Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2013-07-23
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2015-01-13
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Composite Cathodes for Dual-Rate Li-Ion Batteries
NASA Technical Reports Server (NTRS)
Whitacre, Jay; West, William; Bugga, Ratnakumar
2008-01-01
Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.
NASA Astrophysics Data System (ADS)
Shellikeri, A.; Yturriaga, S.; Zheng, J. S.; Cao, W.; Hagen, M.; Read, J. A.; Jow, T. R.; Zheng, J. P.
2018-07-01
Energy storage devices, which can combine the advantages of lithium-ion battery with that of electric double layer capacitor, are of prime interest. Recently, composite cathodes, which combine a battery material with capacitor material, have shown promise in enhancing life cycle and energy/power performances. Lithium-ion capacitor (LIC), with unique charge storage mechanism of combining a pre-lithiated battery anode with a capacitor cathode, is one such device which has the potential to synergistically incorporate the composite cathode to enhance capacity and cycle life. We report here a hybrid LIC consisting of a lithium iron phosphate (LiFePO4-LFP)/Activated Carbon composite cathode in combination with a hard carbon anode, by integrating the cycle life and capacity enhancing strategies of a dry method of electrode fabrication, anode pre-lithiation and a 3:1 anode to cathode capacity ratio, demonstrating a long cycle life, while elaborating on the charge sharing between the faradaic and non-faradaic mechanism in the battery and capacitor materials, respectively in the composite cathode. An excellent cell capacity retention of 94% (1000 cycles at 1C) and 92% (100,000 cycles at 60C) were demonstrated, while retaining 78% (over 6000 cycles at 2.7C) and 67% (over 70,000 cycles at 43C) of the LFP capacity in the composite cathode.
Pushing the Limits: 3D Layer-by-Layer-Assembled Composites for Cathodes with 160 C Discharge Rates.
Mo, Runwei; Tung, Siu On; Lei, Zhengyu; Zhao, Guangyu; Sun, Kening; Kotov, Nicholas A
2015-05-26
Deficiencies of cathode materials severely limit cycling performance and discharge rates of Li batteries. The key problem is that cathode materials must combine multiple properties: high lithium ion intercalation capacity, electrical/ionic conductivity, porosity, and mechanical toughness. Some materials revealed promising characteristics in a subset of these properties, but attaining the entire set of often contrarian characteristics requires new methods of materials engineering. In this paper, we report high surface area 3D composite from reduced graphene oxide loaded with LiFePO4 (LFP) nanoparticles made by layer-by-layer assembly (LBL). High electrical conductivity of the LBL composite is combined with high ionic conductivity, toughness, and low impedance. As a result of such materials properties, reversible lithium storage capacity and Coulombic efficiency were as high as 148 mA h g(-1) and 99%, respectively, after 100 cycles at 1 C. Moreover, these composites enabled unusually high reversible charge-discharge rates up to 160 C with a storage capacity of 56 mA h g(-1), exceeding those of known LFP-based cathodes, some of them by several times while retaining high content of active cathode material. The study demonstrates that LBL-assembled composites enable resolution of difficult materials engineering tasks.
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
Design and Processing of Structural Composite Batteries
2007-09-01
The woven fabric, e is 72wt% LiFePO4 , 8wt% acetylene lack, and 20wt% poly(ethylene oxide) 200k as a binder. Acetylene black ensures electrical will...2.1.3 Cathode The composite cathode material utilizes LiFePO4 chemistry. The composition of the cathode material film deposited onto the metal substrat... LiFePO4 chemistry (over a 2.8-4.0V range (8)) including stainless steel and titanium. Stainless steel was evaluated in this udy due to its high
Composite cathode materials development for intermediate temperature solid oxide fuel cell systems
NASA Astrophysics Data System (ADS)
Qin, Ya
Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have about twice the exchange current density of composite SSC-LSGMC/LSGMC interfaces at 700°C. In this research effort, it has been found that: (1) the glycine-nitrate combustion process is favorable to produce perovskite-type oxide powders with good phase purity and negligible intermediate or contaminant phases; (2) The electrochemical performance for both the SSC-LSGMC and LSCF-LSGMC composite electrode materials on LSGMC confirm their potential for use in intermediate temperature SOFC applications; (3) The composite LSCF-LSGMC electrode exhibited much higher current density than the composite SSC-LSGMC electrode in the current dc polarization measurements; and (4) Primary market study results showed promising commercialization feasibility of these new materials sets, provided production is scaled up (with dramatic cost reductions).
Porous graphene nanocages for battery applications
Amine, Khalil; Lu, Jun; Du, Peng; Wen, Jianguo; Curtiss, Larry A.
2017-03-07
An active material composition includes a porous graphene nanocage and a source material. The source material may be a sulfur material. The source material may be an anodic material. A lithium-sulfur battery is provided that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode of the lithium-sulfur battery includes a porous graphene nanocage and a sulfur material and at least a portion of the sulfur material is entrapped within the porous graphene nanocage. Also provided is a lithium-air battery that includes a cathode, an anode, a lithium salt, and an electrolyte, where the cathode includes a porous graphene nanocage and where the cathode may be free of a cathodic metal catalyst.
Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries.
Kichambare, Padmakar; Rodrigues, Stanley; Kumar, Jitendra
2012-01-01
The composite of nitrogen-doped carbon (N-C) blend with lithium aluminum germanium phosphate (LAGP) was studied as cathode material in a solid-state lithium-oxygen cell. Composite electrodes exhibit high electrochemical activity toward oxygen reduction. Compared to the cell capacity of N-C blend cathode, N-C/LAGP composite cathode exhibits six times higher discharge cell capacity. A significant enhancement in cell capacity is attributed to higher electrocatalytic activity and fast lithium ion conduction ability of LAGP in the cathode. © 2011 American Chemical Society
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
Kim, Young-Sung; Jeoung, Tae-Hoon; Nam, Sung-Pill; Lee, Seung-Hwan; Kim, Jea-Chul; Lee, Sung-Gap
2015-03-01
LiFePO4/C composite powder as cathode material and graphite powder as anode material for Li-ion batteries were synthesized by using the sol-gel method. An electrochemical improvement of LiFePO4 materials has been achieved by adding polyvinyl alcohol as a carbon source into as-prepared materials. The samples were characterized by elemental analysis (EA), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-EM). The chemical composition of LiFePO4/C powders was in a good agreement with that of the starting solution. The capacity loss after 500 cycles of LiFePO4/C cell is 11.1% in room temperature. These superior electrochemical properties show that LiFePO4/C composite materials are promising candidates as cathode materials.
Han, Binghong; Paulauskas, Tadas; Key, Baris; Peebles, Cameron; Park, Joong Sun; Klie, Robert F; Vaughey, John T; Dogan, Fulya
2017-05-03
Surface coating of cathode materials with Al 2 O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition change the chemical composition, morphology, and distribution of coating within the cathode interface and bulk lattice is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneity, and morphology of the coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly dependent on the annealing temperature and cathode composition. For Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 , higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2 O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2 O 3 -coated LiCoO 2 , the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from "surface coatings" to "dopants", which is not observed for LiNi 0.5 Co 0.2 Mn 0.3 O 2 . As a result, Al 2 O 3 -coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Paulauskas, Tadas; Key, Baris
Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less
Han, Binghong; Paulauskas, Tadas; Key, Baris; ...
2017-04-07
Here, surface coating of cathode materials with Al 2O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneitymore » and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al 2O 3-coated LiNi 0.5Co 0.2Mn 0.3O 2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2O 3-coated LiCoO 2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi 0.5Co 0.2Mn 0.3O 2. As a result, Al 2O 3-coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.« less
Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.
Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu
2010-02-01
This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.
Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y
2015-05-05
The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.
Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries
Liang, Chengdu; Dudney, Nancy J.; Howe, Jane Y.
2017-08-01
The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.
Non-isothermal electrochemical model for lithium-ion cells with composite cathodes
NASA Astrophysics Data System (ADS)
Basu, Suman; Patil, Rajkumar S.; Ramachandran, Sanoop; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang
2015-06-01
Transition metal oxide cathodes for Li-ion batteries offer high energy density and high voltage. Composites of these materials have shown excellent life expectancy and improved thermal performance. In the present work, a comprehensive non-isothermal electrochemical model for a Lithium ion cell with a composite cathode is developed. The present work builds on lithium concentration-dependent diffusivity and thermal gradient of cathode potential, obtained from experiments. The model validation is performed for a wide range of temperature and discharge rates. Excellent agreement is found for high and room temperature with moderate success at low temperatures, which can be attributed to the low fidelity of material properties at low temperature. Although the cell operation is limited by electronic conductivity of NCA at room temperature, at low temperatures a shift in controlling process is seen, and operation is limited by electrolyte transport. At room temperature, the lithium transport in Cathode appears to be the main source of heat generation with entropic heat as the primary contributor at low discharge rates and ohmic heat at high discharge rates respectively. Improvement in electronic conductivity of the cathode is expected to improve the performance of these composite cathodes and pave way for its wider commercialization.
Yan, Pengfei; Zheng, Jianming; Xiao, Jie; ...
2015-06-08
Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li 0.2Ni 0.2Mn 0.6O 2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processingmore » history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less
Raza, Rizwan; Abbas, Ghazanfar; Liu, Qinghua; Patel, Imran; Zhu, Bin
2012-06-01
Nanocomposite based cathode materials compatible for low temperature solid oxide fuel cells (LTSOFCs) are being developed. In pursuit of compatible cathode, this research aims to synthesis and investigation nanocomposite La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) based system. The material was synthesized through wet chemical method and investigated for oxide-ceria composite based electrolyte LTSOFCs. Electrical property was studied by AC electrochemical impedance spectroscopy (EIS). The microstructure, thermal properties, and elemental analysis of the samples were characterized by TGA/DSC, XRD, SEM, respectively. The AC conductivity of cathode was obtained for 2.4 Scm(-1) at 550 degrees C in air. This cathode is compatible with ceria-based composite electrolytes and has improved the stability of the material in SOFC cathode environment.
Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho
2018-02-07
Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.
Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping
2015-08-05
Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.
Silicon oxide based high capacity anode materials for lithium ion batteries
Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet
2017-03-21
Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.
Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.
Gotcu, Petronela; Seifert, Hans J
2016-04-21
Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent.
Preparation of redox polymer cathodes for thin film rechargeable batteries
Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.
1994-11-08
The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, Joseph E.
1987-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
Battery designs with high capacity anode materials and cathode materials
Masarapu, Charan; Anguchamy, Yogesh Kumar; Han, Yongbong; Deng, Haixia; Kumar, Sujeet; Lopez, Herman A.
2017-10-03
Improved high energy capacity designs for lithium ion batteries are described that take advantage of the properties of high specific capacity anode active compositions and high specific capacity cathode active compositions. In particular, specific electrode designs provide for achieving very high energy densities. Furthermore, the complex behavior of the active materials is used advantageously in a radical electrode balancing design that significantly reduced wasted electrode capacity in either electrode when cycling under realistic conditions of moderate to high discharge rates and/or over a reduced depth of discharge.
Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery
2012-06-01
dry room with controlled moisture content. Composite 3 films on nickel foam were used as working cathodes along with lithium metal as anode and the...cathode formulation [6,7,8,9,10], efficient oxygen reduction catalysts [11,12], electrolyte compositions [13,14], effect of moisture [15], etc...specimens. Structure and purity of these materials were performed by powder X-ray diffraction (XRD) on a Rigaku D/MAX-2250 diffractometer fitted with CuKα
Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying
NASA Astrophysics Data System (ADS)
Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera
2012-06-01
The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.
Bond layer for a solid oxide fuel cell, and related processes and devices
Wu, Jian; Striker, Todd-Michael; Renou, Stephane; Gaunt, Simon William
2017-03-21
An electrically-conductive layer of material having a composition comprising lanthanum and strontium is described. The material is characterized by a microstructure having bimodal porosity. Another concept in this disclosure relates to a solid oxide fuel cell attached to at least one cathode interconnect by a cathode bond layer. The bond layer includes a microstructure having bimodal porosity. A fuel cell stack which incorporates at least one of the cathode bond layers is also described herein, along with related processes for forming the cathode bond layer.
NASA Astrophysics Data System (ADS)
Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Appetecchi, Giovanni B.; Winter, Martin; Passerini, Stefano
2014-01-01
Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4 V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O2 or Li(Ni0.8Co0.15Al0.05)O2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI)2/composite cathode batteries at temperatures as low as 40 °C revealed high delivered capacities. However, in comparison with LiFePO4, the 4 V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3 V. Moreover, the presence of Pyr14TFSI in the 4 V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector.
Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA
2010-07-20
The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
NASA Astrophysics Data System (ADS)
Kautkar, Pranay R.; Acharya, Smita A.
2018-05-01
xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.
Nanocarbons for Battery Applications in China
2015-04-29
Lithium - Ion Batteries (LIBs) Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Conductive Additives in Lithium - Ion Batteries (LIBs) 3.3.3 As Composite Cathodes in Lithium -Sulfur (Li-S) Batteries 3.3.6.1 CNTs...composite electrode materials and conductive additives in lithium - ion batteries (LIBs) and composite cathodes in novel lithium -sulfur (Li-S) and
Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zengcai; Zhen, Honghe; Kim, Yoongu
2011-01-01
Aluminum doped LiNiO2 cathode materials are synthesized by using Raney nickel as the starting material. The structure and composition are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with elemental mapping. The lithium deficiency is analyzed by Rieveld refinement. The initial capacity and retention of capacity are correlated to the lithium deficiency of the resulting cathode material. Using strong oxidant of Li2O2 in the synthesis results in materials with improved electrochemical cyclability. The improvement is related to the diminishing of lithium deficiency in strong oxidizing synthesis conditions.
Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai
2016-09-01
Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less
One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery
NASA Astrophysics Data System (ADS)
Li, JiLan; Chen, ChangGuo
2018-01-01
Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.
Development of a high-performance composite cathode for LT-SOFC
NASA Astrophysics Data System (ADS)
Lee, Byung Wook
Solid Oxide Fuel Cell (SOFC) has drawn considerable attention for decades due to its high efficiency and low pollution, which is made possible since chemical energy is directly converted to electrical energy through the system without combustion. However, successful commercialization of SOFC has been delayed due to its high production cost mainly related with using high cost of interconnecting materials and the other structural components required for high temperature operation. This is the reason that intermediate (IT) or low temperature (LT)-SOFC operating at 600~800°C or 650°C and below, respectively, is of particular significance because it allows the wider selection of cheaper materials such as stainless steel for interconnects and the other structural components. Also, extended lifetime and system reliability are expected due to less thermal stress through the system with reduced temperature. More rapid start-up/shut-down procedure is another advantage of lowering the operating temperatures. As a result, commercialization of SOFC will be more viable. However, there exists performance drop with reduced operating temperature due to increased polarization resistances from the electrode electrochemical reactions and decreased electrolyte conductivity. Since ohmic polarization of the electrolyte can be significantly reduced with state-of-the art thin film technology and cathode polarization has more drastic effect on total SOFC electrochemical performance than anode polarization as temperature decreases, development of the cathode with high performance operating at IT or LT range is thus essential. On the other hand, chemical stability of the cathode and its chemical compatibility with the electrolyte should also be considered for cathode development since instability and incompatibility of the cathode will also cause substantial performance loss. Based on requirements of the cathode mentioned above, in this study, several chemico-physical approaches were carried out to develop a high-performance composite cathode, in particular, for LT-SOFC operating 650°C and below since stability and compatibility of the materials in interest are secured at low temperatures. First, a nano-sized pyrochlore bismuth ruthenate (Bi2Ru 2O7 or BRO7 shortly), one of the promising cathode materials, was successfully synthesized using glycine-nitrate combustion (GNC) route. Stoichiometric Bi2Ru2O7 without any impurity phase was achieved with considerably improved processing condition, leading to the crystallite size of ~24nm in diameter. Even though the resulting powder tends to agglomerate, resulting in overall 200~400nm size range, it still showed better quality than the one prepared by solid state (SS) reaction route followed by extra milling steps such as vibro-milling and sonication for further particle size reduction. Glycine-to-nitrate (G/N) ratio was found to play a critical role in determining the reaction temperature and reaction duration, thus phase purity and particle morphology (particle size, shape, and agglomeration etc). Composite cathodes of such prepared BRO7 (GNC BRO7) combined with SS erbia-stabilized bismuth oxide, Bi1.6Er0.4O3 or ESB, showed better electrochemical performance than vibro-milled BRO7 (VM BRO7)-SS ESB. ASR values of 0.123Ocm2 at 700°C and 4.59cOm 2 at 500°C, respectively, were achieved, which follows well the trend of particle size effect on performance of composite cathodes. Additionally, the number of processing steps (thus time) was reduced by GNC route. Several issues in regard to synthesis process and characteristics of BRO7 material itself will be addressed in this dissertation. Secondly, a unique in-situ composite cathode synthesis was successfully developed and applied for BRO7-ESB composite cathodes to improve percolation and to reduce agglomeration of each phase inside the cathode so that the effective triple phase boundary (TPB) length was extended. To disperse and stabilize ESB powder in de-ionized (DI) water, zeta potential profile of ESB powder in DI water as a function of pH was first achieved. The effect of a dispersant (ammonium citrate dibasic) on the stability of ESB powder dispersed in DI water was also investigated. Knowledge of BRO7 wet chemical synthesis from previous study was utilized for final product of in-situ BRO7-ESB composite cathodes. Such prepared composite particles were characterized and the electrochemical performance of in-situ BRO7-ESB composite cathodes was examined as well. Performance enhancement was observed so that ASR values of 0.097Ocm2 and 3.58Ocm2 were achieved at 700°C and 500°C, respectively, which were 19% and 22% improvement, respectively compared to those of conventionally mixed composite cathodes of BRO7-ESB. Finally, a highly controlled nanostructured BRO7-ESB composite cathode was developed by infiltration of BRO7 onto ESB scaffolds to maximize the effective TPB length, to improve the connectivity of ESB phase inside the cathode for better oxygen-ion diffusion, and to minimize delamination between the electrolyte and cathode layers. ESB scaffolds were first established by adding a graphite pore-former and controlling heat treatment condition. Nano-sized BRO7 particles were successfully created on the surface of previously formed ESB scaffold by infiltration of concentrated (Bi, Ru) nitrate solution followed by the optimized heat treatment. Such prepared composite cathodes exhibited superior electrochemical performance to conventionally made BRO7-ESB composite cathodes and even better than GNC BRO7-SS ESB developed in this dissertation, e.g. 0.073Ocm2 at 700°C and 1.82Ocm2 at 500°C, respectively. This cathode system was revealed to be highly competitive among all the reported composite cathodes consisting of the same or different materials prepared by various processing techniques. It was demonstrated that the extended TPB length from continuous network of BRO7 nanoparticles and better connectivity of ESB scaffolds enabled the outstanding performance. Moreover, de-lamination of cathode from the electrolyte was prevented thanks to improved adhesion between ESB scaffolds and ESB electrolyte. Dissociative adsorption of oxygen gas were proposed to be the dominant rate-determining process for the overall oxygen reduction reaction at low temperatures (500-600°C) whereas all of the constituting sub-reactions such as oxygen gas dissociative adsorption, oxygen ion diffusion towards TPB region, and oxygen ion incorporation were found to play roles competitively in the overall reaction at relatively high operating temperature (650-700°C) based on analysis of impedance spectra.
Dominko, Robert; Patel, Manu U M; Bele, Marjan; Pejovnik, Stane
2016-01-01
The electrochemical characteristics of sulfurized polyacrylonitrile composite (PAN/S) cathodes were compared with the commonly used carbon/S-based composite material. The difference in the working mechanism of these composites was examined. Analytical investigations were performed on both kinds of cathode electrode composites by using two reliable analytical techniques, in-situ UV-Visible spectroscopy and a four-electrode Swagelok cell. This study differentiates the working mechanisms of PAN/S composites from conventional elemental sulphur/carbon composite and also sheds light on factors that could be responsible for capacity fading in the case of PAN/S composites.
NASA Astrophysics Data System (ADS)
Gong, Hao; Xue, Hairong; Wang, Tao; He, Jianping
2016-06-01
The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (∼100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 μm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g-1 and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of ∼60 mAh g-1, exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 1.3 g cm-3. What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance.
Air plasma spray processing and electrochemical characterization of SOFC composite cathodes
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.; Rose, Lars
Air plasma spraying has been used to produce porous composite cathodes containing (La 0.8Sr 0.2) 0.98MnO 3- y (LSM) and yttria-stabilized zirconia (YSZ) for use in solid oxide fuel cells (SOFCs). Preliminary investigations focused on determining the range of plasma conditions under which each of the individual materials could be successfully deposited. A range of conditions was thereby determined that was suitable for the deposition of a composite cathode from pre-mixed LSM and YSZ powders. A number of composite cathodes were produced using different combinations of parameter values within the identified range according to a Uniform Design experimental grid. Coatings were then characterized for composition and microstructure using EDX and SEM. As a result of these tests, combinations of input parameter values were identified that are best suited to the production of coatings with microstructures appropriate for use in SOFC composite cathodes. A selection of coatings representative of the types of observed microstructures were then subjected to electrochemical testing to evaluate the performance of these cathodes. From these tests, it was found that, in general, the coatings that appeared to have the most suitable microstructures also had the highest electrochemical performances, provided that the deposition efficiency of both phases was sufficiently high.
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
Sulfur/lithium-insertion compound composite cathodes for Li-S batteries
NASA Astrophysics Data System (ADS)
Su, Yu-Sheng; Manthiram, Arumugam
2014-12-01
A part of carbon additives in sulfur cathodes is replaced by lithium-insertion compounds as they can contribute extra capacity and increase the overall energy density. Accordingly, VO2(B) and TiS2 were incorporated into sulfur cathodes as they can work within the same voltage window as that of sulfur. However, VO2(B) was found to be incompatible with the glyme-based electrolytes that are usually used in Li-S cells, but TiS2 performs well while coupled with sulfur. The S/C/TiS2 composite cathode delivers 252 mAh g-1 more than that of pristine sulfur cathode (1334 mAh g-1 vs. 1082 mAh g-1). The increased capacity is not only due to the contribution by TiS2 itself but also due to a better active-material dispersion and utilization. Serving as active reaction sites during cycling, TiS2 suppresses agglomeration of sulfur and facilitates better ionic/electronic transport within the cathode structure. This composite cathode design provides another direction for Li-S batteries to improve the overall energy density.
Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium-Sulfur Battery.
Bao, Weizhai; Xie, Xiuqiang; Xu, Jing; Guo, Xin; Song, Jianjun; Wu, Wenjian; Su, Dawei; Wang, Guoxiu
2017-09-12
Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g -1 at 0.5 C and a high level of capacity retention of 878.4 mAh g -1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zöhrer, Siegfried; Anders, André; Franz, Robert
2018-05-01
Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb‑Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called ‘velocity rule’ or the ‘cohesive energy rule’, are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.
Rotating cathode device for molten salt bath
NASA Astrophysics Data System (ADS)
1983-11-01
The invention relates to a rotating cathode device for molten salt baths used to prepare metallic titanium or aluminum and the like by electrolysis of molten salts. The rotating cathode device is described. It is a cyclindrical cathode mounted on a rotating spindle, made of a lightweight material and mounted in such a way as to avoid thermal strain between the rotational shaft and the cylindrical cathode. At least one of the upper and lower ends of the cylindrical cathode are closed by a cap and a seal consisting of an inorganic fiber composite in the area between the cap and the cathode.
Serially connected solid oxide fuel cells having monolithic cores
Herceg, J.E.
1985-05-20
Disclosed is a solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output. The cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick. Between 2 and 50 cell segments may be connected in series.
A study of cathode erosion in high power arcjets
NASA Astrophysics Data System (ADS)
Harris, William Jackson, III
Cathode erosion continues to be one of the predominant technology concerns for high power arcjets. This study will show that cathode erosion in these devices is significantly affected by several mitigating factors, including propellant composition, propellant flowrate, current level, cathode material, and power supply current ripple. In a series of 50-hour and 100-hour long duration experiments, using a water-cooled 30 kilowatt laboratory arcjet, variations in the steady-state cathode erosion rate were characterized for each of these factors using nitrogen propellant at a fixed arc current of 250 Amperes. A complementary series of measurements was made using hydrogen propellant at an arc current of 100 Amperes. The cold cathode erosion rate was also differentiated from the steady-state cathode erosion rate in a series of multi-start cathode erosion experiments. Results of these measurements are presented, along with an analysis of the significant effects of current ripple on arcjet cathode erosion. As part of this study, over a dozen refractory cathode materials were evaluated to measure their resistance to arcjet cathode erosion. Among the materials tested were W-ThO2(1%, 2%, 4%), poly and mono-crystalline W, W-LaB6, W-La2O3, W-BaO2, W-BaCaAl2O4, W-Y2O3, and ZrB2. Based on these measurements, several critical material properties were identified, such work function, density, porosity, melting point, and evaporation rate. While the majority of the materials failed to outperform traditional W-ThO2, these experimental results are used to develop a parametric model of the arcjet cathode physics. The results of this model, and the results of a finite-element thermal analysis of the arcjet cathode, are presented to better explain the relative performance of the materials tested.
Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian
A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, driedmore » and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.« less
Kim, Jeonghyun; Song, Taeseup; Park, Hyunjung; Yuh, Junhan; Paik, Ungyu
2014-10-01
The Li2MnSiO4 is a promising candidate as a cathode for lithium ion batteries due to its large theoretical capacity of 330 mA h g(-1) and high thermal stability. However, the problems related to low electronic conductivity and large irreversible capacity at the first cycle limits its practical use as a Li-ion cathode material. We have developed a carbon coated Li2MnSiO4-graphene composite electrode to overcome these problems. Our designed electrode exhibits high reversible capacity of 301 mA h g(-1), with a high initial coulombic efficiency, and a discharge capacity at current rate of 0.5 C, that is double value of carbon coated Li2MnSiO4-carbon black composite electrode. These significant improvements are attributed to fast electron transport along the graphene sheet.
Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit
2014-08-13
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.
2015-01-01
Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780
Challenges and prospects of lithium-sulfur batteries.
Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
2013-05-21
Electrical energy storage is one of the most critical needs of 21st century society. Applications that depend on electrical energy storage include portable electronics, electric vehicles, and devices for renewable energy storage from solar and wind. Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. As a result, Li-ion batteries have proven successful in the portable electronics market and will play a significant role in large-scale energy storage. Over the past two decades, Li-ion batteries based on insertion cathodes have reached a cathode capacity of ∼250 mA h g(-1) and an energy density of ∼800 W h kg(-1), which do not meet the requirement of ∼500 km between charges for all-electric vehicles. With a goal of increasing energy density, researchers are pursuing alternative cathode materials such as sulfur and O2 that can offer capacities that exceed those of conventional insertion cathodes, such as LiCoO2 and LiMn2O4, by an order of magnitude (>1500 mA h g(-1)). Sulfur, one of the most abundant elements on earth, is an electrochemically active material that can accept up to two electrons per atom at ∼2.1 V vs Li/Li(+). As a result, sulfur cathode materials have a high theoretical capacity of 1675 mA h g(-1), and lithium-sulfur (Li-S) batteries have a theoretical energy density of ∼2600 W h kg(-1). Unlike conventional insertion cathode materials, sulfur undergoes a series of compositional and structural changes during cycling, which involve soluble polysulfides and insoluble sulfides. As a result, researchers have struggled with the maintenance of a stable electrode structure, full utilization of the active material, and sufficient cycle life with good system efficiency. Although researchers have made significant progress on rechargeable Li-S batteries in the last decade, these cycle life and efficiency problems prevent their use in commercial cells. To overcome these persistent problems, researchers will need new sulfur composite cathodes with favorable properties and performance and new Li-S cell configurations. In this Account, we first focus on the development of novel composite cathode materials including sulfur-carbon and sulfur-polymer composites, describing the design principles, structure and properties, and electrochemical performances of these new materials. We then cover new cell configurations with carbon interlayers and Li/dissolved polysulfide cells, emphasizing the potential of these approaches to advance capacity retention and system efficiency. Finally, we provide a brief survey of efficient electrolytes. The Account summarizes improvements that could bring Li-S technology closer to mass commercialization.
NASA Astrophysics Data System (ADS)
Guo, Sheng-Ping; Li, Jia-Chuang; Xu, Qian-Ting; Ma, Ze; Xue, Huai-Guo
2017-09-01
In the past several years, many efforts have been made to develop polyanion-type cathode materials for sodium ion batteries by chemists and material scientists. These materials are one of the main types of promising cathodes though the studies are still in their infancy. This paper reviews almost all the important advances of polyanion-type cathodes on their syntheses, crystal structures, morphologies, electrochemical performance and Na redox mechanisms. It specifically focuses on their crystal chemistry and electrochemical behaviors. The contents are divided into several categories according to their chemical compositions. After introduction of the synthetic methods, phosphates (ortho-, pyro- and fluoro-), silicates, sulfates, and mixed anions type cathodes are summarized and discussed successively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Sun, Xiao-Guang; Guo, Bingkun
The invention is directed in a first aspect to electron-conducting porous compositions comprising an organic polymer matrix doped with nitrogen atoms and having elemental sulfur dispersed therein, particularly such compositions having an ordered framework structure. The invention is also directed to composites of such S/N-doped electron-conducting porous aromatic framework (PAF) compositions, or composites of an S/N-doped mesoporous carbon composition, which includes the S/N-doped composition in admixture with a binder, and optionally, conductive carbon. The invention is further directed to cathodes for a lithium-sulfur battery in which such composites are incorporated.
Wang, Hailiang; Yang, Yuan; Liang, Yongye; Robinson, Joshua Tucker; Li, Yanguang; Jackson, Ariel; Cui, Yi; Dai, Hongjie
2011-07-13
We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates, and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ∼600 mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.
Phase control of Mn-based spinel films via pulsed laser deposition
Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...
2016-07-06
Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less
Phase control of Mn-based spinel films via pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.
Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less
Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes
NASA Astrophysics Data System (ADS)
Lacey, Steven; Lin, Yi; Hu, Liangbing
Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.
NASA Astrophysics Data System (ADS)
Yang, Lufeng; Li, Xiang; Ma, Xuetian; Xiong, Shan; Liu, Pan; Tang, Yuanzhi; Cheng, Shuang; Hu, Yan-Yan; Liu, Meilin; Chen, Hailong
2018-03-01
Sodium-ion batteries (SIBs) are an emerging electrochemical energy storage technology that has high promise for electrical grid level energy storage. High capacity, long cycle life, and low cost cathode materials are very much desired for the development of high performance SIB systems. Sodium manganese oxides with different compositions and crystal structures have attracted much attention because of their high capacity and low cost. Here we report our investigations into a group of promising lithium doped sodium manganese oxide cathode materials with exceptionally high initial capacity of ∼223 mAh g-1 and excellent capacity retentions, attributed primarily to the absence of phase transformation in a wide potential range of electrochemical cycling, as confirmed by in-operando X-ray diffraction (XRD), Rietveld refinement, and high-resolution 7Li solid-state NMR characterizations. The systematic study of structural evolution and the correlation with the electrochemical behavior of the doped cathode materials provides new insights into rational design of high-performance intercalation compounds by tailoring the composition and the crystal structure evolution in electrochemical cycling.
NASA Astrophysics Data System (ADS)
Huang, Zan; Luo, Peifang; Wang, Daxiang
2017-03-01
Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, Roger B.; Dusek, Joseph T.
1984-01-01
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, R.B.; Dusek, J.T.
1983-10-12
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.
Advanced Electrode Materials for High Energy Next Generation Li ion Batteries
NASA Astrophysics Data System (ADS)
Hayner, Cary Michael
Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few charge-discharge cycles. To stabilize silicon materials, composites of silicon nanoparticles were dispersed between graphene sheets and supported by a 3-D network of graphite formed by reconstituted regions of graphene stacks. These free-standing, self-supported composites exhibited excellent Li-ion storage capacities higher than 2200 mAh/g and good cycling stability. In order to improve the advantages graphene can provide as a 3-D scaffold, carbon vacancies were introduced into the basal planes via an acid-oxidation treatment. These vacancies markedly enhance the rate performance of graphene materials as well as silicon-graphene composites. Silicon-graphene composites containing carbon vacancies achieved high accessible storage capacities at fast charge/discharge rates that rival supercapacitor performance while maintaining good cycling stability. Optimal carbon vacancy size and density were determined. Graphene composites were also formed with iron trifluoride (FeF 3), a high-energy cathode material with ability to store up to 712 mAh/g capacity, over 3X more than current state-of-the-art cathode materials. A facile route that combines co-assembly and photothermal reduction was developed to synthesize free-standing, flexible FeF3/graphene papers. The papers contained a uniform dispersion of FeF3 nanoparticles (< 40 nm) and open ion diffusion channels in the porous, conducting network of graphene sheets that resulted in a flexible paper cathode with high charge storage capacity, rate, and cycling performance, without the need for other carbon additives or binder. Free-standing FeF3/graphene composites showed a high storage capacity of >400 mAh/g and improved cycling performance compared to bare FeF3 particles. Lastly, novel ternary iron-manganese fluoride (FexMn 1-xF2) cathode materials were synthesized via a convenient, bottom-up solution-phase synthesis which allowed control of particle size, shape, and surface morphology. The synthesized materials exhibited nanoscale features with average particle size of 20-40 nm. These ternary metal composites exhibited key, desirable properties for next-generation Li-ion battery cathode materials. The described process constituted a translatable route to large-scale production of ternary metal fluoride nanoparticles.
NASA Astrophysics Data System (ADS)
Cetin, Deniz
The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+delta (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-delta (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe 1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being suitable to incorporate into full button cell configuration from the standpoint of thermomechanical stability and adequate electrical conductivity. Proof-of-concept performance comparison for SOFC button cells manufactured using LNO: La 0.4Ce0.6O2-delta composite to the conventional composite cathode materials has also been provided. This thermodynamics-based phase stabilization strategy can be applied to a wider range of materials in the same crystallographic family, thus providing the SOFC community with alternate material options for high performance devices.
