Science.gov

Sample records for cathode strip chamber

  1. Engineering analyses of large precision cathode strip chambers for GEM

    SciTech Connect

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R.; Mitselmakher, G.; Gordeev, A.; Johnson, C.V. |; Polychronakos, V.A.; Golutvin, I.A.

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  2. Aging tests of full scale CMS muon cathode strip chambers

    SciTech Connect

    D. Acosta et al.

    2003-10-15

    Two CMS production Cathode Strip Chambers were tested for aging effects in the high radiation environment at the Gamma Irradiation Facility at CERN. The chambers were irradiated over a large area: in total, about 2.1 m{sup 2} or 700 m of wire in each chamber. The 40% Ar+50%CO{sub 2}+10%CF{sub 4} gas mixture was provided by an open-loop gas system for one of the chambers and by closed-loop recirculating gas system for the other. After accumulating 0.3-0.4 C per centimeter of a wire, which is equivalent to operation during about 30-50 years at the peak LHC luminosity, no significant changes in gas gain, chamber efficiency, and wire signal noise were observed for either of the two chambers. The only consistent signs of aging were a small increase in dark current from {approx}2 nA to {approx}10 nA per plane of 600 wires and a decrease of strip-to-strip resistance from 1000 G{Omega} to 10-100 G{Omega}. Disassembly of the chambers revealed deposits on the cathode planes, while the anode wires remained fairly clean.

  3. The cathode strip chamber data acquisition electronics for CMS

    NASA Astrophysics Data System (ADS)

    Bylsma, B. G.; Durkin, L. S.; Gilmore, J.; Gu, J.; Ling, T. Y.; Rush, C.

    2009-03-01

    Data Acquisition (DAQ) electronics for Cathode Strip Chambers (CSC) [CMS Collaboration, The Muon Project Technical Design Report, CERN/LHCC 97-32, CMS TDR3, 1997] in the Compact Muon Solenoid (CMS) [CMS Collaboration, The Compact Muon Solenoid Technical Proposal, CERN/LHCC 94-38, 1994] experiment at the Large Hadron Collider (LHC) [The LHC study group, The Large Hadron Collider: Conceptual Design, CERN/AC 1995-05, 1995] is described. The CSC DAQ system [B. Bylsma, et al., in: Proceedings of the Topical Workshop on Electronics for Particle Physics, Prague, Czech Republic, CERN-2007-007, 2007, pp. 195-198] includes on-detector and off-detector electronics, encompassing five different types of custom circuit boards designed to handle the high event rate at the LHC. The on-detector electronics includes Cathode Front End Boards (CFEB) [R. Breedon, et al., Nucl. Instr. and Meth. A 471 (2001) 340], which amplify, shape, store, and digitize chamber cathode signals; Anode Front End Boards (AFEB) [T. Ferguson, et al., Nucl. Instr. and Meth. A 539 (2005) 386], which amplify, shape and discriminate chamber anode signals; and Data Acquisition Motherboards (DAQMB), which controls the on-chamber electronics and the readout of the chamber. The off-detector electronics, located in the underground service cavern, includes Detector Dependent Unit (DDU) boards, which perform real time data error checking, electronics reset requests and data concentration; and Data Concentrator Card (DCC) boards, which further compact the data and send it to the CMS DAQ System [CMS Collaboration, The TriDAS Project Technical Design Report, Volume 2: Data Acquisition and High-level Trigger, CERN/LHCC 2002-26, 2002], and serve as an interface to the CMS Trigger Timing Control (TTC) [TTC system ] system. Application Specific Integrated Circuits (ASIC) are utilized for analogous signal processing on front end boards. Field Programmable Gate Arrays (FPGA) are utilized

  4. Calibration of cathode strip gains in multiwire drift chambers of the GlueX experiment

    SciTech Connect

    Berdnikov, V. V.; Somov, S. V.; Pentchev, L.; Somov, A.

    2016-07-01

    A technique for calibrating cathode strip gains in multiwire drift chambers of the GlueX experiment is described. The accuracy of the technique is estimated based on Monte Carlo generated data with known gain coefficients in the strip signal channels. One of the four detector sections has been calibrated using cosmic rays. Results of drift chamber calibration on the accelerator beam upon inclusion in the GlueX experimental setup are presented.

  5. ``24/36/48`` Cathode Strip Chamber layout for SSC GEM Detector muon subsystem

    SciTech Connect

    Belser, F.C.; Clements, J.W.; Horvath, J.A.

    1993-12-15

    The ``48/48/48`` {phi}-segmentation design for the Cathode Strip Chambers in the GEM Detector produces a number of coverage ``gaps`` in {phi} and {theta}. A revised ``24/36/48`` {phi}-segmentation layout provides increased geometric coverage and a significant reduction in the number of chambers in the detector. This will increase physics performance while reducing the labor costs associated with building and installing chambers in the GEM Detector. This paper documents the physical layout of the proposed change to the baseline chamber arrangement.

  6. Gravity sag of sandwich panel assemblies as applied to precision cathode strip chamber structural design

    SciTech Connect

    Horvath, J.

    1993-09-16

    The relationship between gravity sag of a precision cathode strip chamber and its sandwich panel structural design is explored parametrically. An algorithm for estimating the dominant component of gravity sag is defined. Graphs of normalized gravity sag as a function of gap frame width and material, sandwich core edge filler width and material, panel skin thickness, gap height, and support location are calculated using the gravity sag algorithm. The structural importance of the sandwich-to-sandwich ``gap frame`` connection is explained.

  7. Upgrades to the CMS Cathode Strip Chambers for 2017 and the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Morse, David; CMS Collaboration

    2017-01-01

    An overview will be given of upgrades to the CMS Cathode Strip Chambers (CSC) during the extended technical stop 2016-2017 and plans for future upgrades targeting the HL-LHC. HL-LHC conditions will surpass the physical capabilities of the present detector, and require novel hardware to cope with increased rates and maintain the high performance of the CSC achieved up to now.

  8. Upgrades to the CSC Cathode Strip Chamber electronics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Bravo, C.

    2017-01-01

    The luminosity, latency, and trigger rate foreseen at the High Luminosity LHC (HL-LHC) present challenges to efficient readout of the Cathode Strip Chambers (CSCs, [1]) of the CMS end cap muon detector. Upgrades to the electronics are targeted for the inner rings of CSCs in each station, which have the highest flux of particles. The upgrades comprise digital cathode front end boards for nearly deadtimeless and long trigger latency operating capability, new DAQ boards that transmit data from the detectors with higher-bandwidth links, and a new data concentrator/interface to the central DAQ system that can receive the higher input rates.

  9. Expert System for the LHC CMS Cathode Strip Chambers (CSC) detector

    NASA Astrophysics Data System (ADS)

    Rapsevicius, Valdas; Juska, Evaldas

    2014-02-01

    Modern High Energy Physics experiments are of high demand for a generic and consolidated solution to integrate and process high frequency data streams by applying experts' knowledge and inventory configurations. In this paper we present the Expert System application that was built for the Compact Muon Solenoid (CMS) Cathode Strip Chambers (CSC) detector at the Large Hadron Collider (LHC) aiming to support the detector operations and to provide integrated monitoring. The main building blocks are the integration platform, rule-based complex event processing engine, ontology-based knowledge base, persistent storage and user interfaces for results and control.

  10. Use of cluster counting technique for particle identification in a drift chamber with the cathode strip readout

    SciTech Connect

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir P.

    2015-07-01

    The possibility of using the clusters counting technique for particle identification in a drift chamber with the cathode strip readout is experimentally investigated. Results of counting of primary ionization clusters on a relativistic particle track, as well as results of computer simulation of pion, kaon, and proton identification in the momentum range of 1–8 GeV/c, are presented.

  11. Upgrade of the cathode strip chamber level 1 trigger optical links at CMS

    NASA Astrophysics Data System (ADS)

    Ecklund, K.; Liu, J.; Madorsky, A.; Matveev, M.; Padley, P.

    2012-11-01

    At the Large Hadron Collider (LHC) at CERN, the CMS experiment's Level 1 Trigger system for the endcap Cathode Strip Chambers (CSC) has 180 optical links to transmit Level 1 trigger primitives from 60 peripheral crates to the CSC Track Finder (CSCTF) which reconstructs muon candidates. Currently there is a limit of 3 trigger primitives per crate serving a cluster of 9 chambers. With the anticipated LHC luminosity increase up to 1035 cm-2s-1 at full energy of 7 TeV/beam the Muon Port Card (MPC), which transmits the primitives, the receiver in the CSCTF (Sector Processor) and the optical transmission system itself need to be upgraded. At the same time it is very desirable to preserve all the old optical links intact for compatibility with the present Track Finder during transition period. We present here the results of our efforts in the past two years to upgrade the MPC board, including the hardware developments, data transmission tests and latency measurements.

  12. Upgrade of the Muon Sorter in the Cathode Strip Chamber Level 1 Trigger System at CMS

    NASA Astrophysics Data System (ADS)

    Acosta, D.; Ecklund, K.; Furic, I.; Liu, J.; Madorsky, A.; Matveev, M.; Padley, P.

    2013-11-01

    The top level of the Level 1 Trigger System in the Cathode Strip Chamber (CSC) detector at CMS consists of the Track Finder (TF) crate with 12 Sector Processors (SP) and one Muon Sorter (MS) board. The MS provides sorting of up to 36 trigger objects from the SP boards, selects the four best (by a definable criterion) ones, and transmits then to the Global Trigger crate of CMS. With the anticipated LHC luminosity increase above 1034 cm-2s-1 at an energy of 6.5-7 TeV/beam the CSC TF needs to be upgraded. The new CSCTF will be robust to higher occupancies, provide improved transverse momentum assignment and increased precision of the muon output variables. A transition from the current 9U VME electronic standard to the more flexible uTCA and utilization of the Xilinx Virtex-6 and Virtex-7 FPGAs, with multiple embedded gigabit links, will allow us to build a higher performance TF such that the MS functions can be performed by one of the SP modules. We present here the results of our efforts in the past year to upgrade the CSC Muon Sorter, including the short term modifications of the existing VME board, long-term transition to the uTCA as well as firmware development for both of these projects.

  13. DETECTORS AND EXPERIMENTAL METHODS: Study of a multi-wire proportional chamber with a cathode strip and delay-line readout

    NASA Astrophysics Data System (ADS)

    Han, Li-Ying; Li, Qi-Te; Faisal, Q.; Ge, Yu-Cheng; Liu, Hong-Tao; Ye, Yan-Lin

    2009-05-01

    The design principle for a multi-wire proportional chamber with a cathode strip and delay-line readout is described. A prototype chamber of a size of 10 cm ×10 cm was made together with the readout electronics circuit. A very clean signal with very low background noise was obtained by applying a transformer between the delay-line and the pre-amplifier in order to match the resistance. Along the anode wire direction a position resolution of less than 0.5 mm was achieved with a 55Fe-5.9 keV X ray source. The simple structure, large effective area and high position resolution allow the application of a gas chamber of this kind to many purposes.

  14. Design and performance of the new cathode readout proportional chambers in LASS

    SciTech Connect

    Aiken, G.; Aston, D.; Dunwoodie, W.

    1980-10-01

    The design and construction of a new proportional chamber system for the LASS spectrometer are discussed. This system consists of planar and cylindrical chambers employing anode wire and cathode strip readout techniques. The good timing characteristics of anode readout combine with the excellent spatial resolution of cathode readout to provide powerful and compact detectors. Preliminary resolution data are presented along with operating characteristics of the various devices.

  15. Determination of chitosan by cathodic stripping voltammetry.

    PubMed

    Lu, Guanghan; Wang, Lirong; Wang, Ruixia; Zeng, Yan; Huang, Xi

    2006-04-01

    A sensitive method for the determination of chitosan (CTS) by cathodic stripping voltammetry is presented. The method exploits a pair of oxidation-reduction peaks of CTS at -0.62 V (vs. SCE) and -0.54 V (vs. SCE), and an enhancement of the peak current of CTS observed in a 0.05 mol l(-1) potassium hydrogenphthalate buffer solution (pH 2.5). The peak current is linear with the concentration of CTS from 5.0 x 10(-7) to 1.5 x 10(-5) g ml(-1), and the detection limit is 1.0 x 10(-7) g ml(-1). We studied the characteristics and the mechanism of the electrode reaction, which proved that this process was diffusion controlled. This method was applied to determine the content of CTS in real samples with satisfactory results.

  16. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    DOE PAGES

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; ...

    2017-04-22

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche “center-of-gravity” position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the totalmore » charge for an Ar/CO2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.« less

  17. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; Butler, D.; Furletov, S.; Robison, L.; Zihlmann, B.

    2017-02-01

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche ;center-of-gravity; position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the total charge for an Ar/CO2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.

  18. Manganese detection in marine sediments: anodic vs. cathodic stripping voltammetry.

    PubMed

    Banks, Craig E; Kruusma, Jaanus; Moore, Ryan R; Tomcík, Peter; Peters, Judith; Davis, James; Komorsky-Lovrić, Sebojka; Compton, Richard G

    2005-01-30

    Three different electroanalytical techniques for the detection of manganese in marine sediments are evaluated. The anodic stripping voltammetry of manganese at an in situ bismuth-film-modified boron-doped diamond electrode and cathodic stripping voltammetry at a carbon paste electrode are shown to lack the required sensitivity and reproducibility whereas cathodic stripping voltammetry at a bare boron-doped diamond electrode is shown to be reliable and selective with a limit of detection, from applying a 60s accumulation period of 7.4 x 10(-7)M and a sensitivity of 0.24AM(-1). The method was used to evaluate the manganese content of marine sediments taken from Sibenik, Croatia.

  19. DETAIL VIEW, SOUTHEAST ATTIC CHAMBER DOOR. (NOTE THE STRIP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, SOUTHEAST ATTIC CHAMBER DOOR. (NOTE THE STRIP OF BEADED BOARD IMBEDDED IN THE PLASTER BEARING NAILS. THESE ARE PRESENT IN ALL OF THE ATTIC ROOMS AND WERE LIKELY USED TO HANG CLOTHING - The Woodlands, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  20. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  1. Plasma generation near an Ion thruster disharge chamber hollow cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Anderson, John R.; Goebel, Dan M.; Wirz, Richard; Sengupta, Anita

    2003-01-01

    In gridded electrostatic thrusters, ions are produced by electron bombardment in the discharge chamber. In most of these thrusters, a single, centrally located hollow cathode supplies the ionizing electrons. An applied magnetic field in the discharge chamber restricts the electrons leaving the hollow cathode to a very narrow channel. In this channel, the high electron current density ionizes both propellant gas flowing from the hollow cathode, and other neutrals from the main propellant flow from the plenum. The processes that occur just past the hollow cathode exit are very important. In recent engine tests, several cases of discharge cathode orifice place and keeper erosion have been reported. In this paper we present results from a new 1-D, variable area model of the plasma processes in the magnetized channel just downstream of the hollow cathode keeper. The model predicts plasma densities, and temperatures consistent with those reported in the literature for the NSTAR engine, and preliminary results from the model show a potential maximum just downstream of the cathode.

  2. Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.

    PubMed

    Cristiani, P; Carvalho, M L; Guerrini, E; Daghio, M; Santoro, C; Li, B

    2013-08-01

    The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation.

  3. PDC: A wire chamber cathode read-out on 6-bit fast ADC

    NASA Astrophysics Data System (ADS)

    De Giorgi, Marco; Gasparini, Fabrizio; Meneguzzo, Anna T.; Pitacco, Giorgio

    1984-06-01

    A read-out for MWPC and drift chamber is presented in which the coordinate along the sense wires is obtained by measuring the centre of gravity (CoG) of the charge induced on cathode strips or pads. The peak value of the signals coming from subsets of 8-pad cathodes are recorded by a parallel sample and hold, strobed by their own OR, and then serially digitized by one 6-bit fast ADC (FADC). The basic module of the system is peak detector and converter (PDC) built in CAMAC cards, which could be an interesting approch to the analog signal acquisition of large particle detectors. The system has been designed to equip the central detector in an experiment at the CERN LEAR facility. A prototype of a card will be described and the results of some tests will be presented.

  4. Arsenic speciation in natural waters by cathodic stripping voltammetry.

    PubMed

    Gibbon-Walsh, Kristoff; Salaün, Pascal; van den Berg, Constant M G

    2010-03-03

    Contamination of groundwater with arsenic (As) is a major health risk through contamination of drinking and irrigation water supplies. In geochemically reducing conditions As is mostly present as As(III), its most toxic species. Various methods exist to determine As in water but these are not suitable for monitoring arsenic speciation at its original pH and without preparation. We present a method that uses cathodic stripping voltammetry (CSV) to determine reactive As(III) at a vibrating, gold, microwire electrode. The As(III) is detected after adsorptive deposition of As(OH)(3)(0), followed by a potential scan to measure the reduction current from As(III) to As(0). The method is suitable for waters of pH 7-12, has an analytical range of 1 nM to 100 microM As (0.07-7500 ppb) and a limit of detection of 0.5 nM with a 60 s deposition time. The As speciation protocol involves measuring reactive As(III) by CSV at the original pH and acidification to pH 1 to determine inorganic As(III)+As(V) by anodic stripping voltammetry (ASV) using the same electrode. Total dissolved As is determined by ASV after UV-digestion at pH 1. The method was successfully tested on various raw groundwater samples from boreholes in the UK and West Bengal. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Iron organic speciation determination in rainwater using cathodic stripping voltammetry.

    PubMed

    Cheize, Marie; Sarthou, Géraldine; Croot, Peter L; Bucciarelli, Eva; Baudoux, Anne-Claire; Baker, Alex R

    2012-07-29

    A sensitive method using Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) has been developed to determine for the first time iron (Fe) organic speciation in rainwater over the typical natural range of pH. We have adapted techniques previously developed in other natural waters to rainwater samples, using the competing ligand 1-nitroso-2-naphthol (NN). The blank was equal to 0.17±0.05 nM (n=14) and the detection limit (DL) for labile Fe was 0.15 nM which is 10-70 times lower than that of previously published methods. The conditional stability constant for NN under rainwater conditions was calibrated over the pH range 5.52-6.20 through competition with ethylenediaminetetraacetic acid (EDTA). The calculated value of the logarithm of β'(Fe(3+)(NN)(3)) increased linearly with increasing pH according to log β'(Fe(3+)(NN)(3)) (salinity=2.9, T=20 °C). The validation of the method was carried out using desferrioxamine mesylate B (DFOB) as a natural model ligand for Fe. Adequate detection windows were defined to detect this class of ligands in rainwater with 40 μM of NN from pH 5.52 to 6.20. The concentration of Fe-complexing natural ligands was determined for the first time in three unfiltered and one filtered rainwater samples. Organic Fe-complexing ligand concentrations varied from 104.2±4.1 nM equivalent of Fe(III) to 336.2±19.0 nM equivalent of Fe(III) and the logarithm of the conditional stability constants, with respect to Fe(3+), varied from 21.1±0.2 to 22.8±0.3. This method will provide important data for improving our understanding of the role of wet deposition in the biogeochemical cycling of iron. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Close Cathode Chamber technology for cosmic particle tracking

    NASA Astrophysics Data System (ADS)

    Oláh, László; Gábor Barnaföldi, Gergely; Hamar, Gergő; Gergely Melegh, Hunor; Surányi, Gergely; Varga, Dezső

    2015-08-01

    The Close Cathode Chamber (CCC) technology has been developed and found useful in a portable tracking system under harsh and varying environmental conditions due to their mechanical and operational stability. The muon flux have been measured on ground and at shallow depths underground (< 70 m.r.e.) which provides a good reference for other experiments. The multiple scattering in rock and the soft contamination of the track sample have been investigated experimentally and by GEANT4. The applicability of the sensor to detect underground rock density inhomogeneities has been demonstrated via reconstruction of an underground tunnel system. A modified muon tomograph has been built with sensitive area of 0.25 m2 and angular resolution of 15 mrad which is useful for material discrimination via the measurement of multiple scattering and absorption of muons. The reliable tracking performance, low power consumption and fair angular resolution make the CCC technology useful also in large area tracking detectors.

  7. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Note: design and development of improved indirectly heated cathode based strip electron gun.

    PubMed

    Maiti, Namita; Bade, Abhijeet; Tembhare, G U; Patil, D S; Dasgupta, K

    2015-02-01

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  9. Note: Design and development of improved indirectly heated cathode based strip electron gun

    SciTech Connect

    Maiti, Namita; Patil, D. S.; Dasgupta, K.; Bade, Abhijeet; Tembhare, G. U.

    2015-02-15

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  10. Design of indirectly heated thoriated tungsten cathode based strip electron gun

    SciTech Connect

    Maiti, Namita; Thakur, K.B.; Patil, D.S.; Das, A.K.

    2014-07-01

    Design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270 degree bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten. The solid cathode design has been suitably done to achieve required electron beam cross section. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to reduce the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments shows that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length. (author)

  11. Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization.

    PubMed

    Bakhshian, Sahar; Kariminia, Hamid-Reza; Roshandel, Ramin

    2011-06-01

    Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as well. Maximum power density increased about 30% when enzymatic decolorization was performed in the cathode chamber. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry.

    PubMed

    Yue, Wei; Bange, Adam; Riehl, Bill L; Riehl, Bonnie D; Johnson, Jay M; Papautsky, Ian; Heineman, William R

    2012-10-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements.

  13. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry

    PubMed Central

    Yue, Wei; Bange, Adam; Riehl, Bill L.; Riehl, Bonnie D.; Johnson, Jay M.; Papautsky, Ian; Heineman, William R.

    2013-01-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements. PMID:24235806

  14. Performances of a VLSI wide dynamic range current-to-frequency converter for strip ionization chambers

    NASA Astrophysics Data System (ADS)

    Bonazzola, G. C.; Cirio, R.; Donetti, M.; Marchetto, F.; Mazza, G.; Peroni, C.; Zampieri, A.

    1998-02-01

    In this paper we report on the design and test of a 14-channel VLSI chip to perform the current to frequency conversion for parallel plate strip ionization chambers. The chambers measure the intensity and the geometrical characteristics of a therapeutical beam.

  15. Design and development of indirectly heated solid cathode for strip type electron gun.

    PubMed

    Maiti, Namita; Mukherjee, S; Kumar, Bhunesh; Barve, U D; Suryawanshi, V B; Das, A K

    2010-01-01

    Design analysis of a high power indirectly heated solid cathode (for a 200 kW, 45 kV, and 270 degrees bent strip type electron gun) has been presented. The design approach consists of simulation followed by extensive experimentation with different cathode configurations. The preferred cathode is of trapezoidal section (8 x 4 x 2 mm(3)) with an emitting area of 110 x 4 mm(2) made up of tantalum operating at about 2500 K. The solid cathode at the operating temperature of 2500 K generated a well defined electron beam. Electromagnetic and thermomechanical simulation is used to optimize the shape of the beam. Thermal modeling has also been used to analyze the temperature and stress distribution on the electrodes. The simulation results are validated by experimental measurement.

  16. Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs)

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Stadlhofer, Astrid; Hacker, Viktor; Squadrito, Gaetano; Schröder, Uwe; Li, Baikun

    2013-12-01

    The suitability of carbon nanofibers (CNF) based cathodes as alternative to the platinum (Pt)-based cathode in single chamber microbial fuel cells (SCMFCs) were extensively studied over 3-month operational period. MFCs were fed with two solutions: synthetic wastewater (phosphate buffer (PBS) plus sodium acetate) and real wastewater (mixed liquor suspendedsolid (MLSS) solution). CNFs were chemically activated using HNO3 and then hot pressed on a carbon cloth support to increase surface area. The cathode polarization showed a better behavior of the clean Pt-based cathode in abiotic conditions. The activation of the nanofibers (ACNFs) gave an advantage to the cathode performances compared to the raw CNFs. The SCMFCs fed with PBS showed four times higher power generation compared to MLSS solution. All the cathodes showed a decrease in performances over time, and the advantage of the Pt over CNF/ACNF disappeared. CNF/ACNF cathodes showed more stability in performances in long time operations. Biofilm formation, salt precipitations on the cathode, and the presence of hydrogen sulfide decreased the activity of Pt cathodes. A degradation and Pt detachment were noticed on Pt cathodes over time. In contrast, CNF/ACNF cathodes exhibited less deterioration throughout the operational period, which demonstrated a great potential as cost-effective cathodes for long-term operation.

  17. Characterization of hollow cathode, ring cusp discharge chambers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.

    1989-01-01

    An experimental study into the effects of changes in such physical design parameters as hollow cathode position, anode position and ring cusp magnetic field configuration and strength on discharge chamber performance, is described. The results are presented in terms of comparative plasma ion energy cost, extracted ion fraction and ion beam profile data. Such comparisons are used to demonstrate specific means by which changes in these design parameters induce changes in performance, i.e., through changes in the loss rates of primary electrons to the anode, of ions to discharge chamber walls or of ions to cathode and anode surfaces. Results show: (1) the rate of primary electron loss to the anode decreases as the anode is moved downstream of the ring cusp toward the screen grid, (2) the loss rate of ions to hollow cathode surfaces are excessive if the cathode is located upstream of a point of peak magnetic flux density on the discharge chamber centerline, and (3) the fraction of the ions produced that are lost to discharge chamber walls and ring magnet surfaces is reduced by positioning the magnet rings so the plasma density is uniform over the grid surface and so there are no steep magnetic flux density gradients near the walls through which ions can be lost by Bohm diffusion. The uniformity of the plasma density at the grids can also be improved by moving the point of primary electron injection into the discharge chamber off of the chamber centerline. Other results show the discharge chamber losses decrease when a filament cathode is substituted for a hollow cathode to the extent of the hollow cathode operating power. When plasma ion energy cost is determined in such a way that the cost of operating the hollow cathode is subtracted out, the performance using either electron source is similar.

  18. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    USDA-ARS?s Scientific Manuscript database

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  19. Cathodic adsorptive stripping square-wave voltammetry of the anti-inflammatory drug meloxicam.

    PubMed

    Radi, A E; Ghoneim, M; Beltagi, A

    2001-10-01

    The adsorptive behavior of the anti-inflammatory drug meloxicam was studied by cyclic, differentia-pulse and square-wave voltammetry on a hanging mercury drop electrode (HMDE). The drug was accumulated at HMDE and a well-defined stripping peak current was obtained at -1.42 V vs. Ag/AgCl (saturated KCl) electrode in acetate buffer solution (pH 5.0). A voltammetric procedure was developed for the determination of meloxicam using square-wave cathodic adsorptive stripping voltammetry (SW-CASV). The optimum working conditions for the determination of the drug were established. The analysis of meloxicam in human plasma was carried out satisfactorily.

  20. Triple-stack multigap resistive plate chamber with strip readout

    NASA Astrophysics Data System (ADS)

    Babkin, V.; Basilev, S.; Buryakov, M.; Golovatyuk, V.; Lobastov, S.; Petrov, V.; Rumyantsev, M.; Schipunov, A.; Shutov, A.; Slepnev, I.; Slepnev, V.

    2016-07-01

    A triple-stack MRPC for the TOF system of the BM@N and the MPD experiments at the future collider NICA was tested. We use three stacks of glass to have symmetrical construction which allows to decrease dispersion and reflections of the signal from the readout strip.

  1. Cathodic adsorptive stripping voltammetric studies on lamivudine: an antiretroviral drug.

    PubMed

    Jain, Rajeev; Jadon, Nimisha; Radhapyari, Keisham

    2007-09-01

    The electrochemical reduction and adsorption of lamivudine, a systemic antiviral drug, were studied in a phosphate buffer medium at a hanging mercury drop electrode (HMDE). Cyclic voltammetry studies showed one well-defined reduction peak in the potential range from -1.2 to -1.8 V under different pH conditions, but the best results were obtained at pH 3.4. The reduction was irreversible and exhibited diffusion-controlled adsorption. The response was evaluated with respect to preconcentration time, pH effect, accumulation potential, accumulation time, and scan rate. The number of electrons transferred in the reduction process was calculated and the probable reduction mechanism was proposed. A systemic study of the experimental parameters that affect the square-wave stripping response was carried out and experimental conditions were optimized.

  2. Hollow cathode and thruster discharge chamber plasma measurements

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; Watkins, Ron M.

    2005-01-01

    Due to the successful performance of the NSTAR ion thruster in Deep Space 1 mission, coupled with the recently completed 30,352 hour extended life test (ELT) of the NSTAR flight spare thruster, ion thrusters have become a viable option for future NASA missions. In this paper, detailed measurements of the plasma parameters internal and external to the cathode will presented for the NSTAR cathode up to 13.1A of discharge current and for the NEXIS cathode up to 30A of discharge current.

  3. Cathodic stripping voltammetry of cysteine using silver and copper solid amalgam electrodes.

    PubMed

    Yosypchuk, B; Novotný, L

    2002-04-01

    Silver and copper solid amalgam electrodes (modified with mercury meniscus and based on amalgamation of fine metallic powder) have been successfully tested for cathodic stripping voltammetry of cysteine. In the case of the silver solid amalgam electrode AgSAE the relative standard deviation (RSD) and the detection limit (3 SD) reached +/-2.3% and 3x10(-9) mol l(-1) cysteine, respectively.

  4. A new design of indirectly heated cathode based strip type electron gun.

    PubMed

    Maiti, Namita; Lijeesh, K; Barve, U D; Quadri, Nishad; Tembhare, G U; Mukherjee, S; Thakur, K B; Das, A K

    2013-08-01

    A new design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The design issue addressed is the uniformity of temperature on the solid cathode using (a) a multi-segmented filament with variable height as the primary heat source and (b) trapezoidal shaped single long filament as the primary heat source. The proposed design in this paper is based on computer simulation and validated by extensive experimentations. The design emphasis is on maintaining uniform temperature on the solid cathode. The designed multi-segment filament and the single long filament provide a temperature uniformity on the solid cathode of about 250 K and 110 K, respectively. The better temperature uniformity inspite of the thermal expansion, in case of a single long filament tightly clamped at two ends, has been possible due to shaping of the single filament with a number of constituent sections such that the thermal expansion of different sections forming the actual filament takes care of not only the mechanical stability but also does not affect the emitting surface of the filament. Experiments show that the modified design achieves a one to one correspondence of the solid cathode length and the electron beam length emitted from the solid cathode.

  5. A new design of indirectly heated cathode based strip type electron gun

    NASA Astrophysics Data System (ADS)

    Maiti, Namita; Lijeesh, K.; Barve, U. D.; Quadri, Nishad; Tembhare, G. U.; Mukherjee, S.; Thakur, K. B.; Das, A. K.

    2013-08-01

    A new design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The design issue addressed is the uniformity of temperature on the solid cathode using (a) a multi-segmented filament with variable height as the primary heat source and (b) trapezoidal shaped single long filament as the primary heat source. The proposed design in this paper is based on computer simulation and validated by extensive experimentations. The design emphasis is on maintaining uniform temperature on the solid cathode. The designed multi-segment filament and the single long filament provide a temperature uniformity on the solid cathode of about 250 K and 110 K, respectively. The better temperature uniformity inspite of the thermal expansion, in case of a single long filament tightly clamped at two ends, has been possible due to shaping of the single filament with a number of constituent sections such that the thermal expansion of different sections forming the actual filament takes care of not only the mechanical stability but also does not affect the emitting surface of the filament. Experiments show that the modified design achieves a one to one correspondence of the solid cathode length and the electron beam length emitted from the solid cathode.

  6. Performance of the new small-strip Thin Gap Chamber for the ATLAS Muon System at the LHC

    NASA Astrophysics Data System (ADS)

    Bellerive, Alain; Atlas Nsw Stgc Group Collaboration

    2016-03-01

    The instantaneous luminosity of the Large Hadron Collider (LHC) at CERN will be increased up to a factor of five with respect to the design value by undergoing an extensive upgrade program. The largest phase-1 upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward region with the so-called New Small Wheel (NSW). The NSW consists of layers of Micromegas and small-strip Thin Gap Chambers (sTGC), both providing trigger and tracking capabilities. The precision reconstruction of tracks requires a spatial resolution of about 100 microns, and the trigger track segments have to be reconstructed with an angular resolution of approximately 1 mrad. The sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes. The precision cathode plane has strips with a 3.2mm pitch for precision readout and the cathode plane on the other side has pads for triggering. The pads are used to produce a 3-out-of-4 coincidence to identify muon tracks in an sTGC quadruplet. A full size sTGC quadruplet has been constructed and equipped with the first prototype of dedicated front-end electronics. The design of the sTGC will be described. The performance of the sTGC quadruplet has been characterized with data collected at the Fermilab and CERN test beam facilities. Spatial resolution and trigger efficiency results will be presented. An overview of the simulation and digitization model of the sTGC will also be summarized.

  7. Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators

    NASA Astrophysics Data System (ADS)

    Ma, Jinxing; Wang, Zhiwei; Suor, Denis; Liu, Shumeng; Li, Jiaqi; Wu, Zhichao

    2014-12-01

    An ideal separator is essential for efficient power production from air-cathode single-chamber microbial fuel cells (MFCs). In this study, we use different kinds of membranes as separators, including Nafion 117 proton exchange membrane, polyethersulfone and poly(vinylidene fluoride) microfiltration membranes. Temporal variations of cathode performance are monitored during the experiment. Results show that MFCs with microfiltration membranes present higher power output but deterioration is still observed after about 600-h operation. With the utilization of appropriate separators (e.g., polyethersulfone membrane), biofouling, cation fouling and chemical scale fouling of the cathodes are alleviated while reaction fouling seems inevitable. Moreover, it is found that Coulombic efficiency (CE) and energy efficiency (EE) are also related to the cathode performance. Despite relatively high oxygen diffusivity (1.49 × 10-5 cm2 s-1), CE and EE of the MFC with 0.1 μm pore-size polyethersulfone membrane can reach 92.8% and 13.7%, respectively, when its average power density registers 403.5 mW m-2. This phenomenon might be attributed to the finding that the overall substrate consumption rate due to oxygen reduction and respiration is almost constant in the air-cathode MFCs. Oxygen leakage into the electrolyte can be inhibited due to the efficient oxygen reduction reaction on the surface of the cathode.

  8. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    NASA Astrophysics Data System (ADS)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  9. Gated strip proportional detector

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1987-01-01

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10.sup.6. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  10. Gated strip proportional detector

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1985-02-19

    A gated strip proportional detector includes a gas tight chamber which encloses a solid ground plane, a wire anode plane, a wire gating plane, and a multiconductor cathode plane. The anode plane amplifies the amount of charge deposited in the chamber by a factor of up to 10/sup 6/. The gating plane allows only charge within a narrow strip to reach the cathode. The cathode plane collects the charge allowed to pass through the gating plane on a set of conductors perpendicular to the open-gated region. By scanning the open-gated region across the chamber and reading out the charge collected on the cathode conductors after a suitable integration time for each location of the gate, a two-dimensional image of the intensity of the ionizing radiation incident on the detector can be made.

  11. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    PubMed

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product.

  12. Circulating cathodic antigen cassette test versus haematuria strip test in diagnosis of urinary schistosomiasis.

    PubMed

    El-Ghareeb, Azza S; Abd El Motaleb, Ghada S; Waked, Nevien Maher; Osman Hany Kamel, Nancy; Aly, Nagwa Shaban

    2016-12-01

    Urinary schistosomiasis caused by Schistosoma haematobium constitutes a major public health problem in many tropical and sub-tropical countries. This study was conducted to evaluate circulating cathodic antigen cassette test and haematuria strip test for detection of S. haematobium in urine samples and to evaluate their screening performance among the study population. Microscopy was used as a gold standard. A total of 600 urine samples were examined by microscopy for detection of S. haematobium eggs, screened for microhaematuria using Self-Stik reagent strips and screened for circulating cathodic antigen (CCA) using the urine-CCA cassette test. The specificity of CCA, microhaematuria and macrohaematuria was 96.4, 40.6 and 31.2 % respectively while the sensitivity was 88.2, 99.3 and 100 % respectively which was statistically significant (P < 0.001). These findings suggest that using of urine-CCA cassette test in diagnosis of urinary schistosomiasis is highly specific (96.4 %) compared with the highly sensitive haematuria strip test (100 %). The degree of agreement between microscopic examination and CCA detection was 99.3 % with highly statistically significant difference (P < 0.001). The combination of two techniques could potentially use for screening and mapping of S. haematobium infection.

