Interim report : a non-overlay cathodic protection system.
DOT National Transportation Integrated Search
1983-01-01
This interim report describes Virginia's experience in installing its first cathodic protection system for a bridge deck. The installation was completed with practically no problems. Very minor problems have been encountered with the rectifier/contro...
Civil Engineering Corrosion Control. Volume 3. Cathodic Protection Design
1975-02-01
coatings, test stations bonds, and insulation. It is certainly not a "cure-all Its economics and feasibility mus’ always be carefully studied .. An in...General Description of Cathodic Protection. Cath- odic protection, as the name signifies, is the process by which an entire surface is transformed into a...The National Asaoeiation of Corrosion Enguler "I i ,.I-11 Standard RP-Ol-69, "Recommended Practice Por ront.ol ol." Ex - ternal Corrosion on
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-01-01
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608
NASA Astrophysics Data System (ADS)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam
2017-04-01
Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.
49 CFR 195.563 - Which pipelines must have cathodic protection?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed, relocated, replaced, or otherwise changed after the applicable date in § 195.401(c) must have cathodic protection. The...
49 CFR 195.563 - Which pipelines must have cathodic protection?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed, relocated, replaced, or otherwise changed after the applicable date in § 195.401(c) must have cathodic protection. The...
49 CFR 195.571 - What criteria must I use to determine the adequacy of cathodic protection?
Code of Federal Regulations, 2011 CFR
2011-10-01
... of cathodic protection? 195.571 Section 195.571 Transportation Other Regulations Relating to... (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.571 What criteria must I use to determine the adequacy of cathodic protection? Cathodic protection required by this...
49 CFR 195.571 - What criteria must I use to determine the adequacy of cathodic protection?
Code of Federal Regulations, 2010 CFR
2010-10-01
... of cathodic protection? 195.571 Section 195.571 Transportation Other Regulations Relating to... (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.571 What criteria must I use to determine the adequacy of cathodic protection? Cathodic protection required by this...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wangda; Dolocan, Andrei; Oh, Pilgun
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
Li, Wangda; Dolocan, Andrei; Oh, Pilgun; ...
2017-04-26
Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species.more » By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Finally, our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries.« less
49 CFR 195.565 - How do I install cathodic protection on breakout tanks?
Code of Federal Regulations, 2011 CFR
2011-10-01
...) capacity built to API Specification 12F, API Standard 620, or API Standard 650 (or its predecessor Standard 12C), you must install the system in accordance with API Recommended Practice 651. However, installation of the system need not comply with API Recommended Practice 651 on any tank for which you note in...
49 CFR 195.565 - How do I install cathodic protection on breakout tanks?
Code of Federal Regulations, 2014 CFR
2014-10-01
...) capacity built to API Specification 12F, API Standard 620, or API Standard 650 (or its predecessor Standard 12C), you must install the system in accordance with API Recommended Practice 651. However, installation of the system need not comply with API Recommended Practice 651 on any tank for which you note in...
49 CFR 195.565 - How do I install cathodic protection on breakout tanks?
Code of Federal Regulations, 2013 CFR
2013-10-01
...) capacity built to API Specification 12F, API Standard 620, or API Standard 650 (or its predecessor Standard 12C), you must install the system in accordance with API Recommended Practice 651. However, installation of the system need not comply with API Recommended Practice 651 on any tank for which you note in...
49 CFR 195.565 - How do I install cathodic protection on breakout tanks?
Code of Federal Regulations, 2012 CFR
2012-10-01
...) capacity built to API Specification 12F, API Standard 620, or API Standard 650 (or its predecessor Standard 12C), you must install the system in accordance with API Recommended Practice 651. However, installation of the system need not comply with API Recommended Practice 651 on any tank for which you note in...
49 CFR 195.565 - How do I install cathodic protection on breakout tanks?
Code of Federal Regulations, 2010 CFR
2010-10-01
...) capacity built to API Specification 12F, API Standard 620, or API Standard 650 (or its predecessor Standard 12C), you must install the system in accordance with API Recommended Practice 651. However, installation of the system need not comply with API Recommended Practice 651 on any tank for which you note in...
Cathodic protection of concrete bridge decks using titanium-mesh anodes.
DOT National Transportation Integrated Search
2000-02-01
Anodes are a critical component of cathodic protection systems. A continuous research effort in Virginia is being aimed at searching for the most suitable anode for use in cathodic protection of the various types of concrete bridge components that ar...
Lipon coatings for high voltage and high temperature Li-ion battery cathodes
Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar
2017-02-14
A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
Lipon coatings for high voltage and high temperature Li-ion battery cathodes
Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar
2017-12-05
A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.
Evaluation of Cathodic Protection Systems for Marine Bridge Substructures
DOT National Transportation Integrated Search
1998-12-01
Four different cathodic protection systems were installed and evaluated in the reinforced concrete tie beams and footings of four bents at the Queen Isabella Causeway which links South Padre Island to the mainland of Texas. The types of cathodic prot...
Designer interphases for the lithium-oxygen electrochemical cell
Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.; Tu, Zhengyuan; Lau, Sampson; Zachman, Michael J.; Kourkoutis, Lena F.; Archer, Lynden A.
2017-01-01
An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells. PMID:28439557
E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters
Gundogdu, Serdar; Sahin, Ozge
2007-01-01
Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU) in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF) are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.
NASA Astrophysics Data System (ADS)
Kim, Cheol-man; Kim, Woo-sik; Kho, Young-tai
2002-04-01
For the corrosion protection of natural gas transmission pipelines, two methods are used, cathodic protection and a coating technique. In the case of cathodic protection, defects are embrittled by hydrogen occurring at crack tips or surfaces of materials. It is, however, very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed CTOD testing under various test conditions, such as potential and current density. The CTOD of the base steel and weld metal showed a strong dependence on the test conditions. The CTOD decreased with increasing cathodic potential and current density. The morphology of the fracture surface showed quasi-cleavage. Cathodic overprotection results in hydrogen embrittlement at the crack tip.
Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39
NASA Technical Reports Server (NTRS)
Welch, Peter J.
1990-01-01
The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.
DOT National Transportation Integrated Search
2009-12-02
The objective of this study was to establish the effect of cathodic protection (CP) to produce hydrogen that can cause cracking and in-service failures of high-strength pipeline steels, from X-70 to X-120, and to establish the effectiveness of cathod...
Operational test report -- Project W-320 cathodic protection systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, T.J.
1998-06-16
Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31).more » WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems.« less
Overcharge and overdischarge protection of ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)
1994-01-01
A cathode additive is provided for protecting an ambient temperature secondary lithium cell from overcharging or overdischarging. The cathode additive is chosen to create an upper voltage plateau which is slightly higher than a characteristic charge cutoff voltage of the cathode of the cell. The cathode additive additionally creates a lower voltage plateau which is slightly lower than the characteristic discharge cutoff voltage of the cell. Preferably, the cathode additive is a transition metal oxide or a sulfide and may, for example, include a mixture of Li2Mn2O4 and Li(0.1)MoO2.
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 3
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1982-08-01
Data associated with the corrosion of concentric neutral (CN) wires of direct buried primary cables were statistically analyzed, and guidelines for cathodic protection of CN wires for the electric utility industry were developed. The cathodic protection are reported. Field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are described. Details of the electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are also included.
A slotted cathodic protection system for bridge decks.
DOT National Transportation Integrated Search
1985-01-01
A non-overlay, slotted cathodic protection system was installed two years ago on a concrete bridge deck in Virginia. The design, installation, and operation of this system are fairly straightforward. A protective current density of 1.6 mA/ft (17 mA...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiskel, B.J.; Wozniewski, A.
This paper reports on an oil production facility at Norman Wells, N.W.T. The production is centered around the Mackenzie River with oil being produced from wells located on natural and artificial islands as well as from wells located on the mainland. Pipelines have been installed beneath the river to route production from the islands back to the central processing plant on the mainland. Cathodic protection was required for the pipelines crossing the Mackenzie River to prevent external corrosion in an environmentally sensitive area. Several difficulties were encountered in preparing an optimum cathodic design due to the unique production scheme, permafrostmore » and logistical problems associated with the northern location. An innovative approach was therefore required for the design, installation and testing of the cathodic protection system. This paper describes evolution of the cathodic protection system from a conventional one to a system utilizing a close groundbed concept and unique current return path.« less
2007-06-01
HOISTS, CRANES AND DERRICKS ο ο Cables and sheaves regularly inspected ο ο Slings and chains, hooks and eyes inspected before each use ο ο Equipment...osion from soil corrosion, bacterial corrosion, and stress corrosion cracking. • Cathodic protection is applicable over a wide range of e...should be flat against the material. Bent rivets will fail under stress . Especially note condition of Dee Ring rivets and Dee Ring metal wear pads
Li- and Mn-Rich Cathode Materials: Challenges to Commercialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
2016-12-14
The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density,more » electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.« less
A New Electron Source for Laboratory Simulation of the Space Environment
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Everding, Daniel; Bonner, Mathew; Swan, Brian
2012-01-01
We have developed a new collimated electron source called the Photoelectron Beam Generator (PEBG) for laboratory and spaceflight applications. This technology is needed to replace traditional cathodes because of serious fundamental weaknesses with the present state of the art. Filament cathodes suffer from numerous practical problems, even if expertly designed, including the dependence of electron emission on filament temperature, short lifetimes (approx 100 hours), and relatively high power (approx 10s of W). Other types of cathodes have solved some of these problems, but they are plagued with other difficult problems, such as the Spindt cathode's extreme sensitivity to molecular oxygen. None to date have been able to meet the demand of long lifetime, robust packaging, and precision energy and flux control. This new cathode design avoids many common pitfalls of traditional cathodes. Specifically, there are no fragile parts, no sensitivity to oxygen, no intrinsic emission dependencies on device temperature, and no vacuum requirements for protecting the source from contamination or damage. Recent advances in high-brightness Light Emitting Diodes (LEDs) have provided the key enabling technology for this new electron source. The LEDs are used to photoeject electrons off a target material of a low work-function, and these photoelectrons are subsequently focused into a laminar beam using electrostatic lenses. The PEBG works by illuminating a target material and steering photoelectrons into a laminar beam using electrostatic lenses
40 CFR 267.199 - What inspection requirements must I meet?
Code of Federal Regulations, 2011 CFR
2011-07-01
... cathodic protection systems, if present, according to, at a minimum, the following schedule to ensure that they are functioning properly: (1) Confirm that the cathodic protection system is operating properly... 40 Protection of Environment 27 2011-07-01 2011-07-01 false What inspection requirements must I...
40 CFR 267.199 - What inspection requirements must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... cathodic protection systems, if present, according to, at a minimum, the following schedule to ensure that they are functioning properly: (1) Confirm that the cathodic protection system is operating properly... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What inspection requirements must I...
DOT National Transportation Integrated Search
1997-01-01
As part of efforts to identify effective and durable anodes for use in cathodic protection (CP) of reinforced concrete members, a water-based, electrically conductive paint was evaluated for use as the secondary anode in CP systems for protecting inl...
Effectiveness of cathodic protection : final report, June 30, 2009.
DOT National Transportation Integrated Search
2009-06-01
The report provides a summary of Oregons experience with cathodic protection of coastal reinforced concrete bridges. : Thermal-sprayed anodes, foil anodes with a conductive adhesive, and carbon painted anodes are effective in distributing : curren...
Survey of cathodic protection systems on Virginia bridges.
DOT National Transportation Integrated Search
2007-01-01
The Virginia Department of Transportation uses cathodic protection (CP) systems on steel-reinforced concrete structures to extend the life of these structures. The purpose of this study was to identify, categorize, and evaluate the performance of the...
Feasibility of applying cathodic protection to underground culverts.
DOT National Transportation Integrated Search
1991-06-01
The Louisiana Department of Transportation and Development uses metal culverts in various parts of the state. This study was undertaken to assess the feasibility of applying cathodic protection both externally and internally to metal culverts to prev...
Cathodic protection of coastal prestressed concrete piles : prevention of hydrogen embrittlement.
DOT National Transportation Integrated Search
1998-01-01
Assessing the effect of cathodic protection (CP) on a chloride-contaminated bridge pile involved defining the hydrogen embrittlement behavior of the pearlitic reinforcement and quantifying the local (i.e., at the steel/concrete interface) chemical an...
Long-term Effectiveness of Cathodic Protection Systems on Highway Structures
DOT National Transportation Integrated Search
2003-07-01
The Federal Highway Administration (FHWA) has concluded, on the basis of extensive research, that cathodic protection (CP), the technology used to mitigate corrosion of metals embedded in concrete, is the only rehabilitation technique that has proven...
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-07-25
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m². In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.
Experimental galvanic anode for cathodic protection of Bridge A12112
DOT National Transportation Integrated Search
2010-11-01
Cathodic Protection (CP) has been used by MoDOT for more than 30 years to stop : corrosion of reinforced concrete bridge decks. These systems require power from local electrical : connections. A galvanic system uses the difference in electrical poten...
Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges
DOT National Transportation Integrated Search
2002-03-01
Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of T...
Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report
DOT National Transportation Integrated Search
1998-01-01
This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...
DOT National Transportation Integrated Search
2002-12-01
Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Resea...
Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.