Solid oxide fuel cell having monolithic core
Ackerman, John P.; Young, John E.
1984-01-01
A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick.
Secondary battery material and synthesis method
Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu
2013-10-22
A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.
Billy, Emmanuel; Joulié, Marion; Laucournet, Richard; Boulineau, Adrien; De Vito, Eric; Meyer, Daniel
2018-05-04
The sustainability through the energy and environmental costs involve the development of new cathode materials, considering the material abundance, the toxicity, and the end of life. Currently, some synthesis methods of new cathode materials and a large majority of recycling processes are based on the use of acidic solutions. This study addresses the mechanistic and limiting aspects on the dissolution of the layered LiNi 1/3 Mn 1/3 Co 1/3 O 2 oxide in acidic solution. The results show a dissolution of the active cathode material in two steps, which leads to the formation of a well-defined core-shell structure inducing an enrichment in manganese on the particle surface. The crucial role of lithium extraction is discussed and considered as the source of a "self-regulating" dissolution process. The delithiation involves a cumulative charge compensation by the cationic and anionic redox reactions. The electrons generated from the compensation of charge conduct to the dissolution by the protons. The delithiation and its implications on the side reactions, by the modification of the potential, explain the structural and compositional evolutions observed toward a composite material MnO 2 ·Li x MO 2 (M = Ni, Mn, and Co). The study shows a clear way to produce new cathode materials and recover transition metals from Li-ion batteries by hydrometallurgical processes.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Bazzi, Khadije; Nazri, Gholam-Abbas; Naik, Vaman M.; Naik, Ratna
2015-03-01
Lithium iron silicate (Li2FeSiO4) has the potential as cathode for Li ion batteries due to its high theoretical capacity (~ 330 mAh/g) and improved safety. The application of Li2FeSiO4 as cathode material has been challenged by its poor electronic conductivity and slow lithium ion diffusion in the solid phase. In order to solve these problems, we have synthesized mesoporous Li2FeSiO4/C composites by sol-gel method using the tri-block copolymer (P123) as carbon source. The phase purity and morphology of the composite materials were characterized by x-ray diffraction, SEM and TEM. The XRD pattern confirmed the formation of ~ 12 nm size Li2FeSiO4 crystallites in composites annealed at 600 °C for 6 h under argon atmosphere. The electrochemical properties are measured using the composite material as positive electrode in a standard coin cell configuration with lithium as the active anode and the cells were tested using AC impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge cycling. The Li2FeSiO4/C composites showed a discharge capacity of ~ 240 mAh/g at a rate of C/30 at room temperature. The effect of different annealing temperature and synthesis time on the electrochemical performance of Li2FeSiO4/C will be presented.
Method of fabricating a monolithic core for a solid oxide fuela cell
Zwick, S.A.; Ackerman, J.P.
1983-10-12
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002 to 0.01 cm thick; and the cathode and anode materials are only 0.002 to 0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
Method of fabricating a monolithic core for a solid oxide fuel cell
Zwick, Stanley A.; Ackerman, John P.
1985-01-01
A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.
A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
2016-01-14
Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto
2016-02-08
LiFePO{sub 4} is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g{sup −1}. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO{sub 4}-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO{sub 4}−basedmore » composite by varying mass of rGO in composition. Vibration of LiFePO{sub 4}-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO{sub 4} nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.« less
Chemical vapor infiltration of TiB{sub 2} fibrous composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, T.M.
1997-04-01
This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This process produces high purity matrix TiB{sub 2} without damagingmore » the relatively fragile fibers. The program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and scale the process to provide demonstration components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Key, Baris; Lapidus, Saul H.
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Han, Binghong; Key, Baris; Lapidus, Saul H.; ...
2017-11-01
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Urea-based hydrothermal synthesis of LiNi0.5Co0.2Mn0.3O2 cathode material for Li-ion battery
NASA Astrophysics Data System (ADS)
Shi, Yang; Zhang, Minghao; Fang, Chengcheng; Meng, Ying Shirley
2018-08-01
A urea-based hydrothermal approach has been applied to synthesize LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials with focus on investigating the influence of the reaction conditions on their electrochemical performance. The compositions of the carbonate precursor are precisely controlled by tuning urea concentration, hydrothermal reaction temperature, and time. The mole ratio between urea and transition metal ions and reaction temperature influence the composition of the precursor; while the reaction time influences the electrochemical performance of the final product. The optimized materials show better cyclability and rate capability compared with the materials synthesized with other hydrothermal reaction conditions. The enhancement is attributed to the larger Li+ diffusion coefficient and lower charge transfer resistance, which are due to the lower degree of Li/Ni cation mixing and more uniform distribution of transition metal ions. This work is a systematic study on the synthesis of NCM523 cathode material by a urea-based hydrothermal approach.
Hydrothermal vanadium manganese oxides: Anode and cathode materials for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Simões, Mário; Surace, Yuri; Yoon, Songhak; Battaglia, Corsin; Pokrant, Simone; Weidenkaff, Anke
2015-09-01
Vanadium manganese oxides with Mn content up to 33 at% were synthesized by a low temperature hydrothermal route allowing for the preparation of both anodic and cathodic materials for Li-ion batteries. Low amounts of manganese (below 13 at%) lead to the formation of elongated particles of layered hydrated vanadium oxides with manganese and water intercalated between the V2O5 slabs, while for higher Mn content of 33 at%, monoclinic MnV2O6 is formed. Former materials are suitable for high energy cathodes while the latter one is an anodic compound. The material containing 10 at% Mn has the composition Mn0.2V2O5·0.9H2O and shows the best cathodic activity with 20% capacity improvement over V2O5·0.5H2O. Lithiated MnV2O6 with Li5MnV2O6 composition prepared electrochemically was evaluated for the first time as anode in a full-cell against Mn0.2V2O5·0.9H2O cathode. An initial capacity ca. 300 A h kg-1 was measured with this battery corresponding to more than 500 Wh kg-1. These results confirm the prospect of using Li5MnV2O6 anodes in lithium-ion batteries as well as high-capacity layered hydrated vanadium oxides cathodes such as V2O5·0.5H2O and Mn0.2V2O5·0.9H2O.
Improved materials and processes of dispenser cathodes
NASA Astrophysics Data System (ADS)
Longo, R. T.; Sundquist, W. F.; Adler, E. A.
1984-08-01
Several process variables affecting the final electron emission properties of impregnated dispenser cathodes were investigated. In particular, the influence of billet porosity, impregnant composition and purity, and osmium-ruthenium coating were studied. Work function and cathode evaporation data were used to evaluate cathode performance and to formulate a model of cathode activation and emission. Results showed that sorted tungsten powder can be reproducibly fabricated into cathode billets. Billet porosity was observed to have the least effect on cathode performance. Use of the 4:1:1 aluminate mixture resulted in lower work functions than did use of the 5:3:2 mixture. Under similar drawout conditions, the coated cathodes showed superior emission relative to uncoated cathodes. In actual Pierce gun structures under accelerated life test, the influence of impregnated sulfur is clearly shown to reduce cathode performance.
Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...
2017-10-17
Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.
Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less
Qiu, Lei; Shao, Ziqiang; Xiang, Pan; Wang, Daxiong; Zhou, Zhenwen; Wang, Feijun; Wang, Wenjun; Wang, Jianquan
2014-09-22
Novel cellulose derivative CMC-Li was synthesized by cotton as raw material. The mechanism of the CMC-Li modified electrode materials by electrospinning was reported. CMC-Li/lithium iron phosphate (LiFePO4, LFP) composite fiber coated with LFP and CMC-Li nanofibers was successfully obtained by electrospinning. Then, CMC-Li/LFP nano-composite fiber was carbonized under nitrogen at a high temperature formed CNF/LFP/Li (CLL) composite nanofibers as cathode material. It can increase the contents of Li+, and improving the diffusion efficiency and specific capacity. The battery with CLL as cathode material retained close to 100% of initial reversible capacity after 200 cycles at 168 mAh g(-1), which was nearly the theoretical specific capacity of LFP. The cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscope (SEM) were characterizing material performance. The batteries have good electrochemical property, outstanding pollution-free, excellent stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Béléké, Alexis Bienvenu; Higuchi, Eiji; Inoue, Hiroshi; Mizuhata, Minoru
2014-02-01
We report the durability of the optimized nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite prepared by liquid phase deposition (LPD) as cathode active materials in nickel metal hydride (Ni-MH) secondary battery. The positive electrode was used for charge-discharge measurements under two different current: 5 mA for 300 cycles in half-cell conditions, and 5.8 mA for 569 cycles in battery regime, respectively. The optimized Ni-Al LDH/C composite exhibits a good lifespan and stability with the capacity retention above 380 mA h gcomp-1 over 869 cycles. Cyclic voltammetry shows that the α-Ni(OH)2/γ-NiOOH redox reaction is maintained even after 869 cycles, and the higher current regime is beneficial in terms of materials utilization. X-ray diffraction (XRD) patterns of the cathode after charge and discharge confirms that the α-Ni(OH)2/γ-NiOOH redox reaction occurs without any intermediate phase.
NASA Astrophysics Data System (ADS)
Jha, Arunava; Sarkar, Sudipta Kumar; Sen, Dipayan; Chattopadhyay, K. K.
2015-01-01
In the current work we present a simple technique to develop a carbon nanofiber (CNF)/zinc sulfide (ZnS) composite material for excellent FED application. CNFs and ZnS microspheres were synthesized by following a simple thermal chemical vapor deposition and hydrothermal procedure, respectively. A rigorous chemical mixture of CNF and ZnS was prepared to produce the CNF-ZnS composite material. The cathodo-luminescence intensity of the composite improved immensely compared to pure ZnS, also the composite material showed better field emission than pure CNFs. For pure CNF the turn-on field was found to be 2.1 V μm-1 whereas for the CNF-ZnS composite it reduced to a value of 1.72 V μm-1. Altogether the composite happened to be an ideal element for both the anode and cathode of a FED system. Furthermore, simulation of our CNF-ZnS composite system using the finite element modeling method also ensured the betterment of field emission from CNF after surface attachment of ZnS nanoclusters.
Field Emission Cathode and Vacuum Microelectronic Microwave Amplifier Development
1993-03-31
the crushed material with additional yttria-stabilized zirconia powder to yield a pressable material of appropriate overall composition. This mixture...sensitivity of the system to oxygen content, a dedicated effort is planned to study the effect of residual oxygen in the zirconia powder on composite growth
All ceramic structure for molten carbonate fuel cell
Smith, James L.; Kucera, Eugenia H.
1992-01-01
An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.
Duan, Wenyuan; Zhao, Mingshu; Shen, Junfang; Zhao, Suixin; Song, Xiaoping
2017-09-28
Herein, olivine LiFePO 4 covered with graphene and carbon layers is prepared via a sol-gel method, followed by calcination, and the resultant composite is used as a cathode material in aqueous rechargeable lithium-ion batteries (ARLBs). The phase structure and morphology of the composite are characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and specific surface area analysis (BET). The ARLB system is fabricated using LiFePO 4 /C/graphene as the cathode and a zinc anode in 1 mol L -1 ZnSO 4 ·7H 2 O and saturated LiNO 3 aqueous solution without dissolved oxygen, which delivers a capacity of 153 mA h g -1 at 0.5C rate. Even at a 50C rate, it maintains a capacity of 95 mA h g -1 after 200 cycles. The excellent rate capabilities show that this cathode material exhibits good electrochemical performance and this novel ARLB has great potential in the fields of energy storage and high power sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Young Jun; Choi, Seung Ho; Sim, Chul Min
2012-12-15
Graphical abstract: Display Omitted Highlights: ► Spherical shape Li{sub 2}MnO{sub 3}·LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders are prepared by large-scale spray pyrolysis with droplet classifier. ► Boric acid improves the morphological and electrochemical properties of the composite cathode powders. ► The discharge capacity of the composite cathode powders decreases from 217 to 196 mAh g{sup −1} by the 30th cycle. -- Abstract: Spherically shaped 0.3Li{sub 2}MnO{sub 3}·0.7LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} composite cathode powders with filled morphology and narrow size distribution are prepared by large-scale spray pyrolysis. A droplet classification reduces the standard deviation of the size distribution of themore » composite cathode powders. Addition of boric acid improves the morphological properties of the product powders by forming a lithium borate glass material with low melting temperature. The optimum amount of boric acid dissolved in the spray solution is 0.8 wt% of the composite powders. The powders prepared from the spray solution with 0.8 wt% boric acid have a mixed layered crystal structure comprising Li{sub 2}MnO{sub 3} and LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} phases, thus forming a composite compound. The initial charge and discharge capacities of the composite cathode powders prepared from the 0.8 wt% boric acid spray solution are 297 and 217 mAh g{sup −1}, respectively. The discharge capacity of the powders decreases from 217 to 196 mAh g{sup −1} by the 30th cycle, in which the capacity retention is 90%.« less
A mesoporous carbon–sulfur composite as cathode material for high rate lithium sulfur batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Hyunji; Zhao, Xiaohui; Kim, Dul-Sun
2014-10-15
Highlights: • CMK-3 mesoporous carbon was synthesized as conducting reservoir for housing sulfur. • Sulfur/CMK-3 composites were prepared by two-stage thermal treatment. • The composite at 300 °C for 20 h shows improved electrochemical properties. - Abstract: Sulfur composite was prepared by encapsulating sulfur into CMK-3 mesoporous carbon with different heating times and then used as the cathode material for lithium sulfur batteries. Thermal treatment at 300 °C plays an important role in the sulfur encapsulation process. With 20 h of heating time, a portion of sulfur remained on the surface of carbon, whereas with 60 h of heating time,more » sulfur is confined deeply in the small pores of carbon that cannot be fully exploited in the redox reaction, thus causing low capacity. The S/CMK-3 composite with thermal treatment for 40 h at 300 °C contained 51.3 wt.% sulfur and delivered a high initial capacity of 1375 mA h g{sup −1} at 0.1 C. Moreover, it showed good capacity retention of 704 mA h g{sup −1} at 0.1 C and 578 mA h g{sup −1} at 2 C even after 100 cycles, which proves its potential as a cathode material for high capability lithium sulfur batteries.« less
NASA Astrophysics Data System (ADS)
Wang, Jinshu; Liu, Wei; Liu, Yanqin; Zhou, Meiling
2005-09-01
As an alternative for thoriated tungsten thermionic cathodes, molybdenum doped with either a single rare earth oxide such as La 2O 3, Y 2O 3 and Sc 2O 3 or a mixture thereof has been produced by powder metallurgy. It is shown that carbonization can greatly improve the emission properties (i.e. emission capability and stability) of RE 2O 3 doped molybdenum due to the formation of a (metallic) rare earth atomic layer on the surface of the cathode by the reduction reaction of molybdenum carbide and rare earth oxide. Among all the carbonized samples, La 2O 3 and Y 2O 3 co-doped molybdenum cathode showed the best performance in emission. In addition, computer pattern recognition technique has been used to optimize the composition of the material and of the cathode preparation technique. We derive the equation of the emission efficiency as a function of cathode composition and carbonization degree. Based on the projecting coordinates obtained from the equation, the optimum projection region was identified, which can serve as guide for the composition and carbonization degree design.
Electrochemistry of lunar rocks
NASA Technical Reports Server (NTRS)
Lindstrom, D. J.; Haskin, L. A.
1979-01-01
Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.
Advanced Nanofiber-Based Lithium-Ion Battery Cathodes
NASA Astrophysics Data System (ADS)
Toprakci, Ozan
Among various energy storage technologies, rechargeable lithium-ion batteries have been considered as effective solution to the increasing need for high-energy density electrochemical power sources. Rechargeable lithium-ion batteries offer energy densities 2 - 3 times and power densities 5 - 6 times higher than conventional Ni-Cd and Ni-MH batteries, and as a result, they weigh less and take less space for a given energy delivery. However, the use of lithium-ion batteries in many large applications such as electric vehicles and storage devices for future power grids is hindered by the poor thermal stability, relatively high toxicity, and high cost of lithium cobalt oxide (LiCoO2) powders, which are currently used as the cathode material in commercial lithium-ion batteries. Recently, lithium iron phosphate (LiFePO 4) powders have become a favorable cathode material for lithium-ion batteries because of their low cost, high discharge potential (around 3.4 V versus Li/Li+), large specific capacity (170 mAh g -1), good thermal stability, and high abundance with the environmentally benign and safe nature. As a result, there is a huge demand for the production of high-performance LiFePO4. However, LiFePO4 also has its own limitation such as low conductivity (˜10-9 S cm -1), which results in poor rate capability. To address this problem, various approaches can be used such as decreasing particle size of LiFePO 4, doping LiFePO4 with metal ions or coating LiFePO 4 surface with carboneous materials. Formation of conductive layer on LiFePO4 and decreasing particle size are promising approaches due to their superior contribution to electrical conductivity and electrochemical performance of LiFePO4. Although different approaches can be used for surface coating and particle size decrement, electrospinning can be potentially considered as an efficient, simple and inexpensive way. In this study, LiFePO 4/carbon and carbon nanotube- and graphene-loaded electrospun LiFePO 4/carbon composite nanofibers were synthesized by using a combination of sol-gel and electrospinning. During the material preparation, polyacrylonitrile (PAN) was used as an electrospinning media and a carbon source. LiFePO 4 precursor materials and/or conductive materials (carbon nanotubes and graphene) and PAN were dissolved in N,N-dimethylformamide separately and they were mixed before electrospinning. LiFePO4 precursor/PAN fibers were heat treated, during which LiFePO4 precursor transformed to energy-storage LiFePO4 material and PAN was converted to carbon. The surface morphology, microstructure and electrochemical performance of the materials were analyzed. Compared with conventional powder based positive electrodes, the novel LiFePO4/C composite nanofiber cathodes possess better electrochemical performance. Furthermore, the newly developed LiFePO 4/C composite nanofibers are easy to fabricate, highly controllable, and can be used in practical Lithium-ion battery applications. In addition to LiFePO4, more recent efforts have been directed to mixed form of layered lithiummetal oxides (Li-Ni-Mn-Co). Nickel and manganese are of importance because of their lower cost, safety and higher abundance in nature. These new cathodes offer noticeable improvement in the capacity and cycling behavior. In these cathodes, LiNi1/3Co1/3Mn 1/3O2 attracted significant interest because of its good electrochemical properties such as high capacity, prolonged cycling life, and so on. On the other hand, it has some disadvantages such as instability at high voltages and high current densities. To overcome these problems, synthesis of layered Li-rich composite materials such as xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 can be a promising approach. In this study, various xLi2MnO3˙(1-x)LiCo 1/3Ni1/3Mn1/3O2 (x=0.1, 0.2, 0.3, 0.4, 0.5) composite cathode materials were prepared by a one-step sol-gel route. Morphology, microstructure and electrochemical behavior of these cathode materials were evaluated. The resultant cathode material shows good electrochemical performance. Relatively low cost and simple preparation route make new xLi2MnO3˙(1-x)LiMn1/3Ni 1/3Co1/3O2 composite materials possible to use as potential cathode candidate for lithium-ion batteries.
Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen
NASA Astrophysics Data System (ADS)
Zhirkov, I.; Landälv, L.; Göthelid, E.; Ahlgren, M.; Eklund, P.; Rosen, J.
2017-02-01
Al2O3 alloyed with Cr is an important material for the tooling industry. It can be synthesized from an arc discharge using Al-Cr cathodes in an oxygen atmosphere. Due to formation of Al-rich oxide islands on the cathode surface, the arc process stability is highly sensitive to oxygen pressure. For improved stability, the use of Al0.70Cr0.25Si0.05 cathodes has previously been suggested, where Si may reduce island formation. Here, we have investigated the effect of Si by comparing plasma generation and thin film deposition from Al0.7Cr0.3 and Al0.7Cr0.25Si0.05 cathodes. Plasma ion composition, ion energies, ion charge states, neutral species, droplet formation, and film composition have been characterized at different O2 flow rates for arc currents of 60 and 90 A. Si and related compounds are detected in plasma ions and in plasma neutrals. Scanning electron microscopy and energy dispersive X-ray analysis show that the cathode composition and the film composition are the same, with Si present in droplets as well. The effect of Si on the process stability, ion energies, and ion charge states is found to be negligible compared to that of the arc current. The latter is identified as the most relevant parameter for tuning the properties of the reactive discharge. The present work increases the fundamental understanding of plasma generation in a reactive atmosphere, and provides input for the choice of cathode composition and process parameters in reactive DC arc synthesis.
Solid oxide fuel cell having monolithic core
Ackerman, J.P.; Young, J.E.
1983-10-12
A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.
Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan
2016-01-26
Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.
NASA Astrophysics Data System (ADS)
Asfaw, Habtom D.; Roberts, Matthew R.; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina
2014-07-01
In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm-2 at 0.1 mA cm-2 (lowest rate) and 1.1 mA h cm-2 at 6 mA cm-2 (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01682c
Moni, Prabu; Hyun, Suyeon; Vignesh, Ahilan; Shanmugam, Sangaraju
2017-07-06
Chrysanthemum flower-like NiCo 2 O 4 -nitrogen doped graphene oxide composite material has been explored as a bifunctional cathode electrocatalyst for aqueous zinc-air and non-aqueous lithium-oxygen batteries. This cathode exhibits maximum discharge capacities of 712 and 15 046 mA h g -1 for zinc-air and lithium-oxygen batteries, respectively, with stable cycling over 50 cycles.
Mancini, Marilena; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt‐Mehrens, Margret
2016-01-01
Abstract We report Co‐free, Li‐rich Li1+xNi0.5Mn1.5O4 (0
NASA Astrophysics Data System (ADS)
Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.
2017-11-01
The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie
2015-01-01
Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.
NASA Astrophysics Data System (ADS)
Xu, Shenzhen
Metal oxide materials are ubiquitous in nature and in our daily lives. For example, the Earth's mantle layer that makes up about 80% of our Earth's volume is composed of metal oxide materials, the cathode materials in the lithium-ion batteries that provide power for most of our mobile electronic devices are composed of metal oxides, the chemical components of the passivation layers on many kinds of metal materials that protect the metal from further corrosion are metal oxides. This thesis is composed of two major topics about the metal oxide materials in nature. The first topic is about our computational study of the iron chemistry in the Earth's lower mantle metal oxide materials, i.e. the bridgmanite (Fe-bearing MgSiO3 where iron is the substitution impurity element) and the ferropericlase (Fe-bearing MgO where iron is the substitution impurity element). The second topic is about our multiscale modeling works for understanding the nanoscale kinetic and thermodynamic properties of the metal oxide cathode interfaces in Li-ion batteries, including the intrinsic cathode interfaces (intergrowth of multiple types of cathode materials, compositional gradient cathode materials, etc.), the cathode/coating interface systems and the cathode/electrolyte interface systems. This thesis uses models based on density functional theory quantum mechanical calculations to explore the underlying physics behind several types of metal oxide materials existing in the interior of the Earth or used in the applications of lithium-ion batteries. The exploration of this physics can help us better understand the geochemical and seismic properties of our Earth and inspire us to engineer the next generation of electrochemical technologies.
NASA Astrophysics Data System (ADS)
Wang, Dapeng
The electrification trend for transportation systems requires alternative cathode materials to LiCoO2 with improved safety, lowered cost and extended cycle life. Lithium- manganese- rich composite cathode materials, which can be presented in a two component notation as xLi2MnO3·(1-x)LiMO 2, (M= Ni, Co or Mn) have superior cost and energy density advantages. These cathode materials have shown success in laboratory scale experiments, but are still facing challenges such as voltage fade, moderate rate capacity and tap density for commercialization. The synthesis of precursors with high packing density and suitable physical properties is critical to achieve high energy density as well as the other acceptable electrochemical performance for the next generation lithium ion batteries. The aim of this study is to correlate the electrochemical properties of materials to their structural, morphological, and physical properties by coordinating the science of synthesis with the science of function, in order to enable the use of these compounds in vehicle technologies. Three different precursors including carbonate, hydroxide and oxalate were synthesized by co-precipitation reactions using continuous stirred tank reactor (CSTR) under various conditions. Research focused on areas such as nucleation and growth mechanisms, synthesis optimizations, and intrinsic limitations of each co-precipitation method. A combination of techniques such as PSA, BET, SEM, EDX FIB, TEM, Raman, FTIR, TGA-DSC, XRD, and ICP-MS, as well as electrochemical test methods such as cycling, CV, EIS and HPPC tests were used in correlation with each other in order to deepen our understanding to these materials. Related topics such as the composite structure formation process during the solid state reaction, lithium and nickel content effects on the cathode properties were also discussed. Additionally, the side reactions between the active materials and electrolyte as a result of the high charge potential were mitigated through a simple wet chemical surface coating method, and the positive effect of the surface coating on the cells' performance was also discussed.
Jiang, Lihua; Wang, Qingsong; Sun, Jinhua
2018-06-05
LiNi x Co y Mn z O 2 (NCM) cathode material with high energy density is one of the best choices for power batteries. But the safety issue also becomes more prominent with higher nickel content. The improvement of thermal stability by material modification is often complex and limited. In this study, a composite safety electrolyte additive consisting of perfluoro-2-methyl-3-pentanone, N, N-Dimethylacetamide (and fluorocarbon surfactant is proved to be effective and simple in improving the thermal stability of NCM materials. Electrochemical compatibility of composite safety electrolyte with various NCM materials is investigated. Uniform interface film, lower impedance and polarization for NCM (622) cycled in composite safety electrolyte are proved to be the main reasons to ensure good cycle performance. Homemade pouch cells (NCM (622)/C) are used to verify the effectiveness for practical application, accelerating rate calorimeter and nail penetration test shows a slower temperature rise and delay of thermal runaway. For heating experiment, no fire appears for pouch cell with composite safety electrolyte. Thus, this composite safety electrolyte is effective to improve the safety of lithium ion batteries with NCM materials.(. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong
2014-08-13
Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.
NASA Astrophysics Data System (ADS)
Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Stach, Eric A.; Kim, Seung Min; Chang, Wonyoung
2016-09-01
We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses
NASA Astrophysics Data System (ADS)
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard
2014-11-01
V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.
New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard
2014-11-19
V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 - LiBO(2) glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 - LiBO(2) glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods.
New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses
Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard
2014-01-01
V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
NASA Astrophysics Data System (ADS)
Jiang, Xi; Zhang, Tianran; Lee, Jim Yang
2017-12-01
Na3V2(PO4)3 (NVP) is an extensively researched cathode material for the sodium-ion batteries (NIBs). Size reduction and nanocarbon coating are often used to improve its rate performance. These are strategies that have been proven highly effective for LiFePO4 (LFP), a phosphate-based cathode material which is nowadays popular with the lithium-ion batteries. Nanocarbon coating is undoubtedly useful since NVP encounters similar external electron transport barriers as LFP. The effect of size reduction, however, remains debatable since in theory, the 3D NASICON framework of NVP is more efficient for solid state ionic diffusion than is LFP. We have undertaken the measurements of the electrochemical performance of NVP particles of different sizes, electrode compositions, active material loadings and processing conditions, for the purpose of identifying the most significant factors which determine the rate performance of NVP as a NIB cathode material.
Azcondo, María Teresa; Yuste, Mercedes; Pérez-Flores, Juan Carlos; Muñoz-Gil, Daniel; García-Martín, Susana; Muñoz-Noval, Alvaro; Orench, Inés Puente; García-Alvarado, Flaviano; Amador, Ulises
2017-07-21
The perovskite series Sr 2 CoNb 1-x Ti x O 6-δ (0≤x≤1) was investigated in the full compositional range to assess its potential as cathode material for solid oxide fuel cell (SOFC). The variation of transport properties and thus, the area specific resistances (ASR) are explained by a detailed investigation of the defect chemistry. Increasing the titanium content from x=0-1 produces both oxidation of Co 3+ to Co 4+ (from 0 up to 40 %) and oxygen vacancies (from 6.0 to 5.7 oxygen atom/formula unit), although each charge compensation mechanism predominates in different compositional ranges. Neutron diffraction reveals that samples with high Ti-contents lose a significant amount of oxygen upon heating above 600 K. Oxygen is partially recovered upon cooling as the oxygen release and uptake show noticeably different kinetics. The complex defect chemistry of these compounds, together with the compositional changes upon heating/cooling cycles and atmospheres, produce a complicated behavior of electrical conductivity. Cathodes containing Sr 2 CoTiO 6-δ display low ASR values, 0,13 Ω cm 2 at 973 K, comparable to those of the best compounds reported so far, being a very promising cathode material for SOFC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel nanodisperse composite cathode for rechargeable lithium/polymer batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Striebel, K.A.; Wen, S.J.; Ghantous, D.I.
1997-05-01
A novel approach to the design of a composite positive electrode for lithium/polymer cells based on a polyethylene oxide (PEO) polymer, manganese (II), and lithium hydroxide has been discovered. A chemical reaction leading to a stable suspension occurs when the precursor salts are added directly to a polymer solution. The electrode film is cast directly and then vacuum-dried with no calcination step. The film is amorphous as-prepared and has been named the nanodisperse composite cathode, or NCC. Film characterization with x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy indicates that the Mn (II) has been oxidized to Mn (IV), whichmore » forms a complex with the PEO. This leads to highly disperse Mn sites within the polymer matrix and highly mobile Li ions within the PEO. Cells have been assembled with NCC films, PEO-LiN(SO{sub 2}CF{sub 3}){sub 2} electrolyte and lithium metal, and cycled at 85 to 105 C at current densities of 0.2 mA/cm{sup 2} between the voltage limits of 3.5 and 2.0 V. Discharge capacities as high as 340 mAh/g-cathode film have been achieved on the first half-cycle. The discharge capacity declines consistently during a formation process to steady values as high as 50 mAh/g-cathode. This cathode capacity is equivalent to an active material capacity of 150 mAh/g in a composite cathode at a loading of 30 weight percent. The synthesis process for the NCC is simple, should be relatively easy to scale up, and should lead to an extremely useful composite cathode for a lithium polymer battery.« less
NASA Astrophysics Data System (ADS)
Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook
A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.
NASA Technical Reports Server (NTRS)
Isenberg, Arnold O.; Cusick, Robert J.
1988-01-01
The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.
NASA Astrophysics Data System (ADS)
Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.
2017-12-01
A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.
Monroe, Jr., James E.
1977-08-09
A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.
Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yu; Ding, Dong; Wei, Tao
The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminantsmore » using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO 2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H 2O, 5% CO 2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO 4 was significantly decreased.« less
Production of intensive negative lithium beam with caesium sputter-type ion source
NASA Astrophysics Data System (ADS)
Lobanov, Nikolai R.
2018-01-01
Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.
Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand
2016-10-12
The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.
Hwang, Sooyeon; Kim, Seung Min; Bak, Seong -Min; ...
2015-05-08
In this study, we use in-situ transmission electron microcopy (TEM) to investigate the thermal decomposition that occurs at the surface of charged Li xNi yMn zCo 1-y-zO 2 (NMC) cathode materials of different composition (with y, z=0.8, 0.1 and 0.6, 0.2 and 0.4, 0.3), after they have been charged to their practical upper limit voltage (4.3V). By heating these materials inside the TEM, we are able to directly characterize near surface changes in both their electronic structure (using electron energy loss spectroscopy) and crystal structure and morphology (using electron diffraction and bright-field imaging). The most Ni-rich material (y, z =more » 0.8, 0.1) is found to be thermally unstable at significantly lower temperatures than the other compositions – this is manifested by changes in both the electronic structure and the onset of phase transitions at temperatures as low as 100°C. Electron energy loss spectroscopy indicates that the thermally induced reduction of Ni ions drives these changes, and that this is exacerbated by the presence of an additional redox reaction that occurs at 4.2V in the y, z = 0.8, 0.1 material. Exploration of individual particles shows that there are substantial variations in the onset temperatures and overall extent of these changes. Of the compositions studied, the composition of y, z = 0.6, 0.2 has the optimal combination of high energy density and reasonable thermal stability. The observations herein demonstrate that real time electron microscopy provide direct insight into the changes that occur in cathode materials with temperature, allowing optimization of different alloy concentrations to maximize overall performance.« less
Yuan, Ruoxin; Kang, Wenbin; Zhang, Chuhong
2018-06-02
In an effort to explore the use of organic high-performance lithium ion battery cathodes as an alternative to resolve the current bottleneck hampering the development of their inorganic counterparts, a rational strategy focusing on the optimal composition of covalent triazine-based frameworks (CTFs) with carbon-based materials of varied dimensionalities is delineated. Two-dimensional reduced graphene oxide (rGO) with a compatible structural conformation with the layered CTF is the most suitable scaffold for the tailored mesopores in the polymeric framework, providing outstanding energy storage ability. Through facile ionothermal synthesis and structure engineering, the obtained CTF-rGO composite possesses a high specific surface area of 1357.27 m²/g, and when used as a lithium ion battery cathode it delivers a large capacity of 235 mAh/g in 80 cycles at 0.1 A/g along with a stable capacity of 127 mAh/g over 2500 cycles at 5 A/g. The composite with modified pore structure shows drastically improved performance compared to a pristine CTF, especially at large discharge currents. The CTF-rGO composite with excellent capacity, stability, and rate performance shows great promise as an emerging high-performance cathode that could revolutionize the conventional lithium-ion battery industry.
In Situ-Formed Hierarchical Metal-Organic Flexible Cathode for High-Energy Sodium-Ion Batteries.