  13. Adsorptive cathodic stripping voltammetric determination of cefoperazone in bulk powder, pharmaceutical dosage forms, and human urine.

    PubMed

    Hoang, Vu Dang; Huyen, Dao Thi; Phuc, Phan Hong

    2013-01-01

    The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3-6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from -0.7 to -0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect.

  14. Adsorptive Cathodic Stripping Voltammetric Determination of Cefoperazone in Bulk Powder, Pharmaceutical Dosage Forms, and Human Urine

    PubMed Central

    Hoang, Vu Dang; Huyen, Dao Thi; Phuc, Phan Hong

    2013-01-01

    The electroreduction behaviour and determination of cefoperazone using a hanging mercury drop electrode were investigated. Cyclic voltammograms of cefoperazone recorded in universal Britton-Robinson buffers pH 3–6 exhibited a single irreversible cathodic peak. The process was adsorption-controlled. Britton-Robinson buffer 0.04 M pH 4.0 was selected as a supporting electrolyte for quantitative purposes by differential pulse and square wave adsorptive cathodic stripping voltammetry. The experimental voltammetric conditions were optimized using Central Composite Face design. A reduction wave was seen in the range from −0.7 to −0.8 V. These voltammetric techniques were successfully validated as per ICH guidelines and applied for the determination of cefoperazone in its single and sulbactam containing powders for injection and statistically comparable to USP-HPLC. They were further extended to determine cefoperazone in spiked human urine with no matrix effect. PMID:24109542

  15. Detection of aniline at boron-doped diamond electrodes with cathodic stripping voltammetry.

    PubMed

    Spătaru, Tanţa; Spătaru, Nicolae; Fujishima, Akira

    2007-09-15

    Boron-doped diamond (BDD) electrodes were used to investigate the possibility of detecting aniline by linear-sweep cathodic stripping voltammetry. It was found that the dimeric species (p-aminodiphenylamine and benzidine) formed by anodic oxidation of aniline during the accumulation period are involved in electrochemically reversible redox processes and, in acidic media, the shape of the stripping voltammetric response is suitable for aniline detection in the micromolar concentration range. The low background current of conductive diamond is an advantage compared to other electrode materials and allows a detection limit of 1muM. Weak adsorption properties and the extreme electrochemical stability are additional advantages of BDD and it was found that, even after long-time measurements, the electrode surface can regain its initial activity by an anodic polarization in the potential region of water decomposition.

  16. Cathodic adsorptive stripping voltammetric determination of uranium with potassium hydrogen phthalate.

    PubMed

    Farghaly, O A; Ghandour, M A

    1999-06-01

    The adsorption properties of dioxouranium (II)-Phathalate complexes onto hanging mercury drop electrode are exploited in developing a highly sensitive and selective stripping voltammetric procedure for the determination of uranium (VI). The reduction current of adsorbed complex ions of U(VI) was measured by both linear sweep (LSCSV) and differential pulse cathodic stripping voltammetry (DPCSV), preceded by a period of preconcentration onto the electrode surface. As low as 2x10(-9) mol dm(-3) (0.5 mug/l) and 2x10(-8) mol dm(-3) (4.8 mug/l) with accumulation time 240 and 120 s using DPCSV and LSCSV, respectively, have been determined successfully. The relative standard deviation of 2.2% at the 5 ppm level was obtained. The interferences of some metal ions and anions were studied. The application of this method was tested in the determination of uranium in superphosphate fertilizer.

  17. Detection of iron(III)-binding ligands originating from marine phytoplankton using cathodic stripping voltammetry.

    PubMed

    Hasegawa, Hiroshi; Maki, Teruya; Asano, Kohnosuke; Ueda, Kentaro; Ueda, Kazumasa

    2004-01-01

    The sample preparation and analytical methodology are described for detecting biologically produced iron(III)-binding ligands in laboratory cultures of coastal marine phytoplankton. The iron(III)-binding ligands from the culture media were purified by passage through a column packing with a hydrophobic absorbent. The concentrations and stability constants of the ligands were determined by adsorptive cathodic stripping voltammetry with competitive ligand equilibration. The analytical results of the cultivated cultures suggest that eukaryotic phytoplankton would produce iron(III)-binding ligands in analogy with other microorganisms.

  18. Diagnosis of Schistosomiasis by Reagent Strip Test for Detection of Circulating Cathodic Antigen

    PubMed Central

    van Dam, G. J.; Wichers, J. H.; Ferreira, T. M. Falcao; Ghati, D.; van Amerongen, A.; Deelder, A. M.

    2004-01-01

    A newly developed reagent strip assay for the diagnosis of schistosomiasis based on parasite antigen detection in urine of infected individuals was evaluated. The test uses the principle of lateral flow through a nitrocellulose strip of the sample mixed with a colloidal carbon conjugate of a monoclonal antibody specific for Schistosoma circulating cathodic antigen (CCA). The strip assay to diagnose a group of highly infected schoolchildren in Mwanza, Tanzania, demonstrated a high sensitivity and association with the intensity of infection as measured both by egg counts, and by circulating anodic antigen and CCA levels determined by enzyme-linked immunosorbent assay. A specificity of ca. 90% was shown in a group of schistosome-negative schoolchildren from Tarime, Tanzania, an area where schistosomiasis is not endemic. The test is easy to perform and requires no technical equipment or special training. The stability of the strips and the conjugate in the dry format lasts for at least 3 months at ambient temperature in sealed packages, making it suitable for transport and use in areas where schistosomiasis is endemic. This assay can easily be developed to an end-user format. PMID:15583265

  19. Ring cusp/hollow cathode discharge chamber performance studies. [ion propulsion

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Wilbur, Paul J.

    1988-01-01

    An experimental study was performed to determine the effects of hollow cathode position, anode position, and ring cusp magnetic field configuration and strength on discharge chamber performance. The results are presented in terms of comparative plasma ion energy cost, extracted ion fraction, and beam profile data. Such comparisons are used to demonstrate whether changes in performance are caused by changes in the loss rate of primary electrons to the anode or the loss rate of ions to discharge chamber walls or cathode and anode surfaces. Results show: (1) the rate of primary electron loss to the anode decreases as the anode is moved downstream of the ring cusp toward the screen grid; (2) the loss rate of ions to hollow cathode surfaces are excessive if the cathode is located upstream of a point of peak magnetic flux density at the discharge chamber centerline; and (3) the fraction of the ions produced that are lost to discharge chamber walls and ring magnet surfaces is reduced by positioning of the magnet rings so the plasma density is uniform over the grid surface, and adjusting their strength to a level where it is sufficient to prevent excessive ion losses by Bohm diffusion.

  20. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  1. Plasma Emission Characteristics From a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Astrophysics Data System (ADS)

    Foster, John E.; Patterson, Michael J.

    2002-11-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  2. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes

    NASA Astrophysics Data System (ADS)

    Su, Min; Wei, Liling; Qiu, Zhaozheng; Wang, Gang; Shen, Jianquan

    2016-01-01

    Microbial electrolysis cell (MEC) is a promising technology for sustainable production of hydrogen from biodegradable carbon sources. Employing a low-cost and high efficient cathode to replace platinum catalyzed cathode (Pt/C) for hydrogen generation is a challenge for commercialization of MEC. Here we show that a 3D macroporous stainless steel fiber felt (SSFF) with high electrochemical active surface area has an excellent catalytic activity for hydrogen generation, which is comparable to Pt/C cathode and superior to stainless steel mesh (SSM) cathode in the single-chamber MEC. The SSFF cathode (mean filter rating 100 μm) produces hydrogen at a rate of 3.66 ± 0.43 m3 H2 m-3d-1 (current density of 17.29 ± 1.68 A m-2), with a hydrogen recovery of 76.37 ± 15.04% and overall energy efficiency of 79.61 ± 13.07% at an applied voltage of 0.9 V. The performance of SSFF cathode improves over time due to a decrease in overpotential which caused by corrosion. These results demonstrate that SSFF can be a promising alternative for Pt catalytic cathode in MEC for hydrogen production.

  3. Determination of trace amounts of thallium by adsorptive cathodic stripping voltammetry with xylenol orange.

    PubMed

    Shams, Esmaeil; Yekehtaz, Mehdi

    2002-09-01

    Trace amounts of thallium(I) can be determined using adsorptive cathodic stripping voltammetry in the presence of Xylenol Orange (XO). The reduction current of the thallium(I)-XO complex ion was measured by square-wave cathodic stripping voltammetry. The peak potential was at -0.44 V vs. Ag/AgCl. The effect of various parameters (pH, ligand concentration, accumulation potential and collection time) on the response are discussed. The response was linearly related to the thallium concentration in the range 0.5-110 ng ml(-1) and 110-2000 ng ml(-1). The limit of detection was 0.2 ng ml(-1). The relative standard deviation for the determination of 80 ng ml(-1) thallium was 2.8%. Many common anions and cations did not interfere with the determination of thallium. The interference of lead was reduced by the addition of 0.003 M sodium carbonate. The voltammetric procedure was then successfully applied to the determination of thallium in various complex samples.

  4. Copper-Based Electrochemical Sensor with Palladium Electrode for Cathodic Stripping Voltammetry of Manganese

    PubMed Central

    2015-01-01

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River. PMID:25476591

  5. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    PubMed

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  6. Power generation capabilities of microbial fuel cells with different oxygen supplies in the cathodic chamber.

    PubMed

    Juang, Der-Fong; Lee, Chao-Hsien; Hsueh, Shu-Chun; Chou, Huei-Yin

    2012-06-01

    Two microbial fuel cells (MFCs) inoculated with activated sludge of a wastewater treatment plant were constructed. Oxygen was provided by mechanical aeration in the cathodic chamber of one MFC, whereas it was obtained by the photosynthesis of algae in the other. Electrogenic capabilities of both MFCs were compared under the same operational conditions. Results showed that the MFC with mechanical aeration in the cathodic chamber displayed higher power output than the one with photosynthesis of algae. Good linear relationship between power density and chemical oxygen demand (COD) loading rate was obtained only on the MFC with mechanical aeration. Furthermore, the relationships between power density and effluent COD and between Coulombic efficiency and COD loading rate can only be expressed as binary quadratic equations for the MFC with mechanical aeration and not for the one with photosynthesis of algae.

  7. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    NASA Astrophysics Data System (ADS)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  8. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry.

    PubMed

    Obata, H; van den Berg, C M

    2001-06-01

    A new procedure for the direct determination of picomolar levels of iron in seawater is presented. Cathodic stripping voltammetry (CSV) is preceded by adsorptive accumulation of the iron(III)-2,3-dihydroxynaphthalene (DHN) complex from seawater, containing 20 microM DHN at pH 8.0, onto a static mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is catalytically enhanced by the presence of 20 mM bromate. Optimized conditions include a 60-s adsorption period at -0.1 V and a voltammetric scan using sampled dc modulation at 10 Hz. In these conditions, a detection limit of 13 pM iron in seawater was achieved which can be lowered further by extending the adsorption time to 300 s. The new catalytic CSV method is approximately 5 times more sensitive than existing CSV methods and was tested on samples from the Atlantic Ocean.

  9. Cathodic stripping voltammetry of trace Mn(II) at carbon film electrodes.

    PubMed

    Filipe, Olga M S; Brett, Christopher M A

    2003-12-04

    A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 Omega. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO(2) nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to initiate MnO(2) nucleation. Under optimised conditions the detection limit obtained was 4 nM and the relative standard deviation for eight measurements of 0.22 nM was 5.3%. Interferences from various metal ions on the response CSV of Mn(II) were investigated, namely Cd(II), Ni(II), Cu(II), Cr(VI), Pb(II), Zn(II) and Fe(II). Application to environmental samples was demonstrated.

  10. Determination of selenium in natural waters by adsorptive differential pulse cathodic stripping voltammetry.

    PubMed

    Ashournia, Mehdi; Aliakbar, Alireza

    2009-08-30

    In this work bovine albumin was used innovatively as a medium for adsorptive accumulation of Se-I(2) on thin mercury film electrode. Se-I(2) was formed by reaction between Se(IV) and iodide in HCl media. The adsorbed Se-I(2) was stripped in 0.05 M HCl by differential pulse cathodic potential scan. The proposed method was successfully applied to analysis of Se(IV) and Se(VI) in natural waters sampled from some lagoons south of Caspian Sea. The optimum reaction conditions and other analytical parameters and influence of cations and anions were studied. The detection limit was 0.37 ng mL(-1). The obtained results were compared with the results of DPCSV after electrochemical preconcentration, HG-AAS and ICP-AES.

  11. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode.

    PubMed

    Teixeira, Meryene C; Tavares, Elisângela de F L; Saczk, Adelir A; Okumura, Leonardo L; Cardoso, Maria das Graças; Magriotis, Zuy M; de Oliveira, Marcelo F

    2014-07-01

    We have developed an eletroanalytical method that employs Cu(2+) solutions to determine arsenic in sugarcane brandy using an electrode consisting of carbon paste modified with carbon nanotubes (CNTPE) and polymeric resins. We used linear sweep (LSV) and differential-pulse (DPV) voltammetry with cathodic stripping for CNTPE containing mineral oil or silicone as binder. The analytical curves were linear from 30 to 110μgL(-1) and from 10 to 110μgL(-1) for LSV and DPV, respectively. The limits of detection (L.O.D.) and quantification (L.O.Q.) of CNTPE were 10.3 and 34.5μgL(-1) for mineral oil and 3.4 and 11.2μgL(-1) for silicone. We applied this method to determine arsenic in five commercial sugarcane brandy samples. The results agreed well with those obtained by hydride generation combined with atomic absorption spectrometry (HG AAS).

  12. Direct determination of molybdenum in seawater by adsorption cathodic stripping square-wave voltammetry.

    PubMed

    Sun, Y C; Mierzwa, J; Lan, C R

    2000-06-30

    A reliable and very sensitive procedure for the determination of trace levels of molybdenum in seawater is proposed. The complex of molybdenum with 8-hydroxyquinoline (Oxine) is analyzed by cathodic stripping square-wave voltammetry based on the adsorption collection onto a hanging mercury drop electrode (HMDE). This procedure of molybdenum determination was found to be more favorable than differential pulse cathodic stripping voltammetry because of inherently faster scan rate and much better linearity obtained through the one-peak (instead of one-of-two peaks) calibration. The variation of polarographic peak and peak current with a pH, adsorption time, adsorption potential, and some instrumental parameters such as scan rate and pulse height were optimized. The alteration of polarographic wave and its likely mechanism are also discussed. The relationship between peak current and molybdenum concentration is linear up to 150 mug l(-1). Under the optimal analytical conditions, the determination limit of 0.5 mug l(-1) Mo was reached after 60 s of the stirred collection. The estimated detection limit is better than 0.1 mug l(-1) of Mo. The applicability of this method to analysis of seawater was assessed by the determination of molybdenum in two certified reference seawater samples (CASS-2 and NASS-2) and the comparison of the analytical results for real seawater samples (study on a vertical distribution of Mo in the seawater column) with the results obtained by Zeeman-corrected electrothermal atomization atomic absorption spectrometry (Zeeman ETAAS). A good agreement between two used methods of molybdenum determination was obtained.

  13. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cathodic stripping voltammetric determination of doxazosin in urine and pharmaceutical tablets using carbon paste electrodes.

    PubMed

    Arranz, A; Fernández de Betoño, S; Moreda, J M; Cid, A; Arranz, J F

    1997-08-01

    Several voltammetric techniques were used to explore the reductive behaviour of the antihypertensive agent doxazosin on a bare carbon paste (CPE) and a Tenax-modified carbon paste electrode (TMCPE). The results indicate that the process is irreversible and fundamentally controlled by adsorption, which allows doxazosin to be accumulated at the electrode surface. The cathodic adsorptive stripping (AdS) response was evaluated with respect to pH, accumulation variables and instrumental parameters, using differential-pulse (DPV) and square-wave voltammetry (SWV) as redissolution techniques. In both cases, a voltammetric peak close to 0 V in Britton-Robinson buffer (pH 6.6) was obtained after a preconcentration step at 0.55 V for 3 min (2000 rpm) and a subsequent cathodic scan. When the TMCPE was used, the limits of detection were 4.35 x 10(-11) and 5.18 x 10(-11) M for AdS-DPV and AdS-SWV, respectively. The deposition time (3 min) was improved relative to that obtained by means of CPE (6 min). Under the optimum operational conditions, the doxazosin reduction peak showed a linear response in the range from 6 x 10(-11) to 1 x 10(-9) M by using AdS-DPV, with an RSD of 3.39% for 3 x 10(-8) M doxazosin solution (n = 10). A method was developed for the determination of doxazosin in human urine and formulations.

  15. Cathodic stripping voltammetry of nickel: sonoelectrochemical exploitation of the Ni(III)/Ni(II) couple.

    PubMed

    Davis, James; Vaughan, D Huw; Stirling, David; Nei, Lembit; Compton, Richard G

    2002-07-19

    The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. Agmid R:AgCl) with the response found to be linear over the range 50 nM to 1 muM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.

  16. Differential pulse and square-wave cathodic stripping voltammetry of xanthine and xanthosine at a mercury electrode.

    PubMed

    Temerk, Y M; Kamal, M M; Ahmed, G A W; Ibrahim, H S M

    2003-08-01

    The surface activity of xanthine (Xan) and xanthosine (Xano) at a hanging mercury drop electrode (HMDE) was studied using out-of-phase ac and cyclic dc voltammetry. The results show that Xan and Xano were strongly adsorbed and chemically interacted with the charged mercury surface, which is the prerequisite step for applying the cathodic adsorptive stripping voltammetric determination of such biologically important compounds. Differential pulse cathodic adsorptive stripping voltammetry (DPCASV) and square-wave cathodic adsorptive stripping voltammetry (SWCASV) were applied for the ultratrace determination of Xan and Xano compounds. Moreover, a rapid and sensitive controlled adsorptive accumulation of Cu(II) complexes of both compounds provided the basis of a direct stripping voltammetric determination of such compounds to submicromolar and nanomolar levels. Operational and solution conditions for the quantitative ultratrace determination of Xan and Xano were optimized in absence and presence of Cu(II). The calibration curve data were subjected to least-squares refinements. The effects of several types of inorganic and organic interfering species on the determination of Xan or Xano were considered.

  17. Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M

    2014-01-01

    Two different binder materials of varying water affinity, viz. poly vinyl alcohol (PVA) and poly-tetrafluoroethylene (PTFE), and biocide vanillin were tested for cathode fouling in a single chamber air-cathode microbial fuel cell (MFC) constructed with a low-cost baked clayware cylinder and operated under fed-batch mode. PVA and PTFE loadings of 0.5 mg/cm(2) were used for MFC-1 and MFC-2, respectively as a binder; and a 1:1 mixture of PVA + PTFE was used as binder in MFC-3 with same binder loading. Vanillin was mixed with PVA and also applied at a loading of 0.5 mg/cm(2) for MFC-4. Results showed organic matter removal efficiencies around 90% for all MFCs both before and after fouling. Coulombic efficiency was, however, found to decrease 50% after fouling in the MFC-3 coated with both PVA and PTFE. After 5 weeks of operation, due to fouling 56, 40 and 69% reduction in power densities were observed in MFC-1, MFC-2 and MFC-3, respectively. In the MFC-4 having PVA and vanillin, the least fouling was observed. A consistent volumetric power of 233 mW/m(3) was observed for MFC-4, thus potentially offering a suitable solution to alleviate the problem of fouling in the making of single-chamber air-cathode MFCs.

  18. Signal coupling and signal integrity in multi-strip resistive plate chambers used for timing applications

    NASA Astrophysics Data System (ADS)

    Gonzalez-Diaz, Diego; Chen, Huangshan; Wang, Yi

    2011-08-01

    We have systematically studied the transmission of electrical signals along several 2-strip Resistive Plate Chambers (RPCs) in the frequency range f=0.1-3.5 GHz. Such a range was chosen to fully cover the bandwidth associated to the very short rise-times of signals originated in RPCs used for sub-100 ps timing applications. This work conveys experimental evidence of the dominant role of modal dispersion in counters built at the 1 m scale, a fact that results in large cross-talk levels and strong signal shaping. It is shown that modal dispersion appears in RPCs due to their inherent unbalance between capacitive and inductive coupling. A practical way to restore this symmetry has been introduced (hereafter 'electrostatic compensation'), allowing for a cross-talk suppression factor up to ×12 and a rise-time reduction by 200 ps. Under conditions of compensation the signal transmission is only limited by dielectric losses, yielding a length-dependent cutoff frequency of around 1 GHz for propagation along 2 m in typical float glass-based RPCs. It is further shown that 'electrostatic compensation' can be achieved for an arbitrary number of strips as long as the nature of the coupling is 'short-range', that is an almost exact assumption for typical strip-line RPCs. This work extends the bandwidth of previous studies by a factor of×20.

  19. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    PubMed

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  20. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  1. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  2. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    SciTech Connect

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  3. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    SciTech Connect

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  4. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry.

    PubMed

    Rusinek, Cory A; Bange, Adam; Warren, Mercedes; Kang, Wenjing; Nahan, Keaton; Papautsky, Ian; Heineman, William R

    2016-04-19

    Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV.

  5. High-emission cold cathode

    DOEpatents

    Mancebo, L.

    1974-01-29

    A field-emission cathode having a multitude of field emission points for emitting a copious stream of electrons when subjected to a high field is described. The cathode is constructed by compressing a multitude of tungsten strips alternately arranged with molybdenum strips and copper ribbons or compressing alternately arranged copper plated tungsten and molybdenum strips, heating the arrangement to braze the tungsten and molybdenum strips together with the copper, machining and grinding the exposed strip edges of one side of the brazed arrangement to obtain a precisely planar surface, etching a portion of the molybdenum and copper to leave the edges of the tungsten strips protruding for electron emission, and subjecting the protruding edges of the tungsten strips to a high electric field to degas and roughen the surface to pnovide a large number of emitting points. The resulting structure is particularly useful as a cathode in a transversely excited gaseous laser where the cathode is mounted in a vacuum chamber for emitting electrons under the influence of a high electric field between the cathode and an extractor grid. The electrons pass through the extractor grid, a thin window in the wall of the laser chamber and into the laser chamber which is filled with a gaseous mixture of helium, nitrogen, and carbon dioxide. A second grid is mounted on the gaseous side of the window. The electrons pass into the laser chamber under the influence of a second electric field between the second grid and an anode in the laser chamber to raise selected gas atoms of the gaseous mixture to appropriately excited states so that a subsequent coherent light beam passing through the mixture transversely to the electron stream through windows in opposite ends of the laser chamber stimulates the excited atoms to amplify the beam. (Official Gazette)

  6. Sono-cathodic stripping voltammetry of manganese at a polished boron-doped diamond electrode: application to the determination of manganese in instant tea.

    PubMed

    Saterlay, A J; Foord, J S; Compton, R G

    1999-12-01

    Ultrasonically assisted cathodic stripping voltammetry at a boron-doped diamond electrode was developed for the detection of manganese. Differential-pulse voltammetry was used to give the analytical signal from a cathodic strip of electrodeposited MnO2; linearity was observed from 10(-11) M to at least 3 x 10(-7) M, with 10(-11) M being the detection limit for a 2 min deposition. The procedure involves both ultrasonic-anodic deposition of MnO2 and ultrasonic-cathodic stripping. This novel analytical tool is robust, reproducible, mercury free, oxygen insensitive and highly specific towards manganese. The differential-pulse sono-cathodic stripping voltammetric technique was used to determine successfully the manganese content of two instant tea samples, giving excellent agreement with independent AAS analyses.

  7. Copper-mercury film electrode for cathodic stripping voltammetric determination of Se(IV).

    PubMed

    Sladkov, Vladimir; David, François; Fourest, Blandine

    2003-01-01

    The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.

  8. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene.

    PubMed

    van den Berg, Constant M G

    2006-01-01

    The chemical speciation of iron in seawater is determined by cathodic stripping voltammetry using 2,3-dihydroxynaphthalene (DHN) as adsorptive and competing ligand. The optimized conditions include a DHN concentration of 0.5-1 microM, seawater at its original pH of 8, and equilibration overnight. The alpha-coefficient for DHN (=[FeDHN]/[Fe']) was calibrated against EDTA giving values of 166 for 0.5 microM DHN and 366 at 1 microM DHN and a value of 8.51 +/- 0.07 for log K'(Fe'DHN). The dissociation of the natural iron species FeL was found to have a characteristic reaction time of 50 min, indicating that titrations should be equilibrated overnight rather than the shorter periods sometimes used onboard ship. The method was applied to samples from the Pacific giving ligand concentrations of 1.1 and 1.6 nM for deep and surface waters, respectively, with an average value for log K'(FeL) of 11.9 +/- 0.3 compared to a value of 11.5 for the siderophore deferoxamine. The results are similar to those obtained previously for similar samples, but the new method has much greater sensitivity for iron than previous methods, leading to lower limits of detection and shorter analysis time.

  9. Adsorptive cathodic stripping voltammetric determination of dexamethasone in formulations and biological fluids.

    PubMed

    Ghoneim, Enass M; El-Attar, Mona A; Ghoneim, Mohamed M

    2009-01-01

    The electrochemical behavior of dexamethasone at a hanging mercury drop electrode (HMDE) in a universal buffer series of pH 2-10 was studied using cyclic voltammetry. Based on the interfacial adsorptive character of dexamethasone onto the HMDE (electrode surface coverage = 1.4 x 10(-10) mol/cm2), a fully validated simple square-wave adsorptive cathodic stripping voltammetric method is described for its determination in bulk form with a limit of detection (LOD) of 3.1 x 10(-9) M. The described method was successfully applied to analysis of dexamethasone in its pharmaceutical formulations (deltasone tablets and fortecortin ampule) and in spiked samples of human urine, bovine urine, and protein-free bovine milk. The achieved LODs of dexamethasone in human urine, bovine urine, and protein-free bovine milk were 1.5 x 10(-8), 2 x 10(-8), and 9 x 10(-9) M, respectively. The mean percentage recoveries of 4 x 10(-7) M dexamethasone in bulk form, spiked human urine, bovine urine, and bovine milk, based on the average of 3 replicate measurements, were 99.8 +/- 0.25, 100.4 +/- 0.96, 99.6 +/- 0.79, and 100.1 +/- 0.26, respectively.

  10. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron.

    PubMed

    Laglera, Luis M; Battaglia, Gianluca; van den Berg, Constant M G

    2007-09-05

    A new voltammetric method is presented for the measurement of humic substances (HS) in natural waters. The method is based on catalytic cathodic stripping voltammetry (CSV) and makes use of adsorptive properties of iron-HS complexes on the mercury drop electrode at natural pH. A fulvic acid standard (IHSS) was used to confirm the voltammetric response (peak potential and sensitivity) for the HS for natural water samples. Optimized conditions included the linear-sweep mode, deposition at -0.1 V, pH buffered at 8 and a scan rate of 50 mV s(-1). At a deposition time of 240 s in the presence of 10 nM iron and 30 mM bromate, the detection limit was 5 microg L(-1) HS in seawater, which could be lowered further by an increase in the bromate concentration, or in the adsorption time. The method was used to determine HS in the Irish Sea which were found to occur at levels between 60 and 600 microg L(-1). The new method is sufficiently sensitive to detect the low HS content in oceanic samples and has implications to the study of iron speciation.

  11. Advantages of using a mercury coated, micro-wire, electrode in adsorptive cathodic stripping voltammetry.

    PubMed

    Gun, Jenny; Salaün, Pascal; van den Berg, Constant M G

    2006-06-30

    A mercury coated, gold, micro-wire electrode is used here for the determination of iron in seawater by catalytic cathodic stripping voltammetry (CSV) with a limit of detection of 0.1 nM Fe at a 60s adsorption time. It was found that the electrode surface is stable for extended periods of analyses (at least five days) and that it is reactivated by briefly (2s) applying a negative potential prior to each scan. Advantages of this electrode over mercury drop electrodes are that metallic mercury use is eliminated and that it can be readily used for flow analysis. This is demonstrated here by the determination of iron in seawater by continuous flow analysis. It is likely that this method can be extended to other elements. Experiments using bismuth coated, carbon fibre, electrodes showed that the bismuth catalyses the oxidation of the important oxidants bromate and hydrogen peroxide, which makes it impossible to use bismuth based electrodes for catalytic CSV involving these oxidants. For this reason mercury coated electrodes retain a major advantage for catalytic voltammetric analyses.

  12. Determination of total gaseous selenium in atmosphere by honeycomb denuder/differential pulse cathodic stripping voltammetry.

    PubMed

    Zhang, Bicheng; Xu, Hui; Yu, Jimmy C

    2002-05-16

    A new analytical method has been developed for the determination of total gaseous selenium in the atmosphere by honeycomb denuder collection followed by differential pulse cathodic stripping voltammetry (DPCSV) measurement. Gaseous selenium was collected in a denuder coating solution containing 2% HNO(3) and 2% glycerine. The soluble product, selenious acid, was then extracted by water for DPCSV analysis. The collection efficiency for gaseous selenium was 99.1% at a flow rate of 1 l min(-1) for 3 h. Excellent linearity in DPCSV was maintained up to Se concentration of 40 ng ml(-1). This was equivalent to a working concentration of 220 ng m(-3) of selenium in the atmosphere. A precision of 1.26% RSD (n=5) for 5 ng Se was obtained, and the detection limit (3sigma) and the quantitative determination limit were estimated to be 0.96 and 3.19 ng m(-3). The average recovery of selenium in three standard samples prepared by independent digestion of NIST SRM 1648 (Urban Particulate Matter) using our analytical system was 99.0%. The total content of gaseous selenium in the atmosphere of our laboratories was 3.2-4.4 ng m(-3).

  13. Rapid determination of picomolar titanium in seawater with catalytic cathodic stripping voltammetry.

    PubMed

    Croot, Peter L

    2011-08-15

    Titanium (Ti) is present as a trace element in seawater at extremely low concentrations (5-350 pM, where 1 pM = 10(-12) mol L(-1)) throughout the water column. Presently, little is known about the marine biogeochemistry of Ti and there is a distinct lack of oceanic measurements of Ti , because of the combined difficulties of trace-metal clean sampling for an element at such low levels and the lack of a suitable shipboard method of analysis. Here, a new cathodic stripping voltammetry procedure is presented for the rapid determination of Ti at pM concentrations in seawater that is capable of being used directly at sea. This method utilizes the catalytic enhancement of the reduction of the complex formed between Cupferron (N-nitrosophenylhydroxylamine) and Ti(IV). While Cupferron itself acts as both a complexing agent and an oxidizing agent, it was found that the optimal sensitivity was with bromate as an auxiliary oxidant. An advantage of this method is that it is useable over the pH range of 5.5-8. Under the conditions employed in this work, detection limits ranged from 5 pM to 12 pM. This new catalytic method is significantly more sensitive than existing methods and has been extensively tested at sea in the Atlantic and Southern Oceans.

  14. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange - Adsorptive cathodic stripping voltammetry.

    PubMed

    Nason, Jeffrey A; Sprick, Matthew S; Bloomquist, Don J

    2012-11-01

    Low concentrations of dissolved copper have been shown to adversely affect the olfactory system of salmonid species, impairing their ability to avoid predators and likely increasing mortality. These studies have resulted in increased regulatory scrutiny of stormwater discharges to surface waters inhabited by threatened and endangered salmonid species. Because it is primarily the free ionic (Cu(2+)) and weakly complexed forms of copper that are bioavailable, it is critical to understand the speciation of copper in stormwater. This paper reports on the characterization of copper binding ligands and copper speciation in composite samples of highway stormwater runoff collected at four sites in Oregon, USA using competitive ligand exchange - adsorptive cathodic stripping voltammetry (CLE-ACSV). Although the concentration and strength of copper binding ligands in stormwater varied considerable between sites and storms, the vast majority (>99.9%) of the total dissolved copper in composite samples was complexed by organic ligands in stormwater. Although total dissolved copper concentrations range from 2 to 20 μg/L, the analytically determined free ionic copper concentrations did not exceed 10(-10) M (6.3 ng/L) in any of the fully characterized samples, suggesting that much of the copper in highway stormwater is not bioavailable. Analytically determined free ionic copper concentrations were compared with those predicted by a readily available chemical equilibrium models and found to be in reasonable agreement. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Detecting Naturally-Produced Sulfide Nanoparticles by Adsorptive, Cathodic Stripping Voltammetry.

    NASA Astrophysics Data System (ADS)

    Helz, G. R.; Krznaric, D.; Bura-Nakic, E.; Ciglenecki, I.

    2007-12-01

    Growing evidence implies that metal sulfide nanoparticles of natural origin exist in some aquatic environments. These nanoparticles could play important roles as mediators of trace metal nutrition and toxicity. Thermodynamics suggests that in sulfidic environments (total transition metaltotal sulfide) the most insoluble metal sulfide (usually Hg or Cu) will form the predominant sulfide nanoparticle. New experimental methods for detecting and distinguishing between such nanoparticles are needed. We report that mercury electrodes effectively preconcentrate a number of different metal sulfide nanoparticles, enabling their detection by adsorptive cathodic stripping voltammetry. Voltammetrically, nanoparticulate analytes differ fundamentally from dissolved analytes; e.g. analyte accumulation is very sensitive to electrolyte composition and concentration in accord with the Schulze-Hardy Rule. EDTA or acid treatment of samples is useful for distinguishing highly insoluble nanoparticles (HgS, CuS) from FeS. Nanoparticulate sulfur potentially interferes. Supersaturated solutions can generate artifactual analyte on Hg electrode surfaces. Despite such potential pitfalls, progress is encouraging. Preliminary, qualitative results from natural waters will be reported.

  16. A kinetic study of nickel complexation in model systems by adsorptive cathodic stripping voltammetry.

    PubMed

    Celo, V; Murimboh, J; Salam, M S; Chakrabarti, C L

    2001-03-15

    Adsorptive cathodic stripping voltammetry (AdCSV) in conjunction with the competing ligand-exchange method (CLEM) was investigated as a tool for measuring dissociation rate coefficients of nickel complexes in model systems. Dimethylglyoxime (DMG) was used as the competing ligand. Citric acid (CA) and a well-characterized fulvic acid (FA) were used as model ligands. The rate coefficients were calculated, and the consistency of equilibrium and kinetic data was discussed. The contributions of the disjunctive pathway (proceeding by the dissociation of the initial complex) and the adjunctive pathway (proceeding by the formation of an intermediate complex as a result of direct attack of the competing ligand on the initial complex) on the overall reactions were investigated. The reactions of Ni-CA or Ni-FA complexes with DMG were demonstrated to proceed by both disjunctive and adjunctive pathways. The predominant pathway for the overall reaction depends on the nickel-to-initial ligand and the DMG-to-initial ligand ratios. The reactions follow predominantly the disjunctive pathway for [DMG] > or = 3 mM and Ni-to-dissolved organic carbon (DOC) ratios greater than 10 nM Ni 2+/g of DOC. Since free nickel ion in freshwaters is reported to be toxic, its rate and pathway of formation are of environmental concern.

  17. Electrochemical analysis of the alanine phenylthiohydantoin derivative by cathodic stripping voltammetry.

    PubMed

    Vilaseca, C; Quintana, M C; Vicente, J; Hernández, P; Hernández, L

    2008-08-01

    A square-wave cathodic stripping voltammetry method for alanine determination as its phenylthiohydantoin (PTH-alanine) derivative is developed. To this end, all the chemical and instrumental variables affecting the determination of PTH-alanine are optimized. From studies of the mechanisms governing the electrochemical response of PTH-alanine, it was concluded that it is an electrochemically irreversible system with a diffusive-adsorptive reduction phenomenon. Under optimal conditions, the variation of analytical signal (I(p)) with PTH-alanine concentration is linear in the 2.4x10(-8)-4.8x10(-7) M range, with a LOD of 1.2x10(-8) M and a LOQ of 4.2x10(-8) M, a RSD (%) less than 11%, and a E(r) (%) less than 10%. The optimized method was applied to the determination of PTH-alanine obtained from a synthetic protein after Edman reaction and the results were corroborated by high-performance liquid chromatography with UV detection.

