Sample records for cathodic current density

  1. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  2. Space-charge-limited currents for cathodes with electric field enhanced geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less

  3. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  4. Influence of propellant choice on MPD arcjet cathode surface current density distribution

    NASA Astrophysics Data System (ADS)

    Sheshadri, T. S.

    1989-10-01

    The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.

  5. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, PengFei; Qiu, Aici; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode andmore » anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).« less

  7. Theoretical and experimental investigation into high current hollow cathode arc attachment

    NASA Astrophysics Data System (ADS)

    Downey, Ryan T.

    This research addresses several concerns of the mechanisms controlling performance and lifetime of high-current single-channel-hollow-cathodes, the central electrode and primary life-limiting component in Magnetoplasmadynamic thrusters. Specifically covered are the trends, and the theorized governing mechanisms, seen in the discharge efficiency and power, the size of the plasma attachment to the cathode (the active zone), cathode exit plume plasma density and energy, along with plasma property distributions of the internal plasma column (the IPC) of a single-channel-hollow-cathode. Both experiment and computational modeling were employed in the analysis of the cathodes. Employing Tantalum and Tungsten cathodes (of 2, 6 and 10 mm inner diameter), experiments were conducted to measure the temperature profile of operating cathodes, the width of the active zone, the discharge voltage, power, plasma arc resistance and efficiency, with mass flow rates of 50 to 300 sccm of Argon, and discharge currents of 15 to 50 Amps. Langmuir probing was used to obtain measurements for the electron temperature, plasma density and plasma potential at the cathode exit plane (down stream tip). A computational model was developed to predict the distribution of plasma inside the cathode, based upon experimentally determined boundary conditions. It was determined that the peak cathode temperature is a function of both interior cathode density and discharge current, though the location of the peak temperature is controlled gas density but not discharge current. The active zone width was found to be an increasing function of the discharge current, but a decreasing function of the mass flow rate. The width of the active zone was found to not be controlled by the magnitude of the peak cathode wall temperature. The discharge power consumed per unit of mass throughput is seen as a decreasing function of the mass flow rate, showing the increasing efficiency of the cathode. Finally, this new understanding of the mechanisms of the plasma attachment phenomena of a single-channel-hollow-cathode were extrapolated to the multi-channel-hollow-cathode environment, to explain performance characteristics of these devices seen in previous research.

  8. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  9. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  10. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less

  11. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. Whenmore » the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)« less

  12. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  13. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkattraman, Ayyaswamy

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less

  14. Superior Cathode Performance of Nitrogen-Doped Graphene Frameworks for Lithium Ion Batteries.

    PubMed

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Shan, Hui; Fan, Linlin; Wu, Chunxia; Li, Dejun; Lu, Shigang

    2017-03-29

    Development of alternative cathode materials is of highly desirable for sustainable and cost-efficient lithium-ion batteries (LIBs) in energy storage fields. In this study, for the first time, we report tunable nitrogen-doped graphene with active functional groups for cathode utilization of LIBs. When employed as cathode materials, the functionalized graphene frameworks with a nitrogen content of 9.26 at% retain a reversible capacity of 344 mAh g -1 after 200 cycles at a current density of 50 mA g -1 . More surprisingly, when conducted at a high current density of 1 A g -1 , this cathode delivers a high reversible capacity of 146 mAh g -1 after 1000 cycles. Our current research demonstrates the effective significance of nitrogen doping on enhancing cathode performance of functionalized graphene for LIBs.

  15. In-plane structuring of proton exchange membrane fuel cell cathodes: Effect of ionomer equivalent weight structuring on performance and current density distribution

    NASA Astrophysics Data System (ADS)

    Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus

    2017-07-01

    Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.

  16. Effect of cathode cooling efficiency and oxygen plasma gas pressure on the hafnium cathode wall temperature

    NASA Astrophysics Data System (ADS)

    Ashtekar, Koustubh; Diehl, Gregory; Hamer, John

    2012-10-01

    The hafnium cathode is widely used in DC plasma arc cutting (PAC) under an oxygen gas environment to cut iron and iron alloys. The hafnium erosion is always a concern which is controlled by the surface temperature. In this study, the effect of cathode cooling efficiency and oxygen gas pressure on the hafnium surface temperature are quantified. The two layer cathode sheath model is applied on the refractive hafnium surface while oxygen species (O2, O, O+, O++, e-) are considered within the thermal dis-equilibrium regime. The system of non-linear equations comprising of current density balance, heat flux balance at both the cathode surface and the sheath-ionization layer is coupled with the plasma gas composition solver. Using cooling heat flux, gas pressure and current density as inputs; the cathode wall temperature, electron temperature, and sheath voltage drop are calculated. Additionally, contribution of emitted electron current (Je) and ions current (Ji) to the total current flux are estimated. Higher gas pressure usually reduces Ji and increases Je that reduces the surface temperature by thermionic cooling.

  17. Steady state and transient simulation of anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon

    2018-01-01

    We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.

  18. The hollow cathode in the quasi-steady MPD discharge

    NASA Technical Reports Server (NTRS)

    Von Jaskowsky, W. F.; Jahn, R. G.; Clark, K. E.; Krishnan, M.

    1973-01-01

    A large hollow cathode has been operated in a quasi-steady MPD discharge over a range of current from 7 to 30 kA and argon mass flow from 0.04 to 6.0 g/sec. The 1.3-cm-i.d. cathode cavity attains steady emission characteristics in some tens of microseconds without the assistance of auxiliary heating, low work function inserts, or external keeper electrodes. Measured current and potential distributions within the cavity reveal that the current attaches in a zone 1 to 2 cm long with a surface current density greater than 1000 A/sq cm and a local axial electric field less than 10 V/cm. Electron densities within the cavity, estimated from spectroscopic records, are above 10 to the 17th power per cu cm, at least one order of magnitude greater than has been reported for either ion engine hollow cathodes or conventional solid cathodes in similar arc discharges.

  19. Testing and Analysis of NEXT Ion Engine Discharge Cathode Assembly Wear

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Foster, John E.; Soulas, George C.; Nakles, Michael

    2003-01-01

    Experimental and analytical investigations were conducted to predict the wear of the discharge cathode keeper in the NASA Evolutionary Xenon Thruster. The ion current to the keeper was found to be highly dependent upon the beam current, and the average beam current density was nearly identical to that of the NSTAR thruster for comparable beam current density. The ion current distribution was highly peaked toward the keeper orifice. A deterministic wear assessment predicted keeper orifice erosion to the same diameter as the cathode tube after processing 375 kg of xenon. A rough estimate of discharge cathode assembly life limit due to sputtering indicated that the current design exceeds the qualification goal of 405 kg. Probabilistic wear analysis showed that the plasma potential and the sputter yield contributed most to the uncertainty in the wear assessment. It was recommended that fundamental experimental and modeling efforts focus on accurately describing the plasma potential and the sputtering yield.

  20. Impact of operating conditions on the acetylene contamination in the cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yunfeng; St-Pierre, Jean

    2017-12-01

    Realistically, proton exchange membrane fuel cells (PEMFCs) are operated under varying operating conditions that potentially impact the acetylene contamination reactions. In this paper, the effects of the cell operating conditions on the acetylene contamination in PEMFCs are investigated under different current densities and temperatures with different acetylene concentrations in the cathode. Electrochemical impedance spectroscopy is applied during the constant-current operation to analyze the impacts of the operating conditions on the acetylene electrochemical reactions. The experimental results indicate that higher acetylene concentrations, higher current densities and lower cell temperatures decrease the cell performance more. In particular, cathode poisoning becomes more severe at medium cell current densities. The cell cathode potentials at such current densities are not sufficient to completely oxidize the intermediate or sufficiently low to completely reduce the adsorbed acetylene. Based on these investigations, the possible condition-dependent limitations of the acetylene concentration and cell operating voltage are proposed for insight into the acetylene contamination mitigation stratagem. Regarding the barrier conditions, the acetylene reactions change abruptly, and adjusting the cell operation parameters to change the acetylene adsorbate and intermediate accumulation conditions to induce complete oxidation or reduction conditions may mitigate the severe acetylene contamination effects on PEMFCs.

  1. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  2. Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.

    2016-09-01

    The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.

  3. Influence of diligent disintegration on anaerobic biomass and performance of microbial fuel cell.

    PubMed

    Divyalakshmi, Palanisamy; Murugan, Devaraj; Rai, Chockalingam Lajapathi

    2017-12-01

    To enhance the performance of microbial fuel cells (MFC) by increasing the surface area of cathode and diligent mechanical disintegration of anaerobic biomass. Tannery effluent and anaerobic biomass were used. The increase in surface area of the cathode resulted in 78% COD removal, with the potential, current density, power density and coulombic efficiency of 675 mV, 147 mA m -2 , 33 mW m -2 and 3.5%, respectively. The work coupled with increased surface area of the cathode with diligent mechanical disintegration of the biomass, led to a further increase in COD removal of 82% with the potential, current density, power density and coulombic efficiency of 748 mV, 229 mA m -2 , 78 mW m -2 and 6% respectively. Mechanical disintegration of the biomass along with increased surface area of cathode enhances power generation in vertical MFC reactors using tannery effluent as fuel.

  4. Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells.

    PubMed

    Cristiani, P; Carvalho, M L; Guerrini, E; Daghio, M; Santoro, C; Li, B

    2013-08-01

    The oxygen reduction due to microaerophilic biofilms grown on graphite cathodes (biocathodes) in Single Chamber Microbial Fuel Cells (SCMFCs) is proved and analysed in this paper. Pt-free cathode performances are compared with those of different platinum-loaded cathodes, before and after the biofilm growth. Membraneless SCMFCs were operating in batch-mode, filled with wastewater. A substrate (fuel) of sodium acetate (0.03 M) was periodically added and the experiment lasted more than six months. A maximum of power densities, up to 0.5 W m(-2), were reached when biofilms developed on the electrodes and the cathodic potential decreased (open circuit potential of 50-200 mV vs. SHE). The power output was almost constant with an acetate concentration of 0.01-0.05 M and it fell down when the pH of the media exceeded 9.5, independently of the Pt-free/Pt-loading at the cathodes. Current densities varied in the range of 1-5 Am(-2) (cathode area of 5 cm(2)). Quasi-stationary polarization curves performed with a three-electrode configuration on cathodic and anodic electrodes showed that the anodic overpotential, more than the cathodic one, may limit the current density in the SCMFCs for a long-term operation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less

  6. Development program on a cold cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.

    1985-01-01

    During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.

  7. Development program on a Spindt cold-cathode electron gun

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1982-01-01

    A thin film field emission cathode (TFFEC) array and a cold cathode electron gun based on the emitter were developed. A microwave tube gun that uses the thin film field emission cathode as an electron source is produced. State-of-the-art cathodes were fabricated and tested. The tip-packing density of the arrays were increased thereby increasing the cathode's current density capability. The TFFEC is based on the well known field emission effect and was conceived to exploit the advantages of that phenomenon while minimizing the difficulties associated with conventional field emission structures, e.g. limited life and high voltage requirements. Field emission follows the Fowler-Nordheim equation.

  8. Pressed boride cathodes

    NASA Technical Reports Server (NTRS)

    Wolski, W.

    1985-01-01

    Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.

  9. Non-Aqueous Primary Li-Air Flow Battery and Optimization of its Cathode through Experiment and Modeling.

    PubMed

    Kim, Byoungsu; Takechi, Kensuke; Ma, Sichao; Verma, Sumit; Fu, Shiqi; Desai, Amit; Pawate, Ashtamurthy S; Mizuno, Fuminori; Kenis, Paul J A

    2017-09-22

    A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Langmuir Probe Analysis of Maser-Driven Alfven Waves Using New LaB6 Cathode in LaPD

    NASA Astrophysics Data System (ADS)

    Clark, Mary; Dorfman, Seth; Zhu, Ziyan; Rossi, Giovanni; Carter, Troy

    2015-11-01

    Previous research in the Large Plasma Device shows that specific conditions on the magnetic field and cathode discharge voltage allow an Alfven wave to develop in the cathode-anode region. When the speed of bulk electrons (dependent on discharge voltage) entering the region exceeds the Alfven speed, the electrons can excite a wave. This phenomenon mimics one proposed to exist in the Earth's ionosphere. Previous experiments used a cathode coated with Barium Oxide, and this project uses a new cathode coated with Lanthanum Hexaboride (LaB6). The experiment seeks to characterize the behavior of plasmas generated with the LaB6 source, as well as understand properties of the driven wave when using the new cathode. Langmuir probes are used to find electron temperature, ion saturation current, and plasma density. These parameters determine characteristics of the wave. Preliminary analysis implies that density increases with LaB6 discharge voltage until 170 V, where it levels off. A linear increase in density is expected; the plateau implies cathode power does not ionize the plasma after 170 V. It is possible the power is carried out by the generated Alfven wave, or heats the plasma or cathode. This ``missing'' power is currently under investigation. Work funded by DOE and NSF.

  11. Laser-induced electron source in a vacuum diode

    NASA Astrophysics Data System (ADS)

    Ghera, U.; Boxman, R. L.; Kleinman, H.; Ruschin, S.

    1989-11-01

    Experiments were conducted in which a high-power CO2 TEA laser interacted with metallic cathode in a high-vacuum (10 to the -8th Torr) diode. For power densities lower than 5 x 10 to the 7th W/sq cm, no current was detected. For power densities in the range of 5 x 10 to the 7th to 5 x 10 to the 8th W/sq cm, the Cu cathode emitted a maximum current of 40 mA. At a higher power density level, a circuit-limited current of 8 A was detected. The jump of a few orders of magnitude in the current is attributed to breakdown of the diode gap. The experimental results are similar to those of a triggered vacuum gap, and a thorough comparison is presented in this paper. The influence of the pressure in the vacuum chamber on the current magnitude shows the active role that adsorbed gas molecules have in the initial breakdown. When the cathode material was changed from metal to metal oxide, much lower laser power densities were required to reach the breakdown current region.

  12. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  13. The effects of hydrogen embrittlement by cathodic protection on the CTOD of buried natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-man; Kim, Woo-sik; Kho, Young-tai

    2002-04-01

    For the corrosion protection of natural gas transmission pipelines, two methods are used, cathodic protection and a coating technique. In the case of cathodic protection, defects are embrittled by hydrogen occurring at crack tips or surfaces of materials. It is, however, very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD testing under various test conditions, such as potential and current density. The CTOD of the base steel and weld metal showed a strong dependence on the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Cathodic overprotection results in hydrogen embrittlement at the crack tip.

  14. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    EPA Science Inventory

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  15. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandlakunta, P; Pham, R; Zhang, T

    Purpose: To develop and characterize a high brightness multiple-pixel thermionic emission x-ray (MPTEX) source. Methods: Multiple-pixel x-ray sources allow for designs of novel x-ray imaging techniques, such as fixed gantry CT, digital tomosynthesis, tetrahedron beam computed tomography, etc. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide coated cathodes. Oxide cathode is chosen as the electron source due to its high emission current density and low operating temperature. A MPTEX prototype has been developed which may contain up to 41 micro-rectangular oxide cathodes in 4 mm pixel spacing. Electronics hardware was developed for source controlmore » and switching. The cathode emission current was evaluated and x-ray measurements were performed to estimate the focal spot size. Results: The oxide cathodes were able to produce ∼110 mA cathode current in pulse mode which corresponds to an emission current density of 0.55 A/cm{sup 2}. The maximum kVp of the MPTEX prototype currently is limited to 100 kV due to the rating of high voltage feedthrough. Preliminary x-ray measurements estimated the focal spot size as 1.5 × 1.3 mm{sup 2}. Conclusion: A MPTEX source was developed with thermionic oxide coated cathodes and preliminary source characterization was successfully performed. The MPTEX source is able to produce an array of high brightness x-ray beams with a fast switching speed.« less

  17. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Technical Reports Server (NTRS)

    Batra, R.; Marino, D.

    1986-01-01

    The cathode life test program sponsored by NASA Lewis Research Center at Watkins-Johnson Company has been in continuous operation since 1972. Its primary objective has been to evaluate the long life capability of barium dispenser cathodes to produce emission current densities of 2 A sq. cm. or more in an operational environment simulating that of a highpower microwave tube. The life test vehicles were equipped with convergent flow electron guns, drift space tubes with solenoid magnets for electron beam confinement and water-cooled depressed collectors. A variety of cathode types has been tested, including GE Tungstate, Litton Impregnated, Philips Type B and M, Semicon types S and M, and Spectra-Mat Type M. Recent emphasis has been on monitoring the performance of Philips Type M cathodes at 2 A sq. cm. and Sprectra-Mat and Semicon Type M cathodes at 4 A sq. cm. These cathodes have been operated at a constant current of 616 mA and a cathode anode voltage on the order of 10 kV. Cathode temperatures were maintained at 1010 C true as measured from black body holes in the backs of the cathodes. This report presents results of the cathode life test program from July l982 through April l986. The results include hours of operation and performance data in the form of normalized emission current density versus temperature curves (Miram plots).

  18. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  19. Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Shu Ting; Fan Yuwei

    2013-01-28

    Time-and-space resolved comparison of the expansion velocities of plasmas in the planar diode with cathodes made of carbon velvet and polymer velvet has been performed. The diode was powered by a 200 kV, 110 ns pulse, and the peak current density was nearly 477 A/cm{sup 2}. A four-channel high speed framing camera (HSFC) was used to observe the formation and subsequent movement of the cathode plasmas. More accurate and valuable information about the two-dimensional (radial and axial) velocity components of the cathode plasmas was also acquired by utilizing the digital image processing methods. Additionally, the perveance model based on themore » Child-Langmuir law was used to calculate the expansion velocities of the diode plasmas from voltage and current profiles. Results from the two diagnostics were compared. Comparing the average values of the radial and axial velocity components indicated that the former was much larger than the latter during the initial period of the current. It was also found that the radial velocity of the carbon velvet cathode (190 cm/{mu}s) was much larger than that (90 cm/{mu}s) of the polymer velvet cathode. Moreover, the average values of both the radial and axial velocity components of the carbon velvet cathode were typically in the range of 2.5 {+-} 1.5 cm/{mu}s, which were smaller than that of the polymer velvet cathode during the current flattop. These results, together with the comparison of calculated values from the perveance model, indicated that the diode with carbon velvet cathode was more robust as compared with the polymer velvet cathode for the same electron current densities.« less

  20. High performance direct methanol fuel cell with thin electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  1. High Current Density, Long Life Cathodes for High Power RF Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Collins, George; Falce, Lou

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less

  2. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  3. Power-Efficient, High-Current-Density, Long-Life Thermionic Cathode Developed for Microwave Amplifier Applications

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.

    2002-01-01

    A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.

  4. Effect of enzymatic orientation through the use of syringaldazine molecules on multiple multi-copper oxidase enzymes.

    PubMed

    Ulyanova, Yevgenia; Babanova, Sofia; Pinchon, Erica; Matanovic, Ivana; Singhal, Sameer; Atanassov, Plamen

    2014-07-14

    The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement of the electrode performance. For Lac cathodes tested in solution it was established that PBSE-Lac and PBSE-Syr-Lac modified cathodes demonstrated approximately 6 and 9 times increase in current density, respectively, compared to physically adsorbed and randomly oriented Lac cathodes. Further testing in solution utilizing BOx showed an even higher increase in achievable current densities, thus BOx was chosen for additional testing in air-breathing mode. In subsequent air-breathing experiments the incorporation of PBSE and Syr with BOx resulted in current densities of 0.65 ± 0.1 mA cm(-2); 2.5 times higher when compared to an unmodified BOx cathode. A fully tethered/oriented BOx cathode was combined with a NAD-dependent Glucose Dehydrogenase anode for the fabrication of a complete enzymatic membraneless fuel cell. A maximum power of 1.03 ± 0.06 mW cm(-2) was recorded for the complete fuel cell. The observed significant enhancement in the performance of "oriented" cathodes was a result of proper enzyme orientation, leading to facilitated enzyme/electrode interface interactions.

  5. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  6. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  7. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, Michael D.; Umansky, M. V.

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  8. Improved understanding of the hot cathode current modes and mode transitions [Mechanism of the hot cathode current mode transitions

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-11-22

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry,more » this 'new plasma' containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Lastly, our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.« less

  9. Experimental investigation of a throttlable 15 cm hollow cathode ion thruster

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1972-01-01

    The use of dished high perveance grids on a 15 cm modified SERT 2 thruster is shown to facilitate throttled operation over a beam current range from 60 to 600 mA. Effects of increasing the radial component of the magnetic field in the main discharge chamber and decreasing the dimensions of the cathode discharge region are examined and found to degrade performance to the extent that primary electrons are forced in toward the center-line of the thruster. Studies of the baffle aperture region of two thrusters indicate that the electric potential gradient vector is perpendicular to the local magnetic field lines when the thruster is operating properly. The correlation between the shape of the ion beam current density and that of the ion density at the screen grid within the thruster is shown to be 94%. Additional experimental studies on maximum propellant utilization, plasma ion production cost, neutral density in the cathode discharge region, double ion production in hollow cathode thrusters and thermal flow meter performance are discussed.

  10. DARPA Advanced High Current Density Cathodes for Defense Applications: Development Phase

    DTIC Science & Technology

    1993-03-01

    Project Number 01-0624-07-0857 Report Number SAIC-93/1018 March 1, 1993 Science Apphcations Internatia Corporation An Employee-Owned Company OTIC a...Density Cathodes for Defense Applications: Development Phase FINAL REPORT Contract Number N00014-90-C-2118 Project Number 01-0624-07-0857 Report...of a typical Si-TaSi2 boule used for the eutectic advanced cathode materials in this project . The seed for the boule is at right in the photograph. v

  11. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Li, Nan; An, Jingkun; Zhou, Lean; Li, Tian; Li, Junhui; Feng, Cuijuan; Wang, Xin

    2016-02-01

    Carbon black and graphite hybrid air-cathode is proved to be effective for H2O2 production in bioelectrochemical systems. The optimal mass ratio of carbon black to graphite is 1:5 with the highest H2O2 yield of 11.9 mg L-1 h-1 cm-2 (12.3 mA cm-2). Continuous flow is found to improve the current efficiency due to the avoidance of H2O2 accumulation. In the biological system, the highest H2O2 yield reaches 3.29 mg L-1h-1 (0.079 kg m-3day-1) with a current efficiency of 72%, which is higher than the abiotic system at the same current density. H2O2 produced in this system is mainly from the oxygen diffused through this air-cathode (>66%), especially when a more negative cathode potential is applied (94% at -1.0 V). This hybrid air-cathode has advantages of high H2O2 yield, high current density and no need of aeration, which make the synthesis of H2O2 more efficient and economical.

  12. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].

    PubMed

    Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia

    2014-04-01

    The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.

  13. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams.

    PubMed

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a approximately 450 kV, approximately 400 ns pulse. It was found that 300-400 MW, approximately 250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  14. Ionomer equivalent weight structuring in the cathode catalyst layer of automotive fuel cells: Effect on performance, current density distribution and electrochemical impedance spectra

    NASA Astrophysics Data System (ADS)

    Herden, Susanne; Hirschfeld, Julian A.; Lohri, Cyrill; Perchthaler, Markus; Haase, Stefan

    2017-10-01

    To improve the performance of proton exchange membrane fuel cells, membrane electrode assemblies (MEAs) with segmented cathode electrodes have been manufactured. Electrodes with a higher and lower ionomer equivalent weight (EW) were used and analyzed using current density and temperature distribution, polarization curve, temperature sweep and electrochemical impedance spectroscopy measurements. These were performed using automotive metallic bipolar plates and operating conditions. Measurement data were used to manufacture an optimized segmented cathode electrode. We were able to show that our results are transferable from a small scale hardware to automotive application and that an ionomer EW segmentation of the cathode leads to performance improvement in a broad spectrum of operating conditions. Furthermore, we confirmed our results by using in-situ electrochemical impedance spectroscopy.

  15. Cathodic Deposition of Mg(OH)2 Coatings on Pure mg in Three mg Salts Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Yongjun, Zhang; Xiaomeng, Pei; Shugong, Jia

    Film-forming effects of cathodic deposition on pure Mg substrate at constant DC in aqueous solutions of magnesium nitrate (Mg(NO3)2ṡ6H2O), magnesium chloride (MgCl2ṡ6H2O) and magnesium sulfate (MgSO4ṡ7H2O) respectively were investigated systematically. Typical processes were studied by potentiodynamic cathodic polarization and galvanostatic polarization and typical samples were analyzed by SEM and XRD. The results indicate that the depositing efficiency is not only the highest but stablest, and deposited coatings show the best uniformity with Mg(NO3)2ṡ6H2O solution employed as depositing medium and applied current density ≥1.0mA cm-2. Cathodic deposition leads to regular mass loss of Mg substrate. The cathodic polarization curve of pure Mg in magnesium nitrate solution shows more obvious pseudo-passivation, several Tafel regions with different slopes appearing before diffusion-limited current density region, and oxygen consumption is the major cathodic reduction reaction under specified current density. However, hydrogen evolution reaction is dominant in both Mg chloride and Mg sulfate solutions. The deposition coatings are all composed of continuous and uniform mesh-like “basic layer” adjacent to substrate and discrete distributed snowball-like particles on the microscopic scale. The phase compositions are all crystal Mg(OH)2, and the coatings deposited in Mg chloride solution have (011) preferred orientation.

  16. Characterization of Hollow Cathode Performance and Thermal Behavior

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Goebel, Dan M.; Watkins, Ron; Jameson, Kristina; Yoneshige, Lance; Przybylowski, JoHanna; Cho, Lauren

    2006-01-01

    Hollow cathodes are one of the main life-limiting components in ion engines and Hall thrusters. Although state-of-the-art hollow cathodes have demonstrated up to 30,352 hours of operation in ground tests with careful handling, future missions are likely to require longer life, more margin and greater resistance to reactive contaminant gases. Three alternate hollow cathode technologies that exploit different emitter materials or geometries to address some of the limitations of state-of-the-art cathodes are being investigated. Performance measurements of impregnated tungsten-iridium dispenser cathodes at discharge currents of 4 to 15 A demonstrated that they have the same operating range and ion production efficiency as conventional tungsten dispenser cathodes. Temperature measurements indicated that tungsten-iridium cathodes also operate at the same emitter temperatures. They did not exhibit the expected reduction in work function at the current densities tested. Hollow cathodes with lanthanum hexaboride emitters operated over a wide current range, but suffered from lower ion production efficiency at currents below about 12.4 A because of higher insert heating requirements. Differences in operating voltages and ion production rates are explained with a simple model of the effect of cathode parameters on discharge behavior.

  17. Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes

    NASA Technical Reports Server (NTRS)

    Gorshe, R.

    1982-01-01

    The ability of state of the art cathode types to produce current densities of 2A/sq cm, respectively, over a minimum designed life of 30,000 hours of continuous operation without failures was demonstrated. The performance of the state of the art cathode types was evaluated by endurance testing while operating under identical electrical geometrical, and vacuum conditions that realistically duplicate the operating conditions present in a transmitter tube. Although there has been considerable life testing done on high current density types of cathodes, these have beem primarily limited to diodes. A diode and high power microwave tube are grossly different devices. A comparison of these two devices is provided. A diode and high power microwave tube are quite different; one could therefore assume different internal environments, especially in the cathode region. Therefore, in order to establish life capabilities of the cathodes just mentioned, they should be tested in a vehicle which has an internal environment similar to that of a high power microwave tube.

  18. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  19. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.

    PubMed

    Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A

    2012-04-30

    In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    NASA Astrophysics Data System (ADS)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  1. Cathode Formed by Thermal Evaporation of Ba:Al Alloy and Estimations of Barrier Height in an Organic LED

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Zhang, Fang-Hui

    2011-06-01

    It is demonstrated that barium and aluminum alloy synthesized by melting in a glass tube under low vacuum is applicable for organic laser emitting diodes (LEDs) as a thin film cathode. The alloy film obtained by the thermal evaporation of pre-synthesized alloy is used in a single-boat organic LED device with the structure: indium tin oxide (ITO)/4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(NPB)/tris-(8-hydroxyquinoline) aluminum(Alq3)/barium:aluminum alloy. The experimental results show that devices with this alloy film cathode exhibit better current density-voltage-luminance characteristics than those with a conventional pure Al cathode, and more weight of barium in aluminum leads to better performance of the devices. Characteristics of current density versus voltage for the electron-only devices are fitted by the Richardson—Schottky emission model, indicating that the electron injection barrier has a decrease of about 0.3 eV by this alloy cathode.

  2. Ultra High Energy Density Cathodes with Carbon Nanotubes

    DTIC Science & Technology

    2013-12-10

    a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The

  3. Improved understanding of the hot cathode current modes and mode transitions

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-12-01

    Hot cathodes are crucial components in a variety of plasma sources and applications, but they induce mode transitions and oscillations that are not fully understood. It is often assumed that negatively biased hot cathodes have a space-charge limited (SCL) sheath whenever the current is limited. Here, we show on theoretical grounds that a SCL sheath cannot persist. First, charge-exchange ions born within the virtual cathode (VC) region get trapped and build up. After the ion density reaches the electron density at a point in the VC, a new neutral region is formed and begins growing in space. In planar geometry, this ‘new plasma’ containing cold trapped ions and cold thermoelectrons grows towards the anode and fills the gap, leaving behind an inverse cathode sheath. This explains how transitions from temperature-limited mode to anode glow mode occur in thermionic discharge experiments with magnetic fields. If the hot cathode is a small filament in an unmagnetized plasma, the trapped ion region is predicted to grow radially in both directions, get expelled if it reaches the cathode, and reform periodically. Filament-induced current oscillations consistent with this prediction have been reported in experiments. Here, we set up planar geometry simulations of thermionic discharges and demonstrate several mode transition phenomena for the first time. Our continuum kinetic code lacks the noise of particle simulations, enabling a closer study of the temporal dynamics.

  4. Structure that encapsulates lithium metal for high energy density battery anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Yan, Kai; Chu, Steven

    A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.

  5. Electron current extraction from a permanent magnet waveguide plasma cathode.

    PubMed

    Weatherford, B R; Foster, J E; Kamhawi, H

    2011-09-01

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed. © 2011 American Institute of Physics

  6. Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy

    PubMed Central

    Tkacz, Jakub; Minda, Jozef; Fintová, Stanislava; Wasserbauer, Jaromír

    2016-01-01

    Linear polarization is a potentiodynamic method used for electrochemical characterization of materials. Obtained values of corrosion potential and corrosion current density offer information about material behavior in corrosion environments from the thermodynamic and kinetic points of view, respectively. The present study offers a comparison of applications of the linear polarization method (from −100 mV to +200 mV vs. EOCP), the cathodic polarization of the specimen (−100 mV vs. EOCP), and the anodic polarization of the specimen (+100 mV vs. EOCP), and a discussion of the differences in the obtained values of the electrochemical characteristics of cast AZ91 magnesium alloy. The corrosion current density obtained by cathodic polarization was similar to the corrosion current density obtained by linear polarization, while a lower value was obtained by anodic polarization. Signs of corrosion attack were observed only in the case of linear polarization including cathodic and anodic polarization of the specimen. PMID:28774046

  7. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have about twice the exchange current density of composite SSC-LSGMC/LSGMC interfaces at 700°C. In this research effort, it has been found that: (1) the glycine-nitrate combustion process is favorable to produce perovskite-type oxide powders with good phase purity and negligible intermediate or contaminant phases; (2) The electrochemical performance for both the SSC-LSGMC and LSCF-LSGMC composite electrode materials on LSGMC confirm their potential for use in intermediate temperature SOFC applications; (3) The composite LSCF-LSGMC electrode exhibited much higher current density than the composite SSC-LSGMC electrode in the current dc polarization measurements; and (4) Primary market study results showed promising commercialization feasibility of these new materials sets, provided production is scaled up (with dramatic cost reductions).

  8. Investigations Of A Pulsed Cathodic Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  9. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    PubMed

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  10. Lithium thionyl chloride high rate discharge

    NASA Technical Reports Server (NTRS)

    Klinedinst, K. A.

    1980-01-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  11. High-current electron gun with a planar magnetron integrated with an explosive-emission cathode

    NASA Astrophysics Data System (ADS)

    Kiziridi, P. P.; Ozur, G. E.

    2017-05-01

    A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.

