistry were controlled, the study was focused on convective mass transfer at horizontal electrodes and its effect on cell performance. A laser schlieren imaging technique allowed in situ observations of flow patterns and their correlation with current transients. Convection was turbulent and mass transfer as a function of Rayleigh number was well correlated by: Sh = 0.14 R to the 1/3 power. Similarly, convection initiation time was correlated by DT/d squared = 38 Ra to the -2/3 power. Time scale of fluctuations was about half the initiation time. Taking the boundary layer thickness as a characteristic length, a critical Rayleigh number for the onset of convection was deduced: Ra sub CR = 5000. Placing the anode on the top of the cathode completely changed the flow pattern but kept the I-t curves identical whereas the use of a cathode grid doubled the limiting current. A well defined plateau in the current voltage curves suggested that hydrogen evolution has been successfully inhibited. Finally, long time deposition showed that convection at horizontal electrodes increased the induction time for dentrite growth by at least a factor of 2 with respect to a vertical wire.

  15. Role of poloidal flows on the particle confinement time in a simple toroidal device : an experimental study

    NASA Astrophysics Data System (ADS)

    Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel

    2017-10-01

    In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.

  16. Effect of pH in a Pd-based ethanol membraneless air breathing nanofluidic fuel cell with flow-through electrodes

    NASA Astrophysics Data System (ADS)

    López-Rico, C. A.; Galindo-de-la-Rosa, J.; Ledesma-García, J.; Arriaga, L. G.; Guerra-Balcázar, M.; Arjona, N.

    2015-12-01

    In this work, a nanofluidic fuel cell (NFC) in which streams flow through electrodes was used to investigate the role of pH in the cell performance using ethanol as fuel and two Pd nanoparticles as electrocatalysts: one commercially available (Pd/C from ETEK) and other synthesized using ionic liquids (Pd/C IL). The cell performances for both electrocatalysts in acid/acid (anodic/cathodic) streams were of 18.05 and 9.55 mW cm-2 for Pd/C ETEK and Pd/C IL. In alkaline/alkaline streams, decrease to 15.94 mW cm-2 for Pd/C ETEK and increase to 15.37 mW cm-2 for Pd/C IL. In alkaline/acidic streams both electrocatalysts showed similar cell voltages (up to 1 V); meanwhile power densities were of 87.6 and 99.4 mW cm-2 for Pd/C ETEK and Pd/C IL. The raise in cell performance can be related to a decrease in activation losses, the combined used of alkaline and acidic streams and these high values compared with flow-over fuel cells can be related to the enhancement of the cathodic mass transport by using three dimensional porous electrodes and two sources of oxygen: from air and from a saturated solution.

  17. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.

    Results are presented from experimental studies of decomposition of toluene (C{sub 6}H{sub 5}CH{sub 3}) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C{sub 6}H{sub 5}CH{sub 3} removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N{sub 2}: O{sub 2}: H{sub 2}O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge ismore » demonstrated. The main mechanisms of the influence of humidity on C{sub 6}H{sub 5}CH{sub 3} decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C{sub 6}H{sub 5}CH{sub 3} is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sarvesh; Rothenberg, Daniel A.; Wolf, Martin J.

    This study investigates the measurement of ice nucleating particle (INP) concentrations and sizing of crystals using continuous flow diffusion chambers (CFDCs). CFDCs have been deployed for decades to measure the formation of INPs under controlled humidity and temperature conditions in laboratory studies and by ambient aerosol populations. These measurements have, in turn, been used to construct parameterizations for use in models by relating the formation of ice crystals to state variables such as temperature and humidity as well as aerosol particle properties such as composition and number. We show here that assumptions of ideal instrument behavior are not supported by measurements mademore » with a commercially available CFDC, the SPectrometer for Ice Nucleation (SPIN), and the instrument on which it is based, the Zurich Ice Nucleation Chamber (ZINC). Non-ideal instrument behavior, which is likely inherent to varying degrees in all CFDCs, is caused by exposure of particles to different humidities and/or temperatures than predicated from instrument theory of operation. This can result in a systematic, and variable, underestimation of reported INP concentrations. Here we find here variable correction factors from 1.5 to 9.5, consistent with previous literature values. We use a machine learning approach to show that non-ideality is most likely due to small-scale flow features where the aerosols are combined with sheath flows. Machine learning is also used to minimize the uncertainty in measured INP concentrations. Finally, we suggest that detailed measurement, on an instrument-by-instrument basis, be performed to characterize this uncertainty.« less