DOT National Transportation Integrated Search
2011-09-01
This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combinat...
Replacing thermal sprayed zinc anodes on cathodically protected steel reinforced concrete bridges.
DOT National Transportation Integrated Search
2011-08-01
"This research aimed to address questions underlying the replacement of arc-sprayed zinc anodes on cathodically protected steel reinforced concrete bridges and to develop a protocol to prepare the concrete surface for the new anode, through a combina...
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-01-01
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described. PMID:28773211
Field evaluation of a new aluminum alloy as a sacrificial anode for steel embedded in concrete
DOT National Transportation Integrated Search
1998-04-01
This is the final report for a study to evaluate the use of sacrificial cathodic protection for reinforced and prestressed concrete bridge members. Cathodic protection (CP) using impressed current is an accepted and common method used to provide corr...
Cathodic protection of two concrete bridge decks using titanium-mesh anodes : interim report.
DOT National Transportation Integrated Search
1991-01-01
Expanded titanium mesh with a layer of precious metal oxides sintered around it has recently been introduced to fulfill the need for a durable anode in the cathodic protection (CP) of concrete bridge decks. In addition to being resistant to chemical ...
Field applications of three alternate technologies for assessing the suitability of underground storage tanks for upgrading by the addition of cathodic protection were observed and documented. The technologies were applied to five existing underground storage tanks that were slat...
Effect of flow velocity on erosion-corrosion behaviour of QSn6 alloy
NASA Astrophysics Data System (ADS)
Huang, Weijiu; Zhou, Yongtao; Wang, Zhenguo; Li, Zhijun; Zheng, Ziqing
2018-05-01
The erosion-corrosion behaviour of QSn6 alloy used as propellers in marine environment was evaluated by erosion-corrosion experiments with/without cathodic protection, electrochemical tests and scanning electron microscope (SEM) observations. The analysis was focused on the effect of flow velocity. The dynamic polarization curves showed that the corrosion rate of the QSn6 alloy increased as the flow velocity increased, due to the protective surface film removal at higher velocities. The lowest corrosion current densities of 1.26 × 10‑4 A cm‑2 was obtained at the flow velocity of 7 m s‑1. Because of the higher particle kinetic energies at higher flow velocity, the mass loss rate of the QSn6 alloy increased as the flow velocity increased. The mass loss rate with cathodic protection was lower than that without cathodic protection under the same conditions. Also, the lowest mass loss rate of 0.7 g m‑2 · h‑1 was acquired at the flow velocity of 7 m s‑1 with cathodic protection. However, the increase rate of corrosion rate and mass loss were decreased with increasing the flow velocity. Through observation the SEM morphologies of the worn surfaces, the main wear mechanism was ploughing with/without cathodic protection. The removal rates of the QSn6 alloy increased as the flow velocity increased in both pure erosion and erosion-corrosion, whereas the erosion and corrosion intensified each other. At the flow velocity of 7 m s‑1, the synergy rate (ΔW) exceeded by 5 times the erosion rate (Wwear). Through establishment and observation the erosion-corrosion mechanism map, the erosion-corrosion was the dominant regime in the study due to the contribution of erosion on the mass loss rate exceeded the corrosion contribution. The QSn6 alloy with cathodic protection is feasible as propellers, there are higher security at lower flow velocity, such as the flow velocity of 7 m s‑1 in the paper.
DOT National Transportation Integrated Search
1999-01-01
This study provided the first field trial of a catalyzed, thermal-sprayed titanium anode for cathodic protection of steel reinforced concrete structures. Catalyzed titanium as an anode material offers the advantage of long life due to the inherent no...
Iniaghe, Paschal O; Adie, Gilbert U
2015-11-01
Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 1
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1981-08-01
Data associated with corrosion of concentric neutrals (CN) of direct buried cables from field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are presented. The electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are included. Up to 129 values were determined for each bellhole and stored on cards as a data bank. All values were statistically analyzed and correlated with corrosion found. The severity of corrosion correlated best with CN corrosion potentials, CN resistance measurements, coarseness of backfill, and soil resistivity. The guidelines for installation of cathodic protection on CN cables are to be based upon the evaluation of over 100 experimental cathodic protection systems and upon laboratory testing for protection criteria with and without ac effects.
Li, Mengran; Zhou, Wei; Zhu, Zhonghua
2017-01-25
Susceptibility to CO 2 is one of the major challenges for the long-term stability of the alkaline-earth-containing cathodes for intermediate-temperature solid oxide fuel cells. To alleviate the adverse effects from CO 2 , we incorporated samarium-stabilized ceria (SDC) into a SrCo 0.85 Ta 0.15 O 3-δ (SCT15) cathode by either mechanical mixing or a wet impregnation method and evaluated their cathode performance stability in the presence of a gas mixture of 10% CO 2 , 21% O 2 , and 69% N 2 . We observed that the CO 2 tolerance of the hybrid cathode outperforms the pure SCT15 cathode by over 5 times at 550 °C. This significant enhancement is likely attributable to the low CO 2 adsorption and reactivity of the SDC protective layer, which are demonstrated through thermogravimetric analysis, energy-dispersive spectroscopy, and electrical conductivity study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalcin, H.; Koc, T.
In this study 4.5 km long fuel pipeline, located on 41[degrees] N latitude (Istanbul, Turkey) was cathodically protected with solar energy. Four commercial photovoltaic modules of a 12 V version were used. Insolation data were collected by the aid of Florya Meteorological Station. The cathodic protection was applied for three years and kept under control during this period of time. Project criteria and reliability of the protection have been investigated. Better protection than the available criteria for steel pipeline was achieved even in winter solstice months.
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sound and free of corrosion holes prior to installing the cathodic protection system; or (ii) The tank... for corrosion holes by conducting two (2) tightness tests that meet the requirements of § 280.43(c... operation of the cathodic protection system; or (iv) The tank is assessed for corrosion holes by a method...
40 CFR 280.21 - Upgrading of existing UST systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sound and free of corrosion holes prior to installing the cathodic protection system; or (ii) The tank... for corrosion holes by conducting two (2) tightness tests that meet the requirements of § 280.43(c... operation of the cathodic protection system; or (iv) The tank is assessed for corrosion holes by a method...
Bobnar, Jernej; Lozinšek, Matic; Kapun, Gregor; Njel, Christian; Dedryvère, Rémi; Genorio, Boštjan; Dominko, Robert
2018-04-11
Metallic lithium is considered to be one of the most promising anode materials since it offers high volumetric and gravimetric energy densities when combined with high-voltage or high-capacity cathodes. However, the main impediment to the practical applications of metallic lithium is its unstable solid electrolyte interface (SEI), which results in constant lithium consumption for the formation of fresh SEI, together with lithium dendritic growth during electrochemical cycling. Here we present the electrochemical performance of a fluorinated reduced graphene oxide interlayer (FGI) on the metallic lithium surface, tested in lithium symmetrical cells and in combination with two different cathode materials. The FGI on the metallic lithium exhibit two roles, firstly it acts as a Li-ion conductive layer and electronic insulator and secondly, it effectively suppresses the formation of high surface area lithium (HSAL). An enhanced electrochemical performance of the full cell battery system with two different types of cathodes was shown in the carbonate or in the ether based electrolytes. The presented results indicate a potential application in future secondary Li-metal batteries.
Corrosion of Graphite Aluminum Metal Matrix Composites
1991-02-01
cathodic protection of G/AI MMCs resulted in overprotection 13. Overprotection resulted from a local increase in pH near cathodic sites during...34Cathodic Overprotection of SiC/6061-T6 and G/6061- T6 Aluminum Alloy Metal Matrix Composites," Scripta Metallurgica, 22 (1988) 413-418. 14. R
Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying
2016-04-01
An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...
NASA Astrophysics Data System (ADS)
Miguel-Pérez, Verónica; Martínez-Amesti, Ana; Nó, María Luisa; Larrañaga, Aitor; Arriortua, María Isabel
2013-12-01
Spinel oxides with the general formula of (Mn,B)3O4 (B = Co, Fe) were used as barrier materials between the cathode and the metallic interconnect to reduce the rate of cathode degradation by Cr poisoning. The effect of doping at the B position was investigated terms of microstructure and electrical conductivity to determine its behaviour and effectiveness as a protective layer in contact with three metallic materials (Crofer 22 APU, SS430 and Conicro 4023 W 188). The analysis showed that the use of these materials considerably decreased the reactivity and diffusion of Cr between the cathode and the metallic interconnects. The protective layer doped with Fe at the B position exhibited the least amount of reactivity with the interconnector and cathode materials. The worst results were observed for SS430 cells coated with a protective layer perhaps due to their low Cr content. The Crofer 22 APU and Conicro 4023 W 188 samples exhibited very similar conductivity results in the presence of the MnCo1.9Fe0.1O4 protective coating. As a result, these two material combinations are a promising option for use as bipolar plates in SOFC.
Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries
Shkrob, Ilya A.; Abraham, Daniel P.
2016-07-06
A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less
Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, Ilya A.; Abraham, Daniel P.
A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less
Interference evaluation between manifold and wet Christmas tree CP systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasil, S.L.D.C.; Baptista, W.
2000-05-01
Offshore production wells are controlled by valves installed in the marine soil, called wet Christmas trees (WCTs). A manifold receives the production of several wells and transports it to the platform. The manifold is cathodically protected by Al anodes and the WCT by Zn anodes. A computer simulation was carried out to evaluate the interference between the equipment cathodic protection systems.
High temperature molten salt storage
NASA Astrophysics Data System (ADS)
Ives, J.; Newcomb, J. C.; Pard, A. G.
1985-10-01
The design of a high-temperature molten salt thermal energy storage (TES) concept, including some materials testing, was developed by Rockwell International's Rocketdyne Division (RD), under contract to SERI, and is described in this document. The main features of the concept are a conical hot tank with a liner and internal insulation that allows unrestricted relative thermal expansion and the use of cathodic protection (impressed voltage) to inhibit corrosion. The RD design uses two tanks and ternary eutectic lithium-sodium-potassium carbonates for sensible heat storage. The tanks were sized for 6 h of storage at a discharge rate of 300 MW, giving 1800 MWh total usable thermal storage capacity. The molten carbonate storage medium is cycled between 425 and 900C. From the design study, no definitive statement can be made as to the cost-effectiveness of cathodic protection. Several anode design issues need to be resolved before cathodic protection can significantly reduce corrosion where the liner comes in contact with molten salts. However, where the tank is exposed to salt vapor, the large corrosion allowance required for the liner without cathodic protection results in a much thicker liner wall and shorter liner life than originally perceived, which affects system costs significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan
Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less
Mu, Linqin; Rahman, Muhammad Mominur; Zhang, Yan; ...
2018-01-09
Coating the surfaces of active materials has become an effective and indispensable path towards the stable operation of practical rechargeable batteries. Improving the affordability of coating processes can bring enormous manufacturing advantages to battery applications. Here in this paper, we report a cheap, simple and efficient method to create conformal coating layers on the primary particles of sodium layered oxide materials for improving battery performance. Mimicking the cathode–electrolyte interfacial reaction in practical cells, we create conformal coating layers via the spontaneous reaction between the oxidative cathode surfaces and a cocktail of reductive organic solvents. The conformal coating layers consist ofmore » metal–organic compounds with reduced transition metal cations, i.e., artificial cathode–electrolyte interphases (CEIs). The cells containing these coated cathode materials deliver much improved cycle life while maintaining reasonably high reversible capacity and rate capability. Furthermore, the structural stability and water resistance are enhanced, which can practically help simplify the storage protocol of cathode powders prior to battery manufacturing. The surfaces of most oxide cathode materials (e.g., lithium cathodes and sodium cathodes) are highly oxidative, and thus we expect that the present method, with tailored experimental parameters, can be readily applied to most battery systems.« less
He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng
2016-05-11
Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Meinan; Su, Chi-Cheung; Peebles, Cameron
Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt% of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0 to 4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that preventmore » oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li+ ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li+ ion conductivity through such materials.« less
Is overprotection of the sulfur cathode good for Li-S batteries?
Gao, Tian; Shao, Jie; Li, Xingxing; Zhu, Guobin; Lu, Qiujian; Han, Yuyao; Qu, Qunting; Zheng, Honghe
2015-08-11
How to restrain the dissolution of polysulfides from the sulfur cathode is the current research focus of Li-S batteries. Here, we find that moderate dissolution of polysulfides is of great importance for high-efficiency and stable discharge/charge cycling. Both overprotection and inadequate protection of the sulfur cathode are unfavorable for the cycling of Li-S batteries.
Galvanic cathodic protection for reinforced concrete bridge decks: Field evaluation
NASA Astrophysics Data System (ADS)
Whiting, D.; Stark, D.
1981-06-01
The application of four sacrificial zinc anode cathodic protection systems to a reinforced concrete highway bridge deck is described. Two system designs were found to be the most promising in terms of polarized potentials and protective current densities achieved during the 3 year monitoring program. One design uses commercially available zinc ribbon anodes spaced at 5 in (127 mm) centers; the other, custom-fabricated perforated zinc sheets. Both systems are overlaid with an open-graded asphalt friction course. The systems yield maximum current density and polarized potentials under warm and moist environment conditions.
NASA Astrophysics Data System (ADS)
Mitov, M.; Chorbadzhiyska, E.; Nalbandian, L.; Hubenova, Y.