  12. Asymmetric battery having a semi-solid cathode and high energy density anode

    DOEpatents

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2017-11-28

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  13. Asymmetric battery having a semi-solid cathode and high energy density anode

    DOEpatents

    Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai

    2016-09-06

    Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.

  14. Final Scientific/Technical Report for Low Cost, High Capacity Non- Intercalation Chemistry Automotive Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdichevsky, Gene

    Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A majormore » goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).« less

  15. Pulsed electromagnetic gas acceleration. [magnetohydrodynamics, plasma power sources and plasma propulsion

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with various cathodes and anodes in a high power, quasi-steady magnetoplasmadynamic (MPD) are discussed. The magnitude of the current at the onset of voltage fluctuations is shown to be an increasing function of cathode area and a weaker decreasing function of anode area. Tests with a fluted cathode indicated that the fluctuations originate in the plasma adjacent to the cathode rather than at the cathode surface. Measurements of radiative output from an optical cavity aligned to examine the current-carrying portion of a two-dimensional, 56 kA magnetoplasmadynamic discharge reveal no lasing in that region, consistent with calculations of electron excitation and resonance radiation trapping. A voltage-swept double probe technique allows single-shot determination of electron temperature and electron number density in the recombining MPD exhaust flow. Current distributions within the cavity of MPD hollow cathodes for various static prefills with no injected mass flow are examined.

  16. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  17. Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Das, Subrat; Morsi, Yos; Brooks, Geoffrey

    2013-12-01

    This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10-12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.

  18. Effect of the ZrCl4 concentration in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt and the electrolysis current density on the quantitative composition of UO2-ZrO2 cathode deposits. Calculation and experiment

    NASA Astrophysics Data System (ADS)

    Krotov, V. E.; Filatov, E. C.

    2014-08-01

    A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.

  19. Local Neutral Density and Plasma Parameter Measurements in a Hollow Cathode Plume

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; MiKellides, Joannis; Watkins, Ron M.

    2006-01-01

    In order to understand the cathode and keeper wear observed during the Extended Life Test (ELT) of the DS1 flight spare NSTAR thruster and provide benchmarking data for a 2D cathode/cathode-plume model, a basic understanding of the plasma and neutral gas parameters in the cathode orifice and keeper region of the cathode plume must be obtained. The JPL cathode facility is instrumented with an array of Langmuir probe diagnostics along with an optical diagnostic to measure line intensity of xenon neutrals. In order to make direct comparisons with the present model, a flat plate anode arrangement was installed for these tests. Neutral density is deduced from the scanning probe data of the plasma parameters and the measured xenon line intensity in the optical regime. The Langmuir probes are scanned both axially, out to 7.0 cm downstream of the keeper, and radially to obtain 2D profile of the plasma parameters. The optical fiber is housed in a collimating stainless steel tube, and is scanned to view across the cathode plume along cuts in front of the keeper with a resolution of 1.5 mm. The radial intensities are unfolded using the Abel inversion technique that produces radial profiles of local neutral density. In this paper, detailed measurements of the plasma parameters and the local neutral densities will be presented in the cathode/keeper plume region for a 1.5 cm diameter NEXIS cathode at 25A of discharge current at several different strengths of applied magnetic field.

  20. Galvanic cathodic protection for reinforced concrete bridge decks: Field evaluation

    NASA Astrophysics Data System (ADS)

    Whiting, D.; Stark, D.

    1981-06-01

    The application of four sacrificial zinc anode cathodic protection systems to a reinforced concrete highway bridge deck is described. Two system designs were found to be the most promising in terms of polarized potentials and protective current densities achieved during the 3 year monitoring program. One design uses commercially available zinc ribbon anodes spaced at 5 in (127 mm) centers; the other, custom-fabricated perforated zinc sheets. Both systems are overlaid with an open-graded asphalt friction course. The systems yield maximum current density and polarized potentials under warm and moist environment conditions.

  1. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  2. Cathodes for molten-salt batteries

    NASA Technical Reports Server (NTRS)

    Argade, Shyam D.

    1993-01-01

    Viewgraphs of the discussion on cathodes for molten-salt batteries are presented. For the cathode reactions in molten-salt cells, chlorine-based and sulfur-based cathodes reactants have relatively high exchange current densities. Sulfur-based cathodes, metal sulfides, and disulfides have been extensively investigated. Primary thermal batteries of the Li-alloy/FeS2 variety have been available for a number of years. Chlorine based rechargable cathodes were investigated for the pulse power application. A brief introduction is followed by the experimental aspects of research, and the results obtained. Performance projections to the battery system level are discussed and the presentation is summarized with conclusions.

  3. Alternative model of space-charge-limited thermionic current flow through a plasma

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  4. GALVANOTAXIS OF SLIME MOLD

    PubMed Central

    Anderson, John D.

    1951-01-01

    The plasmodium of Physarum polycephalum reacts to direct current by migration toward the cathode. Cathodal migration was obtained upon a variety of substrata such as baked clay, paper, cellophane, and agar with a current density in the substratum of 1.0 µa./mm.2 Injury was produced by current densities of 8.0 to 12.0 µa./mm.2 The negative galvanotactic response was not due to electrode products. Attempts to demonstrate that the response was due to gradients or orientation in the substratum, pH changes in the mold, cataphoresis, electroosmosis, or endosmosis were not successful. The addition of salts (CaCl2, LiCl, NaCl, Na2SO4, NaHCO3, KCl, MgSO4, sodium citrate, and sea water) to agar indicated that change of cations had more effect than anions upon galvanotaxis and that the effect was upon threshold values. K ion (0.01 M KCl) increased the lower threshold value to 8.0 µa./mm.2 and the upper threshold value to 32.0 µa./mm.2, whereas the Li ion (0.01 M LiCl) increased the lower threshold to only 4.0 µa./mm.2 and the upper threshold to only 16.0 µa./mm.2 The passage of electric current produced no increase in the rate of cathodal migration; neither was there a decrease until injurious current densities were reached. With increase of subthreshold current densities there was a progressive decrease in rate of migration toward the anode until complete anodal inhibition occurred. There was orientation at right angles to the electrodes in alternating current (60 cycle) with current density of 4.0 µa./mm.2 and in direct current of 5.0 µa./mm.2 when polarity of current was reversed every minute. It is concluded that the negative galvanotactic response of P. polycephalum is due to inhibition of migration on the anodal side of the plasmodium and that this inhibition results in the limitation of the normal migration of the mold to a cathodal direction. The mechanism of the anodal inhibition has not been elucidated. PMID:14873916

  5. A slotted cathodic protection system for bridge decks.

    DOT National Transportation Integrated Search

    1985-01-01

    A non-overlay, slotted cathodic protection system was installed two years ago on a concrete bridge deck in Virginia. The design, installation, and operation of this system are fairly straightforward. A protective current density of 1.6 mA/ft (17 mA...

  6. A study of cathode erosion in high power arcjets

    NASA Astrophysics Data System (ADS)

    Harris, William Jackson, III

    Cathode erosion continues to be one of the predominant technology concerns for high power arcjets. This study will show that cathode erosion in these devices is significantly affected by several mitigating factors, including propellant composition, propellant flowrate, current level, cathode material, and power supply current ripple. In a series of 50-hour and 100-hour long duration experiments, using a water-cooled 30 kilowatt laboratory arcjet, variations in the steady-state cathode erosion rate were characterized for each of these factors using nitrogen propellant at a fixed arc current of 250 Amperes. A complementary series of measurements was made using hydrogen propellant at an arc current of 100 Amperes. The cold cathode erosion rate was also differentiated from the steady-state cathode erosion rate in a series of multi-start cathode erosion experiments. Results of these measurements are presented, along with an analysis of the significant effects of current ripple on arcjet cathode erosion. As part of this study, over a dozen refractory cathode materials were evaluated to measure their resistance to arcjet cathode erosion. Among the materials tested were W-ThO2(1%, 2%, 4%), poly and mono-crystalline W, W-LaB6, W-La2O3, W-BaO2, W-BaCaAl2O4, W-Y2O3, and ZrB2. Based on these measurements, several critical material properties were identified, such work function, density, porosity, melting point, and evaporation rate. While the majority of the materials failed to outperform traditional W-ThO2, these experimental results are used to develop a parametric model of the arcjet cathode physics. The results of this model, and the results of a finite-element thermal analysis of the arcjet cathode, are presented to better explain the relative performance of the materials tested.

  7. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  8. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE PAGES

    Campanell, M. D.

    2018-04-19

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  9. Alternative model of space-charge-limited thermionic current flow through a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campanell, M. D.

    It is widely assumed that thermionic current flow through a plasma is limited by a “space-charge-limited” (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. In this paper, we formulate a fundamentally different current-limited mode. In the “inverse” mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting themore » circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. Finally, the inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.« less

  10. High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Qingliang; Yang Ya; Qi Junjie

    2010-02-15

    The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.

  11. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    PubMed

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  12. Studies of a plasma with a hot dense core in LAPD

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Cooper, Chris

    2009-11-01

    Recently, considerable effort in the LArge Plasma Device at UCLA (LAPD) has gone into the study of large cathodes which would enable higher discharge currents and higher densities. The new cathode is made out of Lanthanum HexaBoride (LaB6). LaB6 has a low work function and has higher emissivity than Barium oxide coated cathodes. The operating temperature of LaB6 cathodes lies above 1600 degrees Celsius. Tests of this cathode in the Enormous Toroidal Plasma Device (ETPD) showed that densities in excess of 2 10^13 cm-3 and electron temperatures of 12 eV are feasible. Small LaB6 cathodes (3mm - 2cm) have been used before in LAPD in several experiments on heat transport and on magnetized flux ropes. The cathode presented in this paper has a 8 cm diameter, and can be positioned at different radial locations. The cathode will be pulsed into the standard background plasma (ne= 2 10^12 cm-3, .25 <=Te<=6 eV, dia = 60 cm, L = 18 m) creating a plasma with a hot dense core. We present the characterization of the core plasma at different conditions. Studies of the heat transport and density spreading at the interface between the core plasma and background plasma will be done by use of a variety of probes (Langmuir, magnetic, Mach, emissive) as well as fast photography.

  13. High Current Density Scandate Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    of Technology HFSS Ansoft Corporation’s High Frequency Structure Simulator TWT Traveling Wave Tube - device for generating high levels of RF power ...cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a tungsten matrix impregnated with a mixture of barium oxide...electron beam with the largest possible diameter, consistent with high gain, bandwidth, and efficiency at W- Band . The research concentrated on photonic

  14. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    NASA Astrophysics Data System (ADS)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  15. Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays

    PubMed Central

    Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang

    2017-01-01

    Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845

  16. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    PubMed

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  17. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; Lü, Zhe; Ai, Na; Chen, Xiangjun; Hu, Jinyan; Huang, Xiqiang; Su, Wenhui

    Sm 0.2Ce 0.8O 1.9 (SDC)-impregnated La 0.7Sr 0.3MnO 3 (LSM) composite cathodes were fabricated on anode-supported yttria-stabilized zirconia (YSZ) thin films. Electrochemical performances of the solid oxide fuel cells (SOFCs) were investigated in the present study. Four single cells, i.e., Cell-1, Cell-2, Cell-3 and Cell-4 were obtained after the fabrication of four different cathodes, i.e., pure LSM and SDC/LSM composites in the weight ratios of 25/75, 36/64 and 42/58, respectively. Impedance spectra under open-circuit conditions showed that the cathode performance was gradually improved with the increasing SDC loading. Similarly, the maximum power densities (MPD) of the four cells were increased with the SDC amount below 700 °C. Whereas, the cell performance of Cell-4 was lower than that of Cell-3 at 800 °C, arising from the increased concentration polarization at high current densities. This was caused by the lowered porosity with the impregnation cycle. This disadvantage could be suppressed by lowering the operating temperature or by increasing the oxygen concentration at the cathode side. The ratio of electrode polarization loss in the total voltage drop versus current density showed that the cell performance was primarily determined by the electrode polarization. The contribution of the ohmic resistance was increased when the operating temperature was lowered. When a 100 ml min -1 oxygen flow was introduced to the cathode side, Cell-3 produced MPDs of 1905, 1587 and 1179 mW cm -2 at 800, 750 and 700 °C, respectively. The high cell outputs demonstrated the merits of the novel and effective SDC-impregnated LSM cathodes.

  18. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at neutral buoyancy with seawater if the cell is operated at high reactant utilizations in the SOFC stack for missions longer than 20 hours.

  19. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.

    PubMed

    Xia, Xue; Tokash, Justin C; Zhang, Fang; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-02-19

    Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m(2), which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m(2)), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m(2)). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m(2), compared to 0.49 A/m(2) originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes.

  20. Electrochemistry of Interhalogen Cathodes

    DTIC Science & Technology

    sources. Chlorine trifluoride , with a theoretical 2120 whr/lb in combination with lithium, is also known to support substantial current densities when... chlorine trifluoride as a power source cathode material. A half-cell study was made on dilute ClF3 solutions at 5C in 1 M NaF-HF by the cyclic

  1. Improvement of water management in a vapor feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Masdar, M. Shahbudin; Tsujiguchi, Takuya; Nakagawa, Nobuyoshi

    Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O , and methanol, PCH3OH , at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.

  2. An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges

    NASA Astrophysics Data System (ADS)

    Codron, Douglas A.

    Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS). Such studies have provided a qualitative understanding of the typical pathways in which thorium diffuses and how it is normally redistributed along the cathode surface. Lastly, the erosion rates of both pure and thoriated tungsten cathodes were measured after various run times by use of an analytical scale. These measurements have revealed the ability of thoriated tungsten cathodes to run as long as that of pure tungsten but with significantly less material erosion.

  3. High current ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  4. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  5. Energetic ion production in high current hollow cathodes

    NASA Astrophysics Data System (ADS)

    Foster, John; Kovach, Yao; Arthur, Neil; Viges, Eric; Davis, Chris

    2015-09-01

    High power Hall and gridded ion thrusters are being considered as a propulsion option supporting human operations (cargo or tug) to Mars. These engines utilize hollow cathodes for plasma production and beam neutralization. It has now been well documented that these cathodes produce energetic ions when operated at high current densities. Such ions are observed with peak energies approaching 100 eV. Because these ions can drive erosion of the cathode assembly, they represent a credible failure mode. An understanding of energetic ion production and approaches to mitigation is therefore desired. Presented here are data documenting the presence of energetic ions for both a barium oxide and a lanthanum hexaboride cathode as measured using a retarding potential analyzer. Also presented are energetic ion mitigation approaches, which are designed to eliminate the ion energy transfer mechanism. NASA SBIR Contract NNX15CP62P.

  6. High Current Density Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a

  7. Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.

    PubMed

    Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De

    2017-07-25

    This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m². In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.

  8. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  9. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE PAGES

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  10. Analysis of magnetically immersed electron guns with non-adiabatic fields.

    PubMed

    Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John

    2016-11-01

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.

  11. Effect of breathing-hole size on the electrochemical species in a free-breathing cathode of a DMFC

    NASA Astrophysics Data System (ADS)

    Hwang, J. J.; Wu, S. D.; Lai, L. K.; Chen, C. K.; Lai, D. Y.

    A three-dimensional numerical model is developed to study the electrochemical species characteristics in a free-breathing cathode of a direct methanol fuel cell (DMFC). A perforated current collector is attached to the porous cathode that breathes the fresh air through an array of orifices. The radius of the orifice is varied to examine its effect on the electrochemical performance. Gas flow in the porous cathode is governed by the Darcy equation with constant porosity and permeability. The multi-species diffusive transports in the porous cathode are described using the Stefan-Maxwell equation. Electrochemical reaction on the surfaces of the porous matrices is depicted via the Butler-Volmer equation. The charge transports in the porous matrices are dealt with by Ohm's law. The coupled equations are solved by a finite-element-based CFD technique. Detailed distributions of electrochemical species characteristics such as flow velocities, species mass fractions, species fluxes, and current densities are presented. The optimal breathing-hole radius is derived from the current drawn out of the porous cathode under a fixed overpotential.

  12. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  13. Experimental research of different plasma cathodes for generation of high-current electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafir, G.; Kreif, M.; Gleizer, J. Z.

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods andmore » carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Y.; Tahara, H.; Nogawa, S.

    A new type of electron source for ion sources, which serves as a cathode has been developed. In this cathode, a high-density microwave plasma is produced under the electron-cyclotron-resonance (ECR) condition, and a high electron current of several amperes can be extracted from it. The structure of this microwave plasma (MP) cathode is very simple and compact. A rod antenna connected to a coaxial line for introducing the microwave power (2.45 GHz) and a rare-earth metal permanent magnet for producing the ECR condition are major components. Since there is no filament in this MP cathode, it has a longer lifetimemore » than the equivalent thermionic filament electron emitter. It offers a great advantage to the operation with reactive as well as inert gases. This MP cathode has been adapted in Kaufman-type ion source and have successfully obtained an argon ion-beam current of 110 mA and an oxygen ion-beam current of 43 mA in 25 mm diameter.« less

  15. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

    DOE PAGES

    Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan; ...

    2018-01-15

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less

  16. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ji -Lei; Xiao, Dong -Dong; Ge, Mingyuan

    Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-richmore » cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.« less

  17. Direct measurements of anode/cathode gap plasma in cylindrically imploding loads on the Z machine

    NASA Astrophysics Data System (ADS)

    Porwitzky, A.; Dolan, D. H.; Martin, M. R.; Laity, G.; Lemke, R. W.; Mattsson, T. R.

    2018-06-01

    By deploying a photon Doppler velocimetry based plasma diagnostic, we have directly observed low density plasma in the load anode/cathode gap of cylindrically converging pulsed power targets. The arrival of this plasma is temporally correlated with gross current loss and subtle power flow differences between the anode and the cathode. The density is in the range where Hall terms in the electromagnetic equations are relevant, but this physics is lacking in the magnetohydrodynamics codes commonly used to design, analyze, and optimize pulsed power experiments. The present work presents evidence of the importance of physics beyond traditional resistive magnetohydrodynamics for the design of pulsed power targets and drivers.

  18. Fuel Exhaling Fuel Cell.

    PubMed

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  19. Anomalous - viscosity current drive

    DOEpatents

    Stix, Thomas H.; Ono, Masayuki

    1988-01-01

    An apparatus and method for maintaining a steady-state current in a toroidal magnetically confined plasma. An electric current is generated in an edge region at or near the outermost good magnetic surface of the toroidal plasma. The edge current is generated in a direction parallel to the flow of current in the main plasma and such that its current density is greater than the average density of the main plasma current. The current flow in the edge region is maintained in a direction parallel to the main current for a period of one or two of its characteristic decay times. Current from the edge region will penetrate radially into the plasma and augment the main plasma current through the mechanism of anomalous viscosity. In another aspect of the invention, current flow driven between a cathode and an anode is used to establish a start-up plasma current. The plasma-current channel is magnetically detached from the electrodes, leaving a plasma magnetically insulated from contact with any material obstructions including the cathode and anode.

  20. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP2) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB6 (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB6 (HLA-LaB6) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB6 cathode is composed of the one inner cathode with 4in. diameter and the six outer cathodes with 2in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6×1012 cm-3, while the electron temperature remains around 3-3.5eV at the low discharge current of less than 45A, and the magnetic field intensity of 870G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB6 cathode with 4in. diameter in DiPS.

  1. Honeycomblike large area LaB6 plasma source for Multi-Purpose Plasma facility.

    PubMed

    Woo, Hyun-Jong; Chung, Kyu-Sun; You, Hyun-Jong; Lee, Myoung-Jae; Lho, Taihyeop; Choh, Kwon Kook; Yoon, Jung-Sik; Jung, Yong Ho; Lee, Bongju; Yoo, Suk Jae; Kwon, Myeon

    2007-10-01

    A Multi-Purpose Plasma (MP(2)) facility has been renovated from Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] by adopting the same philosophy of diversified plasma simulator (DiPS) [Chung et al., Contrib. Plasma Phys. 46, 354 (2006)] by installing two plasma sources: LaB(6) (dc) and helicon (rf) plasma sources; and making three distinct simulators: divertor plasma simulator, space propulsion simulator, and astrophysics simulator. During the first renovation stage, a honeycomblike large area LaB(6) (HLA-LaB(6)) cathode was developed for the divertor plasma simulator to improve the resistance against the thermal shock fragility for large and high density plasma generation. A HLA-LaB(6) cathode is composed of the one inner cathode with 4 in. diameter and the six outer cathodes with 2 in. diameter along with separate graphite heaters. The first plasma is generated with Ar gas and its properties are measured by the electric probes with various discharge currents and magnetic field configurations. Plasma density at the middle of central cell reaches up to 2.6 x 10(12) cm(-3), while the electron temperature remains around 3-3.5 eV at the low discharge current of less than 45 A, and the magnetic field intensity of 870 G. Unique features of electric property of heaters, plasma density profiles, is explained comparing with those of single LaB(6) cathode with 4 in. diameter in DiPS.

  2. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E.; Polk, James E.

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungstenmore » species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.« less

  3. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  4. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  5. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    NASA Astrophysics Data System (ADS)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  6. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1975-01-01

    Terminal voltage measurements with long cathodes in a high power, quasi-steady MPD discharge show that the critical current for the onset of voltage fluctuations, which was previously shown to be a function of cathode area, approaches an asymptote for cathodes of very large surface area. Floating potential measurements and photographs of the discharge luminosity indicate that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance. Photoelectric measurements of particular argon neutral and ion transitions show that the higher electronic states are populated more heavily than would be calculated on the basis of Saha-Boltzmann equilibrium at the local electron temperature and number density. Preliminary optical depth measurements show that for a current of 4 kA and an argon mass flow of 12 g/sec, a population inversion exists between the upper and lower states of the 4880 A argon ion transition.

  7. High-Energy-Density, Low-Temperature Li/CFx Primary Cells

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid

    2007-01-01

    High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.

  8. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2017-04-01

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H+/OH- transport) and electric field-driven migration on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Overall, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.

  9. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  10. Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel

    PubMed Central

    Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De

    2017-01-01

    This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described. PMID:28773211

  11. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    NASA Astrophysics Data System (ADS)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  12. Improving performance of MFC by design alteration and adding cathodic electrolytes.

    PubMed

    Jadhav, G S; Ghangrekar, M M

    2008-12-01

    Performance of two microbial fuel cells (MFCs) was investigated under batch and continuous mode of operation using different cathodic electrolyte. The wastewater was supplied from the bottom port provided to the anode chamber in both the MFCs and the effluent left the anode chamber from the top port in MFC-1, whereas in MFC-2, the effluent exit was provided close to membrane. Stainless steel (SS) mesh anode was used in both the MFCs with surface area of 167 and 100 cm(2) in MFC-1 and MFC-2, respectively. Under batch mode and continuous mode of operation, these MFCs gave chemical oxygen demand removal efficiency more than 85% and about 68%, respectively. Under batch mode of operation, maximum power density of 39.95 and 56.87 mW/m(2) and maximum current density of 180.83 and 295 mA/m(2) were obtained in MFC-1 and MFC-2, respectively. Under continuous mode of operation, a reduction in power and current density was observed. Even with less surface area of the anode, MFC-2 produced more current (1.77 mA) than MFC-1 (1.40 mA). Among the cathodic electrolyte tested, these can be listed in decreasing order of power density as aerated KMnO(4) solution > KMnO(4) solution without aeration > aerated tap water > aerated tap water with NaCl.

  13. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  14. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  15. Towards the Identification of the Keeper Erosion Cause(s): Numerical Simulations of the Plasma and Neutral Gas Using the Global Cathode Model OrCa2D-II

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2006-01-01

    Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.

  16. A flexible curvilinear electromagnetic filter for direct current cathodic arc source.

    PubMed

    Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2007-09-01

    Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

  17. Laboratory performance of zinc anodes for impressed current cathodic protection of reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brousseau, R.; Arnott, M.; Baldock, B.

    1995-08-01

    Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.

  18. Analysis of ProSEDS Test of Bare-Tether Collection

    NASA Technical Reports Server (NTRS)

    Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.

    2003-01-01

    NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.

  19. Development of multi-pixel x-ray source using oxide-coated cathodes.

    PubMed

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  20. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  1. A Particle and Energy Balance Model of the Orificed Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.

    2002-01-01

    A particle and energy balance model of orificed hollow cathodes was developed to assist in cathode design. The model presented here is an ensemble of original work by the author and previous work by others. The processes in the orifice region are considered to be one of the primary drivers in determining cathode performance, since the current density was greatest in this volume (up to 1.6 x 10(exp 8) A/m2). The orifice model contains comparatively few free parameters, and its results are used to bound the free parameters for the insert model. Next, the insert region model is presented. The sensitivity of the results to the free parameters is assessed, and variation of the free parameters in the orifice dominates the calculated power consumption and plasma properties. The model predictions are compared to data from a low-current orificed hollow cathode. The predicted power consumption exceeds the experimental results. Estimates of the plasma properties in the insert region overlap Langmuir probe data, and the predicted orifice plasma suggests the presence of one or more double layers. Finally, the model is used to examine the operation of higher current cathodes.

  2. Lithium-Based High Energy Density Flow Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.

  3. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  4. Impedance of an intense plasma-cathode electron source for tokamak startup

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.

    2016-05-01

    An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.

  5. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Miniature Reservoir Cathode: An Update

    NASA Technical Reports Server (NTRS)

    Vancil, Bernard K.; Wintucky, Edwin G.

    2002-01-01

    We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.

  7. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion.

    PubMed

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei; Whelan, Patrick R; Tremblay, Pier-Luc; Chi, Qijin; Zhang, Tian

    2017-08-22

    During microbial electrosynthesis (MES) driven CO 2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO 2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m -2 d -1 with RGO paper cathodes poised at -690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m -2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO 2 .

  8. Rate capability improvement of Co-Ni double hydroxides integrated in cathodically partially exfoliated graphite

    NASA Astrophysics Data System (ADS)

    Cai, Xiang; Song, Yu; Sun, Zhen; Guo, Di; Liu, Xiao-Xia

    2017-10-01

    In-situ growing of energy storage materials on graphene-based substrates/current collectors with low defect is a good way to boost electron transport and so enhance rate capability for the obtained electrode. Herein, high-quality graphene-like nanopetals are partially exfoliated from graphite foil (GF) through a facile and fast cathodic process. Three-dimensional porous structure is established for the afforded cathodically-exfoliated graphite foil (CEG), with many graphene-like nanopetals vertically anchoring on the graphite substrate. A hierarchical structure is constructed by the following electrochemical growth of Co-Ni double hydroxide nanopetals on the graphene atop CEG. The double hydroxide in the obtained electrode with the optimized Co2+/Ni2+ molar ratio, Co0.75Ni0.25(OH)2-CEG, displays much improved rate capability and so can deliver a high specific capacitance of 1460 F g-1 at an ultra-high current density of 100 A g-1. An asymmetric device is assembled by using Co0.75Ni0.25(OH)2-CEG as cathode, which demonstrates a high energy density of 31.6 Wh kg-1 at an ultra-high power density of 21.5 kW kg-1, showing the potential of the hierarchical composite electrode for high power application. The device also displays good stability, it can retain more than 90% of its capacitance after 10000 galvanostatic charge-discharge cycles.

  9. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.

    PubMed

    Wang, Xinran; Gu, Wentian; Lee, Jung Tae; Nitta, Naoki; Benson, Jim; Magasinski, Alexandre; Schauer, Mark W; Yushin, Gleb

    2015-10-01

    Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near-theoretical, 550mAhgCoF2-1) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx -based materials in batteries with load-bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g(-1) and over 50% after 10 000 cycles at the current density of 1000 mA g(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Barium-Dispenser Thermionic Cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  11. Ultrafast synthesis of Te nanorods as cathode materials for lithium-tellurium batteries

    NASA Astrophysics Data System (ADS)

    Huang, Dekang; Li, Shu; Xiao, Xin; Cao, Minglei; Gao, Lin; Xiang, Yong-Gang; Chen, Hao; Shen, Yan

    2017-12-01

    Recently, tellurium has been regarded as a promising cathode material for rechargeable lithium-ion batteries due to its high theoretical volumetric capacity. However, a plethora of research are focusing on impregnating the tellurium into porous carbon materials by the thermal-diffusion method, which would consume large amounts of energy and take prolonged time. Herein, a carbon and binder-free cathode with 100% Te is fabricated by a facile galvanic replacement method on a nickle foam. Driven by the large electrochemical potential difference between Ni and Te, desirable amounts of Te can be obtained in just 10 min with no need of energy input. Li-Te batteries constructed by the as-obtained cathode show relatively good performance in DMSO solvent. To further elevate the performance of this battery especially at low current density, commercial carbon cloth is added between the separator and Te electrode as an interlayer. The cell with interlayer delivers a gravimetric capacity of 116.2 mAh g-1 after 70 cycles at the current density of 100 mA g-1, which is 2.8 times as high as that of a cell without interlayer (40.4 mAh g-1).

  12. A pulsed electron gun for the Plane Wave Transformer Linac

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Gandhi, M. L.; Nandedkar, R. V.

    2003-01-01

    A pulsed diode electron gun delivering 500 mA current at 40 kV is described. The gun geometry is optimized using the Electron Trajectory Program EGUN at higher scaling factors by choosing the closest converging starting surface. The effect of an annular gap between cathode and focusing electrode on beam behaviour is compensated by using a suitable focusing electrode. The estimated perveance is 0.065 μperv and the normalized emittance is within 5 π mm mrad. The variation in current density at the cathode has been limited to within 10% across the face of the cathode. Salient features of the pulsed power supply and an insight of its interconnection with the gun are presented. The current measured at the Faraday cup is in agreement with the designed perveance.

  13. Study on the water flooding in the cathode of direct methanol fuel cells.

    PubMed

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  14. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  15. Electron diffusion through the baffle aperture of a hollow cathode thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1979-01-01

    The use of a hollow cathode in place of an oxide cathode to increase thruster operating lifetimes requires, among other things, the addition of a baffle to restrict the flow of electrons from the hollow cathode. A theoretical model is developed which relates the baffle aperture area of a hollow-cathode thruster to the magnetic flux density and plasma properties in the aperture region, with the result that this model could be used as an aid in thruster design. Extensive Langmuir probing is undertaken to verify the validity of the model and demonstrate its capability. It is shown that the model can be used to calculate the aperture area required to effect discharge operation at a specified discharge voltage and arc current.

  16. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  17. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2017-02-23

    This paper presents a computational model of a single chamber, air-cathode MFC. The model considers losses due to mass transport, as well as biological and electrochemical reactions, in both the anode and cathode half-cells. Computational fluid dynamics and Monod-Nernst analysis are incorporated into the reactions for the anode biofilm and cathode Pt catalyst and biofilm. The integrated model provides a macro-perspective of the interrelation between the anode and cathode during power production, while incorporating microscale contributions of mass transport within the anode and cathode layers. Model considerations include the effects of pH (H +/OH – transport) and electric field-driven migrationmore » on concentration overpotential, effects of various buffers and various amounts of buffer on the pH in the whole reactor, and overall impacts on the power output of the MFC. The simulation results fit the experimental polarization and power density curves well. Further, this model provides insight regarding mass transport at varying current density regimes and quantitative delineation of overpotentials at the anode and cathode. Altogether, this comprehensive simulation is designed to accurately predict MFC performance based on fundamental fluid and kinetic relations and guide optimization of the MFC system.« less

  18. Microwave decoration of Pt nanoparticles on entangled 3D carbon nanotube architectures as PEM fuel cell cathode.

    PubMed

    Sherrell, Peter C; Zhang, Weimin; Zhao, Jie; Wallace, Gordon G; Chen, Jun; Minett, Andrew I

    2012-07-01

    Proton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient. To drive commercial viability of fuel cells forward in the short term, increased utilization of Pt catalysts is paramount. We have demonstrated improved power and energy densities in a single PEMFC using a designed cathode with a Pt loading of 0.1 mg cm(-2) on a mesoporous conductive entangled carbon nanotube (CNT)-based architecture. This electrode allows for rapid transfer of both fuel and waste to and from the electrode, respectively. Pt particles are bound tightly, directly to CNT sidewalls by a microwave-reduction technique, which provided increased charge transport at this interface. The Pt entangled CNT cathode, in combination with an E-TEK 0.2 mg cm(-2) anode, has a maximum power and energy density of 940 mW cm(-2) and 2700 mA cm(-2), respectively, and a power and energy density of 4.01 W mg(Pt)(-1) and 6.35 A mg(Pt)(-1) at 0.65 V. These power densities correspond to a specific mass activity of 0.81 g Pt per kW for the combined mass of both anode and cathode electrodes, approaching the current US Department of Energy efficiency target. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  20. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  1. Propagation of ion acoustic wave energy in the plume of a high-current LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Dodson, Christoper; Goebel, Dan M.; Wirz, Richard

    2017-08-01

    A frequency-averaged quasilinear model is derived and experimentally validated for the evolution of ion acoustic turbulence (IAT) along the centerline of a 100-A class, LaB6 hollow cathode. Probe-based diagnostics and a laser induced fluorescence system are employed to measure the properties of both the turbulence and the background plasma parameters as they vary spatially in the cathode plume. It is shown that for the three discharge currents investigated, 100 A, 130 A, and 160 A, the spatial growth of the total energy density of the IAT in the near field of the cathode plume is exponential and agrees quantitatively with the predicted growth rates from the quasilinear formulation. However, in the downstream region of the cathode plume, the growth of IAT energy saturates at a level that is commensurate with the Sagdeev limit. The experimental validation of the quasilinear model for IAT growth and its limitations are discussed in the context of numerical efforts to describe self-consistently the plasma processes in the hollow cathode plume.