  19. Development of an electrospray-(63)Ni-differential ion mobility spectrometer for the analysis of aqueous samples.

    PubMed

    Kuklya, Andriy; Uteschil, Florian; Kerpen, Klaus; Marks, Robert; Telgheder, Ursula

    2014-03-01

    The feasibility of an electrospray coupled with a (63)Ni-differential ion mobility spectrometer (DMS) for the analysis of water samples was proven on examples of 2-hexanone, fluoroacetamide, l-nicotine and 1-phenyl-2-thiourea water solutions. The model substances were selected in order to cover the vapor pressure range of 0.3-1467 Pa. To reduce the inline humidity, which demonstrates a strong influence on the analyte compensation voltage, two units with a desolvation region lengths of 15.5 and 7 mm were examined. The counter gas (heated to 100 °C nitrogen) with flow rates of 100 mL min(-1) and 30 mL min(-1) for short and long desolvation units, respectively, was essential for the efficient reduction of humidity. The reduction of water content in the carrier gas to 2.2-2.4 g m(-3) and to 1.8-2.0 g m(-3) for the short and long desolvation unit, respectively, was achieved at an electrospray flow rate of 1000 nL min(-1). With this adjusted experimental setup, the detection of model substances in the water solutions, in the range of 0.1-50 mg L(-1), was performed. No correlation between the vapor pressure and signal area was observed. The high stability of the inline humidity, and the correspondingly stable carrier gas flow rate, were found to be essential for an acceptable reproducibility. © 2013 Elsevier B.V. All rights reserved.

  20. Moisture transfer through the membrane of a cross-flow energy recovery ventilator: Measurement and simple data-driven modeling

    Treesearch

    CR Boardman; Samuel V. Glass

    2015-01-01

    The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...

  1. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  2. Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)

    DTIC Science & Technology

    2005-01-01

    tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form

  3. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot.

    PubMed

    Fan, Guangping; Cang, Long; Fang, Guodong; Qin, Wenxiu; Ge, Liqiang; Zhou, Dongmei

    2014-12-01

    Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated. 20% (w/w) of persulfate was injected at the anode, cathode and both electrodes to examine its transport behaviors under electrical field, and the effect of field inversion process was also evaluated. The results showed that high dosage of persulfate could be delivered into S4 section (near cathode) by electroosmosis when persulfate was injected from anode, 30.8% of PCBs was removed from the soil, and the formed hydroxyl precipitation near the cathode during EK process impeded the transportation of persulfate. In contrast, only 18.9% of PCBs was removed with the injection of persulfate from cathode, although the breakthrough of persulfate into the anode reservoir was observed. These results indicated that the electroosmotic flow is more effective for the transportation of persulfate into soil. The addition of persulfate from both electrodes did not significantly facilitate the PCBs oxidation as well as the treatment of electrical field reversion, the reinforced negative depolarization function occurring in the cathode at high current consumed most of the oxidant. Furthermore, it was found that strong acid condition near the anode favored the oxidation of PCBs by persulfate and the degradation of PCBs was in consistent with the oxidation of Soil TOC in EK/persulfate system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Understanding the impact of operational conditions on performance of microbial peroxide producing cells

    NASA Astrophysics Data System (ADS)

    Young, Michelle N.; Chowdhury, Nadrat; Garver, Emily; Evans, Patrick J.; Popat, Sudeep C.; Rittmann, Bruce E.; Torres, César I.