2017-07-01
The development of cost-effective cathodes, operating at neutral pH and ambient temperatures, is a crucial challenge for the practical application of microbial electrolysis cell (MEC) technology. In this study, NiW and NiMo co-deposits produced by electroplating on Ni-foam are explored as cathodes in MEC. The fabricated electrodes exhibit higher corrosion stability and enhanced electrocatalytic activity towards hydrogen evolution reaction in neutral electrolyte compared to the bare Ni-foam. NiW/Ni-foam electrodes possess six times higher intrinsic catalytic activity, estimated from data obtained by linear voltammetry and chronoamperometry. The newly developed electrodes are applied as cathodes in single-chamber membrane-free MEC reactors, inoculated with wastewater and activated sludge from a municipal wastewater treatment plant. Cathodic hydrogen recovery of 79% and 89% by using NiW and NiMo cathodes, respectively, is achieved at applied voltage of 0.6 V. The obtained results reveal potential for practical application of used catalysts in MEC.
Johnstone, C.W.
1958-06-17
The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.
Automatic control and monitoring equipment for cathodic protection of offshore structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, J.H.
1979-10-01
The preferred cathodic-protection systems for offshore structures are (1) the sacrificial-anode form for areas where the anode's weight or wave resistance is not a serious handicap and (2) a combined anode/impressed-current system that reduces the anode mass. Problems associated with controlling and monitoring the equipment are related to the anode locations, suitability of the reference electrodes, instrumentation requirements, interpretation of the measured potentials, and influence of water depth.
Interfacial chemistry of zinc anodes for reinforced concrete structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.
1997-12-01
Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 tomore » 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.« less
NASA Astrophysics Data System (ADS)
Enos, David George
Assessment of the effect of cathodic protection on a chloride contaminated bridge pile involves the definition of the hydrogen embrittlement behavior of the pearlitic reinforcement combined with quantification of the local (i.e., at the steel/concrete interface) chemical and electrochemical conditions, both prior to and throughout the application of cathodic protection. The hydrogen embrittlement behavior of the reinforcement was assessed through a combination of Devanathan/Stachurski permeation experiments to quantify subsurface hydrogen concentrations, CsbH, as a function of the applied hydrogen overpotential, eta, and crack initiation tests for bluntly notched and fatigue pre-cracked tensile specimens employing elastic-plastic finite element analysis and linear elastic fracture mechanics, respectively. A threshold mobile lattice hydrogen concentration for embrittlement of 2×10sp{-7} mol/cmsp3 was established for bluntly notched and fatigue pre-cracked specimens. Crack initiation occurred by the formation of shear cracks oriented at an angle approaching 45sp° from the tensile axis, as proposed by Miller and Smith (Miller, 1970), in regions where both the longitudinal and shear stresses were maximized (i.e., near the notch root). These Miller cracks then triggered longitudinal splitting which continued until fast fracture of the remaining ligament occurred. Instrumented laboratory scale piles were constructed and partially immersed in ASTM artificial ocean water. With time, localized corrosion (crevicing) was initiated along the reinforcement, and was accompanied by an acidic shift in the pH of the occluded environment due to ferrous ion hydrolysis. Cathodic protection current densities from -0.1 muA/cmsp2 to -3.0 muA/cmsp2 were applied via a skirt anode located at the waterline. Current densities as low as 0.66 muA/cmsp2 were sufficient to deplete the dissolved oxygen concentration at the steel/concrete interface and result in the observance of hydrogen production within regions near the waterline where the pH had decreased locally due to ferrous ion hydrolysis. By combining the effect of local cathodic protection level as a function of position along the reinforcement on hydrogen absorption with the information on the hydrogen embrittlement characteristics of the reinforcement as a function of hydrogen concentration, safe windows for the application of cathodic protection may be identified. Although hydrogen production and absorption were detected at -0.66 muA/cmsp2, concentrations which were of sufficient magnitude to be considered embrittling were not realized until -1.33 muA/cmsp2. Local hydrogen concentrations were compared to the 100 mV, 200 mV, and -780 mVsbSCE absolute potential cathodic protection criteria. With the exception of the 100 mV depolarization/decay criteria, it was not possible to sufficiently protect the high corrosion rate splash zone of the piling without exceeding the threshold hydrogen concentration for embrittlement at some zone within the reinforcement.
Guan, Fang; Zhai, Xiaofan; Duan, Jizhou; Zhang, Meixia; Hou, Baorong
2016-01-01
Certain species of sulfate-reducing bacteria (SRB) use cathodes as electron donors for metabolism, and this electron transfer process may influence the proper protection potential choice for structures. The interaction between SRB and polarized electrodes had been the focus of numerous investigations. In this paper, the impact of cathodic protection (CP) on Desulfovibrio caledoniens metabolic activity and its influence on highs trength steel EQ70 were studied by bacterial analyses and electrochemical measurements. The results showed that EQ70 under -0.85 VSCE CP had a higher corrosion rate than that without CP, while EQ70 with -1.05 VSCE had a lower corrosion rate. The enhanced SRB metabolic activity at -0.85 VSCE was most probably caused by the direct electron transfer from the electrode polarized at -0.85 VSCE. This direct electron transfer pathway was unavailable in -1.05 VSCE. In addition, the application of cathodic protection led to the transformation of sulfide rusts into carbonates rusts. These observations have been employed to provide updated recommendations for the optimum CP potential for steel structures in the presence of SRB. PMID:27603928
Evaporation Source for Deposition of Protective Layers inside Tubes
NASA Astrophysics Data System (ADS)
Musa, Geavit; Mustata, Ion; Dinescu, Gheorghe; Bajeu, George; Raiciu, Elena
1992-09-01
A heated cathode arc can be ignited in vacuum in the vapours of the anode material due to the accelerated electron beam from the cathode. A small assembly, consisting of an electron gun as the cathode and a refractory metal crucible, containing the material to be evaporated, as the anode, can be moved along the axis of the tube whose inside wall is to be covered with a protective layer. The vacuum arc ignited between the electrodes in the vapours of the evaporating anode material ensures a high deposition rate with low thermal energy transport to the tube wall. This new method can be used for the deposition of various metal layers inside different kinds of tubes (metallic, glass, ceramics or plastics).
Perfluorinated ionomer-enveloped sulfur cathodes for lithium-sulfur batteries.
Song, Jongchan; Choo, Min-Ju; Noh, Hyungjun; Park, Jung-Ki; Kim, Hee-Tak
2014-12-01
Nafion is known to suppress the polysulfide (PS) shuttle effect, a major obstacle to achieving high capacity and long cycle life for lithium-sulfur batteries. However, elaborate control of the layer's configuration is required for high performance. In this regard, we designed a Nafion-enveloped sulfur cathode, where the Nafion layer is formed on the skin of the cathode, covering its surface and edge while not restricting the porosity. Discharge capacity and efficiency were enhanced with the enveloping configuration, demonstrating suppression of shuttle. The edge protection exhibited better cycling stability than an edge-open configuration. In the absence of the Nafion envelope, charged sulfur concentrated on the top region of the cathode because of the relatively lower PS concentration at the cathode surface. Surprisingly, for the Nafion-enveloped cathode, sulfur was evenly distributed along the cathode, indicating that the configuration imparts a uniform PS concentration within the cathode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Castaneda-Lopez, Homero
A methodology for detecting and locating defects or discontinuities on the outside covering of coated metal underground pipelines subjected to cathodic protection has been addressed. On the basis of wide range AC impedance signals for various frequencies applied to a steel-coated pipeline system and by measuring its corresponding transfer function under several laboratory simulation scenarios, a physical laboratory setup of an underground cathodic-protected, coated pipeline was built. This model included different variables and elements that exist under real conditions, such as soil resistivity, soil chemical composition, defect (holiday) location in the pipeline covering, defect area and geometry, and level of cathodic protection. The AC impedance data obtained under different working conditions were used to fit an electrical transmission line model. This model was then used as a tool to fit the impedance signal for different experimental conditions and to establish trends in the impedance behavior without the necessity of further experimental work. However, due to the chaotic nature of the transfer function response of this system under several conditions, it is believed that non-deterministic models based on pattern recognition algorithms are suitable for field condition analysis. A non-deterministic approach was used for experimental analysis by applying an artificial neural network (ANN) algorithm based on classification analysis capable of studying the pipeline system and differentiating the variables that can change impedance conditions. These variables include level of cathodic protection, location of discontinuities (holidays), and severity of corrosion. This work demonstrated a proof-of-concept for a well-known technique and a novel algorithm capable of classifying impedance data for experimental results to predict the exact location of the active holidays and defects on the buried pipelines. Laboratory findings from this procedure are promising, and efforts to develop it for field conditions should continue.
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 2
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1981-08-01
Data from field tests and sieve analyses presented in support of an effort to develop guidelines for the installation of underground transmission primary cables. Anodic and cathodic polarization curves and the surface and cable potential gradients from 38 bellholes.
Apollo/Saturn C00.00.19.3 operations and maintenance. Cathodic protection of communication cables
NASA Technical Reports Server (NTRS)
1972-01-01
Operating and maintenance instructions for cathodic protection of communication cables at the Cape Kennedy Launch Complex are presented. The system is designed to prevent or arrest corrosion of communication cables buried in soil or submerged in water by impressing sufficient direct current from the rectifier through the anodes to the cable. This process neutralizes or counteracts current flowing from the cable into the soil or water, thus preventing or arresting corrosion of the cable sheath material.
Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting
2015-01-01
Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847
The study of chloride ion migration in reinforced concrete under cathodic protection
DOT National Transportation Integrated Search
1999-09-01
The migration of chloride ions in concrete with steel reinforcement was investigated. Mortar blocks (15 cm x 15 cm x 17 cm) of various : composition (water to cement ratio, chloride ion content) were cast with an iron mesh cathode imbedded along one ...
30 CFR 250.1000 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... equipment (including valves, over-pressure protection devices, cathodic protection equipment, and pigging... marine, coastal, or human environment. (2) The Regional Supervisor may also suspend pipeline operations...
30 CFR 250.1000 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... equipment (including valves, over-pressure protection devices, cathodic protection equipment, and pigging... marine, coastal, or human environment. (2) The Regional Supervisor may also suspend pipeline operations...
30 CFR 250.1000 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... equipment (including valves, over-pressure protection devices, cathodic protection equipment, and pigging... marine, coastal, or human environment. (2) The Regional Supervisor may also suspend pipeline operations...
Gao, Han; Maglia, Filippo; Lamp, Peter; Amine, Khalil; Chen, Zonghai
2017-12-27
Current developments of electrolyte additives to stabilize electrode-electrolyte interface in lithium-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a "corrosion inhibitor film" that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot be mitigated. Effect of two exemplary electrolyte additives, lithium difluoro(oxalato)borate (LiDFOB) and 3-hexylthiophene (3HT), on LiNi 0.6 Mn 0.2 Co 0.2 O 2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next-generation high-energy-density lithium-ion chemistries.
40 CFR 281.32 - General operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... constantly; (b) Where equipped with cathodic protection, be operated and maintained by a person with... 40 Protection of Environment 26 2010-07-01 2010-07-01 false General operating requirements. 281.32 Section 281.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...
40 CFR 281.32 - General operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... constantly; (b) Where equipped with cathodic protection, be operated and maintained by a person with... 40 Protection of Environment 27 2011-07-01 2011-07-01 false General operating requirements. 281.32 Section 281.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...
Alaboina, Pankaj Kumar; Uddin, Md-Jamal; Cho, Sung-Jin
2017-10-26
Nanotechnology-driven development of cathode materials is an essential part to revolutionize the evolution of the next generation lithium ion batteries. With the progress of nanoprocess and nanoscale surface modification investigations on cathode materials in recent years, the advanced battery technology future seems very promising - Thanks to nanotechnology. In this review, an overview of promising nanoscale surface deposition methods and their significance in surface functionalization on cathodes is extensively summarized. Surface modified cathodes are provided with a protective layer to overcome the electrochemical performance limitations related to side reactions with electrolytes, reduce self-discharge reactions, improve thermal and structural stability, and further enhance the overall battery performance. The review addresses the importance of nanoscale surface modification on battery cathodes and concludes with a comparison of the different nanoprocess techniques discussed to provide a direction in the race to build advanced lithium-ion batteries.
Zhu, Ji-Hua; Zhu, Miaochang; Han, Ningxu; Liu, Wei; Xing, Feng
2014-07-24
An investigation was performed by using carbon fiber-reinforced polymer (CFRP) as the anode material in the impressed current cathodic protection (ICCP) system of steel reinforced concrete structures. The service life and performance of CFRP were investigated in simulated ICCP systems with various configurations. Constant current densities were maintained during the tests. No significant degradation in electrical and mechanical properties was found for CFRP subjected to anodic polarization with the selected applied current densities. The service life of the CFRP-based ICCP system was discussed based on the practical reinforced concrete structure layout.
10 CFR 205.322 - Contents of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... relay protection scheme, including equipment and proposed functional devices; (v) After receipt of the... as insulation medium pressurizing or forced cooling; and (C) cathodic protection scheme. Technical...