Huang, Ying; Fang, Chun; Zeng, Rui; Liu, Yaojun; Zhang, Wang; Wang, Yanjie; Liu, Qingju; Huang, Yunhui
2017-12-08
Metal-organic compounds are a family of electrode materials with structural diversity and excellent thermal stability for rechargeable batteries. Here, we fabricated a hierarchical nanocomposite with metal-organic cuprous tetracyanoquinodimethane (CuTCNQ) in a 3 D conductive carbon nanofibers (CNFs) network by in situ growth, and evaluated it as flexible cathode for sodium-ion batteries (SIBs). CuTCNQ in such flexible composite electrode is able to exhibit a high capacity of 252 mAh g -1 at 0.1 C and highly reversible stability for 1200 cycles within the voltage range of 2.5-4.1 V (vs. Na + /Na). A high specific energy of 762 Wh kg -1 was obtained with high average potential of 3.2 V (vs. Na + /Na). The in situ-formed electroactive metal-organic composites with tailored nanoarchitecture provide a promising alternative choice for high-performance cathode materials in SIBs with high energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Na2.5Fe1.75(SO4)3/Ketjen/rGO: An advanced cathode composite for sodium ion batteries
NASA Astrophysics Data System (ADS)
Goñi, A.; Iturrondobeitia, A.; Gil de Muro, I.; Lezama, L.; Rojo, T.
2017-11-01
An advanced cathode composite Na2.5Fe1.75(SO4)3/Ketjen/rGO for sodium ion batteries has been prepared, joining together the excellent electrochemical properties of the three components: off stoichiometric iron sulfate alluaudite, Ketjen Black carbon and reduced graphene oxide (rGO). This electrode material has been exhaustively characterized by XRD, thermogravimetric analysis, Raman spectroscopy and SEM and TEM microscopy. The study has demonstrated that a high quality electrode material has been designed containing a porous sulfate core properly coated by interweaved rGO fibers and Ketjen Black nanoparticles. The electrochemical study has revealed an excellent performance providing specific capacities close to the theoretical one at 1C. Additionally, this composite has shown a very good rate capability and a great cycling stability for at least 200 cycles maintaining a coulombic efficiency of 96%. The post mortem analysis, which includes EPR and XPS measurements, has demonstrated that the carbonaceous coating on the composite generates a stable and protective SEI layer over the active material guaranteeing a successful performance during a long cycle life.
Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries
NASA Astrophysics Data System (ADS)
Howard, Wilmont F.; Spotnitz, Robert M.
Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.
Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.A. Christini; R.K. Dawless; S.P. Ray
2001-11-05
During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase andmore » Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.« less
Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.
Tan, Shu Min; Pumera, Martin
2017-12-06
Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.
NASA Astrophysics Data System (ADS)
Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng
2015-07-01
As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.
Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network
NASA Astrophysics Data System (ADS)
Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.
2012-08-01
High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.
Preparation and characterization of SnO2 and Carbon Co-coated LiFePO4 cathode materials.
Wang, Haibin; Liu, Shuxin; Huang, Yongmao
2014-04-01
The SnO2 and carbon co-coated LiFePO4 cathode materials were successfully synthesized by solid state method. The microstructure and morphology of LiFePO4 composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscope. The results showed that the SnO2 and carbon co-coated LiFePO4 cathode materials exhibited more uniform particle size distribution. Compared with the uncoated LiFePO4/C, the structure of LiFePO4 with SnO2 and carbon coating had no change. The existence of SnO2 and carbon coating layer effectively enhanced the initial discharge capacity. Among the investigated samples, the one with DBTDL:LiFePO4 molar ratios of 7:100 exhibited the best electrochemical performance.
NASA Technical Reports Server (NTRS)
Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz
1991-01-01
A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.
NASA Astrophysics Data System (ADS)
Li, Na; Wang, Yanping; Rao, Richuan; Dong, Xiongzi; Zhang, Xianwen; Zhu, Sane
2017-03-01
The graphene coated NaTi2(PO4)3 has been fabricated via a simple sol-gel process followed by calcination. The NaTi2(PO4)3/graphene (NTP/G) composite is used directly as cathode electrode material for lithium-ion battery and the electrochemical properties of the composite in this system is firstly studied in detail. In the charge-discharge process, two Li+ can occupy octahedral M (2) site and be reversibly intercalated into the 3D framework of NTP through the ion conduction channel where almost all of Na+ are immobilized to sustain the framework. At 5C rate, the capacity retention of the NTP/G composite after 800 cycles is still up to 82.7%. The superior electrochemical properties of NTP/G is ascribed to its stable 3-D framework and the enhanced electronic conduction resulting from the graphene sheets surface modification.
Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks.
Milczarek, Grzegorz; Inganäs, Olle
2012-03-23
Renewable and cheap materials in electrodes could meet the need for low-cost, intermittent electrical energy storage in a renewable energy system if sufficient charge density is obtained. Brown liquor, the waste product from paper processing, contains lignin derivatives. Polymer cathodes can be prepared by electrochemical oxidation of pyrrole to polypyrrole in solutions of lignin derivatives. The quinone group in lignin is used for electron and proton storage and exchange during redox cycling, thus combining charge storage in lignin and polypyrrole in an interpenetrating polypyrrole/lignin composite.
2013-06-01
vicinity of new patches. Fiber -reinforced polymer (FRP) composite wrapping systems have been evolving over the last 20 years and are now a viable...material is a woven glass fiber pre-impregnated with moisture-activated resins that cure underwater after being put in place. Figure 4. ICPW...wrap system The FRP composite wrap material that was selected is Aqua Wrap Type G- 05, a woven glass fiber pre-impregnated with moisture-activated
Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
Lin, Feng; Xin, Huolin L.; Nordlund, Dennis; ...
2016-01-11
Controlling surface and interfacial properties of battery materials is key to improving performance in rechargeable Li-ion devices. Surface reconstruction from a layered to a rock salt structure in metal oxide cathode materials is commonly observed and results in poor high-voltage cycling performance, impeding attempts to improve energy density. Hierarchically structured LiNi 0.4Mn 0.4Co 0.2O 2 (NMC-442) spherical powders, made by spray pyrolysis, exhibit local elemental distribution gradients that deviate from the global NMC-442 composition; specifically, they are Ni-rich and Mn-poor at particle surfaces. These materials demonstrate improved Coulombic efficiencies, discharge capacities, and high-voltage capacity retention in lithium half-cell configurations. Themore » subject powders show superior resistance against surface reconstruction due to the tailored surface chemistry, compared to conventional NMC-442 materials. This paves the way towards the development of a new generation of robust and stable high-energy NMC cathodes for Li-ion batteries.« less
Zhang, Yu; Huang, Yanshan; Yang, Guanhui; Bu, Fanxing; Li, Ke; Shakir, Imran; Xu, Yuxi
2017-05-10
Polymer cathode materials are promising alternatives to inorganic counterparts for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high theoretical capacity, adjustable molecular structure, and strong adaptability to different counterions in batteries, etc. However, they suffer from poor practical capacity and low rate capability because of their intrinsically poor conductivity. Herein, we report the synthesis of self-assembled graphene/poly(anthraquinonyl sufide) (PAQS) composite aerogel (GPA) with efficient integration of a three-dimensional (3D) graphene framework with electroactive PAQS particles via a novel dispersion-assembly strategy which can be used as a free-standing flexible cathode upon mechanical pressing. The entire GPA cathode can deliver the highest capacity of 156 mAh g -1 at 0.1 C (1 C = 225 mAh g -1 ) with an ultrahigh utilization (94.9%) of PAQS and exhibits an excellent rate performance with 102 mAh g -1 at 20 C in LIBs. Furthermore, the flexible GPA film was also tested as cathode for SIBs and demonstrated a high-rate capability with 72 mAh g -1 at 5 C and an ultralong cycling stability (71.4% capacity retention after 1000 cycles at 0.5 C) which has rarely been achieved before. Such excellent electrochemical performance of GPA as cathode for both LIBs and SIBs could be ascribed to the fast redox kinetics and electron transportation within GPA, resulting from the interconnected conductive framework of graphene and the intimate interaction between graphene and PAQS through an efficient wrapping structure. This approach opens a universal way to develop cathode materials for powerful batteries with different metal-based counter electrodes.
The Structure and Infrastructure of Chinese Science and Technology
2006-01-01
materi 2.4%, charg.discharg 2.2%, mah 2.0%, lifepo4 2.0%, charg 1.7%, composit 1.3%, oxid 1.2%, discharg.capac 1.1%, licoo2 1.1...charg.discharg 2.2%, mah 2.0%, lifepo4 2.0%, charg 1.7%, composit 1.3%, oxid 1.2%, discharg.capac 1.1%, licoo2 1.1%, cathod.materi 1.0%, electrod
NASA Astrophysics Data System (ADS)
Sun, Xiaodong; Zhang, Le
2018-05-01
In this work, the MWCNTs-decorated LiFePO4 microspheres (LiFePO4@MWCNTs) with a 3D network structure have been synthesized by a facile and efficient spray-drying approach followed by solid-state reaction in a reduction atmosphere. In the as-prepared composite, the MWCNTs around LiFePO4 nanoparticles can provide 3D conductive networks which greatly facilitate the transport of Li+-ion and electron during the electrochemical reaction. Compared to the pure LiFePO4 material, the LiFePO4@MWCNTs composite as cathode for lithium-ion batteries exhibits significantly improved Li-storage performance in terms of rate capability and cyclic stability. Therefore, we can speculate that the spray-drying approach is a promising route to prepare the high-performance electrode materials with 3D network structure for electrochemical energy storage.
Positive electrode for a lithium battery
Park, Sang-Ho; Amine, Khalil
2015-04-07
A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.
Bhargav, Amruth; Bell, Michaela Elaine; Karty, Jonathan; Cui, Yi; Fu, Yongzhu
2018-06-27
Sulfur-based cathodes are promising to enable high-energy-density lithium-sulfur batteries; however, elemental sulfur as active material faces several challenges, including undesirable volume change (∼80%) when completely reduced and high dependence on liquid electrolyte wherein an electrolyte/sulfur ratio >10 μL mg -1 is required for high material utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a new class of phenyl polysulfides C 6 H 5 S x C 6 H 5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently high theoretical specific capacities, specific energies, and energy densities. Spectroscopic techniques verify their chemical composition and computation shows that the volume change when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide (C 6 H 5 S 6 C 6 H 5 ) can provide a specific capacity of 650 mAh g -1 and capacity retention of 80% through 500 cycles at 1 C rate along with superlative performance up to 10 C. Furthermore, 1302 Wh kg -1 and 1720 Wh L -1 are achievable at a low electrolyte/active material ratio, i.e., 3 μL mg -1 . This work adds new members to the cathode family for Li-S batteries, reduces the gap between the theoretical and practical energy densities of batteries, and provides a new direction for the development of alternative high-capacity cathode materials.
Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, Scott
2015-03-23
In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontiummore » manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.« less
Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan
2014-12-24
Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3̅m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3̅m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.
Bak, Seong -Min; Hu, Enyuan; Zhou, Yongning; ...
2014-11-24
Thermal stability of charged LiNi xMn yCo zO 2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time- resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and themore » larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3¯m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3¯m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. As a result, this systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.« less
Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.
Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong
2014-09-01
The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.
Defect-Property Relationships in Composite Materials. Part II.
1977-06-01
requires the use of a delay block since the composite specimens are so thin that returning echoes overlap one another on the screen of the cathode -ray...tube and can not be individually distinguished. The delay block, when placed on the opposite Oide of the specimen from the transducer, increases the
NASA Astrophysics Data System (ADS)
Itaoka, Kanae; Kim, In-Tae; Yamabuki, Kazuhiro; Yoshimoto, Nobuko; Tsutsumi, Hiromori
2015-11-01
Room temperature rechargeable magnesium (Mg) batteries are constructed from Mg as a negative material, sulfur (S)-containing composite prepared from elemental sulfur and the bis(alkenyl) compound having a crown ether unit (BUMB18C6) or linear ether unit (UOEE) as a positive material and the simple electrolyte (0.7 mol dm-3 Mg[N(SO2CF3)2]2-triglyme (G3) solution). The reaction between molten S and the bis(alkenyl) compound (BUMB18C6 or UOEE) provides the sulfur-containing composite, S-BUMB18C6 or S-UOEE. Both of the sulfur-containing composites are electrochemically active in the Mg salt-based electrolyte, acetonitrile- or G3- Mg[N(SO2CF3)2]2 electrolyte. The first discharge capacity of the test cells with the sulfur-containing composite is 460 Ah kg-1 (per the weight of sulfur in the composite) with the S-BUMB18C6 electrode and 495 Ah kg-1 with the S-UOEE electrode. According to the continuous charge-discharge cycle tests (at 10th cycle), the discharge capacity of the test cell with the S-BUMB18C6 electrode (68.1 Ah kg-1) is higher than that with the S-UOEE electrode (0.18 Ah kg-1). The crown ether units in the S-BUMB18C6 composite may create ion-conducting paths in the cathode, prevent rise in the internal resistance of the cathode, and provide better cycle performance of the test cells with the S-BUMB18C6 composite electrode than that with the S-UOEE electrode.
Liang, Liying; Liu, Haimei; Yang, Wensheng
2013-02-07
The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.
Sun, Fugen; Wang, Jitong; Chen, Huichao; Qiao, Wenming; Ling, Licheng; Long, Donghui
2013-01-01
We demonstrate a sustainable and efficient approach to produce high performance sulfur/carbon composite cathodes via a bottom-up catalytic approach. The selective oxidation of H2S by a nitrogen-enriched mesoporous carbon catalyst can produce elemental sulfur as a by-product which in-situ deposit onto the carbon framework. Due to the metal-free catalytic characteristic and high catalytic selectivity, the resulting sulfur/carbon composites have almost no impurities that thus can be used as cathode materials with compromising battery performance. The layer-by-layer sulfur deposition allows atomic sulfur binding strongly with carbon framework, providing efficient immobilization of sulfur. The nitrogen atoms doped on the carbon framework can increase the surface interactions with polysulfides, leading to the improvement in the trapping of polysulfides. Thus, the composites exhibit a reversible capacity of 939 mAh g−1 after 100 cycles at 0.2 C and an excellent rate capability of 527 mAh g−1 at 5 C after 70 cycles. PMID:24084754
Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi
2014-12-19
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu
2016-01-01
High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.
Asfaw, Habtom D; Roberts, Matthew R; Tai, Cheuk-Wai; Younesi, Reza; Valvo, Mario; Nyholm, Leif; Edström, Kristina
2014-08-07
In this article, we report a novel 3D composite cathode fabricated from LiFePO4 nanoparticles deposited conformally on emulsion-templated carbon foam by a sol-gel method. The carbon foam is synthesized via a facile and scalable method which involves the carbonization of a high internal phase emulsion (polyHIPE) polymer template. Various techniques (XRD, SEM, TEM and electrochemical methods) are used to fully characterize the porous electrode and confirm the distribution and morphology of the cathode active material. The major benefits of the carbon foam used in our work are closely connected with its high surface area and the plenty of space suitable for sequential coating with battery components. After coating with a cathode material (LiFePO4 nanoparticles), the 3D electrode presents a hierarchically structured electrode in which a porous layer of the cathode material is deposited on the rigid and bicontinuous carbon foam. The composite electrodes exhibit impressive cyclability and rate performance at different current densities affirming their importance as viable power sources in miniature devices. Footprint area capacities of 1.72 mA h cm(-2) at 0.1 mA cm(-2) (lowest rate) and 1.1 mA h cm(-2) at 6 mA cm(-2) (highest rate) are obtained when the cells are cycled in the range 2.8 to 4.0 V vs. lithium.
Nanoscale visualization of redox activity at lithium-ion battery cathodes.
Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu
2014-11-17
Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.
Devaraj, Arun; Gu, Meng; Colby, Robert J.; ...
2015-08-14
The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li 1.2Ni 0.2Mn 0.6O 2 and spinel LiNi 0.5Mn 1.5O 4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution ofmore » the transition metal cations (M) and the oxygen. The as-fabricated layered Li 1.2Ni 0.2Mn 0.6O 2 is shown to have Li-rich Li 2MO 3 phase regions and Li-depleted Li(Ni 0.5Mn 0.5)O 2 regions while in the cycled layered Li 1.2Ni 0.2Mn 0.6O 2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi 0.5Mn 1.5O 4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less
Economic and environmental characterization of an evolving Li-ion battery waste stream.
Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W; Bailey, Chelsea; Ganter, Matthew J; Landi, Brian J
2014-03-15
While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
The electrochemical reduction processes of solid compounds in high temperature molten salts.
Xiao, Wei; Wang, Dihua
2014-05-21
Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.
NASA Astrophysics Data System (ADS)
Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan
2018-02-01
With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Liu, Jianzhao; Amine, Rachid
2017-02-09
In the search for a transformative new energy storage system, the rechargeable Li/sulfur battery is considered as one of the promising candidates due to its much higher energy density and lower cost than state-of-the-art lithium-ion batteries. However, the insulating nature of sulfur and the dissolution of intermediary polysulfides into the electrolyte significantly hinder its practical application. Very recently, selenium and selenium-sulfur systems have received considerable attention as cathode materials for rechargeable batteries owing to the high electronic conductivity (20 orders of magnitude higher than sulfur) and high volumetric capacity (3254 mAh/cm3 ) of selenium. In this perspective, we present anmore » overview of the implications of employing selenium and selenium-sulfur systems with different structures and compositions as electroactive materials for rechargeable lithium batteries. We also show how the cathode structures, electrolytes, and electrode-electrolyte interfaces affect the electrochemistry of Se and Se-S based cathodes. Furthermore, suggestions are provided on paths for future development of these cathodes.« less
High capacity anode materials for lithium ion batteries
Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject
2015-11-19
High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.
NASA Astrophysics Data System (ADS)
Yao, Bin; Ding, Zhaojun; Zhang, Jianxin; Feng, Xiaoyu; Yin, Longwei
2014-08-01
The severe capacity decay of LiFePO4 at low temperatures (≤0 °C) limits its wide applications as cathode materials for energy storage batteries. Creating comprehensive carbon network between particles with improved electronic conductivity is a well known solution to this problem. Here, a novel structured LiFePO4/C composite was prepared by a facile solid state route, in which nanosized LiFePO4 spheres were encapsulated by in-situ graphitized carbon cages. With the enhancement in electronic conductivity (2.15e-1 S cm-1), the composite presented excellent rate performance at room temperature and remarkable capacity retention at -40 °C, with charge transfer resistance much lower than commercial LiFePO4.
Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application
Welch, K.M.
1975-04-04
Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.
Active Structural Fibers for Multifunctional Composite Materials
2014-05-06
capacitors. Lastly, a cathodic electrolytic deposition process has been investigated for the coating of carbon fibers with a PZT shell. The...results have demonstrated the ability to use the process to coat fibers with a thin shell of PZT . The results thus far have demonstrated the feasibility...Journal of Composite Materials, In Review. 2. Zhou, Z., Lin, Y. and Sodano, H.A., Synthesis and Characterization of Textured BaTiO3 Thin Films
Wang, Ping; Zhang, Geng; Cheng, Jian; You, Ya; Li, Yong-Ke; Ding, Cong; Gu, Jiang-Jiang; Zheng, Xin-Sheng; Zhang, Chao-Feng; Cao, Fei-Fei
2017-02-22
The spinel Li 4 Ti 5 O 12 /rutile-TiO 2 @carbon (LTO-RTO@C) composites were fabricated via a hydrothermal method combined with calcination treatment employing glucose as carbon source. The carbon coating layer and the in situ formed rutile-TiO 2 can effectively enhance the electric conductivity and provide quick Li + diffusion pathways for Li 4 Ti 5 O 12 . When used as an anode material for lithium-ion batteries, the rate capability and cycling stability of LTO-RTO@C composites were improved in comparison with those of pure Li 4 Ti 5 O 12 or Li 4 Ti 5 O 12 /rutile-TiO 2 . Moreover, the potential of approximately 1.8 V rechargeable full lithium-ion batteries has been achieved by utilizing an LTO-RTO@C anode and a LiFePO 4 @N-doped carbon cathode.
NASA Astrophysics Data System (ADS)
Liu, Yanglin; Wang, Yaping; Zhang, Yifang; Liang, Shuquan; Pan, Anqiang
2016-12-01
Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvothermal solution. As cathode materials for lithium-ion batteries, the nanosheet-assembled V2O5/graphene composite exhibits better rate capability and long-term cycling stability. The V2O5/graphene composites can deliver discharge capacities of 133, 131, and 122 mAh g-1 at 16 C, 32 C, and 64 C, respectively, in the voltage range of 2.5-4.0 V vs. Li/Li+. Moreover, the electrodes can retain 85% of their original capacity at 1C rate after 500 cycles. The superior electrochemical performances are attributed to the porous structures created by the connected V2O5 nanosheets and the electron conductivity improvement by graphene.
Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin
2016-06-01
In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.
Liu, Qiannan; Hu, Zhe; Chen, Mingzhe; Gu, Qinfen; Dou, Yuhai; Sun, Ziqi; Chou, Shulei; Dou, Shi Xue
2017-02-01
The tunnel-structured Na 0.44 MnO 2 is considered as a promising cathode material for sodium-ion batteries because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na 0.44 MnO 2 have been first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode materials for Na-ion batteries. The microstructure and composition of prepared Na 0.44 MnO 2 is highly related to the sintering temperature. This structure with suitable size increases the contact area between the material and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific capacity of 72.8 mA h g -1 and capacity retention of 99.6% after 2000 cycles at a high current density of 1000 mA g -1 . The as-designed multiangular Na 0.44 MnO 2 provides new insight into the development of tunnel-type electrode materials and their application in rechargeable sodium-ion batteries.
NASA Astrophysics Data System (ADS)
Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Arriortua, María Isabel
2015-04-01
One of the most important issues related to the performance of solid oxide fuel cells (SOFCs) is the chromium poisoning of the perovskite-type materials used as cathodes by the gaseous chromium species from metallic interconnects. In this study, powder mixtures of LSF40-Cr2O3 were heated at 800 °C and 1000 °C in air and were subsequently analysed by X-ray powder diffraction. For all the mixtures, the crystallisation of SrCrO4 was observed. In addition, the degradation occurring between three alloys with different compositions, Crofer 22 APU, SS430 and Conicro 4023 W 188, as metallic interconnects and La0.6Sr0.4FeO3 (LSF40) ceramic material as a cathode was studied. The results show significant chromium deposition and the formation of SrCrO4, LaCrO3 and La2O3 that block the active LSF40 electrode surface and degrade the stack (YSZ/SDC/LSF40/Interconnect) performance. LSF40 assembled with SS430 exhibited substantial Cr deposition. The deposition of the Cr species and the reaction with the LSF40 cathode is related to the composition of the oxide scales formed at each metallic interconnect and at the same time is related to the composition of the alloys. The best results obtained were for the half-cell (YSZ/SDC/LSF40) in contact with Conicro 4023 W 188 and Crofer 22 APU after heat treatment in air at 800 °C for 100 h.
Kim, Jeong-Min; Jin, Bong-Soo; Koo, Hoe-Jin; Choi, Jae-Man; Kim, Hyun-Soo
2013-05-01
The Li[Ni0.7Co0.1Mn0.2]O2 cathode material synthesized using a co-precipitation method was investigated as a function of various pH level in terms of its microstructure and electrochemical properties. From the XRD pattern analysis, the Li[Ni0.7Co0.1Mn0.2]O2 cathode material prepared in this study are found to well coincide with typically hexagonal alpha-NaFeO2 structure. The primary particle size was about 100-300 nm at all compositions while secondary particle size increased as pH level increased from 10.34 microm (pH 10.3) to 14 microm (pH 12.5). The initial discharge capacity increased up to 165 mAh/g (0.1 C) at pH 11, and then decreased down to 144 mAh/g with further increasing pH level. The capacity retention of the cathode (pH 11) showed 90% at 0.2 C and 15% at 5 C respectively compared with the discharge capacity at 0.1 C. The capacity retention of the cathode (pH 10.3) performed 94% of the initial capacity after 22 cycles at 0.5 C charge/discharge test. Therefore, it is thought to be that pH 10.3 is optimized condition of the Li[Ni0.7Co0.1Mn0.2]O2 cathode material in this study because pH 10.3 shows better cycle performance than other conditions.
Yoon, Kyungho; Kim, Jung-Joon; Seong, Won Mo; Lee, Myeong Hwan; Kang, Kisuk
2018-05-23
All-solid-state batteries are considered as one of the attractive alternatives to conventional lithium-ion batteries, due to their intrinsic safe properties benefiting from the use of non-flammable solid electrolytes in ASSBs. However, one of the issues in employing the solid-state electrolyte is the sluggish ion transport kinetics arising from the chemical and physical instability of the interfaces among solid components including electrode material, electrolyte and additive agents. In this work, we investigate the stability of the interface between carbon conductive agents and Li 10 GeP 2 S 12 in a composite cathode and its effect on the electrochemical performance of ASSBs. It is found that the inclusion of various carbon conductive agents in composite cathode leads to inferior kinetic performance of the cathode despite expectedly enhanced electrical conductivity of the composite. We observe that the poor kinetic performance is attributed to a large interfacial impedance which is gradually developed upon the inclusions of the various carbon conductive agents regardless of their physical differences. The analysis through X-ray Photoelectron Spectroscopy suggests that the carbon additives in the composite cathode stimulate the electrochemical decomposition of LGPS electrolyte degrading its surface during cycling, indicating the large interfacial resistance stems from the undesirable decomposition of the electrolyte at the interface.
Jin, Yi-Chun; Duh, Jenq-Gong
2016-02-17
This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.
Materials characterization of impregnated W and W-Ir cathodes after oxygen poisoning
NASA Astrophysics Data System (ADS)
Polk, James E.; Capece, Angela M.
2015-05-01
Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten-iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W-Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W-Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W-Ir. However, the W-Ir emitter exhibited less erosion and redeposition at the upstream end than the pure W emitter.
Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping
2016-01-01
Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less
NASA Astrophysics Data System (ADS)
Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.
2016-03-01
The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.
Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry
Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.; ...
2016-11-01
In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less
Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.
In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less
NASA Astrophysics Data System (ADS)
Jo, Minsang; Ku, Heesuk; Park, Sanghyuk; Song, Junho; Kwon, Kyungjung
2018-07-01
Li[Ni1/3Co1/3Mn1/3]O2 cathode active materials are synthesized from co-precipitated hydroxide precursors Lix[Ni1/3Co1/3Mn1/3]1-x(OH)2, and the effect of residual Li in the precursors on the lithium-ion battery (LIB) performance of their corresponding cathode active materials is investigated. Three kinds of precursors that contain different amounts of Li are selected depending on different conditions of the solution composition for the co-precipitation and washing process. It is confirmed that the introduction of Li to the precursors reduces the degree of structural perfection by X-ray diffraction analysis. Undesirable cation mixing occurs with the increasing Li content of the precursors, which is inferred from a decline in lattice parameters and the calculated intensity ratio of (003) and (104) peaks. In the voltage range of 3.0-4.3 V, the initial charge/discharge capacities and the rate capability of the cathode active materials are aggravated when Li exists in the precursors. Therefore, it could be concluded that the strict control of Li in a solution for co-precipitation of precursors is necessary in the resynthesis of cathode active materials from spent LIBs.
Multi-modal porous microstructure for high temperature fuel cell application
NASA Astrophysics Data System (ADS)
Wejrzanowski, T.; Haj Ibrahim, S.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G.
2018-01-01
In this study, the effect of microstructure of porous nickel electrode on the performance of high temperature fuel cell is investigated and presented based on a molten carbonate fuel cell (MCFC) cathode. The cathode materials are fabricated from slurry consisting of nickel powder and polymeric binder/solvent mixture, using the tape casting method. The final pore structure is shaped through modifying the slurry composition - with or without the addition of porogen(s). The manufactured materials are extensively characterized by various techniques involving: micro-computed tomography (micro-XCT), scanning electron microscopy (SEM), mercury porosimetry, BET and Archimedes method. Tomographic images are also analyzed and quantified to reveal the evolution of pore space due to nickel in situ oxidation to NiO, and infiltration by the electrolyte. Single-cell performance tests are carried out under MCFC operation conditions to estimate the performance of the manufactured materials. It is found that the multi-modal microstructure of MCFC cathode results in a significant enhancement of the power density generated by the reference cell. To give greater insight into the understanding of the effect of microstructure on the properties of the cathode, a model based on 3D tomography image transformation is proposed.
NASA Astrophysics Data System (ADS)
Gong, Wenquan
2005-07-01
The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization resistances. Ni-LDC (50 v% NO was selected to be the anode for the LSGM electrolyte with a thin LDC barrier layer. Finally, the performance of complete LSGM electrolyte-supported IT-SOFCs with the selected cathode (LSCF-LSGM) and anode (Ni-LDC) materials coupled with the LDC barrier layer was evaluated at 600--800°C. The simulated cell performance of the anode-supported cell based on LSGM electrolyte was promising.
Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications
NASA Astrophysics Data System (ADS)
Agnihotri, Shruti; Rattan, Sangeeta; Sharma, A. L.
2016-05-01
The electrode material Li2MnFeSiO4 was successfully synthesized by standard sol-gel method and further modified with multiwalled carbon nano tube (MWCNT) to achieve better electrochemical properties. Our strategy helps us to improve the performance and storage capacity as compared with the bared material. This novel composite structure constructs an efficient cation (Li+) and electron channel which significantly enhance the Li+ ion diffusion coefficient and reduced charge transfer resistance. Hence leads to high conductivity and specific capacity. Characterization technique like Field emission scanning electron microscopy (FESEM) has been used to confirm its morphology, structure and particle size which comes out to be of the order of ˜20 to 30 nm. Lesser particle size reveals better electrochemical properties. Electrical conductivity (˜10-5 Scm-1) of MWCNT doped oxide cathode materials was recorded using ac impedance spectroscopy technique which reflects tenfold increment when compared with pure oxide cathode materials. Cyclic voltametery analysis has been done to calculate specific capacity and potential window of materials with and without CNTs. The results obtained from different techniques are well correlated and suitable for energy storage applications.
Optimization of Layered Cathode Materials for Lithium-Ion Batteries
Julien, Christian; Mauger, Alain; Zaghib, Karim; Groult, Henri
2016-01-01
This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − y)LiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling. PMID:28773717
Defect physics vis-à-vis electrochemical performance in layered mixed-metal oxide cathode materials
NASA Astrophysics Data System (ADS)
Hoang, Khang; Johannes, Michelle
Layered mixed-metal oxides with different compositions of (Ni,Co,Mn) [NCM] or (Ni,Co,Al) [NCA] have been used in commercial lithium-ion batteries. Yet their defect physics and chemistry is still not well understood, despite having important implications for the electrochemical performance. In this presentation, we report a hybrid density functional study of intrinsic point defects in the compositions LiNi1/3Co1/3Mn1/3O2 (NCM1/3) and LiNi1/3Co1/3Al1/3O2 (NCA1/3) which can also be regarded as model compounds for NCM and NCA. We will discuss defect landscapes in NCM1/3 and NCA1/3 under relevant synthesis conditions with a focus on the formation of metal antisite defects and its implications on the electrochemical properties and ultimately the design of NCM and NCA cathode materials.
Yin, Fuxing; Liu, Zhengjun; Yang, Shuang; Shan, Zhenzhen; Zhao, Yan; Feng, Yuting; Zhang, Chengwei; Bakenov, Zhumabay
2017-10-17
The aqueous sodium-ion battery (ASIB) is one of the promising new energy storage systems owing to the abundant resources of sodium as well as efficiency and safety of electrolyte. Herein, we report an ASIB system with Na 4 Mn 9 O 18 /carbon nanotube (NMO/CNT) as cathode, metal Zn as anode and a novel Na + /Zn 2+ mixed ion as electrolyte. The NMO/CNT with microspherical structure is prepared by a simple spray-drying method. The prepared battery delivers a high reversible specific capacity and stable cyclability. Furthermore, the battery displays a stable reversible discharge capacity of 53.2 mAh g -1 even at a high current rate of 4 C after 150 cycles. Our results confirm that the NMO/CNT composite is a promising electrode cathode material for ASIBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan
2015-11-10
Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M.
1977-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Titanium nitride thin films for minimizing multipactoring
Welch, Kimo M.
1979-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
Thin film deposition by electric and magnetic crossed-field diode sputtering
Welch, Kimo M.
1980-01-01
Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.
NASA Astrophysics Data System (ADS)
Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.
2016-11-01
Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g-1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g-1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.
Loveridge, M. J.; Lain, M. J.; Johnson, I. D.; Roberts, A.; Beattie, S. D.; Dashwood, R.; Darr, J. A.; Bhagat, R.
2016-01-01
Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications. PMID:27898104
Loveridge, M J; Lain, M J; Johnson, I D; Roberts, A; Beattie, S D; Dashwood, R; Darr, J A; Bhagat, R
2016-11-29
Lithium iron phosphate, LiFePO 4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g -1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g -1 for over 1 50 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun
Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less
Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun; ...
2017-04-05
Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less
La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte
NASA Astrophysics Data System (ADS)
Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia
2014-12-01
A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.
Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe
2013-09-21
A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.
NASA Astrophysics Data System (ADS)
Wang, Dapeng; Belharouak, Ilias; Ortega, Luis H.; Zhang, Xiaofeng; Xu, Rui; Zhou, Dehua; Zhou, Guangwen; Amine, Khalil
2015-01-01
Nickel manganese hydroxide co-precipitation inside a continuous stirred tank reactor was studied with sodium hydroxide and ammonium hydroxide as the precipitation agents. The ammonium hydroxide concentration had an effect on the primary and secondary particle evolution. The two-step precipitation mechanism proposed earlier was experimentally confirmed. In cell tests, Li- and Mn-rich composite cathode materials based on the hydroxide precursors demonstrated good electrochemical performance in terms of cycle life over a wide range of lithium content.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, Theodore M.; Lowden, Richard A.
1990-01-01
An improved cathode structure for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 deg. C can be used.
High energy density aluminum battery
Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan
2016-10-11
Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.