  18. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.

    PubMed

    Tao, Hu-Chun; Liang, Min; Li, Wei; Zhang, Li-Juan; Ni, Jin-Ren; Wu, Wei-Min

    2011-05-15

    Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1L) with different concentrations of CuSO(4) solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu(2+)/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m(3) at an initial 6412.5 ± 26.7 mg Cu(2+)/L concentration. High Cu(2+) removal efficiency (>99%) and final Cu(2+) concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3mg/L) was observed at an initial 196.2 ± 0.4 mg Cu(2+)/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu(2+) was reduced to cuprous oxide (Cu(2)O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu(2+) concentration (0.1M) but not in the others. The sustainability of high Cu(2+) removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.

  19. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots.

    PubMed

    Ge, Cunwang; Zhao, Yu; Hui, Jie; Zhang, Tianyi; Miao, Wujian; Yu, Wei

    2011-08-01

    A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540-650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and -2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging.

  20. A Single-Chamber Microbial Fuel Cell without an Air Cathode

    PubMed Central

    Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo

    2012-01-01

    Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (Rext) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm2 was achieved at an Rext of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater. PMID:22489190

  1. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.

  2. A single-chamber microbial fuel cell without an air cathode.

    PubMed

    Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo

    2012-01-01

    Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (R(ext)) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm(2) was achieved at an R(ext) of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.

  3. The control system of the multi-strip ionization chamber for the HIMM

    NASA Astrophysics Data System (ADS)

    Li, Min; Yuan, Y. J.; Mao, R. S.; Xu, Z. G.; Li, Peng; Zhao, T. C.; Zhao, Z. L.; Zhang, Nong

    2015-03-01

    Heavy Ion Medical Machine (HIMM) is a carbon ion cancer treatment facility which is being built by the Institute of Modern Physics (IMP) in China. In this facility, transverse profile and intensity of the beam at the treatment terminals will be measured by the multi-strip ionization chamber. In order to fulfill the requirement of the beam position feedback to accomplish the beam automatic commissioning, less than 1 ms reaction time of the Data Acquisition (DAQ) of this detector must be achieved. Therefore, the control system and software framework for DAQ have been redesigned and developed with National Instruments Compact Reconfigurable Input/Output (CompactRIO) instead of PXI 6133. The software is Labview-based and developed following the producer-consumer pattern with message mechanism and queue technology. The newly designed control system has been tested with carbon beam at the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring (HIRFL-CSR) and it has provided one single beam profile measurement in less than 1 ms with 1 mm beam position resolution. The fast reaction time and high precision data processing during the beam test have verified the usability and maintainability of the software framework. Furthermore, such software architecture is easy-fitting to applications with different detectors such as wire scanner detector.

  4. Preliminary results with a strip ionization chamber used as beam monitor for hadrontherapy treatments

    NASA Astrophysics Data System (ADS)

    Boriano, A.; Bourhaleb, F.; Cirio, R.; Cirrone, G. A. P.; Cuttone, G.; Donetti, M.; Garelli, E.; Giordanengo, S.; Luparia, A.; Marchette, F.; Peroni, C.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-01-01

    Preliminary results are presented from a test of a parallel plate ionization chamber with the anode segmented in strips (MOPI) to be used as a beam monitor for therapeutical treatments on the 62 MeV proton beam line of the INFN-LNS Superconducting Cyclotron. Ocular pathologies have been treated at the Catana facility since March 2002. The detector, placed downstream of the patient collimator, will allow the measurement of the relevant beam diagnostic parameters during treatment such as integrated beam fluence, for dose determination; the beam baricentre, width and asymmetry will be obtained from the fluence profile sampled with a resolution of about 100 Urn at a rate up to 1 kHz with no dead time. In this test, carried out at LNS, the detector has been exposed to different beam shapes and the integrated fluence derived by the measured beam profiles has been compared with that obtained with other dosimeters normally used for treatment. The skewness of the beam profile has been measured and shown to be suitable to on-line check variations of the beam shape.

  5. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    PubMed

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  6. A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode

    NASA Astrophysics Data System (ADS)

    Hosseini, Mir Ghasem; Ahadzadeh, Iraj

    2012-12-01

    In this research, Ti/nano-TiO2/Pd nano-structure electrode is prepared, characterized and applied as cathode electrode in a dual-chambered microbial fuel cell with graphite anode and Flemion cation exchange membrane. Prepared nano-structured electrode morphology and mixed-culture biofilm formed on the anode are studied by scanning electron microscopy (SEM). Cell performance is investigated by polarization, cyclic voltammetery (CV) and electrochemical impedance spectroscopy (EIS) methods. Results show that Ti/nano-TiO2/Pd electrode exhibits satisfactory long term performance as a cathode to reduce water dissolved oxygen. The maximum output power of the cell is about 200 mW m-2 normalized to the cathode surface area. Open circuit potential (OCP) of the cell is about 480 mV and value of the short circuit current is 0.21 mA cm-2 of the cathode geometric surface area. Thus this nano-structure cathode can produce comparable output power to that of platinum-based cathodes such as Pt-doped carbon paper; therefore due to the ease of preparation and low cost, this electrode can be applied as alternative to platinum-based cathodes in microbial fuel cells.

  7. Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell.

    PubMed

    Luo, Yong; Zhang, Renduo; Liu, Guangli; Li, Jie; Qin, Bangyu; Li, Mingchen; Chen, Shanshan

    2011-02-01

    In this study, the microbial fuel cell (MFC) was combined with the Fenton-like technology to simultaneously generate electricity and degrade refractory contaminants in both anode and cathode chambers. The maximum power density achieved was 15.9 W/m(3) at an initial pH of 3.0 in the MFC. In the anode chamber, approximately 100% of furfural and 96% COD were removed at the end of a cycle. In the cathode chamber, the Fenton-like reaction with FeVO(4) as a catalyst enhanced the removal of AO7 and COD. The removal rates of AO7 and COD reached 89% and 81%, respectively. The optimal pH value and FeVO(4) dosage toward degrading AO7 were about 3.0 and 0.8 g, respectively. Furthermore, a two-way catalyst mechanism of FeVO(4) and the contaminant degradation pathway in the MFC were explored.

  8. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  9. Low-pressure micro-strip gas chamber and a search for a high-efficiency secondary-electron emitter

    SciTech Connect

    Anderson, D.F.; Kwan, S.; Sbarra, C.

    1994-11-01

    The test beam performance of a low-pressure micro-strip gas chamber with a thick CsI secondary-electron emitting surface as the source of primary ionization is presented. A study of the secondary-electron yield of CsI and KCl coated surfaces are discussed, as well as a promising new technique, CsI-treated CVD diamond films.

  10. Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber for azo dye treatment.

    PubMed

    Kong, Fanying; Wang, Aijie; Ren, Hong-Yu

    2015-12-01

    In this study, the optimization of working cathode position in sleeve-type bioelectrochemical system (BES) was evaluated with inner/outer chamber for azo dye decolorization. Results showed that the working position in outer chamber performed better with decolorization efficiencies of 97.8 ± 2.1% (7h) and 94.0 ± 2.3% (16 h) than that in inner chamber as the volume ratio Vcathode:Vanode=1:1 and 3:1, respectively. The current and electrochemical impedance spectroscopy (EIS) analysis indicated that the proton/electron transfer and anolyte diffusion could be improved using outer chamber as working position. The decolorization with increased volume ratio could be further improved through the strategy of increasing substrate concentration, which would provide enough electrons and decrease diffusion resistance, further improving the whole performance with increased outer cathode volume. It has the great potential in sleeve-type configuration application and would create more challenges for process optimization and maintenance.

  11. General theory of cathodic and anodic stripping voltammetry at solid electrodes: mathematical modeling and numerical simulations.

    PubMed

    Ward Jones, Sarah E; Chevallier, François G; Paddon, Christopher A; Compton, Richard G

    2007-06-01

    Theory is presented to describe the voltammetric signals associated with the stripping phase of stripping voltammetry at solid electrodes. Three mathematical models are considered, and the importance of the hemispherical diffusion associated with electrochemical dissolution of particles in the micrometer range is investigated. Model A considers a "monolayer" system where the coverage at a specific point cannot exceed a maximum value. Model B considers a thin layer of metal or metal oxide, but in contrast to model A, the maximum surface coverage is not restricted. Model C represents the stripping of a "thick layer" where the deposition is also unrestricted.

  12. Application of graphene-based nanomaterials as novel cathode catalysts for improving power generation in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Valipour, Alireza; Ayyaru, Sivasankaran; Ahn, Youngho

    2016-09-01

    The low catalytic activity, limited resources, complexity and costs, and non-environmentally friendly nature are key factors limiting the application of non-precious metals and their composites at the cathode in microbial fuel cells (MFCs). This study evaluated the feasibility of graphene-based nanomaterials (RGOHI-AcOH vs. RGO/Ni nanoparticle composite) as novel cathode catalysts in single chamber air-cathode MFCs. A series of MFCs with different catalyst loadings were produced. The electrochemical behavior of the MFCs were evaluated by cyclic voltammetry (CV) and impedance spectroscopy (EIS). As a result, the MFCs with the RGOHI-AcOH cathodes showed greater maximum power densities (>37%) than those with the RGO/Ni nanoparticle cathodes. In the MFCs, the highest maximum power density of 1683 ± 23 mW/m2 (CE = 72 ± 3%), which covers 77% of that estimated for Pt/C (2201 ± 45 mW/m2, CE = 81 ± 4%), was obtained from the double loading RGOHI-AcOH cathodes. Among the MFCs with the RGO/Ni nanoparticle composite cathodes, those loaded with a double catalyst (1015 ± 28 mW/m2, CE = 70 ± 2%) showed better power performance than the others. Both CV and EIS showed good agreement with the MFC results. This study suggests that the RGOHI-AcOH cathode, particularly with a double catalyst loading, is promising for sustainable low-cost green materials, stable power generation and the long-term operation of MFCs.

  13. Double-chamber microbial fuel cell with a non-platinum-group metal Fe-N-C cathode catalyst.

    PubMed

    Santoro, Carlo; Serov, Alexey; Narvaez Villarrubia, Claudia W; Stariha, Sarah; Babanova, Sofia; Schuler, Andrew J; Artyushkova, Kateryna; Atanassov, Plamen

    2015-03-01

    Non-Pt-group metal (non-PGM) materials based on transition metal-nitrogen-carbon (M-N-C) and derived from iron salt and aminoantipyrine (Fe-AAPyr) of mebendazole (Fe-MBZ) were studied for the first time as cathode catalysts in double-chamber microbial fuel cells (DCMFCs). The pH value of the cathode chamber was varied from 6 to 11 to elucidate the activity of those catalysts in acidic to basic conditions. The Fe-AAPyr- and Fe-MBZ-based cathodes were compared to a Pt-based cathode used as a baseline. Pt cathodes performed better at pH 6-7.5 and had similar performances at pH 9 and a substantially lower performance at pH 11 at which Fe-AAPyr and Fe-MBZ demonstrated their best electrocatalytic activity. The power density achieved with Pt constantly decreased from 94-99 μW cm(-2) at pH 6 to 55-57 μW cm(-2) at pH 11. In contrast, the power densities of DCMFs using Fe-AAPyr and Fe-MBZ were 61-68 μW cm(-2) at pH 6, decreased to 51-58 μW cm(-2) at pH 7.5, increased to 65-75 μW cm(-2) at pH 9, and the highest power density was achieved at pH 11 (68-80 μW cm(-2) ). Non-PGM cathode catalysts can be manufactured at the fraction of the cost of the Pt-based ones. The higher performance and lower cost indicates that non-PGM catalysts may be a viable materials choice in large-scale microbial fuel cells.

  14. Extending the dynamic range of copper determination in differential pulse adsorption cathodic stripping voltammetry using wavelet neural network.

    PubMed

    Khayamian, T; Ensafi, Ali A; Benvidi, A

    2006-07-15

    A wavelet neural network (WNN) model is proposed for extending the dynamic range of Cu(II) determination by differential pulse adsorption cathodic stripping voltammetry (DP-AdSV) using xylenol orange (XO) as a suitable ligand. All of voltammograms data consisting of Cu(II) and Cu(II)-XO peak currents were used in WNN model. The WNN model consisted of three layers (2-8-1) with the Morlet mother wavelet transfer function in the hidden layer. The model was able to extend the dynamic range of Cu(II) from its narrow linear range (1-50 ng ml(-1)) to the higher dynamic range (1-1500 ng ml(-1)). The results of the WNN model was also compared with artificial neural network (ANN) model and it was demonstrated the superiority of the WNN model relative to ANN model.

  15. Spectrophotometric evaluation of peroxide penetration into the pulp chamber from whitening strips and gel: An in vitro study

    PubMed Central

    Bharti, Ramesh; Wadhwani, KK

    2013-01-01

    Aim: To investigate pulp chamber penetration of different concentration of hydrogen peroxide. Materials and Methods: Fifty extracted human maxillary central incisor teeth were taken and grouped into five (n = 10). All teeth were cut approximately 3 mm apical to the cemento-enamel junction. Pulp was removed and the pulp chamber filled with acetate buffer. Buccal crown surfaces of teeth in the experimental groups were subjected to whitening strip and paint on whitener gel. Control group teeth were exposed to distilled water. The acetate buffer solution in each tooth was then transferred to a glass test tube after 30 min. Leuco-crystal violet dye and enzyme horse radish peroxidase were added. The optical density of resultant blue color in the tubes was measured by UV-visible spectrophotometer. The values were converted into microgram equivalents of hydrogen peroxide. Results: The results were evaluated statistically using nonparametric Mann–Whitney U test. Whitening strip showed the lowest pulpal peroxide penetration whereas paint on whitener gel showed highest pulpal peroxide penetration. Conclusion: This study demonstrate that peroxide is readily penetrate into the pulp chamber of teeth. PMID:23716964

  16. A study of the determination of the hypertensive drug captopril by square wave cathodic adsorptive stripping voltammetry.

    PubMed

    Ioannides, X; Economou, A; Voulgaropoulos, A

    2003-09-19

    In this work, the determination of captopril (CPL) was studied by square wave cathodic adsorptive stripping voltammetry (SWCAdSV) on a hanging mercury drop electrode (HMDE). CPL was adsorptively preconcentrated on the mercury surface as a sparingly soluble mercury salt under stirring of the solution and then the accumulated species was reduced by a cathodic square wave voltammetric scan. The reduction current was related to the CPL concentration in the sample. The chemical and instrumental parameters affecting the response were investigated and optimized for the CPL determination. The calibration curve was linear from 0.5 to 180 microg l(-1) of CPL (depending on the preconcentration time), the limit of detection at a S/N ratio of 3 was 0.5 microg l(-1) with 300 s of preconcentration and the relative standard deviation was 3.2% at the 20 microg l(-1) level (with 120 s of preconcentration, n=8). The method was applied to the determination of CPL in two pharmaceutical formulations with recoveries of 97.9 and 98.8%. Finally, the potential for applying the proposed method to the determination of CPL in biological media is briefly discussed.

  17. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode.

    PubMed

    Lee, Hyung-Sool; Torres, César I; Parameswaran, Prathap; Rittmann, Bruce E

    2009-10-15

    With the goal of maximizing the H2-harvesting efficiency, we designed an upflow single-chamber microbial electrolysis cell (MEC) by placing the cathode on the top of the MEC and carried out a program to track the fate of H2 and electron equivalents in batch experiments. When the initial acetate concentration was 10 mM in batch-evaluation experiments lasting 32 h, the cathodic conversion efficiency (CCE) from coulombs (i.e., electron equivalents in current from the anode to the cathode) to H2 was 98 +/- 2%, the Coulombic efficiency (CE) was 60 +/- 1%, the H2 yield was 59 +/- 2%, and methane production was negligible. However, longer batch reaction time (approximately 7 days) associated with higher initial acetate concentrations (30 or 80 mM) led to significant H2 loss due to CH4 accumulation: up to 14 +/- 1% and 16 +/- 2% of the biogas at 30 and 80 mM of acetate, respectively. Quantitative PCR proved that no acetoclastic methanogens were present, but that hydrogenotrophic methanogens (i.e., Methanobacteriales) were present on both electrodes. The hydrogenotrophic methanogens decreased the CCE by diverting H2 generated at the cathode to CH4 in the upflow single-chamber MEC. In some experiments, the CE was greater than 100%. The cause was anode-respiring bacteria oxidizing H2 and producing current which recycled H2 between the cathode and the anodes, increasing CE to over 100%, but with a concomitant decline in CCE, despite negligible CH4 formation.

  18. Iron-nitrogen-activated carbon as cathode catalyst to improve the power generation of single-chamber air-cathode microbial fuel cells.

    PubMed

    Pan, Yajun; Mo, Xiaoping; Li, Kexun; Pu, Liangtao; Liu, Di; Yang, Tingting

    2016-04-01

    In order to improve the performance of microbial fuel cell (MFC), iron-nitrogen-activated carbon (Fe-N-C) as an excellent oxygen reduction reaction (ORR) catalyst was prepared here using commercial activated carbon (AC) as matrix and employed in single chamber MFC. In MFC, the maximum power density increased to 2437±55 mW m(-2), which was 2 times of that with AC. The open circuit potential (OCP) of Fe-N-C cathode (0.47) was much higher than that of AC cathode (0.21 V). The R0 of Fe-N-C decreased by 47% from 14.36 Ω (AC) to 7.6 Ω (Fe-N-C). From X-ray photoelectron spectroscopy (XPS), pyridinic nitrogen, quaternary nitrogen and iron species were present, which played an important role in the ORR performance of Fe-N-C. These results demonstrated that the as-prepared Fe-N-C material provided a potential alternative to Pt in AC air cathode MFC for relatively desirable energy generation and wastewater treatment.

  19. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.

    PubMed

    Zhuang, Li; Zhou, Shungui; Li, Yongtao; Yuan, Yong

    2010-05-01

    In the course of microbial fuel cell (MFC) operation, the acidification of the anode and the alkalization of the cathode inevitably occur, resulting in reduction of the overall performance. In an attempt to reverse the membrane pH gradient, a tubular air-cathode two-chamber MFC was developed that allowed pH adjustment in both compartments. With an anodic pH of 10.0 and a cathodic pH of 2.0, the tubular MFC provided an open circuit voltage of 1.04V and a maximum power density of 29.9W/m(3), which were respectively 1.5 and 3.8 times higher than those obtained in the same MFC working at neutral pH. Particularly, the suppression of methanogenesis at high alkaline anode (pH 10.0) contributed to a significant enhancement in coulombic efficiency. The MFC maintained 74% of its performance after 15 days of operation in continuous-flow mode. The appropriate pH adjustment strategy in both compartments ensures a promising improvement in MFC performance.

  20. Alternative perovskite materials as a cathode component for intermediate temperature single-chamber solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Gaudillère, Cyril; Olivier, Louis; Vernoux, Philippe; Zhang, Chunming; Shao, Zongping; Farrusseng, David

    This paper exploits the suitability of three perovskite materials Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF), GdBaCo 2O 5+ δ (GBC) and Ba 0.5Sr 0.5Mn 0.7Fe 0.3O 3- δ (BSMF) as SOFC cathodes in the single-chamber configuration operating at the intermediate temperature range. TG analysis showed high thermal stability depending on the crystalline phases of the materials. The catalytic activity of these three materials for hydrocarbon conversion was investigated under a realistic feed, i.e. with hydrocarbon, oxygen, water and carbon dioxide. Electrochemical impedance spectroscopy of the various cathodes tested in symmetric cell configuration revealed a B-site dependence of the electrode catalytic activity for oxygen reduction. High temperature (1000 °C) powder reactivity tests over a gadolinium doped-ceria (CGO) and perovskite cathode revealed excellent chemical compatibility of BSMF and CGO. Catalytic tests associated with thermal and structural characterization attest to the suitability of these materials in the single-chamber configuration.

  1. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.

    PubMed

    Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun

    2017-02-17

    Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L(-1) and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N2O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H2O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.

  2. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.

    PubMed

    Chung, Kyungmi; Fujiki, Itto; Okabe, Satoshi

    2011-01-01

    A two-chamber MFC system was operated continuously for more than 500 days to evaluate effects of biofilm and chemical scale formation on the cathode electrode on power generation. A stable power density of 0.57 W/m(2) was attained after 200 days operation. However, the power density decreased drastically to 0.2 W/m(2) after the cathodic biofilm and chemical scale were removed. As the cathodic biofilm and chemical scale partially accumulated on the cathode, the power density gradually recovered with time. Microbial community structure of the cathodic biofilm was analyzed based on 16S rRNA clone libraries. The clones closely related to Xanthomonadaceae bacterium and Xanthomonas sp. in the Gammaproteobacteria subdivision were most frequently retrieved from the cathodic biofilm. Results of the SEM-EDX analysis revealed that the cation species (Na(+) and Ca(2+)) were main constituents of chemical scale, indicating that these cations diffused from the anode chamber through the Nafion membrane. However, an excess accumulation of the biofilm and chemical scale on the cathode exhibited adverse effects on the power generation due to a decrease in the active cathode surface area and an increase in diffusion resistance for oxygen. Thus, it is important to properly control the formation of chemical scale and biofilm on the cathode during long-term operation.

  3. Simple and rapid determination of trace iodide by cathodic stripping voltammetry.

    PubMed

    Yang, Lingxi; Zou, Lina; Li, Gaiping; Ye, Baoxian

    2016-01-15

    This work establishes a highly sensitive and simple stripping voltammetric method for the direct determination of trace iodide. In the presence of abounding bromide and appropriate amount of cetylpyridine bromide (CPB), the iodine was accumulated on the glassy carbon electrode surface as ion association complex (CPBI2Br). After accumulation for a period of time, a linear sweep potential with negative scanning was applied and the I2 in CPBI2Br was reduced again into the solution. Under the optimization conditions, the stripping signals (peak current) were linear relationship with iodide concentration in range of 3.81×10(-3)µg/mL to 0.114 μg/mL and 0.127μg/mL to 2.54μg/mL, with a detection limit of 1.02ng/mL (S/N=3) for a accumulation time of 180s. Determination of trace iodine in pharmaceutical sample, kelp and table salt were performed with high accuracy and satisfactory recovery results.

  4. Microanalysis of oligodeoxynucleotides by cathodic stripping voltammetry at amalgam-alloy surfaces in the presence of copper ions.

    PubMed

    Hason, Stanislav; Vetterl, Vladimír

    2006-05-15

    The application of gold amalgam-alloy electrode (AuAE) for a sensitive voltammetric detection of different oligodeoxynucleotides (ODNs) containing the purine units within the ODN-chains in the presence of copper is described. The detection of ODNs is based on the following procedure: (i) the first step includes an acidic hydrolysis of the ODN (ahODN) samples performing the release of the purine bases from ODN-chain; (ii) the second step includes an electrochemical accumulation of the complex of the purine base residues released from ODN-chain with copper ions Cu(I) (ahODN-Cu(I) complex) at the potential of reduction of copper ions Cu(II) on the amalgam-alloy electrode surfaces; (iii) finally followed the cathodic stripping of the electrochemically accumulated ahODN-Cu(I) complex from the electrode surface. The proposed electrochemical method was used for: (a) detection of different ODN lengths containing only adenine units (the number of adenine units within the ODN-chains was changed from 10 to 80), and (b) determination of the number of purine units within the 30-mer ODNs containing a random sequence segments involving both the purine and pyrimidine units. The intensity of the cathodic stripping current density peak (j(CSP)) of the electrochemically accumulated ahODN-Cu(I) complex increased linearly with the increasing number of purine units within the ODN-chains. We observed a good correlation between the percentage content of purine units to the whole length of different 30-mer ODNs and the percentage content of the intensity of the j(CSP) of the electrochemically accumulated 30-mer ahODN-Cu(I) complexes. The detection of acid hydrolysed 80-mer (A(80)) in the bulk solution and in a 20-mul volume is possible down to 200pM and 2nM at the AuAE, respectively. For the shortest 10-mer (A(10)) a detectable value of 5nM in the bulk solution on the AuAE was observed. The sensitive detection of different ODNs containing the purine units in their chains in the presence of

  5. Determination of nitrofurantoin drug in pharmaceutical formulation and biological fluids by square-wave cathodic adsorptive stripping voltammetry.

    PubMed

    Hammam, Essam

    2002-10-15

    Nitrofurnation is an antibacterial drug. It is used in the treatment of initial or recurrent urinary tract infections caused by susceptible organisms. The cyclic voltammogram of the drug in Britton-Robinson buffers (pH 2-11) exhibited a single well-defined cathodic peak at the hanging mercury drop electrode, that due to the reduction of its nitro group to the amine stage. A fully validated, sensitive, and reproducible developed procedure was described for determination of the drug in bulk form, pharmaceutical formulation, human serum and human urine using, square-wave cathodic adsorptive stripping voltammetry. The optimal experimental parameters for the drug assay were: accumulation potential = -0.4 V (vs. Ag/AgCl/ KCl(s)), accumulation time = 40 s, frequency = 120 Hz, pulse amplitude = 50 mV and scan increment = 10 mV in Britton-Robinson buffer (pH 10). A mean percentage recovery of 100.68 +/- 0.17 (n = 5) and a detection limit of 1.32 x 10(-10) M of bulk drug were achieved. Applicability to assay of the drug in pharmaceutical formulation, human serum and human urine was studied and illustrated. The mean percentage recoveries were found as: 101.49 +/- 0.65, 103.94 +/- 0.73 and 101.98 +/- 0.52 (n = 5) in pharmaceutical formulation, human serum and human urine, respectively. Detection limits of 2.86 x 10(-10) M and 5.77 x 10(-10) M nitrofurantoin were achieved in human serum and urine, respectively. Copyright 2002 Elsevier Science B.V.

  6. Polarographic behaviour of loratadine and its direct determination in pharmaceutical formulation and human plasma by cathodic adsorptive stripping voltammetry.

    PubMed

    Ghoneim, M M; Mabrouk, M M; Hassanein, A M; Tawfik, A

    2001-07-01

    The polarographic behaviour of the antihistaminic drug loratadine has been investigated in B.R. buffer solution of different pH values. Contradictory to that mentioned before in a previously published work, loratadine is electro-active at the mercury electrode. In B.R. buffer solution of pH values > or =6 it is reduced via a single 2-electrons irreversible wave corresponding to saturation of carbon-nitrogen double bond of the pyridine ring. The electrode reaction pathway was proposed and discussed. A sensitive differential pulse stripping voltammetric method based on controlled adsorptive accumulation of loratadine on a hanging mercury drop electrode has been developed for its direct determination at nanomolar concentrations without nitration of the drug. The optimized conditions for the direct cathodic adsorptive stripping voltammetric determination of the drug are: 0.1 M sodium hydroxide solution as a supporting electrolyte, accumulation potential, -1.2 V; accumulation time, 30 s; scan rate, 2-5 mV x s(-1) and pulse amplitude 100 mV. The proposed procedure was applied for the assay of loratadine in pharmaceutical formulation and human plasma. The average recoveries were 99.32-99.44 and 100.33-102.99% with the RSD 0.27-0.42 and 0.39-0.90% in pharmaceutical formulation and human plasma, respectively. The limits of detection of 1.60x10(-7) and 1.25x10(-7) M loratadine were found in pharmaceutical formulation and human plasma, respectively.

  7. DETECTORS AND EXPERIMENTAL METHODS: Performance testing of a long-strip two-end readout multi-gap resistive plate chamber

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Bin; Wang, Yi; Luo, Ming; Li, Yuan-Jing; Cheng, Jian-Ping

    2009-02-01

    Multi-gap Resistive Plate Chamber (MRPC) is a new generation of gas detector with good timing and spacial resolution, whose technique is widely applied in some recent high energy (nuclear) physics experiments. In this letter, we report a long-strip two-end readout MRPC and its test beam performance. The measurements show that the long-strip performs a transmission line characteristic and the impedance is independent of the length of strip. The MRPC module we developed is presented to gain a timing resolution of ~80 ps and a spacial resolution of ~6.4 mm. The possible application of the MRPC is also discussed.

  8. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  9. Simultaneous decolorization and bioelectricity generation in a dual chamber microbial fuel cell using electropolymerized-enzymatic cathode.

    PubMed

    Savizi, Iman Shahidi Pour; Kariminia, Hamid-Reza; Bakhshian, Sahar

    2012-06-19

    Effect of cathodic enzymatic decolorization of reactive blue 221 (RB221) on the performance of a dual-chamber microbial fuel cell (MFC) was investigated. Immobilized laccase on the surface of a modified graphite electrode was used in the cathode compartment in order to decolorize the azo dye and enhance the oxygen reduction reaction. First, methylene blue which is an electroactive polymer was electropolymerized on the surface of a graphite bar to prepare the modified electrode. Utilization of the modified electrode with no enzyme in the MFC increased the power density up to 57% due to the reduction of internal resistance from 1000 to 750 Ω. Using the electropolymerized-enzymatic cathode resulted in 65% improvement of the power density and a decolorization efficiency of 74%. Laccase could act as a biocatalyst for oxygen reduction reaction along with catalyzing RB221 decolorization. Treatment of RB221 with immobilized laccase reduced its toxicity up to 5.2%. Degradation products of RB221 were identified using GC-MS, and the decomposition pathway was proposed. A discussion was also provided as to the mechanism of dye decolorization on the enhancement of the MFC performance.

  10. An optimization procedure for determination of metallothionein by square wave cathodic stripping voltammetry: application to marine worms.

    PubMed

    El Hourch, Mohamed; Dudoit, Arnaud; Amiard, Jean-Claude

    2004-02-01

    Electrochemical determination of metallothionein (MT) is widely used for environmental studies. This article describes the development and optimization of the procedure for the quantification of metallothionein by square wave cathodic stripping voltammetry. The determination is based on the complexation of cisplatin and MT and the subsequent reduction of the complexes at the electrode. In order to achieve the highest possible sensitivity and resolution of the peak, an optimization of the experimental parameters has been carried out using experimental design methodology (response surface). Seven chemical and physical parameters, namely, pH, cisplatin concentration, buffer concentration, deposition potential, square wave frequency, amplitude of pulse, and step potential, have been optimized to give 9.0, 5.9 microM, 0.65 M, -0.2 mV, 229 Hz, 46 mV, and 2 mV, respectively. Method characterization has been performed, leading to a detection limit of 0.1 microg L(-1). Quantification of MT in polychaetes and comparison with the modified Brdicka procedure were also carried out.

  11. Unprecedented stable aqueous semiquinone methide radical formation interferes with adsorptive cathodic stripping voltammetry of cobalt methyl thymol blue.

    PubMed

    Niztayev, Alidin N; Hagen, Wilfred R

    2005-09-15

    A putatively highly sensitive and selective method for the determination of cobalt in aqueous samples by catalytic adsorptive cathodic stripping voltammetry using methyl thymol blue (MTB) as the ligand has been documented [A. Safavi, E. Shams, Talanta 51 (2000) 1117] and its underlying mechanism has been briefly explored [A. Safavi, E. Shams, Electroanalysis 14 (2002) 708]. In an attempt to adapt the method for application in metalloprotein analysis we obtained erratic results, which were traced down to the redox non-innocence of the free ligand in the potential range prescribed for the metal analysis. On the hanging mercury drop electrode free methyl thymol blue is reversibly one-electron reduced to the semiquinone form with E(m,7.0)=-482mV versus NHE at 22 degrees C, and the radical is subsequently quasi-reversibly one-electron reduced to the quinol form with E(m,7) approximately -0.9V. This observation invalidates the use of MTB in electrochemical analysis of metal ions. This is also the first observation ever of a stable quinone methide radical in aqueous solution.

  12. Determination of the antibiotic drug pefloxacin in bulk form, tablets and human serum using square wave cathodic adsorptive stripping voltammetry.

    PubMed

    Beltagi, A M

    2003-04-10

    A simple, rapid, reliable and fully validated square wave cathodic adsorptive stripping voltammetric procedure has been developed for the determination of the antibiotic pefloxacin drug in bulk form, tablets and human serum, based on its electrochemical reduction at a hanging mercury drop electrode. The Britton-Robinson buffer of pH 7.0 was found to be reasonable as a supporting electrolyte for assay of the drug. Pefloxacin drug, at the optimized conditions, showed a single 2-electron well-defined peak at -1.07 V (versus Ag/AgCl/KCl(s)) using an accumulation potential of -0.40 V. This peak may be attributed to the reduction of the C=O group. A mean recovery of 99.54%+/-0.23 and a detection limit of 1.65 x 10(-10) M pefloxacin were achieved. After being validated, the proposed procedure was successfully applied for the determination of the drug in tablets and human serum with mean recoveries of 99.57+/-0.48 and 98.55+/-0.78%, respectively. A detection limit of 4.50 x 10(-10) M was achieved for the determination of the drug in human serum. Results of the proposed procedure were comparable with those obtained by reported methods.

  13. Simultaneous determination of trace uranium(VI) and zinc(II) by adsorptive cathodic stripping voltammetry with aluminon ligand.

    PubMed

    Cha, K W; Park, C I; Park, S H

    2000-09-05

    Uranium(VI) complexed with aluminon (3-[bis(3-carboxy-4-hydroxy-phenyl)methylene]-6-oxo-1,4-cyclohexadiene-1-carboxylic acid triammonium salt) was determined by adsorptive cathodic stripping voltammetry (ACSV) using a hanging mercury drop electrode. Trace uranium(VI) and zinc(II) can be simultaneously determined in a single scan in the presence of aluminon and urea. Optimal conditions were found to be: accumulation time; 180-200 s, accumulation potential; 50 mV versus Ag/AgCl, scan rate; 40 mV s(-1), supporting electrolyte; 0.1 M sodium acetate buffer at pH 6.5-7.0, and concentration of aluminon; 1x10(-6) M. The linear range of uranium(VI) and zinc(II) were observed over the concentration range 2-33 and 30-120 ng ml(-1), respectively. The detection limit (S/N=3) are 0.2 ng ml(-1) (uranium) and 30 ng ml(-1) (zinc). A good reproducibility shows RSDs of 2.5-4.0% (n=10). The procedure offers high selectivity, with the presence of urea masking some metal ions.

  14. Determination of ultra trace amount of enrofloxacin by adsorptive cathodic stripping voltammetry using copper(II) as an intermediate.

    PubMed

    Ensaifi, Ali A; Khayamian, T; Taei, M

    2009-05-15

    In this work, a simple and sensitive electroanalytical method was developed for the determination of enrofloxacin (ENRO) by adsorptive cathodic stripping voltammetry (ADSV) using Cu(II) as a suitable probe. The complex of copper(II) with ENRO was accumulated at the surface of a hanging mercury drop electrode at -0.10 V for 40 s. Then, the preconcentrated complex was reduced and the peak current was measured using square wave voltammetry (SWV). The optimization of experimental variables was conducted by experimental design and support vector machine (SVM) modeling. The model was used to find optimized values for the factors such as pH, Cu(II) concentration and accumulation potential. Under the optimized conditions, the peak current at -0.30 V is proportional to the concentration of ENRO over the range of 10.0-80.0 nmol L(-1) with a detection limit of 0.33 nmol L(-1). The influence of potential interfering substances on the determination of ENRO was examined. The method was successfully applied to determination of ENRO in plasma and pharmaceutical samples.

  15. Production of long-strip multi-gap resistive plate chamber module for the STAR-MTD system

    NASA Astrophysics Data System (ADS)

    Chen, H.; Wang, Y.; Gonzalez-Diaz, D.; Wang, J.; Fan, X.; Cheng, J.; Li, Y.