10 CFR 205.322 - Contents of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... relay protection scheme, including equipment and proposed functional devices; (v) After receipt of the... as insulation medium pressurizing or forced cooling; and (C) cathodic protection scheme. Technical...
Cathodic protection of a remote river pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, B.A.
1994-03-01
The 261-km long 500-mm diam Kutubu pipeline, which runs through dense jungle swamps in Papua, New Guinea, was built for Chevron Niugini to transport oil from the remote Kutubu oil production facility in the Southern Highlands to an offshore loading facility. The pipeline was laid with a section in the bed of a wide, fast-flowing river. This section was subject to substantial telluric effects and current density variations from changing water resistivities. The cathodic protection system's effectiveness was monitored by coupon off'' potentials and required an innovative approach.
Wang, Liwei; Cheng, Lianjun; Li, Junru; Zhu, Zhifu; Bai, Shuowei; Cui, Zhongyu
2018-03-22
Influence of alternating current (AC) on pitting corrosion and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP) was investigated. Both corrosion and SCC are inhibited by -0.775 V SCE CP without AC interference. With the superimposition of AC current (1-10 mA/cm²), the direct current (DC) potential shifts negatively under the CP of -0.775 V SCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of -0.95 V SCE and -1.2 V SCE , the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6-2 μm in diameter). AC enhances the SCC susceptibility of X70 steel under -0.775 V SCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm² can enhance the SCC susceptibility.
49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements
Code of Federal Regulations, 2012 CFR
2012-10-01
... I. Criteria for cathodic protection— A. Steel, cast iron, and ductile iron structures. (1) A... accordance with sections II and IV of this appendix. This criterion of voltage shift applies to structures... into the structure surface as measured by an earth current technique applied at predetermined current...
49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements
Code of Federal Regulations, 2011 CFR
2011-10-01
... I. Criteria for cathodic protection— A. Steel, cast iron, and ductile iron structures. (1) A... accordance with sections II and IV of this appendix. This criterion of voltage shift applies to structures... into the structure surface as measured by an earth current technique applied at predetermined current...
49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements
Code of Federal Regulations, 2014 CFR
2014-10-01
... I. Criteria for cathodic protection— A. Steel, cast iron, and ductile iron structures. (1) A... accordance with sections II and IV of this appendix. This criterion of voltage shift applies to structures... into the structure surface as measured by an earth current technique applied at predetermined current...
49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements
Code of Federal Regulations, 2013 CFR
2013-10-01
... I. Criteria for cathodic protection— A. Steel, cast iron, and ductile iron structures. (1) A... accordance with sections II and IV of this appendix. This criterion of voltage shift applies to structures... into the structure surface as measured by an earth current technique applied at predetermined current...
Miniature Reservoir Cathode: An Update
NASA Technical Reports Server (NTRS)
Vancil, Bernard K.; Wintucky, Edwin G.
2002-01-01
We report on recent work to produce a small low power, low cost reservoir cathode capable of long life (more than 100,000 hours) at high loading (> 5 A/sq cm). Our objective is a highly manufacturable, commercial device costing less than $30. Small highly loaded cathodes are needed, especially for millimeter wave tubes, where focusing becomes difficult when area convergence ratios are too high. We currently have 3 models ranging from .060-inch diameter to. 125-inch diameter. Reservoir type barium dispenser cathodes have a demonstrated capability for simultaneous high emission density and long life. Seven reservoir cathodes continue to operate on the cathode life test facility at NSWC, Crane, Indiana at 2 and 4 amps/sq cm. They have accumulated nearly 100,000 hours with practically no change in emission levels or knee temperature.
DOT National Transportation Integrated Search
2009-01-01
Underground pipelines are protected by a combination of cathodic protection and a protective coating. Multi-layer coatings offer protection against corrosion and from mechanical damage during construction or during service. Multi-layer coatings are w...
Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters
NASA Technical Reports Server (NTRS)
Zook, Lee M.
1998-01-01
Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.
High Current Density Scandate Cathodes for Future Vacuum Electronics Applications
2008-05-30
of Technology HFSS Ansoft Corporation’s High Frequency Structure Simulator TWT Traveling Wave Tube - device for generating high levels of RF power ...cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a tungsten matrix impregnated with a mixture of barium oxide...electron beam with the largest possible diameter, consistent with high gain, bandwidth, and efficiency at W- Band . The research concentrated on photonic
Determining localized anode condition to maintain effective corrosion protection.
DOT National Transportation Integrated Search
2010-01-01
Thermal sprayed zinc anodes used for impressed current cathodic protection of reinforced concrete deteriorate over time. : Two different technologies, ultrasound and electrical circuit resistance combined with water permeability, were : investigated ...
40 CFR 280.20 - Performance standards for new UST systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... protected in the following manner: (i) The tank is coated with a suitable dielectric material; (ii) Field... suitable dielectric material; (ii) Field-installed cathodic protection systems are designed by a corrosion...
40 CFR 280.20 - Performance standards for new UST systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... protected in the following manner: (i) The tank is coated with a suitable dielectric material; (ii) Field... suitable dielectric material; (ii) Field-installed cathodic protection systems are designed by a corrosion...
49 CFR 194.105 - Worst case discharge.
Code of Federal Regulations, 2013 CFR
2013-10-01
...: Prevention measure Standard Credit(percent) Secondary containment >100% NFPA 30 50 Built/repaired to API standards API STD 620/650/653 10 Overfill protection standards API RP 2350 5 Testing/cathodic protection API...
49 CFR 194.105 - Worst case discharge.
Code of Federal Regulations, 2010 CFR
2010-10-01
...: Prevention measure Standard Credit(percent) Secondary containment > 100% NFPA 30 50 Built/repaired to API standards API STD 620/650/653 10 Overfill protection standards API RP 2350 5 Testing/cathodic protection API...
49 CFR 194.105 - Worst case discharge.
Code of Federal Regulations, 2014 CFR
2014-10-01
...: Prevention measure Standard Credit(percent) Secondary containment >100% NFPA 30 50 Built/repaired to API standards API STD 620/650/653 10 Overfill protection standards API RP 2350 5 Testing/cathodic protection API...
49 CFR 194.105 - Worst case discharge.
Code of Federal Regulations, 2012 CFR
2012-10-01
...: Prevention measure Standard Credit(percent) Secondary containment > 100% NFPA 30 50 Built/repaired to API standards API STD 620/650/653 10 Overfill protection standards API RP 2350 5 Testing/cathodic protection API...
49 CFR 194.105 - Worst case discharge.
Code of Federal Regulations, 2011 CFR
2011-10-01
...: Prevention measure Standard Credit(percent) Secondary containment > 100% NFPA 30 50 Built/repaired to API standards API STD 620/650/653 10 Overfill protection standards API RP 2350 5 Testing/cathodic protection API...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brousseau, R.; Arnott, M.; Baldock, B.
1995-08-01
Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.
High Current Density Cathodes for Future Vacuum Electronics Applications
2008-05-30
Tube - device for generating high levels of RF power DARPA Defense Advanced Research Agency PBG Photonic band gap W- Band 75-111 GHz dB Decibels GHz...Extended interaction klystron 1. Introduction All RF vacuum electron sources require a high quality electron beam for efficient operation. Research on...with long life. Pres- ently, only thermionic dispenser cathodes are practical for high power RF sources. Typical thermi- onic cathodes consists of a
Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo
2017-12-13
Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.
NASA Astrophysics Data System (ADS)
Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.
2018-05-01
In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.
Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
Lin, Yi; Moitoso, Brandon; Martinez-Martinez, Chalynette; Walsh, Evan D; Lacey, Steven D; Kim, Jae-Woo; Dai, Liming; Hu, Liangbing; Connell, John W
2017-05-10
Lithium-oxygen (Li-O 2 ) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently, there have been significant advances in the development of graphene-based air cathode materials with a large surface area and catalytically active for both oxygen reduction and evolution reactions, especially with additional catalysts or dopants. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm 2 . Despite the high gravimetric capacity values achieved, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high-mass-loading (up to 10 mg/cm 2 ) graphene-based air electrodes for high-performance Li-O 2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression-molding holey graphene materials because of their unique dry compressibility associated with in-plane holes on the graphene sheet. Li-O 2 batteries with high air cathode mass loadings thus prepared exhibited excellent gravimetric capacity as well as ultrahigh areal capacity (as high as ∼40 mAh/cm 2 ). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm 2 ) and showed a better cycling stability for ultrathick cathodes than their thinner counterparts. Detailed post-mortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, arising from the oxygen diffusion blockage and the catalytic site deactivation, respectively. These results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high-capacity, high-performance air cathodes in Li-O 2 batteries of practical significance.
Zhao, Xue Jiao; Zhu, Guang; Fan, You Jun; Li, Hua Yang; Wang, Zhong Lin
2015-07-28
We report a flexible and area-scalable energy-harvesting technique for converting kinetic wave energy. Triboelectrification as a result of direct interaction between a dynamic wave and a large-area nanostructured solid surface produces an induced current among an array of electrodes. An integration method ensures that the induced current between any pair of electrodes can be constructively added up, which enables significant enhancement in output power and realizes area-scalable integration of electrode arrays. Internal and external factors that affect the electric output are comprehensively discussed. The produced electricity not only drives small electronics but also achieves effective impressed current cathodic protection. This type of thin-film-based device is a potentially practical solution of on-site sustained power supply at either coastal or off-shore sites wherever a dynamic wave is available. Potential applications include corrosion protection, pollution degradation, water desalination, and wireless sensing for marine surveillance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection of... (CRTs) and Processed CRT Glass Undergoing Recycling. Used, broken CRTs are not solid wastes if they meet... destined for recycling and if they meet the following requirements: (1) Storage. The broken CRTs must be...
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application
He, Na; Zhong, Lei; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Meng, Yuezhong
2016-01-01
Sulfur is a promising cathode material with a high theoretical capacity of 1672 mAh g−1, however, the practical energy density of Li-S battery is far away from such promising due to its low active material utilization and low sulfur loading. Moreover, the challenges of the low electrical conductivity of sulfur and the high solubility of polysulfide intermediates still hinder its practical application. Here, we report a kind of free-standing and foldable cathodes consisting of 3D activated carbon fiber matrix and sulfur cathode. The 3D activated carbon fiber matrix (ACFC) has continuous conductive framework and sufficient internal space to provide a long-distance and continuous high-speed electron pathway. It also gives a very larger internal space and tortuous cathode region to ACFC accommodate a highly sulfur loading and keeps polysulfide within the cathode. The unique structured 3D foldable sulfur cathode using a foldable ACFC as matrix delivers a reversible capacity of about 979 mAh g−1 at 0.2C, a capacity retention of 98% after 100 cycles, and 0.02% capacity attenuation per cycle. Even at an areal capacity of 6 mAh cm−2, which is 2 times higher than the values of Li-ion battery, it still maintains an excellent rate capability and cycling performance. PMID:27677602
MULTI-ELECTRODE TUBE PULSE MEMORY CIRCUIT
Gundlach, J.C.; Reeves, J.B.
1958-05-20
Control circuits are described for pulse memory devices for scalers and the like, and more particularly to a driving or energizing circuit for a polycathode gaseous discharge tube having an elongated anode and a successive series of cathodes spaced opposite the anode along its length. The circuit is so arranged as to utilize an arc discharge between the anode and a cathode to count a series of pulses. Upon application of an input pulse the discharge is made to occur between the anode and the next successive cathode, and an output pulse is produced when a particular subsequent cathode is reached. The circuit means for transfering the discharge by altering the anode potential and potential of the cathodes and interconnecting the cathodes constitutes the novel aspects of the invention. A low response time and reduced number of circuit components are the practical advantages of the described circuit.
Electrically conductive concrete : a laboratory study.
DOT National Transportation Integrated Search
1987-01-01
In the cathodic protection of existing reinforced concrete bridge decks, there is a need for a simple secondary-anode system to facilitate the distribution of direct current over the structure being protected. It is believed that a durable, electrica...
Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines
NASA Astrophysics Data System (ADS)
Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.
2012-12-01
Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.
NASA Astrophysics Data System (ADS)
Hock, Vincent F.; Noble, Michael; McLeod, Malcolm E.
1994-07-01
The Army currently operates and maintains more than 20,000 underground storage tanks and over 3000 miles of underground gas pipelines, all of which require some form of corrosion control. Cathodic protection is one method of corrosion control used to prevent corrosion-induced leaks when a steel structure is exposed to an aggressive soil. The corrosion control acceptance criteria for sacrificial anode type CP systems provides guidelines for the DEH/DPW cathodic protection installation inspectors whose responsibilities are to ensure that the materials and equipment specified are delivered to the job site and subsequently installed in accordance with the engineering drawings and specifications. The sacrificial anode CP acceptance criteria includes all components for the sacrificial anode system such as insulated conductors, anodes, anode backfills, and auxiliary equipment. The sacrificial anode CP acceptance criteria is composed of a checklist that lists each component and that contains a space for the inspector to either check 'yes' or 'no' to indicate whether the component complies with the job specifications. In some cases, the inspector must measure and record physical dimensions or electrical output and compare the measurements to standards shown in attached tables.
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
30 CFR 250.1000 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... shall be designed, installed, operated, maintained, and abandoned to provide safe and pollution-free..., over-pressure protection devices, cathodic protection equipment, and pigging devices, etc.) that serve...