Advanced Lithium-ion Batteries with High Specific Energy and Improved Safety for Nasa's Missions
NASA Technical Reports Server (NTRS)
West, William; Smart, Marshall; Soler, Jess; Krause, Charlie; Hwang, Constanza; Bugga, Ratnakumar
2012-01-01
High Energy Materials ( Cathodes, anodes and high voltage and safe electrolyte are required to meet the needs of the future space missions. A. Cathodes: The layered layered composites of of Li2MnO3 and LiMO2 are promising Power capability of the materials, however requires further improvement. Suitable morphology is critical for good performance and high tap (packing) density. Surface coatings help in the interfacial kinetics and stability. B. Electrolytes: Small additions of Flame Retardant Additives improves flammability without affecting performance (Rate and cycle life). 1.0 M in EC+EMC+TPP was shown to have good performance against the high voltage cathode; Performance demonstrated in large capacity prototype MCMB- LiNiCoO2 Cells. Formulations with higher proportions are looking promising. Still requires further validation through abuse tests (e.g., on 18650 cells).
NASA Astrophysics Data System (ADS)
Dhungana, Pramod
Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.
Li, Bin; Caldwell, Marissa; Tong, Wei; Kaye, Steven; Bhat, Vinay
2015-09-01
A composition for use in a battery electrode comprising a compound including lithium, manganese, nickel, and oxygen. The composition is characterized by a powder X-ray diffraction pattern having peaks including 18.6.+-.0.2, 35.0.+-.0.2, 36.4.+-.0.2, 37.7.+-.0.2, 42.1.+-.0.2, and 44.5.+-.0.2 degrees 2.theta. as measured using Cu K.sub..alpha. radiation.
Ultra High Energy Density Cathodes with Carbon Nanotubes
2013-12-10
a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The
Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, JF; Luo, C; Gao, T
2015-01-01
Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less
NASA Astrophysics Data System (ADS)
Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin
2018-04-01
The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.
NASA Astrophysics Data System (ADS)
Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin
2018-07-01
The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 ( x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.
Cobb, Corie L.; Solberg, Scott E.
2017-04-29
3-dimensional (3D) electrode architectures have been explored as a means to decouple power and energy trade-offs in thick battery electrodes. Limited work has been published which systematically examines the impact of these architectures at the pouch cell level. This paper conducts an analysis on the potential capacity gains that can be realized with thick co-extruded electrodes in a pouch cell. Moreover, our findings show that despite lower active material composition for each cathode layer, the effective gain in thickness and active material loading enables pouch cell capacity gains greater than 10% with a Lithium Nickel Manganese Cobalt Oxide (NMC) materialsmore » system.« less
Apparatus and method for treating a cathode material provided on a thin-film substrate
Hanson, Eric J.; Kooyer, Richard L.
2001-01-01
An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.
Apparatus and method for treating a cathode material provided on a thin-film substrate
Hanson, Eric J.; Kooyer, Richard L.
2003-01-01
An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.
NASA Astrophysics Data System (ADS)
Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Yin, Jiewei; Zhang, Junliang
2018-03-01
Although lithium-rich layered composite cathode materials can meet the requirements of high discharge capacities and energy densities of lithium-ion batteries (LIBs), the drawbacks of encountering structural reconstruction, sharp voltage decay during cycling as well as low packing density still exist, which retard their further commercial development. This paper presents a novel approach to construct hollow porous bowl-shaped Li1.2Mn0.54Ni0.13Co0.13O2 (denoted as HPB-LMNCO) particles, which involves bowl-shaped carbonaceous particles as the predominant template and polyvinylpyrrolidone as an assistant soft template. One crucial step during the synthetic process is the controlled growth of metal ions with specific molar ratios in the bowl-shaped carbonaceous particles, and the key control parameter is the heating rate to ensure the prepared particles own the desired hollow porous bowl-shaped morphology. Of particular note is the desirable architecture which not only inherits the merits of hollow structures but also facilitates the tight particles packing. Owing to these advantages, utilizing this HPB-LMNCO as a cathode material manifests impressive rate capability and exceptional cycling stability at high rates with capacity retention of above 82% over 100 cycles. These results reveal that structural design of cathode materials play a pivotal role in developing high-performance LIBs.
Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction
Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; ...
2016-04-11
In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have beenmore » made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR).« less
NASA Astrophysics Data System (ADS)
Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed
2016-12-01
Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu
2017-02-01
A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.
NASA Technical Reports Server (NTRS)
Lin, Qian; Harb, John N.
2004-01-01
This paper describes the development of a thick-film microcathode for use in Li-ion microbatteries in order to provide increased power and energy per area. These cathodes take advantage of a composite porous electrode structure, utilizing carbon nanotubes (CNT) as the conductive filler. The use of carbon nanotubes was found to significantly reduce the measured resistance of the electrodes, increase active material accessibility, and improve electrode performance. In particular, the cycling and power performance of the thick-film cathodes was significantly improved, and the need for compression was eliminated. Cathode thickness and CNT content were optimized to maximize capacity and power performance. Power capability of >50 mW/sq cm (17 mA/sq cm) with discharge capacity of >0.17 mAh/sq cm was demonstrated. The feasibility of fabricating thick-film microcathodes capable of providing the power and capacity needed for use in autonomous microsensor systems was also demonstrated.
NASA Astrophysics Data System (ADS)
Endrino, J. L.; Sánchez-López, J. C.; Escobar Galindo, R.; Horwat, D.; Anders, A.
2010-11-01
Silver-containing diamond-like-carbon (DLC) is a promising material for biomedical implants due to its excellent combination of antibacterial and mechanical properties. In this work, a dual-cathode pulsed filtered cathodic arc source containing silver and graphite rods was employed in order to obtain DLC samples with various silver contents. Chemical composition of the samples was analyzed by acquiring their compositional depth-profiles using radio-frequency Glow Discharge Optical Emission Spectroscopy (rf-GDOES), while the microstructural properties were analyzed by X-ray diffraction and Raman spectroscopy. Tribological studies carried out against UHMWPE balls in fetal bovine serum indicate that the presence of silver in DLC could be beneficial to reduce the wear of the polymeric surfaces.
NASA Astrophysics Data System (ADS)
Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen
2015-06-01
Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhirkov, I., E-mail: igozh@ifm.liu.se; Petruhins, A.; Dahlqvist, M.
2014-03-28
DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup −6} Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from ∼150 and ∼175 eV to ∼100 and ∼75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ∼50 and ∼61 eV, and ∼30 and ∼50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results may be of importance for choice of cathodes for thin film depositions involving compound cathodes.« less
NASA Astrophysics Data System (ADS)
Chen, Xinzhi; Bleken, Francesca L.; Løvvik, Ole Martin; Vullum-Bruer, Fride
2016-07-01
Polyanion based silicate materials, MgMSiO4 (M = Fe, Mn, Co), previously reported to be promising cathode materials for Mg-ion batteries, have been re-examined. Both the sol-gel and molten salt methods are employed to synthesize MgMSiO4 composites. Mo6S8 is synthesized by a molten salt method combined with Cu leaching and investigated in the equivalent electrochemical system as a bench mark. Electrochemical measurements for Mo6S8 performed using the 2nd generation electrolyte show similar results to those reported in literature. Electrochemical performance of the silicate materials on the other hand, do not show the promising results previously reported. A thorough study of these published results are presented here, and compared to the current experimental data on the same material system. It appears that there are certain inconsistencies in the published results which cannot be explained. To further corroborate the present experimental results, atomic-scale calculations from first principles are performed, demonstrating that diffusion barriers are very high for Mg diffusion in MgMSiO4. In conclusion, MgMSiO4 (M = Fe, Mn, Co) olivine materials do not seem to be such good candidates for cathode materials in Mg-ion batteries as previously reported.
Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries
NASA Astrophysics Data System (ADS)
Ganter, Matthew
Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel recycling technique, referred to as refunctionalization , for lithium ion cathode materials was developed. Refunctionalization is the treatment of active materials in order to regain electrochemical performance at EOL which eliminates the need to recycle to the elemental level and can lead to greater environmental and economic savings. The lithium ion capacity of EOL lithium iron phosphate (LiFePO4) nanomaterial cathode was regained through chemical and electrochemical re-lithiation techniques. The embodied energy of refunctionalized LiFePO4 was calculated to be 50% less than cathode synthesized from virgin materials. Overall, these results contribute to an improved understanding of the life cycle impacts for nanomaterials in batteries. The CNT embodied energy calculation established the first life cycle inventory for laser vaporization CNTs, whereas the novel refunctionalization strategies established a new EOL pathway to recover cathodes at a higher value state than traditional recycling. At the same time, CNT enhanced battery electrodes increased power and energy in the use phase while demonstrating the unique ability to engineer electrodes to control thermal stability, which enables better performing and safer batteries.
NASA Astrophysics Data System (ADS)
Arifin, M.; Rus, Y. B.; Aimon, A. H.; Iskandar, F.; Winata, T.; Abdullah, M.; Khairurrijal, K.
2017-03-01
LiFePO4 is commonly used as cathode material for Li-ion batteries due to its stable operational voltage and high specific capacity. However, it suffers from certain disadvantages such as low intrinsic electronic conductivity and low ionic diffusion. This study was conducted to analyse the effect of reduced graphene oxide (rGO) on the electrochemical properties of LiFePO4/Li2SiO3 composite. This composite was synthesized by a hydrothermal method. Fourier transform infrared spectroscopy measurement identified the O-P-O, Fe-O, P-O, and O-Si-O- bands in the LiFePO4/Li2SiO3 composite. X-ray diffraction measurement confirmed the formation of LiFePO4. Meanwhile, Raman spectroscopy confirmed the number of rGO layers. Further, scanning electron microscopy images showed that rGO was distributed around the LiFePO4/Li2SiO3 particles. Finally, the electrochemical impedance spectroscopy results showed that the addition of 1 wt% of rGO to the LiFePO4/Li2SiO3 composite reduced charge transfer resistance. It may be concluded that the addition of 1 wt% rGO to LiFePO4/Li2SiO3 composite can enhance its electrochemical performance as a cathode material.
Du, Wen-Cheng; Yin, Ya-Xia; Zeng, Xian-Xiang; Shi, Ji-Lei; Zhang, Shuai-Feng; Wan, Li-Jun; Guo, Yu-Guo
2016-02-17
An optimized nanocarbon-sulfur cathode material with ultrahigh sulfur loading of up to 90 wt % is realized in the form of sulfur nanolayer-coated three-dimensional (3D) conducting network. This 3D nanocarbon-sulfur network combines three different nanocarbons, as follows: zero-dimensional carbon nanoparticle, one-dimensional carbon nanotube, and two-dimensional graphene. This 3D nanocarbon-sulfur network is synthesized by using a method based on soluble chemistry of elemental sulfur and three types of nanocarbons in well-chosen solvents. The resultant sulfur-carbon material shows a high specific capacity of 1115 mA h g(-1) at 0.02C and good rate performance of 551 mA h g(-1) at 1C based on the mass of sulfur-carbon composite. Good battery performance can be attributed to the homogeneous compositing of sulfur with the 3D hierarchical hybrid nanocarbon networks at nanometer scale, which provides efficient multidimensional transport pathways for electrons and ions. Wet chemical method developed here provides an easy and cost-effective way to prepare sulfur-carbon cathode materials with high sulfur loading for application in high-energy Li-S batteries.
Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido
2015-05-01
Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kan-Sheng; Xu, Rui; Luu, Norman S.
Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-basedmore » lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 degrees C, this work advances lithium-ion battery technology into unprecedented regimes of operation.« less
Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C
2017-04-12
Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.
Li, Wenjuan; Zhu, Limin; Yu, Ziheng; Xie, Lingling; Cao, Xiaoyu
2017-01-01
LiV3O8/polytriphenylamine composites are synthesized by a chemical oxidative polymerization process and applied as cathode materials for rechargeable lithium batteries (RLB). The structure, morphology, and electrochemical performances of the composites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic discharge/charge tests, and electrochemical impedance spectroscopy. It was found that the polytriphenylamine particles were composited with LiV3O8 nanorods which acted as a protective barrier against the side reaction of LiV3O8, as well as a conductive network to reduce the reaction resistance among the LiV3O8 particles. Among the LiV3O8/polytriphenylamine composites, the 17 wt % LVO/PTPAn composite showed the largest d100 spacing. The electrochemical results showed that the 17 wt % LVO/PTPAn composite maintained a discharge capacity of 271 mAh·g−1 at a current density of 60 mA·g−1, as well as maintaining 236 mAh·g−1 at 240 mA·g−1 after 50 cycles, while the bare LiV3O8 sample retained only 169 and 148 mAh·g−1, respectively. Electrochemical impedance spectra (EIS) results implied that the 17 wt % LVO/PTPAn composite demonstrated a decreased charge transfer resistance and increased Li+ ion diffusion ability, therefore manifesting better rate capability and cycling performance compared to the bare LiV3O8 sample. PMID:28772705
NASA Astrophysics Data System (ADS)
Konarov, Aishuak; Bakenov, Zhumabay; Yashiro, Hitoshi; Sun, Yang-Kook; Myung, Seung-Taek
2017-07-01
A S/DPAN (dehydrogenated polyacrylonitrile) composite shows promising electrode performances as a cathode material for Li-S batteries though its electric conductivity is insufficient for high rate tests. In an attempt to enhance the electric conductivity, the S/DPAN composite is attached on reduced graphene oxide (rGO) sheets via self-assembling modification. As a result, the conductivity improves to ∼10-4 S cm-1, and the S/DPAN/rGO composite thereby delivers approximately 90% of the theoretical capacity of sulphur at a rate of 0.2C (0.34 A g-1) over 700 mAh (g-S)-1 even at 2C (3.4 A g-1). We first report on the Csbnd S bond between sulphur and DPAN in a composite that maintains the bond even after an extensive cycling test, as confirmed by time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). These synergistic effects enable facile electron transport such that the S/DPAN/rGO composite electrode is able to maintain superior electrode performances.
NASA Astrophysics Data System (ADS)
Hung Vu, Ngoc; Arunkumar, Paulraj; Bin Im, Won
2017-03-01
Recently, composite materials based on Li-Mn-Ti-O system were developed to target low cost and environmentally benign cathodes for Li-ion batteries. The spinel-layered Li1.5MnTiO4+δ bulk particles showed excellent cycle stability but poor rate performance. To address this drawback, ultralong nanofibers of a Li1.5MnTiO4+δ spinel-layered heterostructure were synthesized by electrospinning. Uniform nanofibers with diameters of about 80 nm were formed of tiny octahedral particles wrapped together into 30 μm long fibers. The Li1.5MnTiO4+δ nanofibers exhibited an improved rate capability compared to both Li1.5MnTiO4+δ nanoparticles and bulk particles. The uniform one-dimensional nanostructure of the composite cathode exhibited enhanced capacities of 235 and 170 mAh g-1 at C/5 and 1 C rates, respectively. Its unique structure provided a large effective contact area for Li+ diffusion, and low charge transfer resistance. Moreover, the layered phase contributed to its capacity in over 3 V region, which increased specific energy (726 Wh kg-1) compared to the bulk particles (534 Wh kg-1).
Ha, Sung Hoon; Lee, Yun Jung
2015-01-26
Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Titanium diboride ceramic fiber composites for Hall-Heroult cells
Besmann, T.M.; Lowden, R.A.
1990-05-29
An improved cathode structure is described for Hall-Heroult cells for the electrolytic production of aluminum metal. This cathode structure is a preform fiber base material that is infiltrated with electrically conductive titanium diboride using chemical vapor infiltration techniques. The structure exhibits good fracture toughness, and is sufficiently resistant to attack by molten aluminum. Typically, the base can be made from a mat of high purity silicon carbide fibers. Other ceramic or carbon fibers that do not degrade at temperatures below about 1000 C can be used.
(PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers
2015-07-08
iron phosphate ( LiFePO4 ) as an active material for the cathode. The composite cathode was prepared by mixing P(S-EO) with carbon black and LiFePO4 ...salt- doping ratio of [EO]:[Li] = 12:1. Example cycle-life data for the Li/P(S-EO)/ LiFePO4 cell is shown in Figure 1. The specific discharge...rates, indicating good cycling stability. This investigation currently is in progress. 1 Figure 1: Cycle-life data for the Li/P(S-EO)/ LiFePO4 cell
2016-12-22
importance. Among advanced energy storage devices, lithium - ion batteries are remarkable systems due to their high energy density, high power density...and well cycled performance with considerable reliability. Lithium - ion batteries have been playing an important role in various application fields...Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries . Solid State Ionics, 2013. 233: p. 12-19. DISTRIBUTION A. Approved for public release
NASA Astrophysics Data System (ADS)
Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng
2018-04-01
A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.
Li, Junzhe; Luo, Shaohua; Ding, Xueyong; Wang, Qing; He, Ping
2018-04-04
In the efforts toward the rapidly increasing demands for high-power application, cathode materials with three-dimensional (3D) architectures have been proposed. Here, we report the construction of the 3D LiAlO 2 -LiMnPO 4 /C cathode materials for lithium-ion batteries in an innovation way. The as-prepared 3D active materials LiMnPO 4 /C and the honeycomb-like Li-ion conductor LiAlO 2 framework are used as working electrode directly without additional usage of polymeric binder. The electrochemical performance has been improved significantly due to the special designed core-shell architectures of LiMnPO 4 /C@LiAlO 2 . The 3D binder-free electrode exhibits high rate capability as well as superior cycling stability with a capability of ∼105 mAh g -1 and 98.4% capacity retention after 100 cycles at a high discharge rate of 10 C. Such synthesis method adopted in our work can be further extended to other promising candidates and would also inspire new avenues of development of 3D materials for lithium-ion batteries.
Wu, Feng; Liu, Jianrui; Li, Li; Zhang, Xiaoxiao; Luo, Rui; Ye, Yusheng; Chen, Renjie
2016-09-07
Composites of lithium-rich Li1.2Ni0.2Mn0.6O2 and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) are synthesized through coprecipitation followed by a wet coating method. In the resulting samples, the amorphous conductive polymer films on the surface of the Li1.2Ni0.2Mn0.6O2 particles are 5-20 nm thick. The electrochemical properties of Li1.2Ni0.2Mn0.6O2 are obviously enhanced after PSS coating. The composite sample with an optimal 3 wt % coating exhibits rate capability and cycling properties that are better than those of Li1.2Ni0.2Mn0.6O2, with an excellent initial discharge capacity of 286.5 mA h g(-1) at a current density of 0.1 C and a discharge capacity that remained at 146.9 mA h g(-1) at 1 C after 100 cycles. The improved performances are ascribed to the high conductivity of the PSS coating layer, which can improve the conductivity of the composite material. The PSS layer also suppresses the formation and growth of a solid electrolyte interface. Surface modification with PSS is a feasible approach for improving the comprehensive properties of cathode materials.
Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui
2013-03-01
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
NASA Technical Reports Server (NTRS)
McDonald, Robert C.; VanBlarcom, Shelly L.; Kwasnik, Katherine E.
2013-01-01
A document discusses a thin layer of composite material, made from nano scale particles of nickel and Teflon, placed within a battery cell as a layer within the anode and/or the cathode. There it conducts electrons at room temperature, then switches to an insulator at an elevated temperature to prevent thermal runaway caused by internal short circuits. The material layer controls excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect
1998-06-29
of some interstitial water during intercalation of the disulfide polymer of DMcT. Elemental analysis gives a composition for the intercalation...the disulfide polymer of DMcT. Elemental analysis gives a composition for the intercalation material of [(polyDMcT)o25*V205.4H20]. The cyclic...13.5 A). This change is consistent with loss of some interstitial water during intercalation of the disulfide polymer of DMcT. Elemental analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Jonathan; Orendorff, Christopher J.
This work investigated the effects of Al 2O 3 ALD coatings on the performance and thermal abuse tolerance of graphite based anodes and Li(NixMnyCoz)O2 (NMC) based cathodes. It was found that 5 cycles of Al 2O 3 ALD on the graphite anode increased the onset temperature of thermal runaway by approximately 20 °C and drastically reduced the anode’s contribution to the overall amount of heat released during thermal runaway. Although Al 2O 3 ALD improves the cycling stability of NMC based cathodes, the thermal abuse tolerance was not greatly improved. A series of conductive aluminum oxide/carbon composites were created andmore » characterized as potential thicker protective coatings for use on NMC based cathode materials. A series of electrodes were coated with manganese monoxide ALD to test the efficacy of an oxygen scavenging coating on NMC based cathodes.« less
NASA Astrophysics Data System (ADS)
Mangang, M.; Seifert, H. J.; Pfleging, W.
2016-02-01
Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.
2013-10-23
sulfur (FeS + S) cathode (26). The pairing of a lithium free FeS + S cathode and a lithium free STN anode presents an easily overcome obstacle. Our...upon the combined mass of both the composite anode and cathode. To realize this full cell, we pair an iron sulfide and sulfur composite cathode with a...capacity reported to date. To utilize both a lithium free anode and cathode, we adopt a pre-lithiation technique involving stabilized lithium metal
Fabrication and Characterization of Functionally Graded Cathodes for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Simonet, J.; Kapelski, G.; Bouvard, D.
2008-02-01
Solid oxide fuel cells are multi-layered designed. The most prevalent structure is an anode supported cell with a thick porous layer of nickel oxide NiO and yttrium stabilized zirconia (YSZ) composite acting as an anode, a thin dense layer of YSZ as an electrolyte, a composite thin porous layer of lanthanum strontium manganate LSM and YSZ and a current collector layer of porous LSM. Regular operating temperature is 1000 °C. The industrial development requires designing cathodes with acceptable electrochemical and mechanical properties at a lower temperature, typically between 700 and 800 °C. A solution consists in designing composite bulk cathodes with more numerous electro-chemical reaction sites. This requirement could be met by grading the composition of the cathode in increasing the YSZ volume fraction near the electrolyte and the LSM volume fraction near the current collector layer so that the repartition of reaction sites and the interfacial adhesion between the cathode and electrolyte layers are optimal. The fabrication of graded composite cathode has been investigated using a sedimentation process that consists of preparing a suspension containing the powder mixture and allowing the particles to fall by gravity upon a substrate. Different composite cathodes with continuous composition gradient have been obtained by sedimentation of LSM and YSZ powder mixture upon a dense YSZ substrate and subsequent firing. Their compositions and microstructures have been analysed with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS).
High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
Wang, Shuai; Jiao, Shuqiang; Wang, Junxiang; Chen, Hao-Sen; Tian, Donghua; Lei, Haiping; Fang, Dai-Ning
2017-01-24
On the basis of low-cost, rich resources, and safety performance, aluminum-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in large-scale energy applications. A rechargeable aluminum-ion battery has been fabricated based on a 3D hierarchical copper sulfide (CuS) microsphere composed of nanoflakes as cathode material and room-temperature ionic liquid containing AlCl 3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) as electrolyte. The aluminum-ion battery with a microsphere electrode exhibits a high average discharge voltage of ∼1.0 V vs Al/AlCl 4 - , reversible specific capacity of about 90 mA h g -1 at 20 mA g -1 , and good cyclability of nearly 100% Coulombic efficiency after 100 cycles. Such remarkable electrochemical performance is attributed to the well-defined nanostructure of the cathode material facilitating the electron and ion transfer, especially for chloroaluminate ions with large size, which is desirable for aluminum-ion battery applications.
Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry
Meier, A.L.
1982-01-01
The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.
NASA Technical Reports Server (NTRS)
Sengupta, Anita
2005-01-01
Destructive physical analysis of the discharge and neutralizer hollow cathode assemblies from the Deep Space 1 Flight Spare 30,000 Hr life test was performed to characterize physical and chemical evidence of operationally induced effects after 30,372 hours of operation with beam extraction. Post-test inspection of the discharge-cathode assembly was subdivided into detailed analyses at the subcomponent level. Detailed materials analysis and optical inspection of the insert, orifice plate, cathode tube, heater, keeper assembly, insulator, and low-voltage propellant isolator were performed. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEW analyses were used to determine the extent and composition of regions of net deposition and erosion of both the discharge and neutralizer inserts. A comparative approach with an un-operated 4:1:1 insert was used to determine the extent of impregnate material depletion as a function of depth from the ID surface and axial position from the orifice plate. Analysis results are compared and contrasted with those obtained from similar analyses on components from shorter term tests, and provide insight regarding the prospect for successful longer-term operation consistent with SOA ion engine program life objectives at NASA.
Zhang, Liping; Fu, Ju; Zhang, Chuhong
2017-12-01
LiNi 0.8 Co 0.15 Al 0.05 O 2 /carbon nanotube (NCA/CNT) composite cathode materials are prepared by a facile mechanical grinding method, without damage to the crystal structure and morphology of the bulk. The NCA/CNT composite exhibits enhanced cycling and rate performance compared with pristine NCA. After 60 cycles at a current rate of 0.25 C, the reversible capacity of NCA/CNT composite cathode is 181 mAh/g with a discharge retention rate of 96%, considerably higher than the value of pristine NCA (153 mAh/g with a retention rate of 90%). At a high current rate of 5 C, it also can deliver a reversible capacity of 160 mAh/g, while only 140 mAh/g is maintained for the unmodified NCA. Highly electrical conductive CNTs rather than common inert insulating materials are for the first time employed as surface modifiers for NCA, which are dispersed homogenously on the surface of NCA particles, not only improving the electrical conductivity but also providing effective protection to the side reactions with liquid electrolyte of the battery.
Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon
NASA Technical Reports Server (NTRS)
Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent
2010-01-01
When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.
NASA Astrophysics Data System (ADS)
Senćanski, Jelena; Bajuk-Bogdanović, Danica; Majstorović, Divna; Tchernychova, Elena; Papan, Jelena; Vujković, Milica
2017-02-01
Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each battery's component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 °C or 850 °C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g-1, was measured galvanostatically at a relatively high current of ∼100 mA g-1. Initial lithium intercalation capacity of ∼64 mAh g-1, was determined potentiodynamically at very high scan rate of 20 mV s-1 (∼40 C). Somewhat lower initial capacity of ∼30 mAh g-1, but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes.
Disordered anodes for Ni-metal rechargeable battery
Young, Kwo-hsiung; Wang, Lixin; Mays, William C.
2016-11-22
An electrochemical cell is provided that includes a structurally and compositionally disordered electrochemically active alloy material as an anode active material with unexpected capacity against a nickel hydroxide based cathode active material. The disordered metal hydroxide alloy includes three or more transition metal elements and is formed in such a way so as to produce the necessary disorder in the overall system. When an anode active material includes nickel as a predominant, the resulting cells represent the first demonstration of a functional Ni/Ni cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Srikanth
2017-04-06
This final report for project FE0009656 covers the period from 10/01/2012 to 09/30/2015 and covers research accomplishments on the effects of carbon dioxide on the surface composition and structure of cathode materials for solid oxide fuel cells (SOFCs), specifically La1-xSrxFeyCo1- yO3-δ (LSCF). Epitaxially deposited thin films of LSCF on various single-crystal substrates have revealed the selective segregation of strontium to the surface thereby resulting in a surface enrichment of strontium. The near surface compositional profile in the films have been measured using total x-ray fluorescence (TXRF), and show that the kinetics of strontium segregation are higher at higher partial pressuresmore » of carbon dioxide. Once the strontium segregates to the surface, it leads to the formation of precipitates of SrO which convert to SrCO3 in the presence of even modest concentrations of carbon dioxide in the atmosphere. This has important implications for the performance of SOFCs which is discussed in this report. These experimental observations have also been verified by Density Functional Theory calculations (DFT) which predict the conditions under which SrO and SrCO3 can occur in LSCF. Furthermore, a few cathode compositions which have received attention in the literature as alternatives to LSCF cathodes have been studied in this work and shown to be thermodynamically unstable under the operating conditions of the SOFCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakovleva, Marina
2012-12-31
FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety,more » cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.« less
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Dong; Liu, Mingfei; Lai, Samson
2012-09-30
The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less
Amorphous titania/carbon composite electrode materials
Vaughey, John T.; Jansen, Andrew; Joyce, Christopher D.
2017-05-09
An isolated salt comprising a compound of formula (H.sub.2X)(TiO(Y).sub.2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C.sub.2O.sub.4.sup.-2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275.degree. C. to less than about 400.degree. C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500.degree. C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the cathode or anode of a lithium or lithium ion electrochemical cell.
Multifunctional Structural Composite Batteries
2007-09-01
LiFePO4 cathode materials are both under evaluation. The former is currently used in a large nu sy properties, and established methods for...circumventing or otherwise handling its known limitations. LiFePO4 is a recent material with less established knowledge but potentially greater use in our...on the quantity of material in the film. 5 Figure 4. Measured capacity at third cycle for LiFePO4 and LiCoO2 half cells vs. lithium
Zhang, Yue; Lai, Jingyuan; Gong, Yudong; Hu, Yongming; Liu, Jin; Sun, Chunwen; Wang, Zhong Lin
2016-12-21
The electronic conductivity and structural stability are still challenges for vanadium pentoxide (V 2 O 5 ) as cathode materials in batteries. Here, we report a V 2 O 5 nanowire-reduced graphene oxide (rGO) composite paper for direct use as a cathode without any additives for high-temperature and high-safety solid polymer electrolyte [PEO-MIL-53(Al)-LiTFSI] lithium-vanadium batteries. The batteries can show a fast and stable lithium-ion-storage performance in a wide voltage window of 1.0-4.0 V versus Li + /Li at 80 °C, in which with an average capacity of 329.2 mAh g -1 at 17 mA g -1 and a stable cycling performance over 40 cycles are achieved. The excellent electrochemical performance is mainly ascribed to integration of the electronic conductivity of rGO and interconnected networks of the V 2 O 5 nanowires and solid electrolyte. This is a promising lithium battery for flexible and highly safe energy-storage devices.
Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David
2017-04-22
Biomass-derived polymers, such as lignin, contain quinone/ hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge-storage properties. However, their performance has been only studied in acidic aqueous media limiting their applications mainly to supercapacitors. Here, we show that PEDOT/lignin (PEDOT: poly(3,4-ethylenedioxythiophene)) biopolymers are electroactive in aprotic ionic liquids (ILs) and we move a step further by assembling sodium full cell batteries using PEDOT/lignin as electrode material and IL electrolytes. Thus, the electrochemical activity and cycling of PEDOT/lignin electrodes was investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) IL electrolytes. The effects of water and sodium salt addition to the ILs were investigated to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/lignin cathode with imidazolium-based IL electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg -1 . Our results demonstrate that PEDOT/lignin composites can serve as low cost and sustainable cathode materials for sodium batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Duan, Jianguo; Hu, Guorong; Cao, Yanbing; Tan, Chaopu; Wu, Ceng; Du, Ke; Peng, Zhongdong
2016-09-01
LiNi1-x-yCoxAlyO2 is a commonly used Ni-rich cathode material because of its relatively low cost, excellent rate capability and high gravimetric energy density. Surface modification is an efficient way to overcome the shortcomings of Ni-rich cathodes such as poor cycling stability and poor thermal stability. A high-powered concentration-gradient cathode material with an average composition of LiNi0.815Co0.15Al0.035O2 (LGNCAO) has been successfully synthesized by using spherical concentration-gradient Ni0.815Co0.15Al0.035(OH)2 (GNCA)as the starting material. An efficient design of the Al3+ precipitation method is developed, which enables obtaining spherical GNCA with ∼10 μm particle size and high tap density. In LGNCAO, the nickel and cobalt concentration decreases gradually whereas the aluminum concentration increases from the centre to the outer layer of each particle. Electrochemical performance and storage properties of LGNCAO have been investigated comparatively. The LGNCAO displays better electrochemical performance and improved storage stability than LNCAO.
Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.
Cheng, Fangyi; Chen, Jun
2012-03-21
Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).
Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode
Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon
2016-01-01
Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201
Corrosion of Graphite Aluminum Metal Matrix Composites
1991-02-01
cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R
Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
Manthiram, Arumugam; Choi, Wongchang
2014-05-13
The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.
Diagnostics of cathode material loss in cutting plasma torch
NASA Astrophysics Data System (ADS)
Gruber, J.; Šonský, J.; Hlína, J.
2014-07-01
A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna; Oks, Efim
2015-06-07
DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathodemore » stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.« less
A dendrite-suppressing composite ion conductor from aramid nanofibres.
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A
2015-01-27
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
Full scale phosphoric acid fuel cell stack technology development
NASA Technical Reports Server (NTRS)
Christner, L.; Faroque, M.
1984-01-01
The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.
Lin, Tsung-Wu; Dai, Chao-Shuan; Hung, Kuan-Chung
2014-01-01
The application of the composite of Ni3S2 nanoparticles and 3D graphene as a novel cathode material for supercapacitors is systematically investigated in this study. It is found that the electrode capacitance increases by up to 111% after the composite electrode is activated by the consecutive cyclic voltammetry scanning in 1 M KOH. Due to the synergistic effect, the capacitance and the diffusion coefficient of electrolyte ions of the activated composite electrode are ca. 3.7 and 6.5 times higher than those of the Ni3S2 electrode, respectively. Furthermore, the activated composite electrode exhibits an ultrahigh specific capacitance of 3296 F/g and great cycling stability at a current density of 16 A/g. To obtain the reasonable matching of cathode/anode electrodes, the composite of Fe3O4 nanoparticles and chemically reduced graphene oxide (Fe3O4/rGO) is synthesized as the anode material. The Fe3O4/rGO electrode exhibits the specific capacitance of 661 F/g at 1 A/g and excellent rate capability. More importantly, an asymmetric supercapacitor fabricated by two different composite electrodes can be operated reversibly between 0 and 1.6 V and obtain a high specific capacitance of 233 F/g at 5 mV/s, which delivers a maximum energy density of 82.5 Wh/kg at a power density of 930 W/kg. PMID:25449978
NASA Astrophysics Data System (ADS)
Zeng, Kaiyang; Li, Tao; Tian, Tian
2017-08-01
In this paper, the scanning probe microscopy (SPM) based techniques, namely, conductive-AFM, electrochemical strain microscopy (ESM) and AM-FM (amplitude modulation-frequency modulation) techniques, are used to in situ characterize the changes in topography, conductivity and elastic properties of Li-rich layered oxide cathode (Li1.2Mn0.54Ni0.13Co0.13O2) materials, in the form of nanoparticles, when subject to the external electric field. Nanoparticles are the basic building blocks for composite cathode in a Li-ion rechargeable battery. Characterization of the structure and electrochemical properties of the nanoparticles is very important to understand the performance and reliability of the battery materials and devices. In this study, the conductivity, deformation and mechanical properties of the Li-rich oxide nanoparticles under different polarities of biases are studied using the above-mentioned SPM techniques. This information can be correlated with the Li+-ion diffusion and migration in the particles under external electrical field. The results also confirm that the SPM techniques are ideal tools to study the changes in various properties of electrode materials at nano- to micro-scales during or after the ‘simulated’ battery operation conditions. These techniques can also be used to in situ characterize the electrochemical performances of other energy storage materials, especially in the form of the nanoparticles.
Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae
2014-10-01
We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-layer coatings for bipolar rechargeable batteries with enhanced terminal voltage
Farmer, Joseph C.; Kaschmitter, James; Pierce, Steve
2017-06-06
A method for producing a multi-layer bipolar coated cell according to one embodiment includes applying a first active cathode material above a substrate to form a first cathode; applying a first solid-phase ionically-conductive electrolyte material above the first cathode to form a first electrode separation layer; applying a first active anode material above the first electrode separation layer to form a first anode; applying an electrically conductive barrier layer above the first anode; applying a second active cathode material above the anode material to form a second cathode; applying a second solid-phase ionically-conductive electrolyte material above the second cathode to form a second electrode separation layer; applying a second active anode material above the second electrode separation layer to form a second anode; and applying a metal material above the second anode to form a metal coating section. In another embodiment, the anode is formed prior to the cathode. Cells are also disclosed.
Automotive assessment of carbon-silicon composite anodes and methods of fabrication
NASA Astrophysics Data System (ADS)
Karulkar, Mohan; Blaser, Rachel; Kudla, Bob
2015-01-01
To assess the potential of carbon silicon composite anodes for automotive applications, C-Si anodes were fabricated and certain improvements employed. The use of a PVDF buffer layer is demonstrated for the first time with a C-Si composite material. The buffer layer increases adhesion by 89%, and increases capacity by 50-80%. Also, a limited capacity range is employed to improve cycle life by up to 200%, and enable currents as high as 2 mA cm-1. The combined use of a buffer layer and limited capacity range has not been reported before. A model is also presented for comparing C-Si performance with real-world automotive targets from USABC, including energy density, power density, specific energy, and specific power. The analysis reveals a capacity penalty that arises from pairing C-Si with a traditional cathode (NCA), and which prevents the cell from meeting all targets. Scenarios are presented in which a higher-capacity cathode (250 mAh g-1) allows all targets to be hypothetically met.
Jadhav, Dipak A; Deshpande, Parag A; Ghangrekar, Makarand M
2017-08-01
Application of ZrO 2 , MnO 2 , palladium, palladium-substituted-zirconium oxide (Zr 0.98 Pd 0.02 O 2 ) and palladium-substituted-manganese oxide (Mn 0.98 Pd 0.02 O 2 ) cathode catalysts in a single-chambered microbial fuel cell (MFC) was explored. The highest power generation (1.28W/m 3 ) was achieved in MFC with Mn 0.98 Pd 0.02 O 2 catalyst, which was higher than that with MnO 2 (0.58W/m 3 ) alone; whereas, MFC having Zr 0.98 Pd 0.02 O 2 catalyzed cathode and non-catalyzed cathode produced powers of 1.02 and 0.23W/m 3 , respectively. Also, low-cost zirconium-palladium-composite showed better catalytic activity and capacitance over ZrO 2 with 20A/m 3 current production and demonstrated its suitability for MFC applications. Cyclic voltammetry analyses showed higher well-defined redox peaks in composite catalysts (Mn/Zr-Pd-C) over other catalyzed MFCs containing MnO 2 or ZrO 2 . Electrochemical behaviour of composite catalysts on cathode showed higher availability of adsorption sites for oxygen reduction and, hence, enhanced the rate of cathodic reactions. Thus, Mn/Zr-Pd-C-based composite catalysts exhibited superior cathodic performance and could be proposed as alternatives to costly Pd-catalyst for field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes
NASA Astrophysics Data System (ADS)
Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.
2013-03-01
The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.
Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.
Nogueira, C A; Margarido, F
2012-01-01
At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.
A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries
Ates, Mehmet Nurullah; Mukerjee, Sanjeev; Abraham, K. M.
2015-01-01
We report the results of a comprehensive study of the relationship between electrochemical performance in Li cells and chemical composition of a series of Li rich layered metal oxides of the general formula xLi2MnO3 · (1-x)LiMn0.33Ni0.33Co0.33O2 in which x = 0,1, 0.2, 0,3, 0.5 or 0.7, synthesized using the same method. In order to identify the cathode material having the optimum Li cell performance we first varied the ratio between Li2MnO3 and LiMO2 segments of the composite oxides while maintaining the same metal ratio residing within their LiMO2 portions. The materials with the overall composition 0.5Li2MnO3 · 0.5LiMO2 containing 0.5 mole of Li2MnO3 per mole of the composite metal oxide were found to be the optimum in terms of electrochemical performance. The electrochemical properties of these materials were further tuned by changing the relative amounts of Mn, Ni and Co in the LiMO2 segment to produce xLi2MnO3 · (1-x)LiMn0.50Ni0.35Co0.15O2 with enhanced capacities and rate capabilities. The rate capability of the lithium rich compound in which x = 0.3 was further increased by preparing electrodes with about 2 weight-percent multiwall carbon nanotube in the electrode. Lithium cells prepared with such electrodes were cycled at the 4C rate with little fade in capacity for over one hundred cycles. PMID:26478598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F.; Veith, Gabriel M.; Adcock, Jamie L.
2013-03-18
We prepared ordered mesoporous carbon graphitic carbon composites by the brick and mortar fluorinated methodusing F 2 and investigated as cathodes for primary lithium batteries. Our resulting materials have a rich array of C F species, asmeasured by XPS, which influence conduction and voltage profiles.
Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.
1997-11-11
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.
Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.
1997-01-01
A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.
NASA Astrophysics Data System (ADS)
Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.
2014-03-01
In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.
Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries
NASA Astrophysics Data System (ADS)
Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan
2015-01-01
Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sehkyu; Shao, Yuyan; Viswanathan, Vilayanur V.
2016-10-01
In this paper, we describe a highly stable cathode containing a Pt catalyst supported on an indium tin oxide (ITO) and carbon nanotube (CNT) composite. The dependence of cathode performance and durability on the ITO content and the diameter of the CNTs were investigated by electrochemical techniques. The cathode with 30 wt% ITO and CNTs with diameters 10–20 nm in the composite offered preferred locations for Pt stabilization and was very resistant to carbon corrosion (i.e., 82.7% ESA retention and 105.7% mass activity retention after an accelerated stress test for 400 h).
Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
Manthiram, Arumugam; Choi, Wonchang
2010-05-18
The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.
Control of Co content and SOFC cathode performance in Y1-ySr2+yCu3-xCoxO7+δ
NASA Astrophysics Data System (ADS)
Šimo, F.; Payne, J. L.; Demont, A.; Sayers, R.; Li, Ming; Collins, C. M.; Pitcher, M. J.; Claridge, J. B.; Rosseinsky, M. J.
2014-11-01
The electrochemical performance of the layered perovskite YSr2Cu3-xCoxO7+δ, a potential solid oxide fuel cell (SOFC) cathode, is improved by increasing the Co content from x = 1.00 to a maximum of x = 1.30. Single phase samples with x > 1.00 are obtained by tuning the Y/Sr ratio, yielding the composition Y1-ySr2+yCu3-xCoxO7+δ (where y ≤ 0.05). The high temperature structure of Y0.95Sr2.05Cu1.7Co1.3O7+δ at 740 °C is characterised by powder neutron diffraction and the potential of this Co-enriched material as a SOFC cathode is investigated by combining AC impedance spectroscopy, four-probe DC conductivity and powder XRD measurements to determine its electrochemical properties along with its thermal stability and compatibility with a range of commercially available electrolytes. The material is shown to be compatible with doped ceria electrolytes at 900 °C.
Surface Modification Technique of Cathode Materials for
NASA Astrophysics Data System (ADS)
Jia, Yongzhong; Han, Jinduo; Jing, Yan; Jin, Shan; Qi, Taiyuan
Cathode materials for Li-ion battery LiMn2O4 and LiCo0.1Mn1.9O4 were prepared by soft chemical method. Carbon, which was made by decomposing organic compounds, was used as modifying agent. Cathode material matrix was mixed with water solution that had contained organic compound such as cane sugar, soluble amylum, levulose et al. These mixture were reacted at 150 200 °C for 0.5 4 h in a Teflon-lined autoclave to get a series of homogeneously C-coated cathode materials. The new products were analyzed by X-ray diffraction (XRD) and infrared (IR). Morphology of cathode materials was characterized by scanning electron microscope (SEM) and transition electron microscope (TEM). The new homogeneously C-coated products that were used as cathode materials of lithium-ion battery had good electrochemical stability and cycle performance. This technique has free-pollution, low cost, simpleness and easiness to realize the industrialization of the cathode materials for Li-ion battery.
NASA Astrophysics Data System (ADS)
Jiao, Zheng; Chen, Lu; Si, Jian; Xu, Chuxiong; Jiang, Yong; Zhu, Ying; Yang, Yaqing; Zhao, Bing
2017-06-01
Lithium sulfide as a promising cathode material not only have a high theoretical specific capacity, but also can be paired with Li-free anode material to avoid potential safety issues. However, how to prepare high electrochemical performance material is still challenge. Herein, we present a facile way to obtain high crystal quality Li2S nanomaterials with average particle size of about 55 nm and coated with Li3PS4 to form the nano-scaled core-shell Li2S@Li3PS4 composite. Then nano-Li2S@Li3PS4/graphene aerogel is prepared by a simple liquid infiltration-evaporation coating process and used directly as a composite cathode without metal substrate for lithium-sulfur batteries. Electrochemical tests demonstrate that the composite delivers a high discharge capacity of 934.4 mAh g-1 in the initial cycle and retains 485.5 mAh g-1 after 100 cycles at 0.1 C rate. In addition, the composite exhibits much lower potential barrier (∼2.40 V) and overpotential compared with previous reports, indicating that Li2S needs only a little energy to be activated. The excellent electrochemical performances could be attributed to the tiny particle size of Li2S and the superionic conducting Li3PS4 coating layer, which can shorten Li-ion and electron diffusion paths, improve the ionic conductivity, as well as retarding polysulfides dissolution into the electrolyte to some extent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Hailong; Li, Peipei; Liu, Jiurong
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less
Lyu, Hailong; Li, Peipei; Liu, Jiurong; ...
2018-01-24
A composite organic cathode material based on aromatic polyimide (PI) and highly conductive graphene was prepared through a facile in situ polymerization method for application in lithium-ion batteries. The in situ polymerization generated intimate contact between PI and electronically conductive graphene, resulting in conductive composites with highly reversible redox reactions and good structure stability. The synergistic effect between PI and graphene enabled not only a high reversible capacity of 232.6 mAh g -1 at a charge–discharge rate of C/10 but also exceptionally high-rate cycling stability, that is, a high capacity of 108.9 mAh g -1 at a very high charge–dischargemore » rate of 50C with a capacity retention of 80 % after 1000 cycles. This improved electrochemical performance resulted from the combination of stable redox reversibility of PI and high electronic conductivity of the graphene additive. In conclusion, the graphene-based composite also exhibited much better performance than composites based on multi-walled carbon nanotubes and the conductive carbon black C45 in terms of specific capacity and long-term cycling stability under the same charge–discharge rates.« less
Improving the performance of lithium-sulfur batteries by graphene coating
NASA Astrophysics Data System (ADS)
Zhou, Xiangyang; Xie, Jing; Yang, Juan; Zou, Youlan; Tang, Jingjing; Wang, Songcan; Ma, Lulu; Liao, Qunchao
2013-12-01
A graphene coating mesoporous carbon/sulfur (RGO@CMK-3/S) composite, which is characteristic of a hybrid structure by incorporating the merits of CMK-3 matrix and graphene (RGO) skin, is synthesized by a facile and scalable route. The CMK-3/S composite is synthesized via a simple melt-diffusion strategy, and then a thin RGO skin is absorbed on the CMK-3/S composite surface in aqueous solution. When evaluating the electrochemical properties of as-prepared RGO wrapped nanostructures as cathode materials in lithium-sulfur batteries, it exhibits much improved cyclical stability and high rate performance. The RGO@CMK-3/S composite with 53.14 wt.% sulfur presents a reversible discharge capacity of about 734 mA h g-1 after 100 cycles at 0.5 C. The improved performance is attributed to the unique structure of RGO@CMK-3/S composite. CMK-3 with extensively mesopores can offer buffering space for the volume change of sulfur and efficient diffusion channel for lithium ions during the charge/discharge process. Meanwhile, the conductive RGO coating skin physically and chemically prevents the dissolution of polysulfides from the cathode, both of which contribute to the reduced capacity fade and improved electrochemical properties.
Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram
2016-03-01
In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, M; Li, Z; Qi, JF
In this work we investigated an energy-efficient biotemplated route to synthesize nanostructured FePO4 for sodium-based batteries. Self-assembled M13 viruses and single wall carbon nanotubes (SWCNTs) have been used as a template to grow amorphous FePO4 nanoparticles at room temperature (the active composite is denoted as Bio-FePO4-CNT) to enhance the electronic conductivity of the active material. Preliminary tests demonstrate a discharge capacity as high as 166 mAh/g at C/10 rate, corresponding to composition Na0.9FePO4, which along with higher C-rate tests show this material to have the highest capacity and power performance reported for amorphous FePO4 electrodes to date.
An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges
NASA Astrophysics Data System (ADS)
Codron, Douglas A.
Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS). Such studies have provided a qualitative understanding of the typical pathways in which thorium diffuses and how it is normally redistributed along the cathode surface. Lastly, the erosion rates of both pure and thoriated tungsten cathodes were measured after various run times by use of an analytical scale. These measurements have revealed the ability of thoriated tungsten cathodes to run as long as that of pure tungsten but with significantly less material erosion.
Cathode refunctionalization as a lithium ion battery recycling alternative
NASA Astrophysics Data System (ADS)
Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle
2014-06-01
An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Junhua; Zheng, Jianming; Feng, Shuo
Lithium sulfur (LiS) batteries are promising alternatives to conventional Li-ion batteries in terms of specific capacity and energy. But, the technical challenges raised from the soluble polysulfide (PS) in organic electrolyte deter their implementation in practical applications. Nanoengineered structure and chemical adsorptive materials hold great promise in mitigating the PS migration problem. We develop a tubular titanium oxide (TiO 2)/reduced graphene oxide (rGO) composite structure (TG) as a sulfur hosting material for constructing better performed LiS batteries. The TG/sulfur cathode (TG/S) is able to deliver ~1200 mAh g -1 specific capacity with stable operation for over 550 cycles. Moreover, themore » TG/S composite cathode shows stable Coulombic efficiencies of over ~95% at various C rates, which are ~10% higher than those of the rGO/sulfur (G/S) counterparts. The superior electrochemical performances of TG/S could be ascribed to the synergistic effects between the conductive rGO support and the physically/chemically absorptive TiO 2, that is, the spatial tubular structure of TiO 2 provides intimate contact and physical confinement for sulfur, while the polar TiO 2 in TG/S shows strong chemical interaction towards the sulfur species.« less
Song, Junhua; Zheng, Jianming; Feng, Shuo; ...
2017-11-20
Lithium sulfur (LiS) batteries are promising alternatives to conventional Li-ion batteries in terms of specific capacity and energy. But, the technical challenges raised from the soluble polysulfide (PS) in organic electrolyte deter their implementation in practical applications. Nanoengineered structure and chemical adsorptive materials hold great promise in mitigating the PS migration problem. We develop a tubular titanium oxide (TiO 2)/reduced graphene oxide (rGO) composite structure (TG) as a sulfur hosting material for constructing better performed LiS batteries. The TG/sulfur cathode (TG/S) is able to deliver ~1200 mAh g -1 specific capacity with stable operation for over 550 cycles. Moreover, themore » TG/S composite cathode shows stable Coulombic efficiencies of over ~95% at various C rates, which are ~10% higher than those of the rGO/sulfur (G/S) counterparts. The superior electrochemical performances of TG/S could be ascribed to the synergistic effects between the conductive rGO support and the physically/chemically absorptive TiO 2, that is, the spatial tubular structure of TiO 2 provides intimate contact and physical confinement for sulfur, while the polar TiO 2 in TG/S shows strong chemical interaction towards the sulfur species.« less
NASA Astrophysics Data System (ADS)
Zhu, Nengwu; Lu, Yu; Liu, Bowen; Zhang, Taiping; Huang, Jianjian; Shi, Chaohong; Wu, Pingxiao; Dang, Zhi; Wang, Ruixin
2017-10-01
Recently, the synthesis of nonprecious metal catalysts with low cost and high oxygen reduction reaction (ORR) efficiency is paid much attention in field of microbial fuel cells (MFCs). Transition metal oxides (AMn2O4, A = Co、Ni, and Zn) supported on carbon materials such as graphene and carbon nanotube exhibit stronger electroconductivity and more active sites comparing to bare AMn2O4. Herein, we demonstrate an easy operating Hummer's method to functionalize carbon nanotubes (CNTs) with poly (diallyldimethylammonium chloride) in order to achieve effective loading of CoMn2O4 nanoparticles, named CoMn2O4/PDDA-CNTs (CMODT). After solvothermal treatment, nanoscale CoMn2O4 particles ( 80 nm) were successfully attached on the noncovalent functionalized carbon nanotube. Results show that such composites possess an outstanding electrocatalytic activity towards ORR comparable to the commercial Pt/C catalyst in neutral media. Electrochemical detections as cyclic voltammogram (CV) and rotating ring-disk electrode tests (RRDE) showed that the potential of oxygen reduction peak of 30% CMODT was at - 0.3 V (vs Ag/AgCl), onset potential was at + 0.4 V. Among them, 30% CMODT composite appeared the best candidate of oxygen reduction via 3.9 electron transfer pathway. When 30% CMODT composite was utilized as cathode catalyst in air cathode MFC, the reactor obtained 1020 mW m-2 of the highest maximum power density and 0.781 V of open circuit voltage. The excellent activity and low cost (0.2 g-1) of the hybrid materials demonstrate the potential of transition metal oxide/carbon as effective cathode ORR catalyst for microbial fuel cells. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten
2015-11-01
The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing ;standard; conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.
NASA Astrophysics Data System (ADS)
Guo, Haipeng; Liu, Li; Shu, Hongbo; Yang, Xiukang; Yang, Zhenhua; Zhou, Meng; Tan, Jinli; Yan, Zichao; Hu, Hai; Wang, Xianyou
2014-02-01
LiV3O8/polythiophene (LiV3O8/PTh) composite has been chemically synthesized via an in-situ oxidative polymerization method. The structure and morphology of the samples have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). LiV3O8/PTh composite shows a single phase in the XRD pattern, but the existence of PTh has been confirmed by FTIR spectra. HRTEM images show that an uniform PTh layer with a thickness of 3-5 nm covered on the surface of LiV3O8. Electrochemical performance of samples has been characterized by the charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopic studies (EIS) and galvanostatic intermittent titration technique (GITT). The LiV3O8/PTh composite exhibits much better electrochemical performance than bare LiV3O8. The initial discharge capacities of 15 wt.% LiV3O8/PTh composite are 213.3 and 200.3 mAh g-1 with almost no capacity retention after 50 cycles at current densities of 300 and 900 mA g-1, respectively. PTh could enhance electronic conductivity, decrease the charge transfer resistance, increase the lithium diffusion coefficient, and thus improve cycling performance of LiV3O8. All these results demonstrate that the LiV3O8/PTh composite has a promising application as cathode material for lithium ion batteries.
NASA Astrophysics Data System (ADS)
Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan
2017-04-01
Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.
Cathode for aluminum producing electrolytic cell
Brown, Craig W.
2004-04-13
A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.
Binding mechanism and electrochemical properties of M13 phage-sulfur composite.
Dong, Dexian; Zhang, Yongguang; Sutaria, Sanjana; Konarov, Aishuak; Chen, Pu
2013-01-01
Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g(-1), which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed.
Binding Mechanism and Electrochemical Properties of M13 Phage-Sulfur Composite
Dong, Dexian; Zhang, Yongguang; Sutaria, Sanjana; Konarov, Aishuak; Chen, Pu
2013-01-01
Self-assembly of nanostructured materials has been proven a powerful technique in material design and synthesis. By phage display screening, M13 phage was found to strongly bind sulfur particles. Fourier transform infrared and X-ray photoelectron spectroscopy measurements indicated that the strong sulfur-binding ability of M13 phage derives from newly generated S-O and C-S bonds. Using this phage assembled sulfur composite in a lithium battery, the first discharge capacity reached 1117 mAh g-1, which is more than twice that of the sulfur only cathode. Besides, the negative polysulfide shuttle effect in a lithium-sulfur battery was significantly suppressed. PMID:24324560
Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries
NASA Astrophysics Data System (ADS)
Li, Xuelei; Zhang, Jin; Song, Dawei; Song, Jishun; Zhang, Lianqi
2017-03-01
A new green recycling process (named as direct regeneration process) of cathode material mixture from scrapped LiFePO4 batteries is designed for the first time. Through this direct regeneration process, high purity cathode material mixture (LiFePO4 + acetylene black), anode material mixture (graphite + acetylene black) and other by-products (shell, Al foil, Cu foil and electrolyte solvent, etc.) are recycled from scrapped LiFePO4 batteries with high yield. Subsequently, recycled cathode material mixture without acid leaching is further directly regenerated with Li2CO3. Direct regeneration procedure of recycled cathode material mixture from 600 to 800 °C is investigated in detail. Cathode material mixture regenerated at 650 °C display excellent physical, chemical and electrochemical performances, which meet the reuse requirement for middle-end Li-ion batteries. The results indicate the green direct regeneration process with low-cost and high added-value is feasible.
NASA Technical Reports Server (NTRS)
Haskin, Larry A.; Colson, Russell O.
1992-01-01
Parameters are estimated for a hypothetical, well stirred, continuous-feed electrolytic cell that converts 20 percent of a lunar soil feedstock to O2 gas, 26 percent to Fe-Si metal, 13 percent to spinel, and 41 percent to slag. Advantages of a molten Fe-Si cathode for trapping metal on reduction, a relatively conductive steady-state composition in equilibrium with spinel (a proposed container material), and close electrodes (less than 1 cm cathode-anode distance) are discussed. To produce 1 ton of O2, about 6 MHW of energy are required for the electrolysis and IR heating within the melt, and another about 6 MHW may be introduced as waste heat through internal resistance of the electrodes. Thus, to produce 1 ton of O2 per 24 hours, about 0.5 MW of power delivered to the cell would be required.
NASA Astrophysics Data System (ADS)
Song, Ren-Sheng; Wang, Bo; Ruan, Ting-Ting; Wang, Lei; Luo, Hao; Wang, Fei; Gao, Tian-Tian; Wang, Dian-Long
2018-01-01
Soluble polysulfide shuttling is still the main cause of restricting the development of lithium-sulfur (Li-S) battery. Here, we propose a novel three-dimensional reduced graphene oxide@sulfur/nitrogen-doped porous carbon polyhedron/carbon nanotubes (rGO@S/NCP/CNTs) composite with bi-confinement effect of polysulfide as an effective cathode material. In rGO@S/NCP/CNTs, NCP provides physical confinement for sulfur and soluble polysulfide by its abundant micropores and mesopores, while oxygen functional groups of rGO provide strong chemical confinement to soluble polysulfide. Additionally, CNTs with one-dimensional conductivity enable facile transport of electrons. Therefore, the resulting rGO@S/NCP/CNTs composite shows an obvious enhancement in cycling performance for Li-S battery, and reversible capacities up to 738 mAh g-1 and 660 mAh g-1 over 100 and 200 cycles are remained at 0.2 C rate.
Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship
NASA Astrophysics Data System (ADS)
Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.
2018-02-01
The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.
Li- and Mn-Rich Cathode Materials: Challenges to Commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
2016-12-14
The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density,more » electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.« less
High-Energy-Density, Low-Temperature Li/CFx Primary Cells
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid
2007-01-01
High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard
2016-03-15
Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a resultmore » of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.« less
Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Wang, Xin; Bakenov, Zhumabay; Yin, Fuxing
2018-01-18
An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g -1 at 0.1 C. The discharge capacity remained at 828 mAh g -1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites.
Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing
2018-01-01
An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303
Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection
NASA Astrophysics Data System (ADS)
Bourgeois, Desmond
Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).
LiCaFeF6: A zero-strain cathode material for use in Li-ion batteries
NASA Astrophysics Data System (ADS)
de Biasi, Lea; Lieser, Georg; Dräger, Christoph; Indris, Sylvio; Rana, Jatinkumar; Schumacher, Gerhard; Mönig, Reiner; Ehrenberg, Helmut; Binder, Joachim R.; Geßwein, Holger
2017-09-01
A new zero-strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid-state reaction and processed to a conductive electrode composite via high-energy ball-milling. In the first cycle, a discharge capacity of 112 mAh g-1 is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3+/Fe2+ as confirmed by Mössbauer spectroscopy and X-ray absorption spectroscopy. The compound has a trigonal colquiriite-type crystal structure (space group P 3 bar 1 c). By means of in situ and ex situ XRD as well as X-ray absorption fine structure spectroscopy a reversible response to Li uptake/release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5%. The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero-strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium-ion batteries with strongly improved safety and cycle life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Robert; Polcik, Peter; Anders, André
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
Franz, Robert; Polcik, Peter; Anders, André
2015-06-01
The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less
NASA Astrophysics Data System (ADS)
Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido
2018-01-01
The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.
Semiconductor nanostructures for plasma energetic systems
NASA Astrophysics Data System (ADS)
Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris
2017-10-01
In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.
Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu
2017-01-01
To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Bennett, William R.
2010-01-01
NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.
Oleshko, Vladimir P; Herzing, Andrew A; Twedt, Kevin A; Griebel, Jared J; McClelland, Jabez J; Pyun, Jeffrey; Soles, Christopher L
2017-09-19
We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li + probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.
Fan, Lei; Zhuang, Houlong L; Zhang, Kaihang; Cooper, Valentino R; Li, Qi; Lu, Yingying
2016-12-01
Lithium-sulfur (Li-S) battery is one of the most promising alternatives for the current state-of-the-art lithium-ion batteries due to its high theoretical energy density and low production cost from the use of sulfur. However, the commercialization of Li-S batteries has been so far limited to the cyclability and the retention of active sulfur materials. Using co-electrospinning and physical vapor deposition procedures, we created a class of chloride-carbon nanofiber composites, and studied their effectiveness on polysulfides sequestration. By trapping sulfur reduction products in the modified cathode through both chemical and physical confinements, these chloride-coated cathodes are shown to remarkably suppress the polysulfide dissolution and shuttling between lithium and sulfur electrodes. From adsorption experiments and theoretical calculations, it is shown that not only the sulfide-adsorption effect but also the diffusivity in the vicinity of these chlorides materials plays an important role on the reversibility of sulfur-based cathode upon repeated cycles. Balancing the adsorption and diffusion effects of these nonconductive materials could lead to the enhanced cycling performance of an Li-S cell. Electrochemical analyses over hundreds of cycles indicate that cells containing indium chloride-modified carbon nanofiber outperform cells with other halogenated salts, delivering an average specific capacity of above 1200 mAh g -1 at 0.2 C.
NASA Astrophysics Data System (ADS)
Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu
2017-05-01
Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.
Sulfur based electrode materials for secondary batteries
NASA Astrophysics Data System (ADS)
Hao, Yong
Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes exhibited an unusual phenomenon of capacity increase upon cycling which was ascribed to the decreased cell resistance and enhanced interfacial charge storage. In summary, this dissertation provides investigation of sulfur based electrode materials with sulfur/N-doped graphene composites and MnS nanocrystals. Their electrochemical performances have been evaluated and discussed. The understanding of their reaction mechanisms and electrochemical enhancement could make progress on development of secondary batteries.
Fabrication of composite films containing zirconia and cationic polyelectrolytes.
Pang, Xin; Zhitomirsky, Igor
2004-03-30
Composite films were prepared by electrophoretic deposition of poly(ethylenimine) or poly(allylamine hydrochloride) combined with cathodic precipitation of zirconia. Films of up to several micrometers thick were obtained on Ni, Pt, stainless-steel, graphite, and carbon-felt substrates. When the concentration of polyelectrolytes in solutions and the deposition time were varied, the amount of the deposited material and its composition can be varied. The electrochemical intercalation of yttria-stabilized zirconia particles into the composite films has been demonstrated. Obtained results pave the way for the electrodeposition of other polymer-ceramic composites. The deposits were studied by thermogravimetric analysis, X-ray diffraction analysis, scanning electron microscopy, and atomic force microscopy. The mechanisms of deposition are discussed.
A review of blended cathode materials for use in Li-ion batteries
NASA Astrophysics Data System (ADS)
Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun
2014-02-01
Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.
NASA Astrophysics Data System (ADS)
Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua
2014-11-01
Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04819a
NASA Astrophysics Data System (ADS)
He, Feng; Li, Kai; Yin, Cong; Ding, Yingchun; Tang, Hao; Wang, Ying; Wu, Zhijian
2018-01-01
To effectively restrain the dissolution of soluble polysulfides and fully utilize the active sulfur materials in lithium-sulfur (Li-S) batteries, host materials with unique compositions and porous structures have been pursued. Herein, we have investigated the mechanism of the excellent activity of oxygenated g-C3N4 for Li-S batteries from theoretical perspective, and the further experiment confirms that our O-g-C3N4-S cathode exhibits much better electrochemical performance compared with those in previous reports. Our DFT calculations reveal that the oxygenated material has better electrical conductivity and stronger adsorption ability with the Li2Sx species compared with the pristine g-C3N4 and other two-dimensional (2D) materials. Furthermore, we have confirmed experimentally that the O-g-C3N4-S composite cathode exhibits excellent electrochemical performance in Li-S batteries with high reversible discharge capacity of 1030 mAh g-1 after 100 cycles at 0.2 C, great rate capability with the discharge capacity of 364 mAh g-1 even at 5.0 C, and outstanding long-term cyclic stability with the discharge capacity of 465 mAh g-1 after 1000 cycles at 1.0 C (capacity decay was only 0.046% per cycle). Our results also suggest that theoretical study will play a significant role in predicting and screening novel materials with better performance.
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-01-01
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608
NASA Astrophysics Data System (ADS)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-04-01
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.
Kuppan, Saravanan; Shukla, Alpesh Khushalchand; Membreno, Daniel; ...
2017-01-06
Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium-ion batteries. Through the use of carefully prepared Li 1.2Ni 0.13Mn 0.54Co 0.13O 2 crystal samples with six distinct morphologies, surface transition-metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth-profiled core-level spectroscopy, namely, X-ray absorption spectroscopy, electron energy loss spectroscopy, and atomic-resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well-definedmore » model system of battery materials. Here, we report the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition-metal reduction. Finally, the intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.« less
Wang, Yuqi; Yu, Yajuan; Huang, Kai; Chen, Bo; Deng, Wensheng; Yao, Ying
2017-01-01
A promising Li-rich high-capacity cathode material (xLi 2 MnO 3 ·(1-x)LiMn 0.5 Ni 0.5 O 2 ) has received much attention with regard to improving the performance of lithium-ion batteries in electric vehicles. This study presents an environmental impact evaluation of a lithium-ion battery with Li-rich materials used in an electric vehicle throughout the life cycle of the battery. A comparison between this cathode material and a Li-ion cathode material containing cobalt was compiled in this study. The battery use stage was found to play a large role in the total environmental impact and high greenhouse gas emissions. During battery production, cathode material manufacturing has the highest environmental impact due to its complex processing and variety of raw materials. Compared to the cathode with cobalt, the Li-rich material generates fewer impacts in terms of human health and ecosystem quality. Through the life cycle assessment (LCA) results and sensitivity analysis, we found that the electricity mix and energy efficiency significantly influence the environmental impacts of both battery production and battery use. This paper also provides a detailed life cycle inventory, including firsthand data on lithium-ion batteries with Li-rich cathode materials.
Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing
2018-04-16
A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2 g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A dendrite-suppressing composite ion conductor from aramid nanofibres
NASA Astrophysics Data System (ADS)
Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A.
2015-01-01
Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate ‘weak links’ where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru
Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less
Fuel cell electrode interconnect contact material encapsulation and method
Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.
2016-05-31
A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.
Zhang, Wenbo; Richter, Felix H; Culver, Sean P; Leichtweiss, Thomas; Lozano, Juan G; Dietrich, Christian; Bruce, Peter G; Zeier, Wolfgang G; Janek, Jürgen
2018-06-20
All-solid-state batteries (ASSBs) show great potential for providing high power and energy densities with enhanced battery safety. While new solid electrolytes (SEs) have been developed with high enough ionic conductivities, SSBs with long operational life are still rarely reported. Therefore, on the way to high-performance and long-life ASSBs, a better understanding of the complex degradation mechanisms, occurring at the electrode/electrolyte interfaces is pivotal. While the lithium metal/solid electrolyte interface is receiving considerable attention due to the quest for high energy density, the interface between the active material and solid electrolyte particles within the composite cathode is arguably the most difficult to solve and study. In this work, multiple characterization methods are combined to better understand the processes that occur at the LiCoO 2 cathode and the Li 10 GeP 2 S 12 solid electrolyte interface. Indium and Li 4 Ti 5 O 12 are used as anode materials to avoid the instability problems associated with Li-metal anodes. Capacity fading and increased impedances are observed during long-term cycling. Postmortem analysis with scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy show that electrochemically driven mechanical failure and degradation at the cathode/solid electrolyte interface contribute to the increase in internal resistance and the resulting capacity fading. These results suggest that the development of electrochemically more stable SEs and the engineering of cathode/SE interfaces are crucial for achieving reliable SSB performance.