  2. Formation of space-charge bunches in a multivelocity-electron-beam-based microwave oscillator with a cathode unshielded from the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S., E-mail: alexander1989fokin@mail.ru

    The influence of the magnitude and configuration of the magnetic field on the parameters of electron bunches formed in a multivelocity electron beam is analyzed. It is shown that the use of a cathode unshielded from the magnetic field and a nonuniform magnetic field increasing along the drift space enables the formation of compact electron bunches. The ratio between the current density in such bunches and the beam current density at the entrance to the drift space reaches 10{sup 6}, which results in a substantial broadening of the output microwave spectrum due to an increase in the amplitudes of themore » higher harmonics of the fundamental frequency.« less

  3. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.

    PubMed

    Tao, Hu-Chun; Li, Wei; Liang, Min; Xu, Nan; Ni, Jin-Ren; Wu, Wei-Min

    2011-04-01

    A membrane-free baffled microbial fuel cell (MFC) was developed to treat synthetic Cu(II) sulfate containing wastewater in cathode chamber and synthetic glucose-containing wastewater fed to anode chamber. Maximum power density of 314 mW/m(3) with columbic efficiency of 5.3% was obtained using initial Cu(2+) concentration of 6400 mg/L. Higher current density favored the cathodic reduction of Cu(2+), and removal of Cu(2+) by 70% was observed within 144 h using initial concentration of 500 mg/L. Powder X-ray diffraction (XRD) analysis indicated that the Cu(2+) was reduced to Cu(2)O or Cu(2)O plus Cu which deposited on the cathode, and the deficient cathodic reducibility resulted in the formation of Cu(4)(OH)(6)SO(4) at high initial Cu(2+) concentration (500-6400 mg/L). This study suggested a novel low-cost approach to remove and recover Cu(II) from Cu(2+)-containing wastewater using MFC-type reactor. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The effect of cathode felt geometries on electrochemical characteristics of sodium sulfur (NaS) cells: Planar vs. tubular

    NASA Astrophysics Data System (ADS)

    Kim, Goun; Park, Yoon-Cheol; Lee, Younki; Cho, Namung; Kim, Chang-Soo; Jung, Keeyoung

    2016-09-01

    Two sodium sulfur (NaS) cells, one with a planar design and the other with a tubular design, were subject to discharge-charge cycles in order to investigate the effect of cathode felt geometries on electrochemical characteristics of NaS cells. Their discharge-charge behaviors over 200 cycles were evaluated at the operation temperature of 350 °C with the current densities of 100 mA cm-2 for discharge and 80 mA cm-2 for charge. The results showed that the deviation from theoretical open circuit voltage changes of a planar cell was smaller than those of a tubular cell resulting in potential specific power loss reduction during operation. In order to understand the effect, a three dimensional statistically representative matrix for a cathode felt has been generated using experimentally measured data. It turns out that the area specific fiber number density in the outer side area of a tubular cathode felt is smaller than that of a planar felt resulting in occurrence of larger voltage drops via retarded convection of cathode melts during cell operation.

  5. Transcranial direct current stimulation improves seizure control in patients with Rasmussen encephalitis.

    PubMed

    Tekturk, Pinar; Erdogan, Ezgi Tuna; Kurt, Adnan; Kocagoncu, Ece; Kucuk, Zeynep; Kinay, Demet; Yapici, Zuhal; Aksu, Serkan; Baykan, Betul; Karamursel, Sacit

    2016-03-01

    Rasmussen encephalitis is associated with severe seizures that are unresponsive to antiepileptic drugs, as well as immunosuppressants. Transcranial direct current stimulation (t-DCS) is a non-invasive and safe method tried mostly for focal epilepsies with different aetiologies. To date, there is only one published study with two case reports describing the effect of t-DCS in Rasmussen encephalitis. Our aim was to investigate the effect of t-DCS on seizures in Rasmussen encephalitis and to clarify its safety. Five patients (mean age: 19; three females), diagnosed with Rasmussen encephalitis were included in this study. Patients received first cathodal, then anodal (2 mA for 30 minutes on three consecutive days for non-sham stimulations), and finally sham stimulation with two-month intervals, respectively. Three patients received classic (DC) cathodal t-DCS whereas two patients received cathodal stimulation with amplitude modulation at 12 Hz. Afterwards, all patients received anodal stimulation with amplitude modulation at 12 Hz. In the last part of the trial, sham stimulation (a 60-second stimulation with gradually decreasing amplitude to zero in the last 15 seconds) was applied to three patients. Maximum current density was 571 mA/m2 using 70 mm x 50 mm wet sponge electrodes with 2-mA maximum, current controlled stimulator, and maximum charge density was 1028 C/m2 for a 30-minute stimulation period. After cathodal stimulation, all but one patient had a greater than 50% decrease in seizure frequency. Two patients who received modulated cathodal t-DCS had better results. The longest positive effect lasted for one month. A second trial with modulated anodal stimulation and a third with sham stimulation were not effective. No adverse effect was reported with all types of stimulations. Both classic and modulated cathodal t-DCS may be suitable alternative methods for improving seizure outcome in Rasmussen encephalitis patients.

  6. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process.

    PubMed

    Tian, Jiangnan; Olajuyin, Ayobami Matthew; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-06-01

    The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe(2+) dosage and current density were optimized, and comparison among different modified methods-polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT-showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m(2) and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward.

  7. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    PubMed

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  8. Behavior of Lithium Metal Anodes under Various Capacity Utilization and High Current Density in Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Shuhong; Zheng, Jianming; Li, Qiuyan

    Lithium (Li) metal batteries (LMBs) are regarded as the most promising power sources for electric vehicles. Besides the Li dendrite growth and low Li Coulombic efficiency, how to well match Li metal anode with a high loading (normally over 3.0 mAh cm-2) cathode is another key challenge to achieve the real high energy density battery. In this work, we systematically investigate the effects of the Li metal capacity usage in each cycle, manipulated by varying the cathode areal loading, on the stability of Li metal anode and the cycling performance of LMBs using the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and an additive-containingmore » dual-salt/carbonate-solvent electrolyte. It is demonstrated that the Li||NMC cells show decent long-term cycling performance even with NMC areal capacity loading up to ca. 4.0 mAh cm-2 and at a charge current density of 1.0 mA cm-2. The increase of the Li capacity usage in each cycle causes variation in the components of the solid electrolyte interphase (SEI) layer on Li metal anode and generates more ionic conductive species from this electrolyte. Further study reveals for the first time that the degradation of Li metal anode and the thickness of SEI layer on Li anode show linear relationship with the areal capacity of NMC cathode. Meanwhile, the expansion rate of consumed Li and the ratio of SEI thickness to NMC areal loading are kept almost the same value with increasing cathode loading, respectively. These fundamental findings provide new perspectives on the rational evaluation of Li metal anode stability for the development of rechargeable LMBs.« less

  9. Ion acoustic turbulence in a 100-A LaB6 hollow cathode

    NASA Astrophysics Data System (ADS)

    Jorns, Benjamin A.; Mikellides, Ioannis G.; Goebel, Dan M.

    2014-12-01

    The temporal fluctuations in the near plume of a 100-A LaB6 hollow cathode are experimentally investigated. A probe array is employed to measure the amplitude and dispersion of axial modes in the plume, and these properties are examined parametrically as a function of cathode operating conditions. The onset of ion acoustic turbulence is observed at high current and is characterized by a power spectrum that exhibits a cutoff at low frequency and an inverse dependence on frequency at high values. The amplitude of the turbulence is found to decrease with flow rate but to depend nonmonotonically on discharge current. Estimates of the anomalous collision frequency based on experimental measurements indicate that the ion acoustic turbulence collision frequency can exceed the classical rate at high discharge current densities by nearly two orders of magnitude.

  10. Modelling bio-electrosynthesis in a reverse microbial fuel cell to produce acetate from CO2 and H2O.

    PubMed

    Kazemi, M; Biria, D; Rismani-Yazdi, H

    2015-05-21

    Bio-electrosynthesis is one of the significant developments in reverse microbial fuel cell technology which is potentially capable of creating organic compounds by combining CO2 with H2O. Accordingly, the main objective in the current study was to present a model of microbial electrosynthesis for producing organic compounds (acetate) based on direct conduction of electrons in biofilms. The proposed model enjoys a high degree of rigor because it can predict variations in the substrate concentration, electrical potential, current density and the thickness of the biofilm. Additionally, coulombic efficiency was investigated as a function of substrate concentration and cathode potential. For a system containing CO2 as the substrate and Sporomusa ovata as the biofilm forming microorganism, an increase in the substrate concentration at a constant potential can lead to a decrease in coulombic efficiency as well as an increase in current density and biofilm thickness. On the other hand, an increase in the surface cathodic voltage at a constant substrate concentration may result in an increase in the coulombic efficiency and a decrease in the current density. The maximum coulombic efficiency was revealed to be 75% at a substrate concentration of 0.025 mmol cm(-3) and 55% at a surface cathodic voltage of -0.3 V producing a high range of acetate production by creating an optimal state in the concentration and potential intervals. Finally, the validity of the model was verified by comparing the obtained results with related experimental findings.

  11. Degradation of SOFCs in contact with E-brite.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, T. A.; Krumpelt, M.; Ingram, B. J.

    The results presented in this report seem to raise concerns about the effects of chromium at lower temperature and higher current densities. However, we need to remember that these results were obtained withuncoated E-Brite and coated material would have two orders of magnitude lower formation rates of the oxyhydroxide. More importantly, the dramatic effects of the chromium precipitation at lower temperature point to the solution to the problem. We need more active cathodes. The results with the chromium doped manganite show already that the currently preferred cathode material can still be improved, and ferrites or mixed manganese/iron cathode would bemore » much less affected because of the higher oxide ion vacancy concentration and mobility.« less

  12. Improvement of carbon nanotube field emission properties by ultrasonic nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei

    2008-12-01

    Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.

  13. Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.

    2015-09-15

    Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less

  14. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    NASA Astrophysics Data System (ADS)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  15. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    PubMed

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  16. Experimental Investigation of Pseudospark generated electron beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.; Pal, U. N.

    2012-11-01

    The pseudospark (PS) discharge is, however, more recently recognized as a different type of discharge which is capable of generating electron beams with the highest combined current density and brightness of any known type of electron source. PS discharge is a specific type of gas discharge, which operates on the left-hand side of the hollow cathode analogy to the Paschen curve with axially symmetric parallel electrodes and central holes on the electrodes. The PS discharge generated electron beam has tremendous applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been carried out experimentally for different applied voltages. The investigation has been done at different axial and radial location inside the drift tube in argon atmosphere. This paper represents experimentally derived axial and radial variation of the beam current inside the plasma filled drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed. It has been further confirmed the successful propagation of electron beam in confined manner without any assistance of external magnetic field.

  17. Ferroelectric Emission Cathodes for Low-Power Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kovaleski, Scott D.; Burke, Tom (Technical Monitor)

    2002-01-01

    Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.

  18. Calcium intercalation into layered fluorinated sodium iron phosphate

    NASA Astrophysics Data System (ADS)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.

    2017-11-01

    The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.

  19. Investigation of Endurance Performance of Carbon Nanotube Cathodes

    NASA Astrophysics Data System (ADS)

    Saito, Nanako; Yamagiwa, Yoshiki; Ohkawa, Yasushi; Nishida, Shin-Ichiro; Kitamura, Shoji

    The Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) is considering a demonstration of electrodynamic tether (EDT) systems in low Earth orbit (LEO). Carbon nanotubes (CNTs) have some advantages as electron sources compared to conventional Spindt type emitters, and so are expected to be useful in EDT systems. Experiments to investigate the durability of CNT cathodes in a space environment had been conducted in a diode mode, but it was found that electron extraction tests, in which the cathode with a gate electrode is used, are necessary to evaluate the endurance of CNTs more accurately. In this paper, we conducted long duration operating tests of a cathode with a gate. It was found that there was almost no change in cathode performance at current densities below 100 A/m2 even after the cathode was operated for over 500 hours in the high vacuum environment.

  20. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  1. Plasma dynamics on current-carrying magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.

  2. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less

  3. High-Current-Density Thermionic Cathodes and the Generation of High-Voltage Electron Beams

    DTIC Science & Technology

    1989-04-30

    Cathode Temperature =1700 OC Figure 37: Peak gun voltage = 90 kV -57- 60- 0 EGUN 327 ~40 0S 20’ Vacuum 5 .2 x 10 Tor 0 o 0 15202 30 Time (jis...by modeling the filament as a thin disk. The shape of the H - V -, 2 actual filament is sketched in Fig. 2. The EGUN code 1 131 is used to calculate

  4. Effect of sputtered lanthanum hexaboride film thickness on field emission from metallic knife edge cathodes

    NASA Astrophysics Data System (ADS)

    Kirley, M. P.; Novakovic, B.; Sule, N.; Weber, M. J.; Knezevic, I.; Booske, J. H.

    2012-03-01

    We report experiments and analysis of field emission from metallic knife-edge cathodes, which are sputter-coated with thin films of lanthanum hexaboride (LaB6), a low-work function material. The emission current is found to depend sensitively on the thickness of the LaB6 layer. We find that films thinner than 10 nm greatly enhance the emitted current. However, cathodes coated with a thicker layer of LaB6 are observed to emit less current than the uncoated metallic cathode. This result is unexpected due to the higher work function of the bare metal cathode. We show, based on numerical calculation of the electrostatic potential throughout the structure, that the external (LaB6/vacuum) barrier is reduced with respect to uncoated samples for both thin and thick coatings. However, this behavior is not exhibited at the internal (metal/LaB6) barrier. In thinly coated samples, electrons tunnel efficiently through both the internal and external barrier, resulting in current enhancement with respect to the uncoated case. In contrast, the thick internal barrier in thickly coated samples suppresses current below the value for uncoated samples in spite of the lowered external barrier. We argue that this coating thickness variation stems from a relatively low (no higher than 1018 cm-3) free carrier density in the sputtered polycrystalline LaB6.

  5. Cathode limited charge transport and performance of thin-film rechargeable lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, J.B.; Hart, F.X.; Lubben, D.

    1994-11-01

    Several types of thin-film rechargeable batteries based on lithium metal anodes and amorphous V{sub 2}O{sub 5} (aV{sub 2}O{sub 5}), LiMn{sub 2}O{sub 4}, and LiCoO{sub 2} cathodes have been investigated in this laboratory. In all cases, the current density of these cells is limited by lithium ion transport in the cathodes. This paper, discusses sources of this impedance in Li-aV{sub 2}O{sub 5} and Li-LiMn{sub 2}O{sub 4} thin-film cells and their effect on cell performance.

  6. Ionic liquid-assisted solvothermal synthesis of hollow Mn2O3 anode and LiMn2O4 cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    He, Xin; Wang, Jun; Jia, Haiping; Kloepsch, Richard; Liu, Haidong; Beltrop, Kolja; Li, Jie

    2015-10-01

    Mn-based Mn2O3 anode and LiMn2O4 cathode materials are prepared by a solvothermal method combined with post annealing process. Environmentally friendly ionic liquid 1-Butyl-3-methylimidazolium tetrafluoroborate as both structure-directing agent and fluorine source is used to prepare hollow polyhedron MnF2 precursor. Both target materials Mn2O3 anode and LiMn2O4 cathode have the morphology of the MnF2 precursor. The Mn2O3 anode using carboxymethyl cellulose as binder could deliver slight better electrochemical performance than the one using poly (vinyldifluoride) as binder. The former has an initial charge capacity of 800 mAh g-1 at a current density of 101.8 mA g-1, and exhibits no obvious capacity decay for 150 cycles at 101.8 mA g-1. The LiMn2O4 cathode material prepared with molten salt assistant could display much better electrochemical performance than the one prepared without molten salt assistance. In particular, it has an initial discharge capacity of 117.5 mAh g-1 at a current density of 0.5C and good rate capability. In the field of lithium ion batteries, both the Mn2O3 anode and LiMn2O4 cathode materials could exhibit enhanced electrochemical performance due to the well formed morphology based on the ionic liquid-assisted solvothermal method.

  7. Structural Dependence of the Sulfur Reduction Mechanism in Carbon-Based Cathodes for Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgos, Juan C.; Balbuena, Perla B.; Montoya, Javier A.

    We report lithium-sulfur batteries are promising non-conventional sources of energy due to their high theoretical capacity and energy density. However, the successful implementation of this technology has been hindered due to the low cycling life of the battery, caused by long chain polysulfide shuttling between electrodes during charge/discharge, among other issues. Quantum chemical calculations are used to study the reactivity of sulfur in the porous cathode of lithium-sulfur batteries, and the retention capabilities of porous carbon materials to avoid long chain polysulfide diffusion. Ab initio molecular dynamics (AIMD) simulations are initially employed to evaluate sulfur reduction mechanisms and kinetics, andmore » to identify main reduction products. A porous cathode architecture is modeled through parallel graphene layers with elemental sulfur rings in the interlayer, and filled with 1,3-dioxolane (DOL) organic solvent and lithium ions. AIMD simulations showed fast reduction of elemental sulfur and formation of short chain polysulfide. Furthermore, the effect of dangling carbon bonds of graphene on the reactivity of the cathode was confirmed. Adsorption calculations through density functional theory (DFT) proved the capacity of small pores to retain long polysulfide chains. An analysis of the effect of the specific current on the chemical behavior of sulfur reveals an influence of current on the amount of sulfur utilization and practical specific capacity of the battery. In conclusion, this work illustrates the physical-chemical behavior of the sulfur/polysulfide in the porous cathode system at atomistic level.« less

  8. Structural Dependence of the Sulfur Reduction Mechanism in Carbon-Based Cathodes for Lithium–Sulfur Batteries

    DOE PAGES

    Burgos, Juan C.; Balbuena, Perla B.; Montoya, Javier A.

    2017-08-17

    We report lithium-sulfur batteries are promising non-conventional sources of energy due to their high theoretical capacity and energy density. However, the successful implementation of this technology has been hindered due to the low cycling life of the battery, caused by long chain polysulfide shuttling between electrodes during charge/discharge, among other issues. Quantum chemical calculations are used to study the reactivity of sulfur in the porous cathode of lithium-sulfur batteries, and the retention capabilities of porous carbon materials to avoid long chain polysulfide diffusion. Ab initio molecular dynamics (AIMD) simulations are initially employed to evaluate sulfur reduction mechanisms and kinetics, andmore » to identify main reduction products. A porous cathode architecture is modeled through parallel graphene layers with elemental sulfur rings in the interlayer, and filled with 1,3-dioxolane (DOL) organic solvent and lithium ions. AIMD simulations showed fast reduction of elemental sulfur and formation of short chain polysulfide. Furthermore, the effect of dangling carbon bonds of graphene on the reactivity of the cathode was confirmed. Adsorption calculations through density functional theory (DFT) proved the capacity of small pores to retain long polysulfide chains. An analysis of the effect of the specific current on the chemical behavior of sulfur reveals an influence of current on the amount of sulfur utilization and practical specific capacity of the battery. In conclusion, this work illustrates the physical-chemical behavior of the sulfur/polysulfide in the porous cathode system at atomistic level.« less

  9. Improved long-term electrical stability of pulsed high-power diodes using dense carbon fiber velvet cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Shu Ting; Wang Hui

    2012-07-15

    The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvetmore » cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.« less

  10. COMPUTATIONAL MODELING OF CATHODIC LIMITATIONS ON LOCALIZED CORROSION OF WETTED SS 316L, AT ROOM TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Cui; F.J. Presuel-Moreno; R.G. Kelly

    2005-10-13

    The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{submore » p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.« less

  11. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  12. Pulsed electromagnetic gas accelleration. [incorporation of hollow cathode in plasma discharge and suitability determination of MPD discharge as plasmadynamic laser source

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.

    1973-01-01

    Direct measurement with thermocouples of the power deposited in the anode of a multi-megawatt magnetoplasmadynamic discharge has shown the fractional anode power to decrease from 50% at 200 kW to 10% at 20 MW. Using local measurements of current density, electric potential, and electron temperature, the traditional model for heat conduction to the anode is found to be inadequate. Other experiments in which the voltage-current characteristics and exhaust velocities of MPD arcs using Plexiglas and boron nitride chamber insulators and various mass injection configurations show that ablation can affect nominal accelerator operation in several distinct ways. The incorporation of a hollow cathode in a 7 kA plasma discharge has shown that a stable current attachment can be realized in the cavity without the aid of cathode heaters, keeper electrodes, or emissive coatings.

  13. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-01

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  14. The study of lead vapor ionization in discharge with a hot cathode and efficiency of its deposition on the substrates applied for plasma separation method

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Samokhin, A. A.; Zhabin, S. N.; Gavrikov, A. V.; Smirnov, V. P.

    2016-11-01

    Spent nuclear fuel plasma separation method approbation implies the use of model substances. Thus it is necessary to solve the problem of material conversion into a cold plasma flow, as well as the problem of deposition on collectors. For this purpose, we carried out a kinetic and hydrodynamic simulation of the discharge with hot cathode in the lead vapor (lead vapor was injected into the interelectrode gap). Dependencies of the ionization efficiency, electrostatic potential distribution, density distribution of ions and electrons in the discharge gap on the discharge current density and the model substance vapor concentration were obtained. The simulation results show that at discharge current density of about 3.5 A/cm2 and the lead vapor concentration of 2 × 1012 cm-3, the ionization efficiency is close to 60%. Experimental research of the discharge with a hot cathode in the lead vapor was carried out. We also carried out the research of the Pb condensation coefficients on various substrates. For experimental data analysis the numerical model based on Monte Carlo method was used. The research results show that deposition coefficients at medium temperatures of substrates near 70 °C do not drop lower than 75%.

  15. RF Photoelectric injectors using needle cathodes

    NASA Astrophysics Data System (ADS)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  16. An air-breathing enzymatic cathode with extended lifetime by continuous laccase supply.

    PubMed

    Kipf, Elena; Sané, Sabine; Morse, Daniel; Messinger, Thorsten; Zengerle, Roland; Kerzenmacher, Sven

    2018-04-22

    We present a novel concept of an air-breathing enzymatic biofuel cell cathode combined with continuous supply of unpurified laccase-containing supernatant of the white-rot fungus Trametes versicolor for extended lifetime. The air-breathing cathode design obviates the need for energy-intensive active aeration. In a corresponding long-term experiment at a constant current density of 50 µA cm -2 , we demonstrated an increased lifetime of 33 days (cathode potential above 0.430 V vs. SCE), independent of enzyme degradation. The obtained data suggest that theoretically a longer lifetime is feasible. However, further engineering efforts are required to prevent clogging and fouling of the supply tubes. These results represent an important step towards the realization of enzymatic biofuel cell cathodes with extended lifetime and enhanced performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    PubMed

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm -2 ) present superior cycling stability (727.4 mAh g -1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g -1 at 2 C) and power density (∼10 mW cm -2 ), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm -2 ) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  18. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along withmore » very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.« less

  19. Effect of Current Density and Plating Time on Cu Electroplating in TSV and Low Alpha Solder Bumping

    NASA Astrophysics Data System (ADS)

    Jung, Do-Hyun; Sharma, Ashutosh; Kim, Keong-Heum; Choo, Yong-Chul; Jung, Jae-Pil

    2015-03-01

    In this study, copper filling in through-silicon via (TSV) by pulse periodic reverse electroplating and low alpha solder bumping on Cu-filled TSVs was investigated. The via diameter and depth of TSV were 60 and 120 µm, respectively. The experimental results indicated that the thickness of electrodeposited copper layer increased with increasing cathodic current density and plating time. The electroplated Cu in TSV showed a typical bottom-up filling. A defectless, complete, and fast 100% Cu-filled TSV was achieved at cathodic and anodic current densities of -8 and 16 mA/cm2 for a plating time of 4 h, respectively. A sound low alpha solder ball, Sn-1.0 wt.% Ag-0.5 wt.% Cu (SAC 105) with a diameter of 83 µm and height of 66 µm was reflow processed at 245 °C on Cu-filled TSV. The Cu/solder joint interface was subjected to high temperature aging at 85 °C for 150 h, which showed an excellent bonding characteristic with minimum Cu-Sn intermetallic compounds growth.

  20. Evaluation of single crystal LaB6 cathodes for use in a high frequency backward wave oscillator tube

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Davis, P. R.; Schwind, G. A.

    1984-01-01

    The results of thermionic emission and evaporation studies of single crystal LaB6 cathodes are given. A comparison between the (100), (210) and (310) crystal planes shows the (310) and (210) planes to possess a work function approx 0.2 eV lower than (100). This translates into a significant increase in current density, J, at a specified temperature. Comparison with a state-of-the-art impregnated dispenser cathode shows that LaB6 (310) is a superior cathode in nearly all respects except operating temperature at j 10 A/sq cm. The 1600 K thermionic and room temperature retarding potential work functions for LaB6 (310) are 2.42 and 2.50 respectively.

  1. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE).

    PubMed

    Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang

    2018-09-01

    To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1  m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  3. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  4. Electrochemical studies on the performance of SS316L electrode in electrokinetics

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-10-01

    Organic and trace metal pollutants are removed by employing various electrodes in an electrokinetic (EK) process. Stainless steel was used either as an anode or a cathode by various investigators in electroremediation systems. In the present study, the role of SS316L as an anode and cathode in EK system was studied by the measurements of pH, conductivity of electrolyte, and potential of the anode and cathode at different current densities. The weight loss of the anode and cathode and the leaching of chromium, iron, and nickel at different current densities were measured and discussed with an electroosmosis process. The electrochemical behavior of SS316L electrode in neutral, acidic and alkaline pH in soil environment was studied by an electrochemical technique viz. polarization study. Surface analysis of SS316L after EK was done by XPS and SEM. The higher conductivity was noticed at anolyte when compared to catholyte. The weight loss of the anode was in the following order 0.615 > 0.307 > 0.123 mA/cm2 and the cathode corrosion rate was vice versa. Peroxide production was also noticed at the anolyte, which may encourage the degradation of the total organic content (TOC) in the soil. The OCP (open circuit potential) of SS316L was about +75 mV vs SCE in the soil extract; while adding acetic acid, the potential shifted to the positive side, to about +380 mV vs SCE. The breakdown potential and the range of passivation potential were higher in acetic acid added system when compared to other systems. Pitting was observed on both the anode and cathode within 48 h during the EK process. The present study concludes that SS is not a proper electrode material for the EK process.

  5. Titanium is not "the most biocompatible metal" under cathodic potential: The relationship between voltage and MC3T3 preosteoblast behavior on electrically polarized cpTi surfaces.

    PubMed

    Ehrensberger, Mark T; Sivan, Shiril; Gilbert, Jeremy L

    2010-06-15

    An electrochemically controlled system has been developed which allows for cell culture directly on electrically polarized metal surfaces with simultaneous control and assessment of the electrochemical current, potential, and impedance of the interface. This system was utilized in this study to assess the interactions between electrochemically polarized commercially pure titanium (cpTi) and MC3T3 preosteoblast cells. Cells were cultured on CpTi for 24 h at static potentials between -1000 mV and +1000 mV vs. Ag/AgCl and cell morphology (SEM and cell area) and viability (MTT and Live-Dead assay) were assessed along with the electrochemical current densities and surface oxide impedance properties. The results indicate that cathodic polarization in the range of -600 mV to -1000 mV markedly reduces the spreading and viability of cells cultured directly on cpTi within 24 h, while anodic polarization (-300 mV to +1000 mV) out to 72 h shows no difference in cell behavior as compared to the OCP condition. Analysis of the relationship between the cell outcomes and the electrochemical current densities and impedance indicated the presence of voltage-dependent electrochemical thresholds (cathodic current density, i(c) > 1.0 microA/cm(2), R(p) < 10(5) Omega cm(2)) which may control the biocompatibility of cpTi. In addition, these outcomes have direct clinical significance for modular orthopedic implants whose potential can shift, via fretting corrosion, down into the range of potentials exhibiting poor cell behavior. (c) 2009 Wiley Periodicals, Inc.

  6. Impedance of an intense plasma-cathode electron source for tokamak startup

    DOE PAGES

    Hinson, Edward Thomas; Barr, Jayson L.; Bongard, Michael W.; ...

    2016-05-31

    In this study, an impedance model is formulated and tested for the ~1kV, ~1kA/cm 2, arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma (n arc ≈ 10 21 m -3) within the electron source, and the less dense external tokamak edge plasma (n edge ≈ 10 18 m -3) into which current is injected at the applied injector voltage, V inj. Experiments on the Pegasus spherical tokamak show the injected current, I inj, increases with V inj according to the standard double layer scaling I injmore » ~ V inj 3/2 at low current and transitions to I inj ~ V inj 1/2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density n b ~ I inj/V inj 1/2. For low tokamak edge density n edge and high I inj, the inferred beam density n b is consistent with the requirement n b ≤ n edge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, n b ~ n arc is observed, consistent with a limit to n b imposed by expansion of the double layer sheath. These results suggest that n arc is a viable control actuator for the source impedance.« less

  7. The design of an electron gun switchable between immersed and Brillouin flowa)

    NASA Astrophysics Data System (ADS)

    Becker, R.; Kester, O.

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A/cm2 at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB6 as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A/cm2. By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself - remember the "super-compression" reported on CRYEBIS-I - any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  8. The design of an electron gun switchable between immersed and Brillouin flow.

    PubMed

    Becker, R; Kester, O

    2012-02-01

    An electron gun, which can be switched from immersed flow to Brillouin flow during operation, may have advantages for charge breeders as well as for electron beam ion sources and traps (EBISTs). For EBISTs this allows to change the current density according to the repetition frequency and charge state, for charge breeders and EBISTs a lower current density in immersed flow provides higher acceptance for injected ions, while the higher current density in Brillouin flow results in shorter breeding times and a lower emittance for the extracted beam. Therefore, we have designed such a gun for an EBIS with 5 T central magnetic field and without the use of iron and moving the gun. The gun was placed in the axial fringing field of the 5 T solenoid in such a position that a gate valve can be placed between the gun and the cryostat to allow for simple maintenance. The field at the cathode surface turned out to be only 0.05 T, which is not enough to focus 50 A∕cm(2) at a few kV. However, if a small normal conducting solenoid is placed over the vacuum tube in position of the gun, a field of 0.1 T may be obtained. With this the use of LaB(6) as cathode material results in a magnetic compression of 44 and therewith in a focused current density in the trap region of more than 2000 A∕cm(2). By reversing the current in the gun solenoid the cathode field can easily compensated to zero. By proper design of the electrodes and the compression region, the gun will be able to deliver a beam in Brillouin flow. While this is interesting by itself--remember the "super-compression" reported on CRYEBIS-I--any magnetic field between zero and the value for immersed flow will result in an electron beam with a wide range of adjustable high current densities. The design tools used have been INTMAG(C) for the calculation of magnetic fields, EGN2(C) for the simulation of the gun and ANALYSE(C) for detailed analysis of the results (for more information see www.egun-igun.com).

  9. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  10. Mechanism and models for zinc metal morphology in alkaline media

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.