Rechargeability of the ambient temperature cell Li/2Me-THF, LiAsF6/Cr0.5V0.5S2
NASA Astrophysics Data System (ADS)
Abraham, K. M.; Harris, P. B.; Natwig, D. L.
1983-12-01
Practical usefulness of Cr0.5V0.5S2 as a rechargeable positive electrode for ambient temperature Li cells has been assesed. The rate-capacity behavior or the Cr0.5V0.5S2 cathode has been evaluated as a function of carbon content, electrolyte, and temperature. Rechargeability of the disulfide has been investigated by extended cycling of Li cells utilizing 2Me-THF/LiAsF6. Cells with cathode capacities as large as 10 Ahr have been constructed and tested. Many cells have exceeded 200 deep discharge-charge cycles. A scheme of studies useful for assessing the practicality of potential solid cathodes for ambient temperature rechargeable Li cells is presented.
Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan
2016-01-01
Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116
NASA Astrophysics Data System (ADS)
Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong
2017-12-01
Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... corrosion, such as with protective coatings or cathodic protection. (o) Adequately protect sub-marine piping...
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... corrosion, such as with protective coatings or cathodic protection. (o) Adequately protect sub-marine piping...
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTION PREVENTION Requirements for Petroleum Oils and Non-Petroleum Oils, Except Animal Fats and Oils and Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... corrosion, such as with protective coatings or cathodic protection. (o) Adequately protect sub-marine piping...
40 CFR 469.32 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 469.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ELECTRICAL AND ELECTRONIC COMPONENTS POINT SOURCE CATEGORY Cathode Ray Tube Subcategory....13 (a), (b), (c) and (d), is applicable to this subpart. (Approved by the Office of Management and...
Intermittent application of cathodic protection : interim report.
DOT National Transportation Integrated Search
2005-05-01
Oregons coastal highway includes over 120 bridges, most of which are reinforced concrete (RC) bridges. Over 40,000 m2 (430,566 ft2) of bridge surface has been repaired and protected from further corrosion damage using thermal-sprayed (TS) zinc ano...
Zettsu, Nobuyuki; Kida, Satoru; Uchida, Shuhei; Teshima, Katsuya
2016-01-01
We demonstrate herein that an ultra-thin fluoroalkylsilane self-assembled monolayer coating can be used as a modifying agent at LiNi0.5Mn1.5O4−δcathode/electrolyte interfaces in 5V-class lithium-ion batteries. Bare LiNi0.5Mn1.5O4−δ cathode showed substantial capacity fading, with capacity dropping to 79% of the original capacity after 100 cycles at a rate of 1C, which was entirely due to dissolution of Mn3+ from the spinel lattice via oxidative decomposition of the organic electrolyte. Capacity retention was improved to 97% on coating ultra-thin FAS17-SAM onto the LiNi0.5Mn1.5O4 cathode surface. Such surface protection with highly ordered fluoroalkyl chains insulated the cathode from direct contact with the organic electrolyte and led to increased tolerance to HF. PMID:27553901
NASA Astrophysics Data System (ADS)
Chen, Xiaohong; Yang, Jiaxiang; Lu, Jiong; Manga, Kiran Kumar; Loh, Kian Ping; Zhu, Furong
2009-09-01
The power conversion efficiency (PCE) of regioregular poly(3-hexylthiophene) (P3HT) and {6,6}-phenyl C61-butyric acid methylester (PCBM)-based polymer solar cells was increased using an ionic liquid-functionalized carbon nanoparticles (ILCNs) thin film-modified cathode. The PCE of P3HT:PCBM based-polymer solar cells with a conventional aluminum (Al)-only cathode was increased by 20%-30% when the identical devices were made with an ILCNs-modified Al cathode, but its PCE was 10% lower than that of devices with LiF/Al cathode, measured under AM1.5G illumination of 100 mW/cm2. The ILCN interlayer approach, however, offers practical advantages to LiF in terms of its solution-processability, which is compatible with low cost, large area, and flexible solar cell fabrication.
Testing Iodine as a New Fuel for Cathodes
NASA Astrophysics Data System (ADS)
Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace
2017-11-01
The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.
Wang, Wei; Favors, Zachary; Li, Changling; Liu, Chueh; Ye, Rachel; Fu, Chengyin; Bozhilov, Krassimir; Guo, Juchen; Ozkan, Mihrimah; Ozkan, Cengiz S.
2017-01-01
Herein, facile synthesis of monodisperse silicon and carbon nanocomposite spheres (MSNSs) is achieved via a simple and scalable surface-protected magnesiothermic reduction with subsequent chemical vapor deposition (CVD) process. Li-ion batteries (LIBs) were fabricated to test the utility of MSNSs as an anode material. LIB anodes based on MSNSs demonstrate a high reversible capacity of 3207 mAh g−1, superior rate performance, and excellent cycling stability. Furthermore, the performance of full cell LIBs was evaluated by using MSNS anode and a LiCoO2 cathode with practical electrode loadings. The MSNS/LiCoO2 full cell demonstrates high gravimetric energy density in the order of 850 Wh L−1 with excellent cycling stability. This work shows a proof of concept of the use of monodisperse Si and C nanocomposite spheres toward practical lithium-ion battery applications. PMID:28322285
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
2002-01-01
A power-efficient, miniature, easily manufactured, reservoir-type barium-dispenser thermionic cathode has been developed that offers the significant advantages of simultaneous high electron-emission current density (>2 A/sq cm) and very long life (>100,000 hr of continuous operation) when compared with the commonly used impregnated-type barium-dispenser cathodes. Important applications of this cathode are a wide variety of microwave and millimeter-wave vacuum electronic devices, where high output power and reliability (long life) are essential. We also expect it to enable the practical development of higher purveyance electron guns for lower voltage and more reliable device operation. The low cathode heater power and reduced size and mass are expected to be particularly beneficial in traveling-wave-tube amplifiers (TWTA's) for space communications, where future NASA mission requirements include smaller onboard spacecraft systems, higher data transmission rates (high frequency and output power) and greater electrical efficiency.
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1989-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).
Advanced rechargeable sodium batteries with novel cathodes
NASA Technical Reports Server (NTRS)
Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.
1990-01-01
Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Jonathan; Orendorff, Christopher J.
This work investigated the effects of Al 2O 3 ALD coatings on the performance and thermal abuse tolerance of graphite based anodes and Li(NixMnyCoz)O2 (NMC) based cathodes. It was found that 5 cycles of Al 2O 3 ALD on the graphite anode increased the onset temperature of thermal runaway by approximately 20 °C and drastically reduced the anode’s contribution to the overall amount of heat released during thermal runaway. Although Al 2O 3 ALD improves the cycling stability of NMC based cathodes, the thermal abuse tolerance was not greatly improved. A series of conductive aluminum oxide/carbon composites were created andmore » characterized as potential thicker protective coatings for use on NMC based cathode materials. A series of electrodes were coated with manganese monoxide ALD to test the efficacy of an oxygen scavenging coating on NMC based cathodes.« less
De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.
1990-01-01
A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.
NASA Astrophysics Data System (ADS)
Yu, Daren; Meng, Tianhang; Ning, Zhongxi; Liu, Hui
2017-04-01
A magnetic focusing type Hall thruster was designed with a cylindrical magnetic seperatrix. During the process of a hollow cathode crossing the separatrix, the variance of plume parameter distribution was monitored. Results show that the ion flux on the large spatial angle is significantly lower when the hollow cathode is located in the inner magnetic field. This convergence effect is preserved even in a distant area. A mechanism was proposed for plume divergence from the perspective of cathode-to-plume potential difference, through which the confinement effect of cylindrical-separatrix-type magnetic field on thruster plume was confirmed and proposed as a means of plume protection for plasma propulsion devices.
Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.
Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N
2016-02-01
Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. Published by Elsevier Ltd.
Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate
Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N.
2015-01-01
Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min−1) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its advers effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min−1 flow, 500 mA current, and 5 mg L−1 initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148
40 CFR 280.11 - Interim prohibition for deferred UST systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...
40 CFR 280.11 - Interim prohibition for deferred UST systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...
40 CFR 280.11 - Interim prohibition for deferred UST systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...
40 CFR 280.11 - Interim prohibition for deferred UST systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...
40 CFR 280.11 - Interim prohibition for deferred UST systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...
Galvanic Protection Of 2219 Al By Al/Li Powder
NASA Technical Reports Server (NTRS)
Daech, Alfred
1995-01-01
Coatings consisting of aluminum/lithium powders incorporated into acrylic resin found to protect panels of 2219 aluminum from corrosion by salt spray better than coating consisting of 2219 aluminum in same acrylic resin. Exact mechanism by which aluminum/lithium coatings protect against corrosion unknown, although galvanic mechanism suspected. These coatings (instead of chromium) applied to fasteners and bars to provide cathodic protection, both with and without impressed electrical current.
Burning lithium in CS 2 for high-performing compact Li 2S–graphene nanocapsules for Li–S–batteries
Tan, Guoqiang; Xu, Rui; Xing, Zhenyu; ...
2017-06-12
Here, tremendous efforts have been made to design the cathode of Li–S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS 2 vapour. The obtained structure features crystalline Li 2S nanoparticles wrapped by few-layer graphene (Li 2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode designmore » enables promising electrochemical performance. More notably, at a loading of 10 mg Li2S cm –2, the electrode exhibits a high reversible capacity of 1,160 mAh g –1s, namely, an area capacity of 8.1 mAh cm –2. Li 2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li 2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g –1s as well as stable cycle performance.« less
Burning lithium in CS 2 for high-performing compact Li 2S–graphene nanocapsules for Li–S–batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Xu, Rui; Xing, Zhenyu
Here, tremendous efforts have been made to design the cathode of Li–S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS 2 vapour. The obtained structure features crystalline Li 2S nanoparticles wrapped by few-layer graphene (Li 2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode designmore » enables promising electrochemical performance. More notably, at a loading of 10 mg Li2S cm –2, the electrode exhibits a high reversible capacity of 1,160 mAh g –1s, namely, an area capacity of 8.1 mAh cm –2. Li 2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li 2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g –1s as well as stable cycle performance.« less
Burning lithium in CS2 for high-performing compact Li2 S-graphene nanocapsules for Li-S batteries
NASA Astrophysics Data System (ADS)
Tan, Guoqiang; Xu, Rui; Xing, Zhenyu; Yuan, Yifei; Lu, Jun; Wen, Jianguo; Liu, Cong; Ma, Lu; Zhan, Chun; Liu, Qi; Wu, Tianpin; Jian, Zelang; Shahbazian-Yassar, Reza; Ren, Yang; Miller, Dean J.; Curtiss, Larry A.; Ji, Xiulei; Amine, Khalil
2017-07-01
Tremendous efforts have been made to design the cathode of Li-S batteries to improve their energy density and cycling life. However, challenges remain in achieving fast electronic and ionic transport while accommodating the significant cathode volumetric change, especially for the cathode with a high practical mass loading. Here we report a cathode architecture, which is constructed by burning lithium foils in a CS2 vapour. The obtained structure features crystalline Li2S nanoparticles wrapped by few-layer graphene (Li2S@graphene nanocapsules). Because of the improvement on the volumetric efficiency for accommodating sulfur active species and electrical properties, the cathode design enables promising electrochemical performance. More notably, at a loading of 10 mgLi2S cm-2, the electrode exhibits a high reversible capacity of 1,160 mAh g-1s, namely, an area capacity of 8.1 mAh cm-2. Li2S@graphene cathode demonstrates a great potential for Li-ion batteries, where the Li2S@graphene-cathode//graphite-anode cell displays a high capacity of 730 mAh g-1s as well as stable cycle performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wujcik, Kevin H.; Wang, Dunyang Rita; Pascal, Tod A.
Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μmmore » thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li 2S x, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.« less
NASA Astrophysics Data System (ADS)
Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin
2015-10-01
The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g-1 (S) capacity at sulfur loading of 6 ~ 14 mg cm-2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg-1 (654 Wh L-1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.
Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.
Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen
2018-06-07
Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin
2015-10-12
The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g(-1) (S) capacity at sulfur loading of 6 ~ 14 mg cm(-2), and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg(-1) (654 Wh L(-1)), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.
Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin
2015-01-01
The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g−1 (S) capacity at sulfur loading of 6 ~ 14 mg cm−2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg−1 (654 Wh L−1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application. PMID:26456914
Li, Hong; Wang, Xiutong; Wei, Qinyi; Liu, Xueqing; Qian, Zhouhai; Hou, Baorong
2017-06-02
Ag and graphene co-sensitized TiO 2 composites were successfully fabricated and used as photoanodes for photogenerated cathodic protection of 304 stainless steel (304SS) under visible light. Graphene films was firstly deposited onto the TiO 2 nanotube (NT) films via cyclic voltammetric electrodeposition. Ag/graphene/TiO 2 films were then fabricated via dipping and photoreduction method. The morphology, composition and optical response of the Ag/graphene/TiO 2 NT composites were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV-vis diffusion reflectance spectroscopy, respectively. The photocathodic protection performance of the Ag/graphene/TiO 2 composites were systematically studied through open-circuit potential and potentiodynamic polarization measurements in 3.5 wt% NaCl solution under visible light (λ > 400 nm). The composites exhibited enhanced photogenerated cathodic protection performance for 304SS under visible light irradiation compared to pure TiO 2 . Graphene and Ag have a synergistic effect on the enhancement of photocathodic protection performance of TiO 2 . The composites prepared with 30-cycle graphene film and 15 mM AgNO 3 solution showed the optimal corrosion protection performance.