    2017-07-01

    Microbial peroxide producing cells (MPPCs) are microbial electrochemical cells used to synthesize hydrogen peroxide (H2O2) in the cathode chamber. Catholyte hydraulic retention time (HRT), different catholytes and their concentrations, and a ferrochelating stabilizer are varied in a continuous-flow cathode MPPC to evaluate their impacts on performance. Using NaCl catholytes, the MPPC produced as high as 3.1 ± 0.37 g H2O2 L-1 at a 4-h HRT with as little as 1.13 W-h g-1 H2O2 energy input and with up to 57 g Lcathode-1 d-1 at a 1-h HRT. For these conditions, the H2O2 production rate provides more than 3 times the H2O2 required for disinfection or micro-pollutant removal while using 5-25% of the power used in conventional H2O2 production processes. Attempts to improve H2O2-production by adding weak acid buffers or H2O2-stabilizing EDTA fail for different reasons. The addition of the ferrochelator EDTA to prevent H2O2 auto-decay deteriorates MPPC performance, because EDTA diffuses from the cathode to the anode, inhibiting iron utilization by anode-respiring bacteria. Weak acid buffers failed to reduce cathode concentration overpotentials. Buffering catholytes lowered the H2O2 yield due to large pH gradients at the cathode chamber entrance, causing the formation of H2O instead of H2O2 or O2 re-formation from H2O2 auto-decay.

  5. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability.

    PubMed

    Lan, Huachun; He, Wenjing; Wang, Aimin; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui; Huang, C P

    2016-11-15

    An activated carbon fiber (ACF) cathode was fabricated and used to treat glyphosate containing wastewater by the Electro-Fenton (EF) process. The results showed that glyphosate was rapidly and efficiently degraded and the BOD 5 /COD ratio was increased to >0.3 implying the feasibility of subsequent treatment of the treated wastewater by biological methods. The results of ion chromatography and HPLC measurements indicated that glyphosate was completely decomposed. Effective OH generation and rapid recycling/recovery of the Fe 2+ ions at the cathode were responsible primarily for the high performance of the ACF-EF process. Factors such as inlet oxygen gas flow rate, Fe 2+ dosage, initial glyphosate concentration, applied current intensity, and solution pH that may affect the efficiency of the ACF-EF process were further studied and the optimum operation condition was established. Results of SEM/EDX, BET and XPS analysis showed the deposition of highly dispersed fine Fe 2 O 3 particles on the ACF surface during the EF reaction. The possibility of using the Fe 2 O 3 -ACF as iron source in the EF process was assessed. Results showed that the Fe 2 O 3 -ACF electrode was effective in degrading glyphosate in the EF process. The deposition of Fe 2 O 3 particles on the ACF electrode had no adverse effect on the reusability of the ACF cathode. Copyright © 2016. Published by Elsevier Ltd.

  6. Afforestation by natural regeneration or by tree planting: examples of opposite hydrological impacts evidenced by long-term field monitoring in the humid tropics

    NASA Astrophysics Data System (ADS)

    Lacombe, G.; Ribolzi, O.; de Rouw, A.; Pierret, A.; Latsachak, K.; Silvera, N.; Pham Dinh, R.; Orange, D.; Janeau, J.-L.; Soulileuth, B.; Robain, H.; Taccoen, A.; Sengphaathith, P.; Mouche, E.; Sengtaheuanghoung, O.; Tran Duc, T.; Valentin, C.

    2015-12-01

    The humid tropics are exposed to an unprecedented modernization of agriculture involving rapid and highly-mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability controlling habitats, water resources and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydro-meteorological variables has been operating in several headwater catchments in tropical Southeast Asia since 2001. The GR2M water balance model repeatedly calibrated over successive 1 year periods, and used in simulation mode with specific rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses and trend detection tests allowed causality between land-use changes and changes in seasonal flows to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow, led to intricate flow patterns: pluri-annual flow cycles induced by the shifting system, on top of a gradual flow increase over years caused by the spread of the plantation. In Vietnam, the abandonment of continuously cropped areas mixed with patches of tree plantations led to the natural re-growth of forest communities followed by a gradual drop in streamflow. Soil infiltrability controlled by surface crusting is the predominant process explaining why two modes of afforestation (natural regeneration or planting) led to opposite changes in flow regime. Given that commercial tree plantations will continue to expand in the humid tropics, careful consideration is needed before attributing to them positive effects on water and soil conservation.