    2012-10-01

    A new Long-strip Multi-gap Resistive Plate Chamber (LMRPC) prototype with 5 gas gaps has been developed for the Muon Telescope Detector (MTD) of the STAR experiment at RHIC in order to reduce the working High Voltage (HV) of previous design. Technical specifications related to the final infrastructure present in the experiment have motivated this effort. Its performance has been measured with cosmic rays. The efficiency of this prototype can reach 98% and the time resolution is around 95 ps. It shows a good uniformity among strips. The noise level is less than 0.2 Hz/cm2. The signal transmission and crosstalk of the modules was measured with a vector network analyzer, showing a good match with simulations within the amplifier bandwidth. A new cosmic-ray test system with long scintillators has been developed to accelerate the Quality Control (QC) process during the mass production of STAR-MTD. A selection of perpendicular cosmic-ray events for more accurate evaluation of the time resolution is achieved. The time resolution with this method is better, albeit with larger error, than the result obtained without any selection. A new spacer is used, resulting in a much reduced streamer ratio at comparable fields. Thirty-two modules have been built with the new spacer by the middle of April of 2012. They have been tested and they all have passed the QC.

  16. A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge

    2017-06-01

    A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.

  17. Additives That Prevent Or Reverse Cathode Aging In Drift Chambers With Helium-Isobutane Gas

    SciTech Connect

    Boyarski, Adam M.

    2001-11-20

    Noise and Malter breakdown have been studied at high rates in a test chamber having the same cell structure and gas as in the BaBar drift chamber. The chamber was first damaged by exposing it to a high source level at an elevated high voltage, until its operating current at normal voltages was below 0.5nA/cm. Additives such as water or alcohol allowed the damaged chamber to operate at 25 nA/cm, but when the additive was removed the operating point reverted to the original low value. However with 0.02% to 0.05% oxygen or 5% carbon dioxide the chamber could operate at more than 25 nA/cm, and continued to operate at this level even after the additive was removed. This shows for the first time that running with an O{sub 2} or CO{sub 2} additive at high ionization levels can cure a damaged chamber from breakdown problems.

  18. Determination of iodide and total iodine in estuarine waters by cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode.

    PubMed

    Espada-Bellido, Estrella; Bi, Zhaoshun; Salaün, Pascal; van den Berg, Constant M G

    2017-11-01

    Iodide in natural waters is an important nutrient to aquatic organisms and its determination is of relevance to marine aquaculture. For this reason it is of interest to have a simple analytical method for determination of iodide in water samples. Iodide in seawater can be determined electrochemically by cathodic stripping voltammetry (CSV) with a mercury drop electrode which has environmental drawbacks. In an attempt to minimise the use of mercury in voltammetry, a vibrating silver amalgam microwire electrode is used here for the determination by CSV of iodide speciation in natural waters including seawater. Microwire electrodes were made from silver wires (diameter: 12.5µm) and electrochemically coated with mercury. The electrode surface was stable for extended periods of analyses (at least one week) and was then replaced. The optimised conditions include a pH 8, a frequency of 500Hz and a deposition time of 60s, among others. The microwire was reactivated between scans using a conditioning potential at -3 V for 1s. The detection limit for iodide in seawater was found to be 0.7nM I(-) at a deposition time of 60s. The response increased linearly with the concentration of iodide in seawater up to 100nM I(-). The method was successfully applied to various samples from the estuary of the river Mersey (Liverpool Bay). An existing procedure for iodine speciation was modified to enable determination of iodate and total iodine as well as iodide in estuarine waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Determination of chromium in estuarine waters by catalytic cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode.

    PubMed

    Espada-Bellido, Estrella; Bi, Zhaoshun; van den Berg, Constant M G

    2013-02-15

    Chromium (Cr(VI)) in water can be determined by adsorptive catalytic cathodic stripping voltammetry in the presence of diethylenetriaminepentaacetic acid (DTPA) and nitrate on the hanging mercury drop electrode (HMDE). Predominately Cr(VI) is detected and the water is UV-digested to convert all Cr to Cr(VI) prior to analysis. We develop here an alternative to the HMDE by using a silver amalgam electrode based on a vibrating microwire. The microwire electrodes were 12.5 μm in diameter and electrochemically coated with mercury, and were stable for a week. Conditions were re-optimised, and we used a DTPA concentration of 5mM, 30 mM acetate pH buffer (pH 5.5 in seawater and pH 5.8 in pure water), and 1.5M nitrate solution. The microwire was reactivated prior to each scan by applying a negative potential (-3V) for 2s which removed all deposited Cr. The detection limit for chromium in pH buffer was found to be 0.2 nM Cr(VI) and in seawater 0.3 nM Cr(VI) at a deposition time of 30s. The response increased linearly with the concentration of Cr(VI) up to 60 nM Cr(VI) in seawater. The limit of detection is less good than using the HMDE, but the linear range is good and the microwire electrode could form the basis of apparatus for flow-analysis. The method was successfully tested on water samples from the estuary of the river Mersey (Liverpool Bay) giving chromium concentrations between 1.48 nM and 2.29 nM. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Direct determination of praziquantel in pharmaceutical formulations and human plasma by cathodic adsorptive stripping differential-pulse voltammetry.

    PubMed

    Ghoneim, M M; Mabrouk, M M; Tawfik, A

    2002-11-07

    The polarographic and cyclic voltammetric behaviour of praziquantel was studied in B.R. buffers of different pH values. Contradictory to that mentioned in a previously published work, praziquantel is an electro-active compound. Its polarogram exhibited a single 2-electron irreversible reduction wave in B.R. buffer of pH 5, the wave height decreased on the increase of pH till it disappeared in solution of pH >7. This wave was attributed to the reduction of the Cz.dbnd6;O double bond. The quantitative trace determination of bulk praziquantel was studied at a hanging mercury drop electrode by cathodic adsorptive stripping differential-pulse voltammetry. A fully validated sensitive procedure based on controlled adsorptive accumulation of the drug onto a HMDE was developed for its direct determination without derivatization. Accumulation of praziquantel was found to be optimized in 0.1 M Na(2)SO(4) solution as supporting electrolyte under the following conditions: accumulation potential, -1.2 V (vs. Ag/AgCl/KCl(s)); accumulation time, 30 s; scan rate, 10 mV/s and pulse height 100 mV. The proposed procedure was applied successfully for determination of praziquantel in its pharmaceutical formulations and human plasma. The mean recoveries of the drug were 98.85-99.42% and 99.12-100.47% with RSD of 0.49-0.95% and 0.45-0.52% in pharmaceutical formulations and human plasma, respectively. Limits of detection and quantitation of 1.14x10(-9) and 3.80x10(-9) M praziquantel, respectively, were achieved.

  1. Determination of tryptophan and histidine by adsorptive cathodic stripping voltammetry using H-point standard addition method.

    PubMed

    Ensafi, Ali A; Hajian, R

    2006-11-24

    A sequential method is proposed for the determination of tryptophane and histidine by adsorptive cathodic stripping voltammetry using standard addition and H-point standard addition method (HPSAM). The complexes of copper(II) with the amino acids were accumulated onto the surface of a hanging mercury drop electrode for 60s. Then the preconcentrated complexes were reduced by square wave voltammetry and the peak currents were measured. The effect of various parameters such as pH, concentration of copper, accumulation potential, accumulation time and scan rate on the sensitivity were studied by one-at-a time and artificial neural network. Under the optimized conditions, the peak currents at about +0.05 to -0.30 V is proportional to the concentration of tryptophan and histidine over the concentration ranges of 5-220 and 100-1200 nM, respectively. Optimization of the parameters by one-at-a time showed that at accumulation potential of 0.10 V (versus Ag/AgCl reference electrode) the peak current is proportional only to the concentration of tryptophan and histidine does not have any contribution to the current. The optimization results by artificial neural network showed that at accumulation potential of -0.06 V (versus Ag/AgCl) the peak current is proportional to the both concentrations of tryptophan and histidine. Therefore, the method of H-point standard addition has been used for resolving overlap voltamograms for determination of histidine in the present of tryptophane. The method was successfully applied to the determination of tryptophan and histidine in synthetic and real samples.

  2. Applicability of 2-hydroxybenzaldehyde benzoylhydrazone in the determination of trace metals by adsorptive cathodic stripping voltammetry: relevancy of simultaneous determinations.

    PubMed

    Espada-Bellido, Estrella; Galindo-Riaño, M Dolores; Aouarram, Abdellah; García-Vargas, Manuel

    2009-07-01

    The applicability of 2-hydroxybenzaldehyde benzoylhydrazone (2-HBBH) for determining Cd(II), Cu(II), Pb(II) and Bi(III) ions by adsorptive cathodic stripping voltammetry was studied. The sensitivity of metal reduction peak currents was highly enhanced with the addition of 2-HBBH to metallic solutions, showing the adsorptive characteristics of the complexes. Variable factors affecting the response (mainly: the influences of pH, supporting electrolyte and deposition potential on selectivity and sensitivity) were investigated. Limits of detection suitable for trace analysis were obtained: 0.28 microg L(-1) for Cd(II) at pH 10; 0.026 microg L(-1) for Pb(II) at pH 9; 0.285 microg L(-1) for Bi(III) at pH 8 and 0.051 microg L(-1) for Cu(II) at pH 9.5. Simultaneous determinations of two groups of elements, consisting of Cd(II)-Pb(II)-Cu(II) and Cd(II)-Pb(II)-Bi(III), at pH 9.5 and 9, respectively, were described with good resolution and sensitivities. Metals were quantified at concentrations in the range from 0.5 to 14 microg L(-1). The RSD at a concentration level of 5 microg L(-1) of metal was 4.28% for Cd(II), 2.99% for Pb(II), 4.82% for Bi(III) and 1.35% for Cu(II). The method was applied to the simultaneous determination of metals in certified reference water (TMDA-62) and in synthetic water samples with satisfactory results.

  3. Determination of para-arsanilic acid with improved diazotization reaction using differential pulse cathodic stripping voltammetry in aqueous system.

    PubMed

    Misni, Marpongahtun; Sathishkumar, Palanivel; Ahamad, Rahmalan; MohdYusoff, Abdull Rahim

    2015-01-01

    Para-arsanilic acid (p-ASA) has been widely used in the poultry industry to promote growth and prevent dysentery. It is excreted unchanged in the manure and released into non-target sites causing organoarsenic pollution risk to the environment and living system. Therefore, simple and effective analytical strategies are demanded for determining the samples that contain p-ASA. However, direct determination of both p-ASA and ortho-arsanilic acid (o-ASA) using differential pulse cathodic stripping voltammetry (DPCSV) gives the similar voltammograms that directly hamper the analysis used by the DPCSV technique. In this study, a method to determine and differentiate p-ASA from o-ASA via diazotization and coupling reaction of the amine groups followed by the direct DPCSV determination of diazo compounds is presented. The diazotization reaction carried out at pH 1.5 and 0 ± 1°C for 10 min showed two reduction peaks in DPCSV at-70 mV and -440 mV vs. Ag/AgCl (KCl 3 M). However, when the diazotization reaction was performed at pH 12.5 and 0 ± 1°C for 40 min, a coloured azo compound was produced and the DPCSV showed only one reduction peak that appeared at -600 mV vs. Ag/AgCl (3 M of KCl). The results of this study show that only p-ASA compound gave a reduction peak, whereas o-ASA compound did not give any peak. The detection limit of p-ASA was found to be 4 × 10(-8 )M. As a result, the proposed electro-analytical technique might be a good candidate to determine and differentiate the p-ASA present in the poultry and environmental samples.

  4. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Kong, Fanying; Zheng, Hongtao; Yin, Jinling; Cao, Dianxue; Ren, Yueming; Wang, Guiling

    2011-03-01

    A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L-1 glucose (19 W m-3) by 495% for 50 mg L-1 ceftriaxone sodium + 1000 mg L-1 glucose (113 W m-3), while the maximum power density is 11 W m-3 using 50 mg L-1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.

  5. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin.

    PubMed

    Zeng, Libin; Li, Xinyong; Shi, Yueran; Qi, Yefei; Huang, Daqiong; Tadé, Moses; Wang, Shaobin; Liu, Shaomin

    2017-05-15

    A bio-electrochemical strategy was developed for constructing a simple and sensitive levofloxacin (LEV) sensor based on a single chamber microbial fuel cell (SC-MFC) using FePO4 nanoparticles (NPs) as the cathode catalyst instead of traditional Pt/C. In this assembled sensor device, FePO4 NPs dramatically promoted the electrooxidation of oxygen on the cathode, which helps to accelerate the voltage output from SC-MFC and can provide a powerful guarantee for LEV detection. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to fully characterize the FePO4 NPs. Under the optimized COD condition (3mM), the LEV with a concentration range of 0.1-1000µg/L could be detected successfully, and exhibited the excellent linear interval in the concentration range of 0.1-100µg/L. During this range of concentrations of LEV, a temporary effect on the anode of exoelectrogenic bacterial in less than 10min could occur, and then came back to the normal. It exhibited a long-term stability, maintaining the stable electricity production for 14 months of continuous running. Besides, the detection mechanism was investigated by quantum chemical calculation using density functional theory (DFT).

  6. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber.

    PubMed

    Mani, Priyadharshini; Keshavarz, Taj; Chandra, T S; Kyazze, Godfrey

    2017-01-01

    Biocathodes may be a suitable replacement of platinum in microbial fuel cells (MFCs) if the cost of MFCs is to be reduced. However, the use of enzymes as bio-cathodes is fraught with loss of activity as time progresses. A possible cause of this loss in activity might be pH increase in the cathode as pH gradients in MFCs are well known. This pH increase is however, accompanied by simultaneous increase in salinity; therefore salinity may be a confounding variable. This study investigated various ways of mitigating pH changes in the cathode of MFCs and their effect on laccase activity and decolourisation of a model azo dye Acid orange 7 in the anode chamber. Experiments were run with catholyte pH automatically controlled via feedback control or by using acetate buffers (pH 4.5) of various strength (100mM and 200mM), with CMI7000 as the cation exchange membrane. A comparison was also made between use of CMI7000 and Nafion 117 as the transport properties of cations for both membranes (hence their potential effects on pH changes in the cathode) are different. Results show that using Nafion 117 membrane limits salinity and pH changes in the cathode (100mM acetate buffer as catholyte) leading to prolonged laccase activity and faster AO7 decolourisation compared to using CMI7000 as a membrane; similarly automatic pH control in the cathode chamber was found to be better than using 200mM acetate buffer. It is suggested that while pH control in the cathode chamber is important, it does not guarantee sustained laccase activity; as salinity increases affect the activity and it could be mitigated using a cation selective membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  8. Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry.

    PubMed

    Arancibia, Verónica; López, Alex; Zúñiga, M Carolina; Segura, Rodrigo

    2006-02-28

    The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO(2). Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)(3) were achieved when the experiments were carried out at a pressure of 2500psi, a temperature of 90 degrees C, 2.0mL of methanol, 20.0min of static extraction and 5.0min of dynamic extraction in the presence of 18mg of ADDTP. Analysis of arsenic was made using 150mgL(-1) of Cu(II) in 1M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of -0.50V and the intermetallic compound Cu(x)As(y) was reduced at a potential of -0.77 to -0.82V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)(3) solution was linear from 0.8 to 12.5mugL(-1) of arsenic (LOD 0.5mugL(-1), R=0.9992, t(acc)=60s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10+/-0.18mgkg(-1); pulp 3.83+/-0.19mgkg(-1) and juice 0.71+/-0.09mgL(-1); arsenic in carrots was: skin 2.15+/-0.09mgkg(-1); pulp 0.59+/-0.11mgkg(-1) and juice 0.71+/-0.03mgL(-1). Arsenic in water were: Chiu-Chiu 0.08mgL(-1), Inacaliri 1.12mgL(-1), and Salado river 0.17+/-0.07mgL(-1).

  9. The GlueX Forward Drift Chambers

    NASA Astrophysics Data System (ADS)

    Taylor, Simon

    2008-10-01

    The 12 GeV upgrade program at Jefferson Laboratory calls for the construction of a new experimental hall that will house a large-acceptance detector designed to study the excitation of the gluonic field binding quark--anti-quark pairs into mesons produced by a photon beam running at a tagged rate of 10^7γ/s. The GlueX detector is based on a large solenoid magnet that will enclose a lead--scintillating fiber calorimeter for detection of photons and drift chambers for tracking charged particles. The paths of particles traveling in the 1^o-20^o angular range downstream of the target will be measured by a set of cathode strip chambers consisting of wire planes flanked by cathode planes divided into strips, enabling precision measurements of avalanche positions along the wires. The coordinate transverse to the wire is determined using the drift time. The combination of wire and cathode readout allows for reconstruction of ``space points'' at several positions along the beam line. I will present results from extensive studies of a small-scale prototype of one cathode strip chamber unit and discuss issues arising from operation within a large magnetic field.

  10. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Three-dimensional X-ray microcomputed tomography of carbonates and biofilm on operated cathode in single chamber microbial fuel cell.

    PubMed

    Santini, Maurizio; Guilizzoni, Manfredo; Lorenzi, Massimo; Atanassov, Plamen; Marsili, Enrico; Fest-Santini, Stephanie; Cristiani, Pierangela; Santoro, Carlo

    2015-09-10

    Power output limitation is one of the main concerns that need to be addressed for full-scale applications of the microbial fuel cell technology. Fouling and biofilm growth on the cathode of single chamber microbial fuel cells (SCMFC) affects their performance in long-term operation with wastewater. In this study, the authors report the power output and cathode polarization curves of a membraneless SCMFC, fed with raw primary wastewater and sodium acetate for over 6 months. At the end of the experiment, the whole cathode surface is analyzed through X-ray microcomputed tomography (microCT), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (EDX) to characterize the fouling layer and the biofilm. EDX shows the distribution of Ca, Na, K, P, S, and other elements on the two faces of the cathode. Na-carbonates and Ca-carbonates are predominant on the air (outer) side and the water (inner) side, respectively. The three-dimensional reconstruction by X-ray microCT shows biofilm spots unevenly distributed above the Ca-carbonate layer on the inner (water) side of the cathode. These results indicate that carbonates layer, rather than biofilm, might lower the oxygen reduction reaction rate at the cathode during long-term SCMFC operation.

  12. Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells.

    PubMed

    Gao, Chongyang; Wang, Aijie; Wu, Wei-Min; Yin, Yalin; Zhao, Yang-Guo

    2014-09-01

    Aerobic sludge after anaerobic pretreatment and anaerobic sludge were separately used as inoculum to start up air-cathode single-chamber MFCs. Aerobic sludge-inoculated MFCs arrived at 0.27 V with a maximum power density of 5.79 W m(-3), while anaerobic sludge-inoculated MFCs reached 0.21 V with 3.66 W m(-3). Microbial analysis with DGGE profiling and high-throughput sequencing indicated that aerobic sludge contained more diverse bacterial populations than anaerobic sludge. Nitrospira species dominated in aerobic sludge, while anaerobic sludge was dominated by Desulfurella and Acidithiobacillus species. Microbial community structure and composition in anodic biofilms enriched, respectively from aerobic and anaerobic sludges tended gradually to be similar. Potentially exoelectrogenic Geobacter and Anaeromusa species, biofilm-forming Zoogloea and Acinetobacter species were abundant in both anodic biofilms. This study indicated that aerobic sludge performed better for MFCs startup, and the enrichment of anodic microbial consortium with different inocula but same substrate resulted in uniformity of functional microbial communities.

  13. Catalytic hydrogen evolution in cathodic stripping voltammetry on a mercury electrode in the presence of cobalt(II) ion and phenylthiourea or thiourea.

    PubMed

    Spătaru, N; Bănica, F G

    2001-11-01

    The system Co(II)-phenylthiourea (PTU)-borax buffer was investigated by cathodic stripping voltammetry (CSV) at a hanging mercury drop electrode. The results of the voltammetric measurements showed that the presence of both PTU and Co(II) gives rise to a new irreversible peak at about -1.5 V. Based upon our previous results obtained in the study of other sulfur compounds and the sulfide ion itself, the peak was ascribed to the catalytic hydrogen evolution superimposed on the reduction of the coordinated Co(II) ion. The catalyst itself is a Co(II) complex with the sulfide ion produced by the decomposition of the analyte during the deposition step. The influence of PTU and cobalt concentration, accumulation conditions and stripping parameters was investigated and complementary data on thiourea are included. The results showed that the measurement of the catalytic hydrogen evolution peak current can be used as a basis for a simple, accurate and rapid method for the determination of PTU within the concentration range 10-100 nM. The catalytic method is relatively free of interferences and could be a suitable alternative for cases in which the stripping peak due to mercury ion reduction in the accumulated mercury compound is disturbed by some interference.

  14. Evaluation of circulating cathodic antigen (CCA) strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia.

    PubMed

    Ayele, B; Erko, B; Legesse, M; Hailu, A; Medhin, G

    2008-03-01

    A total of 206 urine samples collected from Hassoba Elementary schoolchildren, Afar, Ethiopia, a low Schistosoma haematobium endemic setting, was diagnosed to evaluate the performance of CCA strip using double references, urine filtration technique and urinalysis dipstick (Combur 1.0 Test) that detect schistosome eggs and blood in urine, respectively. The former was used as a gold standard reference method. Sensitivity, specificity, positive and negative predictive values for the CCA were 52%, 63.8%, 56.7% and 59% respectively, with reference to urine filtration technique whereas these parameters were 50.4%, 62.4%, 55.6% and 57.5% respectively, with reference to Combur 10 Test. 47 S. haematobium egg-positive children were found negative by CCA strip while 38 egg-negative children were found positive by CCA strip. Moreover, among the pre-tests done in duplicate, inconsistent results were also recorded. Assays were also compared with regard to the cost of equipment and reagents, speed and simplicity of use. Though CCA strip was found to be rapid and could be performed with minimal training, it was found to be expensive (US $ 4.95 per test) to use it for large-scale field use even if its diagnostic value would have been satisfactory. Further development and standardization of the CCA strip are required for its applicability for field use. It is also recommended that its cost per strip should be substantially cut down if it is to be used in poor schistosomiasis endemic countries.

  15. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.

    PubMed

    Liu, Hong; Logan, Bruce E

    2004-07-15

    Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely

  16. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater.

    PubMed

    Logroño, Washington; Pérez, Mario; Urquizo, Gladys; Kadier, Abudukeremu; Echeverría, Magdy; Recalde, Celso; Rákhely, Gábor

    2017-06-01

    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m(-3). The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs.

  17. DETECTORS AND EXPERIMENTAL METHODS: Design and test of a Multi-gap Resistive Plate Chamber with Long readout-strip (LMRPC)

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Jie; Li, Cheng; Zhou, Yi; Shao, Ming; Zhao, Yan-E.; Chen, Hong-Fang

    2009-02-01

    A new kind (two end readout) of Multi-gap Resistive Plate Chamber with long readout-strip (LMRPC) is developed to be used at the large-area Muon Telescope Detector (MTD) at mid-rapidity at RHIC/STAR experiment for Time-of-Flight (TOF) measurement. The LMRPC has an active area of 87 cm × 17 cm, 10 gas gaps of 250 μm arranged in 2 stacks, with readout strips of 2.5 cm wide and 90 cm long. The considerations in LMRPC design related to its performance are discussed in this paper. The cosmic ray test results of a prototype LMRPC show a detection efficiency >95% and the time resolution ~70 ps.

  18. Determination of picomolar levels of platinum in estuarine waters: a comparison of cathodic stripping voltammetry and isotope dilution-inductively coupled plasma mass spectrometry.

    PubMed

    Obata, Hajime; Yoshida, Tetsuaki; Ogawa, Hiroshi

    2006-10-27

    A comparative study to determine picomolar concentrations of platinum in natural waters was performed using two different analytical techniques. Results obtained by cathodic stripping voltammetry (CSV) were compared with those obtained by isotope dilution-inductively coupled plasma mass spectrometry (ID-ICPMS) combined with anion exchange resin column extraction method. Using successive UV irradiations with low-pressure mercury (L-Hg) lamp for 4h prior to CSV analysis, the results of both methods were comparable. Without adequate photolytic decomposition, the results obtained using CSV were generally lower than those obtained using ID-ICPMS in the estuarine waters around Tokyo Bay. This difference implies the presence of organically complexed Pt species in the estuarine waters. The Pt enrichment in the middle of the Tokyo Bay estuaries probably reflects the anthropogenic release of Pt from highly populated areas in Tokyo.

  19. Direct simultaneous determination of Co, Cu, Fe, Ni and V in pore waters by means of adsorptive cathodic stripping voltammetry with mixed ligands.

    PubMed

    Santos-Echeandía, Juan

    2011-07-15

    An analytical procedure is proposed for the direct simultaneous determination in a single scan of Co, Cu, Fe, Ni and V in sediment pore waters by means of adsorptive cathodic stripping voltammetry (ACSV) with mixed ligands (DMG and catechol). Optimum conditions for the determination of these five elements were studied. Detection limits of the technique depended upon the reproducibility of the procedure blank, and were found to be 0.04 nM Co, 0.09 nM Cu, 1.29 nM Fe, 0.46 nM Ni and 2,52 nMV making the method suitable for the direct simultaneous determination of these five metals in pore waters, estuarine waters and probably coastal waters. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Determination of brilliant blue FCF in the presence and absence of erythrosine and quinoline yellow food colours by cathodic stripping voltammetry.

    PubMed

    Florian, M; Yamanaka, H; Carneiro, P A; Zanoni, M Valnice Boldrin

    2002-09-01

    A study of the voltammetric behaviour of the food colours brilliant blue FCF (C.I. 42090), erythrosine (C.I. 45430) and quinoline yellow (C.I. 47005) in the pH range 2-10 have been carried out by cathodic#10; stripping voltammetry. At pH 4.5 (acetate buffer) with an accumulation potential of 0 V and accumulation time of 30s, the voltammograms presented well-defined reduction peaks at potential - 0.76 V for brilliant blue FCF, - 0.85 V for quinoline yellow and - 0.54 V for erythrosine. Linear calibration graphs were obtained from 8 to 80 microg l(-1) brilliant blue, from 4 to 43 microg l(-1) quinoline yellow and from 10 to 70 microg l(-1) erythrosine. The method has been successfully applied to identify and quantify binary mixtures of these dyes and applied for determining brilliant blue FCF in commercial food products.

  1. Enhancing of the glow discharge stability in chamber with cathode sections coated by a discontinuous dielectric coating

    NASA Astrophysics Data System (ADS)

    Galeev, I. G.; Asadullin, T. Ya

    2016-01-01

    A method of increasing stability of the glow discharge in a gas flow is implemented by reducing the effective current density at the cathode. In this method the current redistributes at the partitioned cathode using the change in the area of the working surface of each section by applying a discontinuous dielectric coating so that it reaches the distribution of the maximum sustainable current discharge across the working surface of each cathode section.

  2. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    SciTech Connect

    Xie, Kan; Farnell, Casey C.; Williams, John D.

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  3. Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration

    PubMed Central

    Qin, Xiaoli; Wang, Linchun; Xie, Qingji

    2016-01-01

    We report a protocol of CdS-labeled sandwich-type amperometric bioanalysis with high sensitivity, on the basis of simultaneous chemical-dissolution/cathodic-enrichment of the CdS quantum dot biolabel and anodic stripping voltammetry (ASV) detection of Cd directly on the bioelectrode. We added a microliter droplet of 0.1 M aqueous HNO3 to dissolve CdS on the bioelectrode and simultaneously achieved the potentiostatic cathodic preconcentration of Cd by starting the potentiostatic operation before HNO3 addition, which can largely increase the ASV signal. Our protocol was used for immunoanalysis and aptamer-based bioanalysis of several proteins, giving limits of detection of 4.5 fg·mL−1 for human immunoglobulin G, 3.0 fg·mL−1 for human carcinoembryonic antigen (CEA), 4.9 fg·mL−1 for human α-fetoprotein (AFP), and 0.9 fM for thrombin, which are better than many reported results. The simultaneous and sensitive analysis of CEA and AFP at two screen-printed carbon electrodes was also conducted by our protocol. PMID:27563894

  4. Cathodic stripping voltammetric determination of As(III) with in situ plated bismuth-film electrode using the catalytic hydrogen wave.

    PubMed

    Jiajie, Long; Nagaosa, Yukio

    2007-06-12

    A highly sensitive method has been developed for the determination of trace As(III) by a square wave cathodic stripping voltammetry employing in situ plated bismuth-film on edge-plane graphite substrate as working electrode. The presence of As(III) enhanced a cathodic peak corresponding to the catalytic hydrogen wave due to Se(IV) at about -1150 mV. Linear calibration curves for As(III) determination were obtained over the concentration ranges of 0.01-1.0 microg L(-1) and 1.0-12.0 microg L(-1) at deposition times of 30 s and 10 s, respectively. The detection limit (3sigma) was estimated to be as low as 0.7 ng L(-1) As(III) at 30 s deposition time. The optimum experimental parameters and probable interference from foreign ions and organic compounds were investigated. This proposed method could be applied to analyses of certified reference material, synthetic and natural water samples.

  5. Sensitive Bioanalysis Based on in-Situ Droplet Anodic Stripping Voltammetric Detection of CdS Quantum Dots Label after Enhanced Cathodic Preconcentration.

    PubMed

    Qin, Xiaoli; Wang, Linchun; Xie, Qingji

    2016-08-23

    We report a protocol of CdS-labeled sandwich-type amperometric bioanalysis with high sensitivity, on the basis of simultaneous chemical-dissolution/cathodic-enrichment of the CdS quantum dot biolabel and anodic stripping voltammetry (ASV) detection of Cd directly on the bioelectrode. We added a microliter droplet of 0.1 M aqueous HNO₃ to dissolve CdS on the bioelectrode and simultaneously achieved the potentiostatic cathodic preconcentration of Cd by starting the potentiostatic operation before HNO₃ addition, which can largely increase the ASV signal. Our protocol was used for immunoanalysis and aptamer-based bioanalysis of several proteins, giving limits of detection of 4.5 fg·mL(-1) for human immunoglobulin G, 3.0 fg·mL(-1) for human carcinoembryonic antigen (CEA), 4.9 fg·mL(-1) for human α-fetoprotein (AFP), and 0.9 fM for thrombin, which are better than many reported results. The simultaneous and sensitive analysis of CEA and AFP at two screen-printed carbon electrodes was also conducted by our protocol.

  6. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater.

    PubMed

    Cha, J; Kim, C; Choi, S; Lee, G; Chen, G; Lee, T

    2009-01-01

    For simultaneous carbon and nitrogen removal via single stream, a microbial fuel cell (MFC) coupled with an aeration chamber and a bio-cathode was investigated. Without catalysts and any additional buffer, the MFC produced electricity continuously and the power density reached 1.3 W/m3 at a loading rate of 1.6 kg COD/m3 d. Simultaneously, the COD and the nitrate removal rate were 1.4 kg COD/m3 d and 67 g NO3-N/m3 d, respectively. When the hydraulic retention time was changed from 6 to 0.75 hours, the power density significantly increased from 0.2 to 10.8 W/m3 due to an increase of cathodic potential. When the aeration chamber was removed and the nitrate was injected into the cathode, the power density increased to 3.7 W/m3. At a high recirculation rate of 10 ml/min, the power density and the nitrate removal rate greatly increased to 34 W/m3 and 294 g NO3--N/m3 d, respectively.

  7. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  8. Cathodic adsorptive stripping voltammetry of drotaverine hydrochloride and its determination in tablets and human urine by differential pulse voltammetry.

    PubMed

    Zayed, S I M; Issa, Y M

    2009-04-01

    The stripping voltammetric behaviour of drotaverine hydrochloride (DvCl) was studied using a hanging mercury drop electrode (HMDE). The adsorptive stripping response has been evaluated with respect to pH, accumulation time, accumulation potential, scan rate and other variables. Differential pulse DP mode; over the potential range -400 to -1200 mV, is used in the presence of 0.04 M Britton-Robinson buffer pH 2. Cyclic voltammetric study indicates that the reduction process is irreversible and controlled by adsorption. The response of DP technique is linear over the concentration range 21.70-257.34 ng/ml. Limit of detection and limit of quantification were 3.15 and 10.50 ng/ml, respectively. The proposed method was successfully applied for the determination of the drug in commercial tablets and spiked human urine samples.

  9. Selective determination of trace copper(II) by cathodic adsorptive stripping voltammetry with a naphthol-derivative Schiff's base.

    PubMed

    Shamsipur, Mojtaba; Saeidi, Mahboubeh; Sharghi, Hashem; Naeimi, Hossein

    2003-01-01

    A selective and sensitive stripping voltammetric method for the determination of trace amounts of copper(II) with a recently synthesized naphthol-derivative Schiff's base (2,2'-[1,2-ethanediylbis(nitriloethylidyne)]bis(1-naphthalene)) is presented. The method is based on adsorptive accumulation of the resulting copper-Schiff's base complex on a hanging mercury drop electrode, followed by the stripping voltammetric measurement at the reduction current of adsorbed complex at -0.15 V (vs. Ag/AgCl). The optimal conditions for the stripping analysis of copper include pH 5.5 to 6.5, 8 microM Schiff's base and an accumulation potential of -0.05 V (vs. Ag/AgCI). The peak current is linearly proportional to the copper concentration over a range 2.3-50.8 ng ml(-1) with a limit of detection of 1.9 ng ml(-1). The accumulation time and RSD are 90 s and (3.2-3.5)%, respectively. The method was applied to the determination of copper in some analytical grade salts, tap water, human serum and sheep's liver.

  10. Performance of a full-size small-strip thin gap chamber prototype for the ATLAS new small wheel muon upgrade

    NASA Astrophysics Data System (ADS)

    Abusleme, A.; Bélanger-Champagne, C.; Bellerive, A.; Benhammou, Y.; Botte, J.; Cohen, H.; Davies, M.; Du, Y.; Gauthier, L.; Koffas, T.; Kuleshov, S.; Lefebvre, B.; Li, C.; Lupu, N.; Mikenberg, G.; Mori, D.; Ochoa-Ricoux, J. P.; Codina, E. Perez; Rettie, S.; Robichaud-Véronneau, A.; Rojas, R.; Shoa, M.; Smakhtin, V.; Stelzer, B.; Stelzer-Chilton, O.; Toro, A.; Torres, H.; Ulloa, P.; Vachon, B.; Vasquez, G.; Vdovin, A.; Viel, S.; Walker, P.; Weber, S.; Zhu, C.

    2016-05-01

    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased up to a factor of five with respect to the present design value by undergoing an extensive upgrade program over the coming decade. The most important upgrade project for the ATLAS Muon System is the replacement of the present first station in the forward regions with the so-called New Small Wheels (NSWs). The NSWs will be installed during the LHC long shutdown in 2019/2020. Small-Strip Thin Gap Chamber (sTGC) detectors are designed to provide fast trigger and high precision muon tracking under the high luminosity LHC conditions. To validate the design, a full-size prototype sTGC detector of approximately 1.2 × 1.0m2 consisting of four gaps has been constructed. Each gap provides pad, strip and wire readouts. The sTGC intrinsic spatial resolution has been measured in a 32 GeV pion beam test at Fermilab. At perpendicular incidence angle, single gap position resolutions of about 50 μm have been obtained, uniform along the sTGC strip and perpendicular wire directions, well within design requirements. Pad readout measurements have been performed in a 130 GeV muon beam test at CERN. The transition region between readout pads has been found to be 4 mm, and the pads have been found to be fully efficient.

  11. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    PubMed Central

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode. PMID:28335366

  12. Square wave adsorptive cathodic stripping voltammetry automated by sequential injection analysis Potentialities and limitations exemplified by the determination of methyl parathion in water samples.

    PubMed

    dos Santos, Luciana B O; Masini, Jorge C

    2008-01-14

    This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmolL(-1) Britton-Robinson buffer (pH 10) in 0.25 molL(-1) NaNO3. The homogenized mixture is injected at a flow rate of 10 microLs(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV. The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 microgL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered.

  13. Efficient removal of nitrobenzene and concomitant electricity production by single-chamber microbial fuel cells with activated carbon air-cathode.