NASA Astrophysics Data System (ADS)
Li, Hong; Wang, Xiutong; Wei, Qinyi; Liu, Xueqing; Qian, Zhouhai; Hou, Baorong
2017-06-01
Ag and graphene co-sensitized TiO2 composites were successfully fabricated and used as photoanodes for photogenerated cathodic protection of 304 stainless steel (304SS) under visible light. Graphene films was firstly deposited onto the TiO2 nanotube (NT) films via cyclic voltammetric electrodeposition. Ag/graphene/TiO2 films were then fabricated via dipping and photoreduction method. The morphology, composition and optical response of the Ag/graphene/TiO2 NT composites were characterized by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, UV-vis diffusion reflectance spectroscopy, respectively. The photocathodic protection performance of the Ag/graphene/TiO2 composites were systematically studied through open-circuit potential and potentiodynamic polarization measurements in 3.5 wt% NaCl solution under visible light (λ > 400 nm). The composites exhibited enhanced photogenerated cathodic protection performance for 304SS under visible light irradiation compared to pure TiO2. Graphene and Ag have a synergistic effect on the enhancement of photocathodic protection performance of TiO2. The composites prepared with 30-cycle graphene film and 15 mM AgNO3 solution showed the optimal corrosion protection performance.
Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.
Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B
2015-11-04
Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.
Malaysia`s Peninsular Gas system gets another segment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savini, C.F.
1997-12-01
Stage 3 of Malaysia`s Peninsular Gas utilization Project is nearing completion by a joint venture of Saipem (Malaysia) Sdn Bhd and Peremba Construction Sdn Bhd. Under Petronas Gas Berhad, all stages of the Peninsular Gas Utilization Project are to provide natural gas to commercial customers recovered from complexes off the east coast of the Malaysian Peninsula. Stage 3 consists of 448 km of 36-in. pipeline from the Stage 2 teeoff in Meru, Selangor, northward to Pauh in Perlis, close to the Malaysian-Thailand border. Included in the permanent facilities are six main line valve stations, two scraper stations, six cathodic-protection stations,more » and five teeoffs. The paper discusses construction, cathodic protection, hydrostatic testing, and quality assurance.« less
NASA Astrophysics Data System (ADS)
Torija, Sergio; Prieto-Sanchez, Laura; Ashton, Sean J.
2016-09-01
The ability to evaluate the electrochemically active surface area (ECSA) of fuel cell electrodes is crucial toward characterising designs and component suites in-situ, particularly when evaluating component durability in endurance testing, since it is a measure of the electrode area available to take part in the fuel cell reactions. Conventional methods to obtain the ECSA using cyclic voltammetry, however, rely on potentiostats that cannot be easily scaled to simultaneously evaluate all cells in a fuel cell stack of practical size, which is desirable in fuel cell development. In-situ diagnostics of an open-cathode fuel cell stack are furthermore challenging because the cells do not each possess an enclosed cathode compartment; instead, the cathodes are rather open to the environment. Here we report on a diagnostic setup that allows the electrochemically active surface area of each cell anode or cathode in an open-cathode fuel cell stack to be evaluated in-situ and simultaneously, with high resolution and reproducibility, using an easily scalable chronopotentiometry methodology and a gas-tight stack enclosure.
“Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.
Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less
Sea water magnesium fuel cell power supply
NASA Astrophysics Data System (ADS)
Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.
2015-08-01
An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.
Rechargeable quasi-solid state lithium battery with organic crystalline cathode
Hanyu, Yuki; Honma, Itaru
2012-01-01
Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655
Mou, Jirong; Deng, Yunlong; Song, Zhicui; Zheng, Qiaoji; Lam, Kwok Ho; Lin, Dunmin
2018-05-22
High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte. In this work, Li+-conductive Li2SnO3 was coated on the surface of LiNi0.5Mn1.5O4 to protect the cathode against the attack of HF, mitigate the dissolution of Mn ions during cycling and improve the Li+ diffusion coefficient of the materials. Remarkable improvement in cycling stability and rate performance has been achieved in Li2SnO3-coated LiNi0.5Mn1.5O4. The 1.0 wt% Li2SnO3-coated LiNi0.5Mn1.5O4 cathode exhibits excellent cycling stability with a capacity retention of 88.2% after 150 cycles at 0.1 C and rate capability at high discharge rates of 5 C and 10 C, presenting discharge capacities of 119.5 and 112.2 mAh g-1, respectively. In particular, a significant improvement in cycling stability at 55 °C is obtained after the coating of 1.0 wt% Li2SnO3, giving a capacity retention of 86.8% after 150 cycles at 1 C and 55 °C. The present study provides a significant insight into the effective protection of Li-conductive coating materials for a high-voltage LiNi0.5Mn1.5O4 cathode material.
Wujcik, Kevin H.; Wang, Dunyang Rita; Pascal, Tod A.; ...
2016-12-01
Lithium sulfur (Li-S) batteries are well known for their high theoretical specific capacities, but are plagued with scientific obstacles that make practical implementation of the technology impossible. The success of Li-S batteries will likely necessitate the use of thick sulfur cathodes that enable high specific energy densities. However, little is known about the fundamental reaction mechanisms and chemical processes that take place in thick cathodes, as most research has focused on studying thinner cathodes that enable high performance. In this study, in situ X-ray absorption spectroscopy at the sulfur K-edge is used to examine the back of a 115 μmmore » thick Li-S cathode during discharge. Our results show that in such systems, where electrochemical reactions between sulfur and lithium are likely to proceed preferentially toward the front of the cathode, lithium polysulfide dianions formed in this region diffuse to the back of the cathode during discharge. We show that high conversion of elemental sulfur is achieved by chemical reactions between elemental sulfur and polysulfide dianions of intermediate chain length (Li 2S x, 4 ≤ x ≤ 6). Our work suggests that controlling the formation and diffusion of intermediate chain length polysulfide dianions is crucial for insuring full utilization of thick sulfur cathodes.« less
Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa
2015-10-15
The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baqué, Laura C.; Soldati, Analía L.; Teixeira-Neto, Erico; Troiani, Horacio E.; Schreiber, Anja; Serquis, Adriana C.
2017-01-01
The modification of surface composition after long-term operation is one of the most reported degradation mechanisms of (La,Sr)(Co,Fe)O3-δ (LSCFO) cathodes for Solid Oxide Fuel Cells (SOFCs). Nevertheless, its effect on the oxygen reduction reaction kinetics of porous LSCFO cathodes has not been yet reliably established. In this work, La- and Sr-enrichment at the LSCFO surface of porous cathodes has been induced after 50 h aging at 800 °C under air. Such cation redistribution can extend up to ∼400 nm depth under the LSCFO surface as detected by high resolution Scanning Transmission Electron Microscopy-Energy Dispersive Spectroscopy maps acquired inside the cathode pores. The observed surface chemical changes hamper the oxygen surface exchange reaction at the LSCFO/gas interface. Accordingly, a suitable Electrochemical Impedance Spectroscopy analysis revealed that the oxygen ion conductivity remains practically unaltered during the aging treatment while the oxygen surface exchange resistance increases up to 1.8 times. As a result, the cathode impedance response deteriorates within the 10-0.1 Hz frequency range during the aging treatment, resulting in a total cathode area specific resistance increase of 150%. The methodology adopted has demonstrated to be very valuable for studying the degradation of SOFC cathodes produced by the modification of surface composition.
The feasibility and application of PPy in cathodic polarization antifouling.
Jia, Meng-Yang; Zhang, Zhi-Ming; Yu, Liang-Min; Wang, Jia; Zheng, Tong-Tong
2018-04-01
Cathodic polarization antifouling deserves attention because of its environmentally friendly nature and good sustainability. It has been proven that cathodic voltages applied on metal substrates exhibit outstanding antifouling effects. However, most metals immersed in marine environment are protected by insulated anticorrosive coatings, restricting the cathodic polarization applied on metals. This study developed a conducting polypyrrole (PPy)/acrylic resin coating (σ = 0.18 Scm -1 ), which can be applied in cathodic polarization antifouling. The good stability and electro-activity of PPy in the negative polarity zone in alkalescent NaCl solution were verified by linear sweep voltammetry (LSV), chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), demonstrating the feasibility of PPy as cathodic polarization material. Furthermore, the antifouling effects of PPy/acrylicresin coating on 24-h old Escherichia coli bacteria (E. coli) which formed on PPy/acrylic resin-coated plastic plate were measured under different cathodic potentials and treatment time, characterized by fluorescent microscope. The results suggest that at cathodic potential around -0.5 V (vs. saturated calomel electrode (SCE)), there was little trace of attached bacteria on the substrate after 20 min of treatment. PPy/acrylicresin-coated substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal, where high removal efficiencies were maintained throughout the total polarization process. Under these conditions, the generation of hydrogen peroxide is believed to be responsible for the antifouling effects because of causing oxidative damage to cells, suggesting the potential of the proposed technology for application on insulated surfaces in various industrial settings. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Han; Maglia, Filippo; Lamp, Peter
Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generatedmore » from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.« less
A closed loop process for recycling spent lithium ion batteries
NASA Astrophysics Data System (ADS)
Gratz, Eric; Sa, Qina; Apelian, Diran; Wang, Yan
2014-09-01
As lithium ion (Li-ion) batteries continue to increase their market share, recycling Li-ion batteries will become mandatory due to limited resources. We have previously demonstrated a new low temperature methodology to separate and synthesize cathode materials from mixed cathode materials. In this study we take used Li-ion batteries from a recycling source and recover active cathode materials, copper, steel, etc. To accomplish this the batteries are shredded and processed to separate the steel, copper and cathode materials; the cathode materials are then leached into solution; the concentrations of nickel, manganese and cobalt ions are adjusted so NixMnyCoz(OH)2 is precipitated. The precipitated product can then be reacted with lithium carbonate to form LiNixMnyCozO2. The results show that the developed recycling process is practical with high recovery efficiencies (∼90%), and 1 ton of Li-ion batteries has the potential to generate 5013 profit margin based on materials balance.
Yan, Pengfei; Zheng, Jianming; Xiao, Jie; ...
2015-06-08
Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li 0.2Ni 0.2Mn 0.6O 2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processingmore » history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less
NASA Astrophysics Data System (ADS)
Thakur, S. K.; Kumar, Y.
2018-05-01
This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.
NASA Astrophysics Data System (ADS)
Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric
2017-03-01
Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.
Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Yang, Zhenguo; Xia, Guanguang; Singh, Prabhakar; Stevenson, Jeffry W.
In this work, simulated cathode/interconnect structures were used to investigate the effects of different contact materials on the contact resistance between a strontium doped lanthanum ferrite cathode and a Crofer22 APU interconnect. Among the materials studied, Pt, which has a prohibitive cost for the application, demonstrated the best performance as a contact paste. For the relatively cost-effective perovskites, the contact ASR was found to depend on their electrical conductivity, scale growth on the metallic interconnect, and interactions between the contact material and the metallic interconnect or particularly the scale grown on the interconnect. Manganites appeared to promote manganese-containing spinel interlayer formation that helped minimize the increase of contact ASR. Chromium from the interconnects reacted with strontium in the perovskites to form SrCrO 4. An improved performance was achieved by application of a thermally grown (Mn,Co) 3O 4 spinel protection layer on Crofer22 APU that dramatically minimized the contact resistance between the cathodes and interconnects.
Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong
2013-05-22
In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.
Fabrication and characterization of a 3D Positive ion detector and its applications
NASA Astrophysics Data System (ADS)
Venkatraman, Pitchaikannu; Sureka, Chandrasekaran Senbagavadivoo
2017-11-01
There is a growing interest to experimentally evaluate the track structure induced by ionizing particles in order to characterize the radiobiological quality of ionizing radiation for applications in radiotherapy and radiation protection. To do so, a novel positive ion detector based on the multilayer printed circuit board (PCB) technology has been proposed previously, which works under the principle of ion induced impact ionization. Based on this, an upgraded 3D positive ion detector was fabricated in order to improve its efficiency and use it for various applications. To improve the efficiency of the detector, cathodes with different insulators (Bakelite plate and Steatite Ceramics) and conducting layers (ITO, FTO, and Gold coated cathode) were studied under various gaseous media (methane, nitrogen, and air) using Am-241, Co-60, Co-57, Na-22, Cs-137, and Ba-133 sources. From this study, it is confirmed that the novel 3D positive ion detector that has been upgraded using gold as strip material, tungsten (87%) coated copper (13%) as the core wire, gold coated ceramic as cathode, and thickness of 3.483 mm showed 9.2% efficiency under methane medium at 0.9 Torr pressure using an Am-241 source. It is also confirmed that when the conductivity of the cathode and thickness of the detector is increased, the performance of the detector is improved significantly. Further, the scope of the detector to use in the field of radiation protection, radiation dosimetry, gamma spectrometry, radiation biology, and oncology are reported here.