  7. Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2013-02-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges). One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory (temperature 294 K) and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.

  8. Hydrological regions in monsoon Asia

    NASA Astrophysics Data System (ADS)

    Kondoh, Akihiko; Budi Harto, Agung; Eleonora, Runtunuwu; Kojiri, Toshiharu

    2004-11-01

    Monsoon Asia is characterized by its diversity of natural and social environments. These environments range from humid tropics to arid regions and there exist associated various hydrological phenomena. This paper attempts to characterize the hydrological regions of monsoon Asia based on the water budget calculated using grid-based global datasets. A map of hydrological regions is created by ranking the value of water surplus and deficit. A humid zone with large water surplus extending from Southeast Asia to the Japanese archipelago, rapid transition from humid to arid environments in eastern China, and an arid region surrounded by a humid region in continental Southeast Asia are the most remarkable features in monsoon Asia. The map reveals that an essential characteristic of monsoon Asia is the proximity of the arid and humid environments. Many water problems and water management practices in a region can be easily understood by plotting them on a map. The boundaries of several large river basins are superimposed on the map, and examined for the water budget and flow regimes. The results are found to explain the regional characteristics of the seasonal runoff regimes satisfactorily. The importance of using a spatial framework for the comparative hydrological study in Monsoon Asia is highlighted.

  9. ELECTROLYTIC SEPARATION PROCESS AND APPARATUS

    DOEpatents

    McLain, M.E. Jr.; Roberts, M.W.

    1962-03-01

    A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

  10. Electrochemical Deburring

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1983-01-01

    Electrochemical deburring removes burrs from assembled injector tubes. Since process uses liquid anodic dissolution in liquid electrolyte to proide deburring action, smoothes surfaces and edges in otherwise inaccessible areas. Tool consists of sleeve that contains metallic ring cathode. Sleeve is placed over tube, and electrolytic solution is forced to flow between tube and sleeve. The workpiece serves an anode.

  11. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  12. A QUANTITATIVE STUDY OF THE EVOLUTION OF GASES FROM ELECTRON TUBES AND MATERIALS.

    DTIC Science & Technology

    spectrometer, ion pumps, ionization gauges and precision orifices to measure the flow rate of individual gases. It has been used to examine several...amounts comprise about 95% of the gas evolved during cathode conversion and activation. Additional experiments in the dynamic analysis of tube processes are suggested. (Author)

  13. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    DOE PAGES

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less

  14. Determination of Hg(2+) by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry.

    PubMed

    Li, Qing; Zhang, Zhen; Wang, Zheng

    2014-10-03

    A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310). Copyright © 2014. Published by Elsevier B.V.

  15. The design and operating characteristics of an advanced 30-kW ammonia arcjet engine

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Pivirotto, Thomas J.; Brophy, John R.

    1987-01-01

    Experimental investigations were conducted to evaluate the effects of a contoured nozzle and modified cathode shape on ammonia arcjet engine performance. The contoured nozzle performance data were compared to the performance data of an arcjet which had a 38-deg included-angle, conical nozzle. Thrust improvements of up to 10 percent were demonstrated which corresponded to 3 percent improvements in specific impulse and 10 percent improvements in thrust efficiency. Performance characterizations for the modified cathode tip were conducted with the contoured nozzle arcjet. A uniform 15 percent decrease in arc voltage was demonstrated over a mass flow range of 0.175 to 0.350 g/s. A 4 percent improvement in thrust efficiency was noted at 22.0 kW.