    PubMed

    Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang

    2017-04-01

    Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm(-3) could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm(-3)d(-1), and stable electricity production over 13.7Wm(-3) could be produced in a NB loading range of 1.2-14.7molm(-3)d(-1). The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm(-3)d(-1). The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy.

  14. Determination of palladium(II) with alpha-(2-benzimidazolyl)-alpha',alpha''-(N-5-nitro-2-pyridylhydrazone)-toluene by adsorptive cathodic stripping voltammetry.

    PubMed

    Kim, Sung-Ii; Cha, Ki-Won

    2002-06-10

    The determination of palladium(II) complexed with alpha-(2-benzimidazolyl)-alpha',alpha''-(N-5-nitro-2-pyridylhydrazone)-Toluene (BINPHT) was investigated by adsorptive cathodic stripping voltammetry using hanging mercury drop electrode. Palladium(II) in the sample solution can be determined in BINPHT and ethylenediaminetetraacetic acid (EDTA). Accumulation is achieved by adsorption of Pd(II)-BINPHT complex on a hanging mercury drop electrode. Optimal conditions were found to be: supporting electrolyte; 0.01 M sodium acetate buffer at pH 5.0, accumulation potential; -590 mV versus Ag/AgCl, accumulation time; 180 s, scan rate; 50 mV s(-1), concentration of BINPHT; 2x10(-5) M. The linear range of Pd(II) was observed over the concentration range 20-100 ng ml(-1) The detection limit (S/N=3) is 2 ng ml(-1). A good reproductivity shows RSD of 2.0% (n=7). This procedure offers high selectivity with the presence of EDTA masking some metallic ions. River water sample spiking with palladium was determined.

  15. Development and characterisation of a gas system and its associated slow-control system for an ATLAS small-strip thin gap chamber testing facility

    NASA Astrophysics Data System (ADS)

    Keyes, R.; Johnson, K. A.; Pepin, L.; Léger, F.; Qin, C.; Webster, S.; Robichaud-Véronneau, A.; Bélanger-Champagne, C.; Lefebvre, B.; Robertson, S. H.; Warburton, A.; Vachon, B.; Corriveau, F.

    2017-04-01

    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and CO2 flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.

  16. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  17. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  18. Nitrate as an oxidant in the cathode chamber of a microbial fuel cell for both power generation and nutrient removal purposes.

    PubMed

    Fang, Cheng; Min, Booki; Angelidaki, Irini

    2011-06-01

    Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m(-2) with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO (3) (-) -N) L(-1) during 42-day operation. The daily removal rate was 0.57 mg (NO (3) (-) -N) L(-1) day(-1) with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m(-2), which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO (3) (-) -N) L(-1) day(-1), which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia.

  19. Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hu, Yongyou; Bi, Zhe; Cao, Yunqing

    Substantial optimization and cost reduction are required before microbial fuel cells (MFCs) can be practically applied. We show here the performance improvement of an air-cathode single-chamber MFC by using a microfiltration membrane (MFM) on the water-facing side of the cathode and using multiple aerobic sludge (AES), anaerobic sludge (ANS), and wetland sediment (WLS) as anodic inoculums. Batch test results show that the MFC with an MFM resulted in an approximately two-fold increase in maximum power density compared to the MFC with a proton exchange membrane (PEM). The Coulombic efficiency increased from 4.17% to 5.16% in comparison with the membrane-less MFC, without a significant negative effect on power generation and internal resistance. Overall performance of the MFC was also improved by using multiple sludge inoculums in the anode. The MFC inoculated with ANS + WLS produced the greatest maximal power density of 373 mW m -2 with a substantially low internal resistance of 38 Ω. Higher power density with a decreased internal resistance was also achieved in MFC inoculated with ANS + AES and ANS + AES + WLS in comparison with those inoculated with only one sludge. The MFCs inoculated with AES + ANS achieved the highest Coulombic efficiency. Over 92% COD was removed from confectionery wastewater in all tested MFCs, regardless of the membrane or inoculum used.

  20. Is microwave digestion using TFM vessels a suitable preparation method for Pt determination in biological samples by adsorptive cathodic stripping voltammetry?

    PubMed

    Haus, Nadine; Eybe, Tanja; Zimmermann, Sonja; Sures, Bernd

    2009-03-02

    The occurrence of Pt in environmental matrices is increasing since the introduction of automobile catalytic converters. Given that Pt is bioavailable and causes biological effects in plants and animals, respective biomonitoring programs are in high demand. But the analytical methods for conducting such programs have not yet been sufficiently established. Therefore, a study was carried out to develop a microwave digestion of biological samples, which allows a rapid determination of Pt by adsorptive cathodic stripping voltammetry. A high pressure microwave system was used and the digestion was performed in HNO(3) and HCl. After digestion the HNO(3) was evaporated with a microwave assisted vacuum concentration set. The study resulted in a procedural detection limit of 37.5 ng L(-1) and a relative standard deviation of 18%. A recovery study resulted in a Pt loss below 5%. The microwave assisted evaporation of HNO(3) performed satisfactorily and up to 500 mL of the sample solution could be used for the voltammetric measurements without any effect on the peak heights. A direct comparison of Pt concentrations conducted after microwave digestion and digestion by high pressure ashing showed similar values. However, these promising results were not persistent throughout the repeated analysis using the same Teflon vessels. The vessels did not endure the harsh conditions and due to aging processes the Pt loss consistently increased until Pt determination in environmental relevant concentrations became impossible. Quartz vessels could not be employed as an alternative to the Teflon vessels, due to a lack of compatibility with the vacuum concentration system. Consequently, the results of this paper show that there is a need for further development of more resistant Teflon materials.

  1. Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples.

    PubMed

    Monticelli, Damiano; Dossi, Carlo; Castelletti, Alessio

    2010-08-24

    The analytical performances of Competitive Ligand Equilibration with Cathodic Stripping Voltammetric detection of the labile fraction (CLE-CSV) were assessed. This speciation method enables the concentration of natural ligand(s) and their conditional stability constants for the complexation of the investigated metal to be determined through thermodynamic considerations. Literature data were discussed and general trends in the precision of the determined parameters identified: ligand concentrations were affected, on average, by a 10% relative percentage standard deviation (RSD%), whereas conditional stability constants showed much lower precision, with an average RSD% of 50%. New experimental data were collected to obtain a complete assessment of accuracy and precision attainable for the determination of strong ligands at the ultra trace level, enabling the whole protocol to be evaluated. Firstly, the side reaction coefficient alpha for the formation of the complex between the added ligand and the investigated metal (alpha(CuL)) was determined. The method was subsequently applied to the analysis of solution containing ligand at trace levels (5-50 nM) with known complexing characteristics. Copper was used as the model metal ion and ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) as the model ligands. Results evidenced that the CLE-CSV protocol is not affected by systematic errors in the determination of both ligand concentration and the conditional stability constants. Good precision is obtained for ligand concentrations, with an average relative standard deviation (RSD%) of 5%; an average RSD% of 23% was calculated for the conditional stability constants. Including the contribution of the uncertainty in the value of alpha(CuL) in the evaluation of the uncertainty in the latter parameter increased the RSD% up to 40%. The CLE-CSV protocol was subsequently applied to the detection of strong ligands in water samples collected in

  2. Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by catalytic cathodic stripping voltammetry.

    PubMed

    Biver, Marc; Quentel, François; Filella, Montserrat

    2015-11-01

    Tellurium is one of the elements recently identified as technologically critical and is becoming a new emergent contaminant. No reliable method exists for its determination in environmental samples such as natural waters. This gap is filled by the method described here; it allows the rapid detection of trace concentrations of Te(IV) and Te(VI) in surface waters by differential pulse cathodic stripping voltammetry. It is based on the proton reduction catalysed by the absorption of Te(IV) on the mercury electrode. Under our conditions (0.1 mol L(-1) HCl) a detection limit of about 5 ng L(-1) for a deposition time of 300 s is achieved. Organic matter does not represent a problem at low concentrations; higher concentrations are eliminated by adsorptive purification. Tellurium occurs primarily as Te(IV) and Te(VI) in natural waters. Thus, determining total Te requires the reduction of Te(VI) that it is not electroactive. A number of reduction procedures have been carefully evaluated and a method based on the addition of TiCl3 to the acidified samples has been proven to reduce Te(VI) at the trace level to Te(IV) reliably and quantitatively. Therefore, the procedure described allows the direct determination of total Te and its redox speciation. It is flexible, reliable and cost effective compared to any possible alternative method based on the common preconcentration-ICPMS approach. It is readily implementable as a routine method and can be deployed in the field with relative ease.

  3. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate.

    PubMed

    Wang, Zejie; Lee, Taekwon; Lim, Bongsu; Choi, Chansoo; Park, Joonhong

    2014-01-17

    The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were enriched; sulfate from rice straw

  4. An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle J.; Hill, Joanne E. (Editor); Black, J. Kevin; Baumgartner, Wayne H.; Jahoda, Keith

    2016-01-01

    A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.

  5. Charges and current induced by moving ions in multiwire chambers

    NASA Astrophysics Data System (ADS)

    Erskine, G. A.

    1982-07-01

    A method for calculating the charges induced on the grid wires, and on cathode strips parallel to the grid wires, by a point charge in a multiwire chamber is described. The method is applied to the calculation, as a function of time, of the charge and current induced by a small group of positive ions moving in accordance with the drift equation v= μE where v is the velocity. An appendix lists a number of formulae relating to the electrostatic field of a multiwire chamber.

  6. Determination of Microbial Growth by Protein Assay in an Air-Cathode Single Chamber Microbial Fuel Cell.

    PubMed

    Li, Na; Kakarla, Ramesh; Moon, Jung Mi; Min, Booki

    2015-07-01

    Microbial fuel cells (MFCs) have gathered attention as a novel bioenergy technology to simultaneously treat wastewater with less sludge production than the conventional activated sludge system. In two different operations of the MFC and aerobic process, microbial growth was determined by the protein assay method and their biomass yields using real wastewater were compared. The biomass yield on the anode electrode of the MFC was 0.02 g-COD-cell/g- COD-substrate and the anolyte planktonic biomass was 0.14 g-COD-cell/g-COD-substrate. An MFC without anode electrode resulted in the biomass yield of 0.07 ± 0.03 g-COD-cell/g-COD-substrate, suggesting that oxygen diffusion from the cathode possibly supported the microbial growth. In a comparative test, the biomass yield under aerobic environment was 0.46 ± 0.07 g-COD-cell/g-COD-substrate, which was about 3 times higher than the total biomass value in the MFC operation.

  7. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  8. Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell.

    PubMed

    Cao, Yunqing; Hu, Yongyou; Sun, Jian; Hou, Bin

    2010-08-01

    Microbial fuel cell (MFC) holds a great promise to harvest electricity directly from a wide range of ready degradable organic matters and enhance degradation of some recalcitrant contaminants. Glucose, acetate sodium and ethanol were separately examined as co-substrates for simultaneous bioelectricity generation and Congo red degradation in a proton exchange membrane (PEM) air-cathode single-chamber MFC. The batch test results showed that more than 98% decolorization at the dye concentration of 300 mg/L were achieved within 36 h for all tested co-substrates during electricity generation. The decolorization rate was different with the co-substrates used. The fastest decolorization rate was achieved with glucose followed by ethanol and sodium acetate. Accumulated intermediates were observed during Congo red degradation which was demonstrated by UV-Visible spectra and high performance liquid chromatography (HPLC). Electricity generation was sustained and not significantly affected by the Congo red degradation. Glucose, acetate sodium and ethanol produced maximum power densities of 103 mW/m(2), 85.9 mW/m(2) and 63.2 mW/m(2), respectively, and the maximum voltage output decreased by only 7% to 15%. Our results demonstrated the feasibility of using various co-substrates for simultaneous decolorization of Congo red and bioelectricity generation in the MFC and showed that glucose was the preferred co-substrate.

  9. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.

    PubMed

    Hou, Bin; Sun, Jian; Hu, Yong-you

    2011-03-01

    Different microfiltration membrane (MFM), proton exchange membrane (PEM) and ultrafiltration membranes (UFMs) with different molecular cutoff weights of 1K (UFM-1K), 5K (UFM-5K) and 10K (UFM-10K) were incorporated into air-cathode single-chamber microbial fuel cells (MFCs) which were explored for simultaneous azo dye decolorization and electricity generation to investigate the effect of membrane on the performance of the MFC. Batch test results showed that the MFC with an UFM-1K produced the highest power density of 324 mW/m(2) coupled with an enhanced coulombic efficiency compared to MFM. The MFC with UMF-10K achieved the fastest decolorization rate (4.77 mg/L h), followed by MFM (3.61 mg/L h), UFM-5K (2.38 mg/L h), UFM-1K (2.02 mg/Lh) and PEM (1.72 mg/Lh). These results demonstrated the possibility of using various membranes in the system described here, and showed that UFM-1K was the best one based on the consideration of both cost and performance.

  10. Application of a circulating-cathodic-antigen (CCA) strip test and real-time PCR, in comparison with microscopy, for the detection of Schistosoma haematobium in urine samples from Ghana.

    PubMed

    Obeng, B B; Aryeetey, Y A; de Dood, C J; Amoah, A S; Larbi, I A; Deelder, A M; Yazdanbakhsh, M; Hartgers, F C; Boakye, D A; Verweij, J J; van Dam, G J; van Lieshout, L

    2008-10-01

    In the detection of parasitic infection, the traditional methods based on microscopy often have low sensitivity and/or specificity compared with the newer, molecular tests. An assay based on real-time PCR and a reagent strip test for detecting circulating cathodic antigen (CCA) have both now been compared with urine filtration and microscopy, in the detection of Schistosoma haematobium infections. Urine samples, obtained from 74 'cases' in areas of Ghana with endemic S. haematobium and 79 'controls' from non-endemic areas, were each checked using the three methods. With the results of the filtration and microscopy taken as the 'gold standard', real-time PCR was found to be 100% specific and 89% sensitive whereas the CCA strips were 91% specific and 41% sensitive. With the samples found to contain > or =50 eggs/10 ml (indicating relatively intense infections), the sensitivities of the PCR and CCA were higher, at 100% and 62%, respectively. As expected, egg counts were negatively correlated with the number of amplification cycles needed, in the PCR, to give a signal that exceeded the background (r=-0.38; P<0.01). Although the real-time PCR and CCA strip tests are very different, both show promise in the detection of S. haematobium infections. The PCR has optimal specificity and high sensitivity but the specificity of the CCA strips and the sensitivity of both tools could still be improved. A more thorough re-evaluation of the sensitivity and specificity of microscopy and these newer diagnostic methods, with an estimation of the cost-effectiveness of each technique, is recommended.

  11. Precision aspects of ATLAS muon chamber design and construction

    NASA Astrophysics Data System (ADS)

    Schuh, Silvia

    2007-03-01

    The ATLAS Muon Collaboration is aiming to build a Muon Spectrometer with unprecedented standalone muon momentum resolution of ˜10% at particle momenta of 1 TeV/c over a wide range of transverse momenta, pseudorapidity, and azimuthal angle. The ATLAS Muon Spectrometer consists mainly of Monitored Drift Tube (MDT) chambers for precision tracking, installed everywhere except in the very forward area where Cathode Strip Chambers will be used. The precision chambers are complemented by trigger chambers which are Resistive Plate Chambers for the Barrel region and with Thin Gap Chambers in the Endcap region of the spectrometer. In order to achieve the targeted excellent momentum resolution, wires within the MDT chambers have to be positioned with an accuracy of 20 μm (rms) to avoid limiting the overall chamber resolution of ˜50 μm. We will discuss aspects of a worldwide distributed precision production of the 1200 MDT chambers needed for the spectrometer, including construction and quality control aspects up until commissioning.

  12. A large area, high gain Micro Gap Chamber

    NASA Astrophysics Data System (ADS)

    Angelini, F.; Bellazzini, R.; Bozzo, M.; Brez, A.; Massai, M. M.; Raffo, R.; Spandre, G.; Spezziga, M.; Toropin, A.

    1995-02-01

    A new approach to the construction of the Micro Gap Chamber is presented. A 10 × 10 cm 2 MGC has been built using a 8 μm thick polyimide layer as anode-cathode insulator. Studies on gas gain, uniformity of response along the strip and charging-up have been carried out in laboratory by using X-ray sources. Very large proportional gains, up to ˜ 210 4, have been reached working with gas mixtures based on Ne-DME. The simplified technology for the detector fabrication opens the possibility to produce very large area MGCs.

  13. Simultaneous determination of Mn(II), Cu(II) and Fe(III) as 2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol complexes by adsorptive cathodic stripping voltammetry at a carbon paste electrode.

    PubMed

    Ghoneim, Enass M

    2010-07-15

    A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L(-1) acetate buffer (pH 5) containing 50 micromol L(-1) of 2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0V (vs. Ag/AgCl/3M KCl). Insignificant interference from various cations (K(+), Na(+), Mg(2+), Ca(2+), Al(3+), Bi(3+), Sb(3+), Se(4+), Zn(2+), Ni(2+), Co(2+), Cd(2+), Pb(2+), V(5+), Ti(4+) and NH(4)(+)), anions (HCO(3)(-), Cl(-), NO(3-), SO(4)(2-) and PO(4)(3-)) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 microg L(-1) and limits of quantitation of 0.22, 0.36 and 0.31 microg L(-1) Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Nanogold-penetrated poly(amidoamine) dendrimer for enzyme-free electrochemical immunoassay of cardiac biomarker using cathodic stripping voltammetric method.

    PubMed

    Zhang, Bo; Zhang, Yi; Liang, Wenbin; Cui, Bin; Li, Jiabei; Yu, Xuejun; Huang, Lan

    2016-01-21

    Methods based on immunoassays have been developed for cardiac biomarkers, but most involve the low sensitivity and are unsuitable for early disease diagnosis. Herein we design an electrochemical immunoassay for sensitive detection of myoglobin (a cardiac biomarker for acute myocardial infarction) by using nanogold-penetrated poly(amidoamine) dendrimer (AuNP-PAMAM) for signal amplification without the need of natural enzymes. The assay was carried out on the monoclonal mouse anti-myoglobin (capture) antibody-anchored glassy carbon electrode using polyclonal rabbit anti-myoglobin (detection) antibody-labeled AuNP-PAMAM as the signal tag. In the presence of target myoglobin, the sandwiched immunocomplex could be formed between capture antibody and detection antibody. Accompanying AuNP-PAMAM, the carried gold nanoparticles could be directly determined via stripping voltammetric method under acidic conditions. Under optimal conditions, the detectable electrochemical signal increased with the increasing target myoglobin in the sample within a dynamic working range from 0.01 to 500 ng mL(-1) with a detection limit of 3.8 pg mL(-1). The electrochemical immunoassay also exhibited high specificity and good precision toward target myoglobin. Importantly, our strategy could be applied for quantitative monitoring of myoglobin in human serum specimens, giving well matched results with those obtained from commercialized enzyme-linked immunosorbent assay (ELISA) method.

  15. Z-chamber of the CMD-3 detector in the reconstruction of the track longitudinal coordinate

    NASA Astrophysics Data System (ADS)

    Akhmetshin, R. R.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. Sh.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kazanin, V. F.; Kasaev, A. S.; Koop, I. A.; Korobov, A. A.; Kozyrev, A. N.; Kozyrev, E. A.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lysenko, A. P.; Lukin, P. A.; Mikhailov, K. Yu.; Okhapkin, V. S.; Pestov, Yu. N.; Perevedentsev, E. A.; Popov, A. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shatunov, Yu. M.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Solodov, E. P.; Titov, V. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.; CMD3 Collaboration

    2017-07-01

    Since 2010 the CMD-3 detector has been collecting data at the e+e- collider VEPP-2000 in the Budker Institute of Nuclear Physics. One of the main goals of experiments with CMD-3 detector is the precise measurement of the cross sections of the e+e- annihilation into hadrons. For a large number of processes the main source of systematic uncertainty in cross sections determination due to accuracy of polar angles determination of the tracks. Z-chamber is used for the reconstruction of the track longitudinal coordinate which is with low systematic uncertainty. The measurement of longitudinal coordinates is performed by the collecting of the charge which is induced on the strip cathodes of the Z-chamber. The algorithms of the reconstruction of cathodes clusters and calibration procedure are presented.

  16. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  17. Determination of aluminium in water samples by adsorptive cathodic stripping voltammetry in the presence of pyrogallol red and a quaternary ammonium salt.

    PubMed

    Arancibia, Verónica; Muñoz, Carolina

    2007-09-30

    A fast, sensitive and selective method for the determination of aluminium based on the reaction of the metal with pyrogallol red (PR) in the presence of tetrabutylammonium tetrafluoroborate (TBATFB) to form an Al(PR)(3)x9TBATFB complex which is adsorbed on the mercury electrode is presented. Under these conditions complexation of aluminium is rapid and no waiting period or heating of the sample is required. The reduction current of the accumulated complex is measured by scanning the potential in the cathodic direction. The variation of peak current with pH, adsorption time, adsorption potential, ligand and quaternary ammonium salt concentration, and some instrumental parameters, such as stirring rate in the accumulation stage, and step amplitude, pulse amplitude and step duration while obtaining the square wave voltamperograms were optimized. The best experimental parameters were pH 8.5, (NH(4)Ac-NH(3) buffer), C(PR)=25mumolL(-1), C(TBATFB) over 75mumolL(-1), t(ads)=60s, and E(ads)=-0.60V versus Ag/AgCl. A linear response is observed over the 0.0-30.0mugL(-1) concentration range, with a detection limit of 1.0mugL(-1). Reproducibility for 9.0mugL(-1) aluminium solution was 2.3% (n=6). Synthetic sea water and sea water reference material CRM-SW were used for validation measurements. Aluminium in urine samples of a volunteer who ingested 800mg of Al(OH)(3) was analyzed.

  18. A Latent Markov Modelling Approach to the Evaluation of Circulating Cathodic Antigen Strips for Schistosomiasis Diagnosis Pre- and Post-Praziquantel Treatment in Uganda

    PubMed Central

    Koukounari, Artemis; Donnelly, Christl A.; Moustaki, Irini; Tukahebwa, Edridah M.; Kabatereine, Narcis B.; Wilson, Shona; Webster, Joanne P.; Deelder, André M.; Vennervald, Birgitte J.; van Dam, Govert J.

    2013-01-01

    Regular treatment with praziquantel (PZQ) is the strategy for human schistosomiasis control aiming to prevent morbidity in later life. With the recent resolution on schistosomiasis elimination by the 65th World Health Assembly, appropriate diagnostic tools to inform interventions are keys to their success. We present a discrete Markov chains modelling framework that deals with the longitudinal study design and the measurement error in the diagnostic methods under study. A longitudinal detailed dataset from Uganda, in which one or two doses of PZQ treatment were provided, was analyzed through Latent Markov Models (LMMs). The aim was to evaluate the diagnostic accuracy of Circulating Cathodic Antigen (CCA) and of double Kato-Katz (KK) faecal slides over three consecutive days for Schistosoma mansoni infection simultaneously by age group at baseline and at two follow-up times post treatment. Diagnostic test sensitivities and specificities and the true underlying infection prevalence over time as well as the probabilities of transitions between infected and uninfected states are provided. The estimated transition probability matrices provide parsimonious yet important insights into the re-infection and cure rates in the two age groups. We show that the CCA diagnostic performance remained constant after PZQ treatment and that this test was overall more sensitive but less specific than single-day double KK for the diagnosis of S. mansoni infection. The probability of clearing infection from baseline to 9 weeks was higher among those who received two PZQ doses compared to one PZQ dose for both age groups, with much higher re-infection rates among children compared to adolescents and adults. We recommend LMMs as a useful methodology for monitoring and evaluation and treatment decision research as well as CCA for mapping surveys of S. mansoni infection, although additional diagnostic tools should be incorporated in schistosomiasis elimination programs. PMID:24367250

  19. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    PubMed Central

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  20. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-05-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery.

  1. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber.

    PubMed

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-05-20

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m(2) to 87.79 mW/m(2). The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery.

  2. Intermediate temperature single-chamber methane fed SOFC based on Gd doped ceria electrolyte and La 0.5Sr 0.5CoO 3- δ as cathode

    NASA Astrophysics Data System (ADS)

    Morales, M.; Piñol, S.; Segarra, M.

    Single-chamber fuel cells with electrodes supported on an electrolyte of gadolinium doped ceria Ce 1- xGd xO 2- y with x = 0.2 (CGO) 200 μm thickness has been successfully prepared and characterized. The cells were fed directly with a mixture of methane and air. Doped ceria electrolyte supports were prepared from powders obtained by the acetyl-acetonate sol-gel related method. Inks prepared from mixtures of precursor powders of NiO and CGO with different particle sizes and compositions were prepared, analysed and used to obtain optimal porous anodes thick films. Cathodes based on La 0.5Sr 0.5CoO 3 perovskites (LSCO) were also prepared and deposited on the other side of the electrolyte by inks prepared with a mixture of powders of LSCO, CGO and AgO obtained also by sol-gel related techniques. Both electrodes were deposited by dip coating at different thicknesses (20-30 μm) using a commercial resin where the electrode powders were dispersed. Finally, electrical properties were determined in a single-chamber reactor where methane, as fuel, was mixed with synthetic air below the direct combustion limit. Stable density currents were obtained in these experimental conditions. Temperature, composition and flux rate values of the carrier gas were determinants for the optimization of the electrical properties of the fuel cells.

  3. A Single-Chamber Microbial Fuel Cell for Rapid Determination of Biochemical Oxygen Demand using Low-cost Activated Carbon as Cathode Catalyst.

    PubMed

    Wang, Ying; Liu, Xianhua; Wang, Meiyu; Zhang, Pingping; Zong, Yanping; Zhang, Qiufeng

    2017-09-04

    The biochemical oxygen demand (BOD) is widely used for the evaluation of water and wastewater quality. However, the conventional method to measure BOD is time consuming and requires complicated processes. In this study, a Microbial Fuel Cell (MFC) based BOD sensor was developed by using low-cost activated carbon as the cathode catalyst. The sensor was calibrated with an aerated nutrient medium containing sodium acetate as the BOD source. When the sensor was operated with an external resistance of 1KΩ, linear correlation (R(2) =0.9965) was obtained for BOD concentrations ranging from 80 to 1280 mg/L in a reaction time of 50 h. Besides acetate, glucose/glutamic acid (GGA) and ethanol could also be analyzed by the sensor. In a low concentration range (200mg/L), the relationship between GGA solution concentration and output voltage was in accord with Monod growth kinetics.

  4. Building a multi-cathode-gas-filled scintillator detector for fission fragments

    SciTech Connect

    Mahgoub, M.

    2016-06-10

    Radiation cannot be detected directly by human senses, indeed detecting and identifying the fission products or decay yield with high accuracy is a great challenge for experimental physicist. In this work we are building a Multi-Cathode-Gas-filled Scintillator MCGS detector. The detector consists of two parts. First: anode-wire proportional chamber and cathode strip foil, which measure the energy loss of the particles in the gas, due to the ionization, and identifies the position of the products on the detector plane depending on their energy with the presence of a magnetic field. Second: a 7 mm thick scintillator attached to a photomultiplier tube in the back end of the detector. This part measures the rest energy of the particles. A data acquisition system records the events and the particles infonnation. The yields are identified from the energy loss to rest energy ratio.

  5. An Analysis of Multiple Configurations of Next-Generation Cathodes in a Low Power Hall Thruster

    DTIC Science & Technology

    2009-03-01

    controllers the xenon went through a gas feed-through into the chamber and through stainless steel flex lines to the cathode and thruster. The flow rates of...cathode tube. This tube provided the structural integrity for the cathode. The molybdenum cathode tube was bolted to a stainless steel base plate...chamber. Two long keepers were broken in this process . The heavy stainless steel base plate for the cathode created a bending moment felt by the keeper

  6. Flow chamber

    DOEpatents

    Morozov, Victor [Manassas, VA

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  7. Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system.

    PubMed

    Sotres, A; Cerrillo, M; Viñas, M; Bonmatí, A

    2015-10-01

    Abiotic batch experiments showed that ammonia migration from anode to cathode was favored by an increase in voltage, from 39.9% to 44.6%, using synthetic media. A slight increase in ammonia migration was observed when using pig slurry, reaching a maximum of 49.9%. In a continuously MFC fed with pig slurry with a stripping/absorption unit coupled to the cathode chamber, the highest nitrogen flux (7.2 g N d(-1) m(-2)) was achieved using buffer as catholyte. Nitrogen flux increased to 10.3 g N d(-1) m(-2) when shifting to MEC mode. A clear improvement in nitrogen flux (25.5 g N d(-1) m(-2)) was observed when using NaCl as catholyte. Besides, ammonia stripping was favored, reaching a nitrogen recovery of 94.3% in the absorption column, due to the high pH reached in the cathode. The microbial community analysis revealed an enrichment of certain taxonomic Eubacterial and Archaeal groups when the system shifted from MFC to MEC mode.

  8. Remote control for anode-cathode adjustment

    DOEpatents

    Roose, Lars D.

    1991-01-01

    An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

  9. Gas proportional detectors with interpolating cathode pad readout for high track multiplicities

    SciTech Connect

    Yu, Bo

    1991-12-01

    New techniques for position encoding in very high rate particle and photon detectors will be required in experiments planned for future particle accelerators such as the Superconducting Super Collider and new, high intensity, synchrotron sources. Studies of two interpolating cathode ``pad`` readout systems are described in this thesis. They are well suited for high multiplicity, two dimensional unambiguous position sensitive detection of minimum ionizing particles and heavy ions as well as detection of x-rays at high counting rates. One of the readout systems uses subdivided rows of pads interconnected by resistive strips as the cathode of a multiwire proportional chamber (MWPC). A position resolution of less than 100 {mu}m rms, for 5.4 keV x-rays, and differential non-linearity of 12% have been achieved. Low mass ({approximately}0.6% of a radiation length) detector construction techniques have been developed. The second readout system uses rows of chevron shaped cathode pads to perform geometrical charge division. Position resolution (FWHM) of about 1% of the readout spacing and differential non-linearity of 10% for 5.4 keV x-rays have been achieved. A review of other interpolating methods is included. Low mass cathode construction techniques are described. In conclusion, applications and future developments are discussed. 54 refs.

  10. Gas proportional detectors with interpolating cathode pad readout for high track multiplicities

    SciTech Connect

    Yu, Bo.

    1991-12-01

    New techniques for position encoding in very high rate particle and photon detectors will be required in experiments planned for future particle accelerators such as the Superconducting Super Collider and new, high intensity, synchrotron sources. Studies of two interpolating cathode pad'' readout systems are described in this thesis. They are well suited for high multiplicity, two dimensional unambiguous position sensitive detection of minimum ionizing particles and heavy ions as well as detection of x-rays at high counting rates. One of the readout systems uses subdivided rows of pads interconnected by resistive strips as the cathode of a multiwire proportional chamber (MWPC). A position resolution of less than 100 {mu}m rms, for 5.4 keV x-rays, and differential non-linearity of 12% have been achieved. Low mass ({approximately}0.6% of a radiation length) detector construction techniques have been developed. The second readout system uses rows of chevron shaped cathode pads to perform geometrical charge division. Position resolution (FWHM) of about 1% of the readout spacing and differential non-linearity of 10% for 5.4 keV x-rays have been achieved. A review of other interpolating methods is included. Low mass cathode construction techniques are described. In conclusion, applications and future developments are discussed. 54 refs.

  11. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  12. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  13. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  14. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  15. The forward drift chamber system for the GlueX detector

    SciTech Connect

    Taylor, Simon

    2007-10-01

    The Thomas Jefferson National Accelerator Facility (TJNAF) is planning an upgrade of the existing electron beam energy from 6 GeV to 12 GeV. The program calls for the construction of a new experimental hall - Hall D - and a new Tagger hall in which the electron beam will be converted to a photon beam that interacts with a target at the center of the GlueX detector housed in Hall D. The detector is based on a solenoidal design with drift chambers and a lead-scintillator calorimeter inside the bore of the magnet and sets of time- of-flight scintillators and lead-glass crystals in the downstream direction outside of the magnet. The Forward Drift Chambers will measure the paths of charged particles travelling in the forward direction downstream of the target. Each chamber unit will consist of a wire plane flanked on either side by cathode planes divided into strips. The combination of wire and cathode readout allows for reconstruction of "space points" at several positions along

  16. Robotic Stripping

    NASA Technical Reports Server (NTRS)

    2000-01-01

    UltraStrip Systems, Inc.'s M-200 removes paint from the hulls of ships faster than traditional grit-blasting methods. And, it does so without producing toxic airborne particles common to traditional methods. The M-2000 magnetically attaches itself to the hull of the ship. Its water jets generate 40,000 pounds of pressure per square inch, blasting away paint down to the ships steel substrate. The only by product is water and dried paint chips and these are captured by a vacuum system so no toxic residue can escape. It was built out of a partnership between the Jet Propulsion Laboratory and the National Robotics Engineering Consortium.

  17. Multi-cathode metal vapor arc ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  18. Free-Flow Open-Chamber Electrophoresis

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.

  19. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  20. Anode-supported single-chamber solid oxide fuel cell based on cobalt-free composite cathode of Nd0.5Sr0.5Fe0.8Cu0.2O3-δ-Sm0.2Ce0.8O1.9 at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Yin, Jie-Wei; Zhang, Chunming; Yin, Yi-Mei; Shi, Huangang; Lin, Ye; Lu, Jun; Ma, Zi-Feng

    2015-07-01

    As a candidate of cathode material of single-chamber solid oxide fuel cell (SC-SOFC), cobalt-free mixed ionic electronic conductor (MIEC) Nd0.5Sr0.5Fe0.8Cu0.2O3-δ (NSFCu) is synthesized by sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-complexing agents. The XRD shows NSFCu is stable after CO2 treatment and chemical compatible with SDC at high temperatures. CO2-TPD (CO2-temperature programmed desorption) demonstrates both CO2 adsorption and desorption phenomenon on NSFCu surface. However, the polarization resistances (Rp) of NSFCu and SDC (10:4 in weight) composite electrodes showed no decay in 5% CO2. Single cell using N2-O2-CH4 mixed gas (CH4 to O2 ratio = 1.5) as fuel shows maximum power density of 635 mW cm-2 at 700 °C. These results suggest that NSFCu-SDC is a promising composite cathode material for application in single-chamber solid oxide fuel cell.

  1. [Degradation Mechanism of 4-Chlorophenol on a Pd-Fe/graphene Multifunctional Catalytic Cathode].

    PubMed

    Qi, Wen-zhi; Wang, Fan; Wang, Hui; Shi, Qin; Pang, Lei; Bian, Zhao-yong

    2015-06-01

    A Pd-Fe/graphene multifunctional catalytic cathode was prepared to build a diaphragm electrolysis system with a Ti/IrO2/RuO2 anode and an organicterylene filter cloth. The degradation of organic wastewater containing 4-chlorophenol by combination of cathodic hydrogenation dechlorination and oxidation of anode and cathode was investigated. The degradation process was monitored and characterized in aid of TOC analysis, UV-Vis spectra, high performance liquid chromatogram, and ion chromatogram. The results showed that the degradation efficiencies of 4-chlorophenol in the present system with Pd-Fe/graphene catalytic cathode were 98.1% (in cathodic chamber), 95.1% (in anodic chamber) under the optimal conditions, which were higher than those of the Pd/graphene catalytic cathode system (93.3% in cathodic chamber, 91.4% in anodic chamber). The chloride ion removal rate was more than 95% in the Pd-Fe/graphene catalytic cathode system, which suggested that the bimetallic catalyst had stronger hydrogenation capacity. 4-chlorophenol could be completely removed within 120 min under the synergetic effect of anodic-cathodic electrochemical degradation. In the cathodic chamber, 4-chlorophenol was initially reduced to form phenol under electrocatalytic hydrolysis. With further oxidation in both cathodic and anodic chambers, phenol was converted into hydroquinone and benzoquinone, then low molecular weight organic acids, and finally CO2 and H2O. Moreover, a reaction pathway involving all these intermediates was proposed.