Lithium thionyl chloride high rate discharge
NASA Technical Reports Server (NTRS)
Klinedinst, K. A.
1980-01-01
Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.
NASA Astrophysics Data System (ADS)
Zhou, Qunfei
First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.
Meng, Xiangbo; Riha, Shannon C.; Libera, Joseph A.; ...
2015-01-24
In this study, nanoscale copper(I) sulfide (n-Cu2S) was deposited over networks of single-walled carbon nanotubes (SWCNTs) by atomic layer deposition (ALD). This synthetic route provides a high degree of control for tuning the materials properties. The resulting core shell SWCNT-n-Cu2S composite structure ensures an intimate contact between the two components while maintaining a high porosity for efficient transport of charges. Indeed, electrochemical testing demonstrates that these nanocomposites are promising as cathodes in lithium-ion batteries (LIBs), exhibiting excellent stability over 200 discharge-charge cycles with a sustainable, high capacity of 260 mAh g(-1) (92% of the theoretical value in terms of Cu2S)more » and >99% Coulombic efficiency. This work establishes a general strategy for developing high-performance nanoscale electrode materials.« less
Electrochromic material and electro-optical device using same
Cogan, Stuart F.; Rauh, R. David
1992-01-01
An oxidatively coloring electrochromic layer of composition M.sub.y CrO.sub.2+x (0.33.ltoreq.y.ltoreq.2.0 and x.ltoreq.2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M.sub.y CrO.sub.2+x provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li.sup.+ ion conductors.
Electrochromic material and electro-optical device using same
Cogan, S.F.; Rauh, R.D.
1992-01-14
An oxidatively coloring electrochromic layer of composition M[sub y]CrO[sub 2+x] (0.33[le]y[le]2.0 and x[le]2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M[sub y]CrO[sub 2+x] provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li[sup +] ion conductors. 12 figs.
Li, Guoxing; Sun, Jinhua; Hou, Wenpeng; Jiang, Shidong; Huang, Yong; Geng, Jianxin
2016-01-01
Sulfur is a promising cathode material for lithium–sulfur batteries because of its high theoretical capacity (1,675 mA h g−1); however, its low electrical conductivity and the instability of sulfur-based electrodes limit its practical application. Here we report a facile in situ method for preparing three-dimensional porous graphitic carbon composites containing sulfur nanoparticles (3D S@PGC). With this strategy, the sulfur content of the composites can be tuned to a high level (up to 90 wt%). Because of the high sulfur content, the nanoscale distribution of the sulfur particles, and the covalent bonding between the sulfur and the PGC, the developed 3D S@PGC cathodes exhibit excellent performance, with a high sulfur utilization, high specific capacity (1,382, 1,242 and 1,115 mA h g−1 at 0.5, 1 and 2 C, respectively), long cycling life (small capacity decay of 0.039% per cycle over 1,000 cycles at 2 C) and excellent rate capability at a high charge/discharge current. PMID:26830732
Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai
2015-03-27
Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Allahyari, Ehsan; Ghorbanzadeh, Milad; Riahifar, Reza; Hadavi, S. M. M.
2018-05-01
The LiNi0.5Mn0.3Co0.2O2 (NCM) was synthesized via conventional solution combustion synthesis method. Different amounts of LiFePO4 (10, 20 and 30 wt%) were added to NCM via the ball milling technique to improve electrochemical performance including discharge capacity, cycle stability, and rate capability. The LiNi0.5Mn0.3Co0.2O2/LiFePO4 containing 20 wt% LiFePO4 was considered as the optimum composition according to the electrochemical results and SEM images. The Al powder was added to optimum LiNi0.5Mn0.3Co0.2/LiFePO4-0.2 composite through planetary ball mill to enhance the conductivity of LiNi0.5Mn0.3Co0.2O2/LiFePO4-0.2. The LiNi0.5Mn0.3Co0.2O2/LiFePO4-0.2/Al composite cathodes provide better electrochemical performance compared to pure LiNi0.5Mn0.3Co0.2O2 cathodes. The results indicate that by addition of 20 wt% of LiFePO4, the internal resistance of the electrode as well as the charge transfer resistance are reduced. Due to the strong P–O bond of the PO4 in LiFePO4, side reactions between the active electrode and electrolyte is prevented. In addition, according to weakness of the Ionic conductivity in solid electrolyte, in this paper aluminum powders added to the electrode for resolving this problem.
NASA Astrophysics Data System (ADS)
Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.
2013-09-01
Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdichevsky, Gene
Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A majormore » goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).« less
Enhanced Raman Scattering from NCM523 Cathodes Coated with Electrochemically Deposited Gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornheim, Adam; Maroni, Victor A.; He, Meinan
Materials with the general composition LiMO2, where M is a mix of nickel, cobalt, and manganese, have been studied extensively as cathodes for lithium-based electrochemical cells. Some compositions, like LiNi0.5Co0.2Mn0.3O2 (NCM523), have already found application in commercial lithium-ion batteries. Pre-test and post-test analyses of these types of cathodes have benefited greatly from the use of Raman spectroscopy. Specifically, Raman spectroscopy can be used to investigate the phonons of the LiMO2 lattice. This is particularly useful for studies of the LiMO2 after it has been formed into the type of polymer-bonded laminate from which typical battery cathodes are cut. One ofmore » the problems that occurs in such studies is that the scattering from the LiMO2 phase gets progressively weaker as the nickel content increases. NCM523 poses one example of this behavior owing to the fact that half of the transition metal content is nickel. In this study we show that the intensity of the Raman scattering from the NCM523 phonons can be significantly increased by electroplating clusters of sub-micron gold particles on NCM523-containing laminate structures. The gold appears to plate somewhat selectively on the NCM523 particles in randomly sized clusters. These clusters stimulate the Raman scattering from the NCM523 to varying extents that can reach nearly 100 times the scattering intensity from uncoated pristine laminates.« less
Hoffmann, Claudia; Thieme, Sören; Brückner, Jan; Oschatz, Martin; Biemelt, Tim; Mondin, Giovanni; Althues, Holger; Kaskel, Stefan
2014-12-23
Silica nanospheres are used as templates for the generation of carbide-derived carbons with monodisperse spherical mesopores (d=20-40 nm) and microporous walls. The nanocasting approach with a polycarbosilane precursor and subsequent pyrolysis, followed by silica template removal and chlorine treatment, results in carbide-derived carbons DUT-86 (DUT=Dresden University of Technology) with remarkable textural characteristics, monodisperse, spherical mesopores tunable in diameter, and very high pore volumes up to 5.0 cm3 g(-1). Morphology replication allows these nanopores to be arranged in a nanostructured inverse opal-like structure. Specific surface areas are very high (2450 m2 g(-1)) due to the simultaneous presence of micropores. Testing DUT-86 samples as cathode materials in Li-S batteries reveals excellent performance, and tailoring of the pore size allows optimization of cell performance, especially the active center accessibility and sulfur utilization. The outstanding pore volumes allow sulfur loadings of 80 wt %, a value seldom achieved in composite cathodes, and initial capacities of 1165 mAh gsulfur(-1) are reached. After 100 cycle capacities of 860 mAh gsulfur(-1) are retained, rendering DUT-86 a high-performance sulfur host material.
NASA Astrophysics Data System (ADS)
Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun
2015-01-01
An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications. Electronic supplementary information (ESI) available: TGA curves of as electrospun Co(ii)-PAN fiber and C-CoPAN900 EDX and XPS spectra of the C-CoPAN900 photo of a home-built Zn-air cell and the preparation method of conventional catalyst electrode; polarization curves and corresponding power density plots of the battery using conventional type cathode of C-CoPN900 and commercial Pt/C catalyst; the electrocatalytic properties of hybrid CNFs obtained from varied weight ratios of PAN to cobalt acetate, e.g. 16 : 1 and 8 : 1, and their corresponding TGA curves; a comparison of the Zn-air battery performance of this work with recent literatures. See DOI: 10.1039/c4nr05988c
Rahman, Md Mokhlesur; Glushenkov, Alexey M; Chen, Zhiqiang; Dai, Xiujuan J; Ramireddy, Thrinathreddy; Chen, Ying
2013-12-14
We report the preparation of a novel nanocomposite architecture of α-LiFeO2-MWCNT based on clusters of α-LiFeO2 nanoparticles incorporated into multiwalled carbon nanotubes (MWCNTs). The composite represents a promising cathode material for lithium-ion batteries. The preparation of the nanocomposite is achieved by combining a molten salt precipitation process and a radio frequency oxygen plasma for the first time. We demonstrate that clusters of α-LiFeO2 nanoparticles incorporated into MWCNTs are capable of delivering a stable and high reversible capacity of 147 mA h g(-1) at 1 C after 100 cycles with the first cycle Coulombic efficiency of ~95%. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 101 mA h g(-1) at a high current rate of 10 C. Both rate capability and cycling stability are not simply a result of introduction of functionalized MWCNTs but most likely originate from the unique composite structure of clusters of α-LiFeO2 nanoparticles integrated into a network of MWCNTs. The excellent electrochemical performance of this new nanocomposite opens up new opportunities in the development of high-performance electrode materials for energy storage application using the radio frequency oxygen plasma technique.
Zeng, Xianlai; Li, Jinhui
2014-04-30
Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.
Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems
NASA Astrophysics Data System (ADS)
Zhou, Nana; Zaccaria, Valentina; Tucker, David
2018-04-01
Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.
Modular cathode assemblies and methods of using the same for electrochemical reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may bemore » supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.« less
Modular cathode assemblies and methods of using the same for electrochemical reduction
Wiedmeyer, Stanley G; Barnes, Laurel A; Williamson, Mark A; Willit, James L
2014-12-02
Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.
Shen, ShouYu; Hong, YuHao; Zhu, FuChun; Cao, ZhenMing; Li, YuYang; Ke, FuSheng; Fan, JingJing; Zhou, LiLi; Wu, LiNa; Dai, Peng; Cai, MingZhi; Huang, Ling; Zhou, ZhiYou; Li, JunTao; Wu, QiHui; Sun, ShiGang
2018-04-18
Owing to high specific capacity of ∼250 mA h g -1 , lithium-rich layered oxide cathode materials (Li 1+ x Ni y Co z Mn (3- x-2 y-3 z)/4 O 2 ) have been considered as one of the most promising candidates for the next-generation cathode materials of lithium ion batteries. However, the commercialization of this kind of cathode materials seriously restricted by voltage decay upon cycling though Li-rich materials with high cobalt content have been widely studied and show good capacity. This research successfully suppresses voltage decay upon cycling while maintaining high specific capacity with low Co/Ni ratio in Li-rich cathode materials. Online continuous flow differential electrochemical mass spectrometry (OEMS) and in situ X-ray diffraction (XRD) techniques have been applied to investigate the structure transformation of Li-rich layered oxide materials during charge-discharge process. The results of OEMS revealed that low Co/Ni ratio lithium-rich layered oxide cathode materials released no lattice oxygen at the first charge process, which will lead to the suppression of the voltage decay upon cycling. The in situ XRD results displayed the structure transition of lithium-rich layered oxide cathode materials during the charge-discharge process. The Li 1.13 Ni 0.275 Mn 0.580 O 2 cathode material exhibited a high initial medium discharge voltage of 3.710 and a 3.586 V medium discharge voltage with the lower voltage decay of 0.124 V after 100 cycles.
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium-sulfur batteries
NASA Astrophysics Data System (ADS)
Li, Zhengzheng
2018-02-01
MnO2-graphene nanosheets wrapped mesoporous carbon/sulfur (MGN@MC/S) composite is successfully synthesized derived from metal-organic frameworks and investigated as cathode for lithium-ion batteries. Used as cathode, MGN@MC/S composite possesses electronic conductivity network for redox electron transfer and strong chemical bonding to lithium polysulfides, which enables low capacity loss to be achieved. MGN@MC/S cathodes exhibit high reversible capacity of 1475 mA h g-1 at 0.1 C and an ultra-low capacity fading of 0.042% per cycle at 1 C over 450 cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...
2017-04-26
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
NASA Astrophysics Data System (ADS)
Hu, Jingtian; Zhao, Tingkai; Ji, Xianglin; Peng, Xiarong; Jin, Wenbo; Yang, Wenbo; Zhang, Lei; Gao, Junjie; Dang, Alei; Li, Hao; Li, Tiehu
2017-11-01
Amorphous carbon nanotube (ACNT)/sulfur composites were prepared by solution reaction method. The electrochemical results showed that both ACNT/S composite and ACNT/S mixture had a first reversible capacity of 1020 mA h·g-1, and the capacity retention of ACNT/S composite was 77% after 100 cycles while that of ACNT/S mixture was only 35% with the initial capacity being 850 mA h·g-1. The experimental results showed that the reversible lithium insertion capacity of the composite was obviously high and the cycling stability was good, which was mainly due to the solid and uniform dispersion of the sulfur and amorphous carbon nanotube matrix in the composite.
NASA Astrophysics Data System (ADS)
Wu, Junwei; Liu, Yanchen; Cui, Yanhui; Ouyang, Jue; Baker, Andrew P.; Li, Zuohua; Zhang, Huayu
2018-02-01
Two mesoporous carbon foam (MCF) with nitrogen and oxygen dual doped are fabricated through facile templated hydrothermal process. One using fumed silica as single template is named S-MCF, and another using fumed silica and Pluronic F127 as double templates is named D-MCF. When using Pluronic F127 as an auxiliary template, the D-MCF shows different porous architecture and surface chemical nature from S-MCF, thus they behave differently as cathode materials in Li-O2 batteries. The D-MCF electrode exhibits a slight lower discharge capacity and an increased overpotential than that of S-SCF due to the decreased surface area and oxygen content. However, a better cycle stability was proved for the D-MCF electrode because of its higher nitrogen and lower oxygen content. When further composited with RuO2 nanoparticles, the RuO2/D-MCF cathode can operate 160 cycles with capacity cutoff of 500 mAh g-1, and this prolonged cycle life, compared to the 102 cycles of S-MCF cathode, verifies the superior electrochemical stability of D-MCF further and illuminates the crucial role of carbon substrate in the cathodes of Li-O2 batteries.
High-performing LiMgxCuyCo₁-x-yO₂ cathode material for lithium rechargeable batteries.
Nithya, Chandrasekaran; Thirunakaran, Ramasamy; Sivashanmugam, Arumugam; Gopukumar, Sukumaran
2012-08-01
Sustainable power requirements of multifarious portable electronic applications demand the development of high energy and high power density cathode materials for lithium ion batteries. This paper reports a method for rapid synthesis of a cobalt based layered cathode material doped with mixed dopants Cu and Mg. The cathode material exhibits ordered layered structure and delivers discharge capacity of ∼200 mA h g(-1) at 0.2C rate with high capacity retention of 88% over the investigated 100 cycles.
The cathode material for a plasma-arc heater
NASA Astrophysics Data System (ADS)
Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.
1983-11-01
The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.
NASA Astrophysics Data System (ADS)
Zeng, Weizhi; Wang, Shijie; Free, Michael L.
2016-10-01
Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.
Falce, Louis R [San Jose, CA; Ives, R Lawrence [Saratoga, CA
2009-06-09
A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.
NASA Astrophysics Data System (ADS)
Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang
2018-06-01
Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.
Anderson, Travis M.; Pratt, Harry D.
2016-03-15
Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.
NASA Astrophysics Data System (ADS)
Brown, Robert Keith; Schmidt, Ulrike Christiane; Harnisch, Falk; Schröder, Uwe
2017-07-01
In this study, hydrogen evolution reaction (HER) catalytic and corrosion data is determined for selected metal cathode materials. The HER data was gathered using cyclic voltammetry (CV) in electrolytes with several pH values and varying current densities. Of the tested materials, the stainless steel alloy EN 1.4401/AISI 316 generally had the lowest HER overpotentials at the pH values 0.25, 7 and 9. At the higher pH values of 11 and 14 a custom NiMoFe alloy with a m/m% composition of 60-30-10 showed the lowest overpotentials. After each CV experiment, the electrolyte solution was analyzed to determine the corrosion of the metal cathodes. Results of corrosion measurements showed that the stainless steels EN 1.4401 had the lowest corrosion losses on average across all tested pH values. Combining HER and corrosion data revealed that: In the pH 9 electrolyte solution, EN 1.4401 was not always the best catalyst in terms of its overpotential, but it incurs the least material costs due to its lack of corrosion, this balance thereby making it the "best choice" under the given conditions. The combination of HER and corrosion data provides a more effective framework for discussing economic viability than either data set alone.
NASA Astrophysics Data System (ADS)
Ma, Ting; Muslim, Arzugul; Su, Zhi
2015-05-01
Nano structured LiMnBO3/C cathode materials are synthesized by a fast microwave solid-state reaction method using MnCO3, Li2CO3, H3BO3 and glucose as starting materials for the first time. The crystal structure, morphology and electrochemical properties of LiMnBO3/C composites are characterized by X-ray diffraction (XRD), raman spectroscopy (Ramon), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge tests. The result shows that not only monoclinic LiMnBO3/C but also hexagonal LiMnBO3/C cathode materials can be successfully synthesized by microwave solid-state method with power of 240 W in different time. Compared with h-LiMnBO3/C and mixed phase LiMnBO3/C, m-LiMnBO3/C displays lower charge-transfer resistance and the Warburg impedance, so it reveals a higher first discharge capacity of 156.3 mAh g-1 at 0.05 C within 1.8V-4.6 V, The value increases up to 173.2 mAh g-1 caused by the activation process. Even after 50 cycles, the discharge capacity of m-LiMnBO3/C still remains at 148.2 mAh g-1.
Pyrite cathode material for a thermal battery
NASA Astrophysics Data System (ADS)
Pemsler, J. P.; Litchfield, J. K.
1991-02-01
The present invention relates in general to a synthetic cathode material for a molten salt battery and, more particularly, to a process of providing and using synthetic pyrite for use as a cathode in a thermal battery. These batteries, which have been successfully used in a number of military applications, include iron disulfide cathode material obtained as benefacted or from natural occurring pyrite deposits, or as a byproduct of flotation concentrate from the processing of base or noble metal ores.
Li, Haipeng; Sun, Liancheng; Wang, Zhuo; Zhang, Yongguang; Tan, Taizhe; Wang, Gongkai
2018-01-01
A simple and effective method was developed to obtain the electrode for lithium/sulfur (Li/S) batteries with high specific capacity and cycling durability via adopting an interconnected sulfur/activated carbon/graphene (reduced graphene oxide) aerogel (S/AC/GA) cathode architecture. The AC/GA composite with a well-defined interconnected conductive network was prepared by a reduction-induced self-assembly process, which allows for obtaining compact and porous structures. During this process, reduced graphene oxide (RGO) was formed, and due to the presence of oxygen-containing functional groups on its surface, it not only improves the electronic conductivity of the cathode but also effectively inhibits the polysulfides dissolution and shuttle. The introduced activated carbon allowed for lateral and vertical connection between individual graphene sheets, completing the formation of a stable three-dimensionally (3D) interconnected graphene framework. Moreover, a high specific surface area and 3D interconnected porous structure efficiently hosts a higher amount of active sulfur material, about 65 wt %. The designed S/AC/GA composite electrodes deliver an initial capacity of 1159 mAh g−1 at 0.1 C and can retain a capacity of 765 mAh g−1 after 100 cycles in potential range from 1 V to 3 V. PMID:29373525
Development and experimental study of large size composite plasma immersion ion implantation device
NASA Astrophysics Data System (ADS)
Falun, SONG; Fei, LI; Mingdong, ZHU; Langping, WANG; Beizhen, ZHANG; Haitao, GONG; Yanqing, GAN; Xiao, JIN
2018-01-01
Plasma immersion ion implantation (PIII) overcomes the direct exposure limit of traditional beam-line ion implantation, and is suitable for the treatment of complex work-piece with large size. PIII technology is often used for surface modification of metal, plastics and ceramics. Based on the requirement of surface modification of large size insulating material, a composite full-directional PIII device based on RF plasma source and metal plasma source is developed in this paper. This device can not only realize gas ion implantation, but also can realize metal ion implantation, and can also realize gas ion mixing with metal ions injection. This device has two metal plasma sources and each metal source contains three cathodes. Under the condition of keeping the vacuum unchanged, the cathode can be switched freely. The volume of the vacuum chamber is about 0.94 m3, and maximum vacuum degree is about 5 × 10-4 Pa. The density of RF plasma in homogeneous region is about 109 cm-3, and plasma density in the ion implantation region is about 1010 cm-3. This device can be used for large-size sample material PIII treatment, the maximum size of the sample diameter up to 400 mm. The experimental results show that the plasma discharge in the device is stable and can run for a long time. It is suitable for surface treatment of insulating materials.
Ding, Xiao-Kai; Zhang, Lu-Lu; Yang, Xue-Lin; Fang, Hui; Zhou, Ying-Xian; Wang, Ji-Qing; Ma, Di
2017-12-13
In this study, low cost anthracite-derived dual-phase carbon-coated Li 3 V 2 (PO 4 ) 3 composites have been successfully prepared via a traditional solid-phase method. XRD results show that the as-prepared samples have high crystallinity and anthracite introduction has no influence on the LVP crystal structure. The LVP/C particles are uniformly covered with a dual-phase carbon layer composed of amorphous carbon and graphitic carbon. The effect of the amount of anthracite on the battery performance of LVP as a cathode material has also been studied. The LVP/C composite obtained with 10 wt % anthracite (LVP/C-10) delivers the highest initial charge/discharge capacities of 186.1/168.2 mAh g -1 at 1 C and still retains the highest discharge capacity of 134.0 mAh g -1 even after 100 cycles. LVP/C-10 also displays an outstanding average capacity of 140.8 mAh g -1 at 5 C. The superior rate capability and cycling stability of LVP/C-10 is ascribed to the reduced particle size, decreased charge-transfer resistance, and improved lithium ion diffusion coefficient. Our results demonstrate that using anthracite as a carbon source opens up a new strategy for larger-scale synthesis of LVP and other electrode materials with poor electronic conductivity for lithium ion batteries.
Reitz, Christian; Breitung, Ben; Schneider, Artur; Wang, Di; von der Lehr, Martin; Leichtweiss, Thomas; Janek, Jürgen; Hahn, Horst; Brezesinski, Torsten
2016-04-27
Nitrogen-rich carbon with both a turbostratic microstructure and meso/macroporosity was prepared by hard templating through pyrolysis of a tricyanomethanide-based ionic liquid in the voids of a silica monolith template. This multifunctional carbon not only is a promising anode candidate for long-life lithium-ion batteries but also shows favorable properties as anode and cathode host material owing to a high nitrogen content (>8% after carbonization at 900 °C). To demonstrate the latter, the hierarchical carbon was melt-infiltrated with sulfur as well as coated by atomic layer deposition (ALD) of anatase TiO2, both of which led to high-quality nanocomposites. TiO2 ALD increased the specific capacity of the carbon while maintaining high Coulombic efficiency and cycle life: the composite exhibited stable performance in lithium half-cells, with excellent recovery of low rate capacities after thousands of cycles at 5C. Lithium-sulfur batteries using the sulfur/carbon composite also showed good cyclability, with reversible capacities of ∼700 mA·h·g(-1) at C/5 and without obvious decay over several hundred cycles. The present results demonstrate that nitrogen-rich carbon with an interconnected multimodal pore structure is very versatile and can be used as both active and inactive electrode material in high-performance lithium-based batteries.
Oh, Dahyun; Dang, Xiangnan; Yi, Hyunjung; Allen, Mark A; Xu, Kang; Lee, Yun Jung; Belcher, Angela M
2012-04-10
Utilization of the material-specific peptide-substrate interactions of M13 virus broadens colloidal stability window of graphene. The homogeneous distribution of graphene is maintained in weak acids and increased ionic strengths by complexing with virus. This graphene/virus conducting template is utilized in the synthesis of energy-storage materials to increase the conductivity of the composite electrode. Successful formation of the hybrid biological template is demonstrated by the mineralization of bismuth oxyfluoride as a cathode material for lithium-ion batteries, with increased loading and improved electronic conductivity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.
Wang, Hong; Yang, Chi; Liu, Shu-Xin
2014-09-01
Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).
LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky
2002-03-31
This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves asmore » the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.« less
Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...
2016-06-11
The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less
NASA Astrophysics Data System (ADS)
Hamid, N. A.; Wennig, S.; Hardt, S.; Heinzel, A.; Schulz, C.; Wiggers, H.
2012-10-01
Olivine, LiFePO4 is a promising cathode material for lithium-ion batteries due to its low cost, environmental acceptability and high stability. Its low electric conductivity prevented it for a long time from being used in large-scale applications. Decreasing its particle size along with carbon coating significantly improves electronic conductivity and lithium diffusion. With respect to the controlled formation of very small particles with large specific surface, gas-phase synthesis opens an economic and flexible route towards high-quality battery materials. Amorphous FePO4 was synthesized as precursor material for LiFePO4 by flame spray pyrolysis of a solution of iron acetylacetonate and tributyl phosphate in toluene. The pristine FePO4 with a specific surface from 126-218 m2 g-1 was post-processed to LiFePO4/C composite material via a solid-state reaction using Li2CO3 and glucose. The final olivine LiFePO4/C particles still showed a large specific surface of 24 m2 g-1 and were characterized using X-ray diffraction (XRD), electron microscopy, X-ray photoelectron spectrocopy (XPS) and elemental analysis. Electrochemical investigations of the final LiFePO4/C composites show reversible capacities of more than 145 mAh g-1 (about 115 mAh g-1 with respect to the total coating mass). The material supports high drain rates at 16 C while delivering 40 mAh g-1 and causes excellent cycle stability.
NASA Astrophysics Data System (ADS)
Cui, Yanhua; Zhao, Yu; Chen, Hong; Wei, Kaiyuan; Ni, Shuang; Cui, Yixiu; Shi, Siqi
2018-03-01
Using first-principles calculations, we have systematically investigated the adsorption and diffusion behavior of Li in MoO3 bulk, on MoO3 (010) surface and in MoO3/graphene composite. Our results indicate that, in case of MoO3 bulk, Li diffusion barriers in the interlayer and intralayer spaces are 0.55 eV and 0.58 eV respectively, which are too high to warrant fast Lithium-ion charge/discharge processes. While on MoO3 (010) surface, Li exhibits a diffusion barrier as low as 0.07 eV which guarantees an extremely fast Li diffusion rate during charge/discharge cycling. However, in MoO3/graphene monolayer, Li diffusion barrier is at the same level as that on MoO3 (010) surface, which also ensures a very rapid Li charge/discharge rate. The rapid Li charge/discharge rate in this system originates from the removal of the upper dangling O1 atoms which hinder the Li diffusion on the lower MoO3 layer. Besides this, due to the interaction between Li and graphene, the Li average binding energy increases to 0.14 eV compared to its value on MoO3 (010) surface which contributes to a higher voltage. Additionally, the increased ratio of surface area provides more space for Li storage and the capacity of MoO3/graphene composite increases up to 279.2 mAhg-1. The last but not the least, due to the high conductivity of graphene, the conductivity of MoO3/graphene composite enhances greatly which is beneficial for electrode materials. In the light of present results, MoO3/graphene composite exhibits higher voltage, good conductivity, large Li capacity and very rapid Li charge/discharge rate, which prove it as a promising cathode material for high-performance lithium-ion batteries (LIBs).
Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries
Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang
2017-01-01
The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm3∙g−1) and large specific surface area (1261.7 m2∙g−1). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g−1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes. PMID:28878149
Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.
Najafabadi, Amin Taheri; Leeuwner, Magrieta J; Wilkinson, David P; Gyenge, Előd L
2016-07-07
The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature
2012-04-06
TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile-cosolvent...employing TIAX’s high energy, high power CAM-7 cathode material, high rate capability lithium titanate (LTO) anode material, and a nitrile- cosolvent...electrolyte formulation. CAM-7 provides the highest energy content and rate capability of any market- ready cathode material. Commercially available
Application of vitreous and graphitic large-area carbon surfaces as field-emission cathodes
NASA Astrophysics Data System (ADS)
Hunt, Charles E.; Wang, Yu
2005-09-01
Numerous carbon bulk or thin-film materials have been used as field-emission cathodes. Most of these can be made into large-area and high-current field-emission cathodes without the use of complex IC fabrication techniques. Some of these exhibit low-extraction field, low work-function, high ruggedness, chemical stability, uniform emission, and low-cost manufacturability. A comparison of all of these materials is presented. Two viable cathode materials, reticulated vitreous carbon (RVC) and graphite paste are examined here and compared.
NASA Astrophysics Data System (ADS)
Xu, Lin; Wang, Senlin; Zhang, Xiao; He, Taobin; Lu, Fengxia; Li, Huichang; Ye, Junhui
2018-01-01
A facile method of preparing LiMnPO4/reduced graphene oxide aerogel (LMP/rGO) as cathodic material was reported here. LiMnPO4 nano-particles were prepared using a facile polyvinyl pyrrolidone-assisted solvothermal route. Then LMP/rGO aerogel was prepared using the accessible restacking method. The influence of the cathodic electrode composition (ratio of rGO to LiMnPO4) on the performance of the LMP/rGO was evaluated by constant-current discharge tests. When compared with 217C g-1 for the pristine LMP, the best LMP/rGO (the content of rGO is 27.3 wt%) exhibits a higher capacity of 464.5C g-1 (at 0.5 A g-1), which presenting the capacity enhance of 114%. Moreover, a lithium-ion hybrid supercapacitor (LIHS) was successfully assembled by using LMP/rGO aerogel as the cathodic electrode and rGO aerogel as the anodic electrode. The LMP/rGO//rGO device achieves excellent specific energy of 16.46 W h kg-1 at a power density of 0.38 kW kg-1, even under the higher specific power of 4.52 kW kg-1, there still holds the specific energy of 11.79 W h kg-1. The LMP/rGO//rGO device maintains 91.2% of the initial capacity after 10,000 cycles (at 2 A g-1), which displays high rate performance and long cycle life. The 3D LMP/rGO aerogel could be a promising candidate material for the lithium-ion hybrid supercapacitors.
Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss
NASA Technical Reports Server (NTRS)
Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)
2010-01-01
The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).
Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss
Manthiram, Arumugam; Wu, Yan
2010-03-16
The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).
Life test results for an ensemble of CO2 lasers
NASA Technical Reports Server (NTRS)
Peruso, C. J.; Degnan, J. J.; Hochuli, U. E.
1978-01-01
The effects of cathode material, cathode operating temperature, anode configuration, window materials, and hydrogen additives on laser lifetime are determined. Internally oxidized copper and silber-copper alloy cathodes were tested. The cathode operating temperature was raised in some tubes through the use of thermal insulation. Lasers incorporating thermally insulated silver copper oxide cathodes clearly yielded the longest lifetimes-typically in excess of 22,000 hours. The use of platinum sheet versus platinum pin anodes had no observable effect on laser lifetime. Similarly, the choice of germanium, cadmium telluride, or zinc selenide as the optical window material appears to have no impact on lifetime.
NASA Astrophysics Data System (ADS)
Syed, Bilal; Zhu, Jianqiang; Polcik, Peter; Kolozsvari, Szilard; Hâkansson, Greger; Johnson, Lars; Ahlgren, Mats; Jöesaar, Mats; Odén, Magnus
2017-06-01
Today's research on the cathodic arc deposition technique and coatings therefrom primarily focuses on the effects of, e.g., nitrogen partial pressure, growth temperature, and substrate bias. Detailed studies on the morphology and structure of the starting material—the cathode—during film growth and its influence on coating properties at different process conditions are rare. This work aims to study the evolution of the converted layer, its morphology, and microstructure, as a function of the cathode material grain size during deposition of Ti-Al-N coatings. The coatings were reactively grown in pure N2 discharges from powder metallurgically manufactured Ti-50 at.% Al cathodes with grain size distribution averages close to 1800, 100, 50, and 10 μm, respectively, and characterized with respect to microstructure, composition, and mechanical properties. The results indicate that for the cathode of 1800 μm grain size the disparity in the work function among parent phases plays a dominant role in the pronounced erosion of Al, which yields the coatings rich in macro-particles and of high Al content. We further observed that a reduction in the grain size of Ti-50 at.% Al cathodes to 10 μm provides favorable conditions for self-sustaining reactions between Ti and Al phases upon arcing to form γ phase. The combination of self-sustaining reaction and the arc process not only result in the formation of hole-like and sub-hole features on the converted layer but also generate coatings of high Al content and laden with macro-particles.
Exploring Lithium Deficiency in Layered Oxide Cathode for Li-Ion Battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Sung-Jin; Uddin, Md-Jamal; Alaboina, Pankaj K.