    1981-01-01

    Based on experimental observations, a mechanism is presented to explain existence of the different morphologies of electrodeposited zinc in alkaline solution. The high current density dendrites appear to be due to more rapid growth on the nonbasal crystallographic planes than on the basal plane. The low current density moss apparently results from dissolution from the nonbasal planes at low cathodic voltages. Electrochemical models were sought which would produce such a phenomenon. The fundamental plating mechanism alone accounts only for different rates on different planes, not for zinc dissolution from a plane in the cathodic region. Fourteen models were explored; two models were in accord with the proposed mechanism. One involves rapid disproportionation of the zinc +1 species on the nonbasal planes. The other involves a redox reaction (corrosion) between the zinc-zincate and hydrogen-water systems.

  11. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    NASA Astrophysics Data System (ADS)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  12. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    NASA Astrophysics Data System (ADS)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a resistance of unknown origin, was shown to directly or indirectly scale with Pt loading. A lack of understanding of the mechanism responsible for such resistance is noted, and several possible theories have been proposed. This lack of fundamental understanding of the origins of this resistance adds complexity to computational models which are designed to capture performance behavior with ultra-low loading electrodes. By employing the OME flow field as a tool to study this phenomena, the origins of the transport resistance appearing at ultra-low Platinum (Pt) loading is proposed to be an increase in oxygen dilution resistance through water film.

  13. CuCr2O4@rGO Nanocomposites as High-Performance Cathode Catalyst for Rechargeable Lithium-Oxygen Batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jiandi; Zhao, Yanyan; Li, Xin; Wang, Chunge; Zeng, Yaping; Yue, Guanghui; Chen, Qiang

    2018-06-01

    Rechargeable lithium-oxygen batteries have been considered as a promising energy storage technology because of their ultra-high theoretical energy densities which are comparable to gasoline. In order to improve the electrochemical properties of lithium-oxygen batteries (LOBs), especially the cycling performance, a high-efficiency cathode catalyst is the most important component. Hence, we aim to demonstrate that CuCr2O4@rGO (CCO@rGO) nanocomposites, which are synthesized using a facile hydrothermal method and followed by a series of calcination processes, are an effective cathode catalyst. The obtained CCO@rGO nanocomposites which served as the cathode catalyst of the LOBs exhibited an outstanding cycling performance for over 100 cycles with a fixed capacity of 1000 mAh g-1 at a current density of 200 mA g-1. The enhanced properties were attributed to the synergistic effect between the high catalytic efficiency of the spinel-structured CCO nanoparticles, the high specific surface area, and high conductivity of the rGO.[Figure not available: see fulltext.

  14. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    NASA Astrophysics Data System (ADS)

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.

  16. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  17. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Chen, Long; Liu, Tong; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang

    2018-01-01

    This study is aimed at improving the electrochemical performance of electrode-supported solid oxide electrolysis cells (SOECs) by optimizing the pore structure of the supports. Two planar NiO-8 mol% yttria-stabilized zirconia supports are prepared, one by the phase-inversion tape casting, and the other by conventional tape casting method using graphite as the pore former. The former contains finger-like straight open large pores, while the latter contains randomly distributed and tortuous pores. The steam electrolysis of the cells with different microstructure cathode supports is measured. The cell supported on the cathode with straight pores shows a high current density of 1.42 A cm-2 and a H2 production rate of 9.89 mL (STP) cm-2 min-1 at 1.3 V and 50 vol % humidity and 750 °C, while the cell supported on the cathode with tortuous pores shows a current density of only 0.91 A cm-2 and a H2 production rate of 6.34 mL cm-2min-1. It is concluded that the introduction of large straight open pores into the cathode support allows fast gas phase transport and thus minimizes the concentration polarization. Furthermore, the straight pores could provide better access to the reaction site (the electrode functional layer), thereby reducing the activation polarization as well.

  18. A Single-Use Paper-Shaped Microbial Fuel Cell for Rapid Aqueous Biosensing.

    PubMed

    Zuo, Kuichang; Liu, Han; Zhang, Qiaoying; Liang, Peng; Huang, Xia; Vecitis, Chad D

    2015-06-22

    The traditional chamber-based microbial fuel cell (MFC) often has the disadvantages of high ohmic resistance, large volume requirements, and delayed start-up. In this study, paper-shaped MFCs utilizing a porous carbon anode, a solid Ag2 O-coated carbon cathode, and a micrometer-thin porous polyvinylidene fluoride (PVDF) separator are investigated to address the classical MFC issues. The Ag2 O-coated cathode has a low overpotential of 0.06 V at a reducing current of 1 mA compared to a Pt-air cathode. Rapid inoculation by filtration results in an instantaneous power density of 92 mW m(-2) with an internal resistance of 162 Ω. Integrated current over the first 30 min of operation has a linear relation with microbial concentration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.

    PubMed

    Li, Baitao; Wang, Mian; Zhou, Xiuxiu; Wang, Xiujun; Liu, Bingchuan; Li, Baikun

    2015-10-01

    A novel platinum (Pt)-free cathodic materials binuclear-cobalt-phthalocyanine (Bi-CoPc) pyrolyzed at different temperatures (300-1000 °C) were examined as the oxygen reduction reaction (ORR) catalysts, and compared with unpyrolyzed Bi-CoPc/C and Pt cathode in single chamber microbial fuel cells (SCMFCs). The results showed that the pyrolysis process increased the nitrogen abundance on Bi-CoPc and changed the nitrogen types. The Bi-CoPc pyrolyzed at 800 °C contained a significant amount of pyrrolic-N, and exhibited a high electrochemical catalytic activity. The power density and current density increased with temperature: Bi-CoPc/C-800 > Bi-CoPc/C-1000 > Bi-CoPc/C-600 > Bi-CoPc/C-300 > Bi-CoPc/C. The SCMFC with Bi-CoPc/C-800 cathode had a maximum power density of 604 mW m(-2). The low cost Bi-CoPc compounds developed in this study showed a potential in air-breathing MFC systems, with the proper pyrolysis temperature being chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Electrochemical performance of La2O3/Li2O/TiO2 nano-particle coated cathode material LiFePO4.

    PubMed

    Wang, Hong; Yang, Chi; Liu, Shu-Xin

    2014-09-01

    Cathode material, LiFePO4 was modified by coating with a thin layer of La2O3/Li2O/TiO2 nano-particles for improving its performance for lithium ion batteries. The morphology and structure of the modified cathode material were characterized by powder X-ray diffraction, scanning electron microcopy and AES. The performance of the battery with the modified cathode material, including cycling stability, C-rate discharge was examined. The results show that the battery composed of the coated cathode materials can discharge at a large current density and show stable cycling performance in the range from 2.5 to 4.0 V. The rate of Li ion diffusion increases in the battery with the La2O3/Li2O/TiO2-coated LiFePO4 as a cathode and the coating layer may acts as a faster ion conductor (La(2/3-x)Li(3x)TiO3).

  1. Experimental study of current loss and plasma formation in the Z machine post-hole convolute

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Gilgenbach, R. M.; Cuneo, M. E.; Jennings, C. A.; McBride, R. D.; Waisman, E. M.; Hutsel, B. T.; Stygar, W. A.; Rose, D. V.; Maron, Y.

    2017-01-01

    The Z pulsed-power generator at Sandia National Laboratories drives high energy density physics experiments with load currents of up to 26 MA. Z utilizes a double post-hole convolute to combine the current from four parallel magnetically insulated transmission lines into a single transmission line just upstream of the load. Current loss is observed in most experiments and is traditionally attributed to inefficient convolute performance. The apparent loss current varies substantially for z-pinch loads with different inductance histories; however, a similar convolute impedance history is observed for all load types. This paper details direct spectroscopic measurements of plasma density, temperature, and apparent and actual plasma closure velocities within the convolute. Spectral measurements indicate a correlation between impedance collapse and plasma formation in the convolute. Absorption features in the spectra show the convolute plasma consists primarily of hydrogen, which likely forms from desorbed electrode contaminant species such as H2O , H2 , and hydrocarbons. Plasma densities increase from 1 ×1016 cm-3 (level of detectability) just before peak current to over 1 ×1017 cm-3 at stagnation (tens of ns later). The density seems to be highest near the cathode surface, with an apparent cathode to anode plasma velocity in the range of 35 - 50 cm /μ s . Similar plasma conditions and convolute impedance histories are observed in experiments with high and low losses, suggesting that losses are driven largely by load dynamics, which determine the voltage on the convolute.

  2. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    PubMed

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  3. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay inmore » the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.« less

  4. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{supmore » 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.« less

  5. Trak Investigation of Focusing Electrode Geometries for the DARHT Axis-I Diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallas, Nicholas Dimitrious

    2017-05-15

    An investigation was carried out on the effects of different cathode shroud geometries of the DARHT Axis-1 diode using the Trak ray tracing software. Pierce angles of 20, 30, 45, 60, and 67.5 degrees were investigated. For each geometry the current density with respect to radial position will be presented as it evolves in the longitudinal direction. In addition the emittances for each geometry are compared and this information is used to determine the optimal geometry from the selected angles. These results are compared to the baseline geometry currently employed at DARHT of a simple 2.5mm recessed velvet cathode. Ofmore » the selected angles it was found that 45 degrees produced the lowest normalized emittance value, whereas 60 degrees produced the most uniform current density profile at 1cm away from the emission surface. For the purpose of this investigation the effects of the bucking coil and solenoid around the hollow anode of the DARHT Axis I injector are neglected.« less

  6. Microplasma device architectures with various diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan

    2017-02-01

    Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl-V), plasma density (n e-V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.

  7. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  8. Recent progress on RE2O3-Mo/W emission materials.

    PubMed

    Wang, Jinshu; Zhang, Xizhu; Liu, Wei; Cui, Yuntao; Wang, Yiman; Zhou, Meiling

    2012-08-01

    RE2O3-Mo/W cathodes were prepared by powder metallurgy method. La2O3-Y2O3-Mo cermet cathodes prepared by traditional sintering method and spark plasma sintering (SPS) exhibit different secondary emission properties. The La2O3-Y2O3-Mo cermet cathode prepared by SPS method has smaller grain size and exhibits better secondary emission performance. Monte carlo calculation results indicate that the secondary electron emission way of the cathode correlates with the grain size. Decreasing the grain size can decrease the positive charging effect of RE2O3 and thus is favorable for the escaping of secondary electrons to vacuum. The Scandia doped tungsten matrix dispenser cathode with a sub-micrometer microstructure of matrix with uniformly distributed nanometer-particles of Scandia has good thermionic emission property. Over 100 A/cm2 full space charge limited current density can be obtained at 950Cb. The cathode surface is covered by a Ba-Sc-O active surface layer with nano-particles distributing mainly on growth steps of W grains, leads to the conspicuous emission property of the cathode.

  9. Preliminary Development of Electrodes for an Electric-Arc Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shepard, Charles E.; Boldman, Donald R.

    1959-01-01

    Two electrode configurations were tested in an electric-arc wind tunnel at the NASA Lewis Research Center. The results indicated approximately the same heat-loss rate per unit of arc power input for each of the configurations. Measured heat-loss rates were on the order of 40 percent of the arc power input. Nearly all this loss occurred at the anode. The power input and arc current limitations of the electrodes appear to be the critical design factors. Up to now, the maximum power to the stream has been 115 kilowatts with a cooled tungsten cathode and a cooled cylindrical anode incorporating a magnetic field. The maximum power input to this anode could not be established with the cooled tungsten cathode because cathode failures occurred at a gross power level of approximately 175 kilowatts. It was necessary to use a graphite cathode to seek the limitation of the anode. The results indicated that the anode limitation was primarily a function of arc current rather than power input. The anode was successfully operated at a power of 340 kilowatts at 1730 amperes; however, the anode failed with a power input of 324 kilowatts and a current of 2140 amperes. The magnetic flux density at the time of failure was 0.32 weber per square meter, or 3200 gauss. The graphite cathode was used only to establish the anode limitation; further investigation of graphite cathodes was discontinued because of the large amount of stream contamination associated with this type of electrode.

  10. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  11. Charge Injection Capacity of TiN Electrodes for an Extended Voltage Range

    PubMed Central

    Patan, Mustafa; Shah, Tosha; Sahin, Mesut

    2011-01-01

    Many applications of neural stimulation demand a high current density from the electrodes used for stimulus delivery. New materials have been searched that can provide such large current and charge densities where the traditional noble metal and capacitor electrodes are inadequate. Titanium nitride, which has been used in cardiac pacemaker leads for many years, is one of these materials recently considered for neural stimulation. In this short report, we investigated the charge injection capacity of TiN electrodes for an extended range of cathodic voltages. The injected charge increased first slowly as a function of the electrode voltage, and then at a faster rate beyond −1.6 V. The maximum charge was 4.45 mC/cm2 (n=6) for a cathodic voltage peak of −3.0 V and a bias voltage of −0.8 V. There was no evidence of bubble generation under microscopic observation. The unrecoverable charges remained under 7% of the total injected charge for the largest cathodic voltage tested. These large values of charge injection capacity and relatively small unrecoverable charges warrant further investigation of the charge injection mechanism in TiN interfaces at this extended range of electrode voltages. PMID:17946870

  12. Investigation of electrode materials for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Arcand, G. M.

    1971-01-01

    A number of amalgam electrode systems were investigated for possible use as high rate anodes and cathodes. The systems examined include: lithium, sodium, and potassium in Group 1, magnesium, calcium, and barium in Group 2, aluminum in Group 3, lead in Group 4, copper in Group 1b, and zinc and cadmium in Group 2b. The K(Hg) and Na(Hg) anodes in 10 VF and 15 VF (an unambiguous expression of concentration that indicates the number of formula weights of solute dissolved in a liter of solution) hydroxide solutions have proven satisfactory; some of these have produced current densities of more than 8 A/sq cm. None of the amalgam cathodes have approached this performance although the TI(Hg) has delivered 1 A/sq cm. Se(Hg) and Te(Hg) cathodes have given very stable discharges. Zn(Hg) and Cd(Hg) electrodes did not show good high rate characteristics, 200 to 300 mA/sq cm being about the maximum current densities obtainable. Both anodes are charged through a two-step process in which M(Hg) is first formed electrochemically and subsequently reduces Zn(II or Cd(II) to form the corresponding amalgam. The second step is extremely rapid for zinc and very slow for cadmium.

  13. New electrocatalysts for hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Cattabriga, R. A.; Giner, J.; Parry, J.; Swette, L. L.

    1970-01-01

    Platinum-silver, palladium-gold, and platinum-gold alloys serve as oxygen reduction catalysts in high-current-density cells. Catalysts were tested on polytetrafluoroethylene-bonded cathodes and a hydrogen anode at an operating cell temperature of 80 degrees C.

  14. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  15. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    NASA Astrophysics Data System (ADS)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.

  16. Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method

    NASA Astrophysics Data System (ADS)

    Kong, Linghan; Wang, Weizong; Murphy, Anthony B.; Xia, Guangqing

    2017-04-01

    Microdischarges are an important type of plasma discharge that possess several unique characteristics, such as the presence of a stable glow discharge, high plasma density and intense excimer radiation, leading to several potential applications. The intense and controllable gas heating within the extremely small dimensions of microdischarges has been exploited in micro-thruster technologies by incorporating a micro-nozzle to generate the thrust. This kind of micro-thruster has a significantly improved specific impulse performance compared to conventional cold gas thrusters, and can meet the requirements arising from the emerging development and application of micro-spacecraft. In this paper, we performed a self-consistent 2D particle-in-cell simulation, with a Monte Carlo collision model, of a microdischarge operating in a prototype micro-plasma thruster with a hollow cylinder geometry and a divergent micro-nozzle. The model takes into account the thermionic electron emission including the Schottky effect, the secondary electron emission due to cathode bombardment by the plasma ions, several different collision processes, and a non-uniform argon background gas density in the cathode-anode gap. Results in the high-pressure (several hundreds of Torr), high-current (mA) operating regime showing the behavior of the plasma density, potential distribution, and energy flux towards the hollow cathode and anode are presented and discussed. In addition, the results of simulations showing the effect of different argon gas pressures, cathode material work function and discharge voltage on the operation of the microdischarge thruster are presented. Our calculated properties are compared with experimental data under similar conditions and qualitative and quantitative agreements are reached.

  17. Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion

    NASA Astrophysics Data System (ADS)

    Xie, Kan; Martinez, Rafael A.; Williams, John D.

    2014-04-01

    This paper focuses on the net electron-emission current as a function of bias voltage of a plasma source that is being used as the cathodic element in a bare electrodynamic tether system. An analysis is made that enables an understanding of the basic issues determining the current-voltage (C-V) behaviour. This is important for the efficiency of the electrodynamic tether and for low impedance performance without relying on the properties of space plasma for varying orbital altitudes, inclinations, day-night cycles or the position of the plasma contactor relative to the wake of the spacecraft. The cathodic plasma contactor considered has a cylindrical discharge chamber (10 cm in diameter and ˜11 cm in length) and is driven by a hollow cathode. Experiments and a 1D spherical model are both used to study the contactor's C-V curves. The experiments demonstrate how the cathodic contactor would emit electrons into space for anode voltages in the range of 25-40 V, discharge currents in the range of 1-2.5 A, and low xenon gas flows of 2-4 sccm. Plasma properties are measured and compared with (3 A) and without net electron emission. A study of the dependence of relevant parameters found that the C-V behaviour strongly depends on electron temperature, initial ion energy and ion emission current at the contactor exit. However, it depended only weakly on ambient plasma density. The error in the developed model compared with the experimental C-V curves is within 5% at low electron-emission currents (0-2 A). The external ionization processes and high ion production rate caused by the discharge chamber, which dominate the C-V behaviour at electron-emission currents over 2 A, are further highlighted and discussed.

  18. On stabilization of field emission and increase in the current density of planar nanostructures with DLC films

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.

    2018-04-01

    The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.

  19. Structural studies of enzyme-based microfluidic biofuel cells

    NASA Astrophysics Data System (ADS)

    Togo, Makoto; Takamura, Akimasa; Asai, Tatsuya; Kaji, Hirokazu; Nishizawa, Matsuhiko

    An enzyme-based glucose/O 2 biofuel cell was constructed within a microfluidic channel to study the influence of electrode configuration and fluidic channel height on cell performance. The cell was composed of a bilirubin oxidase (BOD)-adsorbed O 2 cathode and a glucose anode prepared by co-immobilization of glucose dehydrogenase (GDH), diaphorase (Dp) and VK 3-pendant poly- L-lysine. The consumption of O 2 at the upstream cathode protected the downstream anode from interfering O 2 molecules, and consequently improved the cell performance (maximum cell current) ca. 10% for the present cell. The cell performance was also affected by the channel height. The output current and power of a 0.1 mm-height cell was significantly less than those of a 1 mm-height cell because of the depletion of O 2, as determined by the shape of the E- I curve at the cathode. On the other hand, the volume density of current and power was several times higher for the narrower cell.

  20. Influence of the current density on the electrochemical treatment of concentrated 1-butyl-3-methylimidazolium chloride solutions on diamond electrodes.

    PubMed

    Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J

    2016-10-01

    This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.

  1. Separation of plutonium from lanthanum by electrolysis in LiCl KCl onto molten bismuth electrode

    NASA Astrophysics Data System (ADS)

    Serp, J.; Lefebvre, P.; Malmbeck, R.; Rebizant, J.; Vallet, P.; Glatz, J.-P.

    2005-04-01

    This work presents a study on the electroseparation of plutonium from lanthanum using molten bismuth electrodes in LiCl-KCl eutectic at 733 K. The reduction potentials of Pu3+ and La3+ ions were measured on a Bi thin film electrode using cyclic voltammetry (CV). A difference between the peak potentials for the formation of PuBi2 and LaBi2 of approximately 100 mV was found. Separation tests were then carried out using different current densities and salt phase compositions between a plutonium rod anode and an unstirred molten Bi cathode in order to evaluate the efficiency of an electrolytic separation process. At a current density of 12 mA/cm2/wt% (Pu3+), only Pu3+ ions are reduced into the molten Bi electrode, leaving La3+ ions in the salt melt. Similar results were found at two different Pu/La concentration ratios ([Pu]/[La] = 4 and 10). At a current density of 26 mA/cm2/wt% (Pu3+), co-reduction of Pu and La was observed as expected by the large negative potential of the Bi cathode during the separation test.

  2. Gyrotron Gun Study Report,

    DTIC Science & Technology

    1981-09-18

    of bern current to space-charge limited Langmuir current - Cathode surface current density S 2 a Cylindrical diode geometry function (tabulated in...design factor . t -13- " r =J... .. ::!, qm ! . ... ... - . , m- d nc- Cd (3) lsically, this equation arises from the recognition that the gap...S. Beam Current as a Fraction of the Limiting Langmuir Current (o/IL) Equation 5 in Table I is basically intended to provide a measure of the C

  3. Electrical and Mechanical Performance of Carbon Fiber-Reinforced Polymer Used as the Impressed Current Anode Material.

    PubMed

    Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng

    2014-07-24

    An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.

  4. Pulsed metallic-plasma generators.

    NASA Technical Reports Server (NTRS)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  5. NiF2 Cathodes For Rechargeable Na Batteries

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Halpert, Gerald

    1992-01-01

    Use of NiF2 cathodes in medium-to-high-temperature rechargeable sodium batteries increases energy and power densities by 25 to 30 percent without detracting from potential advantage of safety this type of sodium battery offers over sodium batteries having sulfur cathodes. High-energy-density sodium batteries with metal fluoride cathodes used in electric vehicles and for leveling loads on powerlines.

  6. Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Jiao, Z.; Shikazono, N.

    2017-02-01

    In the present study, the polarization characteristics of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) - Gd0.1Ce0.9O1.95 (GDC) composite cathodes with different volume ratios were investigated. Samples with volume ratios of 20:80, 30:70, 50:50, 70:30 and 100:0 vol % were tested. The electrochemical impedance spectroscopy tests and current voltage curve measurements were carried out for the current densities from 0 to 0.2 Acm-2 with an interval of 0.05 Acm-2. The results showed that a volume ratio of LSCF:GDC = 30:70 composite cathode led to the lowest overpotential, and the overpotential increased in the order of 30:70, 50:50, 70:30, 100:0, 20:80 vol %. Three dimensional microstructures of composite cathodes were reconstructed and quantified by dual beam focused ion beam-scanning electron microscope (FIB-SEM). The results showed that neither LSCF surface area nor triple phase boundary (TPB) alone could explain the dependence of polarization characteristics on volume ratios. Current and electrochemical potential distributions were simulated by the Lattice Boltzmann method, in which both surface and TPB reactions were considered. Prediction considering both surface and TPB reactions could predict qualitatively the dependence of overpotentials on LSCF - GDC cathode composition.

  7. Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery

    NASA Technical Reports Server (NTRS)

    Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu

    2015-01-01

    Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.

  8. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  9. Effect of Transition Metal Ordering on the Electronic Properties of LiNi1 - y - xCoyMnxO2 Cathode Materials for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team

    2015-03-01

    Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.

  10. Novel MCP-Based Electron Source Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haughey, M.; Shiltsev V., Shiltsev V.; Stancari, G.

    Microchannel plates (MCPs) were recently proposed as novel type of cathodes for electron guns [1], suitable for applications in design of electron lenses. We report results of the first systematic study of microchannel plate based photomultiplier time response and maximum cur-rent density tests using different sources of light pulses. The Burle 85011-501 MCP-PMT is found to have good time response properties being capable of producing na-nosecond long pulses with modest maximum current density and performance strongly dependent on magnetic field strength.

  11. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOEpatents

    Maskalick, Nicholas J.

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  12. A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density.

    PubMed

    Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing

    2017-02-01

    A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.

    PubMed

    Cusick, Roland D; Ullery, Mark L; Dempsey, Brian A; Logan, Bruce E

    2014-05-01

    Microbial electrolysis cells (MECs) can be used to simultaneously convert wastewater organics to hydrogen and precipitate struvite, but scale formation at the cathode surface can block catalytic active sites and limit extended operation. To promote bulk phase struvite precipitation and minimize cathode scaling, a two-chamber MEC was designed with a fluidized bed to produce suspended particles and inhibit scale formation on the cathode surface. MEC operation elevated the cathode pH to between 8.3 and 8.7 under continuous flow conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation, compared to 10-20% for the control (open circuit conditions). At low current densities (≤2 mA/m(2)), scouring of the cathode by fluidized particles prevented scale accumulation over a period of 8 days. There was nearly identical removal of soluble phosphorus and magnesium from solution, and an equimolar composition in the collected solids, supporting phosphorus removal by struvite formation. At an applied voltage of 1.0 V, energy consumption from the power supply and pumping (0.2 Wh/L, 7.5 Wh/g-P) was significantly less than that needed by other struvite formation methods based on pH adjustment such as aeration and NaOH addition. In the anode chamber, current generation led to COD oxidation (1.1-2.1 g-COD/L-d) and ammonium removal (7-12 mM) from digestate amended with 1 g/L of sodium acetate. These results indicate that a fluidized bed cathode MEC is a promising method of sustainable electrochemical nutrient and energy recovery method for nutrient rich wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Sea water magnesium fuel cell power supply

    NASA Astrophysics Data System (ADS)

    Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.

    2015-08-01

    An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  16. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector.

    PubMed

    Zhao, Yu; Hong, Misun; Bonnet Mercier, Nadège; Yu, Guihua; Choi, Hee Cheul; Byon, Hye Ryung

    2014-02-12

    A lithium-iodine (Li-I2) cell using the triiodide/iodide (I3(-)/I(-)) redox couple in an aqueous cathode has superior gravimetric and volumetric energy densities (∼ 330 W h kg(-1) and ∼ 650 W h L(-1), respectively, from saturated I2 in an aqueous cathode) to the reported aqueous Li-ion batteries and aqueous cathode-type batteries, which provides an opportunity to construct cost-effective and high-performance energy storage. To apply this I3(-)/I(-) aqueous cathode for a portable and compact 3.5 V battery, unlike for grid-scale storage as general target of redox flow batteries, we use a three-dimensional and millimeter thick carbon nanotube current collector for the I3(-)/I(-) redox reaction, which can shorten the diffusion length of the redox couple and provide rapid electron transport. These endeavors allow the Li-I2 battery to enlarge its specific capacity, cycling retention, and maintain a stable potential, thereby demonstrating a promising candidate for an environmentally benign and reusable portable battery.

  17. Comparison the performance of carbon plate and Pt-loaded carbon in photocatalytic fuel cell (PFC) process

    NASA Astrophysics Data System (ADS)

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, Nik Athirah; Lee, Sin-Li

    2017-04-01

    The objective of this study is to compare the performance of cathode electrode in photocatalytic fuel cell (PFC) system under UV light irradiation. The initial concentration 10 mg/L of Reactive Black 5 (RB5) with carbon plate (CP) and Pt-loaded carbon (Pt/C) as cathode reduced to 2.052 and 0.549 mg/L, respectively, after 24 h irradiated by UV light. The value for open circuit voltage, Voc, short-circuit current density, Jsc and maximum power density, Pmax for CP was 0.825 V, 0.00035 mA/cm2 and 0.000063 mW/cm2, respectively, meanwhile Voc, Jsc and Pmax for Pt/C was 1.15 V, 0.0015 mA/cm2 and 0.000286 mW/cm2, respectively, by varying external resistor value from 300 kΩ to 10 Ω. The degradation of RB5 and generation of electricity with Pt/C as cathode showed greater performance than CP.

  18. Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life

    PubMed Central

    Chen, Hao; Xu, Hanyan; Wang, Siyao; Huang, Tieqi; Xi, Jiabin; Cai, Shengying; Guo, Fan; Xu, Zhen; Gao, Weiwei; Gao, Chao

    2017-01-01

    Rechargeable aluminum-ion batteries are promising in high-power density but still face critical challenges of limited lifetime, rate capability, and cathodic capacity. We design a “trihigh tricontinuous” (3H3C) graphene film cathode with features of high quality, orientation, and channeling for local structures (3H) and continuous electron-conducting matrix, ion-diffusion highway, and electroactive mass for the whole electrode (3C). Such a cathode retains high specific capacity of around 120 mAh g−1 at ultrahigh current density of 400 A g−1 (charged in 1.1 s) with 91.7% retention after 250,000 cycles, surpassing all the previous batteries in terms of rate capability and cycle life. The assembled aluminum-graphene battery works well within a wide temperature range of −40 to 120°C with remarkable flexibility bearing 10,000 times of folding, promising for all-climate wearable energy devices. This design opens an avenue for a future super-batteries. PMID:29255803

  19. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  20. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Electric thruster research

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions. Thermal losses were calculated for an oxide-free hollow cathode. At low electron emissions, the total of the radiation and conduction losses agreed with the total discharge power. At higher emissions, though, the plasma collisions external to the cathode constituted an increasingly greater fraction of the discharge power. Experimental performance of a Hall-current thruster was adversely affected by nonuniformities in the magnetic field, produced by the cathode heating current. The technology of closed-drift thrusters was reviewed. The experimental electron diffusion in the acceleration channel was found to be within about a factor of 3 of the Bohm value for the better thruster designs at most operating conditions. Thruster efficiencies of about 0.5 appear practical for the 1000 to 2000 s range of specific impulse. Lifetime information is limited, but values of several thousands of hours should be possible with anode layer thrusters operated or = to 2000 s.

  2. Electrosynthesis of cerium hexaboride by the molten salt technique

    NASA Astrophysics Data System (ADS)

    Amalajyothi, K.; Berchmans, L. John; Angappan, S.; Visuvasam, A.

    2008-07-01

    Molten salts are well thought-out as the incredibly promising medium for chemical and electrochemical synthesis of compounds. Hence a stab has been made on the electrochemical synthesis of CeB 6 using molten salt technique. The electrolyte consisted of lithium fluoride (LiF), boron trioxide (B 2O 3) and cerium chloride (CeCl 3). Electrochemical experiments were carried out in an inconal reactor in an argon atmosphere. Electrolysis was executed in a high-density graphite crucible, which doles out as the electrolyte clutching vessel as well as the anode. The cathode was made up of a molybdenum rod. The electrolysis was carried out at 900 °C at different current densities intended for the synthesis of CeB 6 crystals. After the electrolysis, the cathode product was removed and cleaned using dilute HCl solution. The crystals were scrutinized by X-ray diffraction (XRD) to make out the phase and the purity. It has been observed that CeB 6 crystals are synthesized at all current densities and the product has traces of impurities.

  3. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.

    PubMed

    Kang, Jungwon; Mathew, Vinod; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Im, Won Bin; Han, Junhee; Lee, Jeong Yong; Kim, Jaekook

    2014-02-10

    A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20-30 nm. When tested for Li-insertion properties in the potential windows of 3-4.3 and 3-4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window.

  4. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  5. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  6. In-situ synthesis of 3D GA on titanium wire as a binder- free electrode for electro-Fenton removing of EDTA-Ni.

    PubMed

    Wen, Shulong; Niu, Zhuyu; Zhang, Zhen; Li, Lianghao; Chen, Yuancai

    2018-01-05

    Ethylenediaminetetraacetic acid (EDTA) could form stable complexes with toxic metals such as nickel due to its strong chelation. The three-dimensional (3D) macroporous graphene aerogels (GA), which was in-situ assembled by reduced graphene oxide (rGO) sheets on titanium wire as binder-free electrode, was presented as cathode for the degradation of EDTA-Ni in Electro-Fenton process. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscope (TEM) and Brunauer-Emmett-Teller (BET) results indicated 3D GA formed three dimensional architecture with large and homogenous macropore structure and surface area. Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV) and Rotating Ring-disk Electrode (RRDE) results showed that the 3D GA cathode at pH 3 displayed the highest current density and electrochemical active surface area (ECSA), and better two-electron selectivity for ORR than other pH value, confirming the 3D-GA cathode at pH 3 has the highest electrocatalytic activity and generates more H 2 O 2 . The factors such as pH, applied current density, concentration of Fe 2+ , Na 2 SO 4, and aeration rates of air were also investigated. Under the optimum conditions, 73.5% of EDTA-Ni was degraded after reaction for 2h. Mechanism analysis indicated that the production of OH on the 3D GA cathode played an important role in the removal of EDTA-Ni in the 3D GA-EF process, where the direct regeneration of Fe 2+ on the cathode would greatly reduce the consumption of H 2 O 2 . Therefore, it is of great promise for 3D-GA catalyst to be developed as highly efficient, cost-effective and durable cathode for the removal of EDTA-Ni. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterization and Performance of a High-Current-Density Ion Implanter with Magnetized Hollow-Cathode Plasma Source

    NASA Astrophysics Data System (ADS)

    Falkenstein, Zoran; Rej, Donald; Gavrilov, Nikolai

    1998-10-01

    In a collaboration between the Institute of Electrophysics (IEP) and the Los Alamos National Laboratory (LANL), the IEP has developed an industrial scalable, high-power, large-area ion source for the surface modification of materials. The plasma source of the ion beam source can be described as a pulsed glow discharge with a cold, hollow-cathode in a weak magnetic field. Extraction and focusing of positive ions by an acceleration and ion-optical plate system renders the generation of a homogeneous, large-area ion beam with an averaged total ion current of up to 50 mA at acceleration voltages of up to 50 kV. The principle set-up of the ion beam source as well as some electrical characteristics (gas discharge current and the extracted ion beam current) are presented for a lab-scale prototype. Measurements of the radial ion current density profiles within the ion beam for various discharge parameters, as well as results on surface modification by ion implantation of nitrogen into aluminum and chromium are presented. Finally, a comparison of the applied ion dose with the retained ion doses is given.