  2. Forward Drift Chambers for the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Pentchev, Lubomir; GlueX Collaboration

    2014-09-01

    The GlueX experiment will search for exotic mesons produced by 9 GeV linearly polarized photon beam from the 12 GeV CEBAF machine. A hermetic solenoid-based detector system that includes tracking and calorimetry has been constructed. The Forward Drift Chamber (FDC) system consists of 24 circular planar drift chambers of 1 m diameter. Additional information from cathode strips, placed at both sides of the wire planes, is required to achieve efficient pattern recognition in the presence of high background rates in forward direction, resulting in 12,500 readout channels in total. The detection of relatively low energy photons by the electro-magnetic calorimeters imposes severe constraints on the amount of the material used in the FDC. Challenges in the production of this low-mass detector will be discussed. The FDC has been completed and recently installed in the bore of the solenoid magnet. Results from the tests of the whole detector system will be presented.

  3. FCC stripping method

    SciTech Connect

    Cetinkaya, I.B.

    1991-05-14

    This patent describes a method of stripping catalyst in a stripping zone associated with a fluid catalytic cracking reactor wherein the stripping zone removes hydrocarbons from a continuously circulating stream of fluidized particulate catalyst by contact with a stripping gas. It comprises: passing catalyst particles from a reaction zone into the upper end of a principally vertical stripping zone, passing the catalyst downwardly through a transverse flow area of the stripping zone, and withdrawing catalyst particles from a lower portion of the stripping zone; adding stripping gas to a lower portion of the stripping zone, passing the stripping gas upwardly through the stripping zone in countercurrent contact with the catalyst, and removing the stripping gas from an upper section of the stripping zone; deflecting catalyst flow through the stripping zone with at least one downwardly sloped grid and projects into the transverse flow area, and collecting upwardly flowing stripping gas under the at least one grid and redistributing stripping gas laterally across the transverse flow area in a plurality of horizontal jets formed by holes in at least one grid producing jets of at least two different lengths.

  4. Long-Life/Low-Power Ion-Gun Cathode

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1982-01-01

    New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.

  5. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  6. Long-Life/Low-Power Ion-Gun Cathode

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1982-01-01

    New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.

  7. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  8. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  9. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.

    PubMed

    Jakuba, Rachel Wisniewski; Moffett, James W; Saito, Mak A

    2008-05-05

    Zinc speciation is considered to be an important determinant of the biological availability of zinc. Yet in oceanic surface waters, characterization of zinc speciation is difficult due to the low concentrations of this essential micronutrient. In this study, an anodic stripping voltammetry method previously developed for the total determination of cadmium and lead was successfully adapted to the measurement of zinc speciation. The method differs from previous zinc speciation anodic stripping voltammetry methods in that a fresh mercury film is plated with each sample aliquot. The fresh film anodic stripping voltammetry method was compared to competitive ligand exchange cathodic stripping voltammetry in a profile from the North Atlantic Ocean. Results using the fresh film anodic stripping voltammetry method were similar to those determined using the cathodic stripping voltammetry method, though ligand concentrations determined by fresh film anodic stripping voltammetry were generally slightly higher than those determined by cathodic stripping voltammetry. There did not seem to be a systematic difference between methods for the estimates of conditional stability constants. The ligand concentration in the North Atlantic profile ranged from 0.9 to 1.5 nmol L(-1) as determined by fresh film anodic stripping voltammetry and 0.6 to 1.3 nmol L(-1) as determined by cathodic stripping voltammetry. The conditional stability constants determined by fresh film anodic stripping voltammetry were 10(9.8)-10(10.5) and by cathodic stripping voltammetry were 10(9.8)-10(11.3).

  10. Segmented ionization chambers for beam monitoring in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Braccini, Saverio; Cirio, Roberto; Donetti, Marco; Marchetto, Flavio; Pittà, Giuseppe; Lavagno, Marco; La Rosa, Vanessa

    2015-05-01

    Segmented ionization chambers represent a good solution to monitor the position, the intensity and the shape of ion beams in hadrontherapy. Pixel and strip chambers have been developed for both passive scattering and active scanning dose delivery systems. In particular, strip chambers are optimal for pencil beam scanning, allowing for spatial and time resolutions below 0.1 mm and 1 ms, respectively. The MATRIX pixel and the Strip Accurate Monitor for Beam Applications (SAMBA) detectors are described in this paper together with the results of several beam tests and industrial developments based on these prototypes.

  11. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  12. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  13. [Effect of Cu2+ on the power output of dual-chamber microbial fuel cell].

    PubMed

    Mu, Shu-Jun; Li, Xiu-Fen; Ren, Yue-Ping; Wang, Xin-Hua

    2014-07-01

    After addition of Cu2+ into the anodic and/or cathodic chamber, the effect of Cu2+ on the internal resistance and its distribution, power output and coulombic efficiency of dual-chamber microbial fuel cell (MFC) was investigated in this manuscript with the aid of analyzing the distribution of copper speciation. It could provide helpful information for correlative research on treatment of copper-containing wastewater by MFC. It showed that the addition of 10 mg x L(-1) Cu2+ into the anodic chamber inhibited the microbial activity, and increased the anodic activation resistance as well as the apparent internal resistance, consequently reduced the power output and coulombic efficiency of the system. However, the addition of 500 mg x L(-1) Cu2+ into the cathodic chamber significantly reduced the cathodic activation resistance as well as the apparent internal resistance, while improved the power output and the coulombic efficiency. Cu2+ in the anodic chamber was not transfered into the cathodic chamber. When adding Cu2+ into the cathodic chamber, it was mainly reduced and deposited on the cathodic chamber. It could also be transferred/diffused to the anodic chamber across the proton exchange membrane (2.8%) because of its concentration difference, thus affecting the microbial activity and power output. Only a small amount of Cu2+ remained in the supernatant of the cathodic chamber at the end of experiment.

  14. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  15. Elastomeric Cathode Binder

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Shen, D. S.; Somoano, R. B.

    1985-01-01

    Soluble copolymer binder mixed with cathode material and solvent forms flexible porous cathode used in lithium and Ni/Cd batteries. Cathodes prepared by this process have lower density due to expanding rubbery binder and greater flexibility than conventional cathodes. Fabrication procedure readily adaptable to scaled-up processes.

  16. Hollow cathode apparatus

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1984-01-01

    A hollow cathode apparatus is described, which can be rapidly and reliably started. An ignitor positioned upstream from the hollow cathode, generates a puff of plasma that flows with the primary gas to be ionized through the cathode. The plasma puff creates a high voltage breakdown between the downstream end of the cathode and a keeper electrode, to heat the cathode to an electron-emitting temperature.

  17. Lateral flow strip assay

    DOEpatents

    Miles, Robin R [Danville, CA; Benett, William J [Livermore, CA; Coleman, Matthew A [Oakland, CA; Pearson, Francesca S [Livermore, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2011-03-08

    A lateral flow strip assay apparatus comprising a housing; a lateral flow strip in the housing, the lateral flow strip having a receiving portion; a sample collection unit; and a reagent reservoir. Saliva and/or buccal cells are collected from an individual using the sample collection unit. The sample collection unit is immersed in the reagent reservoir. The tip of the lateral flow strip is immersed in the reservoir and the reagent/sample mixture wicks up into the lateral flow strip to perform the assay.

  18. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  19. Cathodic protection

    SciTech Connect

    Pfalser, I.L.; Brannan, M.S.

    1991-08-20

    This patent describes a cathodic protection system for protecting a metallic structure in contact with the earth from corrosion. It comprises at least one electrically conductive member positioned in a borehole in the earth which is defined by an earthen sidewall: a quantity of a particulate mixture of a clay and a carbonaceous solid which at least partially fills the borehole around the at least one conductive member such that the mixture contacts the earthen sidewall and the at least one conductive member, wherein the mixture has a clay to carbonaceous solid weight ratio of at least about 0.1:1; means for applying a DC electrical voltage to the metallic structure and the at least one conductive member such that the metallic structure is at a negative polarity and the at least one conductive member is at a positive polarity, whereby a current is established between the metallic structure and the at least one conductive member through the earth and the mixture.

  20. Comparison of hollow cathode discharge plasma configurations

    NASA Astrophysics Data System (ADS)

    Farnell, Casey C.; Williams, John D.; Farnell, Cody C.

    2011-04-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  1. MPD thrust chamber flow dynamics

    NASA Astrophysics Data System (ADS)

    1990-08-01

    Flow within the thrust chamber of a Magnetoplasmadynamic (MPD) arcjet is examined experimentally and modeled with a 2-D magnetohydrodynamic code. Two quasi-steady MPD thrusters are considered under the same input conditions of current (21 kA) and total mass flow rate (0.006 kg/s, argon + 1.5 percent hydrogen). The arcjets have the same basic design, consisting of a central cathode, 3.8 cm diameter and 5 cm long, separated from a coaxial anode of equal length by a uniform gap of 2.3 cm. Two different mass injection arrangements are used (100 percent at mid-radius, and 50 percent at the cathode base, with the remainder at mid-radius). A new spectroscopic analysis procedure is developed that allows distributions of radial speed, heavy particle temperature and turbulent speed to be extracted from chordal measurements of light emission by the two species in the plasma flow. Good qualitative (and reasonable quantitative) agreement exists with distributions calculated by the MHD code, indicating that flow within the thrust chamber expands from an electromagnetically pumped plasma base (vs a pumped jet off the cathode tip). The significant variation of internal flow dynamics with mass injector arrangement implies the need for extensive experimentally validated code modeling in order to evaluate the potential performance of MPD thrusters.

  2. Anatomy comic strips.

    PubMed

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.

  3. Recent Advances in Thermionic Cathodes

    SciTech Connect

    Ives, R. Lawrence; Miram, George; Collins, George; Falce, Louis R.

    2010-11-04

    The latest advances in thermionic cathodes, including scandate and controlled porosity reservoir cathodes, are reviewed. These new cathodes provide improved performance over conventional cathodes for many applications. Advantages and disadvantages are presented.

  4. Cathodic protection -- Rectifier 46

    SciTech Connect

    Lane, W.M.

    1995-06-14

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste.

  5. Cathodic protection -- Rectifier 47

    SciTech Connect

    Lane, W.M.

    1995-06-14

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste.

  6. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  7. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  8. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  9. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  10. Science Comic Strips

    ERIC Educational Resources Information Center

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  11. Anatomy Comic Strips

    ERIC Educational Resources Information Center

    Park, Jin Seo; Kim, Dae Hyun; Chung, Min Suk

    2011-01-01

    Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective…

  12. Cathodic H2 gas production through Pd alloy membrane electrodes

    NASA Astrophysics Data System (ADS)

    Shirogami, T.; Murata, K.

    A rechargeable H2-NiOOH cell with hydrogen-permeable membrane electrode was tested, and its cathodic hydrogen gas production through the membrane electrode investigated. When a Pd-Pt, catalyzed electrolyte-facing surface was cathodically polarized in a concentrated KOH solution, it was found that hydrogen gas was evolved in the chamber through dissolved hydrogen atoms' penetrating of the membrane to exit at the other, palladized surface as free gas.

  13. Characteristics of a large system of pad readout wire proportional chambers for the HPC calorimeter

    SciTech Connect

    Camporesi, T.; Cavallo, F.R.; Giordano, V.; Laurenti, G.; Molinari, G.; Navarria, F.L.; Privitera, P.; Rovelli, T.; Valenti, G.; Zucchini, A.

    1989-02-01

    A large system of wire proportional chambers is being constructed for the readout of the High-Density Projection Chamber (HPC) of the DELPHI experiment at the Large Electron-Positron storage ring. The system consists of 144 chambers, each 0.3 m/sup 2/ wide and read out via cathode pads, located at the end of the HPC drift volume.

  14. The cathode test stand for the DARHT second-axis

    SciTech Connect

    Fortgang, C.; Monroe, M.; Prono, D.; Hudson, C.; Macy, D.; Moy, K.

    1998-12-31

    The injector for the DARHT second-axis injector will use an 8-in. thermionic dispenser cathode. Because the cathode is relatively large and requires a large amount of heat (5 kW) there are certain engineering issues that need to be addressed, before the DARHT injector reaches the final design stage. The Cathode Test Stand (CTS) will be used to address those concerns. The CTS is a new facility, presently under construction. The CTS will consist of a high-voltage pulse modulator, a high-vacuum diode test-chamber, and a short beam-transport section with diagnostics. This paper discusses the status of the project.

  15. Square-wave adsorptive cathodic stripping voltammetry of pantoprazole.

    PubMed

    Radi, A

    2003-11-24

    Adsorption and reduction of pantoprazole were investigated by cyclic and square-wave voltammetry on a hanging mercury drop electrode in Britton-Robinson buffers at pH 2.0-11.0. The reduction process gave rise to a single peak within the entire pH range. Study of the variation of the reduction signal with solution variables such as pH and concentration of pantoprazole and instrumental variables such as accumulation time and potential, frequency, pulse height and pulse amplitude, has resulted in optimization of the reduction signal for analytical purposes. The voltammetric procedure was applied successfully to give a rapid and precise assay of pantoprazole in a tablet dosage form.

  16. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, A.

    1985-11-26

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

  17. Vacuum chamber for containing particle beams

    DOEpatents

    Harvey, Alexander

    1987-01-01

    A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer, such as nickel can be coated on the inside of the pipe.

  18. SUMMARY ON TITANIUM NITRIDE COATING OF SNS RING VACUUM CHAMBERS.

    SciTech Connect

    TODD, R.; HE, P.; HSEUH, H.C.; WEISS, D.

    2005-05-16

    The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with {approx}100nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 135 chambers and kicker modules, some up to 5m in length and 36cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering -using a - cylindrical cathode with internal permanent magnets. This cathode configuration generates a deposition-rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arcs, injection, extraction, collimation and RF straight sections. Chamber types and quantities as well as the cathode configurations are presented herein. The unique coating requirements of the injection kicker ceramic chambers and the extraction kicker ferrite surface will be emphasized. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing.

  19. Chamber transport

    SciTech Connect

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  20. Geometrical deuteron stripping revisited

    SciTech Connect

    Neoh, Y. S.; Yap, S. L.

    2014-03-05

    We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

  1. Treatment of stripping perforations.

    PubMed

    Allam, C R

    1996-12-01

    Strippings are problems that are frequent on thin and concave roots. Treatment and prognosis differ from that of a lateral root perforation because of the size, oval shape, and thin edges of the striping. We propose a two-step technique: an endodontic phase in which the root canal system is sealed with gutta-percha overflowing through the stripping perforation and a surgical second step that will allow elimination of this excess.

  2. Virtual Cathode Oscillator Study.

    DTIC Science & Technology

    1984-11-01

    emission region then con- sists of an array of fibers perpendicular to a conducting cathode surface . A surface flashover along the individual fibers...acts like the Corona electron source developed by Helionetics13 for laser pre-ioniza- tion. The axial surface flashover mechanism is more desirable than...the conventional cold cathode emission process, because production of plasma in this manner inhibits the formation of surface cathode spots. 7 75

  3. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    SciTech Connect

    Jahanbakhsh, Sina Satir, Mert; Celik, Murat

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  4. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications.

    PubMed

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  5. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, Sina; Satir, Mert; Celik, Murat

    2016-02-01

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  6. Development of sputtered techniques for thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Allard, P. A.

    1979-01-01

    The 0.152 cm thick sputtered and copper deposits were electron beam welded to wrought copper. Tensile specimens were machined from the weld assemblies and tested at room temperature. Tensile strength approached the strength of wrought material. Elongations up to 25% were measured. Sputtered aluminum was used to fill 0.157 cm wide by 0.127 cm deep grooves in thrust chamber spool piece liners. The liners were closed out by sputtering copper from post and hollow cathodes.

  7. Flexible Distributed Pressure Sensing Strip for a Urethral Catheter1

    PubMed Central

    Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A.S.

    2015-01-01

    A multi-sensor flexible strip is developed for a urethral catheter to measure distributed pressure in a human urethra. The developed sensor strip has important clinical applications in urodynamic testing for analyzing the causes of urinary incontinence in patients. There are two major challenges in the development of the sensor. First, a highly sensitive sensor strip that is flexible enough for urethral insertion into a human body is required and second, the sensor has to work reliably in a liquid in-vivo environment in the human body. Capacitive force sensors are designed and micro-fabricated using polyimide/PDMS substrates and copper electrodes. To remove the parasitic influence of urethral tissues which create fringe capacitance that can lead to significant errors, a reference fringe capacitance measurement sensor is incorporated on the strip. The sensing strip is embedded on a catheter and experimental in-vitro evaluation is presented using a bench-top pressure chamber. The sensors on the strip are able to provide the required sensitivity and range. Preliminary experimental results also show promise that by using measurements from the reference parasitic sensor on the strip, the influence of parasitics from human tissue on the pressure measurements can be removed. PMID:27065719

  8. Characterization and Calibration of Large Area Resistive Strip Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Lösel, Philipp; Atlas Muon Collaboration

    2016-07-01

    Resistive strip Micromegas detectors have been tested extensively as small detectors of about 10×10 cm2 in size and they work reliably at high rates of 100 kHz/cm2 and above. Tracking resolution well below 100 μm has been observed for 100 GeV muons and pions. Micromegas detectors are meanwhile proposed as large area muon precision trackers of 2-3 m2 in size. To investigate possible differences between small and large detectors, a 1 m2 detector with 2048 resistive strips at a pitch of 450 μm was studied in the LMU Cosmic Ray Measurement Facility (CRMF) using two 4×2.2 m2 large Monitored Drift Tube (MDT) chambers for cosmic muon reference tracking. A segmentation of the resistive strip anode plane in 57.6 mm×93 mm large areas has been realized by the readout of 128 strips with one APV25 chip each and by eleven 93 mm broad trigger scintillators placed along the readout strips. This allows for mapping of homogeneity in pulse height and efficiency, determination of signal propagation along the 1 m long anode strips and calibration of the position of the anode strips.

  9. Study the Z-Plane Strip Capacitance

    SciTech Connect

    Parikh, H.; Swain, S.; /SLAC

    2005-12-15

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

  10. [Post-stripping telangiectasis].

    PubMed

    Hutinel, B; Maraval, M

    1985-01-01

    These telangiectasia appear between one and six months after the operation, especially in cases of capillary fragility. The most common localizations are the antero-internal and external sides of the thighs and knees. Unnecessary strippings, of continent saphenous veins, are the most frequent cause of these. Their prevention consists of the least possible traumatising stripping, using a fine stripper, a very rigorous post-operative support, and the wearing of light varicose stockings or tights for between one and three months. The treatment using microsclerosis, often delicate, should not be undertaken before six months.

  11. Tracking chamber made of 15-mm mylar drift tubes

    NASA Astrophysics Data System (ADS)

    Kozhin, A.; Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Plotnikov, I.

    2017-05-01

    We are presenting a drift chamber composed from three layers of mylar drift tubes with outer diameter 15 mm. The pipe is made of strip of mylar film 125 micrometers thick covered with aluminium from the both sides. A strip of mylar is wrapped around the mandrel. Pipe is created by ultrasonic welding. A single drift tube is self-supported structure withstanding 350 g wire tension without supports and internal overpressure. About 400 such tubes were assembled. Design, quality control procedures of the drift tubes are described. Seven chambers were glued from these tubes of 560 mm length. Each chamber consists of 3 layers, 16 tubes per layer. Several chambers were tested with cosmic rays. Results of the tests, counting rate plateau and coordinate resolution are presented.

  12. Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell.

    PubMed

    Zhang, Xiaoyan; Zhu, Feng; Chen, Li; Zhao, Qin; Tao, Guanhong

    2013-10-01

    A new system for removing ammonia nitrogen was developed, which integrated a microbial fuel cell (MFC) with an aerobic bioreactor. A three-chamber reactor consisted of an anode chamber, a middle chamber and a cathode chamber. The chambers were separated by an anion exchange membrane and a cation exchange membrane (CEM), respectively. Driven by the power generated by the MFC, NH4(+) in the middle chamber could migrate through CEM into the cathode chamber. The migrated NH4(+) further removed via biological denitrification in the cathode chamber. Up to 90.2% of total NH4(+)-N could be removed with an initial concentration of 100 mg/L in 98 h. Affecting factors were investigated on the removal efficiency including cathode surface area, electrode spacing, chemical oxygen demand concentration, dissolved oxygen concentration, and NH4(+)-N concentration. The system was characterized by simple configuration and high efficiency, and was successfully applied to the treatment of brewery wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  14. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  15. An improved reservoir oxide cathode

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Liao, Xianheng; Luo, Jirun; Zhao, Qinglan

    2005-09-01

    A new type of reservoir oxide cathode has been developed in IECAS. The emission characteristics of the cathode are tested. The results show the new cathode has higher emission current density and better resistance to poisoning at same operating condition compared with those of conventional reservoir oxide cathode.

  16. Lightweight Cathodes For Nickel Batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1996-01-01

    Lightweight cathodes for rechargeable nickel-based electrochemical cells undergoing development. In cathodes, mats of nickel fibers are substrates providing structural support of, and electrical contact with, active cathode material. Offers specific energies greater than sintered nickel plaque cathodes. Electrodes used in rechargeable batteries for applications in which weight major concern, including laptop computers, cellular phones, flashlights, soldiers' backpacks, and electric vehicles.

  17. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.

  18. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; McQueen, Miles A.

    1996-01-01

    A portable barrier strip having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests stable in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use.

  19. Health in strip cartoons.

    PubMed

    Videlier, P; Piras, P

    1990-01-01

    Strip cartoons are among the most vivid means of communication at our disposal, and they are particularly popular with the young. Medical matters have featured in many stories, though usually in a peripheral role. Could more be done to use this powerful medium, or would deliberate exploitation destroy it?

  20. Strip and load data

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The method of taking batch data files and loading these files into the ADABAS data base management system (DBMS) is examined. This strip and load process allows the user to quickly become productive. Techniques for data fields and files definition are also included.

  1. Selective chemical stripping

    NASA Astrophysics Data System (ADS)

    Malavallon, Olivier

    1995-04-01

    At the end of the 80's, some of the large European airlines expressed a wish for paint systems with improved strippability on their aircraft, allowing the possibility to strip down to the primer without altering it, using 'mild' chemical strippers based on methylene chloride. These improvements were initially intended to reduce costs and stripping cycle times while facilitating rapid repainting, and this without the need to change the conventionally used industrial facilities. The level of in-service performance of these paint systems was to be the same as the previous ones. Requirements related to hygiene safety and the environment were added to these initial requirements. To meet customers' expectations, Aerospatiale, within the Airbus Industry GIE, formed a work group. This group was given the task of specifying, following up the elaboration and qualifying the paint systems allowing requirements to be met, in relation with the paint suppliers and the airlines. The analysis made in this report showed the interest of transferring as far upstream as possible (to paint conception level) most of the technical constraints related to stripping. Thus, the concept retained for the paint system, allowing selective chemical stripping, is a 3-coat system with characteristics as near as possible to the previously used paints.

  2. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  3. Cathodic degradation of antibiotics: characterization and pathway analysis.

    PubMed

    Kong, Deyong; Liang, Bin; Yun, Hui; Cheng, Haoyi; Ma, Jincai; Cui, Minhua; Wang, Aijie; Ren, Nanqi

    2015-04-01

    Antibiotics in wastewaters must be degraded to eliminate their antibacterial activity before discharging into the environment. A cathode can provide continuous electrons for the degradation of refractory pollutants, however the cathodic degradation feasibility, efficiency and pathway for different kinds of antibiotics is poorly understood. Here, we investigated the degradation of four antibiotics, namely nitrofurazone (NFZ), metronidazole (MNZ), chloramphenicol (CAP), and florfenicol (FLO) by a poised cathode in a dual chamber electrochemical reactor. The cyclic voltammetry preliminarily proved the feasibility of the cathodic degradation of these antibiotics. The cathodic reducibility of these antibiotics followed the order of NFZ > MNZ > CAP > FLO. A decreased phosphate buffered solution (PBS) concentration as low as 2 mM or utilization of NaCl buffer solution as catholyte had significant influence on antibiotics degradation rate and efficiency for CAP and FLO but not for NFZ and MNZ. PBS could be replaced by Na2CO3-NaHCO3 buffer solution as catholyte for the degradation of these antibiotics. Reductive dechlorination of CAP proceeded only after the reduction of the nitro group to aromatic amine. The composition of the degradation products depended on the cathode potential except for MNZ. The cathodic degradation process could eliminate the antibacterial activity of these antibiotics. The current study suggests that the electrochemical reduction could serve as a potential pretreatment or advanced treatment unit for the treatment of antibiotics containing wastewaters.

  4. Right/left assignment in drift chambers and proportional multiwire chambers (PWC's) using induced signals

    DOEpatents

    Walenta, Albert H.

    1979-01-01

    Improved multiwire chamber having means for resolving the left/right ambiguity in the location of an ionizing event. The chamber includes a plurality of spaced parallel anode wires positioned between spaced planar cathodes. Associated with each of the anode wires are a pair of localizing wires, one positioned on either side of the anode wire. The localizing wires are connected to a differential amplifier whose output polarity is determined by whether the ionizing event occurs to the right or left of the anode wire.

  5. Cathodes - Technological review

    NASA Astrophysics Data System (ADS)

    Cherkouk, Charaf; Nestler, Tina

    2014-06-01

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  6. Cathodes - Technological review

    SciTech Connect

    Cherkouk, Charaf; Nestler, Tina

    2014-06-16

    Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  7. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  8. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  9. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  10. Improved Bakeout Chambers Within Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Johnson, Kenneth R.; Taylor, Daniel M.; Lane, Robert W.; Cortez, Maximo G.; Anderson, Mark R.

    1995-01-01

    Improved bakeout chamber incorporates hardware features that, in conjunction with improved bakeout procedure, reduce spurious contamination and increase accuracy of contamination measurements. When operated according to revised bakeout procedure, they yield measurements of contamination on vacuum-bake test articles more accurate than available previously, and potential for post-bake recontamination of vacuum-baked articles reduced. These chambers improved versions of one described in "Bakeout Chamber Within Vacuum Chamber" (NPO-18959). By enclosing test article in enclave and keeping walls of enclave hotter than test article during bakeout, one prevents condensation of contaminants on inner walls of enclave.

  11. Developments in plastic wire chambers operated in the limited streamer mode (LSM detectors)

    NASA Astrophysics Data System (ADS)

    Laakso, Mikko; Kurvinen, Kari; Orava, Risto

    1988-12-01

    We have calculated the photon detection efficiency of a wire chamber constructed with conductive nylon-66 plastic as cathode material in the photon energy range of 100 keV-1 MeV. The calculated results are compared with the results obtained with a Monte Carlo simulation using the FLUKA [1] transport code and with experimental results. We have also calculated the efficiency for copper and compared these two cathode materials. The comparison shows that wire chambers with nylon and copper cathodes are equally efficient in detecting the 100 keV-1 MeV photons. Furthermore, we have studied the different physical processes contributing to photon detection as well as the detection efficiency as a function of cathode thickness. Finally, we report some results from the first LSM detector operational tests performed with our new wire chamber testing device.

  12. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  13. Cathodic pseudopolarography: a new tool for the identification and quantification of cysteine, cystine and other low molecular weight thiols in seawater.

    PubMed

    Laglera, Luis M; Downes, Javier; Tovar-Sánchez, Antonio; Monticelli, Damiano

    2014-07-11

    Thiols are compounds of paramount importance in the cellular metabolism due to their double detoxifying role as radical scavengers and trace metal ligands. However, we have scarce information about their extracellular cycling as limited data are available about their concentration, stability and speciation in the aquatic medium. In natural waters, they form part of the pool of reduced sulfur substance (RSS) whose presence has been documented by voltammetric and chromatographic methods. Traditional use of cathodic stripping voltammetry (CSV) for the analysis of RSS could only give an overall concentration due to the coalescence of their CSV peaks. Recently, it has been shown that the use of multiple deposition potentials could take voltammetry of RSS to a higher level, permitting the identification and quantification of the mixtures of RSS despite showing as a single coalescent peak. Here, due to its similarity with classical pseudopolarography, we propose to rename this analytical strategy as cathodic pseudopolarography (CP) and we present for the first time its use for the analysis of mixes of low molecular weight thiols (LMWT) at the nanomolar level. Despite limitations caused by the identical behavior of some LMWT, the CP allowed to isolate the contribution of cysteine and cystine from a coalescent signal in LMWT mixtures. Sample handling with clean protocols allowed the direct determination of the cystine:cysteine ratio without sample modification. Finally, we show the application of CP to identify LMWT in seawater samples extracted from benthic chambers and suggest future applications in other areas of environmental electroanalysis.

  14. ATLAS strip tracker stavelets

    NASA Astrophysics Data System (ADS)

    Phillips, P. W.

    2012-02-01

    The engineering challenges related to the supply of electrical power to future large scale detector systems are well documented. Two options remain under active study in our community, namely serial powering and the use of DC-DC converters. Whilst clearly different in detail, both have the potential to increase the efficiency of the powering system. The ATLAS Upgrade Strip Tracker Community has constructed two demonstrator stavelets using the ABCN-25 ASIC, each comprising four silicon strip detector modules. The first stavelet is serially powered, using shunt transistors integrated into the ABCN-25 chip to maintain the required operating voltage given a constant supply current, and the second stavelet uses STV-10 DC-DC converters provided by the CERN group. Although the detailed test programme shall continue at CERN, results from stavelet tests made at RAL are presented here.

  15. APS storage ring vacuum chamber: Section 1, Evaluation

    SciTech Connect

    Benaroya, R.; Roop, B.

    1995-07-01

    The vacuum characteristics of the APS storage ring vacuum chamber prototype, Section One (S1), is presented. The base pressure achieved was 4 {times} 10{sup {minus}11}, the welds contained no virtual or real leaks, the NeG strip mounting design and activation procedures have been determined, and S1 was found contaminated with hydrocarbons.

  16. Robotic Paint Stripping Cell

    DTIC Science & Technology

    1993-11-01

    based controls are used for all F-1 a substrate materials, Inc, ding graphite-epoxy composhes. The RPSC is a fully automated plastic media blast paint...based controls are used for all F.16 substrate materials, including graphite-epoxy composites. The RPSC is a fully automated plastic media blast...control the paint stripping rate and prevent overblasting of the substrate . Four halogen lamps provide an infrared-rich light source which is reflected

  17. Cathode materials review

    SciTech Connect

    Daniel, Claus Mohanty, Debasish Li, Jianlin Wood, David L.

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  18. Cathode materials review

    NASA Astrophysics Data System (ADS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  19. Strip casting with fluxing agent applied to casting roll

    SciTech Connect

    Williams, Robert S.; O'Malley, Ronald J.; Sussman, Richard C.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

  20. Strip casting with fluxing agent applied to casting roll

    DOEpatents

    Williams, R.S.; O`Malley, R.J.; Sussman, R.C.

    1997-07-29

    A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.

  1. DARHT 2 kA Cathode Development

    SciTech Connect

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    reexamined all the components in the cathode region and eliminated those parts that were suspected to be potential sources of contamination, e.g., feed-throughs with zinc coating. Finally, we considered a change in the cathode type, by using a different combination of impregnation and coating. Since the ETA-II accelerator at LLNL used a 12.5 cm diameter 311XW (barium oxide doped with scandium and coated with a osmium-tungsten thin film) cathode and emitted 2200A of beam current (i.e. 18 A/cm{sup 2}), it was reasonable to assume that DARHT can adopt this type of cathode to produce 2 kA (i.e., 10A/cm{sup 2}). However, it was later found that the 311XW has a higher radiation heat loss than the 612M and therefore resulted in a maximum operating temperature (as limited by filament damage) below that required to produce the high current. With the evidence provided by systematic emission tests using quarter-inch size cathodes, we confirmed that the 311XM (doped with scandium and has a osmium-ruthenium (M) coating) had the best combination of low work function and low radiation heat loss. Subsequently a 6.5-inch diameter 311XM cathode was installed in DARHT and 2 kA beam current was obtained on June 14, 2007. In testing the quarter-inch size cathode, we found that the beam current was sensitive to the partial pressure of various gases in the vacuum chamber. Furthermore, there was a hysteresis effect on the emission as a function of temperature. The phenomenon suggested that the work function of the cathode was dependent on the dynamic equilibrium between the diffusion of the impregnated material to the surface and the contamination rate from the surrounding gas. Water vapor was found to be the worst contaminant amongst the various gases that we have tested. Our data showed that the required vacuum for emitting at 10 A/cm{sup 2} is in the low 10{sup -8} Torr range.

  2. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  3. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  4. Test and characterization of multigap resistive plate chambers for the EEE project

    NASA Astrophysics Data System (ADS)

    Bossini, E.; EEE Collaboration

    2016-03-01

    The Extreme Energy Events project is based on the deployment of cosmic-ray telescopes in Italian high schools with the active contribution of students and teachers. Each telescope is made by three Multigap Resistive Plate Chambers readout by strips. With around 50 telescopes already built and others under construction, specific systems to test and characterize the chambers are needed. In this article I will present a flexible and software-configurable solution to perform chamber efficiency studies with a set of scintillators and hardware to automatically scan detector strips to identify electrical issues. Both systems can provide accurate information but at the same time they can be easily operated by students.

  5. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  6. Spray Rolling Aluminum Strip

    SciTech Connect

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  7. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  8. Paresev on Taxi Strip

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  9. Paresev on Taxi Strip

    NASA Image and Video Library

    1962-01-17

    Test pilot Milton Thompson sitting in NASA Flight Research Center-built Paresev 1 (Paraglider Research Vehicle) on the taxi strip in front of the NASA Flight Research Center in 1962. In this photo the control stick can be seen coming from overhead and hanging in front of the pilot. The control system was a direct link with the wing membrane made of doped Irish linen. By maintaining simplicity during construction, it was possible to make control and configuration changes overnight and, in many instances, in minutes.

  10. About NICADD extruded scintillating strips

    SciTech Connect

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Chakraborty, D.; Francis, K.; Kubik, D.; Lima, J.G.; Rykalin, V.; Zutshi, v.; Baldina, E.; Bross, A.; Deering, P.; Nebel, T.; Pla-Dalmau, A.; Schellpfeffer, J.; Serritella, C.; Zimmerman, J.; /Fermilab

    2005-04-01

    The results of control measurements of extruded scintillating strip responses to a radioactive source Sr-90 are provided, and details of strip choice, preparation, and method of measurement are included. About four hundred one meter long extruded scintillating strips were measured at four different points. These results were essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  11. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  12. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  13. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  14. Strip casting apparatus and method

    DOEpatents

    Williams, Robert S.; Baker, Donald F.

    1988-01-01

    Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.

  15. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  16. Cathode material for lithium batteries

    DOEpatents

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  17. A filtered cathodic arc deposition apparatus and method

    SciTech Connect

    Krauss, Alan R.

    1997-12-01

    A filtered cathodic arc deposition method and apparatus are described for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  18. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  19. An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    PubMed Central

    2014-01-01

    Background In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration of 0.1 M and ionic strength of 2.5 mM). Conclusions In conclusion, results verify that response surface methodology could successfully determine cathode chamber optimum operational conditions. PMID:24423039

  20. Synopsis of Cathode #4 Activation

    SciTech Connect

    Kwan, Joe; Ekdahl, C.; Harrison, J.; Kwan, J.; Leitner, M.; McCruistian, T.; Mitchell, R.; Prichard, B.; Roy, P.

    2006-05-26

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature.

  1. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  2. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    SciTech Connect

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  3. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  4. Bismuth-based electrochemical stripping analysis

    DOEpatents

    Wang, Joseph

    2004-01-27

    Method and apparatus for trace metal detection and analysis using bismuth-coated electrodes and electrochemical stripping analysis. Both anodic stripping voltammetry and adsorptive stripping analysis may be employed.

  5. Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition.