Abstract or short description: The ever-growing demand for high capacity cathode materials is on the rise since the futuristic applications are knocking on the door. Conventional approach to developing such cathode relies on the lithium-excess materials to operate the cathode at high voltage and extract more lithium-ion. Yet, they fail to satiate the needs because of their unresolved issues upon cycling such as, for lithium manganese-rich layered oxides – their voltage fading, and for as nickel-based layered oxides – the structural transition. Here, in contrast, lithium-deficient ratio is demonstrated as a new approach to attain high capacity at high voltagemore » for layered oxide cathodes. Rapid and cost effective lithiation of a porous hydroxide precursor with lithium deficient ratio acted as a driving force to partially convert the layered material to spinel phase yielding in a multiphase structure (MPS) cathode material. Upon cycling, MPS revealed structural stability at high voltage and high temperature and resulted in fast lithium-ion diffusion by providing a distinctive SEI chemistry – MPS displayed minimum lithium loss in SEI and formed a thinner SEI. MPS thus offer high energy and high power applications and provides a new perspective compared to the conventional layered cathode materials denying the focus for lithium excess material.« less
Smart nickel oxide materials for the applications of energy efficiency and storage
NASA Astrophysics Data System (ADS)
Lin, Feng
The present dissertation studies nickel oxide-based materials for the application of electrochromic windows and lithium-air batteries. The materials were fabricated via radio frequency magnetron sputtering and subsequently post-treated with thermal evaporation and ozone exposure. The strategies to improve electrochromic performance of nickel oxide materials were investigated including compositional control, morphology tuning, modification of electronic structure and interface engineering (i.e., Li2O 2, graphene). The electrochemical properties of the resulting materials were characterized in lithium ion electrolytes. Extremely high performing nickel oxide-based electrochromic materials were obtained in terms of optical modulation, switching kinetics, bleached-state transparency and durability, which promise the implementation of these materials for practical smart windows. With the aid of advanced synchrotron X-ray absorption spectroscopy, it is reported for the first time that the electrochromic effect in multicomponent nickel oxide-based materials arises from the reversible formation of hole states in the NiO6 cluster accompanying with the reversible formation of Li2O2. The reversible formation of Li2O 2 was successfully leveraged with the study of electro-catalysts and cathode materials for lithium-air batteries. The reversibility of Li 2O2 was thoroughly investigated using soft X-ray absorption spectroscopy and theoretical simulation, which substantiates the promise of using electrochromic films as electro-catalysts and/or cathode materials in lithium-air batteries.
Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian
2016-08-01
Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.
NASA Astrophysics Data System (ADS)
Kim, Y. T.; Jiao, Z.; Shikazono, N.
2017-02-01
In the present study, the polarization characteristics of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) - Gd0.1Ce0.9O1.95 (GDC) composite cathodes with different volume ratios were investigated. Samples with volume ratios of 20:80, 30:70, 50:50, 70:30 and 100:0 vol % were tested. The electrochemical impedance spectroscopy tests and current voltage curve measurements were carried out for the current densities from 0 to 0.2 Acm-2 with an interval of 0.05 Acm-2. The results showed that a volume ratio of LSCF:GDC = 30:70 composite cathode led to the lowest overpotential, and the overpotential increased in the order of 30:70, 50:50, 70:30, 100:0, 20:80 vol %. Three dimensional microstructures of composite cathodes were reconstructed and quantified by dual beam focused ion beam-scanning electron microscope (FIB-SEM). The results showed that neither LSCF surface area nor triple phase boundary (TPB) alone could explain the dependence of polarization characteristics on volume ratios. Current and electrochemical potential distributions were simulated by the Lattice Boltzmann method, in which both surface and TPB reactions were considered. Prediction considering both surface and TPB reactions could predict qualitatively the dependence of overpotentials on LSCF - GDC cathode composition.
Multifunctional Structural Composite Batteries for U.S. Army Applications
2007-09-01
rechargeability, and mechanical integrity. LiCoO2 and LiFePO4 are the cathode materials under evaluation. The former is currently used in a large...methods for circumventing or otherwise handling its known limitations. LiFePO4 , a recent material with less established knowledge, has a...Mesh (3 Days, 1 Sided) Milled On Disk (5 days) Ideal A ve ra ge C ap ac ity (m A h/ g LiFePO4 LiCoO2 Figure 4. Average capacity at third cycle
NASA Astrophysics Data System (ADS)
Singhal, Rahul; Das, Suprem R.; Oviedo, Osbert; Tomar, Maharaj S.; Katiyar, Ram S.
Phase pure LiMn 1.5Ni 0.5O 4 powders were synthesized by a chemical synthesis route and were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode and lithium hexafluorophosphate (LiPF 6), dissolved in dimethyl carbonate (DMC) + ethylene carbonate (EC) [1:1, v/v ratio] as electrolyte. The spinel structure and phase purity of the powders were characterized using X-ray diffraction and micro-Raman spectroscopy. The presence of both oxidation and reduction peaks in the cyclic voltammogram revealed Li + extraction and insertion from the spinel structure. The charge-discharge characteristics of the coin cell were performed in the 3.0-4.8 V range. An initial discharge capacity of ∼140 mAh g -1 was obtained with 94% initial discharge capacity retention after 50 repeated cycles. The microstructures and compositions of the cathode before and after electrochemistry were investigated using scanning electron microscopy and energy-dispersive analysis by X-ray analysis, respectively. Using X-ray diffraction, Raman spectroscopy and electrochemical analysis, we correlated the structural stability and the electrochemical performance of this cathode.
Thin-film Rechargeable Lithium Batteries
DOE R&D Accomplishments Database
Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.
1993-11-01
Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.
2014-12-10
AFRL-OSR-VA-TR-2014-0359 Fundamental Materials Studies for Advanced High Power Microwave and Terahertz John Booske UNIVERSITY OF WISCONSIN SYSTEM...12-2014 Final Technical Performance Report October 1, 2011 - September 30, 2014 Fundamental Materials Studies for Advanced High Power Microwave and...emission-barrier scandate cathodes and identify related, alternative cathode materials systems for advanced vacuum electronic cathodes for high power THz
Forecasting waste compositions: A case study on plastic waste of electronic display housings.
Peeters, Jef R; Vanegas, Paul; Kellens, Karel; Wang, Feng; Huisman, Jaco; Dewulf, Wim; Duflou, Joost R
2015-12-01
Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jing-quan; Han, Chong; Jing, Mao-xiang; Yang, Hua; Shen, Xiang-qian; Qin, Shi-biao
2018-06-01
Low electronic and ionic conductivity for LiV3O8 cathode material could lead to poor cycling stability and rate capability, which are considered as the main restraint for its application in Li-ion battery. A novel flake-like LiV3O7.9 material modified by high ionic and electronic conductive Li0.3V2O5/C was fabricated via electrospinning and controlled thermal sintering processes. This oxygen-deficient LiV3O7.9/Li0.3V2O5-C composite electrode sintered at 500 °C exhibits improved rate and cycle stability. The electrode possesses a retention capacity of 151.9mAh/g after 500 cycles at 5C and 84.8mAh/g after 1000 cycles at 10C, respectively. The improvement of the electrochemical performance could be attributed to the synergistic effects of flake-like morphology, oxygen-deficiency and surface modification of Li0.3V2O5/C, which increase the ionic and electronic conductivity of LiV3O8.
In Situ XAS and XRD Studies of Substituted Spinel Lithium Manganese Oxides in the 4-5 V Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, J.; Mukerjee, S.; Yang, X. Q.
Partial substitution of Mn in lithium manganese oxide spinel materials by Cu and Ni greatly affects the electrochemistry and the phase behavior of the cathode. Substitution with either metal or with a combination of both shortens the 4.2 V plateau and results in higher voltage plateaus. In situ x-ray absorption (XAS) studies indicate that the higher voltage plateaus are related to redox processes on the substituents. In situ x-ray diffraction (XRD) on LiCu{sub 0.5}Mn{sub 1.5}O{sub 4} shows single phase behavior during the charge and discharge process. Three phases are observed for LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and two phases are observedmore » in the case of LiNi{sub 0.25}Cu{sub 0.25}Mn{sub 1.5}O{sub 4}. The electrolyte stability is dependent on both the operating voltage and the cathode composition. Even though Ni substituted materials have lower voltages, the electrolyte is more stable in cells with the Cu substituted materials.« less
NASA Astrophysics Data System (ADS)
Kim, Sun Jae; Dayaghi, Amir Masoud; Kim, Kun Joong; Choi, Gyeong Man
2017-03-01
Er0.4Bi1.6O3-δ (ESB) composited with La0.8Sr0.2MnO3-δ (LSM) (2:3 or 3:2 wt:wt) with a bonding aid to decrease firing temperature TF are screen-printed on symmetric single cells composed of a Gd0.2Ce0.8O2-δ (GDC) interlayer/yttria-stabilized zirconia (YSZ) electrolyte/GDC interlayer, and their impedance spectra are compared. Addition of 5 wt % CuO to ESB-LSM (3:2 wt:wt) decreases the cathode TF to 650 °C without increasing cathodic polarization resistance (Rp ∼0.19 Ω cm2 at 650 °C). This ESB-LSM composite can be used as a cathode that can be fired at low temperature.
Microstructure-scaled active sites imaging of a solid oxide fuel cell composite cathode
NASA Astrophysics Data System (ADS)
Nagasawa, Tsuyoshi; Hanamura, Katsunori
2017-11-01
Active sites for oxygen reduction reaction in strontium-doped lanthanum manganite (LSM)/scandia-stabilized zirconia (ScSZ) composite cathode of solid oxide fuel cell (SOFC) is visualized in microstructure scale by oxygen isotope labeling. In order to quench a reaction, a SOFC power generation equipment with a nozzle for direct helium gas impinging jet to the cell is prepared. A typical electrolyte-supported cell is operated by supplying 18O2 at 1073 K and abruptly quenched to room temperature. During the quench, the temperature of the cell is decreased from 1073 K to 673 K in 1 s. The 18O concentration distribution in the cross section of the quenched cathode is obtained by secondary ion mass spectrometry (SIMS) with a spatial resolution of 50 nm. The obtained 18O mapping gives the first visualization of highly distributed active sites in the composite cathode both in macroscopic and particle scales.
NASA Astrophysics Data System (ADS)
Fujita, Yukiko; Iwase, Hiroaki; Shida, Kenji; Liao, Jinsun; Fukui, Takehisa; Matsuda, Motohide
2017-09-01
Li2FeSiO4 is a promising cathode active material for lithium-ion batteries due to its high theoretical capacity. Spray-freezing/freeze-drying, a practical process reported for the synthesis of various ceramic powders, is applied to the synthesis of Li2FeSiO4/C composite powders and high-performance Li2FeSiO4/C composite powders are successfully synthesized by using starting solutions containing both Indian ink and glucose as carbon sources followed by heating. The synthesized composite powders have a unique structure, composed of Li2FeSiO4 nanoparticles coated with a thin carbon layer formed by the carbonization of glucose and carbon nanoparticles from Indian ink. The carbon layer enhances the electrochemical reactivity of the Li2FeSiO4, and the carbon nanoparticles play a role in the formation of electron-conducting paths in the cathode. The composite powders deliver an initial discharge capacity of 195 and 137 mAh g-1 at 0.1 C and 1 C, respectively, without further addition of conductive additive. The discharge capacity at 1 C is 72 mAh g-1 after the 100th cycle, corresponding to approximately 75% of the capacity at the 2nd cycle.
Chen, Ru-Jun; Zhang, Yi-Bo; Liu, Ting; Xu, Bing-Qing; Lin, Yuan-Hua; Nan, Ce-Wen; Shen, Yang
2017-03-22
All-solid-state bulk-type lithium ion batteries (LIBs) are considered ultimate solutions to the safety issues associated with conventional LIBs using flammable liquid electrolyte. The development of bulk-type all-solid-state LIBs has been hindered by the low loading of active cathode materials, hence low specific surface capacity, and by the high interface resistance, which results in low rate and cyclic performance. In this contribution, we propose and demonstrate a synergistic all-composite approach to fabricating flexible all-solid-state LIBs. PEO-based composite cathode layers (filled with LiFePO 4 particles) of ∼300 μm in thickness and composite electrolyte layers (filled with Al-LLZTO particles) are stacked layer-by-layer with lithium foils as negative layer and hot-pressed into a monolithic all-solid-state LIB. The flexible LIB delivers a high specific discharge capacity of 155 mAh/g, which corresponds to an ultrahigh surface capacity of 10.8 mAh/cm 2 , exhibits excellent capacity retention up to at least 10 cycles and could work properly under harsh operating conditions such as bending or being sectioned into pieces. The all-composite approach is favorable for improving both mesoscopic and microscopic interfaces inside the all-solid-state LIB and may provide a new toolbox for design and fabrication of all-solid-state LIBs.
Hu, Lei; Lu, Yue; Li, Xiaona; Liang, Jianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai
2017-03-01
Developing appropriate sulfur cathode materials in carbonate-based electrolyte is an important research subject for lithium-sulfur batteries. Although several microporous carbon materials as host for sulfur reveal the effect, methods for producing microporous carbon are neither easy nor well controllable. Moreover, due to the complexity and limitation of microporous carbon in their fabrication process, there has been rare investigation of influence on electrochemical behavior in the carbonate-based electrolyte for lithium-sulfur batteries by tuning different micropore size(0-2 nm) of carbon host. Here, we demonstrate an immediate carbonization process, self-activation strategy, which can produce microporous carbon for a sulfur host from alkali-complexes. Besides, by changing different alkali-ion in the previous complex, the obtained microporous carbon exhibits a major portion of ultramicropore (<0.7 nm, from 54.9% to 25.8%) and it is demonstrated that the micropore structure of the host material plays a vital role in confining sulfur molecule. When evaluated as cathode materials in a carbonate-based electrolyte for Li-S batteries, such microporous carbon/sulfur composite can provide high reversible capacity, cycling stability and good rate capability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Park, Joong Sun; Mane, Anil U.; Elam, Jeffrey W.; ...
2017-07-19
Atomic layer deposition (ALD) of the well-known Al 2O 3 on a LiCoO 2 system is compared with that of a newly developed AlW xF y material. ALD coatings (~1 nm thick) of both materials are shown to be effective in improving cycle life through mitigation of surface-induced capacity losses. However, the behaviors of Al 2O 3 and AlW xF y are shown to be significantly different when coated directly on cathode particles versus deposition on a composite electrode composed of active materials, carbons, and binders. Electrochemical impedance spectroscopy, galvanostatic intermittent titration techniques, and four-point measurements suggest that electron transportmore » is more limited in LiCoO 2 particles coated with Al 2O 3 compared with that in particles coated with AlW xF y. Here, the results show that proper design/choice of coating materials (e.g., AlW xF y) can improve capacity retention without sacrificing electron transport and suggest new avenues for engineering electrode–electrolyte interfaces to enable high-voltage operation of lithium-ion batteries.« less
NASA Astrophysics Data System (ADS)
Metcalfe, C.; Harris, J.; Kuhn, J.; Marr, M.; Kesler, O.
2013-06-01
A composite NiO-Y0.15Zr0.85O1.925 (YSZ) agglomerated feedstock having nanoscale NiO and YSZ primary particles was used to fabricate anodes having sub-micrometer structure. These anodes were incorporated into two different metal-supported SOFC architectures, which differ in the order of electrode deposition. The composition of the composite Ni-YSZ anodes is controllable by selection of the agglomerate size fraction and standoff distance, while the porosity is controllable by selection of agglomerate size fraction and addition of a sacrificial pore-forming material. A bi-layer anode was fabricated having a total porosity of 33% for the diffusion layer and 23% porosity for the functional layer. A power density of 630 mW/cm2 was obtained at 750 °C in humidified H2 with cells having the bi-layer anode deposited on the metal support. Cells having the cathode deposited on the metal support showed poor performance due to a significant number of vertical cracks through the electrolyte, allowing excessive gas cross-over between the anode and the cathode compartments.
A closed loop process for recycling spent lithium ion batteries
NASA Astrophysics Data System (ADS)
Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan
2014-09-01
As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.
2011-03-04
efficiency of cathode and anode materials in PEMFC (Proton Exchange Membrane Fuel Cells) 5a. CONTRACT NUMBER FA23861014012 5b. GRANT NUMBER 5c. PROGRAM...Rev. 8-98) Prescribed by ANSI Std Z39-18 Theoretical studies in enhancing the efficiency of cathode and anode materials in PEMFC (Proton Exchange
Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries
NASA Astrophysics Data System (ADS)
Luo, Chao
To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit exceptional electrochemical performance owing to the high conductivity of carbon and effective restriction of polysulfides and polyselenides in carbon matrix, which avoids shuttle reaction.
Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A; Granwehr, Josef
2018-01-07
Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi 0.5 Mn 1.5 O 4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn 3+ on the Li + motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.
NASA Astrophysics Data System (ADS)
Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana; Paulus, Anja; Kungl, Hans; Eichel, Rüdiger-A.; Granwehr, Josef
2018-01-01
Despite the multitude of analytical methods available to characterize battery cathode materials, identifying the factors responsible for material aging is still challenging. We present the first investigation of transient redox processes in a spinel cathode during electrochemical cycling of a lithium ion battery by in operando electron paramagnetic resonance (EPR). The battery contains a LiNi0.5Mn1.5O4 (LNMO) spinel cathode, which is a material whose magnetic interactions are well understood. The evolution of the EPR signal in combination with electrochemical measurements shows the impact of Mn3+ on the Li+ motion inside the spinel. Moreover, state of charge dependent linewidth variations confirm the formation of a solid solution for slow cycling, which is taken over by mixed models of solid solution and two-phase formation for fast cycling due to kinetic restrictions and overpotentials. Long-term measurements for 480 h showed the stability of the investigated LNMO, but also small amounts of cathode degradation products became visible. The results point out how local, exchange mediated magnetic interactions in cathode materials are linked with battery performance and can be used for material characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracibar, A.; Carrasco, J.; Saurel, D.
Olivine NaFePO4 has recently attracted the attention of the scientific community as a promising cathode material for Na-ion batteries. In this work we combine density functional theory (DFT) calculations and high resolution synchrotron X-ray diffraction (HRXRD) experiments to study the phase stability of NaxFePO4 along the whole range of sodium compositions (0 ≤ x ≤ 1). DFT calculations reveal the existence of two intermediate structures governing the phase stability at x = 2/3 and x = 5/6. This is in contrast to isostructural LiFePO4, which is a broadly used cathode in Li-ion batteries. Na2/3FePO4 and Na5/6FePO4 ground states both alignmore » vacancies diagonally within the ab plane, coupled to a Fe2+/Fe3+ alignment. HRXRD data for NaxFePO4 (2/3 < x < 1) materials show common superstructure reflections up to x = 5/6 within the studied compositions. The computed intercalation voltage profile shows a voltage difference of 0.16 V between NaFePO4 and Na2/3FePO4 in agreement with the voltage discontinuity observed experimentally during electrochemical insertion.« less
Shui, Jiang-Lan; Karan, Naba K; Balasubramanian, Mahalingam; Li, Shu-You; Liu, Di-Jia
2012-10-10
Atomically dispersed Fe/N/C composite was synthesized and its role in controlling the oxygen evolution reaction during Li-O(2) battery charging was studied by use of a tetra(ethylene glycol) dimethyl ether-based electrolyte. Li-O(2) cells using Fe/N/C as the cathode catalyst showed lower overpotentials than α-MnO(2)/carbon catalyst and carbon-only material. Gases evolved during the charge step contained only oxygen for Fe/N/C cathode catalyst, whereas CO(2) was also detected in the case of α-MnO(2)/C or carbon-only material; this CO(2) was presumably generated from electrolyte decomposition. Our results reiterate the catalytic effect in reducing overpotentials, which not only enhances battery efficiency but also improves its lifespan by reducing or eliminating electrolyte decomposition. The structure of the Fe/N/C catalyst was characterized by transmission electron microscopy, scanning transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, and X-ray absorption spectroscopy. Iron was found to be uniformly distributed within the carbon matrix, and on average, Fe was coordinated by 3.3 ± 0.6 and 2.2 ± 0.3 low Z elements (C/N/O) at bond distances of ~1.92 and ~2.09 Å, respectively.
Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries
NASA Astrophysics Data System (ADS)
Williford, Ralph E.; Viswanathan, Vilayanur V.; Zhang, Ji-Guang
The entropy changes (Δ S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). A thermal model based on the fundamental properties of individual electrodes was used to obtain transient and equilibrium temperature distributions of Li-ion batteries. The results from theoretical simulations were compared with results obtained in experimental measurements. We found that the detailed shape of the entropy curves strongly depends on the manufacturer of the materials even for the same nominal compositions. LiCoO 2 has a much larger entropy change than LiNi xCo yMn zO 2. This means that LiNi xCo yMn zO 2 is much more thermodynamically stable than LiCoO 2). The temperatures around the positive terminal of a prismatic battery are consistently higher than those at the negative terminal, due to differences in the thermal conductivities of the different terminal connectors. When all other simulation parameters are the same, simulations that use a battery-averaged entropy tend to overestimate the predicted temperatures when compared with simulations that use individual entropies for the anode and the cathode, due to computational averaging.
NASA Astrophysics Data System (ADS)
Kumar, Ajay; Jayakumar, O. D.; Naik, V. M.; Nazri, G. A.; Naik, R.
Lithium transition metal orthosilicates, such as Li2FeSiO4 and Li2MnSiO4, as cathode material have attracted much attention lately due to their high theoretical capacity ( 330 mAh/g), low cost, and environmental friendliness. However, they suffer from poor electronic conductivity and slow lithium ion diffusion in the solid phase. Several cation-doped orthosilicates have been studied to improve their electrochemical performance. We have synthesized partially Mg-substituted Li2Mgx Fe1-x SiO4-C, (x = 0.0, 0.01, 0.02, and 0.04) nano-composites by solvothermal method followed by annealing at 600oC in argon flow. The structure and morphology of the composites were characterized by XRD, SEM and TEM. The surface area and pore size distribution were measured by using N2 adsorption/desorption curves. The electrochemical performance of the Li2MgxFe1-x SiO4-C composites was evaluated by Galvanostatic cycling against metallic lithium anode, electrochemical impedance spectroscopy, and cyclic voltammetry. Li2Mg0.01Fe0.99SiO4-C sample shows a capacity of 278 mAh/g (at C/30 rate in the 1.5-4.6 V voltage window) with an excellent rate capability and stability, compared to the other samples. We attribute this observation to its higher surface area, enhanced electronic conductivity and higher lithium ion diffusion coefficient.
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm; ...
2016-12-01
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
The lithium-ion battery (LIB) electrode represents a complex porous composite, consisting of multiple phases including active material (AM), conductive additive, and polymeric binder. This study proposes a mesoscale model to probe the effects of the cathode composition, e.g., the ratio of active material, conductive additive, and binder content, on the electrochemical properties and performance. The results reveal a complex nonmonotonic behavior in the effective electrical conductivity as the amount of conductive additive is increased. Insufficient electronic conductivity of the electrode limits the cell operation to lower currents. Once sufficient electron conduction (i.e., percolation) is achieved, the rate performance can bemore » a strong function of ion-blockage effect and pore phase transport resistance. In conclusion, even for the same porosity, different arrangements of the solid phases may lead to notable difference in the cell performance, which highlights the need for accurate microstructural characterization and composite electrode preparation strategies.« less
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
NASA Astrophysics Data System (ADS)
Zagórski, Krzysztof; Wachowski, Sebastian; Szymczewska, Dagmara; Mielewczyk-Gryń, Aleksandra; Jasiński, Piotr; Gazda, Maria
2017-06-01
Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm-2 at 600 °C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Nie, Anmin; Zheng, Jianming
Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. Based on atomic level structural imaging, elemental mapping of the pristine and cycled samples and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions towards the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of amore » Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m →I41→Spinel. For the first time, it is found that the surface facet terminated with pure cation is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for designing of cathode materials with both high capacity and voltage stability during cycling.« less
He, Jiarui; Chen, Yuanfu; Lv, Weiqiang; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2016-12-27
Owing to the high theoretical specific capacity (1166 mAh g -1 ), lithium sulfide (Li 2 S) has been considered as a promising cathode material for Li-S batteries. However, the polysulfide dissolution and low electronic conductivity of Li 2 S limit its further application in next-generation Li-S batteries. In this report, a nanoporous Li 2 S@C-Co-N cathode is synthesized by liquid infiltration-evaporation of ultrafine Li 2 S nanoparticles into graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) derived from metal-organic frameworks. The obtained Li 2 S@C-Co-N architecture remarkably immobilizes Li 2 S within the cathode structure through physical and chemical molecular interactions. Owing to the synergistic interactions between C-Co-N and Li 2 S nanoparticles, the Li 2 S@C-Co-N composite delivers a reversible capacity of 1155.3 (99.1% of theoretical value) at the initial cycle and 929.6 mAh g -1 after 300 cycles, with nearly 100% Coulombic efficiency and a capacity fading of 0.06% per cycle. It exhibits excellent rate capacities of 950.6, 898.8, and 604.1 mAh g -1 at 1C, 2C, and 4C, respectively. Such a cathode structure is promising for practical applications in high-performance Li-S batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan
Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less
Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...
2018-01-09
Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less
Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions.
Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan
2016-05-23
Lithium-sulfur batteries are among the most promising electrochemical energy storage devices of the near future. Especially the low price and abundant availability of sulfur as the cathode material and the high theoretical capacity in comparison to state-of-the art lithium-ion technologies are attractive features. Despite significant research achievements that have been made over the last years, fundamental (electro-) chemical questions still remain unanswered. This review addresses ten crucial questions associated with lithium-sulfur batteries and critically evaluates current research with respect to them. The sulfur-carbon composite cathode is a particular focus, but its complex interplay with other hardware components in the cell, such as the electrolyte and the anode, necessitates a critical discussion of other cell components. Modern in situ characterisation methods are ideally suited to illuminate the role of each component. This article does not pretend to summarise all recently published data, but instead is a critical overview over lithium-sulfur batteries based on recent research findings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming
2014-05-27
Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li(+)-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material.
Zhang, Lu-Lu; Duan, Song; Yang, Xue-Lin; Liang, Gan; Huang, Yun-Hui; Cao, Xing-Zhong; Yang, Jing; Ni, Shi-Bing; Li, Ming
2014-01-01
Cadmium-incorporated Li2FeSiO4/C composites have been successfully synthesized by a solid-state reaction assisted with refluxing. The effect and mechanism of Cd-modification on the electrochemical performance of Li2FeSiO4/C were investigated in detail by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectra, transmission electron microscopy, positron annihilation lifetime spectroscopy and Doppler broadening spectrum, and electrochemical measurements. The results show that Cd not only exists in an amorphous state of CdO on the surface of LFS particles, but also enters into the crystal lattice of LFS. Positron annihilation lifetime spectroscopy and Doppler broadening spectrum analyses verify that Cd-incorporation increases the defect concentration and the electronic conductivity of LFS, thus improve the Li+-ion diffusion process. Furthermore, our electrochemical measurements verify that an appropriate amount of Cd-incorporation can achieve a satisfied electrochemical performance for LFS/C cathode material. PMID:24860942
Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang
2018-05-01
Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S
2015-01-01
To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.
NASA Astrophysics Data System (ADS)
Masset, Patrick J.; Guidotti, Ronald A.
This article presents an overview of cathode materials (except the pyrite FeS 2) used or envisaged in thermally activated ("thermal") batteries. The physicochemical properties and electrochemical performance of different cathode families (oxides, sulfides) are reviewed, including discharge mechanisms, when known.
Fuel cells with doped lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher
Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.
Corrosion control of cement-matrix and aluminum-matrix composites
NASA Astrophysics Data System (ADS)
Hou, Jiangyuan
Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the treatment, the surface was non-uniform due to rusting. Sand blasting also made the surface uniform, but is an expensive process, compared to the water immersion method. For cathodic protection of steel rebar reinforced concrete, mortar overlay containing carbon fibers and latex needed 11% less driving voltage to protect the rebar in concrete than plain mortar overlay. However, multiple titanium electrical contacts were necessary, whether the overlay contained carbon fibers or not. For the same overlay (containing carbon fibers and latex), admixtures in the concrete also made a significant difference on the effect of cathodic protection; concrete with carbon fibers and silica fume needed 18% less driving voltage than plain concrete and 28% less than concrete containing silica fume.
High performance Li2MnO3/rGO composite cathode for lithium ion batteries
NASA Astrophysics Data System (ADS)
Zhao, Wei; Xiong, Lilong; Xu, Youlong; Li, Houli; Ren, Zaihuang
2017-05-01
The novel composite Li2MnO3 (LMO)/reduced graphene oxide (rGO) has been synthesized successfully. Based on the scanning electron microscopy and transmission electron microscopy, LMO is found to distribute separately on the rGO sheets by forming a laminated structure, which is in favor of good electrical contact between the cathode active materials and the rGO matrix, and also facilitates the separation of LMO secondary particles with reduced size. Cyclic voltammetry and electrochemical impedance spectroscopy tests show that the charge transfer resistance decreases from 81.2 Ω for LMO to 29.6 Ω for LMO/rGO composite. The Li-ion diffusion coefficient of LMO/rGO composite is almost triple that of LMO. As a result, the LMO/rGO composite delivers an initial discharge capacity of 284.9 mAh g-1 with a capacity retention of 86.6% after 45 cycles at 0.1 C between 2.0 and 4.6 V. Cycle performance is even better at a higher current density 0.2 C while the retention ratio is up to 97.1% after 45 cycles. The rate capability is also significantly enhanced, and the LMO/rGO composite could exhibit a large discharge capacity of 123.7 mAh g-1 which is more than three times larger than that of LMO (40.8 mAh g-1) at a high rate of 8 C.
NASA Astrophysics Data System (ADS)
Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening
2016-01-01
Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.
Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.
Ku, Heesuk; Jung, Yeojin; Jo, Minsang; Park, Sanghyuk; Kim, Sookyung; Yang, Donghyo; Rhee, Kangin; An, Eung-Mo; Sohn, Jeongsoo; Kwon, Kyungjung
2016-08-05
As the production and consumption of lithium ion batteries (LIBs) increase, the recycling of spent LIBs appears inevitable from an environmental, economic and health viewpoint. The leaching behavior of Ni, Mn, Co, Al and Cu from treated cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles, is investigated with ammoniacal leaching agents based on ammonia, ammonium carbonate and ammonium sulfite. Ammonium sulfite as a reductant is necessary to enhance leaching kinetics particularly in the ammoniacal leaching of Ni and Co. Ammonium carbonate can act as a pH buffer so that the pH of leaching solution changes little during leaching. Co and Cu can be fully leached out whereas Mn and Al are hardly leached and Ni shows a moderate leaching efficiency. It is confirmed that the cathode active materials are a composite of LiMn2O4, LiCoxMnyNizO2, Al2O3 and C while the leach residue is composed of LiNixMnyCozO2, LiMn2O4, Al2O3, MnCO3 and Mn oxides. Co recovery via the ammoniacal leaching is believed to gain a competitive edge on convenitonal acid leaching both by reducing the sodium hydroxide expense for increasing the pH of leaching solution and by removing the separation steps of Mn and Al. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Koyel; Mukhopadhyay, Jayanta, E-mail: jayanta_mu@cgcri.res.in; Barman, Madhurima
2015-12-15
Highlights: • La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2 system varying La-site (0.6–0.54) are studied. • Combustion synthesis technique is used to prepare the powder samples. • Highest electrical conductivity observed with largest A-site deficit composition. • Lowest cathode polarization is found with the same composition (0.02 Ω cm{sup 2}). • Composition with largest A-site deficiency exhibits best performance (2.84 A cm{sup −2}). - Abstract: Effect of A-site non-stoichiometry in strontium doped lanthanum cobalt ferrite (La{sub 1−x}Sr{sub x}Co{sub y}Fe{sub 1−y}O{sub 3−δ}, x = 0.4; y = 0.2) is studied in a systematic manner with variationmore » of ‘A’ site stoichiometry from 1 to 0.94. The perovskite based cathode compositions are synthesized by combustion synthesis. Powder characterizations reveal rhombohedral crystal structure with crystallite size ranging from 29 to 34 nm with minimum lattice spacing of 0.271 nm. Detailed sintering studies along with total DC electrical conductivities are evaluated in the bulk form with variation of sintering temperatures. The electrode polarizations are measured in the symmetric cell configuration by impedance spectroscopy which is found to be the lowest (0.02 Ω cm{sup 2} at 800 °C) for cathode having highest degree of ‘A’-site deficiency. The same cathode composition exhibits a current density of 2.84 A cm{sup −2} (at 0.7 V, 800 °C) in anode-supported single cell. An attempt has been made to correlate the trend of electrical behaviour with increasing ‘A’-site deficiency for such cathode compositions.« less
Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide
Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.
2001-01-01
A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.
Alaboina, Pankaj Kumar; Uddin, Md-Jamal; Cho, Sung-Jin
2017-10-26
Nanotechnology-driven development of cathode materials is an essential part to revolutionize the evolution of the next generation lithium ion batteries. With the progress of nanoprocess and nanoscale surface modification investigations on cathode materials in recent years, the advanced battery technology future seems very promising - Thanks to nanotechnology. In this review, an overview of promising nanoscale surface deposition methods and their significance in surface functionalization on cathodes is extensively summarized. Surface modified cathodes are provided with a protective layer to overcome the electrochemical performance limitations related to side reactions with electrolytes, reduce self-discharge reactions, improve thermal and structural stability, and further enhance the overall battery performance. The review addresses the importance of nanoscale surface modification on battery cathodes and concludes with a comparison of the different nanoprocess techniques discussed to provide a direction in the race to build advanced lithium-ion batteries.
Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; ...
2016-07-02
The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less
Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumta, Prashant N.; Saha, Partha; Datta, Moni Kanchan
The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo 6Z 8 and the precursors have a general formula of M xMo 6Z 8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.