  8. Improving the aluminum-air battery system for use in electrical vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is not as significant as the increase in the current density away from the entrance. By extending the cathode below the anode, the high local current density can be reduced.

  9. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.

  10. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate

    PubMed Central

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N.

    2015-01-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min−1) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its advers effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min−1 flow, 500 mA current, and 5 mg L−1 initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  11. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.

    PubMed

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Electrochemical device for converting carbon dioxide to a reaction product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai

    An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potentialmore » of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.« less

  13. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  14. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  15. Three-Dimensionally Hierarchical Ni/Ni3S2/S Cathode for Lithium-Sulfur Battery.

    PubMed

    Li, Zhe; Zhang, Shiguo; Zhang, Jiaheng; Xu, Miao; Tatara, Ryoichi; Dokko, Kaoru; Watanabe, Masayoshi

    2017-11-08

    Lithium-sulfur (Li-S) batteries have attracted interest as a promising energy-storage technology due to their overwhelming advantages such as high energy density and low cost. However, their commercial success is impeded by deterioration of sulfur utilization, significant capacity fade, and poor cycle life, which are principally originated from the severe shuttle effect in relation to the dissolution and migration of lithium polysulfides. Herein, we proposed an effective and facile strategy to anchor the polysulfides and improve sulfur loading by constructing a three-dimensionally hierarchical Ni/Ni 3 S 2 /S cathode. This self-supported hybrid architecture is sequentially fabricated by the partial sulfurization of Ni foam by a mild hydrothermal process, followed by physical loading of elemental sulfur. The incorporation of Ni 3 S 2 , with high electronic conductivity and strong polysulfide adsorption capability, can not only empower the cathode to alleviate the shuttle effect, but also afford a favorable electrochemical environment with lower interfacial resistance, which could facilitate the redox kinetics of the anchored polysulfides. Consequently, the obtained Ni/Ni 3 S 2 /S cathode with a sulfur loading of ∼4.0 mg/cm 2 demonstrated excellent electrochemical characteristics. For example, at high current density of 4 mA/cm 2 , this thick cathode demonstrated a discharge capacity of 441 mAh/g at the 150th cycle.

  16. Nonlinear Conductivities and Electrochemical Performances of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Electrodes

    DOE PAGES

    Su, Xin; Ha, Seonbaek; Ishwait, Manar B.; ...

    2016-01-01

    There is increasing research attention on optimizing the carbon black nanoparticles’ structure and loading procedure for improving conductivities and thus, electrochemical performances of cathodes in lithium-ion batteries. Recently, LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523) has been actively investigated due to its larger specific capacity and lower cost compared to conventional cathode materials. Presented here is a high energy density NCM523 cathode obtained by reducing the carbon content using the state-of-the-art carbon nanoparticles developed at Cabot Corporation. It is the first time that the nonlinear conductivity of NCM523 electrodes has been discovered, which is significantly impacted by the dispersion and surface crystalline quality of carbon black nanoparticles, especially when the loading of carbon black is only 1 wt%. The nonlinear conductivity of the cathodes can dramatically affect their electrochemical performances at high rates (more » $$\\geqq$$3C), which is close to the tunneling saturated current. In addition, there is no discernable difference in terms of the rate and cycle performance of the NCM523 electrodes, when reducing the loading of novel carbon black nanoparticles from 5 wt% to 1 wt% in the cathode. Therefore, the energy density of the electrode can be increased by 9% by using existing commercially available electrode materials.« less

  17. La0.8Sr0.2Fe0.8Cu0.2O3-δ as “cobalt-free” cathode for La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte

    NASA Astrophysics Data System (ADS)

    Zurlo, Francesca; Di Bartolomeo, Elisabetta; D'Epifanio, Alessandra; Felice, Valeria; Natali Sora, Isabella; Tortora, Luca; Licoccia, Silvia

    2014-12-01

    A "cobalt-free" cathode material with stoichiometric composition La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu) was specifically developed for use with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) electrolyte in intermediate temperature solid oxide fuel cell (IT-SOFC) systems. The chemical stability of LSFCu in contact with LSGM electrolyte was investigated by structural and morphological analysis. The electrochemical properties of LSFCu dense pellets were investigated in the temperature range 600-750 °C by electrochemical impedance spectroscopy (EIS). LSFCu|LSGM|LSFCu symmetrical cells were prepared and area specific resistance (ASR) values, directly depending on the rate limiting step of the oxygen reduction reaction, were evaluated. Fuel cells were prepared using LSFCu as cathode material on a LSGM pellet and electrochemical tests were performed in the 700-800 °C temperature range and compared to similar fuel cells prepared by using commercial La0.6Sr0.4Fe0.8Co0.2O3-δ (LSFCo) as a cathode. The maximum current density and power density recorded for LSFCu and LSFCo were similar. This fact demonstrates that Cu can be used as Co substitute in perovskite cathode materials.

  18. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  19. Durability and performance optimization of cathode materials for fuel cells

    NASA Astrophysics Data System (ADS)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.

  20. Tracking the Effect of Cathodal Transcranial Direct Current Stimulation on Cortical Excitability and Connectivity by Means of TMS-EEG

    PubMed Central

    Varoli, Erica; Pisoni, Alberto; Mattavelli, Giulia C.; Vergallito, Alessandra; Gallucci, Alessia; Mauro, Lilia D.; Rosanova, Mario; Bolognini, Nadia; Vallar, Giuseppe; Romero Lauro, Leonor J.

    2018-01-01

    Transcranial direct current stimulation (tDCS) is increasingly used in both research and therapeutic settings, but its precise mechanisms remain largely unknown. At a neuronal level, tDCS modulates cortical excitability by shifting the resting membrane potential in a polarity-dependent way: anodal stimulation increases the spontaneous firing rate, while cathodal decreases it. However, the neurophysiological underpinnings of anodal/cathodal tDCS seem to be different, as well as their behavioral effect, in particular when high order areas are involved, compared to when motor or sensory brain areas are targeted. Previously, we investigated the effect of anodal tDCS on cortical excitability, by means of a combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Results showed a diffuse rise of cortical excitability in a bilateral fronto-parietal network. In the present study, we tested, with the same paradigm, the effect of cathodal tDCS. Single pulse TMS was delivered over the left posterior parietal cortex (PPC), before, during, and after 10 min of cathodal or sham tDCS over the right PPC, while recording HD-EEG. Indexes of global and local cortical excitability were obtained both at sensors and cortical sources level. At sensors, global and local mean field power (GMFP and LMFP) were computed for three temporal windows (0–50, 50–100, and 100–150 ms), on all channels (GMFP), and in four different clusters of electrodes (LMFP, left and right, in frontal and parietal regions). After source reconstruction, Significant Current Density was computed at the global level, and for four Broadmann's areas (left/right BA 6 and 7). Both sensors and cortical sources results converge in showing no differences during and after cathodal tDCS compared to pre-stimulation sessions, both at global and local level. The same holds for sham tDCS. These data highlight an asymmetric impact of anodal and cathodal stimulation on cortical excitability, with a diffuse effect of anodal and no effect of cathodal tDCS over the parietal cortex. These results are consistent with the current literature: while anodal-excitatory and cathodal-inhibitory effects are well-established in the sensory and motor domains, both at physiological and behavioral levels, results for cathodal stimulation are more controversial for modulation of exitability of higher order areas. PMID:29867330

  1. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility. [superconducting magnetic mirror

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  2. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge–Discharge Cycling and Heating

    DOE PAGES

    Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...

    2018-01-19

    The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less

  3. Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira

    2004-01-01

    In order to support the development of comprehensive performance and life models for future deep space missions that will utilize ion thrusters, we have undertaken a study of the plasma structure in hollow cathodes using an new pneumatic scanning probe diagnostic. This device is designed to insert a miniature probe directly into the hollow cathode orifice from either the upstream insert region in the interior of the hollow cathode, or from the downstream keeper-plasma region at the exit of the hollow cathode, to provide complete axial profiles of the discharge plasma parameters. Previous attempts to diagnose this region with probes was Limited by the melting of small probes in the intense discharge near the orifice, or caused significant perturbation of the plasma by probes large enough to survive. Our new probe is extremely compact, and when configured as a single Langmuir probe, the ceramic tube insulator is only 0.5mm in diameter and the current collecting conductor has a total area of 0.002 cm2. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage waveform to the probe as it is scanned by the pneumatic actuator into and out of the plasma region, The bellow-sealed pneumatic drive scans the probe 4 cm in the cathode insert region and 10 cm in the anode/keeper plasmas region at average speeds of about 1 mm/msec, and the residence time at the end of the insertion stroke in the densest part of the plasma near the orifice is measured to be only 10 msec. Since the voltage sweep time is fast compared to the motion of the probe, axial profiles of the plasma density, temperature and potential with reasonable spatial resolution are obtained. Measurements of the internal cathode pressures and the axial plasma-parameter profiles for a hollow cathode operating at discharge currents of up to 35 A in xenon will be presented.

  4. LiAl xCo 1- xO 2 as 4 V cathodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Haitao; Rao, G. V. Subba; Chowdari, B. V. R.

    Nominal LiAl xCo 1- xO 2 with x ranging from 0.1 to 0.3 was prepared by heating mixture of Al(OH) 3, Co 3O 4 and LiOH at 750°C in air. The effect of substitution of non-transition metal, Al, in LiCoO 2 is investigated as a 4 V cathode for lithium ion. X-ray diffraction (XRD) indicates formation of a single phase (R3¯m) within this range of substitution. When cycled between 4.5 and 2.5 V vs. Li/Li + at a current density of 1 mA cm -2, the LiAl 0.15Co 0.85O 2 cathode exhibits reversible capacity of 160 mA h g -1 initially. XRD of the cathode made at the end of 10 cycles reveals no significant change on host structure.

  5. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Souček, P.; Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P.; Fanghänel, Th.

    2016-04-01

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An-Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An-Al alloys using a LiCl-KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions.

  6. Single chamber microbial fuel cell with Ni-Co cathode

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina

    2017-10-01

    The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.

  7. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  8. Cathodic protection of a remote river pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, B.A.

    1994-03-01

    The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.

  9. Studies on niobium triselenide cathode material for lithium rechargeable cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  10. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.

    PubMed

    Yang, Wulin; Watson, Valerie J; Logan, Bruce E

    2016-08-16

    Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.

  11. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    PubMed Central

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  12. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-04-01

    Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.

  13. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst

    NASA Astrophysics Data System (ADS)

    Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.

    2017-08-01

    A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.

  14. A Host-Configured Lithium-Sulfur Cell Built on 3D Nickel Photonic Crystal with Superior Electrochemical Performances.

    PubMed

    Lin, Shengxuan; Yan, Yang; Cai, Zihe; Liu, Lin; Hu, Xiaobin

    2018-04-18

    The insulator of the sulfur cathode and the easy dendrites growth of the lithium anode are the main barriers for lithium-sulfur cells in commercial application. Here, a 3D NPC@S/3D NPC@Li full cell is reported based on 3D hierarchical and continuously porous nickel photonic crystal (NPC) to solve the problems of sulfur cathode and lithium anode at the same time. In this case, the 3D NPC@S cathode can not only offer a fast transfer of electron and lithium ion, but also effectively prevent the dissolution of polysulfides and the tremendous volume change during cycling, and the 3D NPC@Li anode can efficiently inhibit the growth of lithium dendrites and volume expansion, too. As a result, the cell exhibits a high reversible capacity of 1383 mAh g -1 at 0.5 C (the current density of 837 mA g -1 ), superior rate ability (the reversible capacity of 735 mAh g -1 at the extremely high current density of 16 750 mA g -1 ) with excellent coulombic efficiency of about 100% and an excellent cycle life over 500 cycles with only about 0.026% capacity loss per cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes.

    PubMed

    Gueon, Donghee; Hwang, Jeong Tae; Yang, Seung Bo; Cho, Eunkyung; Sohn, Kwonnam; Yang, Doo-Kyung; Moon, Jun Hyuk

    2018-01-23

    A carbon host capable of effective and uniform sulfur loading is the key for lithium-sulfur batteries (LSBs). Despite the application of porous carbon materials of various morphologies, the carbon hosts capable of uniformly impregnating highly active sulfur is still challenging. To address this issue, we demonstrate a hierarchical pore-structured CNT particle host containing spherical macropores of several hundred nanometers. The macropore CNT particles (M-CNTPs) are prepared by drying the aerosol droplets in which CNTs and polymer particles are dispersed. The spherical macropore greatly improves the penetration of sulfur into the carbon host in the melt diffusion of sulfur. In addition, the formation of macropores greatly develops the volume of the micropore between CNT strands. As a result, we uniformly impregnate 70 wt % sulfur without sulfur residue. The S-M-CNTP cathode shows a highly reversible capacity of 1343 mA h g -1 at a current density of 0.2 C even at a high sulfur content of 70 wt %. Upon a 10-fold current density increase, a high capacity retention of 74% is observed. These cathodes have a higher sulfur content than those of conventional CNT hosts but nevertheless exhibit excellent performance. Our CNTPs and pore control technology will advance the commercialization of CNT hosts for LSBs.

  16. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.

    2017-11-01

    The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.

  17. Modeling and characterization of field-enhanced corona discharge in ozone-generator diode

    NASA Astrophysics Data System (ADS)

    Patil, Jagadish G.; Vijayan, T.

    2010-02-01

    Electric field enhanced corona plasma discharge in ozone generator diode of axial symmetry has been investigated and characterized in theory. The cathode K of diode is made of a large number of sharpened nozzles arranged on various radial planes on the axial mast and pervaded in oxygen gas inside the anode cup A, produces high fields over MV/m and aids in the formation of a corona plume of dense ozone cloud over the cathode surface. An r-z finite difference scheme has been devised and employed to numerically determine the potential and electric field distributions inside the diode. The analyses of cathode emissions revealed a field emission domain conformed to modified Child-Langmuir diode-current. Passage of higher currents (over μA) in shorter A-K gaps d gave rise to cathode heated plasma extending from the corona to Saha regimes depending on local temperature. Plasma densities of order 102-106 m-3 are predicted in these. For larger d however, currents are smaller and heating negligible and a negative corona favoring ozone formation is attained. High ozone yields about 20 per cent of oxygen input is predicted in this domain. The generator so developed will be applied to various important applications such as, purification of ambient air /drinking water, ozone therapy, and so on.

  18. Influence of γ-phase on corrosion resistance of Zn–Ni alloy electrodeposition from acetate electrolytic bath

    NASA Astrophysics Data System (ADS)

    Selvaraju, V.; Thangaraj, V.

    2018-05-01

    The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.

  19. High current density sheet-like electron beam generator

    NASA Astrophysics Data System (ADS)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  20. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-05-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  1. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-04-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  2. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  3. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.

    PubMed

    Xafenias, Nikolaos; Zhang, Yue; Banks, Charles J

    2013-05-07

    Biocathodes for the reduction of the highly toxic hexavalent chromium (Cr(VI)) were investigated using Shewanella oneidensis MR-1 (MR-1) as a biocatalyst and performance was assessed in terms of current production and Cr(VI) reduction. Potentiostatically controlled experiments (-500 mV vs Ag/AgCl) showed that a mediatorless MR-1 biocathode started up under aerated conditions in the presence of lactate, received 5.5 and 1.7 times more electrons for Cr(VI) reduction over a 4 h operating period than controls without lactate and with lactate but without MR-1, respectively. Cr(VI) reduction was also enhanced, with a decrease in concentration over the 4 h operating period of 9 mg/L Cr(VI), compared to only 1 and 3 mg/L, respectively, in the controls. Riboflavin, an electron shuttle mediator naturally produced by MR-1, was also found to have a positive impact in potentiostatically controlled cathodes. Additionally, a microbial fuel cell (MFC) with MR-1 and lactate present in both anode and cathode produced a maximum current density of 32.5 mA/m(2) (1000 Ω external load) after receiving a 10 mg/L Cr(VI) addition in the cathode, and cathodic efficiency increased steadily over an 8 day operation period with successive Cr(VI) additions. In conclusion, effective and continuous Cr(VI) reduction with associated current production were achieved when MR-1 and lactate were both present in the biocathodes.

  4. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  5. Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells

    NASA Technical Reports Server (NTRS)

    Skandan, Ganesh; Singhal, Amit

    2005-01-01

    Nanostructured MnO2-based cathodes for Li-ion/polymer electrochemical cells have been investigated in a continuing effort to develop safe, high-energy-density, reliable, low-toxicity, rechargeable batteries for a variety of applications in NASA programs and in mass-produced commercial electronic equipment. Whereas the energy densities of state-of-the-art lithium-ion/polymer batteries range from 150 to 175 W h/kg, the goal of this effort is to increase the typical energy density to about 250 W h/kg. It is also expected that an incidental benefit of this effort will be increases in power densities because the distances over which Li ions must diffuse through nanostructured cathode materials are smaller than those through solid bulk cathode materials.

  6. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  7. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  8. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  9. CdS-metal contact at higher current densities.

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Boeer, K. W.; Dussel, G. A.

    1973-01-01

    An investigation is conducted concerning the mechanisms by which a steady flow of current proceeds through the contact when an external voltage is applied. The main characteristics of current mechanisms are examined, giving attention to photoemission from the cathode, thermionic emission, minority-carrier extraction, and the tunneling of electrons. A high-field domain analysis is conducted together with experimental studies. Particular attention is given to the range in which tunneling predominates.

  10. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  11. Langmuir Probe Diagnostics of Pulsed Plasma Doping System

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Overzet, Lawrence J.; Felch, Susan B.; Fang, Ziwei; Koo, Bon-Woong; Goeckner, Matthew J.

    2002-10-01

    Pulsed plasma doping (P2LAD) is a potential solution to implement ultra-shallow junctions. In this study, Langmuir probe diagnostics techniques were investigated thoroughly for its application to P2LAD system, and the current sensing scheme using batteries and a 'downstairs' load resistor turned out to be the most reliable. Severe limitations of current transformers were found in diagnostics of pulsed plasma. A floating probe was proven to be good at monitoring the disturbances of the Langmuir probe and the cathode voltage. With the above technique, time-resolved Langmuir probe measurements have been carried out in a P2LAD system. The Langmuir probe data in Ar plasma indicate that during a 20 microns long implant pulse the plasma density ranges from 1E9 1E10 cm-3 and the electron temperature ranges from 0.4 to 14 eV. Between the pulses, the density keeps at the high level for 30 ms and then decays exponentially until reaching the range of 3E8 1E9 cm-3, which demonstrates the presence of residual plasma between pulses. A non-zero plasma density during the afterglow is also observed for BF3 plasma. Significant amounts of primary electron and electron beams are present during the ignition and ensuing steady region in both Ar and BF3 plasmas while they are much stronger in BF3 plasma. Plasma density is observed to increase with cathode voltage and pressure while the electron temperature is mainly influenced by the pressure. An overshoot of the cathode voltage during the afterglow region was found, and it significantly influences the plasma potential during the afterglow.

  12. Effect of Li2O/Al cathode in Alq3 based organic light-emitting diodes.

    PubMed

    Shin, Eun Chul; Ahn, Hui Chul; Han, Wone Keun; Kim, Tae Wan; Lee, Won Jae; Hong, Jin Woong; Chung, Dong Hoe; Song, Min Jong

    2008-09-01

    An effect of bilayer cathode Li20/Al was studied in Alq3 based organic light-emitting diodes with a variation of Li2O layer thickness. The current-luminance-voltage characteristics of ITO/TPD/Alq3/Li2O/Al device were measured at ambient condition to investigate the effect of Li2O/Al. It was found that when the thickness of Li2O layer is in the range of 0.5-1 nm, there are improvements in luminance, efficiency, and turn-on voltage of the device. A current density and a luminance are increased by about 100 times, a turn-on voltage is lowered from 6 V to 3 V, a maximum current efficiency is improved by a factor of 2.3, and a maximum power efficiency is improved by a factor of 3.2 for a device with a use of thin Li2O layer compared to those of the one without the Li2Otron-barrier height for electron injection from the cathode to the emissive layer.

  13. Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures

    DOE PAGES

    Macauley, Natalia; Lujan, Roger W.; Spernjak, Dusan; ...

    2016-09-15

    The structure, composition, and interfaces of membrane electrode assemblies (MEA) and gas-diffusion layers (GDLs) have a significant effect on the performance of single-proton-exchange-membrane (PEM) fuel cells operated isothermally at subfreezing temperatures. During isothermal constant-current operation at subfreezing temperatures, water forming at the cathode initially hydrates the membrane, then forms ice in the catalyst layer and/or GDL. This ice formation results in a gradual decay in voltage. High-frequency resistance initially decreases due to an increase in membrane water content and then increases over time as the contact resistance increases. The water/ice holding capacity of a fuel cell decreases with decreasing subfreezingmore » temperature (-10°C vs. -20°C vs. -30°C) and increasing current density (0.02 A cm -2 vs. 0.04 A cm -2). Ice formation monitored using in-situ high-resolution neutron radiography indicated that the ice was concentrated near the cathode catalyst layer at low operating temperatures (≈-20°C) and high current densities (0.04 A cm -2). Significant ice formation was also observed in the GDLs at higher subfreezing temperatures (≈-10°C) and lower current densities (0.02 A cm -2). These results are in good agreement with the long-term durability observations that show more severe degradation at lower temperatures (-20°C and -30°C).« less

  14. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    NASA Astrophysics Data System (ADS)

    Jamróz, Piotr; Żyrnicki, Wiesław; Pohl, Paweł

    2012-07-01

    A stable direct current atmospheric pressure glow microdischarge (dc-μAPGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N2, H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000-2600 K) and N2 bands (1600-1950 K) were significantly lower than the excitation temperatures of Ar (7400 K-7800 K) and H (11 000-15 500 K) atoms. Vibrational temperatures of N2, OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350-1750 K) and N2 (400-1350 K) and excitation temperatures of Ar (5200-5500 K) and H (3600-12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the Hβ line and equals to (0.25-1.1) × 1015 cm- 3 and (0.68-1.2) × 1015 cm- 3 in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation properties of the developed excitation microsource. The limit of detection for Na was determined at the level of 3 ng mL- 1.

  15. Experimental investigation of electron guns for THz microwave vacuum amplifiers

    NASA Astrophysics Data System (ADS)

    Burtsev, A. A.; Grigor'ev, Yu. A.; Navrotsky, I. A.; Rogovin, V. I.; Sakhadzhi, G. V.; Shumikhin, K. V.

    2016-05-01

    Single-sheet and multiple beam electron emitters based on thermionic minicathodes for terahertz traveling-wave tubes have been studied. Data are presented for impregnated blade thermionic cathode with dimensions 0.1 × 0.7 mm and a maximum current density of 114 A/cm2 in a pulsed mode. A variant of the five-beam electron gun with 0.25-mm-diameter cylindrical minicathodes in cells of a control grid is proposed that provides a current density of 85.5 A/cm2 at a grid potential of 900-1000 V.

  16. Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition

    NASA Astrophysics Data System (ADS)

    Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.

    2017-08-01

    Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.

  17. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  18. Cathodic Protection Measurement Through Inline Inspection Technology Uses and Observations

    NASA Astrophysics Data System (ADS)

    Ferguson, Briana Ley

    This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit concepts, and attenuation principles in order to match the results of the ILI sample data by varying parameters of the model (i.e., values for over potential and coating resistivity). This research has not been conducted previously in order to determine if the protected potential range can be achieved with respect to the predicted current density from the CP ILI device. Kirchhoff's method was explored, but certain principals could not be used in the model as manual measurements were required. This research was based on circuit concepts which indirectly affected electrochemical processes. Through Ohm's law, the results show that a constant current density is possible in the protected potential range; therefore, indicates polarization of the pipeline, which leads to calcareous deposit development with respect to electrochemistry. Calcareous deposit is desirable in industry since it increases the resistance of the pipeline coating and lowers current, thus slowing the oxygen diffusion process. This research conveys that an alternative method for CP evaluation from inside of the pipeline is possible where the pipe-to-soil potential can be estimated (as required by regulations) from the ILI tool's current density measurement.

  19. Physics of Plasma Cathode Current Injection During LHI

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J.; Bongard, M.; Burke, M. G.; Fonck, R.; Perry, J.

    2015-11-01

    Localized helicity injection (LHI) ST startup employs current sources at the tokamak edge. Max Ip in LHI scales with injection voltage Vinj, requiring an understanding of injector impedance. For the arc-plasma cathode electron injectors in Pegasus, impedance is plasma-determined, and typically Vinj>1kV for Iinj = 2kA. At low Iinj, Iinj Vinj3 / 2 , an indication of a double layer (DL) common to such devices. However, at Iinj> 1kA, Iinj Vinj1 / 2 occurs, a scaling expected for limited launched beam density, nb ≡Iinj / (e√{ 2eVinj /me }Ainj) Iinj /Vinj1 / 2 . An ohmic discharge injection target was created to test this hypothesis. Langmuir probe data showed Iinj/Vinj1 / 2 nedge at low nedge, consistent with a limit (nedge >=ne , b) imposed by quasineutrality. If edge fueling maintained nedge >=ne , b , spectroscopic measurements of source density narc indicated Iinj/Vinj1 / 2 narc , as expected from DL expansion. Thus nb established by narc or nedge determines Vinj up to the onset of cathode spot (CS) arcing. Technology development has increased obtainable Vinj and reduced CS damage using new ring shielding and a cathode design drawing CS's away from insulators. This involved a novel optimization of conical frustum geometry. Finally, consistent with NIMROD predictions of coherent streams in the edge during LHI, pairwise triangulation of outboard Mirnov data assuming beam m =1 motion has allowed an estimate of beam R(t), Z(t) location that is near the injector R, and consistent across the array. Supported by U.S. DOE Grant DE-FG02-96ER54375.

  20. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  1. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  2. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  3. Rapid recovery of dilute copper from a simulated Cu-SDS solution with low-cost steel wool cathode reactor.

    PubMed

    Chang, Shih-Hsien; Wang, Kai-Sung; Hu, Pei-I; Lui, I-Chun

    2009-04-30

    Copper-surfactant wastewaters are often encountered in electroplating, printed circuit boards manufacturing, and metal finishing industries, as well as in retentates from micellar-enhanced ultrafiltration process. A low-cost three-dimensional steel wool cathode reactor was evaluated for electrolytic recovery of Cu ion from dilute copper solution (0.2mM) in the presence of sodium dodecyl sulfate (SDS), octylphenol poly (ethyleneglycol) 9.5 ether (TX), nonylphenol poly (oxyethylene) 9 ether (NP9) and polyoxyethylene (20) sorbitan monooleate (TW) and also mixed surfactants (anionic/nonionic). The reactor showed excellent copper recovery ability in comparison to a parallel-plate reactor. The reactor rapidly recovered copper with a reasonable current efficiency. 93% of copper was recovered at current density of 1 A m(-2) and pH 4 in the presence of 8.5mM SDS. Initial solution pH, cathodic current density, solution mixing condition, SDS concentration, and initial copper concentrations significantly influenced copper recovery. The copper recovery rate increased with an increase in aqueous SDS concentrations between 5 and 8.5mM. The influences of nonionic surfactants on Cu recovery from SDS-Cu solution depended not only on the type of surfactants used, but also on applied concentrations. From the copper recovery perspective, TX at 0.1mM or NP should be selected rather than TW, because they did not inhibit copper recovery from SDS-Cu solution.

  4. A brightness exceeding simulated Langmuir limit

    NASA Astrophysics Data System (ADS)

    Nakasuji, Mamoru

    2013-08-01

    When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.

  5. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications. Electronic supplementary information (ESI) available: TGA curves of as electrospun Co(ii)-PAN fiber and C-CoPAN900 EDX and XPS spectra of the C-CoPAN900 photo of a home-built Zn-air cell and the preparation method of conventional catalyst electrode; polarization curves and corresponding power density plots of the battery using conventional type cathode of C-CoPN900 and commercial Pt/C catalyst; the electrocatalytic properties of hybrid CNFs obtained from varied weight ratios of PAN to cobalt acetate, e.g. 16 : 1 and 8 : 1, and their corresponding TGA curves; a comparison of the Zn-air battery performance of this work with recent literatures. See DOI: 10.1039/c4nr05988c

  6. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode

    PubMed Central

    Rodenas, Pau; Zhu, Fangqi; Sleutels, Tom; Saakes, Michel; Buisman, Cees

    2017-01-01

    Abstract Background Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m‐2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m‐2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). Results With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m‐2 at an anode potential of –0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L‐1, current density increased to 10.7 A m‐2 at an anode potential of –0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L‐1) current density increased further to 17.1 A m‐2. Conclusion Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200586

  7. Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.

    PubMed

    Yuan, Pengyi; Kim, Younggy

    2017-01-01

    Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions. The stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m 2 ). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m 2 ), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate. For efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily available organic substrates is important to maintain high electric current and establish high local pH conditions near the cathode. Struvite precipitation was relatively slow, requiring 7 days for nearly complete removal (92%) and recovery (96%). Future studies need to focus on shortening the time requirement.

  8. Synthesis and discharge performances of NiCl2 by surface modification of carbon coating as cathode material of thermal battery

    NASA Astrophysics Data System (ADS)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi

    2017-04-01

    The high solubility in molten salt and low conductivity of NiCl2, compared with traditional FeS2 and CoS2, have become the restrictions for its extensive application in cathode materials of thermal batteries. In this study, carbon coated NiCl2 cathode is successfully fabricated by the carbonization of stearic acid. The high specific energy of 641 Wh kg-1 at current densities of 0.5 A cm-2 are observed for the carbon coated NiCl2 thermal batteries, which is higher than the pure NiCl2 with 475 Wh kg-1. The high specific energies and high-current discharge ability are attribute to the graphite and amorphous carbon layers on the surface of NiCl2 crystalline, which were detected by TEM after carbonization. The graphite layers can improve the conductivity of NiCl2. Meanwhile the coated carbon structure could reduce the solubility of NiCl2 in molten salt.

  9. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.

    PubMed

    Medina-Ramos, Jonnathan; DiMeglio, John L; Rosenthal, Joel

    2014-06-11

    The development of inexpensive electrocatalysts that can promote the reduction of CO2 to CO with high selectivity, efficiency, and large current densities is an important step on the path to renewable production of liquid carbon-based fuels. While precious metals such as gold and silver have historically been the most active cathode materials for CO2 reduction, the price of these materials precludes their use on the scale required for fuel production. Bismuth, by comparison, is an affordable and environmentally benign metal that shows promise for CO2 conversion applications. In this work, we show that a bismuth-carbon monoxide evolving catalyst (Bi-CMEC) can be formed under either aqueous or nonaqueous conditions using versatile electrodeposition methods. In situ formation of this thin-film catalyst on an inexpensive carbon electrode using an organic soluble Bi(3+) precursor streamlines preparation of this material and generates a robust catalyst for CO2 reduction. In the presence of appropriate imidazolium based ionic liquid promoters, the Bi-CMEC platform can selectively catalyze conversion of CO2 to CO without the need for a costly supporting electrolyte. This inexpensive system can catalyze evolution of CO with current densities as high as jCO = 25-30 mA/cm(2) and attendant energy efficiencies of ΦCO ≈ 80% for the cathodic half reaction. These metrics highlight the efficiency of Bi-CMEC, since only noble metals have been previously shown to promote this fuel forming half reaction with such high energy efficiency. Moreover, the rate of CO production by Bi-CMEC ranges from approximately 0.1-0.5 mmol·cm(-2)·h(-1) at an applied overpotential of η ≈ 250 mV for a cathode with surface area equal to 1.0 cm(2). This CO evolution activity is much higher than that afforded by other non-noble metal cathode materials and distinguishes Bi-CMEC as a superior and inexpensive platform for electrochemical conversion of CO2 to fuel.