    PubMed

    Rodrigues, José A; Rodrigues, Carlos M; Almeida, Paulo J; Valente, Inês M; Gonçalves, Luís M; Compton, Richard G; Barros, Aquiles A

    2011-09-09

    An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same

    DOEpatents

    Rao, Triveni; Walsh, Josh; Gangone, Elizabeth

    2015-12-29

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsule is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.

  7. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    SciTech Connect

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  8. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1990-12-01

    Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.

  9. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  10. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    NASA Astrophysics Data System (ADS)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  11. Modeling Chamber Transport for Heavy-Ion Fusion

    SciTech Connect

    Sharp, W M; Niller, D A C; Tabak, M; Yu, S S; Peterson, P F; Welch, D R; Rose, D V; Olson, C L

    2002-08-02

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  12. Modeling chamber transport for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2002-10-01

    In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

  13. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.

    PubMed

    Ishizaki, So; Fujiki, Itto; Sano, Daisuke; Okabe, Satoshi

    2014-10-07

    Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.

  14. Testing a GaAs cathode in SRF gun

    SciTech Connect

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high

  15. Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device

    SciTech Connect

    Murali, S. Krupakar; Emmert, G. A.; Santarius, J. F.; Kulcinski, G. L.

    2010-10-15

    Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the cathode. Experimentally, the grid temperature decreases as the chamber pressure increases; numerical simulations suggest that this is caused by the reduction of the hot ion current to the cathode as the pressure increases for constant power supply current. Such an understanding further supports the conclusion that the asymmetric heating of the cathode can be decreased by homogenizing the ion flow around the cathode.

  16. Air cathode structure manufacture

    DOEpatents

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  17. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  18. Range gated strip proximity sensor

    DOEpatents

    McEwan, T.E.

    1996-12-03

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  19. Range gated strip proximity sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  20. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  1. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  2. Determining the mechanisms of catonic contamination of PEMFCs using a strip cell configuration

    SciTech Connect

    Kienitz, Brian L; Pivovar, Bryan S; Fernando, Garzon; Zawodzinski, Thomas A

    2008-01-01

    Cationic contamination of polymer electrolyte fuel cells has been shown to cause serious performance degradation but the exact mechanisms of this degradation are not fully understood. A strip cell configuration was devised to study the mechanisms of performance degradation due to cationic contamination by changing the time and length scales of traditional fuel cells while providing a suitable reference electrode. This 'strip cell' configuration utilizes traditional Nafion{reg_sign} membranes in an inplane configuration with electrodes painted on each end. Using this cell it was determined that cationic contaminants collect near the cathode of the fuel cell under load and that this profile leads to increased losses primarily in the cathode region. These results can be directly related to performance losses in a typical PEMFC contaminated by foreign cations.

  3. Determining the Mechanisms of Cationic Contamination Affecting PEMFCs Using a Strip Cell Configuration

    SciTech Connect

    Kienitz, B. L.; Zawodzinski, T. A.; Pivovar, B. S.; Garzon, F. H.

    2008-01-01

    Cationic contamination of polymer electrolyte fuel cells has been shown to cause serious performance degradation but the exact mechanisms of this degradation are not fully understood. A strip cell configuration was devised to study the mechanisms of performance degradation due to cationic contamination by changing the time and length scales of traditional fuel cells while providing a suitable reference electrode. This 'strip cell' configuration utilizes traditional Nafion{reg_sign} membranes in an in-plane configuration with electrodes painted on each end. Using this cell it was determined that cationic contaminants collect near the cathode of the fuel cell under load and that this profile leads to increased losses primarily in the cathode region. These results can be directly related to performance losses in a typical PEMFC contaminated by foreign cations.

  4. Single chamber fuel cells: Flow geometry, rate and composition considerations

    SciTech Connect

    Stefan, Ionel C.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2003-11-17

    Four different single chamber fuel cell designs were compared using propane-air gas mixtures. Gas flow around the electrodes has a significant influence on the open circuit voltage and the power density of the cell. The strong influence of flow geometry is likely due to its effect on gas composition, particularly on the oxygen chemical potential at the two electrodes as a result of gas mixing. The chamber design which exposes the cathode first to the inlet gas was found to yield the best performance at lower flow rates, while the open tube design with the electrodes equally exposed to the inlet gas worked best at higher flow rates.

  5. The cathode plasma simulation

    NASA Astrophysics Data System (ADS)

    Suksila, Thada

    Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the

  6. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  7. A soundproof pressure chamber.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Inoue, S

    1994-01-01

    For neurotological research we designed a soundproof pressure chamber in which pressure can be adjusted +/- 1000 mmH2O at the rate of less than 100 mmH2O per second. Noise in the chamber can be maintained under 30-35 dB while pressure is kept at a given level.

  8. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  9. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  10. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  11. Microtube strip heat exchanger

    NASA Astrophysics Data System (ADS)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  12. Depression cathode structure for cathode ray tubes having surface smoothness and method for producing same

    SciTech Connect

    Rychlewski, T.V.

    1984-10-23

    Depression cathode structures for cathode ray tubes are produced by dispensing liquid cathode material into the depression of a metallic supporting substrate, removing excess cathode material by passing a doctor blade across the substrate surface and over the depression, and drying the cathode layer to a substantially immobile state. The cathode layer may optionally be further shaped prior to substantially complete drying thereof.

  13. Buffers and vegetative filter strips

    Treesearch

    Matthew J. Helmers; Thomas M. Isenhart; Michael G. Dosskey; Seth M. Dabney

    2008-01-01

    This chapter describes the use of buffers and vegetative filter strips relative to water quality. In particular, we primarily discuss the herbaceous components of the following NRCS Conservation Practice Standards.

  14. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  15. The Dark Side of the Moebius Strip.

    ERIC Educational Resources Information Center

    Schwarz, Gideon E.

    1990-01-01

    Discussed are various models proposed for the Moebius strip. Included are a discussion of a smooth flat model and two smooth flat algebraic models, some results concerning the shortest Moebius strip, the Moebius strip of least elastic energy, and some observations on real-world Moebius strips. (KR)

  16. Cosmic ray tests of large area Multigap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    An, Shaohui; Hatzifotiadou, D.; Kim, Jinsook; Williams, M. C. S.; Zichichi, A.; Zuyeuski, R.

    2007-07-01

    We have built Multigap Resistive Plate Chambers (MRPC) with six 300 μm gas gaps and an active area of 158×82 cm2. The signals are generated on 2.5 cm wide copper pickup strips; these are read out at each end thus allowing the position of the hit along the strip to be obtained from the time difference. Using three of these chambers we have set up a cosmic tracking system in a similar manner as planned for the Extreme Energy Events (EEE) project. The details of the set-up are presented in this paper. In addition we discuss the time and position resolution of these MRPCs measured using cosmic rays.

  17. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.

    PubMed

    Wang, L; Chen, Y; Ye, Y; Lu, B; Zhu, S; Shen, S

    2011-01-01

    As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V.

  18. Automated Flight Strip Management System Functional Description

    DTIC Science & Technology

    1990-11-19

    Strips at Boston 16 4.3.1 Use of Flight Progress Strips in the Logan Tower Cab 16 4.3.2 Use of Flight Progress Strips in Boston TRACON 16 4.4 Flight...of Terminal Flight Progress Strip 9 4 Use of Flight Progress Strips in Boston Logan Airport 15 5 Figure Progress Strip Flow for Departure Aircraft at... Boston Logan Airport 17 6 Flight Progress Strip Flow for Arrival Aircraft at Boston Logan Airport 23 7 Current Interfaces for Flight Data Information

  19. Titanium diaphragm makes excellent amplitron cathode support

    NASA Technical Reports Server (NTRS)

    Teich, W. W.

    1965-01-01

    Cathode support structure designed around a titanium diaphragm prevents radial misalignment between the cathode and anode in amplitrons. The titanium exhibits low thermal conductivity, tolerates lateral thermal expansion of the cathode, and is a poor primary and secondary emission medium.

  20. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  1. A new semicustom integrated bipolar amplifier for silicon strip detectors

    SciTech Connect

    Zimmerman, T.

    1989-07-11

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs.

  2. Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell.

    PubMed

    Wen, Qing; Wu, Ying; Zhao, Li-xin; Sun, Qian; Kong, Fan-ying

    2010-02-01

    A sequential anode-cathode double-chamber microbial fuel cell (MFC), in which the effluent of anode chamber was used as a continuous feed for an aerated cathode chamber, was constructed in this experiment to investigate the performance of brewery wastewater treatment in conjugation with electricity generation. Carbon fiber was used as anode and plain carbon felt with biofilm as cathode. When hydraulic retention time (HRT) was 14.7 h, a relatively high chemical oxygen demand (COD) removal efficiency of 91.7%-95.7% was achieved under long-term stable operation. The MFC displayed an open circuit voltage of 0.434 V and a maximum power density of 830 mW/m(3) at an external resistance of 300 Omega. To estimate the electrochemical performance of the MFC, electrochemical measurements were carried out and showed that polarization resistance of anode was the major limiting factor in the MFC. Since a high COD removal efficiency was achieved, we conclude that the sequential anode-cathode MFC constructed with bio-cathode in this experiment could provide a new approach for brewery wastewater treatment.

  3. Triservice/NASA cathode life test facility

    NASA Astrophysics Data System (ADS)

    Windes, D.; Dutkowski, J.; Kaiser, R.; Justice, R.

    1999-05-01

    Since December 1992, Naval Surface Warfare Center-Crane Division (NSWCCD) has logged over 1,318,000 h of cathode life testing on 6 different cathode systems in the Triservice/NASA Cathode Life Test Facility. These include two types of reservoir cathodes designated as MK (Siemens), and RV (CPI, formerly Varian), and impregnated matrix cathodes designated M type (manufactured by Semicon and Hughes), TM (Transition Metal cathodes-CPI) and MMM (Mixed Metal Matrix cathodes-CPI). This paper will present results of the cathode life testing at this facility.

  4. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  5. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  6. Virtual cathode microwave devices -- Basics

    SciTech Connect

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  7. Accurate analytical expressions for stripping voltammetry in the Henry adsorption limit.

    PubMed

    Calvente, Juan José; Andreu, Rafael

    2011-08-15

    A strategy is developed to derive accurate analytical expressions for low-coverage cathodic stripping voltammetry. The procedure relies on the observation that diffusion affects the location of simulated voltammetric waves but not their shape, provided that physisorption of the analyte is negligible. As a proof of the generality of the proposed approach and having in mind the stripping of thiols, analytical solutions are derived for the cathodic stripping of monomers, dimers, and a mixture of monomers and dimers, whose reliability is proved by their comparison with numerically simulated voltammograms. Application to the deposition and reductive desorption of mercaptoacetic acid at a mercury electrode demonstrates that these approximate solutions can be used to get insights into the interfacial organization of incipient films. For this particular system, a transition from monomeric to dimeric behavior is identified upon increasing the thiol surface concentration. Further generalization of the proposed methodology is achieved by deriving an approximate analytical solution for thin-layer anodic stripping voltammetry, which is satisfactorily compared to the existing summation series solution.

  8. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    SciTech Connect

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-12-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H{sup -} sources with good monochromatization. With one electron of H{sup -} stripped by a laser, the remained electron is excited to upper state (2P{sup 3/2} and 2P{sup 1/2}) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  9. Cathodic hydrodimerization of nitroolefins

    PubMed Central

    Weßling, Michael

    2015-01-01

    Summary Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products. PMID:26199673

  10. Cathodic hydrodimerization of nitroolefins.

    PubMed

    Weßling, Michael; Schäfer, Hans J

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C-C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  11. Electromechanical responses of Cu strips

    NASA Astrophysics Data System (ADS)

    Zhao, Guangfeng; Liu, Ming; An, Zhinan; Ren, Yang; Liaw, Peter K.; Yang, Fuqian

    2013-05-01

    Electrical-thermal-mechanical behavior of materials plays an important role in controlling the structural integrity of electromechanical structures of small volumes. The electromechanical response of Cu strips was studied by passing an electric current through the strips with electric current densities in the range of 12.34 to 29.60 kA/cm2. The passage of the electric current of high current densities introduced electrical-thermal-mechanical interactions, which caused grain growth and grain rotation in both the melted region and heat-affected zone. The electrothermal interactions led to the elastoplastic buckling of the Cu strips with the maximum deflection of the Cu strips increasing with the increase of the electric current density. The total strain is a quadratic function of the electric current density. There was a quasi-steady state in which the electric resistance of the Cu strips linearly increased with time before the occurrence of electric fusing. A power-law relation was used to describe the dependence of the time-to-failure (electric fusing) on the electric current density. For the region of relatively low current densities, the current exponent ranged from 17.9 to 44.6, and for the region of high current densities, the current exponent ranged from 2.5 to 5.2. The current exponent for relatively low current densities decreased with increasing the length of Cu strips, showing size-dependence. Finite element analyses were performed to analyze the current-induced deflection of a Cu strip. The simulation results showed that the maximum deflection for the electric current density larger than or equal to 5 kA/cm2 is a linear function of the current density in agreement with the experimental observation.

  12. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

  13. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  14. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  15. The Mars Chamber

    NASA Image and Video Library

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  16. Femtosecond-laser-assisted Descemet's stripping endothelial keratoplasty.

    PubMed

    Cheng, Yanny Y Y; Pels, Elisabeth; Nuijts, Rudy M M A

    2007-01-01

    To our knowledge, we describe the first patient with pseudophakic bullous keratoplasty treated with femtosecond-laser-assisted endothelial keratoplasty. A 5.5 mm corneoscleral tunnel incision was made; after Descemet's membrane was stripped, an 8.0 mm posterior lamellar corneal disk prepared with a femtosecond laser was inserted into the anterior chamber against the recipient cornea without the use of corneal sutures. Four months postoperatively, the posterior corneal disk was clear and the induced astigmatism was 2.1 diopters, demonstrating a functional corneal endothelial layer. The femtosecond laser offers a new surgical approach for minimally invasive endothelial keratoplasty in corneal endothelial disorders.

  17. Sleeve reaction chamber system

    SciTech Connect

    Northrup, M Allen; Beeman, Barton V; Benett, William J; Hadley, Dean R; Landre, Phoebe; Lehew, Stacy L; Krulevitch, Peter A

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  18. Multiple Hollow Cathode Wear Testing

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been baselined for use on the Space Station to reduce station charging. The plasma contactor provides a low impedance connection to space plasma via a plasma produced by an arc discharge. The hollow cathode of the plasma contactor is a refractory metal tube, through which xenon gas flows, which has a disk-shaped plate with a centered orifice at the downstream end of the tube. Within the cathode, arc attachment occurs primarily on a Type S low work function insert that is next to the orifice plate. This low work function insert is used to reduce cathode operating temperatures and energy requirements and, therefore, achieve increased efficiency and longevity. The operating characteristics and lifetime capabilities of this hollow cathode, however, are greatly reduced by oxygen bearing contaminants in the xenon gas. Furthermore, an optimized activation process, where the cathode is heated prior to ignition by an external heater to drive contaminants such as oxygen and moisture from the insert absorbed during exposure to ambient air, is necessary both for cathode longevity and a simplified power processor. In order to achieve the two year (approximately 17,500 hours) continuous operating lifetime requirement for the plasma contactor, a test program was initiated at NASA Lewis Research Center to demonstrate the extended lifetime capabilities of the hollow cathode. To date, xenon hollow cathodes have demonstrated extended lifetimes with one test having operated in excess of 8000 hours in an ongoing test utilizing contamination control protocols developed by Sarver-Verhey. The objectives of this study were to verify the transportability of the contamination control protocols developed by Sarver-Verhey and to evaluate cathode contamination control procedures, activation processes, and cathode-to-cathode dispersions in operating characteristics with time. These were accomplished by conducting a 2000 hour wear test of four hollow

  19. Plasma flow field measurements downstream of a hollow cathode

    NASA Astrophysics Data System (ADS)

    Farnell, Casey Coffman

    2007-12-01

    The focus of the research described herein is to investigate and characterize the plasma produced downstream of a hollow cathode with the goal of identifying groups of ions and possible mechanisms of their formation within a plasma discharge that might cause erosion, especially with respect to the hollow cathode assembly. In space applications, hollow cathodes are used in electrostatic propulsion devices, especially in ion thrusters and Hall thrusters, to provide electrons to sustain the plasma discharge and neutralize the ion beam. This research is considered important based upon previous thruster life tests that have found erosion occurring on hollow cathode, keeper, and ion optics surfaces exposed to the discharge plasma. This erosion has the potential to limit the life of the thruster, especially during ambitious missions that require ultra long periods of thruster operation. Results are presented from two discharge chamber configurations that produced very different plasma environments. Four types of diagnostics are described that were used to probe the plasma including an emissive probe, a triple Langmuir probe, a remotely located electrostatic analyzer (ESA), and an ExB probe attached to the ESA. In addition, a simulation model was created that correlates the measurements from the direct and remotely located probes.

  20. Chamber for Aerosol Deposition of Bioparticles

    NASA Technical Reports Server (NTRS)

    Kern, Roger; Kirschner, Larry

    2008-01-01

    Laboratory apparatus is depicted that is a chamber for aerosol deposition of bioparticles on surfaces of test coupons. It is designed for primary use in inoculating both flat and three-dimensional objects with approximately reproducible, uniform dispersions of bacterial spores of the genus Bacillus so that the objects could be used as standards for removal of the spores by quantitative surface sampling and/or cleaning processes. The apparatus is also designed for deposition of particles other than bacterial spores, including fungal spores, viruses, bacteriophages, and standard micron-sized beads. The novelty of the apparatus lies in the combination of a controllable nebulization system with a settling chamber large enough to contain a significant number of test coupons. Several companies market other nebulizer systems, but none are known to include chambers for deposition of bioparticles to mimic the natural fallout of bioparticles. The nebulization system is an expanded and improved version of commercially available aerosol generators that include nebulizers and drying columns. In comparison with a typical commercial aerosol generator, this system includes additional, higher-resolution flowmeters and an additional pressure regulator. Also, unlike a typical commercial aerosol generator, it includes stopcocks for separately controlling flows of gases to the nebulizer and drying column. To maximize the degree of uniformity of dispersion of bioaerosol, the chamber is shaped as an axisymmetrical cylinder and the aerosol generator is positioned centrally within the chamber and aimed upward like a fountain. In order to minimize electric charge associated with the aerosol particles, the drying column is made of aluminum, the drying column is in direct contact with an aluminum base plate, and three equally spaced Po-210 antistatic strips are located at the exit end of the drying column. The sides and top of the chamber are made of an acrylic polymer; to prevent

  1. Restitution of enamel after interdental stripping.

    PubMed

    Lundgren, T; Milleding, P; Mohlin, B; Nannmark, U

    1993-01-01

    This paper studies the effect of interdental stripping on the enamel surface and evaluates methods to restitute the treated surface. Extracted teeth mounted in a semielastic material were subjected to stripping by different kinds of steel strips. The treated enamel surfaces were then polished in several different ways. The effects were studied by SEM and profilometry. It was concluded that the coarsest strips produced irregularities of such a magnitude that polishing had very limited effect. Polishing starting with coarse polishing strips followed by gradually finer gave the best result. An increase in number of strokes and use of all grades of polishing strips slightly improved the result.

  2. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.

    PubMed

    Call, Douglas F; Merrill, Matthew D; Logan, Bruce E

    2009-03-15

    Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matter, but alternatives to precious metals are needed for cathode catalysts. We show here that high surface area stainless steel brush cathodes produce hydrogen at rates and efficiencies similar to those achieved with platinum-catalyzed carbon cloth cathodes in single-chamber MECs. Using a stainless steel brush cathode with a specific surface area of 810 m2/m3, hydrogen was produced at a rate of 1.7 +/- 0.1 m3-H2/m3-d (current density of 188 +/- 10 A/m3) at an applied voltage of 0.6 V. The energy efficiency relative to the electrical energy input was 221 +/- 8%, and the overall energy efficiency was 78 +/- 5% based on both electrical energy and substrate utilization. These values compare well to previous results obtained using platinum on flat carbon cathodes in a similar system. Reducing the cathode surface area by 75% decreased performance from 91 +/- 3 A/m3 to 78 +/- 4 A/m3. A brush cathode with graphite instead of stainless steel and a specific surface area of 4600 m2/m3 generated substantially less current (1.7 +/- 0.0 A/m3), and a flat stainless steel cathode (25 m2/m3) produced 64 +/- 1 A/m3, demonstrating that both the stainless steel and the large surface area contributed to high current densities. Linear sweep voltammetry showed that the stainless steel brush cathodes both reduced the overpotential needed for hydrogen evolution and exhibited a decrease in overpotential over time as a result of activation. These results demonstrate for the first time that hydrogen production can be achieved at rates comparable to those with precious metal catalysts in MECs without the need for expensive cathodes.

  3. Experimental study of columnar recombination in fission chambers

    NASA Astrophysics Data System (ADS)

    Filliatre, P.; Lamirand, V.; Geslot, B.; Jammes, C.

    2016-05-01

    In this paper, we present experimental saturation curves of a small gap miniature fission chamber obtained in the MINERVE reactor. The chamber is filled with argon at various pressures, and the fissile material can be coated on the anode, cathode, or both. For analyzing the recombination regime, we consider a model of columnar recombination and discuss its applicability to our chamber. By applying this model to the data, it is possible to estimate the ratio between the recombination coefficient k and an effective column radius b, appearing in the model, to be k / b =(2.5 ± 0.9) ×10-6m2 / s for argon. From these results, a routine measurement of the recombination regime is proposed in order to detect gas leakage. This online diagnosis would be beneficial in terms of lifetime and reliability of the neutron instrumentation of nuclear reactors.

  4. Microstrip Gas Chambers on glass and ceramic substrates

    SciTech Connect

    Gong, W.G.; Wieman, H.; Harris, J.W.; Mitchell, J.T.; Hong, W.S.; Perez-Mendez, V.

    1993-11-01

    We report developments of Microstrip Gas Chambers (MSGC) fabricated on glass and ceramic substrates with various resistivities. Low resistivity of the substrate is found to be critical for achieving stable operation of microstrip gas chambers. The microstrip pattern consists of 10 {mu}m wide anodes and 90 {mu}m wide cathodes with a 200 {mu}m anode-to-anode pitch. High-quality microstrips are fabricated using the dry etch after UV-photolithography. Our chambers are tested in an Ar(90)-CH{sub 4}(10) gas mixture at atmospheric pressure with a 100 {mu}Ci {sup 55}Fe source. An energy resolution (FWHM) of 15% has been achieved for 6 keV soft X-rays. At a rate of 5 {times} 10{sup 4} photons/sec/mm{sup 2}, gas gains are stable within a few percents. Long-term tests of gain stability and rate capability are yet to be pursued.

  5. Measurement of characteristic impedance of silicon fiber sheet based readout strip panel for RPC detector in INO

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Kumar, A.; Marimuthu, N.; Singh, V.; Subrahmanyam, V. S.

    2017-01-01

    The India-based Neutrino Observatory (INO) is a mega science project of India, which is going to use about 30,000 Resistive Plate Chambers (RPC) as active detector elements for the study of atmoshpheric neutrino oscillations. Each RPC detector will consist of two orthogonally placed readout strip panel for picking the signals generated in the gas chamber. The area of RPC detector in INO-ICAL (Iron Calorimeter) experiment will be 2 m × 2 m, therefore the dimensions of readout strip panel should also be 2 m × 2 m. To get undistorted signals pass through the readout strip panel to front-end electronics, their characteristic impedance should be matched with each other. In the present paper, we describe the need and search of new dielectric material for the fabrication of flame resistant, waterproof and flexible readout strip panel. We will also describe the measurement of characteristic impedance of Plastic Honeycomb (PH) based readout strip panel and Silicon Fiber Sheet (SFS) based readout strip panel in a comparative way, and its variation under loading and with time. Based on this study, we found that a 5 mm thick SFS-based readout strip panel has a minimum signal reflection at 49.5 ohm characteristic impedance value. Our study shows that SFS is a good dielectric material for the purpose.

  6. Thrust chamber life prediction

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.

    1985-01-01

    The reusable life of the Space Shuttle main engine (SSME) is influenced by the cyclic life of the regeneratively liquid cooled main combustion chamber (MCC). During an operational duty cycle the MCC liner is subjected to a large transient thermal gradient that imparts a high thermal cyclic strain to the liner hot gas wall. Life predictions of such chambers have usually been based on low cycle fatigue (LCF) evaluations. Hot-fire testing, however, has shown significant mid-channel wall deformation and thinning during accrued cyclic testing. This phenomenon is termed cyclic creep and appears to be significantly accelerated at elevated temperatures. An analytical method that models the cyclic creep phenomenon and its application to thrust chamber life prediction is presented. The chamber finite element geometry is updated periodically to account for accrued wall thinning and distortion. Failure is based on the tensile instability failure criterion. Cyclic life results for several chamber life enhancing coolant channel designs are compared to the typically used LCF analysis that neglects cyclic creep. The results show that the usable cyclic creep life is approximately 30 to 50% of the commonly used LCF life.

  7. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  8. Target Chamber Manipulator

    NASA Astrophysics Data System (ADS)

    Tantillo, Anthony; Watson, Matthew

    2015-11-01

    A system has been developed to allow remote actuation of sensors in a high vacuum target chamber used with a particle accelerator. Typically, sensors of various types are placed into the target chamber at specific radial and angular positions relative to the beam line and target. The chamber is then evacuated and the experiments are performed for those sensor positions. Then, the chamber is opened, the sensors are repositioned to new angles or radii, and the process is repeated, with a separate pump-down cycle for each set of sensor positions. The new sensor positioning system allows scientists to pre-set the radii of up to a dozen sensors, and then remotely actuate their angular positions without breaking the vacuum of the target chamber. This reduces the time required to reposition sensors from 6 hours to 1 minute. The sensors are placed into one of two tracks that are separately actuated using vacuum-grade stepping motors. The positions of the sensors are verified using absolute optical rotary encoders, and the positions are accurate to 0.5 degrees. The positions of the sensors are electronically recorded and time-stamped after every change. User control is through a GUI using LabVIEW.

  9. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode.

    PubMed

    Juang, D F; Lee, C H; Hsueh, S C

    2012-11-01

    Electricity generation capabilities of microbial fuel cell with different light power on algae grown cathode were compared. Results showed that microbial fuel cell with 6 and 12W power of light always produced higher voltage and power density than with 18 and 26W. Similarly, microbial fuel cell with 6 and 12W of light power always displayed higher Coulombic efficiency and specific power than the one with 18 and 26W. The results also showed that microbial fuel cell with covered anodic chamber always displayed higher voltage, power density, Coulombic efficiency and specific power than the one without covered anodic chamber. Binary quadratic equations can be used to express the relationships between the light power and the voltage, power density, Coulombic efficiency and specific power. Although lower power of light on algae grown cathode and covering anodic chamber will increase system's electricity production, they will not significantly reduce its internal resistance.

  10. Nitrification and denitrification in two-chamber microbial fuel cells for treatment of wastewater containing high concentrations of ammonia nitrogen.

    PubMed

    Du, Haixia; Li, Fusheng; Yu, Zaiji; Feng, Chunhua; Li, Wenhan

    2016-01-01

    Simultaneous nitrification and denitrification in the aerated cathode chamber of microbial fuel cells (MFCs) inoculated with nitrifying bacteria were investigated using two-chamber MFCs. Based on the variations of [Formula: see text], [Formula: see text] and [Formula: see text] in the cathode chamber of four MFCs added with different concentrations of [Formula: see text] (50, 65, 130 and 230 mg/L), the occurrence of simultaneous nitrification and denitrification leading to effective removal of nitrogen was confirmed. Electrochemical reaction with electrons transferred from the anode chamber was found to be the major mechanism responsible for the removal of [Formula: see text] in the cathode chamber. The estimated values of the first-order rate constant for nitrification and denitrification varied in the range of 0.3-1.7 day(-1) and 0.2-0.9 day(-1), revealing a decreasing trend with increases in the initial [Formula: see text] concentrations and the detected maximum concentration of the nitrification product of [Formula: see text] in the cathode chamber, respectively.

  11. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third

  12. H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance.

    PubMed

    Rivera, Isaac; Bakonyi, Péter; Buitrón, Germán

    2017-03-01

    In this work we report on the hydrogen production capacity of single-chamber microbial electrohydrogenesis cell (MEC) with optimized design characteristics, in particular cathode surface area and anode-cathode spacing using acetate as substrate. The results showed that the maximal H2 production rates and best energetic performances could be obtained using the smallest, 71 cm(2) stainless steel cathode and 4 cm electrode distances, employing a 60 cm(2) bioanode. Cyclic voltammetric analysis was employed to investigate the dominant electron transfer mechanism of the architecturally optimized system.

  13. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  14. Antipollution combustion chamber

    SciTech Connect

    Caruel, J.E.; Gastebois, P.M.

    1981-01-27

    The invention concerns a combustion chamber for turbojet engines. The combustion chamber is of the annular type and consists of two coaxial flame tubes opening into a common dilution and mixing zone. The inner tube is designed for low operating ratings of the engine, the outer tube for high ratings. Air is injected as far upstream as possible into the dilution zone, to enhance the homogenization of the gaseous flow issuing from the two tubes prior to their passage into the turbine and to assure the optimum radial distribution of temperatures. The combustion chamber according to the invention finds application in a particularly advantageous manner in turbojet engines used in aircraft propulsion because of the reduced emission of pollutants it affords.

  15. Hollow Cathode With Multiple Radial Orifices

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  16. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, Steven

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  17. Bimaterial Thermal Strip With Increased Flexing

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1994-01-01

    In proposed bimaterial thermal strip, one layer has negative coefficient of thermal expansion, thereby increasing difference between coefficients of thermal expansion of two outer layers and consequently increasing flexing caused by change in temperature. Proposed bimaterial strips used in thermostats.

  18. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  19. Wooded Strips and Windbreaks in Kansas, 1981

    Treesearch

    Thomas L. Castonguay; Mark H. Hansen

    1984-01-01

    In 1981 wooded strips and windbreaks in Kansas coverd 336,000 acres and were more than 54,000 miles long. Wooded strips contained 300 million board feet of sawtimber and 92 million cubic feet of growing stock.

  20. CATALYTIC OXIDATION OF GROUNDWATER STRIPPING EMISSIONS

    EPA Science Inventory

    The paper reviews the applicability of catalytic oxidation to control ground-water air stripping gaseous effluents, with special attention to system designs and case histories. The variety of contaminants and catalyst poisons encountered in stripping operations are also reviewed....

  1. Hardy spaces for the strip

    NASA Astrophysics Data System (ADS)

    Bakan, Andrew; Kaijser, Sten

    2007-09-01

    In this paper we shall study Hardy spaces of analytic functions in a strip . Our main result is on one hand an intrinsic characterization of the spaces and on the second that polynomials are dense. We also present an orthogonal (in ) basis of polynomials.

  2. Tensile Mechanics of Bamboo Strips

    NASA Astrophysics Data System (ADS)

    Bahari, S. A.; Ahmad, M.; Nordin, K.; Jamaludin, M. A.

    2010-03-01

    Mechanical properties of Semantan bamboo (Gigantochloa scortechinii) strips loaded in tensile parallel to grain were documented. The specimens were taken from bottom, middle and top portions of bamboo culms. In each portion, specimens were taken from internodes and node parts. Specimens from internodes part indicated absence of node while specimens from nodes indicated presence of node at the middle section of each specimen. From the results, there was an increment of tensile mechanic values for Semantan bamboo strips in bottom to top portions, due to the increment of fibro vascular bundles amount in the respective portions. Generally, the failures modes of bamboo strips loaded in tensile were divided into Splintering (Mode I) and Brittle Splintering (Mode II). Mode I occurred in internodes of all portions while Mode II occurred in node. Mode I presented higher tensile mechanic values due to the fibres behaviour of bamboo strips, which is more compact, longer and parallel with axial and uniform grain orientation, compared to the short, forked and crossed fibres as well as uneven orientation of vascular bundles in Mode II.

  3. Let's Create a Comic Strip.

    ERIC Educational Resources Information Center

    Wright, Gary; Sherman, Ross

    1999-01-01

    Considers how teachers can help students become literate, critical, creative thinkers by aligning curricula, teaching strategies, and instructional resources. Promotes literacy, higher-level thinking, and writing skills through the interdisciplinary approach of combining language and art. Suggests that creating a comic strip stimulates and…

  4. New method for photoresist stripping

    NASA Technical Reports Server (NTRS)

    Davern, W. E.; Tobin, L. S.

    1970-01-01

    Vacuum dehydration of negatively working photoresist eliminates trace contamination of conventional stripping methods. The semiconductor substrate is coated with photoresist, exposed, developed, cured, and etched, and then placed in a vacuum. Following dehydration, the resist film is removable with ordinary solvents.

  5. Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion.

    PubMed

    Park, Seyong; Kim, Moonil

    2015-01-01

    In this study, the anaerobic digestion of thermally hydrolyzed wasted sludge (THWS) with a high concentration of ammonia was carried out through combining with an ammonia stripping and an electrolyzed water system (EWS). The EWS produced acidic water (pH 2-3) at the anode and alkaline water (pH 11-12) at the cathode with an electro-diaphragm between the electrodes that could be applied to ammonia stripping. The ammonia stripping efficiency was strongly dependent on the pH and aeration rate, and the ammonium ion removal rate followed pseudo-first-order kinetics. From the BMP test, the methane yield of THWS after ammonia stripping using the EWS was 2.8 times higher than that of the control process (raw THWS without ammonia stripping). Furthermore, both methane yield and ammonium removal efficiency were higher in this study than in previous studies. Since ammonia stripping with the EWS does not require any chemicals for pH control, no precipitated sludge is produced and anaerobic microorganisms are not inhibited by cations. Therefore, ammonia stripping using the EWS could be an effective method for digestion of wastewater with a high concentration of ammonium nitrogen.

  6. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  7. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  8. Electrostatic Levitator Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  9. Electrochemical identification of metal ions in archaeological ceramic glazes by stripping voltammetry at graphite/polyester composite electrodes.

    PubMed

    Doménech-Carbó, A; Doménech-Carbó, M T; Osete-Cortina, L; Gimeno-Adelantado, J V; Bosch-Reig, F; Mateo-Castro, R

    2002-01-04

    The electrochemical response of metal ions in different samples of coloured ceramic tin-lead glazes attached to graphite/polyester composite electrodes is described. In addition to the ubiquous signals for lead, reductive dissolution processes are followed by anodic stripping peaks for Co, Cu, Sb, Mn, Sn and Fe, enabling the direct identification of such elements in microsamples proceeding from archaeological glazed tiles from Valencia (Spain) workshops (16th-18th century). Additional anodic and cathodic peaks corresponding to redox processes involving metal species in solution generated during stripping processes are also used. Peak potentials, Tafel plots and shape parameters are used for characterising the different species.

  10. Intraply Hybrid Composites Would Contain Control Strips

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Chi-Yu

    1996-01-01

    "Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.

  11. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  12. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  13. Buttock Lifting with Polypropylene Strips.

    PubMed

    Ballivian Rico, José; Esteche, Atilio; Hanke, Carlos José Ramírez; Ribeiro, Ricardo Cavalcanti

    2016-04-01

    The purpose of this study was to evaluate the results of gluteal suspension with polypropylene strips. Ninety healthy female patients between the ages of 20 and 50 years (mean, 26 years), who wished to remodel their buttocks from December 2004 to February 2013 were studied retrospectively. All 90 patients were treated with 2 strips of polypropylene on each buttock using the following procedures: 27 (30 %) patients were suspended with polypropylene strips; 63 (70 %) patients were treated with tumescent liposuction in the sacral "V", lower back, supragluteal regions, and flanks to improve buttocks contour (aspirated volume of fat from 350 to 800 cc); 16 (18 %) patients underwent fat grafting in the subcutaneous and intramuscular layers (up to 300 cc in each buttock to increase volume); 5 (6 %) patients received implants to increase volume; and 4 (4.4 %) patients underwent removal and relocation of intramuscular gluteal implants to improve esthetics. Over an 8-year period, 90 female patients underwent gluteal suspension surgeries. Good esthetic results without complications were obtained in 75 of 90 (84 %) cases. Complications occurred in 15 of 90 (16.6 %) patients, including strip removal due to postoperative pain in 1 (1.1 %) patient, and seroma in both subgluteal sulci in 3 (3.3 %) patients. The results of this study performed in 90 patients over 8 years showed that the suspension with polypropylene strips performed as a single procedure or in combination with other cosmetic methods helps to enhance and lift ptosed gluteal and paragluteal areas. This journal requires that the authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  14. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, Robert S.; Campbell, Steven L.