Mixed ionic-electronic conductors for electrodes of barium cerate-based SOFCS
NASA Astrophysics Data System (ADS)
Wu, Zhonglin
Gadolinium doped barium cerates (BCGs) have been identified as promising electrolyte materials for intermediate-temperature solid oxide fuel cells (SOFCs). It is crucial to develop compatible electrode materials for such electrolytes. Mixed ionic-electronic conductor (MIEC) electrode materials developed for SOFCs based on yttrium-stabilized zirconia (YSZ) may be used as electrode materials for BCG-based SOFCs; but a careful re-evaluation is required due to the intrinsic differences between BCG and YSZ. The performance of these electrode materials depends critically the transport of ionic and electronic species as well as gas. Accordingly, a profound understanding of transport in MIEC electrodes is imperative to effective design of high performance SOFCs. In this thesis, ambipolar transport in composite MIEC electrodes has been modeled using percolation theory to predict the effect of volume fractions of constituent phases and porosity on ambipolar conductivity. Transport and electrode kinetics of homogeneous MIEC electrodes have also been formulated under a steady-state condition to predict the distributions of ionic defects and current carried by each defect in such electrodes. Effects of catalytic properties, transport properties, and microstructure of porous electrodes and interfaces on the electrode performance are investigated. Under the guidelines of the theoretical modeling, several MIEC electrode materials are developed. Lasb{1-x}Srsb{x}Cosb{1-x}Fesb{y}Osb{3-delta} homogeneous materials are studied as cathode materials. However, the interfacial resistance seems too high due to the lack of catalytic activity at intermediate temperatures. Results indicate that Ag-Bisb{1.5}Ysb{0.5}Osb3 composite MIECs are good cathode materials when the volume fractions of constituent phases and porosity are carefully controlled. Such electrodes have low interfacial resistance, better binding strength, and smaller thermal mismatch with the BCG electrolyte, compared to other metal electrodes (such as Pt and Ag). Ni-BCG composite MIECs are studied as anode materials. It is found that electrodes prepared from NiO and reduced to Ni in situ is not catalytically active because of diffusion of NiO into BCG, which forms a resistive layer. Electrodes prepared from Ni metal and fired in an inert or reducing atmosphere exhibit low interfacial resistance and good compatibility with BCG electrolyte. Stability of these developed electrode materials is investigated under conditions pertinent to SOFCs.
Mixed Conducting Electrodes for Better AMTEC Cells
NASA Technical Reports Server (NTRS)
Ryan, Margaret; Williams, Roger; Homer, Margie; Lara. Liana
2003-01-01
Electrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles. An understanding of the roles played by the two types of conduction in the cathode of a sodium-based AMTEC cell is prerequisite to understanding the advantages afforded by these materials. In a sodium-based AMTEC cell, the anode face of an anode/solid-electrolyte/cathode sandwich is exposed to Na vapor at a suitable pressure. Upon making contact with the solid electrolyte on the anode side, Na atoms oxidize to form Na+ ions and electrons. Na+ ions then travel through the electrolyte to the cathode. Na+ ions leave the electrolyte at the cathode/electrolyte interface and are reduced by electrons that have been conducted through an external electrical load from the anode to the cathode. Once the Na+ ions have been reduced to Na atoms, they travel through the cathode to vaporize into a volume where the Na vapor pressure is much lower than it is on the anode side. Thus, the cathode design is subject to competing requirements to be thin enough to allow transport of sodium to the low-pressure side, yet thick enough to afford adequate electronic conductivity. The concept underlying the development of the present mixed conducting electrode materials is the following: The constraint on the thickness of the cathode can be eased by incorporating Na+ -ionconducting material to facilitate transport of sodium through the cathode in ionic form. At the same time, by virtue of the electronically conducting material mixed with the ionically conducting material, reduction of Na+ ions to Na atoms can take place throughout the thickness of the cathode. The net effect is to reduce the diffusion and flow resistance to sodium through the electrode while reducing the electronic resistance by providing shorter conduction paths for electrons. Reduced resistance to both sodium transport and electronic conductivity results in an increase in electric power output.
Methanol-tolerant cathode catalyst composite for direct methanol fuel cells
Zhu, Yimin; Zelenay, Piotr
2006-09-05
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of Pt.sub.3Cr/C so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells
Zhu, Yimin; Zelenay, Piotr
2006-03-21
A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.
Wu, Feng; Li, Ning; Su, Yuefeng; Zhang, Linjing; Bao, Liying; Wang, Jing; Chen, Lai; Zheng, Yu; Dai, Liqin; Peng, Jingyuan; Chen, Shi
2014-06-11
Lack of high-performance cathode materials has become a technological bottleneck for the commercial development of advanced Li-ion batteries. We have proposed a biomimetic design and versatile synthesis of ultrathin spinel membrane-encapsulated layered lithium-rich cathode, a modification by nanocoating. The ultrathin spinel membrane is attributed to the superior high reversible capacity (over 290 mAh g(-1)), outstanding rate capability, and excellent cycling ability of this cathode, and even the stubborn illnesses of the layered lithium-rich cathode, such as voltage decay and thermal instability, are found to be relieved as well. This cathode is feasible to construct high-energy and high-power Li-ion batteries.
Polymer-Oxide Nanolayer/Al Composite Cathode for Efficient Polymer Light-Emitting Diodes
2007-06-30
4. Influence of polymer gate dielectrics on n-channel conduction of pentacene -based organic field-effect transistors J. Appl. Phys. 101, 124505...molecular materials, including rubrene, 1,3,5-tris(2-N-phenyl-benzimidzolyl)benzene (TPBI), pentacene , and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline...BCP, and pentacene . The inset in Fig. 3 presents the molecular structures. TPBI is often utilized as an effective electron injection and hole-blocking
Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi
2014-05-27
Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.
Zheng, Shiyou; Han, Pan; Han, Zhuo; Zhang, Huijuan; Tang, Zhihong; Yang, Junhe
2014-04-29
High stable C/S composites are fabricated by a novel high-temperature sulfur infusion into micro-mesoporous carbon method following with solvent cleaning treatment. The C/S composite cathodes show high Coulombic efficiency, long cycling stability and good rate capability in the electrolyte of 1.0 M LiPF6 + EC/DEC (1:1 v/v), for instance, the reversible capacity of the treated C/S-50 (50% S) cathode retains around 860 mAh/g even after 500 cycles and the Coulombic efficiency is close to 100%, which demonstrates the best electrochemical performance of carbon-sulfur composite cathodes using the carbonate-based electrolyte reported to date. It is believed that the chemical bond of C-S is responsible for the superior electrochemical properties in Li-S battery, that is, the strong interaction between S and carbon matrix significantly improves the conductivity of S, effectively buffers the structural strain/stress caused by the large volume change during lithiation/delithiation, completely eliminates the formation of high-order polysulfide intermediates, and substantially avoids the shuttle reaction and the side reaction between polysulfide anions and carbonate solvent, and thus enables the C/S cathode to use conventional carbonate-based electrolytes and achieve outstanding electrochemical properties in Li-S battery. The results may substantially contribute to the progress of the Li-S battery technology.
Coating of porous carbon for use in lithium air batteries
Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W
2015-04-14
A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.
Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying
2016-04-01
An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun
2014-10-15
Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.; Holland, C. E.
1985-01-01
During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.
Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
Yu, Seung-Ho; Feng, Xinran; Zhang, Na; Seok, Jeesoo; Abruña, Héctor D
2018-02-20
The need/desire to lower the consumption of fossil fuels and its environmental consequences has reached unprecedented levels in recent years. A global effort has been undertaken to develop advanced renewable energy generation and especially energy storage technologies, as they would enable a dramatic increase in the effective and efficient use of renewable (and often intermittent) energy sources. The development of electrical energy storage (EES) technologies with high energy and power densities, long life, low cost, and safe use represents a challenge from both the fundamental science and technological application points of view. While the advent and broad deployment of lithium-ion batteries (LIBs) has dramatically changed the EES landscape, their performance metrics need to be greatly enhanced to keep pace with the ever-increasing demands imposed by modern consumer electronics and especially the emerging automotive markets. Current battery technologies are mostly based on the use of a transition metal oxide cathode (e.g., LiCoO 2 , LiFePO 4 , or LiNiMnCoO 2 ) and a graphite anode, both of which depend on intercalation/insertion of lithium ions for operation. While the cathode material currently limits the battery capacity and overall energy density, there is a great deal of interest in the development of high-capacity cathode materials as well as anode materials. Conversion reaction materials have been identified/proposed as potentially high-energy-density alternatives to intercalation-based materials. However, conversion reaction materials react during lithiation to form entirely new products, often with dramatically changed structure and chemistry, by reaction mechanisms that are still not completely understood. This makes it difficult to clearly distinguish the limitations imposed by the mechanism and practical losses from initial particle morphology, synthetic approaches, and electrode preparations. Transition metal compounds such as transition metal oxides, sulfides, fluorides, phosphides, and nitrides can undergo conversion reactions yielding materials with high theoretical capacity (generally from 500 to 1500 mA h g -1 ). In particular, a number of transition metal oxides and sulfides have shown excellent electrochemical properties as high-capacity anode materials. In addition, some transition metal fluorides have shown great potential as cathode materials for Li rechargeable batteries. In this Account we present mechanistic studies, with emphasis on the use of operando methods, of selected examples of conversion-type materials as both potentially high-energy-density anodes and cathodes in EES applications. We also include examples of the conceptually similar conversion-type reactions involving chalcogens and halogens, with emphasis on the Li-S system. In this case we focus on the problems arising from the low electrical conductivities of elemental sulfur and Li 2 S and the "redox shuttle" phenomena of polysulfides. In addition to mechanistic insights from the use of operando methods, we also cover several key strategies in electrode materials design such as controlling the size, morphology, composition, and architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, Corie L.; Solberg, Scott E.
3-dimensional (3D) electrode architectures have been explored as a means to decouple power and energy trade-offs in thick battery electrodes. Limited work has been published which systematically examines the impact of these architectures at the pouch cell level. This paper conducts an analysis on the potential capacity gains that can be realized with thick co-extruded electrodes in a pouch cell. Moreover, our findings show that despite lower active material composition for each cathode layer, the effective gain in thickness and active material loading enables pouch cell capacity gains greater than 10% with a Lithium Nickel Manganese Cobalt Oxide (NMC) materialsmore » system.« less
Fibrous Carbon-Metallic Materials and a Method of Manufacturing Carbon-Metallic Fibrous Materials,
1983-05-12
for obtaining solid compositions. Example 1. A carbon unwoven fabric obtained through carbonization of polyacrylic fabric is polarized anodically in...a l.5n solution of potassium carbonate, using a current load of l5mA/cm2 for 30 seconds, and then is cathodically polarized in the same solution using...bathcontaining 30g/l Of CuCO3’Cu(OH)2, 100g/1 of potassium -sodium tartrate,50g/l of KOH and 25g/l of 40% formalin. • i The length of time in the
NASA Astrophysics Data System (ADS)
Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team
2015-03-01
Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.
Ab initio study of perovskite type oxide materials for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lee, Yueh-Lin
2011-12-01
Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen exchange rates, and key OR energetics of the SOFC cathode perovskites, can be described by a single descriptor, either the bulk O p-band or the bulk oxygen vacancy formation energy. These simple descriptors will further enable first-principles optimization/design of new SOFC cathodes.
Performance evaluation of Mn and Fe doped SrCo0.9Nb0.1O3-δ cathode for IT-SOFC application
NASA Astrophysics Data System (ADS)
Bele, Lokesh; Lenka, R. K.; Patro, P. K.; Muhmood, L.; Mahata, T.; Sinha, P. K.
2018-02-01
Cathode materials of Mn and Fe doped SrCo0.9Nb0.1O3-δ, are synthesized by solid state route for intermediate temperature fuel cell applications. Phase pure material is obtained after calcining the precursors at 1100 °C. Phase compatibility is observed between this novel cathode material with gadolinia doped ceria (GDC) electrolyte material as reflected in the diffraction pattern. The state of art YSZ electrolyte is not compatible with this cathode material. Average thermal expansion coefficient of the material varies between 17 to 22 X 10-6 K-1 on doping, from room temperature to 800 °C. Increase in thermal expansion coefficient is observed with Mn and Fe doping associated with the loss of oxygen from the crystal. The electrical conductivity of the cathode material decreases with Fe and Mn doping. Mn doped samples show lowest conductivity. From the symmetric cell measurement lower area specific resistance (0.16 Ω-cm2) is obtained for un-doped samples, at 850 °C. From the initial results it can be inferred that Mn/Fe doping improves neither the thermal expansion co-efficient nor the electrochemical activity.
Yao, Ying; Wu, Feng
2017-09-20
An Li-O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li-O 2 battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing "waste" such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Ying; Wu, Feng
An Li–O 2 battery requires the oxygen-breathing cathode to be highly electronically conductive, rapidly oxygen diffusive, structurally stable, and often times electrocatalytically active. Catalyst-decorated porous carbonaceous materials are the chosen air cathode in this regard. Alternatively, biomass-derived carbonaceous materials possess great ability to remove heavy and toxic metal ions from waste, forming a metal-adsorbed porous carbonaceous material. The similar structure between the air cathode and the metal-adsorbed biomass-derived carbon nicely bridges these two irrelevant areas. In this study, we investigated the electrochemical activity of a biochar material Ag-ESB directly synthesized from ethanol sludge residue in a rechargeable aprotic Li–O 2more » battery. Ag ions were adsorbed from sewage and became Ag nanoparticles with uniform coverage on the biochar surface. The as-prepared material exhibits good electrochemical behavior in battery testing, especially toward the battery efficiency and cyclability. This study provides the possibility of synthetically efficient cathode material by reusing “waste” such as biofuel sludge residue. It is an economically and environmentally friendly approach both for an energy-storage system and for waste recycling.« less
Chromium (V) compounds as cathode material in electrochemical power sources
Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.
A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.
Chromium (V) compounds as cathode material in electrochemical power sources
Delnick, Frank M.; Guidotti, Ronald A.; McCarthy, David K.
1985-01-01
A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca.sub.5 (CrO.sub.4).sub.3 Cl, Ca.sub.5 (CrO.sub.4).sub.3 OH, and Cr.sub.2 O.sub.5. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.
Wang, Xinran; Bi, Xuanxuan; Wang, Shaona; Zhang, Yi; Du, Hao; Lu, Jun
2018-05-16
The high theoretical energy density of lithium-sulfur (Li-S) batteries makes them an alternative battery technology to lithium ion batteries. However, Li-S batteries suffer from low sulfur loading, poor charge transport, and dissolution of lithium polysulfide. In our study, we use the lithiated S, Li 2 S, as the cathode material, coupled with electrospun TiO 2 -impregnated hollow carbon nanofibers (TiO 2 -HCFs), which serve as the conductive agent and protective barrier for Li 2 S in Li-S batteries. TiO 2 -HCFs provide much improved electron/ionic conductivity and serve as a physical barrier, which prevents the dissolution of lithium polysulfides. The Li 2 S/TiO 2 -HCF composite delivers a discharge capacity of 851 mA h g Li 2 S -1 at 0.1C and the bilayer TiO 2 -HCFs/Li 2 S/TiO 2 -HCF composite delivers a high specific capacity of 400 mA h g Li 2 S -1 at 5C.
Rui, Xianhong; Zhu, Jixin; Sim, Daohao; Xu, Chen; Zeng, Yi; Hng, Huey Hoon; Lim, Tuti Mariana; Yan, Qingyu
2011-11-01
Reduced graphene oxide (rGO) supported highly porous polycrystalline V(2)O(5) spheres (V(2)O(5)/rGO) were prepared by using a solvothermal approach followed by an annealing process. Initially, reduced vanadium oxide (rVO) nanoparticles with sizes in the range of 10-50 nm were formed through heterogeneous nucleation on rGO sheets during the solvothermal process. These rVO nanoparticles were oxidized to V(2)O(5) after the annealing process in air at 350 °C and assembled into polycrystalline porous spheres with sizes of 200-800 nm. The weight ratio between the rGO and V(2)O(5) is tunable by changing the weight ratio of the precursors, which in turn affects the morphology of V(2)O(5)/rGO composites. The V(2)O(5)/rGO composites display superior cathode performances with highly reversible specific capacities, good cycling stabilities and excellent rate capabilities (e.g. 102 mA h g(-1) at 19 C).
Polarization study on doped lanthanum gallate electrolyte using impedance spectroscopy
NASA Astrophysics Data System (ADS)
Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.
2004-06-01
Alternating current complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/La1-x Sr x Ga1-y Mg y O3 (LSGM) electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for solid oxide fuel cell (SOFC) electrodes. Cathode materials include La1-x Sr x MnO3 (LSM), La1-x Sr x Co y Fe1-y O3 (LSCF), a two-phase particulate composite consisting of LSM and doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + Ce0.85Gd0.15O2 composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolytes.
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
Device for providing high-intensity ion or electron beam
McClanahan, Edwin D.; Moss, Ronald W.
1977-01-01
A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.
Molten carbonate fuel cell cathode with mixed oxide coating
Hilmi, Abdelkader; Yuh, Chao-Yi
2013-05-07
A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.
Organic photosensitive cells having a reciprocal-carrier exciton blocking layer
Rand, Barry P [Princeton, NJ; Forrest, Stephen R [Princeton, NJ; Thompson, Mark E [Anaheim Hills, CA
2007-06-12
A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.
New Cathode Material for High Energy-Density Batteries,
Semiconductive metal halides are under investigation as cathode materials for ambient-temperature lithium cells. N-type cadmium fluoride and zinc...fluoride were further characterized as electrodes limited by cathodic passivation in a lithium perchlorate-propylene carbonate electrolyte. The...discharge of cadmium fluoride occurred without passivation, however, in a tetramethylammonium hexafluorophosphate solution in the same solvent. The result
NASA Astrophysics Data System (ADS)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Varley, D.; Lochner, T.; Scheu, C.
2017-10-01
The work in hand presents an electron microscopy based in-depth study of micro- and nanoscale degradation processes that take place during the operation of high-temperature polymer-electrolyte-membrane fuel cells (HT-PEMFCs). Carbon supported Pt particles were used as cathodic catalyst material and the bimetallic, carbon supported Pt/Ru system was applied as anode. As membrane, cross-linked polybenzimidazole was used. Scanning electron microscopy analysis of cross-sections of as-prepared and long-term operated membrane-electrode-assemblies revealed insight into micrometer scale degradation processes: operation-caused catalyst redistribution and thinning of the membrane and electrodes. Transmission electron microscopy investigations were performed to unravel the nanometer scale phenomena: a band of Pt and Pt/Ru nanoparticles was detected in the membrane adjacent to the cathode catalyst layer. Quantification of the elemental composition of several individual nanoparticles and the overall band area revealed that they stem from both anode and cathode catalyst layers. The results presented do not demonstrate any catastrophic failure but rather intermediate states during fuel cell operation and indications to proceed with targeted HT-PEMFC optimization.
Devaraj, A.; Gu, M.; Colby, R.; Yan, P.; Wang, C. M.; Zheng, J. M.; Xiao, J.; Genc, A.; Zhang, J. G.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.
2015-01-01
The distribution of cations in Li-ion battery cathodes as a function of cycling is a pivotal characteristic of battery performance. The transition metal cation distribution has been shown to affect cathode performance; however, Li is notoriously challenging to characterize with typical imaging techniques. Here laser-assisted atom probe tomography (APT) is used to map the three-dimensional distribution of Li at a sub-nanometre spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. As-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions. Cycled material has an overall loss of Li in addition to Ni-, Mn- and Li-rich regions. Spinel LiNi0.5Mn1.5O4 is shown to have a uniform distribution of all cations. APT results were compared to energy dispersive spectroscopy mapping with a scanning transmission electron microscope to confirm the transition metal cation distribution. PMID:26272722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eungje; Park, Joong Sun; Wu, Tianpin
2015-01-01
The substitution of chromium into the composite Li 2MnO 3·LiNi 1/2Mn 1/2O 2cathode dramatically affects the initial electrochemical activation process; however the voltage fade process during cycling persists.
Magnetically attached sputter targets
Makowiecki, D.M.; McKernan, M.A.
1994-02-15
An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.
Magnetically attached sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1994-01-01
An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.
Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity
Huang, Shuping; Wilson, Benjamin E.; Wang, Bo; ...
2015-08-11
We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less
Y-doped Li 8ZrO 6: A Li-Ion Battery Cathode Material with High Capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shuping; Wilson, Benjamin E.; Wang, Bo
We study—experimentally and theoretically—the energetics, structural changes, and charge flows during the charging and discharging processes for a new high-capacity cathode material, Li 8ZrO 6 (LZO), which we study both pure and yttrium-doped. We quantum mechanically calculated the stable delithiated configurations, the delithiation energy, the charge flow during delithiation, and the stability of the delithiated materials. We find that Li atoms are easier to extract from tetrahedral sites than octahedral ones. We calculate a large average voltage of 4.04 eV vs Li/Li + for delithiation of the first Li atom in a primitive cell, which is confirmed by galvanostatic charge/dischargemore » cycling data. Energy calculations indicate that topotactic delithiation is kinetically favored over decomposition into Li, ZrO 2, and O 2 during the charging process, although the thermodynamic energy of the topotactic reaction is less favorable. When one or two lithium atoms are extracted from a primitive cell of LZO, its volume and structure change little, whereas extraction of the third lithium greatly distorts the layered structure. The Li 6ZrO 6 and Li 5ZrO 6 delithiation products can be thermodynamically metastable to release of O 2. Experimentally, materials with sufficiently small particle size for efficient delithiation and relithiation were achieved within an yttrium-doped LZO/carbon composite cathode that exhibited an initial discharge capacity of at least 200 mAh/g over the first 10 cycles, with 142 mAh/g maintained after 60 cycles. Computations predict that during the charging process, the oxygen ion near the Li vacancy is oxidized for both pure LZO and yttrium-doped LZO, which leads to a small-polaron hole.« less
Development of a Stochastically-driven, Forward Predictive Performance Model for PEMFCs
NASA Astrophysics Data System (ADS)
Harvey, David Benjamin Paul
A one-dimensional multi-scale coupled, transient, and mechanistic performance model for a PEMFC membrane electrode assembly has been developed. The model explicitly includes each of the 5 layers within a membrane electrode assembly and solves for the transport of charge, heat, mass, species, dissolved water, and liquid water. Key features of the model include the use of a multi-step implementation of the HOR reaction on the anode, agglomerate catalyst sub-models for both the anode and cathode catalyst layers, a unique approach that links the composition of the catalyst layer to key properties within the agglomerate model and the implementation of a stochastic input-based approach for component material properties. The model employs a new methodology for validation using statistically varying input parameters and statistically-based experimental performance data; this model represents the first stochastic input driven unit cell performance model. The stochastic input driven performance model was used to identify optimal ionomer content within the cathode catalyst layer, demonstrate the role of material variation in potential low performing MEA materials, provide explanation for the performance of low-Pt loaded MEAs, and investigate the validity of transient-sweep experimental diagnostic methods.
Ground Vehicle Power and Mobility Overview
2007-05-30
Program Li-Ion Phosphate (LFP) Cathode Materials Large Format Li-Ion Prismatic Cells and Modules with Integrated Liquid Cooling Integrated Prototype...using porous graphitic material3 4 5 8 5 6 60 W-hr/kg 80-120 W/kg Low Cycle Life LFP cathode Safer Less energetic materials ~ ~ Power Cell 85-120...Thermal Runaway Study Zebra Battery NaNiCl2 (FY08 ATO) Advanced Lead Acid LiFePO4 Cathode Prismatic Lithium-ion batteries and Integrated Liquid Cooling
Architectures and criteria for the design of high efficiency organic photovoltaic cells
Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast
2015-03-24
An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.
Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; ...
2017-01-05
The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day –1. The results indicate that the process will consume approximately 4 kWh kg NMC –1 of energy, 15 L kg NMC –1 of process water, and cost $23more » to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na 2CO 3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. Finally, a combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.« less
Huang, Jun; Wei, Junchao; Xiao, Yingbo; Xu, Yazhou; Xiao, Yujuan; Wang, Ying; Tan, Licheng; Yuan, Kai; Chen, Yiwang
2018-03-27
Although cobalt sulfide is a promising electrode material for supercapacitors, its wide application is limited by relative poor electrochemical performance, low electrical conductivity, and inefficient nanostructure. Here, we demonstrated that the electrochemical activity of cobalt sulfide could be significantly improved by Al doping. We designed and fabricated hierarchical core-branch Al-doped cobalt sulfide nanosheets anchored on Ni nanotube arrays combined with carbon cloth (denoted as CC/H-Ni@Al-Co-S) as an excellent self-standing cathode for asymmetric supercapacitors (ASCs). The combination of structural and compositional advantages endows the CC/H-Ni@Al-Co-S electrode with superior electrochemical performance with high specific capacitance (1830 F g -1 /2434 F g -1 at 5 mV s -1 /1 A g -1 ) and excellent rate capability (57.2%/72.3% retention at 1000 mV s -1 /100 A g -1 ). The corresponding all-solid-state ASCs with CC/H-Ni@Al-Co-S and multilayer graphene/CNT film as cathode and anode, respectively, achieve a high energy density up to 65.7 W h kg -1 as well as superb cycling stability (90.6% retention after 10 000 cycles). Moreover, the ASCs also exhibit good flexibility and stability under different bending conditions. This work provides a general, effective route to prepare high-performance electrode materials for flexible all-solid-state energy storage devices.
Cao, Xiaoyu; Mo, Lulu; Zhu, Limin; Xie, Lingling
2017-01-01
Li3V2(PO4)3−xBrx/carbon (x = 0.08, 0.14, 0.20, and 0.26) composites as cathode materials for lithium-ion batteries were prepared through partially substituting PO43− with Br−, via a rheological phase reaction method. The crystal structure and morphology of the as-prepared composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and electrochemical properties were evaluated by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). XRD results reveal that the Li3V2(PO4)3−xBrx/carbon composites with solid solution phase are well crystallized and have the same monoclinic structure as the pristine Li3V2(PO4)3/carbon composite. It is indicated by SEM images that the Li3V2(PO4)3−xBrx/carbon composites possess large and irregular particles, with an increasing Br− content. Among the Li3V2(PO4)3−xBrx/carbon composites, the Li3V2(PO4)2.86Br0.14/carbon composite shows the highest initial discharge capacity of 178.33 mAh·g−1 at the current rate of 30 mA·g−1 in the voltage range of 4.8–3.0 V, and the discharge capacity of 139.66 mAh·g−1 remains after 100 charge/discharge cycles. Even if operated at the current rate of 90 mA·g−1, Li3V2(PO4)2.86Br0.14/carbon composite still releases the initial discharge capacity of 156.57 mAh·g−1, and the discharge capacity of 123.3 mAh·g−1 can be maintained after the same number of cycles, which is beyond the discharge capacity and cycleability of the pristine Li3V2(PO4)3/carbon composite. EIS results imply that the Li3V2(PO4)2.86Br0.14/carbon composite demonstrates a decreased charge transfer resistance and preserves a good interfacial compatibility between solid electrode and electrolyte solution, compared with the pristine Li3V2(PO4)3/carbon composite upon cycling. PMID:28336886
Sun, Hua-Bin; Zhang, Lu-Lu; Yang, Xue-Lin; Liang, Gan; Li, Zhen
2016-10-21
Monoclinic Li 3 V 2 (PO 4 ) 3 /C (LVP/C) and Li 3 V 1.95 Fe 0.05 (PO 4 ) 3 /C (LVFP/C) composites were successfully modified by cobalt incorporation. The effects of cobalt incorporation on the structure, morphology and electrochemical performance of the LVP/C and LVFP/C composites were systematically investigated. The results show that most Co exists in the form of CoO and forms a hybrid layer with the carbon coating on the surface of the LVP and LVFP particles; moreover, a small part of Co enters into the LVP or LVFP lattices due to atomic diffusion. Compared with LVP/C and LVFP/C, Co-incorporated samples exhibit better electrochemical performance. In particular, under the common effect of doping and a hybrid layer (carbon and metal oxides) coating, the LVFP/C-Co electrode displays a prominent initial capacity of 124.7 mA h g -1 and a very low capacity fading of ∼0.04% per cycle even after 500 cycles at 20 C. This novel co-modification method with cation doping and a hybrid layer (carbon and metal oxide) coating is a highly effective way to improve the electrochemical performance and has great potential to be easily used to modify other cathode materials with poor electrical conductivity.
NASA Astrophysics Data System (ADS)
Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.
2014-06-01
The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.
Jahn–Teller Assisted Na Diffusion for High Performance Na Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Wang, Yan; Wu, Di
2016-08-30
Na energy storage technology is strategically attractive for large scale applications such as grid energy storage. Here, we show in this paper that there is a clear relation between the Jahn$-$Teller activity of a transition metal ion at the end of charge and the mobility of Na in a cathode material. This is particularly important as mobility at the end of charge limits the capacity of current materials. Consequently, by using this classical piece of physics in the battery world, it is possible to create higher capacity Na-cathode materials. Even more exciting is that the ideal element to impart thismore » effect on cathodes is Fe, which is the least expensive of the transition metal oxides and can therefore enable low cost cathode materials.« less
Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...
2015-12-07
Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkouk, Charaf; Nestler, Tina
Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical andmore » structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.« less
Self-Passivating Lithium/Solid Electrolyte/Iodine Cells
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William
2006-01-01
Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals. It was found that the solid electrolyte films became discolored within seconds after they were placed in contact with the cathodes - a result of facile diffusion of iodine through the solid electrolyte material (see figure).
NASA Astrophysics Data System (ADS)
Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.
2017-01-01
The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.
Emission current control system for multiple hollow cathode devices
NASA Technical Reports Server (NTRS)
Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)
1988-01-01
An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.
Lim, Jeewoo; Pyun, Jeffrey; Char, Kookheon
2015-03-09
Elemental sulfur is an abundant and inexpensive material obtained as a by-product of natural-gas and petroleum refining operations. Recently, the need for the development of new energy-storage systems brought into light the potential of sulfur as a high-capacity cathode material in secondary batteries. Sulfur-containing materials were also shown to have useful IR optical properties. These developments coupled with growing environmental concerns related to the global production of excess elemental sulfur have led to a keen interest in its utilization as a feedstock in materials applications. This Minireview focuses on the recent developments on physical and chemical methods for directly processing elemental sulfur to produce functional composites and polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dimesso, L.; Spanheimer, C.; Nguyen, T. T. D.; Hausbrand, R.; Jaegermann, W.
2012-10-01
Nanostructured materials are considered to be strong candidates for fundamental advances in efficient storage and/or conversion. In nanostructured materials transport kinetics and surface processes play determining roles. This work describes recent developments in the synthesis and characterization of composites which consist of lithium metal phosphates (LiMPO4, M = Fe, Mn, Co, Ni) coated on nanostructured carbon supports (unordered nanofibers, foams). The composites have been prepared by coating the carbon structures in aqueous (or polyols) solutions containing lithium, metal ions and phosphates. After drying out, the composites have been thermally treated at different temperatures (between 600-780°C) for 5-12 hours under nitrogen. The formation of the olivine structured phase was confirmed by the X-ray diffraction analysis on powders prepared under very similar conditions. The surface investigation revealed the formation of an homogeneous coating of the olivine phase on the carbon structures. The electrochemical performance on the composites showed a dramatic improvement of the discharge specific capacity (measured at a discharge rate of C/25 and room temperature) compared to the prepared powders. The delivered values were 105 mAhg-1 for M = Fe, 100 mAhg-1 for M = Co, 70 mAhg-1 for M = Mn and 30 mAhg-1 for M = Ni respectively.
Electrorefiner system for recovering purified metal from impure nuclear feed material
Berger, John F.; Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.
2015-10-06
An electrorefiner system according to a non-limiting embodiment of the present invention may include a vessel configured to maintain a molten salt electrolyte and configured to receive a plurality of alternately arranged cathode and anode assemblies. The anode assemblies are configured to hold an impure nuclear feed material. Upon application of the power system, the impure nuclear feed material is anodically dissolved and a purified metal is deposited on the cathode rods of the cathode assemblies. A scraper is configured to dislodge the purified metal deposited on the cathode rods. A conveyor system is disposed at a bottom of the vessel and configured to remove the dislodged purified metal from the vessel.
Yuan, Shuang; Liu, Yong-Bing; Xu, Dan; Ma, De-Long; Wang, Sai; Yang, Xiao-Hong; Cao, Zhan-Yi; Zhang, Xin-Bo
2015-03-01
Pure single-crystalline Na 1.1 V 3 O 7.9 nanobelts are successfully synthesized for the first time via a facile yet effective strategy. When used as cathode materials for Na-ion batteries, the novel nanobelts exhibit excellent electrochemical performance. Given the ease and effectiveness of the synthesis route as well as the very promising electrochemical performance, the results obtained may be extended to other next-generation cathode materials for Na-ion batteries.
Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K
2013-03-18
This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.
Xing, Weibing; Buettner-Garrett, Josh
2017-04-18
This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne
2014-08-12
Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.
Scintillation screen applications in a vacuum arc ion source with composite hydride cathode
NASA Astrophysics Data System (ADS)
Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.
2018-05-01
Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.
Cold cathodes for sealed off CO2 lasers
NASA Technical Reports Server (NTRS)
Hochuli, U. E.; Sciacca, T. P.; Hurt, C. R.
1973-01-01
Experimental results of a group of theoretically selected cold cathode materials are presented. These tests indicate Ag-CuO, Cu, and Pt-Cu as three new cold cathode materials for sealed-off CO2 lasers. The power output of a test laser with an Ag-CuO cathode and a gas volume of only 50 cu cm varied from 0.72 W to 1.1 W at 3000 hours and still yields 0.88 W after 8000 hours. Gas discharge tubes with Cu cathodes and a volume of 25 cu cm yield lifetimes in excess of 10,000 hours. Gas analysis results, obtained from a similar tube over a period of 3000 hours, look most promising. A Pt-Cu alloy cathode shows an extremely promising V-I characteristic over a period of 2800 hours.
Microplasma device architectures with various diamond nanostructures
NASA Astrophysics Data System (ADS)
Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan
2017-02-01
Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl-V), plasma density (n e-V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.
Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei
2017-09-13
In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.
Rechargeable lithium/polymer cathode batteries
NASA Astrophysics Data System (ADS)
Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.
1989-06-01
Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.
Cathode for molten carbonate fuel cell
Kaun, Thomas D.; Mrazek, Franklin C.
1990-01-01
A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.
Cells having cathodes containing polycarbon disulfide materials
Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.
1995-08-15
The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.
Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery
NASA Astrophysics Data System (ADS)
Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang
2018-03-01
Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.