  10. Electrolysis cell stimulation

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.; Phillips, B. R.; Evangelista, J.

    1978-01-01

    Computer program represents attempt to understand and model characteristics of electrolysis cells. It allows user to determine how cell efficiency is affected by temperature, pressure, current density, electrolyte concentration, characteristic dimensions, membrane resistance, and electrolyte circulation rate. It also calculates ratio of bubble velocity to electrolyte velocity for anode and cathode chambers.

  11. New bimetallic EMF cell shows promise in direct energy conversion

    NASA Technical Reports Server (NTRS)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  12. Copper Chloride Cathode For Liquid-Sodium Cell

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Distefano, Salvador; Nagasubramanian, Ganesan; Bankston, Clyde P.

    1990-01-01

    Rechargeable liquid-sodium cell with copper chloride cathode offers substantial increase in energy density over cells made with other cathode materials. Unit has theoretical maximum energy density of 1135 W.h/kg. Generates electricity by electrochemical reaction of molten sodium and solid copper chloride immersed in molten electrolyte, sodium tetrachloroaluminate at temperature of equal to or greater than 200 degrees C. Wall of alumina tube separates molten electrolyte from molten sodium anode. Copper chloride cathode embedded in pores of sintered nickel cylinder or directly sintered.

  13. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  14. Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1980-01-01

    The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.

  15. Experimental Analysis of Pseudospark Sourced Electron Beam

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.

    2011-12-01

    The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.

  16. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  17. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    DOE PAGES

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...

    2017-04-26

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less

  18. Cathodoluminescent UV-radiation sources

    NASA Astrophysics Data System (ADS)

    Vereschagina, N. Y.; Danilkin, M. I.; Kazaryan, M. A.; Ozol, D. I.; Sheshin, E. P.; Spassky, D. A.

    2018-04-01

    Mercury-free UV-radiation sources are described. An electron beam similar to cathode-ray tubes (CRT) excites a luminescent material in a vacuum bulb. A high density of excitation requires the cathode and the luminescent material to be resistant for that and provide the extended lifetime of the UV-radiation source. Carbon fibre and nano-carbon based field-emission cathodes produce long lasting stable emission with a high current density (up to 0.3-0.5 A/cm2 ). Li2B4O7:Cu and Li2B4O7:Ag luminescent ceramics survive under high radiation doses and provide UV luminescence bands peaked at 360-370 nm and 270 nm, respectively. The luminescence band at 360-370 nm has a good overlap with the fundamental absorption edge of TiO2, which is known as a photo-catalyst in air and water cleaning systems. The luminescence band at 270 nm overlaps with DNA absorption and provides a direct disinfection effect. We suggest the structure of complex luminescence centres and energy transfer mechanisms. The electron structure of lithium tetraborate and the contribution of impurities are also discussed in paper.

  19. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    PubMed

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A review of blended cathode materials for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun

    2014-02-01

    Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.

  1. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    PubMed Central

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  2. On the energy deposition into the plasma for an inverted fireball geometry

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Gruenwald, Johannes

    2017-10-01

    Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.

  3. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    PubMed

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  4. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of sorbed methanol, current, and temperature on multicomponent transport in nafion-based direct methanol fuel cells.

    PubMed

    Rivera, Harry; Lawton, Jamie S; Budil, David E; Smotkin, Eugene S

    2008-07-24

    The CO2 in the cathode exhaust of a liquid feed direct methanol fuel cell (DMFC) has two sources: methanol diffuses through the membrane electrode assembly (MEA) to the cathode where it is catalytically oxidized to CO2; additionally, a portion of the CO2 produced at the anode diffuses through the MEA to the cathode. The potential-dependent CO2 exhaust from the cathode was monitored by online electrochemical mass spectrometry (ECMS) with air and with H2 at the cathode. The precise determination of the crossover rates of methanol and CO2, enabled by the subtractive normalization of the methanol/air to the methanol/H2 ECMS data, shows that methanol decreases the membrane viscosity and thus increases the diffusion coefficients of sorbed membrane components. The crossover of CO2 initially increases linearly with the Faradaic oxidation of methanol, reaches a temperature-dependent maximum, and then decreases. The membrane viscosity progressively increases as methanol is electrochemically depleted from the anode/electrolyte interface. The crossover maximum occurs when the current dependence of the diffusion coefficients and membrane CO2 solubility dominate over the Faradaic production of CO2. The plasticizing effect of methanol is corroborated by measurements of the rotational diffusion of TEMPONE (2,2,6,6-tetramethyl-4-piperidone N-oxide) spin probe by electron spin resonance spectroscopy. A linear inverse relationship between the methanol crossover rate and current density confirms the absence of methanol electro-osmotic drag at concentrations relevant to operating DMFCs. The purely diffusive transport of methanol is explained in terms of current proton solvation and methanol-water incomplete mixing theories.

  6. Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    Li–S batteries with a high theoretical capacity are considered as the most promising candidate to satisfy the increasing demand for batteries with a high areal capacity. However, the low sulfur loading (<2 mg cm -2) and poor flexibility of current Li–S batteries limit their application in establishing foldable Li–S batteries with a high areal capacity. Here, to solve this problem, we employ here a free-standing flexible tandem sulfur cathode with a remarkably high sulfur loading to demonstrate foldable, high-areal-capacity Li–S batteries. The design of the tandem cathode readily increases the sulfur loading and effectively retards the migration of polysulfides. Therefore,more » the Li–S cell employing the tandem cathode exhibits a high initial areal capacity of 12.3 mA h cm -2 with stable cycling stability even with a high sulfur loading of up to 16 mg cm -2. These tandem cathodes are promising for foldable Li–S cells with a high areal capacity and energy density.« less

  7. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.

    PubMed

    Kim, Jin Won; Ocon, Joey D; Kim, Ho-Sung; Lee, Jaeyoung

    2015-09-07

    A graphene-based cathode design for lithium-sulfur batteries (LSB) that shows excellent electrochemical performance is proposed. The dual-layered cathode is composed of a sulfur active layer and a polysulfide absorption layer, and both layers are based on vitamin C treated graphene oxide at various degrees of reduction. By controlling the degree of reduction of graphene, the dual-layered cathode can increase sulfur utilization dramatically owing to the uniform formation of nanosized sulfur particles, the chemical bonding of dissolved polysulfides on the oxygen-rich sulfur active layer, and the physisorption of free polysulfides on the absorption layer. This approach enables a LSB with a high specific capacity of over 600 mAh gsulfur (-1) after 100 cycles even under a high current rate of 1C (1675 mA gsulfur (-1) ). An intriguing aspect of our work is the synthesis of a high-performance dual-layered cathode by a green chemistry method, which could be a promising approach to LSBs with high energy and power densities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  9. Highly flexible, freestanding tandem sulfur cathodes for foldable Li–S batteries with a high areal capacity

    DOE PAGES

    Chang, Chi-Hao; Chung, Sheng-Heng; Manthiram, Arumugam

    2017-01-05

    Li–S batteries with a high theoretical capacity are considered as the most promising candidate to satisfy the increasing demand for batteries with a high areal capacity. However, the low sulfur loading (<2 mg cm -2) and poor flexibility of current Li–S batteries limit their application in establishing foldable Li–S batteries with a high areal capacity. Here, to solve this problem, we employ here a free-standing flexible tandem sulfur cathode with a remarkably high sulfur loading to demonstrate foldable, high-areal-capacity Li–S batteries. The design of the tandem cathode readily increases the sulfur loading and effectively retards the migration of polysulfides. Therefore,more » the Li–S cell employing the tandem cathode exhibits a high initial areal capacity of 12.3 mA h cm -2 with stable cycling stability even with a high sulfur loading of up to 16 mg cm -2. These tandem cathodes are promising for foldable Li–S cells with a high areal capacity and energy density.« less

  10. Dynamics of a high-current relativistic electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less

  11. Application of carbon nanoclusters in electronics

    NASA Astrophysics Data System (ADS)

    Krachkovskaya, T. M.; Sahadji, G. V.; Emelyanov, A. S.; Silaeva, M. V.

    2018-04-01

    Nanocarbon material (Ugleron and Astralens) is used for the first time for the production of metal porous cathode (MPC). It can be assumed that its implementation in the MPC matrix can change the mechanism and rate of occurrence of three-phase reactions of formation of active elements and oxygen and, thereby, improve its emission properties. The new technology of manufacturing MPC is aimed at solving the problem of increasing the durability of electro vacuum devices - more than 100,000 hours. The obtained results are intended for use in technologies for manufacturing of electron sources for electro vacuum devices used in space communication and navigation systems. In addition, they can be useful for other areas of electronics that use a metal-porous thermal cathode as sources of electron emission. There are manufactured models with the use of Ugleron and Astralens in a sponge and emission substance. A layout using Ugleron in the emission substance is tested for durability and currently has an operating time of 40,000 hours. A model with the use of Astralens and Ugleron in a sponge and emission substance respectively is tested for maximum current density. To date, it shows results comparable to the standard cathode. However, there is a suggestion that cathodes with Astralens and Ugleron have a lower evaporation rate of the active substance. There is predicted longer durability than for the standard cathode at the same emissivity.

  12. Modeling and simulation for the field emission of carbon nanotubes array

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.

    2005-12-01

    To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.

  13. Li- and Mn-Rich Cathode Materials: Challenges to Commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae

    2016-12-14

    The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density,more » electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.« less

  14. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  15. A phase-field simulation of uranium dendrite growth on the cathode in the electrorefining process

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Unoura, Seiji; Sato, Takumi; Shibata, Hiroki; Kurata, Masaki; Suzuki, Toshio

    2011-07-01

    The uranium dendrite growth on the cathode during the pyroprocessing of uranium is investigated using a novel phase-field model, in which electrodeposition of uranium and zirconium from the molten-salt is taken into account. The threshold concentration of zirconium in the molten salt demarcating the dendritic and planar growth is then estimated as a function of the current density. Moreover, the growth process of both the dendritic and planar electrodeposits has been demonstrated by way of varying the mobility of the phase field, which consists of the effect of attachment kinetics and diffusion.

  16. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  17. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  18. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    NASA Astrophysics Data System (ADS)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  19. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries.

    PubMed

    Liao, Kaiming; Zhang, Tao; Wang, Yongqing; Li, Fujun; Jian, Zelang; Yu, Haijun; Zhou, Haoshen

    2015-04-24

    Porous carbon-free cathodes are critical to achieve a high discharge capacity and efficient cycling for rechargeable Li-O2 battery. Herein, we present a very simple method to directly grow nanoporous Ru (composed of polycrystalline particles of ∼5 nm) on one side of a current collector of Ni foam via a galvanic replacement reaction. The resulting Ru@Ni can be employed as a carbon- and binder-free cathode for Li-O2 batteries and delivers a specific capacity of 3720 mAh gRu (-1) at a current density of 200 mA gRu (-1) . 100 cycles of continuous discharge and charge are obtained at a very narrow terminal voltage window of 2.75∼3.75 V with a limited capacity of 1000 mAh gRu (-1) . The good performance of the nanoporous Ru@Ni cathode can be mainly attributed to the effective suppression of the by-products related to carbon or binder, the good adhesion of the catalyst to the current collector, and the good permeation of O2 and electrolyte into the active sites of the nanoporous Ru with the open pore system. This new type electrode provides a snapshot toward developing high-performance carbon- and binder-free Li-O2 batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spinel compounds as multivalent battery cathodes: A systematic evaluation based on ab initio calculations

    DOE PAGES

    Liu, Miao; Rong, Ziqin; Malik, Rahul; ...

    2014-12-16

    In this study, batteries that shuttle multivalent ions such as Mg 2+ and Ca 2+ ions are promising candidates for achieving higher energy density than available with current Li-ion technology. Finding electrode materials that reversibly store and release these multivalent cations is considered a major challenge for enabling such multivalent battery technology. In this paper, we use recent advances in high-throughput first-principles calculations to systematically evaluate the performance of compounds with the spinel structure as multivalent intercalation cathode materials, spanning a matrix of five different intercalating ions and seven transition metal redox active cations. We estimate the insertion voltage, capacity,more » thermodynamic stability of charged and discharged states, as well as the intercalating ion mobility and use these properties to evaluate promising directions. Our calculations indicate that the Mn 2O 4 spinel phase based on Mg and Ca are feasible cathode materials. In general, we find that multivalent cathodes exhibit lower voltages compared to Li cathodes; the voltages of Ca spinels are ~0.2 V higher than those of Mg compounds (versus their corresponding metals), and the voltages of Mg compounds are ~1.4 V higher than Zn compounds; consequently, Ca and Mg spinels exhibit the highest energy densities amongst all the multivalent cation species. The activation barrier for the Al³⁺ ion migration in the Mn₂O₄ spinel is very high (~1400 meV for Al 3+ in the dilute limit); thus, the use of an Al based Mn spinel intercalation cathode is unlikely. Amongst the choice of transition metals, Mn-based spinel structures rank highest when balancing all the considered properties.« less

  1. Quantification of the internal resistance distribution of microbial fuel cells.

    PubMed

    Fan, Yanzhen; Sharbrough, Evan; Liu, Hong

    2008-11-01

    Identifying the limiting factors in a microbial fuel cell (MFC) system requires qualifying the contribution of each component of an MFC to internal resistance. In this study, a new method was developed to calculate the internal resistance distribution of an MFC. Experiments were conducted to identify the limiting factors in single-chamber MFCs by varying the anode surface areas, cathode surface areas, and phosphate buffer concentrations. For the MFCs with equally sized electrodes (7 cm2) and 200 mM phosphate buffer, the anode contributed just 5.4% of the internal resistance, while the cathode and the electrolyte each contributed 47.3%, indicating that the anode was not the limiting factor in power generation. The limitation of the cathode was further revealed by the 780% higher area-specific resistance (284.4 omega cm2) than the 32.3 omega cm2 of the anode. The electrolyte limitation was also evidenced by the greatly increased contribution of electrolyte in internal resistance from 47.3 to 78.2% when the concentration of phosphate buffer was decreased from 200 to 50 mM. An anodic power density of 6860 mW/m2 was achieved at a current density of 2.62 mA/cm2 using the MFCs with an anode/cathode area ratio of 1/14 and 200 mM phosphate buffer. The method was also successfully applied to analyze the internal resistance distribution of the two chamber MFCs from a previously reported study. The comparison of the internal resistances of the two air cathode systems indicates that the much lower resistances, including anode, cathode, and membrane resistances, contributed to the much better performance of the single-chamber MFCs than the two-chamber system.

  2. Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications

    NASA Technical Reports Server (NTRS)

    Tryk, D.; Yeager, E.; Shingler, M.; Aldred, W.; Wang, C.

    1990-01-01

    The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C.

  3. Platinum-Coated Hollow Graphene Nanocages as Cathode Used in Lithium-Oxygen Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Xing, Yi; Zeng, Xiaoqiao

    2016-08-31

    One of the formidable challenges facing aprotic lithium-oxygen (Li-O-2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt-coated hollow graphene nano cages as cathode in Li-O-2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g(-1), even maintain below 3.5 V when the current density increased to 500 mA g(-1). The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri-phase regions as active sites for efficient oxygen reduction, but alsomore » offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic-level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene-metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt-decorated graphene nanocage cathode exhibits enhanced electrochemical performances.« less

  4. A flat microbial fuel cell for decentralized wastewater valorization: process performance and optimization potential.

    PubMed

    Peixoto, Luciana; Rodrigues, Alexandrina L; Martins, Gilberto; Nicolau, Ana; Brito, António G; Silva, M Manuela; Parpot, Pier; Nogueira, Regina

    2013-01-01

    A very compact flat microbial fuel cell (MFC), with 64 cm2 each for the anode surface and the cathode surface and 1 cm3 each for the anode and cathode chambers, was tested for wastewater treatment with simultaneous electricity production with the ultimate goal of implementing an autonomous service in decentralized wastewater treatment systems. The MFC was operated with municipal wastewater in sequencing batch reactor mode with re-circulation. Current densities up to 407 W/m3 and a carbon removal of 83% were obtained. Interruption in the operation slightly decreased power density, while the re-circulation ratio did not influence power generation. The anode biofilm presented high conductivity, activity and diversity. The denaturing gradient gel electrophoresis band-pattern of the DNA showed the presence of several ribotypes with different species of Shewanellaceae and Geobacteraceae families.

  5. Self-Passivating Lithium/Solid Electrolyte/Iodine Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Whitcare, Jay; Narayanan, Sekharipuram; West, William

    2006-01-01

    Robust lithium/solid electrolyte/iodine electrochemical cells that offer significant advantages over commercial lithium/ iodine cells have been developed. At room temperature, these cells can be discharged at current densities 10 to 30 times those of commercial lithium/iodine cells. Moreover, from room temperature up to 80 C, the maximum discharge-current densities of these cells exceed those of all other solid-electrolyte-based cells. A cell of this type includes a metallic lithium anode in contact with a commercial flexible solid electrolyte film that, in turn, is in contact with an iodine/ graphite cathode. The solid electrolyte (the chemical composition of which has not been reported) offers the high ionic conductivity needed for high cell performance. However, the solid electrolyte exhibits an undesirable chemical reactivity to lithium that, if not mitigated, would render the solid electrolyte unsuitable for use in a lithium cell. In this cell, such mitigation is affected by the formation of a thin passivating layer of lithium iodide at the anode/electrolyte interface. Test cells of this type were fabricated from iodine/graphite cathode pellets, free-standing solid-electrolyte films, and lithium-foil anodes. The cathode mixtures were made by grinding together blends of nominally 10 weight percent graphite and 90 weight percent iodine. The cathode mixtures were then pressed into pellets at 36 kpsi (248 MPa) and inserted into coin-shaped stainless-steel cell cases that were coated with graphite paste to minimize corrosion. The solid-electrolyte film material was stamped to form circular pieces to fit in the coin cell cases, inserted in the cases, and pressed against the cathode pellets with polyethylene gaskets. Lithium-foil anodes were placed directly onto the electrolyte films. The layers described thus far were pressed and held together by stainless- steel shims, wave springs, and coin cell caps. The assembled cells were then crimped to form hermetic seals. It was found that the solid electrolyte films became discolored within seconds after they were placed in contact with the cathodes - a result of facile diffusion of iodine through the solid electrolyte material (see figure).

  6. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large Telescope in Chile. A new atlas of the U/Ne spectrum as measured by CRIRES will be presented.

  7. In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Xue, Hairong; Wang, Tao; He, Jianping

    2016-06-01

    The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (∼100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 μm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g-1 and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of ∼60 mAh g-1, exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 1.3 g cm-3. What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance.

  8. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  9. Highly Cyclable Lithium-Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiOx Nanosphere Anode.

    PubMed

    Lee, Sang-Kyu; Oh, Seung-Min; Park, Eunjun; Scrosati, Bruno; Hassoun, Jusef; Park, Min-Sik; Kim, Young-Jun; Kim, Hansu; Belharouak, Ilias; Sun, Yang-Kook

    2015-05-13

    Lithium-sulfur batteries could become an excellent alternative to replace the currently used lithium-ion batteries due to their higher energy density and lower production cost; however, commercialization of lithium-sulfur batteries has so far been limited due to the cyclability problems associated with both the sulfur cathode and the lithium-metal anode. Herein, we demonstrate a highly reliable lithium-sulfur battery showing cycle performance comparable to that of lithium-ion batteries; our design uses a highly reversible dual-type sulfur cathode (solid sulfur electrode and polysulfide catholyte) and a lithiated Si/SiOx nanosphere anode. Our lithium-sulfur cell shows superior battery performance in terms of high specific capacity, excellent charge-discharge efficiency, and remarkable cycle life, delivering a specific capacity of ∼750 mAh g(-1) over 500 cycles (85% of the initial capacity). These promising behaviors may arise from a synergistic effect of the enhanced electrochemical performance of the newly designed anode and the optimized layout of the cathode.

  10. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading ofmore » 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.« less

  11. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  12. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    NASA Astrophysics Data System (ADS)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  13. Ag incorporated Mn3O4/AC nanocomposite based supercapacitor devices with high energy density and power density.

    PubMed

    Nagamuthu, S; Vijayakumar, S; Muralidharan, G

    2014-12-14

    Silver incorporated Mn3O4/amorphous carbon (AC) nanocomposites are synthesized by a green chemistry method. X-ray diffraction studies revealed the structural changes in Mn3O4/AC nanocomposites attributable to the addition of silver. Cyclic voltammetry, charge-discharge and ac-impedance studies indicated that the Ag-Mn3O4/AC-5 electrode was the most suitable candidate for supercapacitor applications. From the galvanostatic charge-discharge studies, a higher specific capacitance of 981 F g(-1) at a specific current of 1 A g(-1) was obtained. An Ag-Mn3O4/AC-symmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as an anode as well as a cathode, and an asymmetric supercapacitor consisting of an Ag-incorporated Mn3O4/AC composite as a cathode and an activated carbon as an anode have been fabricated. The symmetric device exhibits a specific cell capacitance of 72 F g(-1) at a specific current of 1 A g(-1) whereas the asymmetric device delivers a specific cell capacitance of 180 F g(-1) at a high current rate of 10 A g(-1). The asymmetric supercapacitor device yields a high energy density of 81 W h kg(-1). This is higher than that of lead acid batteries and comparable with that of nickel hydride batteries.

  14. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  15. An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device.

    PubMed

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-12-15

    Enzymatic biofuel cells can generate electricity directly from the chemical energy of biofuels in physiological fluids, but their power density is significantly limited by the performance of the cathode which is based on oxygen reduction for in vivo applications. An oxygen-independent and membrane-less glucose biobattery was prepared that consists of a dealloyed nanoporous gold (NPG) supported glucose dehydrogenase (GDH) bioanode, immobilised with the assistance of conductive polymer/Os redox polymer composites, and a solid-state NPG/MnO 2 cathode. In a solution containing 10mM glucose, a maximum power density of 2.3µWcm -2 at 0.21V and an open circuit voltage (OCV) of 0.49V were registered as a biobattery. The potential of the discharged MnO 2 could be recovered, enabling a proof-of-concept biobattery/supercapacitor hybrid device. The resulting device exhibited a stable performance for 50 cycles of self-recovery and galvanostatic discharge as a supercapacitor at 0.1mAcm -2 over a period of 25h. The device could be discharged at current densities up to 2mAcm -2 supplying a maximum instantaneous power density of 676 μW cm -2 , which is 294 times higher than that from the biobattery alone. A mechanism for the recovery of the potential of the cathode, analogous to that of RuO 2 (Electrochim. Acta 42(23), 3541-3552) is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    DOE R&D Accomplishments Database

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  17. Effect of Intermetallic on Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints: Experimental and First-Principles Study

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Liu, Lijuan; Li, Baoling; Wu, Ping

    2009-06-01

    Electromigration phenomena in a one-dimensional Cu/SnAg3.0Cu0.5/Cu joint were investigated with current stressing. The special effect of intermetallic compound (IMC) layers on the formation of serious electromigration damage induced by nonuniform current density distribution was discussed based on experimental results. Meanwhile, hillocks were observed both at the anode and near the cathode of the joint, and they were described as the result of diffusion of atoms and compressive stress released along grain boundaries to the relatively free surface. Moreover, the diffusion behavior of Cu at the cathode was analyzed with the electromigration equation, and the stability of Ag atoms in the solder during electromigration was evaluated with a first-principles method.

  18. Investigation of a Plasma Edge Cathode Under High Current Density Electron Extraction

    DTIC Science & Technology

    1991-12-05

    simu- lation using the MAGIC code confirmed the expected features of the scheme. SLTMMARY .. . . . . . . . . . .. . . . . . . . . . . 1 I...description. An electron temperature of 1 eV was mea- sured in the extraction region without extraction turned on. The plasma from the plasma gun was...jet is reduced if the time between shots is reduced to below I min. The numerical simulation with MAGIC gave confirming results. The simulated current

  19. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  20. Gallium Electromagnetic (GEM) Thruster Performance Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, K. A.

    2009-01-01

    Discharge current, terminal voltage, and mass bit measurements are performed on a coaxial gallium electromagnetic thruster at discharge currents in the range of 7-23 kA. It is found that the mass bit varies quadratically with the discharge current which yields a constant exhaust velocity of 20 km/s. Increasing the electrode radius ratio of the thruster from to 2.6 to 3.4 increases the thruster efficiency from 21% to 30%. When operating with a central gallium anode, macroparticles are ejected at all energy levels tested. A central gallium cathode ejects macroparticles when the current density exceeds 3.7 10(exp 8) A/square m . A spatially and temporally broad spectroscopic survey in the 220-520 nm range is used to determine which species are present in the plasma. The spectra show that neutral, singly, and doubly ionized gallium species are present in the discharge, as well as annular electrode species at higher energy levels. Axial Langmuir triple probe measurements yield electron temperatures in the range of 0.8-3.8 eV and electron densities in the range of 8 x 10(exp )20 to 1.6 x 10(exp 21) m(exp -3) . Triple probe measurements suggest an exhaust plume with a divergence angle of 9 , and a completely doubly ionized plasma at the ablating thruster cathode.

  1. Experimental investigation of a 1 kA/cm{sup 2} sheet beam plasma cathode electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Niraj, E-mail: niraj.ceeri@gmail.com; Narayan Pal, Udit; Prajesh, Rahul

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm{sup 2} from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance inmore » a drift space region maintaining sheet structure without assistance of any external magnetic field.« less

  2. Endowing CuTCNQ with a new role: a high-capacity cathode for K-ion batteries.

    PubMed

    Ma, Jing; Zhou, En; Fan, Cong; Wu, Bo; Li, Chao; Lu, Zheng-Hong; Li, Jingze

    2018-05-29

    Herein, copper-tetracyanoquinodimethane (CuTCNQ) with phase-I kinetics character has been proposed as an effective cathode for potassium-ion batteries. In a voltage range of 2-4.1 V (vs. K+/K), both cuprous cations (Cu+) and organic anions (TCNQ-) are electrochemically active, and they render a three-electron redox mechanism, thereby enabling CuTCNQ to yield a high specific discharge capacity of 244 mA h g-1. Even after 50 cycles, the discharge capacity of 170 mA h g-1 is retained at 50 mA g-1. In addition, when the current density is elevated to 1000 mA g-1, the discharge capacity is still maintained at 125 mA h g-1. These test data are among the best results reported for high-potential cathodes of potassium-ion batteries.

  3. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    PubMed

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The 15 cm mercury ion thruster research 1975

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1975-01-01

    Doubly charged ion current measurements in the beam of a SERT II thruster are shown to introduce corrections which bring its calculated thrust into close agreement with that measured during flight testing. A theoretical model of doubly charged ion production and loss in mercury electron bombardment thrusters is discussed and is shown to yield doubly-to-singly charged ion density ratios that agree with experimental measurements obtained on a 15 cm diameter thruster over a range of operating conditions. Single cusp magnetic field thruster operation is discussed and measured ion beam profiles, performance data, doubly charged ion densities, and discharge plasma characteristics are presented for a range of operating conditions and thruster geometries. Variations in the characteristics of this thruster are compared to those observed in the divergent field thruster and the cusped field thruster is shown to yield flatter ion beam profiles at about the same discharge power and propellant utilization operating point. An ion optics test program is described and the measured effects of grid system dimensions on ion beamlet half angle and diameter are examined. The effectiveness of hollow cathode startup using a thermionically emitting filament within the cathode is examined over a range of mercury flow rates and compared to results obtained with a high voltage tickler startup technique. Results of cathode plasma property measurement tests conducted within the cathode are presented.

  5. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Layered-MnO₂ Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor.

    PubMed

    Liu, Yongchuan; Miao, Xiaofei; Fang, Jianhui; Zhang, Xiangxin; Chen, Sujing; Li, Wei; Feng, Wendou; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2016-03-02

    Flexible solid-state supercapacitors provide a promising energy-storage alternative for the rapidly growing flexible and wearable electronic industry. Further improving device energy density and developing a cheap flexible current collector are two major challenges in pushing the technology forward. In this work, we synthesize a nitrogen-doped graphene/MnO2 nanosheet (NGMn) composite by a simple hydrothermal method. Nitrogen-doped graphene acts as a template to induce the growth of layered δ-MnO2 and improves the electronic conductivity of the composite. The NGMn composite exhibits a large specific capacitance of about 305 F g(-1) at a scan rate of 5 mV s(-1). We also create a cheap and highly conductive flexible current collector using Scotch tape. Flexible solid-state asymmetric supercapacitors are fabricated with NGMn cathode, activated carbon anode, and PVA-LiCl gel electrolyte. The device can achieve a high operation voltage of 1.8 V and exhibits a maximum energy density of 3.5 mWh cm(-3) at a power density of 0.019 W cm(-3). Moreover, it retains >90% of its initial capacitance after 1500 cycles. Because of its flexibility, high energy density, and good cycle life, NGMn-based flexible solid state asymmetric supercapacitors have great potential for application in next-generation portable and wearable electronics.

  7. Investigation of a Gallium MPD Thruster with an Ablating Cathode

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.

    2010-01-01

    Arc impedance, exhaust velocity, and plasma probe measurements are presented. The thruster is driven by a 50 microsecond pulse from a 6.2 milliohm pulse forming network, and gallium is supplied to the discharge by evaporation of the cathode. The arc voltage is found to vary linearly with the discharge current with an arc impedance of 6.5 milliohms. Electrostatic probes yield an exhaust velocity that is invariant with the discharge current and has a peak value of 20 kilometers per second, which is in reasonable agreement with the value (16 plus or minus 1 kilometer per second) calculated from the mass bit and discharge current data. Triple probe measurements yield on axis electron temperatures in the range of 0.8-3.8 eV, electron densities in the range of 1.6 x 10(exp 21) to 2.1 x 10(exp 22) per cubic meter, and a divergence half angle of 16 degrees. Measurements within the interelectrode region yield a peak magnetic field of 0.8 T, and the observed radial trends are consistent with an azimuthally symmetric current distribution. A cathode power balance model is coupled with an ablative heat conduction model predicting mass bit values that are within 20% of the experimental values.

  8. A Single-Chamber Microbial Fuel Cell without an Air Cathode

    PubMed Central

    Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo

    2012-01-01

    Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (Rext) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm2 was achieved at an Rext of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater. PMID:22489190

  9. METHOD FOR ELECTRODEPOSITING POLONIUM

    DOEpatents

    Wehrmann, R.F.

    1960-08-30

    The deposition of a thick uniform layer of polonium metal from aqueous solutions can be carried out by electrolyzing an aqueous solution of 1 N hydrofluoric acid containing about 0.13 curie of polonium per cubic centimeter of solution with platinum electrodes and a current density of about 1.2 ma/cm/sup 2/ of cathode surface.

  10. Characterization of prototype secondary lithium battery

    NASA Technical Reports Server (NTRS)

    Somoano, R.

    1980-01-01

    The performance characteristics of ambient temperature secondary lithium batteries were determined through continuous cycle tests with periodic current and voltage measurements. Cycle life of the lithium anode was found to be an important problem area as was the formation of dentrite breakage and subsequent shorting. Energy density was increased by using more efficient cathode structures.

  11. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  12. Field Emission Enhancement and the Field-Screening Effect Reduction using Carbon Nanopipettes as Cold Cathodes

    NASA Astrophysics Data System (ADS)

    Safir, Abdelilah; Mudd, David; Yazdanpanah, Mehdi; Dobrokhotov, Vladimir; Sumanasekera, Gamini; Cohn, Robert

    2008-03-01

    In this work, we report a recent experimental study of high emission current densities exceeding 10mA/cm^2 and breakdown electric field lower than 5Volts/μm from novel cold cathodes such as conical shaped carbon nanopipettes (CNP). CNP were grown by CVD on Pt wire and have apex as sharp as 10nm with length between 3-6μm. The emission experiments were conducted under vacuum in a scanning electron microscope for individual CNP and in a dedicated chamber for bulk samples. CNP's conical bases and low density contribute significantly to the reduction of the screening effect and to the field emission enhancement. The experimental value for the field enhancement factor, γ, was about 867. Comparing emission results taken from CNP and aligned multiwall carbon nanotubes (MWNT) show that the ratio between γCNP and γMWNT is ˜1.6 which contributes to the reduction of screening effect. The emission from multilayers of graphene was also studied. High emission current (20μA) demonstrates promising emission properties of graphene.