    1997-01-01

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  15. In-situ conditioning of a strip casting roll

    DOEpatents

    Williams, R.S.; Campbell, S.L.

    1997-07-29

    A strip caster (10) for producing a continuous strip (24) has a tundish (12) for containing a melt (14) and a pair of horizontally disposed water cooled casting rolls (22). The casting rolls are juxtaposed relative to one another for forming a pouring basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming a strip (24). The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). Devices (29) for conditioning the outer peripheral chill surfaces of the casting rolls includes grit blasting nozzles (30A, 30B, 30C, 30D), a collection trough (32) for gathering the grit, a line (34) for recycling the grit to a bag house (36), a feeder (38) and a pressurized distributor (40) for delivering the grit to the nozzles. The conditioning nozzles remove dirt, metal oxides and surface imperfections providing a clean surface readily wetted by the melt.

  16. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  17. Using Comic Strips in Language Classes

    ERIC Educational Resources Information Center

    Csabay, Noémi

    2006-01-01

    The author believes that using comic strips in language-learning classes has three main benefits. First, comic strips motivate younger learners. Second, they provide a context and logically connected sentences to help language learning. Third, their visual information is helpful for comprehension. The author argues that comic strips can be used in…

  18. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  19. Parmitano with MDCA chamber

    NASA Image and Video Library

    2013-07-24

    ISS036-E-025481 (24 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, works on the Multi-User Droplet Combustion Apparatus (MDCA) Chamber Insert Assembly (CIA) at a maintenance work station in the Harmony node of the International Space Station.

  20. Metabolic simulation chamber

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Metabolic simulation combustion chamber was developed as subsystem for breathing metabolic simulator. Entire system is used for evaluation of life support and resuscitation equipment. Metabolism subsystem simulates a human by consuming oxygen and producing carbon dioxide. Basic function is to simulate human metabolic range from rest to hard work.

  1. Flame-Test Chamber

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.

    1984-01-01

    Experimental chamber provides controlled environment for observation and measurement of flames propagating in expanding plume of flammable air/fuel mixture under atmospheric conditions. Designed to evaluate quenching capability of screen-type flame arresters in atmospheric vents of fuel cargo tanks aboard marine cargo vessels.

  2. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  3. Liquid cathode primary batteries

    NASA Astrophysics Data System (ADS)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  4. Clinical evaluation of a novel on-strip calibration method for blood glucose measurement.

    PubMed

    Noble, Michael; Rippeth, John; Edington, David; Rayman, Gerry; Brandon-Jones, Sarah; Hollowood, Zoe; Kew, Simon

    2014-07-01

    This study evaluated a novel technology for improving accuracy of self-monitoring of blood glucose (SMBG). The technology calibrates each and every test by measuring the response from a predetermined amount of glucose present in the sample chamber of each test strip. SMBG test strips were modified to include a lid coated with a fast dissolving formulation containing glucose. These test strips were characterized for hematocrit (Hct) and temperature induced error response to develop a calibration algorithm. The modified test strips were used in a clinical evaluation involving fingerstick blood samples from 160 subjects. Experiments involving Hct and temperature induced errors show that the technology generates a signal characteristic of the error conditions in any particular test, but independent of glucose concentration, allowing a correction algorithm to be derived. The approach substantially reduced Hct and temperature derived errors. Clinical evaluation using fingerstick blood directly applied to prototype strips showed the error (measured as MARD) was reduced from 11.1 to 5.9% by the on-strip correction approach and the number of outliers reduced by approximately 90%. This technology could improve the accuracy and precision of glucose monitoring systems and so reduce decision errors particularly in clinical situations where hematocrit and temperature may be significant confounders.

  5. Electropositive surface layer MPD thruster cathodes

    SciTech Connect

    Chamberlain, F.R.; Kelly, A.J.; Jahn, R.G.

    1989-01-01

    Lithium and barium oxide have been used to generate electropositive surface layers on tungsten cathodes in low power steady state MPD thruster experiments. The electropositive surface layer decreases the cathode work function, resulting in substantial reductions in the steady state cathode operating temperature and erosion rate. Cathode temperature is reduced by 300 degrees with a lithium surface layer and by 800 degrees with a barium oxide surface layer at a 500 ampere thruster current level. These temperature reductions substantially reduce the calculated steady state evaporative erosion rate of the cathode by factors of 20 and 10,000 respectively. Cold cathode startup erosion is also reduced dramatically. The surface melting and arc cratering that is characteristic of pure tungsten cathodes does not occur with an electropositive surface layer cathode. In addition to reducing cathode erosion, the use of these materials increases thruster efficiency. 12 refs.

  6. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  7. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  8. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  9. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  10. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  11. Roll Casting of Aluminum Alloy Clad Strip

    SciTech Connect

    Nakamura, R.; Tsuge, H.; Haga, T.; Watari, H.; Kumai, S.

    2011-01-17

    Casting of aluminum alloy three layers of clad strip was tried using the two sets of twin roll casters, and effects of the casting parameters on the cladding conditions were investigated. One twin roll caster was mounted on the other twin roll caster. Base strip was 8079 aluminum alloy and overlay strips were 6022 aluminum alloy. Effects of roll-load of upper and lower casters and melt temperature of the lower caster were investigated. When the roll-load of the upper and lower caster was large enough, the overlay strip could be solidified and be connected. The overlay strip could be connected when the melt of the overlay strip cast by the lower caster was low enough. Sound three layers of clad strip could be cast by proper conditions.

  12. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-10-21

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  13. Antenna structure with distributed strip

    DOEpatents

    Rodenbeck, Christopher T.

    2008-03-18

    An antenna comprises electrical conductors arranged to form a radiating element including a folded line configuration and a distributed strip configuration, where the radiating element is in proximity to a ground conductor. The folded line and the distributed strip can be electrically interconnected and substantially coplanar. The ground conductor can be spaced from, and coplanar to, the radiating element, or can alternatively lie in a plane set at an angle to the radiating element. Embodiments of the antenna include conductor patterns formed on a printed wiring board, having a ground plane, spacedly adjacent to and coplanar with the radiating element. Other embodiments of the antenna comprise a ground plane and radiating element on opposed sides of a printed wiring board. Other embodiments of the antenna comprise conductors that can be arranged as free standing "foils". Other embodiments include antennas that are encapsulated into a package containing the antenna.

  14. Chloroform stripping from waste waters

    SciTech Connect

    Kolev, N.; Darakchiev, R.; Semkov, K.

    1997-01-01

    The problem treated in this paper is the purification of waste industrial waters from chloroform. An industrial installation with a stripping column is designed, and the results of its study and industrial tests are presented. It is shown that, in a column with 6400 mm total height of the used packing (Holpack), the chloroform concentration in the waste water decreases 150,000 times, approaching that of drinking water.

  15. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  16. Use of an air-fluid exchange system to promote graft adhesion during Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Meisler, David M; Dupps, William J; Covert, Douglas J; Koenig, Steven B

    2007-05-01

    Dislocation of the graft is a well-recognized complication of Descemet's stripping automated endothelial keratoplasty (DSAEK). We describe a technique to promote adhesion of the graft during DSAEK using an anterior chamber air-fluid infusion and exchange for direct control of the pressure and medium used to tamponade the graft against the host stroma.

  17. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  18. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  19. Crystals in magma chambers

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2011-12-01

    Differentiation processes in igneous systems are one way in which the diversity of igneous rocks is produced. Traditionally, magmatic diversity is considered as variations in the overall chemical composition, such as basalt and rhyolite, but I want to extend this definition to include textural diversity. Such textural variations can be manifested as differences in the amount of crystalline (and immiscible liquid) phases and in the origin and identity of such phases. One important differentiation process is crystal-liquid separation by floatation or decantation, which clearly necessitates crystals in the magma. Hence, it is important to determine if magmas in chambers (sensu lato) have crystals. The following discussion is framed in generalities - many exceptions occur. Diabase (dolerite) dykes are a common, widespread result of regional mafic magmatism. The rims of most diabase dykes have few or no phenocrysts and crystals in the cores are commonly thought to have crystallized in place. Hence, this major mafic magmatic source did not have crystals, although compositional diversity of these dykes is commonly explained by crystal-liquid separation. This can be resolved if crystallisation was on the walls on the magma chamber. Similarly, most flood basalts are low in crystals and separation of those that are present cannot always explain the observed compositional diversity. Crystal-rich flows do occur, for example the 'Giant Plagioclase Basalts' of the Deccan series, but the crystals are thought to form or accumulate in a crystal-rich zone beneath the roof of the chamber - the rest of the chamber probably has few crystals. Some magmas from Hawaii contain significant amounts of olivine crystals, but most of these are deformed and cannot have crystallised in the chamber. In this case the crystals are thought to grow as the magma passes through a decollement zone. They may have grown on the walls or been trapped by filters. Basaltic andesite ignimbrites generally have

  20. Electrostatic Levitator Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  1. Digital optical spark chambers

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Tuska, Evelyn

    1989-01-01

    The authors constructed and tested a prototype digital readout system for optical spark chambers using a linear, solid-state charge-coupled-device detector array. Position resolution of 0.013 mm (sigma) over a 25-cm field of view has been demonstrated. It is concluded that this technique should permit the construction of economical, lightweight and low-power trajectory hodoscopes for use in cosmic-ray instrumentation on balloons and in spacecraft.

  2. Columbium Chamber Fabrication Study

    DTIC Science & Technology

    1984-07-01

    materials. Demonstrate CVO close-out of slotted, filled, C103 columbium alloy panels and subsequent removal of the filler materials. 1.0, Introduction...their removal subsequent to CV0 of a columbium close-out. C103 columbium alloy plate, procured to Aeronautical Materials Specification (SAE) -- AMS 7852...into the chamber. Surface oxygen contamination of the C103 columbium alloy wcs evident in all metallographic sections. 8.1 LOW TEMPERATURE DEPOSIT

  3. Combustion chamber noise suppressor

    SciTech Connect

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  4. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.

    PubMed

    You, Shi-Jie; Ren, Nan-Qi; Zhao, Qing-Liang; Kiely, Patrick D; Wang, Jing-Yuan; Yang, Feng-Lin; Fu, Lei; Peng, Luo

    2009-08-15

    To reduce the amount of phosphate buffer currently used in Microbial Fuel Cell's (MFC's), we investigated the role of biological nitrification at the cathode in the absence of phosphate buffer. The addition of a nitrifying mixed consortia (NMC) to the cathode compartment and increasing ammonium concentration in the catholyte resulted in an increase of cell voltage from 0.3 V to 0.567 V (external resistance of 100 Omega) and a decrease of catholyte pH from 8.8 to 7.05. A large fraction of ammonium was oxidized to nitrite, as indicated by an increase of nitrate-nitrogen (NO(3)(-)-N). An MFC inoculated with an NMC and supplied with 94.2 mgN/l ammonium to the catholyte could generate a maximum power of 2.1+/-0.14 mW (10.94+/-0.73 W/m(3)). This compared favorably to an MFC supplied with either buffered or non-buffered solution. The buffer-free NMC inoculated cathodic chamber showed the smallest polarization resistance, suggesting that nitrification resulted in improved cathode performance. The improved performances of the phosphate buffer-free cathode and cell are positively related to biological nitrification, in which we suggest additional protons produced from ammonium oxidation facilitated electrochemical reduction of oxygen at cathode.

  5. Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application.

    PubMed

    Santoro, Carlo; Artyushkova, Kateryna; Babanova, Sofia; Atanassov, Plamen; Ieropoulos, Ioannis; Grattieri, Matteo; Cristiani, Pierangela; Trasatti, Stefano; Li, Baikun; Schuler, Andrew J

    2014-07-01

    Activated carbon (AC) is employed as a cost-effective catalyst for cathodic oxygen reduction in microbial fuel cells (MFC). The fabrication protocols of AC-based cathodes are conducted at different applied pressures (175-3500 psi) and treatment temperatures (25-343°C). The effects of those parameters along with changes in the surface morphology and chemistry on the cathode performances are comprehensively examined. The cathodes are tested in a three-electrode setup and explored in single chamber membraneless MFCs (SCMFCs). The results show that the best performance of the AC-based cathode is achieved when a pressure of 1400 psi is applied followed by heat treatment of 150-200°C for 1h. The influence of the applied pressure and the temperature of the heat treatment on the electrodes and SCMFCs is demonstrated as the result of the variation in the transfer resistance, the surface morphology and surface chemistry of the AC-based cathodes tested.

  6. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.

    PubMed

    Lefebvre, Olivier; Tang, Zhe; Fung, Martin P H; Chua, Daniel H C; Chang, In Seop; Ng, How Y

    2012-01-15

    Microbial fuel cells (MFCs) could potentially be utilized for a variety of applications in the future from biosensors to wastewater treatment. However, the amount of costly platinum (Pt) used as a catalyst should be minimized via innovative deposition methods such as sputtering. In addition, alternative and low-cost catalysts, such as cobalt (Co), should be sought. In this study, ultra low Pt or Co cathodes (0.1 mg cm(-2)) were manufactured by plasma sputtering deposition and scanning electron micrographs revealed nano-clusters of metal catalyst in a porous structure favorable to the three-phase heterogeneous catalytic reaction. When operated in single-chamber air-cathode MFCs, sputtered-Co cathodes generated on average the same power as sputtered-Pt cathodes (0.27 mW cell(-1)) and only 27% less than conventional Pt-ink cathodes with a catalyst load 5 times higher (0.5 mg cm(-2)). Finally, microscopy and molecular analyses showed evidence of biocatalysis activity on metal-free cathodes.

  7. An experimental evaluation of slots versus porous strips for laminar-flow applications

    NASA Technical Reports Server (NTRS)

    Cornelius, Kenneth C.

    1987-01-01

    Detailed mean velocity and disturbance amplitude measurements were conducted in a Blasius boundary-layer flow with wall suction applied at three downstream locations. The main emphasis was a direct comparison of the growth rate of the instability wave with discrete spanwise slots versus wide porous strips. The results demonstrate that the local effects of suction through slots or very narrow porous strips have a greater beneficial effect on the stability of the boundary-layer flow relative to the suction influence of a wide porous strip. Codes which use continuous suction for the growth rates of the instability waves to determine the suction quantities for a multiple series of slots will be quite conservative in the estimation of the suction quantity. Guidelines were provided for suction-chamber design and flow rates to minimize internal oscillations which propagate into the boundary-layer flow.

  8. Cathode phenomena in plasma thrusters

    NASA Astrophysics Data System (ADS)

    Schrade, H. O.; Auweter-Kurtz, M.; Kurtz, H. L.

    1987-05-01

    Processes at the arc cathode attachment decisively determine the entire discharge behavior of almost all arc devices and therefore also of MPD and/or arc jet thrusters. One well known process occurring on spotty arc attachments in a transverse magnetic field is the fact that the cathode spots move or jump in the direction opposite to the Lorentzian rule. In pulsed thruster devices with cold cathodes and very likely also in continuously running thrusters with so-called thermionic-seemingly diffuse attachments of hot surfaces, the arc attachment consists of many high current density spots. These spots can stick or spread upstream and thereby overheat the insulating material of the back-plate of the thruster. In this paper an explanation of the phenomena of spot motion is presented.

  9. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  10. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  11. Seedling-Size Fumigation Chambers

    Treesearch

    Keith F. Jensen; Frederick W. Bender

    1977-01-01

    The design of fumigation chambers is described. Each chamber has individual temperature, humidity, light, and pollutant control. Temperature is variable from 15 to 35ºC and controlled within ± 1ºC. Humidity is variable from 25 to 95 percent and controlled within ± 3 percent. Seedlings have been successfully grown in these chambers...

  12. High-current-density, high brightness cathodes for free electron laser applications

    SciTech Connect

    Green, M.C. . Palo Alto Microwave Tube Div.)

    1987-06-01

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  13. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  14. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  15. Cathodic protection maintenance for aboveground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    Cathodic protection systems are utilized to mitigate corrosion on the external bottom surfaces of aboveground storage tanks (ASTs). Cathodic protection systems should be part of a preventative maintenance program to minimize in-service failures. A good maintenance program will permit determination of continuous adequate cathodic protection of ASTs, through sustained operation and also provide the opportunity to detect cathodic protection system malfunctions, through periodic observations and testing.

  16. Cathodic protection installation for underground storage tanks

    SciTech Connect

    Koszewski, L.

    1995-12-31

    The 1998 deadline is fast approaching for upgrading Underground Storage Tanks (USTs) with cathodic protection. With so many tanks requiring upgrades over the next few years, tank owners and operators will likely find a shrinking pool of quality cathodic protection installation contractors to perform the necessary upgrading. The proper installation of cathodic protection components is critical to long term effective operation of the cathodic protection system.

  17. Mechanistic Enhancement of SOFC Cathode Durability

    SciTech Connect

    Wachsman, Eric

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  18. Physical Processes in Hollow Cathode Discharge

    DTIC Science & Technology

    1989-12-01

    BUIT FiLE COPY NAVAL POSTGRADUATE SCHOOL Monterey, California 0DTIC x ,, , ’ AELECTEi<AU 17U THESIS L . PHYSICAL PROCESSES IN HOLLOW CATHODE...IPROJECT ITASK IWORK UNIT ELEMENT NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) Physical Processes in Hollow Cathode Discharge 12...number) The hollow cathode is an effective source of dense, low energy plasma. Hollow cathodes find use in ion beam sources for laboratory and space

  19. A silicon strip detector dose magnifying glass for IMRT dosimetry

    SciTech Connect

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-02-15

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1

  20. Selenium determination in biscuits and pasta: development of chronopotentiometric stripping determination by using a sulphide as an internal standard.

    PubMed

    Svarc-Gajić, Jaroslava; Stojanović, Zorica

    2013-10-15

    Being common in chromatographic techniques internal standard method is rarely applied in electrochemical stripping determinations. One of the reasons for such rare use of this elegant quantification method is because optimal conditions of accumulation at the electrode for individual compounds producing a reproducible signal may vary significantly. These criteria are much stricter when selenium is in question due to very complex mechanism of its accumulation at mercury electrodes which implies simultaneous cathodic mercury dissolution and chemical reaction. Elements that are in the analytical step stripped cathodically from mercury electrodes are rare, further limiting the application of the internal standard method when electrochemical selenium determination is in question. In this work the possibility of using sulphide for selenium quantification by chronopotentiometric stripping analysis was investigated. Optimal experimental parameters were defined in two-component systems. Dimensionless factors defining the ratio of proportionality constants of the two elements were calculated for different selenium concentration ranges at different sulphide contents. Sulphide content that was chosen as adequate for selenium concentrations reasonably to be expected in food samples was 500 µg/dm(3). Determined detection limit of chronopotentiometric stripping determination of selenium by using a sulphide as an internal standard was 0.04 µg/dm(3) (RSD=7.6%; n=5). Defined quantification method was confirmed by analysing spiked standard solutions and standard reference material. The method was used for selenium determination in biscuit and pasta samples. Calculated contents were statistically compared with those obtained by using graphite furnace atomic absorption spectrometry.

  1. Measured cathode fall characteristics depending on the diameter of a hydrogen hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, V.; Grützmacher, K.; Steiger, A.; Pérez, C.; de la Rosa, M. I.

    2017-10-01

    In this work, Doppler-free two photon optogalvanic spectroscopy is used to measure the electric field strength in the cathode fall region of a hollow cathode discharge, operated in pure hydrogen, via the Stark splitting of the 2S level of atomic hydrogen. The cathode fall characteristics are analysed for various pressures and in a wide range of discharge currents. Tungsten is used as the cathode material, because it allows for reliable measurements in a fairly wide range of discharge conditions and because of its minimal sputtering. Two cathode diameters (10 mm and 15 mm) are used to study the dependence of the cathode fall on discharge geometry. The measurements reveal that the cathode fall characteristics are quite independent on the cathode diameter for equal cathode current density; hence the measurements can be used to test one dimensional modelling of the cathode fall region for low pressure hydrogen discharges using e.g. plane parallel electrodes.

  2. Novel Cathodes Prepared by Impregnation Procedures

    SciTech Connect

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  3. Dual-Cathode Electron-Beam Source

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Conley, Joseph M.; Wittry, David B.

    1988-01-01

    Beam from either cathode electromagnetically aligned with exit port. Electron beam from either of two cathodes deflected by magnetic and electric fields to central axis. Mechanical alignment of beam easy because cathode axes, anode apertures, and electron trajectories coplanar. Applications where uninterrupted service needed: scanning electron microscopes, transmission electron microscopes, electron-beam lithography equipment, Auger instruments, and microfocused x-ray sources.

  4. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  5. Method for maintaining precise suction strip porosities

    NASA Technical Reports Server (NTRS)

    Gallimore, Frank H. (Inventor)

    1989-01-01

    This invention relates to a masking method generally and, more particularly to a method of masking perforated titanium sheets having laminar control suction strips. As illustrated in the drawings, a nonaerodynamic surface of a perforated sheet has alternating suction strip areas and bonding land areas. Suction strip tapes overlie the bonding land areas during application of a masking material to an upper surface of the suction strip tapes. Prior to bonding the perforated sheet to a composite structure, the bonding land tapes are removed. The entire opposite aerodynamic surface is masked with tape before bonding. This invention provides a precise control of suction strip porosities by ensuring that no chemicals penetrate the suction strip areas during bonding.

  6. Robotic sensors for aircraft paint stripping

    NASA Astrophysics Data System (ADS)

    Weniger, Richard J.

    1990-10-01

    Aircraft of all types need to have paint routinely removed from their outer surfaces. Any method needs to be controlled to remove all the paint and not damage the surface of the aircraft. Human operators get bored with the monotonous task of stripping paint from an aircraft and thus do not control the process very well. This type of tedious operation tends itself to robotics. A robot that strips paint from aircraft needs to have feedback as to the state of the stripping process, its location in respect to the aircraft, and the availability of stripping material. This paper describes the sensors used on the paint stripping robot being developed for the United States Air Force's Manufacturing Technology Program. Particular attention is given to the paint sensor which is the feedback element for determining the state of the stripping process.

  7. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  8. Anodic stripping tin titration: a method for the voltammetric determination of platinum at trace levels.

    PubMed

    Giussani, Barbara; Roncoroni, Simone; Nemenyi, Anna; Dal Santo, Vladimiro; Monticelli, Damiano; Recchia, Sandro

    2014-07-01

    We propose here a novel voltammetric method for the determination of platinum at trace levels. The method is based on the interference that platinum generates on the anodic stripping signal of tin acidic solutions: in appropriate conditions platinum uses the intermediate formation of tin(II) ions, taking place during the tin cathodic reduction, to reduce itself and to form mixed Pt(II)-Sn(II) chloro-complexes. From the analysis of the anodic stripping plots obtained after subsequent additions of tin in a Pt-containing solution, it is possible to quantify accurately and precisely the Pt concentration from 3 ppb to more than 10 ppm. This novel method is validated for the analysis of Pt in heterogeneous catalysts, but in principle could be extended to other matrixes.

  9. The APS ceramic chambers

    SciTech Connect

    Milton, S.; Warner, D.

    1994-07-01

    Ceramics chambers are used in the Advanced Photon Source (APS) machines at the locations of the pulsed kicker and bumper magnets. The ceramic will be coated internally with a resistive paste. The resistance is chosen to allow the low frequency pulsed magnet field to penetrate but not the high frequency components of the circulating beam. Another design goal was to keep the power density experienced by the resistive coating to a minimum. These ceramics, their associated hardware, the coating process, and our recent experiences with them are described.

  10. Wire chambers revisited.

    PubMed

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  11. Ionization chamber dosimeter

    DOEpatents

    Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald

    1991-01-01

    A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.

  12. Studies of NICADD Extruded Scintillator Strips

    SciTech Connect

    Dychkant, Alexandre; et al.

    2005-03-01

    About four hundred one meter long, 10 cm wide and 5 mm thick extruded scintillating strips were measured at four different points. The results of measurements strip responses to a radioactive source {sup 90}Sr are provided, and details of strip choice, preparation, and method of measurement are included. This work was essential for prototyping a tail catcher and muon tracker for a future international electron positron linear collider detector.

  13. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  14. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  15. Quantifiable Lateral Flow Assay Test Strips

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As easy to read as a home pregnancy test, three Quantifiable Lateral Flow Assay (QLFA) strips used to test water for E. coli show different results. The brightly glowing control line on the far right of each strip indicates that all three tests ran successfully. But the glowing test line on the middle left and bottom strips reveal their samples were contaminated with E. coli bacteria at two different concentrations. The color intensity correlates with concentration of contamination.

  16. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  17. Cathodic protection system inspection 5

    NASA Astrophysics Data System (ADS)

    Jenkins, Jim; Polly, Dan

    1994-02-01

    The rectifier is the heart of an impressed current cathodic protection system. As it is subject to many adverse conditions including power surges, lightning strikes, vandalism, physical damage, and deterioration from atmospheric exposure, frequent inspections of rectifiers are vital to keeping an impressed current system operating so that it can provide nearly continuous protection of the underground, or submerged structures that are being protected.

  18. Offshore platform cathodic protection retrofits

    SciTech Connect

    Turnipseed, S.P.

    1996-10-01

    Cathodic protection (CP) is the primary technique used for underwater corrosion control on the majority of offshore steel structures. Offshore platforms are often kept in service far beyond their original design life. Refurbishment of the CP system is required when adequate protection can no longer be maintained. Various offshore platform CP retrofit designs are discussed.

  19. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A. ); Park, Y.T. . Dept. of Computer Science)

    1994-12-01

    A knowledge-based diagnostic system has been developed for troubleshooting cathodic protection systems. The expert system is designed to work in conjunction with a database that stores inventory and field measurement information and flags problem areas. The system is described, and examples of troubleshooting using the system are presented.

  20. Argon hollow cathode. M.S. Thesis; [propellants for ion bombardment thrusters

    NASA Technical Reports Server (NTRS)

    Rehn, L. A.

    1976-01-01

    An interest in alternate propellants for ion-bombardment thrusters, together with ground applications of this technology, has prompted consideration of argon. Several variations of conventional hollow cathode designs were tried, but the bulk of the testing used a hollow tube with an internal tungsten emitter and an orifice at one end. The optimum cathode tube diameter was found to be in the range of 1.0-2.5 cm, somewhat larger than those used for cesium and mercury. Optimum orifice diameter depended on operating conditions, and varied from 0.5 to 5 mm. Biasing the internal emitter negative relative to the cathode chamber reduced the external coupling voltage and should therefore improve orifice lifetime. The expected effect of this bias on emitter lifetime was less clear. Lifetime tests were not conducted as part of this investigation, but several designs show promise of long lifetime in specific applications.

  1. Pulsed hot cathode (LaB6) discharge for uniform plasma production

    NASA Astrophysics Data System (ADS)

    Savas, S. E.; Pyle, R. V.; Berkner, K. H.

    1986-11-01

    A pulsed hot cathode hydrogen discharge of several milliseconds duration is used to produce a dense (<1014 cm-3), uniform plasma target for atomic collision studies. This plasma, whose cross section is determined by the cathode shape, is rectangular, since it is produced by a discharge (1500 V, ˜100 A) from a 2×11-cm2 rectangular LaB6 slab cathode along a 0.1-T magnetic field to a gas-fed anode. Background hydrogen (˜1 Pa) and contaminant gas (<10-2 Pa) are kept low by injecting H2 during the discharge into an evacuated (˜10-4 Pa) chamber. One drawback of this discharge for atomic physics applications is that at high plasma density (ne >2×1013 cm-3), sufficient fluxes of >1-keV x rays are produced to flood our solid-state detectors with background counts.

  2. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  3. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs.

  4. Ammonia stripping of biologically treated liquid manure.

    PubMed

    Alitalo, Anni; Kyrö, Aleksis; Aura, Erkki

    2012-01-01

    A prerequisite for efficient ammonia removal in air stripping is that the pH of the liquid to be stripped is sufficiently high. Swine manure pH is usually around 7. At pH 7 (at 20°C), only 0.4% of ammonium is in ammonia form, and it is necessary to raise the pH of swine slurry to achieve efficient ammonia removal. Because manure has a very high buffering capacity, large amounts of chemicals are needed to change the slurry pH. The present study showed that efficient air stripping of manure can be achieved with a small amount of chemicals and without strong bases like NaOH. Slurry was subjected to aerobic biological treatment to raise pH before stripping. This facilitated 8 to 32% ammonia removal without chemical treatment. The slurry was further subjected to repeated cycles of stripping with MgO and Ca(OH)(2) additions after the first and second strippings, respectively, to raise slurry pH in between the stripping cycles. After three consecutive stripping cycles, 59 to 86% of the original ammonium had been removed. It was shown that the reduction in buffer capacity of the slurry was due to ammonia and carbonate removal during the stripping cycles. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  6. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  7. Heavy-ion inertial fusion: influence of target gain on accelerator parameters for vacuum-propagation regimes in reaction chambers

    SciTech Connect

    Mark, J.W.K.; Bangerter, R.O.; Barletta, W.A.; Fawley, W.M.; Judd, D.L.

    1982-03-04

    Target physics imposes requirements on the design of inertial fusion drivers. The influence of beam propagation in near vacuum fusion reaction chambers is evaluated for the relation between target gain and the phase-space requirements of heavy-ion accelerators. Initial results suggest that neutralization of the ion beam has a much greater positive effect than the deleterious one of beam stripping provided that the fusion chamber pressure is < 10/sup -3/ torr (of Li vapor or equivalent).

  8. Performance studies under high irradiation and ageing properties of resistive bulk Micromegas chambers at the new CERN Gamma Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Sidiropoulou, O.; Gonzalez, B. Alvarez; Bianco, M.; Farina, E. M.; Iengo, P.; Longo, L.; Pfeiffer, D.; Wotschack, J.

    2017-02-01

    Resistive bulk Micromegas chambers, produced at CERN, have been installed at the new CERN Gamma Irradiation Facility (GIF++) in order to study the effects of ageing and to evaluate the detector behaviour under high irradiation. The chambers have an active area of 10×10 cm2, strip pitch of 400 μm and an amplification gap of 128 μm. We present the detector performance as a function of the background rate of up to 20 MHz/cm2.

  9. Suppression of Cross Contamination in Multi-Layer Thin Film Prepared by Using Rotating Hexagonal Sputtering Cathode.

    PubMed

    Park, Se Yeon; Choi, Bum Ho; Lee, Jong Ho

    2015-01-01

    In this study, single- and multi-layered thin films were prepared on a glass substrate using a newly developed rotating hexagonal sputtering cathode in a single chamber. The rotatinghexagonal sputtering cathode can install up to six different sputtering targets or six single targets in a cathode. Using the rotating hexagonal cathode, we prepared a single-layered AZO film and a multi-layer film to evaluate the performance of hexagonal gun. Cross-contamination, which is often observed in multi-layer thin film preparation, was suppressed to nearly zero by controlling process parameters and revising hardware. Energy-saving effects of five-layered glass were also verified by measuring the temperature.

  10. Operation of cold-cathode gauges in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Thomas, S. R., Jr.; Goerz, D. A.; Pickles, W. L.

    1985-11-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests.

  11. Operation of cold-cathode gauges in high magnetic fields

    SciTech Connect

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1985-11-11

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This Background Gas Pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. It consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5 to 25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 1E-8 T to 1E-5 T, at several cathode voltages. This paper describes the test stand and presents the results of the tests.

  12. Cathode for aluminum producing electrolytic cell

    DOEpatents

    Brown, Craig W.

    2004-04-13

    A method of producing aluminum in an electrolytic cell comprising the steps of providing an anode in a cell, preferably a non-reactive anode, and also providing a cathode in the cell, the cathode comprised of a base material having low electrical conductivity reactive with molten aluminum to provide a highly electrically conductive layer on the base material. Electric current is passed from the anode to the cathode and alumina is reduced and aluminum is deposited at the cathode. The cathode base material is selected from boron carbide, and zirconium oxide.

  13. Cathodes for molten-salt batteries

    NASA Technical Reports Server (NTRS)

    Argade, Shyam D.

    1993-01-01

    Viewgraphs of the discussion on cathodes for molten-salt batteries are presented. For the cathode reactions in molten-salt cells, chlorine-based and sulfur-based cathodes reactants have relatively high exchange current densities. Sulfur-based cathodes, metal sulfides, and disulfides have been extensively investigated. Primary thermal batteries of the Li-alloy/FeS2 variety have been available for a number of years. Chlorine based rechargable cathodes were investigated for the pulse power application. A brief introduction is followed by the experimental aspects of research, and the results obtained. Performance projections to the battery system level are discussed and the presentation is summarized with conclusions.

  14. Magnetic-cusp, cathodic-arc source

    DOEpatents

    Falabella, S.

    1995-11-21

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission. 3 figs.

  15. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.

    PubMed

    Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters.

  16. Community Composition of Bacterial Biofilms Formed on Simple Soil Based Bioelectrochemical Cell Anodes and Cathodes

    DTIC Science & Technology

    2012-04-01

    Reynolds Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme Road Hanover, NH 03755 Final...minimal nutrient media. Considering that no nutrient supplements were added to the cathodic chamber in this study, other than the small aliquot of soil...Research and Development Center 72 Lyme Road Hanover, NH 03755 ERDC/CRREL TR-12-2 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10

  17. MPD thruster performance with cathode heating

    NASA Astrophysics Data System (ADS)

    Andrenucci, M.; Paganucci, F.; La Motta, G.

    1992-07-01

    A gas-fed MPD thruster with a cathode heating system was developed which can bring the cathode to temperatures at which significant thermionic emission is present. The heat is provided by an electrical arc established between the inner surface of the cathode tip and a thoriated tungsten electrode inserted into a blind hole drilled along the cathode axis. A series of preliminary tests intended to verify the proper operation of the device and its possibility to reach temperatures beyond 2000 K at the cathode tip are described. Electrical characteristics and performance (thrust efficiency and specific impulse) obtained with cold electrodes and hot electrodes for 4g/s of Argon are shown, and a comparison between the two thermal configurations is made. The data obtained show that the electrode thermal conditions have a decisive effect on thruster electrical characteristics, instabilities and erosion phenomena. In particular, hot cathode thrust efficiency is substantially higher than cold cathode efficiency.

  18. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  19. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  20. The effect of cinnamon extract on isolated rat uterine strips.

    PubMed

    Alotaibi, Mohammed

    2016-03-01

    Cinnamon is a spice used by some populations as a traditional remedy to control blood pressure and thus hypertension. Cinnamon extract decreases contractility in some smooth muscles, but its effect on uterine smooth muscle is unknown. The aim of this study was to determine the physiological and pharmacological effects of cinnamon extract (CE) on the contractions of isolated rat uterine strips and to investigate its possible mechanism of action. Isolated longitudinal uterine strips were dissected from non-pregnant rats, mounted vertically in an organ bath chamber, and exposed to different concentrations of CE (10-20mg/mL). The effect of CE was investigated in the presence of each of the following solutions: 60mM KCl, 5nM oxytocin, and 1μM Bay K8644. CE significantly decreased the force of uterine contraction in a concentration-dependent manner and significantly attenuated the uterine contractions elicited by KCl and oxytocin. In addition, CE significantly decreased the contractile force elicited when L-type Ca(2+) channels were activated by Bay K8644. CE's major mechanism may be inhibition of L-type Ca(2+) channels, which limits calcium influx. These data demonstrate that CE can be a potent tocolytic that can decrease uterine activity regardless of how the force was produced, even when the uterus was stimulated by agonists. As a result, cinnamon may be used to alleviate menstrual pain associated with dysmenorrhoea or prevent unwanted uterine activity in early pregnancy.