  16. [Heat and moisture exchangers for conditioning of inspired air of intubated patients in intensive care. The humidification properties of passive air exchangers under clinical conditions].

    PubMed

    Rathgeber, J; Züchner, K; Kietzmann, D; Weyland, W

    1995-04-01

    Heat and moisture exchangers (HME) are used as artificial noses for intubated patients to prevent tracheo-bronchial or pulmonary damage resulting from dry and cold inspired gases. HME are mounted directly on the tracheal tube, where they collect a large fraction of the heat and moisture of the expired air, adding this to the subsequent inspired breath. The effective performance depends on the water-retention capacity of the HME: the amount of water added to the inspired gas cannot exceed the stored water uptake of the previous breath. This study evaluates the efficiency of four different HME under laboratory and clinical conditions using a new moisture-measuring device. METHODS. In a first step, the absolute efficiency of four different HME (DAR Hygrobac, Gibeck Humid-Vent 2P, Pall BB 22-15 T, and Pall BB 100) was evaluated using a lung model simulating physiological heat and humidity conditions of the upper airways. The model was ventilated with tidal volumes of 500, 1,000, and 1,500 ml and different flow rates. The water content of the ventilated air was determined between tracheal tube and HME using a new high-resolution humidity meter and compared with the absolute water loss of the exhaled air at the gas outlet of a Siemens Servo C ventilator measured with a dew-point hygrometer. Secondly, the moisturizing efficiency was evaluated under clinical conditions in an intensive care unit with 25 intubated patients. Maintaining the ventilatory conditions for each patient, the HME were randomly changed. The humidity data were determined as described above and compared with the laboratory findings. RESULTS AND DISCUSSION. The water content at the respirator outlet is inversely equivalent to the humidity of the inspired gases and represents the water loss from the respiratory tract if the patient is ventilated with dry gases. Moisture retention and heating capacity decreased with higher volumes and higher flow rates. These data are simple to obtain without affecting the patient and can easily be interpreted. It was demonstrated that, compared to physiological conditions, the DAR Hygrobac and Gibeck Humid Vent 2P-HME coated with hygroscopic salts-were able to maintain sufficient inspiratory humidity and heat. The Pall-HME, solely a condensation humidifier, did not meet the physiological requirements.

  17. A Generalized Subsurface Flow Parameterization Considering Subgrid Spatial Variability of Recharge and Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Liang, Xu; Leung, Lai R.

    2008-12-05

    Subsurface flow is an important hydrologic process and a key component of the water budget, especially in humid regions. In this study, a new subsurface flow formulation is developed that incorporates spatial variability of both topography and recharge. It is shown through theoretical derivation and case studies that the power law and exponential subsurface flow parameterizations and the parameterization proposed by Woods et al.[1997] are all special cases of the new formulation. The subsurface flows calculated using the new formulation compare well with values derived from observations at the Tulpehocken Creek and Walnut Creek watersheds. Sensitivity studies show that whenmore » the spatial variability of topography or recharge, or both is increased, the subsurface flows increase at the two aforementioned sites and the Maimai hillslope. This is likely due to enhancement of interactions between the groundwater table and the land surface that reduce the flow path. An important conclusion of this study is that the spatial variability of recharge alone, and/or in combination with the spatial variability of topography can substantially alter the behaviors of subsurface flows. This suggests that in macroscale hydrologic models or land surface models, subgrid variations of recharge and topography can make significant contributions to the grid mean subsurface flow and must be accounted for in regions with large surface heterogeneity. This is particularly true for regions with humid climate and relatively shallow groundwater table where the combined impacts of spatial variability of recharge and topography are shown to be more important. For regions with arid climate and relatively deep groundwater table, simpler formulations, especially the power law, for subsurface flow can work well, and the impacts of subgrid variations of recharge and topography may be ignored.« less

  18. Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Lamanna, Grazia; Holten, A. P. C.; van Dongen, M. E. H.

    Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and experimentally. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of experiment are carried out in such a tube. First, the phase transition in a strong unsteady expansion wave is investigated to demonstrate the mutual interaction between the unsteady flow and the condensation process and also the formation of condensation-induced shock waves. The role of condensation-induced shocks in the gradual transition from a frozen initial structure to an equilibrium structure is explained. Second, the condensing flow in a slender supersonic nozzle G2 is considered. Particular attention is given to condensation-induced oscillations and to the transition from symmetrical mode-1 oscillations to asymmetrical mode-2 oscillations in a starting nozzle flow, as first observed by Adam & Schnerr. The transition is also found numerically, but the amplitude, frequency and transition time are not yet well predicted. Third, a sharp-edged obstacle is placed in the tube to generate a starting vortex. Condensation in the vortex is found. Owing to the release of latent heat of condensation, an increase in the pressure and temperature in the vortex core is observed. Condensation-induced shock waves are found, for a sufficiently high initial saturation ratio, which interact with the starting vortex, resulting in a very complex flow. As time proceeds, a subsonic or transonic free jet is formed downstream of the sharp-edged obstacle, which becomes oscillatory for a relatively high main-flow velocity and for a sufficiently high humidity.

  19. A mathematical model for the iron/chromium redox battery

    NASA Technical Reports Server (NTRS)

    Fedkiw, P. S.; Watts, R. W.

    1984-01-01

    A mathematical model has been developed to describe the isothermal operation of a single anode-separator-cathode unit cell in a redox-flow battery and has been applied to the NASA iron/chromium system. The model, based on porous electrode theory, incorporates redox kinetics, mass transfer, and ohmic effects as well as the parasitic hydrogen reaction which occurs in the chromium electrode. A numerical parameter study was carried out to predict cell performance to aid in the rational design, scale-up, and operation of the flow battery. The calculations demonstrate: (1) an optimum electrode thickness and electrolyte flow rate exist; (2) the amount of hydrogen evolved and, hence, cycle faradaic efficiency, can be affected by cell geometry, flow rate, and charging procedure; (3) countercurrent flow results in enhanced cell performance over cocurrent flow; and (4) elevated temperature operation enhances cell performance.

  20. Investigation of relative humidity and induced-vortex effects on aircraft icing

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen O.

    2005-07-01

    Aircraft icing is an area of research that has drawn attention since the early times of powered flight at high altitudes. Since World War II, aircraft icing research has gained a great deal of momentum, and several branches of research have developed as a result. These branches include the experimental, analytical and computational methods. With the advent of high-speed computers, the computational methods are becoming the leading icing research area due to their low cost requirements. However, a significant hindrance is the lack of a complete understanding of the icing phenomena, which leads to discrepancies between the predictions and the experiments. In recent years, there have been efforts to improve this situation by accounting for several mechanisms within the computational models. These mechanisms include the droplet splash and re-impingement, water film dynamics, and different heat transfer mechanisms. In support of enhancing the understanding of the aircraft icing process, this Ph.D. study focuses on the relative humidity effects and the interaction of the induced vortices with the droplets and the surface water. Currently the relative humidity effects are neglected in the icing prediction codes with the assumption that it can at best be a second-order effect. This Ph.D. study looks at the conditions in which the relative humidity effects can pose significant impact on the accreted ice shape. It was seen that the flow around the airfoil suction surfaces and the vortices, which have low-pressure cores, shed from the existing ice shape are highly supersaturated. Therefore, the suction surfaces and the aft regions of the main ice shape are exposed to condensation/deposition due to relative humidity effects. The time scales involved in the relative humidity effects were also investigated by using a numerical droplet growth experiment. In the particular case considered in this study, the required time to re-establish equilibrium, i.e. recover saturation conditions, varied from 12 milliseconds for droplets with 1 micron diameter to 5 seconds for droplets with 20 micron diameter. In an actual flight scenario, the direct impingement region mostly overlaps with the stagnation region, where the local flow is subsaturated. (Abstract shortened by UMI.)

Top