  13. Electromigration Failure Mechanism in Sn-Cu Solder Alloys with OSP Cu Surface Finish

    NASA Astrophysics Data System (ADS)

    Chu, Ming-Hui; Liang, S. W.; Chen, Chih; Huang, Annie T.

    2012-09-01

    Organic solderable preservative (OSP) has been adopted as the Cu substrate surface finish in flip-chip solder joints for many years. In this study, the electromigration behavior of lead-free Sn-Cu solder alloys with thin-film under bump metallization and OSP surface finish was investigated. The results showed that severe damage occurred on the substrate side (cathode side), whereas the damage on the chip side (cathode side) was not severe. The damage on the substrate side included void formation, copper dissolution, and formation of intermetallic compounds (IMCs). The OSP Cu interface on the substrate side became the weakest point in the solder joint even when thin-film metallization was used on the chip side. Three-dimensional simulations were employed to investigate the current density distribution in the area between the OSP Cu surface finish and the solder. The results indicated that the current density was higher along the periphery of the bonding area between the solder and the Cu pad, consistent with the area of IMC and void formation in our experimental results.

  14. Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Qin, Mulan; Liang, Qiang; Pan, Anqiang; Liang, Shuquan; Zhang, Qing; Tang, Yan; Tan, Xiaoping

    2014-12-01

    A facile hydrothermal route has been developed to fabricate the metastable VO2 (B) ultra-thin nanobelt arrays, which can be converted into V2O5 porous nanobelt arrays after calcinating VO2 (B) in air at 400 °C for 1 h. The influence of hydrothermal time to the crystallinity and morphology of the VO2 phase has been studied. A possible mechanism for the formation of VO2 nanobelt arrays has been proposed in this paper. As a cathode material for lithium ion batteries, the V2O5 nanobelt arrays show excellent rate capability and cycling stability. An initial discharge capacity of 142 mA h g-1 can be delivered at a current density of 50 mA g-1 with almost no capacity fading after 100 cycles. Even at a current density of 1000 mA g-1, they still exhibit the capacity of 130 mA h g-1 and superior capacity retention capability. The excellent electrochemical properties are attributed to the ultra-thin thickness and the porous structures of the nanobelts.

  15. Control of plasma properties in a short direct-current glow discharge with active boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506

    2016-02-15

    To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less

  16. Electromigration and morphological changes in Ag nanostructures

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.; Bai, T.; Edler, F.; Tegenkamp, C.; Weide-Zaage, K.; Pfnür, H.

    2018-02-01

    Electromigration (EM) as a structuring tool was investigated in Ag nanowires (width 300 nm, thickness 25 nm) and partly in notched and bow-tie Ag structures on a Si(1 0 0) substrate in ultra-high vacuum using a four-tip scanning tunneling microscope in combination with a scanning electron microscope. From simulations of Ag nanowires we got estimates of temperature profiles, current density profiles, EM and thermal migration (TM) mass flux distributions within the nanowire induced by critical current densities of 108 A cm-2. At room temperature, the electron wind force at these current densities by far dominates over thermal diffusion, and is responsible for formation of voids at the cathode and hillocks at the anode side. For current densities that exceed the critical current densities necessary for EM, a new type of wire-like structure formation was found both at room temperature and at 100 K for notched and bow-tie structures. This suggests that the simultaneous action of EM and TM is structure forming, but with a very small influence of TM at low temperature.

  17. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    PubMed

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  18. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE PAGES

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.; ...

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  19. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3 V2 (PO4 )3 @Carbon Paper Cathode for Sodium-Ion Batteries.

    PubMed

    Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu

    2017-03-01

    Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na 3 V 2 (PO 4 ) 3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na 3 V 2 (PO 4 ) 3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na 3 V 2 (PO 4 ) 3 -carbon paper (Na 3 V 2 (PO 4 ) 3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na 3 V 2 (PO 4 ) 3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm -2 . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  1. Cathode power distribution system and method of using the same for power distribution

    DOEpatents

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  2. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  3. Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.

    2017-02-01

    Lithium-ion batteries became the most promising types of mobile energy storage devices due to their high gravimetric and volumetric capacity, high cycle life-time, and low self-discharge. Nowadays, the cathode material lithium nickel manganese cobalt oxide (NMC) is one of the most widely used cathode material in commercial lithium-ion batteries due to many advantages such as high energy density (>150 Wh kg-1) on cell level, high power density (650 W kg-1 @ 25 °C and 50 % Depth of Discharge) [1], high specific capacity (163 mAh g-1) [2], high rate capability and good thermal stability in the fully charged state. However, in order to meet the requirements for the increasing demand for rechargeable high energy batteries, nickel-rich NMC electrodes with specific capacities up to 210 mAh g-1 seem to be the next generation cathodes which can reach on cell level desired energy densities higher than 250 Wh kg-1 [3]. Laser-structuring now enables to combine both concepts, high power and high energy lithium-ion batteries. For this purpose, lithium nickel manganese cobalt oxide cathodes were produced via tape casting containing 85-90 wt% of active material with a film thickness of 50-260 μm. The specific capacities were measured using galvanostatic measurements for different types of NMC with varying nickel, manganese and cobalt content at different charging/discharging currents ("C-rates"). An improved lithium-ion diffusion kinetics due to an increased active surface area could be achieved by laser-assisted generating of three dimensional architectures. Cells with unstructured and structured cathodes were compared. Ultrafast laser ablation was used in order to avoid a thermal impact to the material. It was shown that laser structuring of electrode materials leads to a significant improvement in electrochemical performance, especially at high charging and discharging C-rates.

  4. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    NASA Astrophysics Data System (ADS)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.

    2018-01-01

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.

  5. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    DOE PAGES

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...

    2018-01-22

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less

  6. A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries.

    PubMed

    Zhang, Wenyu; Zeng, Yi; Xu, Chen; Xiao, Ni; Gao, Yiben; Li, Lain-Jong; Chen, Xiaodong; Hng, Huey Hoon; Yan, Qingyu

    2012-01-01

    We report a facile method to prepare a nanoarchitectured lithium manganate/graphene (LMO/G) hybrid as a positive electrode for Li-ion batteries. The Mn(2)O(3)/graphene hybrid is synthesized by exfoliation of graphene sheets and deposition of Mn(2)O(3) in a one-step electrochemical process, which is followed by lithiation in a molten salt reaction. There are several advantages of using the LMO/G as cathodes in Li-ion batteries: (1) the LMO/G electrode shows high specific capacities at high gravimetric current densities with excellent cycling stability, e.g., 84 mAh·g(-1) during the 500th cycle at a discharge current density of 5625 mA·g(-1) (~38.01 C capacity rating) in the voltage window of 3-4.5 V; (2) the LMO/G hybrid can buffer the Jahn-Teller effect, which depicts excellent Li storage properties at high current densities within a wider voltage window of 2-4.5 V, e.g., 93 mAh·g(-1) during the 300th cycle at a discharge current density of 5625 mA·g(-1) (~38.01 C). The wider operation voltage window can lead to increased theoretical capacity, e.g., 148 mAh·g(-1) between 3 and 4.5 V and 296 mAh·g(-1) between 2 and 4.5 V; (3) more importantly, it is found that the attachment of LMO onto graphene can help to reduce the dissolution of Mn(2+) into the electrolyte, as indicated by the inductively coupled plasma (ICP) measurements, and which is mainly attributed to the large specific surface area of the graphene sheets.

  7. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less

  8. Enhancement of electricity production in a mediatorless air-cathode microbial fuel cell using Klebsiella sp. IR21.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2016-06-01

    A novel dissimilatory iron-reducing bacteria, Klebsiella sp. IR21, was isolated from the anode biofilm of an MFC reactor. Klebsiella sp. IR21 reduced 27.8 % of ferric iron to ferrous iron demonstrating that Klebsiella sp. IR21 has electron transfer ability. Additionally, Klebsiella sp. IR21 generated electricity forming a biofilm on the anode surface. When a pure culture of Klebsiella sp. IR21 was supplied into a single chamber, air-cathode MFC fed with a mixture of glucose and acetate (500 mg L(-1) COD), 40-60 mV of voltage (17-26 mA m(-2) of current density) was produced. Klebsiella sp. IR21 was also utilized as a biocatalyst to improve the electrical performance of a conventional MFC reactor. A single chamber, air-cathode MFC was fed with reject wastewater (10,000 mg L(-1) COD) from a H2 fermentation reactor. The average voltage, current density, and power density were 142.9 ± 25.74 mV, 60.5 ± 11.61 mA m(-2), and 8.9 ± 3.65 mW m(-2), respectively, in the MFC without inoculation of Klebsiella sp. IR21. However, these electrical performances of the MFC were significantly increased to 204.7 ± 40.24 mV, 87.5 ± 17.20 mA m(-2), and 18.6 ± 7.23 mW m(-2), respectively, with inoculation of Klebsiella sp. IR21. The results indicate that Klebsiella sp. IR21 can be utilized as a biocatalyst for enhancement of electrical performance in MFC systems.

  9. Scalable and template-free synthesis of nanostructured Na{sub 1.08}V{sub 6}O{sub 15} as high-performance cathode material for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Shili, E-mail: slzheng@ipe.ac.cn; Wang, Xinran; Yan, Hong

    2016-09-15

    Highlights: • Nanostructured Na{sub 1.08}V{sub 6}O{sub 15} was synthesized through additive-free sol-gel process. • Prepared Na{sub 1.08}V{sub 6}O{sub 15} demonstrated high capacity and sufficient cycling stability. • The reaction temperature was optimized to allow scalable Na{sub 1.08}V{sub 6}O{sub 15} fabrication. - Abstract: Developing high-capacity cathode material with feasibility and scalability is still challenging for lithium-ion batteries (LIBs). In this study, a high-capacity ternary sodium vanadate compound, nanostructured NaV{sub 6}O{sub 15}, was template-free synthesized through sol-gel process with high producing efficiency. The as-prepared sample was systematically post-treated at different temperature and the post-annealing temperature was found to determine the cycling stabilitymore » and capacity of NaV{sub 6}O{sub 15}. The well-crystallized one exhibited good electrochemical performance with a high specific capacity of 302 mAh g{sup −1} when cycled at current density of 0.03 mA g{sup −1}. Its relatively long-term cycling stability was characterized by the cell performance under the current density of 1 A g{sup −1}, delivering a reversible capacity of 118 mAh g{sup −1} after 300 cycles with 79% capacity retention and nearly 100% coulombic efficiency: all demonstrating its significant promise of proposed strategy for large-scale synthesis of NaV{sub 6}O{sub 15} as cathode with high-capacity and high energy density for LIBs.« less

  10. Using live algae at the anode of a microbial fuel cell to generate electricity.

    PubMed

    Xu, Chang; Poon, Karen; Choi, Martin M F; Wang, Ruihua

    2015-10-01

    Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 10(6) cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m(2), while the maximum power density at 30.15 mW/m(2) was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m(2) was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.

  11. Examination of ionic wind and cathode sheath effects in a E-field premixed flame with ion density measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Stewart V., E-mail: svj0001@uah.edu; Xu, Kunning G., E-mail: gabe.xu@uah.edu

    2016-04-15

    The effect of the ionic wind on a premixed methane-air flame under a DC electric field is studied via mapping of the ion density with Langmuir probes. Ion densities were observed to increase near the burner with increasing electrode voltage up to 6 kV. Past this electrode supply voltage, ion densities ceased increasing and began to decline in some locations within the premixed flame. The increased ion density is caused by an increase in ionic wind force and cathode sheath thickness. The plateau in density is due to the cathode sheath fully encompassing the flame front which is the ion source,more » thereby collecting all ions in the flame. The spatial density data support the ionic wind hypothesis and provide further explanation of its limits based on the plasma sheath.« less

  12. ELECTRO-DEPOSITION OF NICKEL ALLOYS FROM THE PYROPHOSPHATE BATH: NICKEL- ZINC AND NICKEL-MOLYBDENUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panikkar, S.K.; Char, T.L.R.

    1958-02-01

    Results of studies on the electrodeposition of nickel-zinc and nickel-- molybdenum alloys in a pyrophosphate bath using platinium electrodes are presented. The fects of varying current density and metal contents of the electrolyte on alloy deposit composition, cathode efficiency, and cathode potential are presented in tabular form. (J.R.D.) l2432 A study was made of the effect of homogenization on the mechanical properties of solution-treated and aged aluminum and the quantitative effects of several variables on hardness. The effect of alloying elements on the increase in hardness of aluminum is shown. (J.E.D.)

  13. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1987-01-01

    A theory of the plasma contacting process is described and experimental results obtained using three different hollow cathode-based plasma contactors are presented. The existence of a sheath across which the bulk of the voltage drop associated with the contacting process occurs is demonstrated. Test results are shown to agree with a model of a spherical, space-charge-limited double sheath. The concept of ignited mode contactor operation is discussed, which is shown to enhance contactor efficiency when it is collecting electrons. An investigation of the potentials in the plasma plumes downstream of contactors operating at typical conditions is presented. Results of tests performed on hollow cathodes operating at high interelectrode pressures (up to about 1000 Torr) on ammonia are presented and criteria that are necessary to ensure that the cathode will operate properly in this regime are presented. These results suggest that high pressure hollow cathode operation is difficult to achieve and that special care must be taken to assure that the electron emission region remains diffuse and attached to the low work function insert. Experiments conducted to verify results obtained previously using a ring cusp ion source equipped with a moveable anode are described and test results are reported. A theoretical study of hollow cathode operation at high electron emission currents is presented. Preliminary experiments using the constrained sheath optics concept to achieve ion extraction under conditions of high beam current density, low net accelerating voltage and well columniated beamlet formation are discussed.

  14. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    NASA Astrophysics Data System (ADS)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  15. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    NASA Astrophysics Data System (ADS)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+-434.81 nm and Ar+-442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m-3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  16. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    PubMed

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases

    NASA Astrophysics Data System (ADS)

    Nazaruk, Ewa; Smoliński, Sławomir; Swatko-Ossor, Marta; Ginalska, Grażyna; Fiedurek, Jan; Rogalski, Jerzy; Bilewicz, Renata

    Two glassy carbon electrodes modified with enzymes embedded in lyotropic liquid-crystalline cubic phase were used for the biofuel cell construction. The monoolein liquid-crystalline film allowed to avoid separators in the biofuel cell. Glucose and oxygen as fuels, and glucose oxidase and laccase as anode and cathode biocatalysts, respectively were used. The biofuel cell parameters were examined in McIlvaine buffer, pH 7 solution containing 15 mM of glucose and saturated with dioxygen. A series of mediators were tested taking into account their formal potentials, stability in the cubic phase and efficiency of mediation. Most stable was the biofuel cell based on tetrathiafulvalene (TTF) and 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as anode and cathode mediators, respectively. The open-circuit voltage was equal to 450 ± 40 mV. The power densities and current densities were measured for all the systems studied.

  19. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  20. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun

    Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less

  1. Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures

    DOE PAGES

    Mohanty, Debasish; Mazumder, Baishakhi; Devaraj, Arun; ...

    2017-04-05

    Our development of stable high-voltage (HV), high capacity (HC) cathode oxides is indispensable to enhancing the performance of current high-energy-density (HED) lithium-ion batteries. Overstoichiometric, layered Li- and Mn-rich (LMR) composite oxides are promising materials for HV-HC cathodes for HED batteries; however, their practical use is limited. By probing the crystal structure, magnetic structure, and microstructure of the Li 1.2Mn 0.55Ni 0.15Co 0.1O 2 LMR oxide, we demonstrate that the oxide loses its pristine chemistry, structure, and composition during the first charge-discharge cycle and that it proceeds through a series of progressive events that introduce impediments on the ion mobility pathways.more » Here, we discovered i) the presence of tetrahedral Mn 3+, interlayer cation intermixing, interface of layered-spinel, and structurally rearranged domains, cation segregation at an HV charged state, and ii) the loss of Li ions, inhomogeneous distribution of Li/Ni, and structurally transformed domains after the first discharge. Our results will advance our fundamental understanding of the obstacles related to ion migration pathways in HV-HC cathode systems and will enable us to formulate design rules for use of such materials in high-energy-density electrochemical-energy-storage devices.« less

  2. Spatial structure of radio frequency ring-shaped magnetized discharge sputtering plasma using two facing ZnO/Al2O3 cylindrical targets for Al-doped ZnO thin film preparation

    NASA Astrophysics Data System (ADS)

    Sumiyama, Takashi; Fukumoto, Takaya; Ohtsu, Yasunori; Tabaru, Tatsuo

    2017-05-01

    Spatial structure of high-density radio frequency ring-shaped magnetized discharge plasma sputtering with two facing ZnO/Al2O3 cylindrical targets mounted in ring-shaped hollow cathode has been measured and Al-doped ZnO (AZO) thin film is deposited without substrate heating. The plasma density has a peak at ring-shaped hollow trench near the cathode. The radial profile becomes uniform with increasing the distance from the target cathode. A low ion current flowing to the substrate of 0.19 mA/cm2 is attained. Large area AZO films with a resistivity of 4.1 - 6.7×10-4 Ω cm can be prepared at a substrate room temperature. The transmittance is 84.5 % in a visible region. The surface roughnesses of AZO films are 0.86, 0.68, 0.64, 1.7 nm at radial positions of r = 0, 15, 30, 40 mm, respectively, while diffraction peak of AZO films is 34.26°. The grains exhibit a preferential orientation along (002) axis.

  3. Stability of Electrons in the Virtual Cathode Region of an IEC

    NASA Astrophysics Data System (ADS)

    Kim, Hyng-Jin; Miley, George; Momota, Hiromu

    2003-04-01

    In the Inertial Electrostatic Confinement (IEC) device, electrons are confined inside a virtual anode that in turn confines ions. Prior stability studies [1, 2] have considered systems in which one species is electrostatically confined by the other, and either or both species are out of local thermal equilibrium. In the present research, electron stability in the virtual cathode region of an ion injected IEC is being studied. The ion density in an IEC is non-uniform due to the radial electrostatic potential, and increases toward the center region. The potential near the virtual cathode is assumed to have a parabolic shape and is determined assuming that the net space charge density is constant in that region. The corresponding ion distribution function is assumed to have the form f = C [sigma] (H W) /L^0.5 and the electron response is taken to be diabatic. Then using a variational principle after linearizing the hydrodynamic equations, stability properties of the electron layer are determined. Results will be presented as a function of injected ion/electron current ratios. 1. L. Chacon and D. C. Barnes, Phys. Plasma 7, 4774 (2000). 2. D. C. Barnes, L. Chacon, and J. M. Finn, Phys. Plasmas 9, 4448 (2002).

  4. Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells.

    PubMed

    Ansari, Sajid Ali; Parveen, Nazish; Han, Thi Hiep; Ansari, Mohammad Omaish; Cho, Moo Hwan

    2016-04-07

    Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte. The fibrous Pani-MnO2 nanocomposite achieved high capacitance (525 F g(-1) at a current density of 2 A g(-1)) and excellent cycling stability of 76.9% after 1000 cycles at 10 A g(-1). Furthermore, the microbial fuel cell constructed with the fibrous Pani-MnO2 cathode catalyst showed an improved power density of 0.0588 W m(-2), which was higher than that of pure Pani and carbon paper, respectively. The improved electrochemical supercapacitive performance and cathode catalyst performance in microbial fuel cells were attributed mainly to the synergistic effect of Pani and MnO2 in fibrous Pani-MnO2, which provides high surface area for the electrode/electrolyte contact as well as electronic conductive channels and exhibits pseudocapacitance behavior.

  5. Effective degradation of rhodamine B by electro-Fenton process, using ferromagnetic nanoparticles loaded on modified graphite felt electrode as reusable catalyst: in neutral pH condition and without external aeration.

    PubMed

    Tian, Jiangnan; Zhao, Jixiang; Olajuyin, Ayobami Matthew; Sharshar, Moustafa Mohamed; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-08-01

    Polytetrafluoroethylene/ferromagnetic nanoparticle/carbon black (PTFE/MNP/CB)-modified graphite felt (GF) was successfully applied as cathode for the mineralization of rhodamine B (RhB) in electro-Fenton (EF) process. The modified cathode showed high decolorization efficiency for RhB solution even in neutral pH condition and without external aeration, achieving nearly complete decolorization and 89.52 % total organic carbon (TOC) removal after 270-min oxidation with the MNP load 1.2 g at 50 A/m(2). Moreover, the operational parameters (current density, MNP load, initial pH, and airflow rate) were optimized. After that, adsorption isotherm was also conducted to compare the absorption quantity of CB and carbon nanotube (CNT). Then, the surface morphologies of MNPs were characterized by transmission electron microscope (TEM), energy-dispersive X-ray detector (EDX), and Fourier transform infrared spectroscopy (FTIR); and the modified cathode was characterized by SEM and contact angle. Finally, the stability and reusability of modified cathode were tested. Result uncovered that the PTFE/MNP/CB-modified cathode has the potential for industrial application and the solution after treatment was easily biodegradable.

  6. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  7. Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells

    DOE PAGES

    Sebastian, David; Serov, Alexey; Matanovic, Ivana; ...

    2017-02-21

    Direct alcohol fuel cells (DAFCs) represent the best alternative to batteries for portable and auxiliary power units application due to the high energy density of short chain alcohols. Currently, the utilization of the best platinum group metal (PGM) cathode catalysts is limited, not only by a high cost and scarce resources, but also by the inefficient oxygen reduction reaction (ORR) when permeated alcohols adsorb on the catalytic active sites. In this work, a highly active Fe-N-C catalyst derived from the pyrolysis of nicarbazin (a nitrogen charge transfer organic salt) and an iron precursor has been investigated to get insights onmore » the extraordinary tolerance to the presence of alcohols (methanol and ethanol) of such a PGM-free catalyst. Density functional theory (DFT) calculations demonstrate for the first time that Fe-N 4 and Fe-N 2C 2 active sites preferentially adsorb oxygen with much higher energy than methanol, ethanol and products of partial ethanol oxidation (0.73–1.16 eV stronger adsorption), while nitrogen-carbon related sites (pyridinic and graphitic nitrogen) are much less selective towards ORR. Half-cell electrochemical characterization showed that the Fe-N-C catalyst overcomes Pt ORR activity in acidic medium with methanol or ethanol concentrations as low as 0.01 M. The feasibility of DAFCs operation based on high methanol (up to 17 M) and ethanol (up to 5 M) concentration thanks to the utilization of Fe-N-C cathode catalyst is demonstrated. Lastly, a new strategy is proposed for DAFCs where using Pt only at the anode and Fe-N-C at the cathode allows extending the device energy density compared to PGM-based catalysts at both electrodes.« less

  8. Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sebastian, David; Serov, Alexey; Matanovic, Ivana

    Direct alcohol fuel cells (DAFCs) represent the best alternative to batteries for portable and auxiliary power units application due to the high energy density of short chain alcohols. Currently, the utilization of the best platinum group metal (PGM) cathode catalysts is limited, not only by a high cost and scarce resources, but also by the inefficient oxygen reduction reaction (ORR) when permeated alcohols adsorb on the catalytic active sites. In this work, a highly active Fe-N-C catalyst derived from the pyrolysis of nicarbazin (a nitrogen charge transfer organic salt) and an iron precursor has been investigated to get insights onmore » the extraordinary tolerance to the presence of alcohols (methanol and ethanol) of such a PGM-free catalyst. Density functional theory (DFT) calculations demonstrate for the first time that Fe-N 4 and Fe-N 2C 2 active sites preferentially adsorb oxygen with much higher energy than methanol, ethanol and products of partial ethanol oxidation (0.73–1.16 eV stronger adsorption), while nitrogen-carbon related sites (pyridinic and graphitic nitrogen) are much less selective towards ORR. Half-cell electrochemical characterization showed that the Fe-N-C catalyst overcomes Pt ORR activity in acidic medium with methanol or ethanol concentrations as low as 0.01 M. The feasibility of DAFCs operation based on high methanol (up to 17 M) and ethanol (up to 5 M) concentration thanks to the utilization of Fe-N-C cathode catalyst is demonstrated. Lastly, a new strategy is proposed for DAFCs where using Pt only at the anode and Fe-N-C at the cathode allows extending the device energy density compared to PGM-based catalysts at both electrodes.« less

  9. Testing Metal Chlorides For Use In Sodium-Cell Cathodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald

    1992-01-01

    Cyclic voltammetric curves of transition-metal wires in molten NaAlCl4 electrolyte used to eliminate suitability of transition metals as cathodes in sodium cells. Cyclic voltammetry used in conjunction with measurement of galvanostatic polarization curves determines whether given metal chloride suitable as cathode material in such cell. Cells useful in such high-energy-density and high-power-density applications as leveling loads on electric-power plants, supplying power to electric ground vehicles, and aerospace applications.

  10. Cathodic electrochemical activation of Co3O4 nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity.

    PubMed

    Yang, Li; Zhou, Huang; Qin, Xin; Guo, Xiaodong; Cui, Guanwei; Asiri, Abdullah M; Sun, Xuping

    2018-02-22

    Co(hydro)oxides show unsatisfactory catalytic activity for the hydrogen evolution reaction (HER) in alkaline media, and it is thus highly desirable but still remains a challenge to design and develop Co(hydro)oxide derived materials as superb hydrogen-evolving catalysts using a facile, rapid and less energy-intensive method. Here, we propose a cathodic electrochemical activation strategy toward greatly boosted HER activity of a Co 3 O 4 nanoarray via room-temperature cathodic polarization in sodium hypophosphite solution. After activation, the overpotential significantly decreases from 260 to 73 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 1.0 M KOH. Notably, this activated electrode also shows strong long-term electrochemical durability with the retention of its catalytic activity at 100 mA cm -2 for at least 40 h.

  11. A study of scandia and rhenium doped tungsten matrix dispenser cathode

    NASA Astrophysics Data System (ADS)

    Wang, Jinshu; Li, Lili; Liu, Wei; Wang, Yanchun; Zhao, Lei; Zhou, Meiling

    2007-10-01

    Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The experimental results show that scandia was distributed evenly on the surface of tungsten particles. The addition of scandia and rhenium could decrease the particle size of doped tungsten, for example, the tungsten powders doped with Sc 2O 3 and Re had the average size of about 50 nm in diameter. By using this kind of powder, scandia and rhenium doped tungsten matrix with the sub-micrometer sized tungsten grains was obtained. This kind of matrix exhibited good anti-bombardment insensitivity at high temperature. The emission property result showed that high space charge limited current densities of more than 60 A/cm 2 at 900 °C could be obtained for this cathode. A Ba-Sc-O multilayer about 100 nm in thickness formed at the surface of cathode after activation led to the high emission property.

  12. Investigation of Influence of Surface Nanoparticle on Emission Properties of Scandia-Doped Dispenser Cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan

    2013-06-01

    The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.

  13. METHOD FOR ELECTRO-NICKEL PLATING WOLFRAM CARBIDE

    DOEpatents

    Slatin, H.L.

    1959-05-01

    A WC body can be electroplated with Ni after anodic etching in Na/sub 4/ P/sub 2/O/sub 7/ solution (200 g/l) with a Pb cathode. A current density of 2 amp/in./sup 2/ for 10 min is sufficient. This allows Ni to be electrodeposited in an adherent coating which is weldable. (T.R.H.)

  14. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  15. Electrochemical properties of electrodes with different shapes and diffusion kinetic analysis of microbial fuel cells on ocean floor

    NASA Astrophysics Data System (ADS)

    Fu, Yubin; Liu, Jia; Su, Jia; Zhao, Zhongkai; Liu, Yang; Xu, Qian

    2012-03-01

    Microbial fuel cell (MFC) on the ocean floor is a kind of novel energy- harvesting device that can be developed to drive small instruments to work continuously. The shape of electrode has a great effect on the performance of the MFC. In this paper, several shapes of electrode and cell structure were designed, and their performance in MFC were compared in pairs: Mesh (cell-1) vs. flat plate (cell-2), branch (cell-3) vs. cylinder (cell-4), and forest (cell-5) vs. disk (cell-6) FC. Our results showed that the maximum power densities were 16.50, 14.20, 19.30, 15.00, 14.64, and 9.95 mWm-2 for cell-1, 2, 3, 4, 5 and 6 respectively. And the corresponding diffusion-limited currents were 7.16, 2.80, 18.86, 10.50, 18.00, and 6.900 mA. The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes. The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary. These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC, and the differences in the electrode shape lead to the differences in cell performance. These results would be useful for MFC structure design in practical applications.

  16. MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1941-01-01

    The squid giant axon was placed in a shallow narrow trough and current was sent in at two electrodes in opposite sides of the trough and out at a third electrode several centimeters away. The potential difference across the membrane was measured between an inside fine capillary electrode with its tip in the axoplasm between the pair of polarizing electrodes, and an outside capillary electrode with its tip flush with the surface of one polarizing electrode. The initial transient was roughly exponential at the anode make and damped oscillatory at the sub-threshold cathode make with the action potential arising from the first maximum when threshold was reached. The constant change of membrane potential, after the initial transient, was measured as a function of the total polarizing current and from these data the membrane potential is obtained as a function of the membrane current density. The absolute value of the resting membrane resistance approached at low polarizing currents is about 23 ohm cm.2. This low value is considered to be a result of the puncture of the axon. The membrane was found to be an excellent rectifier with a ratio of about one hundred between the high resistance at the anode and the low resistance at the cathode for the current range investigated. On the assumption that the membrane conductance is a measure of its ion permeability, these experiments show an increase of ion permeability under a cathode and a decrease under an anode. PMID:19873234

  17. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  18. Theoretical model and experimental investigation of current density boundary condition for welding arc study

    NASA Astrophysics Data System (ADS)

    Boutaghane, A.; Bouhadef, K.; Valensi, F.; Pellerin, S.; Benkedda, Y.

    2011-04-01

    This paper presents results of theoretical and experimental investigation of the welding arc in Gas Tungsten Arc Welding (GTAW) and Gas Metal Arc Welding (GMAW) processes. A theoretical model consisting in simultaneous resolution of the set of conservation equations for mass, momentum, energy and current, Ohm's law and Maxwell equation is used to predict temperatures and current density distribution in argon welding arcs. A current density profile had to be assumed over the surface of the cathode as a boundary condition in order to make the theoretical calculations possible. In stationary GTAW process, this assumption leads to fair agreement with experimental results reported in literature with maximum arc temperatures of ~21 000 K. In contrast to the GTAW process, in GMAW process, the electrode is consumable and non-thermionic, and a realistic boundary condition of the current density is lacking. For establishing this crucial boundary condition which is the current density in the anode melting electrode, an original method is setup to enable the current density to be determined experimentally. High-speed camera (3000 images/s) is used to get geometrical dimensions of the welding wire used as anode. The total area of the melting anode covered by the arc plasma being determined, the current density at the anode surface can be calculated. For a 330 A arc, the current density at the melting anode surface is found to be of 5 × 107 A m-2 for a 1.2 mm diameter welding electrode.

  19. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.

    PubMed

    Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei

    2018-02-16

    Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.

  20. Electrochemical processing of lead-containing waste ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, C.O.; Olsen, G.P.

    1995-12-31

    Literature review indicates that propellant ingredients in NOSIH-AA2 have been investigated electrochemical separation. Papers on related electroanalytical chemistry offer help in indicating which electrolytic separation systems to investigate. These included copper and nickel electrodes in alkaline solution. Voltammetry studies in 0.1 M NaOH showed that lead metal can be readily collected at a copper cathode and that lead dioxide can be deposited at a nickel anode. Cathodic and anodic deposition reactions begin at less than minus or plus 0.5 V. resp. Other species present in the propellant are also reactive at the anode. Deposits with good mechanical properties resulted, evenmore » with 40 mA/cm{sup 2} current density. Lead concentrations in alkaline solutions can readily be monitored using anodic amperometry with the nickel electrode. Separations from actual propellant solutions in 3 M NaOH were demonstrated using nickel as anode and cathode. Gravimetric monitoring of both anode and cathode showed accumulations suggesting the exhaustive lead collection. Associated voltammetry data showed decreasing amounts of other electroactive species at the anode as well as lead.« less

  1. Ion energy distribution and gas heating in the cathode fall of a direct-current microdischarge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Tsuyohito; Cappelli, Mark A.

    2006-04-15

    This paper reports on measurements of the ion energy distribution (IED) at the cathode of an argon dc microdischarge using energy-resolved molecular beam mass spectrometry. The measurements are conducted at a fixed pressure-electrode separation product (pd) of 1 cm Torr with a maximum discharge pressure of 20 Torr. The measured IED is compared to the theory of Davis and Vanderslice [W. D. Davis and T. A. Vanderslice, Phys. Rev. 131, 219 (1963)]. A higher pressure in a case of almost constant normalized current densities by pressure (Jp{sup -2}=0.080{+-}0.006 mAecm{sup -2} Torr{sup -2}) yields a lower ratio of the ion meanmore » free path to the sheath thickness. The results in almost constant Jp{sup -2} case then indicate that a scaling law of Jp{sup -2} is no longer applicable for IED of microdischarge. Expected background gaseous temperatures from IEDs with the collisional Child law have reasonable increasing with increased current density (J) in both cases of almost constant Jp{sup -2} and a constant pressure of 10 Torr. Supported by temperature measurement by laser absorption spectroscopy, it is demonstrated that the expanded theory might be applicable also to microdischarges (Ar{approx}20 Torr) with temperature adjusting.« less

  2. Synergistic Effects between Doped Nitrogen and Phosphorus in Metal-Free Cathode for Zinc-Air Battery from Covalent Organic Frameworks Coated CNT.

    PubMed

    Li, Zhongtao; Zhao, Weinan; Yin, Changzhi; Wei, Liangqin; Wu, Wenting; Hu, Zhenpeng; Wu, Mingbo

    2017-12-27

    A covalent organic framework that is composed of hexachlorocyclotriphosphazene and dicyanamide has been coated on CNT to prepare metal-free oxygen reduction reaction catalyst through thermal polymerization of the Zn-air battery cathode. The N,P-codoped nanohybrids have highly porous structure and active synergistic effect between graphitic-N and -P, which promoted the electrocatalytic performance. The electrocatalysts exhibits remarkable half-wave potential (-0.162 V), high current density (6.1 mA/cm -2 ), good stability (83%), and excellent methanol tolerance for ORR in alkaline solution. Furthermore, the N,P-codoped nanohybrids were used as an air electrode for fabrication of a high performance Zn-air battery. The battery achieves a high open-circuit potential (1.53 V) and peak power density (0.255 W cm -2 ). Moreover, the effect of N,P codoping on the conjugate carbon system and the synergistic effect between graphitic-N and P have been calculated through density functional theory calculations, which are essentially in agreement with experimental data.

  3. Copper chloride cathode for a secondary battery

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Distefano, Salvador (Inventor); Nagasubramanian, Ganesan (Inventor); Bankston, Clyde P. (Inventor)

    1990-01-01

    Higher energy and power densities are achieved in a secondary battery based on molten sodium and a solid, ceramic separator such as a beta alumina and a molten catholyte such as sodium tetrachloroaluminate and a copper chloride cathode. The higher cell voltage of copper chloride provides higher energy densities and the higher power density results from increased conductivity resulting from formation of copper as discharge proceeds.

  4. A novel metal organic framework-derived carbon-based catalyst for oxygen reduction reaction in a microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Hu, Yongyou; Chen, Junfeng; Huang, Wantang; Cheng, Jianhua; Chen, Yuancai

    2018-04-01

    To improve the power generation of microbial fuel cell (MFC), the cathode is modified to increase its oxygen reduction reaction (ORR) activity by using a Cu, N-incorporated carbon-based material as catalyst, which obtained from pyrolyzing ORR active Cu (II)-based metal organic framework (MOF; Cu-bipy-BTC, bipy = 2,2‧-bipyridine, BTC = 1,3,5-tricarboxylate). MOF-800 (the product of pyrolyzing Cu-bipy-BTC at 800 °C) shows porous structure with micropores ranging from 0.5 to 1.3 nm and mesopores ranging from 27 to 46 nm. It also exhibits improved ORR electrocatalytic activity with a higher current density of -3.06 mA cm-2 compared to Cu-bipy-BTC. Moreover, the charge transfer resistance of MOF-800 cathode (1.38 Ω) is much smaller than that of Cu-bipy-BTC cathode (176.8 Ω). A maximum power density of 326 ± 11 mW m-2 is achieved by MOF-800-MFC, which is 2.6 times of that of Cu-bipy-BTC-MFC and comparable with Pt/C-MFC (402 ± 17 mW m-2). The results imply the enhancements of ORR catalytic activity and electrical conductivity of MOF-800 are due to the enhanced porous structure and abundant active sites (C-N, Cu-Nχ), which result in the improved power generation of MFC. This study provides technical and theoretical validation for the MFC performance improvement by ORR active MOF-derived catalysts modified cathodes.

  5. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen

    2017-07-01

    Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).

  6. Hybrid Ag 2VO 2PO 4/CF x as a High Capacity and Energy Cathode for Primary Batteries

    DOE PAGES

    Li, Yue Ru; Bruck, Andrea M.; Brady, Alexander B.; ...

    2017-08-18

    In this report, we describe the electrochemistry of hybrid dual silver vanadium phosphorus oxide/carbon fluoride (Ag 2VO 2PO 4/CF x) cathodes with various weight ratios. Through modification of the Ag 2VO 2PO 4/CF x ratio, we can control the gravimetric and volumetric capacity, as well as mitigate the voltage drop during high current pulses. The increase in impedance caused by irreversible LiF formation in CFx was reduced by the silver reduction-displacement during electrochemical discharge of the Ag 2VO 2PO 4. Moreover, the addition of graphite was shown to reduce initial voltage delay. When Ag 2VO 2PO 4 dominates the electrodemore » mass (i.e. 75/25 Ag 2VO 2PO 4/CF x) in the hybrid cathode, pulse testing shows less voltage drop and delay, but at the expense of capacity and energy density. As the amount of CFx in the composite increases (i.e. Ag 2VO 2PO 4/CF x ratio of to 50/50 or 25/75), charge capacity and energy density increases, but at the expense of larger voltage drops and delays early in the discharge process. Thus, controlling the Ag 2VO 2PO 4/CF x ratio can be used to tune the electrochemical properties of the dual cathode, allowing for optimization of capacity and power depending on the application.« less

  7. A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay

    2016-01-14

    Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less

  8. Hybrid Ag 2VO 2PO 4/CF x as a High Capacity and Energy Cathode for Primary Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yue Ru; Bruck, Andrea M.; Brady, Alexander B.

    In this report, we describe the electrochemistry of hybrid dual silver vanadium phosphorus oxide/carbon fluoride (Ag 2VO 2PO 4/CF x) cathodes with various weight ratios. Through modification of the Ag 2VO 2PO 4/CF x ratio, we can control the gravimetric and volumetric capacity, as well as mitigate the voltage drop during high current pulses. The increase in impedance caused by irreversible LiF formation in CFx was reduced by the silver reduction-displacement during electrochemical discharge of the Ag 2VO 2PO 4. Moreover, the addition of graphite was shown to reduce initial voltage delay. When Ag 2VO 2PO 4 dominates the electrodemore » mass (i.e. 75/25 Ag 2VO 2PO 4/CF x) in the hybrid cathode, pulse testing shows less voltage drop and delay, but at the expense of capacity and energy density. As the amount of CFx in the composite increases (i.e. Ag 2VO 2PO 4/CF x ratio of to 50/50 or 25/75), charge capacity and energy density increases, but at the expense of larger voltage drops and delays early in the discharge process. Thus, controlling the Ag 2VO 2PO 4/CF x ratio can be used to tune the electrochemical properties of the dual cathode, allowing for optimization of capacity and power depending on the application.« less

  9. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    NASA Astrophysics Data System (ADS)

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  10. Ignition and extinction phenomena in helium micro hollow cathode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atomsmore » density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.« less

  11. Localised electrochemical impedance measurements of a polymer electrolyte fuel cell using a reference electrode array to give cathode-specific measurements and examine membrane hydration dynamics

    NASA Astrophysics Data System (ADS)

    Engebretsen, Erik; Hinds, Gareth; Meyer, Quentin; Mason, Tom; Brightman, Edward; Castanheira, Luis; Shearing, Paul R.; Brett, Daniel J. L.

    2018-04-01

    Advances in bespoke diagnostic techniques for polymer electrolyte fuel cells continue to provide unique insight into the internal operation of these devices and lead to improved performance and durability. Localised measurements of current density have proven to be extremely useful in designing better fuel cells and identifying optimal operating strategies, with electrochemical impedance spectroscopy (EIS) now routinely used to deconvolute the various losses in fuel cells. Combining the two techniques provides another dimension of understanding, but until now each localised EIS has been based on 2-electrode measurements, composed of both the anode and cathode responses. This work shows that a reference electrode array can be used to give individual electrode-specific EIS responses, in this case the cathode is focused on to demonstrate the approach. In addition, membrane hydration dynamics are studied under current load steps from open circuit voltage. A three-stage process is identified associated with an initial rapid reduction in membrane resistance after 10 s of applying a current step, followed by a slower ramp to approximately steady state, which was achieved after ∼250 s. These results support previously published work that has looked at membrane swelling dynamics and reveal that membrane hydration/membrane resistance is highly heterogeneous.

  12. Line length dependence of threshold current density and driving force in eutectic SnPb and SnAgCu solder electromigration

    NASA Astrophysics Data System (ADS)

    Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang

    2008-04-01

    The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.

  13. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  14. The Child-Langmuir laws and cathode sheath in the N2O

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Artushenko, Ekaterina; Yegorenkov, Vladimir

    2013-09-01

    It is established which of the Child-Langmuir collisional laws are most appropriate for describing the cathode sheath in the N2O. At low pressure p < 0 . 3 Torr the Child-Langmuir law version relating to the constant ion mobility. At p > 0 . 75 Torr one has to employ the law version for which it is assumed that ion mean free path within the cathode sheath is constant. In the intermediate pressure range 0 . 3 < p < 0 . 75 Torr neither of the Child-Langmuir law versions gives a correct description of the cathode sheath in the N2O. The ratio of the normal current density to the gas pressure squared J /p2 , the normal voltage drop and the cathode sheath thickness are determined. For the stainless steel cathode they equals to U = 364 V and pd = 2 . 5 Torr .mm. At large N2O pressure the above ratio remains constant and it amounts to J /p2 = 0.44 mA/(cm .Torr)2 for any inter-electrode gap value we studied. On decreasing the N2O pressure the ratio J /p2 increases and for narrow gaps between electrodes it may approach several or even several tens mA/(cm .Torr)2. and Scientific Center of Physical Technologies, Svobody Sq.6, Kharkov, 61022, Ukraine.

  15. Materials Characteristics and Surface Morphology of a Cesium Iodide Coated Carbon Velvet Cathode (POSTPRINT)

    DTIC Science & Technology

    2009-03-31

    cathodes consist of an array of carbon fibers pyrolytically bonded to a carbon substrate. The fibers then receive a CsI coating using either a...the oil side of the vacuum interface along the cathode shank. Current transformers provide current measurements of the cathode current, again

  16. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  17. Graphene: A Cathode Material of Choice for Aluminium-ion Battery.

    PubMed

    Das, Shyamal

    2018-03-22

    The pairing of an aluminum anode with a cathode of high energy and power densities determines the future of aluminum-ion battery technology. The arising natural question is - "Is there any suitable cathode material which is capable of storing sufficiently large amount of trivalent aluminum-ions at relatively higher operating potential?". The wonder material "graphene" emerges to be a befitting answer. Graphene footprint in research arena of aluminum-ion battery could be seen merely three years ago. However, the research progress in this front is tremendous and applauding. Outperforming all other known cathode materials, graphene made several remarkable breakthroughs in offering extraordinary energy density, power density, cycle life, thermal stability, safety and flexibility. The future of Al-graphene couple is indeed brighter, if utmost emphasis is drawn right away to surmount the inherent technological challenges. This minireview comprehensively highlights the electrochemical performances, advantages and challenges of graphene as cathode in aluminum-ion battery in conjugation with chloroaluminate based electrolytes. Additionally, the complex mechanism of charge storage in graphene is also elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of cathodic current density on performance of tungsten coatings on molybdenum prepared by electrodeposition in molten salt

    NASA Astrophysics Data System (ADS)

    Jiang, Fan

    2016-02-01

    Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.

  19. NEXIS Reservoir Cathode 2000 Hour Life Test

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm

    2004-01-01

    The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.

  20. Electron emission and beam generation using ferroelectric cathodes

    NASA Astrophysics Data System (ADS)

    Flechtner, Donald D.

    1999-06-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1-100 A/cm2) from Lead-Lanthanum-Zirconate- Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50-500,000 V with anode cathode gaps of.5-6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages >=200 kV, a typical Child-Langmuir V3/2 dependence was observed. Additional experiments have demonstrated repetition rates of up to 50 Hz with current densities of >=20 A/cm2. These results have been used in the ongoing design and construction of the electron gun for a 500 kV pulse modulator capable of repetitive operation at 1 Hz. The electron gun uses a PZT 55/45 (Pb(Zr.55,Ti.45 )O3) cathode to produce a <=400 A electron beam focused by a converging magnetic field. Studies of the emission process itself indicate the initial electrons are produced by field emission from the metallic grid applied to the front surface of the cathode. The field emission is induced by the application of a fast rising 1-3 kV, 150 ns pulse to the rear electrode of the 1 mm thick ferroelectric. Field emission can lead to explosive emission from microprotrusions and metal-ferroelectric-vacuum triple points forming a diffuse plasma on the surface of the sample. Under long pulse experiments (1-5 μs), plasma velocities of ~2 cm/μs were measured from gap closure rates. Results from an ion Faraday cup experiment showed ion velocities of 1-2 cm/μs. Experimental evidence indicates the electron emission is dependent on the field emission initiated by the voltage applied to rear surface of the ferroelectric; however, for current pulse durations on the order of microseconds, the surface plasma expansion into the gap can dominate current flow.

  1. Free standing Cu2Te, new anode material for sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Sarkar, Ananta; Mallick, Md. Mofasser; Panda, Manas Ranjan; Vitta, Satish; Mitra, Sagar

    2018-05-01

    Sodium-ion battery is the most popular alternative to lithium-ion energy storage system due to its low cost and huge abundant resources throughout the world. Although recent literature showed cathode materials for sodium ion battery performs almost equivalent to lithium-ion counterpart but the anode of this sodium-ion battery is in premature state. Here, we introduced free-standing copper telluride (Cu2Te), a new anode materials for sodium-ion battery. For making the electrode we did not use any conductive carbon or current collector which increase the volumetric density as well as reduce the cost of the cell. This metallic Cu2Te alloy exhibited a high reversible capacity of ˜275 mAh g-1 at 50 mA g-1 current density and ˜200 mAh g-1 at higher current density of 100 mA g-1, operating between 0.1 to 2.0 V.

  2. Sulfur/lithium-insertion compound composite cathodes for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Su, Yu-Sheng; Manthiram, Arumugam

    2014-12-01

    A part of carbon additives in sulfur cathodes is replaced by lithium-insertion compounds as they can contribute extra capacity and increase the overall energy density. Accordingly, VO2(B) and TiS2 were incorporated into sulfur cathodes as they can work within the same voltage window as that of sulfur. However, VO2(B) was found to be incompatible with the glyme-based electrolytes that are usually used in Li-S cells, but TiS2 performs well while coupled with sulfur. The S/C/TiS2 composite cathode delivers 252 mAh g-1 more than that of pristine sulfur cathode (1334 mAh g-1 vs. 1082 mAh g-1). The increased capacity is not only due to the contribution by TiS2 itself but also due to a better active-material dispersion and utilization. Serving as active reaction sites during cycling, TiS2 suppresses agglomeration of sulfur and facilitates better ionic/electronic transport within the cathode structure. This composite cathode design provides another direction for Li-S batteries to improve the overall energy density.

  3. Physics of Intense Electron Current Sources for Helicity Injection

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Winz, G. R.

    2014-10-01

    DC helicity injection (HI) for non-solenoidal ST startup requires sources of current at the tokamak edge. Since the rate of HI scales with injection voltage, understanding of the physics setting injector impedance is necessary for a predictive model of the HI rate and subsequent growth of Ip. In Pegasus, arc plasma sources are used for current injection. They operate immersed in tokamak edge plasma, and are biased at ~1-2 kV with respect to the vessel to draw current densities J ~ 1 kA/cm2 from an arc plasma cathode. Prior to tokamak formation, impedance data manifests two regimes, one at low current (< 1 kA) with I ~V 3 / 2 , and a higher current mode where I ~V 1 / 2 holds. The impedance in the I ~V 3 / 2 regime is consistent with an electrostatic double layer. Current in the I ~V 1 / 2 regime is linear in arc gas fueling rate, suggesting a space-charge limit set by nedge. In the presence of tokamak plasmas, voltage oscillations of the order 100s of volts are measured during MHD relaxation activity. These fluctuations occur at the characteristic frequencies of the n = 1 and n = 0 MHD activity observed on magnetic probes, and are suggestive of dynamic activity found in LHI simulations in NIMROD. Advanced injector design techniques have allowed higher voltage operation. These include staged shielding to prevent external arcing, and shaped cathodes, which minimize the onset and material damage due to cathode spot formation. Work supported by US DOE Grant DE-FG02-96ER54375.

  4. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  5. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    NASA Astrophysics Data System (ADS)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  6. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  7. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  8. Development of a high average current polarized electron source with long cathode operational lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and havemore » often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.« less

  9. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors.

    PubMed

    Xing, Lei; Dong, Yidi; Hu, Fang; Wu, Xiang; Umar, Ahmad

    2018-04-24

    Herein, we report a simple and facile sequential hydrothermal process for the synthesis of Co3O4 nanowire@NiO nanosheet arrays (CNAs). The as-synthesized CNAs were characterized in detail using various analytical techniques, which confirmed the high crystallinity, purity, and high-density growth of these nanomaterials. From an application point of view, the as-synthesized CNAs were directly used as supercapacitor electrodes, revealing a specific capacitance of up to 2018 mF cm-2 at a current density of 2 mA cm-2. Furthermore, a flexible asymmetric supercapacitor was fabricated using the as-synthesized CNAs as the anode and activated carbon as the cathode, which revealed a specific capacitance of 134.6 mF cm-2 at a current density of 2 mA cm-2. In addition, the supercapacitor showed excellent capacity retention of 73.5% after 10 000 cycles at a current density of 10 mA cm-2.

  10. Texture related unusual phenomena in electrodeposition and vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, D. N.; Han, H. N.

    2015-04-01

    The tensile strength of electrodeposits generally decreases with increasing bath temperature because the grain size increases and the dislocation density decreases with increasing bath temperature. Therefore, discontinuities observed in the tensile strength vs. bath temperature curves in electrodeposition of copper are unusual. The tensile strength of electrodeposits generally increases with increasing cathode current density because the rate of nucleation in electrodeposits increases with increasing current density, which in turn gives rise to a decrease in the grain size and in turn an increase in the strength. Therefore, a decrease in the tensile strength of copper electrodeposits at a high current density is unusual. The grain size of vapor deposits is expected to decrease with decreasing substrate temperature. However, rf sputtered Co-Cr deposits showed that deposits formed on water-cooled polyimide substrates had a larger grain size than deposits formed on polyimide substrates at 200 °C. These unusual phenomena can be explained by the preferred growth model for deposition texture evolution.

  11. Model for intensity calculation in electron guns

    NASA Astrophysics Data System (ADS)

    Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.

    2007-04-01

    The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.

  12. Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell

    NASA Astrophysics Data System (ADS)

    Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko

    2017-02-01

    We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.

  13. Test bed ion engine development

    NASA Technical Reports Server (NTRS)

    Aston, G.; Deininger, W. D.

    1984-01-01

    A test bed ion (TBI) engine was developed to serve as a tool in exploring the limits of electrostatic ion thruster performance. A description of three key ion engine components, the decoupled extraction and amplified current (DE-AC) accelerator system, field enhanced refractory metal (FERM) hollow cathode and divergent line cusp (DLC) discharge chamber, whose designs and operating philosophies differ markedly from conventional thruster technology is given. Significant program achievements were: (1) high current density DE-AC accelerator system operation at low electric field stress with indicated feasibility of a 60 mA/sq cm argon ion beam; (2) reliable FERM cathode start up times of 1 to 2 secs. and demonstrated 35 ampere emission levels; (3) DLC discharge chamber plasma potentials negative of anode potential; and (4) identification of an efficient high plasma density engine operating mode. Using the performance projections of this program and reasonable estimates of other parameter values, a 1.0 Newton thrust ion engine is identified as a realizable technology goal. Calculations show that such an engine, comparable in beam area to a J series 30 cm thruster, could, operating on Xe or Hg, have thruster efficiencies as high as 0.76 and 0.78 respectively, with a 100 eV/ion discharge loss.

  14. Fibrinogen adsorption onto 316L stainless steel under polarized conditions.

    PubMed

    Gettens, Robert T T; Gilbert, Jeremy L

    2008-04-01

    Adsorption of the plasma protein fibrinogen onto electrically polarized 316L stainless steel was observed and quantified using both in situ and ex situ atomic force microscopy (AFM) techniques. Significant differences in fibrinogen adsorption were observed across voltages. Ex situ studies showed significantly lower area coverage (theta) and height of adsorbed Fb on cathodically polarized surfaces when compared to anodically polarized surfaces. Conformational differences in the protein may explain the distinctions in Fb surface area coverage (theta) and height between the anodic and cathodic cases. In situ studies showed significantly slower kinetics of Fb adsorption onto surfaces below -100 mV (vs. Ag/AgCl) compared to surfaces polarized above -100 mV. Electrochemical current density data showed large charge transfer processes (approximately 1 x 10(-5) to 1 x 10(-4) A/cm(2)) taking place on the 316L SS surfaces at voltages below -100 mV (vs. Ag/AgCl). These relatively large current densities point to flux of ionic species away from the surface as a major source of the reduction in adsorption kinetics rather than just hydrophilic or electrostatic effects. Copyright 2007 Wiley Periodicals, Inc.

  15. In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobin; Du, Ke; Lai, Yanqing; Shang, Guozhi; Li, Huangxu; Xiao, Zhiwei; Chen, Yuxiang; Li, Junming; Zhang, Zhian

    2017-07-01

    Na2FeP2O7, which is considered as a promising cathode for sodium ion batteries (SIBs) on account of its economical efficiency and outstanding thermal stability, has been widely studied for the purpose of enhancing its electronic conductivity and interface ion transportation. In this paper, a double-carbon synergistically modified strategy was firstly introduced to facilitate the electrochemical performance of Na2FeP2O7. Na2FeP2O7 particles are enwrapped in situ by a carbon layer and further anchored in reduced graphene oxide (RGO) framework through a facile urea-nitrate combustion method. Consequently, the excellent rate performance and durable cycle stability of this compound are identified, which exhibits a reversible sodium storage capacity of 65 mAh g-1 at a current density of 10 C and no obvious decay in capacity after circling for 300 cycles at 1 C. What's more, no drastic degradation in capacity is observed when the cycling current density is brought back to high rates after cycling for more than 360 cycles at various rates.

  16. Progress of air-breathing cathode in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  17. Plasma response to the injection of an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.

    1984-01-01

    The results of Vlasov-Poisson-solver numerical simulations of the detailed temporal response of a Maxwellian plasma to the sudden injection of an electron beam are presented in graphs and maps and discussed. Phenomena characterized include ion bursts, electron shocks and holes, plasma heating and expulsion, density gradients; cavitons, deep-density-front and solitary-pulse propagation down the density gradient, and Bunemann-mode excitation leading to formation of a virtual cathode and double layers which are at first monotonic or have low-potential-side dips or high-potential-side bumps and become strong as the electron-current density decreases. The strength of the double layer is found to be roughly proportional to the beam energy.

  18. Structural and emission characteristics of ion-irradiated Reticulated Vitreous Carbon

    NASA Astrophysics Data System (ADS)

    Chacon, Judith Rebecca

    Cathodes formed from Reticulated Vitreous Carbon (RVC) were treated under varying conditions of Argon-ion beam current, beam voltage and irradiation duration. Surface structures, such as balls, cones, nanowires, and nanowhiskers were formed in the RVC network through a series of ion-impact sputtering and self-diffusion reactions. Raman shifts to the D and E2g' peak suggest C=C bonding within the original RVC structure was converted to the lesser-bound C-C bonding structure. Cathodes demonstrating the most stable electronic configuration exhibited significant vertical growth to graphitic domains as determined by calculations based on XRD measurements. Carbon nanotubes at the surface were observed at the surface through micro-Raman techniques. The surface structures formed by argon-bombardment, are responsible for cathodes exhibiting lower field-emission extraction fields. The electric field required for the onset of electron emission was measured to change from 6.03 V/micron in non-irradiated RVC to 1.62V/micron for RVC irradiated for 15 minutes at a beam voltage of 1200V and beam current of 200mA (ion-beam current density 2.24mA/cm2). Treated surfaces were also responsible for increased stability in emission over time. For untreated RVC, the field required for emission dropped 25% over a 48 hour training period, whilst modestly treated RVC (15min, 1200V, 100mA, or 1.52mA/cm2) rose as little as 3%. Field-emissive RVC, is an inexpensively produced, mechanically robust cathode with potential applications in lighting, displays and microwave sources.

  19. Electro-osmotic fluxes in multi-well electro-remediation processes.

    PubMed

    López-Vizcaíno, Rubén; Sáez, Cristina; Mena, Esperanza; Villaseñor, Jose; Cañizares, Pablo; Rodrigo, Manuel A

    2011-01-01

    In recent years, electrokinetic techniques on a laboratory scale have been studied but few applications have been assessed at full-scale. In this work, a mock-up plant with two rows of three electrodes positioned in semipermeable electrolyte wells has been used to study the electro-osmotic flux distribution. Water accumulated in the cathodic wells when an electric voltage gradient was applied between the two electrode-well rows. Likewise, slight differences in the water flux were observed depending on the position and number of electrodes used and on the voltage gradient applied. Results show that the electro-osmotic flow did not increase proportionally with the number of electrodes used. During the start-up of the study, there was an abrupt change in the current density, pH and conductivity of the soil portions closest to electrodic wells due to electrokinetic processes. These differences can be explained in terms of the complex current distributions from anode and cathode rows.

  20. High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering.

    PubMed

    Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang

    2016-06-22

    Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).

  1. Extended Performance 8-cm Mercury Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.

  2. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Airmore » batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.« less

  3. Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.

    2015-09-01

    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.

  4. Effect of current ripple on cathode erosion in 30 kWe class arcjets

    NASA Technical Reports Server (NTRS)

    Harris, William J.; O'Hair, Edgar A.; Hatfield, Lynn L.; Kristiansen, M.; Grimes, Montgomery D.

    1991-01-01

    An investigation was conducted to study the effect of current ripple on cathode erosion in 30 kWe class arcjets to determine the change in the cathode erosion rate for high (11 percent) and low (4 percent) current ripple. The measurements were conducted using a copper-tungsten cathode material to accelerate the cathode erosion process. It is shown that the high ripple erosion rate was initially higher than the low ripple erosion rate, but decreased asymptotically with time to a level less than half that of the low ripple value. Results suggest that high ripple extends the cathode lifetime for long duration operation, and improves arc stability by increasing the cathode attachment area.

  5. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity

    NASA Astrophysics Data System (ADS)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin

    2017-06-01

    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  6. Breakdown in helium in high-voltage open discharge with subnanosecond current front rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweigert, I. V., E-mail: ischweig@itam.nsc.ru; Alexandrov, A. L.; Bokhan, P. A.

    Investigations of high-voltage open discharge in helium have shown a possibility of generation of current pulses with subnanosecond front rise, due to ultra-fast breakdown development. The open discharge is ignited between two planar cathodes with mesh anode in the middle between them. For gas pressure 6 Torr and 20 kV applied voltage, the rate of current rise reaches 500 A/(cm{sup 2} ns) for current density 200 A/cm{sup 2} and more. The time of breakdown development was measured for different helium pressures and a kinetic model of breakdown in open discharge is presented, based on elementary reactions for electrons, ions andmore » fast atoms. The model also includes various cathode emission processes due to cathode bombardment by ions, fast atoms, electrons and photons of resonant radiation with Doppler shift of frequency. It is shown, that the dominating emission processes depend on the evolution of the discharge voltage during the breakdown. In the simulations, two cases of voltage behavior were considered: (i) the voltage is kept constant during the breakdown; (ii) the voltage is reduced with the growth of current. For the first case, the exponentially growing current is maintained due to photoemission by the resonant photons with Doppler-shifted frequency. For the second case, the dominating factor of current growth is the secondary electron emission. In both cases, the subnanosecond rise of discharge current was obtained. Also the effect of gas pressure on breakdown development was considered. It was found that for 20 Torr gas pressure the time of current rise decreases to 0.1 ns, which is in agreement with experimental data.« less

  7. A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.

    PubMed

    Bhargav, Amruth; Bell, Michaela Elaine; Karty, Jonathan; Cui, Yi; Fu, Yongzhu

    2018-06-27

    Sulfur-based cathodes are promising to enable high-energy-density lithium-sulfur batteries; however, elemental sulfur as active material faces several challenges, including undesirable volume change (∼80%) when completely reduced and high dependence on liquid electrolyte wherein an electrolyte/sulfur ratio >10 μL mg -1 is required for high material utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a new class of phenyl polysulfides C 6 H 5 S x C 6 H 5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently high theoretical specific capacities, specific energies, and energy densities. Spectroscopic techniques verify their chemical composition and computation shows that the volume change when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide (C 6 H 5 S 6 C 6 H 5 ) can provide a specific capacity of 650 mAh g -1 and capacity retention of 80% through 500 cycles at 1 C rate along with superlative performance up to 10 C. Furthermore, 1302 Wh kg -1 and 1720 Wh L -1 are achievable at a low electrolyte/active material ratio, i.e., 3 μL mg -1 . This work adds new members to the cathode family for Li-S batteries, reduces the gap between the theoretical and practical energy densities of batteries, and provides a new direction for the development of alternative high-capacity cathode materials.

  8. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    USDA-ARS?s Scientific Manuscript database

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  9. Long-Life/Low-Power Ion-Gun Cathode

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1982-01-01

    New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.

  10. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    DOEpatents

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  11. Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam

    2015-12-01

    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.

  12. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less

  13. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  14. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  15. Automotive assessment of carbon-silicon composite anodes and methods of fabrication

    NASA Astrophysics Data System (ADS)

    Karulkar, Mohan; Blaser, Rachel; Kudla, Bob

    2015-01-01

    To assess the potential of carbon silicon composite anodes for automotive applications, C-Si anodes were fabricated and certain improvements employed. The use of a PVDF buffer layer is demonstrated for the first time with a C-Si composite material. The buffer layer increases adhesion by 89%, and increases capacity by 50-80%. Also, a limited capacity range is employed to improve cycle life by up to 200%, and enable currents as high as 2 mA cm-1. The combined use of a buffer layer and limited capacity range has not been reported before. A model is also presented for comparing C-Si performance with real-world automotive targets from USABC, including energy density, power density, specific energy, and specific power. The analysis reveals a capacity penalty that arises from pairing C-Si with a traditional cathode (NCA), and which prevents the cell from meeting all targets. Scenarios are presented in which a higher-capacity cathode (250 mAh g-1) allows all targets to be hypothetically met.

  16. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.

    PubMed

    Najafabadi, Amin Taheri; Leeuwner, Magrieta J; Wilkinson, David P; Gyenge, Előd L

    2016-07-07

    The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  18. Thermal management for high-capacity large format Li-ion batteries

    DOEpatents

    Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth

    2017-05-30

    A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.

  19. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  20. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    NASA Astrophysics Data System (ADS)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled out the enzymatic catalysis of ORR and supported the catalysis by MnO2. Sustainable redox reactions at the cathode were evaluated by monitoring the cathodic current of biofilm coated stainless steel for a year under different polarization intensities. The results showed that sustainable cathodic reactions were present in marine biofilms but their influence on the cathodic current was negligible until a potential was reached where the ORR could take place. Additionally seasonal variability was observed in the enhanced cathodic current in Delaware Bay biofilms. This was attributed to the seasonal variability of manganese in the water column.

Top