Zhou, Xinxing; Xu, Yunzhi; Mei, Xiaojie; Du, Ningjie; Jv, Rongmao; Hu, Zhaoxia; Chen, Shouwen
2018-05-01
An efficient and inexpensive catalyst for oxygen reduction reaction (ORR), polyaniline (PANI) and β-MnO 2 nanocomposites (PANI/β-MnO 2 ), was developed for air-cathode microbial fuel cells (MFCs). The PANI/β-MnO 2 , β-MnO 2 , PANI and β-MnO 2 mixture modified graphite felt electrodes were fabricated as air-cathodes in double-chambered MFCs and their cell performances were compared. At a dosage of 6 mg cm -2 , the maximum power densities of MFCs with PANI/β-MnO 2 , β-MnO 2 , PANI and β-MnO 2 mixture cathodes reached 248, 183 and 204 mW m -2 , respectively, while the cathode resistances were 38.4, 45.5 and 42.3 Ω, respectively, according to impedance analysis. Weak interaction existed between the rod-like β-MnO 2 and surficial growth granular PANI, this together with the larger specific surface area and PANI electric conducting nature enhanced the electrochemical activity for ORR and improved the power generation. The PANI/β-MnO 2 nanocomposites are a promising cathode catalyst for practical application of MFCs. Copyright © 2018. Published by Elsevier Ltd.
Photovoltaic Power Without Batteries for Continuous Cathodic Protection
NASA Technical Reports Server (NTRS)
Muehl, W. W., Sr.
1993-01-01
The objective of this project was to successfully demonstrate that renewable energy can efficiently and economically replace dedicated non-renewable power sources. The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art photovoltaic powered impressed current cathodic protection system (PVCPSYS) for steel and iron submerged structures. This system does not require any auxiliary/battery backup power. The PVCPSYS installed on 775 ft. of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This installation is well documented by COASTSYSTA and was verified on-site by the U.S. Army Corps of Engineers. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, and pipelines. The Department of Defense Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaics.
L-Band High Power Amplifiers for CEBAF Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Killion, Richard; Nelson, Richard
1990-09-01
The high power portion of the CEBAF RF system utilizes 340 5kW klystrons providing 339 separately controlled outputs. Modulating anodes have been included in the klystron design to provide for economically efficient operation. The design includes shunt regulator-type modulating anode power supplies running from the cathode power supply, and switching filament power supplies. Remotely programmable filament voltage allows maximum cathode life to be realized. Klystron operating setpoint and fast klystron protection logic are provided by individual external CEBAF RF control modules. A single cathode power supply powers a block of eight klystrons. The design includes circulators and custom extrusion andmore » hybrid waveguide components which have allowed reduced physical size and lower cost in the design of the WR-650 waveguide transmission system.« less
Cathodic protection evaluation.
DOT National Transportation Integrated Search
2014-10-01
This research investigates the effectiveness of a new corrosion rate test instrument in making field evaluations of the corrosion condition of : several conventionally reinforced concrete coastal bridges. The instrument is the Gecor 9 Corrosion Rate ...
Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W
2015-01-01
Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.
A lithium–oxygen battery with a long cycle life in an air-like atmosphere
NASA Astrophysics Data System (ADS)
Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T.; Karis, Klas; Jokisaari, Jacob R.; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S.; Khalili-Araghi, Fatemeh; Klie, Robert F.; Curtiss, Larry A.; Salehi-Khojin, Amin
2018-03-01
Lithium–air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium–oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium–oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium–air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium–oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.
A lithium-oxygen battery with a long cycle life in an air-like atmosphere.
Asadi, Mohammad; Sayahpour, Baharak; Abbasi, Pedram; Ngo, Anh T; Karis, Klas; Jokisaari, Jacob R; Liu, Cong; Narayanan, Badri; Gerard, Marc; Yasaei, Poya; Hu, Xuan; Mukherjee, Arijita; Lau, Kah Chun; Assary, Rajeev S; Khalili-Araghi, Fatemeh; Klie, Robert F; Curtiss, Larry A; Salehi-Khojin, Amin
2018-03-21
Lithium-air batteries are considered to be a potential alternative to lithium-ion batteries for transportation applications, owing to their high theoretical specific energy. So far, however, such systems have been largely restricted to pure oxygen environments (lithium-oxygen batteries) and have a limited cycle life owing to side reactions involving the cathode, anode and electrolyte. In the presence of nitrogen, carbon dioxide and water vapour, these side reactions can become even more complex. Moreover, because of the need to store oxygen, the volumetric energy densities of lithium-oxygen systems may be too small for practical applications. Here we report a system comprising a lithium carbonate-based protected anode, a molybdenum disulfide cathode and an ionic liquid/dimethyl sulfoxide electrolyte that operates as a lithium-air battery in a simulated air atmosphere with a long cycle life of up to 700 cycles. We perform computational studies to provide insight into the operation of the system in this environment. This demonstration of a lithium-oxygen battery with a long cycle life in an air-like atmosphere is an important step towards the development of this field beyond lithium-ion technology, with a possibility to obtain much higher specific energy densities than for conventional lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.
2017-03-01
This work reports the fabrication and characterization of blue-green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1-x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.
49 CFR Appendix D to Part 192 - Criteria for Cathodic Protection and Determination of Measurements
Code of Federal Regulations, 2010 CFR
2010-10-01
... half cell: (1) Saturated KCl calomel half cell: −0.78 volt. (2) Silver-silver chloride half cell used...) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pt... cell. Determination of this voltage must be made with the protective current applied, and in accordance...
Code of Federal Regulations, 2013 CFR
2013-10-01
... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
Code of Federal Regulations, 2014 CFR
2014-10-01
... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
Code of Federal Regulations, 2012 CFR
2012-10-01
... reasonable to foresee fault currents or an unusual risk of lightning, you must protect the pipeline against... metallic structures, unless you electrically interconnect and cathodically protect the pipeline and the... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
Binder-free NiFe2O4/C nanofibers as air cathodes for Li-O2 batteries
NASA Astrophysics Data System (ADS)
Zhang, Xin; Wang, Chengyi; Chen, Ya-Nan; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen
2018-02-01
Rechargeable Li-O2 batteries have aroused much attention for their high energy density. However, the poor rechargeability and low efficiency hinder their practical applications. To solve these issues, free-standing carbon films combined with high-activity NiFe2O4 catalysts are prepared by electrospinning method, and directly used as air cathodes for Li-O2 batteries. The obtained films have 3D networks formed by stacking and interlacing massive nanofibers with uniformly dispersed NiFe2O4 nanoparticles on them. The Li-O2 batteries with such binder-free air cathodes show low charging overpotential even comparable to precious metal cathodes, and can sustain excellent discharge/charge cyclic stability. The unique structure and binder-free superiority greatly facilitates the Li+ and O2 diffusion, accelerates the decomposition of Li2O2, and avoid the disturbance of polymer binders.
Cementitious materials for thin patches : final report.
DOT National Transportation Integrated Search
2001-06-01
Ten cementitious patching materials, which were suitable for thin, vertical repairs according to the manufacturers, were evaluated. Compatibility with cathodic protection systems was a particular concern. The materials were tested for propensity to c...
46 CFR 175.400 - Definitions of terms used in this subchapter.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hull from corrosion. It includes, as a minimum, either hull coatings and a cathodic protection (CP) system consisting of sacrificial anodes, or an impressed current CP system. Alternative Hull Examination...
46 CFR 71.50-1 - Definitions relating to hull examinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... includes, as a minimum, either hull coatings and a cathodic protection (CP) system consisting of sacrificial anodes, or an impressed current CP system. Alternative Hull Examination (AHE) Program means a...
46 CFR 175.400 - Definitions of terms used in this subchapter.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hull from corrosion. It includes, as a minimum, either hull coatings and a cathodic protection (CP) system consisting of sacrificial anodes, or an impressed current CP system. Alternative Hull Examination...
46 CFR 175.400 - Definitions of terms used in this subchapter.
Code of Federal Regulations, 2013 CFR
2013-10-01
... hull from corrosion. It includes, as a minimum, either hull coatings and a cathodic protection (CP) system consisting of sacrificial anodes, or an impressed current CP system. Alternative Hull Examination...
46 CFR 175.400 - Definitions of terms used in this subchapter.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hull from corrosion. It includes, as a minimum, either hull coatings and a cathodic protection (CP) system consisting of sacrificial anodes, or an impressed current CP system. Alternative Hull Examination...
46 CFR 71.50-1 - Definitions relating to hull examinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... includes, as a minimum, either hull coatings and a cathodic protection (CP) system consisting of sacrificial anodes, or an impressed current CP system. Alternative Hull Examination (AHE) Program means a...
Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection
NASA Astrophysics Data System (ADS)
Bourgeois, Desmond
Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).
Mancini, Marilena; Gabrielli, Giulio; Kinyanjui, Michael; Kaiser, Ute; Wohlfahrt‐Mehrens, Margret
2016-01-01
Abstract We report Co‐free, Li‐rich Li1+xNi0.5Mn1.5O4 (0
Findl, E.
1984-12-21
A method for sensing or measuring the partial pressure or concentration of an electroactive species used in conjunction with an electrolyte, the method being characterized by providing a constant current between an anode and a cathode of an electrolyte-containing cell, while measuring changes in voltage that occur between either the anode and cathode or between a reference electrode and one of the main electrodes of the cell, thereby to determine the concentration or partial pressure of the electro-active species as a function of said measured voltage changes. The method of the invention can be practiced using either a cell having only an anode and a cathode, or using a cell having an anode and a cathode in combination with a reference electrode. Accurate measurements of small concentrations or partial pressures of electro-active species are obtainable with the method of the invention, by using constant currents of only a few microamperes between the anode and cathode of the cell, while the concentration-determining voltage is measured.
Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S
2015-01-01
To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Gui-Liang; Liu, Jianzhao; Amine, Rachid
2017-02-09
In the search for a transformative new energy storage system, the rechargeable Li/sulfur battery is considered as one of the promising candidates due to its much higher energy density and lower cost than state-of-the-art lithium-ion batteries. However, the insulating nature of sulfur and the dissolution of intermediary polysulfides into the electrolyte significantly hinder its practical application. Very recently, selenium and selenium-sulfur systems have received considerable attention as cathode materials for rechargeable batteries owing to the high electronic conductivity (20 orders of magnitude higher than sulfur) and high volumetric capacity (3254 mAh/cm3 ) of selenium. In this perspective, we present anmore » overview of the implications of employing selenium and selenium-sulfur systems with different structures and compositions as electroactive materials for rechargeable lithium batteries. We also show how the cathode structures, electrolytes, and electrode-electrolyte interfaces affect the electrochemistry of Se and Se-S based cathodes. Furthermore, suggestions are provided on paths for future development of these cathodes.« less
NASA Astrophysics Data System (ADS)
Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun
2015-01-01
An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications. Electronic supplementary information (ESI) available: TGA curves of as electrospun Co(ii)-PAN fiber and C-CoPAN900 EDX and XPS spectra of the C-CoPAN900 photo of a home-built Zn-air cell and the preparation method of conventional catalyst electrode; polarization curves and corresponding power density plots of the battery using conventional type cathode of C-CoPN900 and commercial Pt/C catalyst; the electrocatalytic properties of hybrid CNFs obtained from varied weight ratios of PAN to cobalt acetate, e.g. 16 : 1 and 8 : 1, and their corresponding TGA curves; a comparison of the Zn-air battery performance of this work with recent literatures. See DOI: 10.1039/c4nr05988c
NASA Astrophysics Data System (ADS)
Li, Jianhui; Xing, Lidan; Zhang, Liping; Yu, Le; Fan, Weizhen; Xu, Mengqing; Li, Weishan
2016-08-01
Self-discharge behavior of layered lithium-rich oxide as cathode of lithium ion battery in a carbonated-based electrolyte is understood, and a simple boron-containing compound, trimethyl borate (TMB), is used as an electrolyte additive to suppress this self-discharge. It is found that layered lithium-rich oxide charged under 4.8 V in additive-free electrolyte suffers severe self-discharge and TMB is an effective electrolyte additive for self-discharge suppression. Physical characterizations from XRD, SEM, TEM, XPS and ICP-MS demonstrate that the crystal structure of the layered lithium-rich oxide collapses due to the chemical interaction between the charged oxide and electrolyte. When TMB is applied, the structural integrity of the oxide is maintained due to the protective cathode film generated from the preferential oxidation of TMB.
NASA Astrophysics Data System (ADS)
Wang, Ruofan; Sun, Zhihao; Pal, Uday B.; Gopalan, Srikanth; Basu, Soumendra N.
2018-02-01
Chromium poisoning is one of the major reasons for cathode performance degradation in solid oxide fuel cells (SOFCs). To mitigate the effect of Cr-poisoning, a protective coating on the surface of interconnect for suppressing Cr vaporization is necessary. Among the various coating materials, Cu-Mn spinel coating is considered to be a potential candidate due to their good thermal compatibility, high stability and good electronic conductivity at high temperature. In this study, Crofer 22 H meshes with no protective coating, those with commercial CuMn2O4 spinel coating and the ones with lab-developed CuMn1.8O4 spinel coating were investigated. The lab-developed CuMn1.8O4 spinel coating were deposited on Crofer 22 H mesh by electrophoretic deposition and densified by a reduction and re-oxidation process. With these different Crofer 22 H meshes (bare, CuMn2O4-coated, and CuMn1.8O4-coated), anode-supported SOFCs with Sr-doped LaMnO3-based cathode were electrochemically tested at 800 °C for total durations of up to 288 h. Comparing the mitigating effects of the two types of Cu-Mn spinel coatings on Cr-poisoning, it was found that the performance of the denser lab-developed CuMn1.8O4 spinel coating was distinctly better, showing no degradation in the cell electrochemical performance and significantly less Cr deposition near the cathode/electrolyte interface after the test.
Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P
2009-01-01
Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).
Electrically Conductive and Protective Coating for Planar SOFC Stacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jung-Pyung; Stevenson, Jeffry W.
Ferritic stainless steels are preferred interconnect materials for intermediate temperature SOFCs because of their resistance to oxidation, high formability and low cost. However, their protective oxide layer produces Cr-containing volatile species at SOFC operating temperatures and conditions, which can cause cathode poisoning. Electrically conducting spinel coatings have been developed to prevent cathode poisoning and to maintain an electrically conductive pathway through SOFC stacks. However, this coating is not compatible with the formation of stable, hermetic seals between the interconnect frame component and the ceramic cell. Thus, a new aluminizing process has been developed by PNNL to enable durable sealing, preventmore » Cr evaporation, and maintain electrical insulation between stack repeat units. Hence, two different types of coating need to have stable operation of SOFC stacks. This paper will focus on the electrically conductive coating process. Moreover, an advanced coating process, compatible with a non-electrically conductive coating will be« less
Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship
NASA Astrophysics Data System (ADS)
Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.
2018-02-01
The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.
NASA Astrophysics Data System (ADS)
Xu, Shenzhen
Metal oxide materials are ubiquitous in nature and in our daily lives. For example, the Earth's mantle layer that makes up about 80% of our Earth's volume is composed of metal oxide materials, the cathode materials in the lithium-ion batteries that provide power for most of our mobile electronic devices are composed of metal oxides, the chemical components of the passivation layers on many kinds of metal materials that protect the metal from further corrosion are metal oxides. This thesis is composed of two major topics about the metal oxide materials in nature. The first topic is about our computational study of the iron chemistry in the Earth's lower mantle metal oxide materials, i.e. the bridgmanite (Fe-bearing MgSiO3 where iron is the substitution impurity element) and the ferropericlase (Fe-bearing MgO where iron is the substitution impurity element). The second topic is about our multiscale modeling works for understanding the nanoscale kinetic and thermodynamic properties of the metal oxide cathode interfaces in Li-ion batteries, including the intrinsic cathode interfaces (intergrowth of multiple types of cathode materials, compositional gradient cathode materials, etc.), the cathode/coating interface systems and the cathode/electrolyte interface systems. This thesis uses models based on density functional theory quantum mechanical calculations to explore the underlying physics behind several types of metal oxide materials existing in the interior of the Earth or used in the applications of lithium-ion batteries. The exploration of this physics can help us better understand the geochemical and seismic properties of our Earth and inspire us to engineer the next generation of electrochemical technologies.
Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping
2016-01-01
Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfidemore » shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).« less
Photovoltaic power without batteries for continuous cathodic protection
NASA Technical Reports Server (NTRS)
Muehl, W. W., Sr.
1994-01-01
The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.
Photovoltaic power without batteries for continuous cathodic protection
NASA Astrophysics Data System (ADS)
Muehl, W. W., Sr.
1994-02-01
The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.
NASA Astrophysics Data System (ADS)
Safanama, Dorsasadat; Adams, Stefan
2017-02-01
Due to their extremely high specific energy, rechargeable Li-air batteries could meet the demand for large-scale storage systems to integrate renewable sources into the power grid. Li-air batteries with aqueous catholytes with high solubility of discharge products have a higher potential to reach their slightly lower theoretical limits in practical devices. In this work, we demonstrate aqueous and hybrid Li-air batteries with NASICON-type Li1+xAxGe2-x(PO4)3 ceramic as anode-protecting membrane. The LAGP ceramic pellets with room temperature conductivity >10-4 S cm-1 are synthesized by melt quenching and subsequently annealed based on our optimized heat treatment cycle. Hybrid Li-air batteries are assembled by sandwiching LAGP membranes between Li-anode chamber and catholyte solutions (of various pH values) with CNT/Pt as air-cathode. When the two electron reduction mechanism prevails, overpotentials below 0.2 V are achieved for currents up to 0.07 mA cm-2 leading to energy efficiencies exceeding 98%.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Shkrob, Ilya A.; Assary, Rajeev S.; Zhang, Shuo; Hu, Bin; Liao, Chen; Zhang, Zhengcheng; Zhang, Lu
2018-02-01
1,4-Dialkoxybenzene additives are commonly used as redox active shuttles in lithium-ion batteries in order to prevent runaway oxidation of electrolyte when overcharge conditions set in. During this action the shuttle molecule goes through a futile cycle, becoming oxidized at the cathode and reduced at the anode. Minimizing parasitic reactions in all states of charge is paramount for sustained protective action. Here we demonstrate that recently developed bis-annulated 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethano-anthracene shuttle molecule (that yields exceptionally stable radical cations) survives over 120 cycles of overcharge abuse with 100% overcharge ratio at C/5 rate. Equally remarkably, in the presence of this additive the cell impedance becomes significantly lower compared to the control cells without the additive; this decrease is observed during the formation, normal cycling, and even under overcharge conditions. This unusual dual action has not been observed in other redox shuttle systems, and it presents considerable practical interest.
1987-06-01
Corrosion and Cathodic Protection 1169 on Crack Growth in Offshore Platform Steels in Sea Water - EINAR BARDAL The Influence of Crack Conditions on...PROTECTION ON CRACK GROWTH IN OFFSHORE PLATFORM STEELS IN SEA WATER: EINAR BARDAL* Corrosion fatigue of steel for offshore platforms has been studied at...surfaces (6). When results from experiments with natural sea water are compared with corresponding results obtained in synthetic sea water, no significant
Corrosion control of cement-matrix and aluminum-matrix composites
NASA Astrophysics Data System (ADS)
Hou, Jiangyuan
Corrosion control of composite materials, particularly aluminum-matrix and cement-matrix composites, was addressed by surface treatment, composite formulation and cathodic protection. Surface treatment methods studied include anodization in the case of aluminum-matrix composites and oxidation treatment (using water) in the case of steel rebar for reinforcing concrete. The effects of reinforcement species (aluminum nitride (AIN) versus silicon carbide (SiC) particles) in the aluminum-matrix composites and of admixtures (carbon fibers, silica fume, latex and methylcellulose) in concrete on the corrosion resistance of composites were addressed. Moreover, the effect of admixtures in concrete and of admixtures in mortar overlay (as anode on concrete) on the efficiency of cathodic protection of steel reinforced concrete was studied. For SiC particle filled aluminum, anodization was performed successfully in an acid electrolyte, as for most aluminum alloys. However, for AlN particle filled aluminum, anodization needs to be performed in an alkaline (0.7 N NaOH) electrolyte instead. The concentration of NaOH in the electrolyte was critical. It was found that both silica fume and latex improved the corrosion resistance of rebar in concrete in both Ca(OH)sb2 and NaCl solutions, mainly because these admixtures decreased the water absorptivity. Silica fume was more effective than latex. Methylcellulose improved the corrosion resistance of rebar in concrete a little in Ca(OH)sb2 solution. Carbon fibers decreased the corrosion resistance of rebar in concrete, but this effect could be made up for by either silica fume or latex, such that silica fume was more effective than latex. Surface treatment in the form of water immersion for two days was found to improve the corrosion resistance of rebar in concrete. This treatment resulted in a thin uniform layer of black iron oxide (containing Fesp{2+}) on the entire rebar surface except on the cross-sectional surface. Prior to the treatment, the surface was non-uniform due to rusting. Sand blasting also made the surface uniform, but is an expensive process, compared to the water immersion method. For cathodic protection of steel rebar reinforced concrete, mortar overlay containing carbon fibers and latex needed 11% less driving voltage to protect the rebar in concrete than plain mortar overlay. However, multiple titanium electrical contacts were necessary, whether the overlay contained carbon fibers or not. For the same overlay (containing carbon fibers and latex), admixtures in the concrete also made a significant difference on the effect of cathodic protection; concrete with carbon fibers and silica fume needed 18% less driving voltage than plain concrete and 28% less than concrete containing silica fume.
Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode
NASA Technical Reports Server (NTRS)
Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.
2006-01-01
Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.
Corrosion and protection of NdFeB type magnets
NASA Astrophysics Data System (ADS)
Cavalloti, P.; Bozzini, B.; Cecchini, R.; Bava, G. F.; Davies, H. A.; Hoggarth, C.
1992-02-01
A general mechanism for the corrosion behaviour of NdFeB magnets is presented, related to the magnet heterogeneity with the presence of different phases. Cathodic control is outlined. An electrochemical method to assess the corrosion resistance of magnets, with and without coatings, is proposed; it is based on the study of the transient voltage at the magnet surface after a second cathodic current pulse in a suitable aggressive solution and its dependence on the amount of cathodic current circulating. Suitable pretreatments have been tried and interesting results obtained with passivation pretreatments, giving phosphorous Nd at grain boundaries. Coatings if sintered and plastic magnets have been tried using several methods. Good results are obtained with Zn-Co layers on sintered magnets and a sol-gel glass on powders for plastic magnets. Improved ACS (Autocatalytic Chemical Deposition) Ni=P coatings have been realized, with an alkaline brass flash plating to start ACD deposition.
High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Dongping; Zheng, Jianming; Li, Qiuyan
2015-08-19
High energy and cost-effective lithium sulfur (Li-S) battery technology has been vigorously revisited in recent years due to the urgent need of advanced energy storage technologies for transportation and large-scale energy storage applications. However, the market penetration of Li-S batteries has been plagued due to the gap in scientific knowledge between the fundamental research and the real application need. Herein, we focus on the cathode part of the Li-S system and discuss 1) the progress and issues of literature-reported sulfur cathode; 2) how to employ materials chemistry/science to address the challenges to thicken sulfur cathode; 3) the factors that affectmore » the electrochemical performances of Li-S cells constructed at a relevant scale. This progress report attempts to tie the fundamental understanding closely to the practical application of Li-S batteries so that it may provide new insights for the research efforts of Li-S battery technology.« less
Systematic Effect for an Ultralong Cycle Lithium-Sulfur Battery.
Wu, Feng; Ye, Yusheng; Chen, Renjie; Qian, Ji; Zhao, Teng; Li, Li; Li, Wenhui
2015-11-11
Rechargeable lithium-sulfur (Li-S) batteries are attractive candidates for energy storage devices because they have five times the theoretical energy storage of state-of-the-art Li-ion batteries. The main problems plaguing Li-S batteries are poor cycle life and limited rate capability, caused by the insulating nature of S and the shuttle effect associated with the dissolution of intermediate lithium polysulfides. Here, we report the use of biocell-inspired polydopamine (PD) as a coating agent on both the cathode and separator to address these problems (the "systematic effects"). The PD-modified cathode and separator play key roles in facilitating ion diffusion and keeping the cathode structure stable, leading to uniform lithium deposition and a solid electrolyte interphase. As a result, an ultralong cycle performance of more than 3000 cycles, with a capacity fade of only 0.018% per cycle, was achieved at 2 C. It is believed that the systematic modification of the cathode and separator for Li-S batteries is a new strategy for practical applications.
Feasibility of applying cathodic protection to underground culverts : final report.
DOT National Transportation Integrated Search
1995-01-01
The Louisiana Department of Transportation and Development uses coated metal culverts throughout the state. Once placed, all coated metal culverts start to experience corrosion. The extent of corrosion taking place on these culverts range from slight...
Electrically conductive Portland cement concrete.
DOT National Transportation Integrated Search
1986-01-01
There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1985-01-01
List of materials needed, procedures used, and results obtained are provided for two demonstrations. The first is an inexpensive and quick method for demonstrating column chromatography of plant pigments of spinach extract. The second is a demonstration of cathodic protection by impressed current. (JN)
Hou, Huijie; Li, Lei; de Figueiredo, Paul; Han, Arum
2011-01-15
Microbial fuel cells (MFCs) have generated excitement in environmental and bioenergy communities due to their potential for coupling wastewater treatment with energy generation and powering diverse devices. The pursuit of strategies such as improving microbial cultivation practices and optimizing MFC devices has increased power generating capacities of MFCs. However, surprisingly few microbial species with electrochemical activity in MFCs have been identified because current devices do not support parallel analyses or high throughput screening. We have recently demonstrated the feasibility of using advanced microfabrication methods to fabricate an MFC microarray. Here, we extend these studies by demonstrating a microfabricated air-cathode MFC array system. The system contains 24 individual air-cathode MFCs integrated onto a single chip. The device enables the direct and parallel comparison of different microbes loaded onto the array. Environmental samples were used to validate the utility of the air-cathode MFC array system and two previously identified isolates, 7Ca (Shewanella sp.) and 3C (Arthrobacter sp.), were shown to display enhanced electrochemical activities of 2.69 mW/m(2) and 1.86 mW/m(2), respectively. Experiments using a large scale conventional air-cathode MFC validated these findings. The parallel air-cathode MFC array system demonstrated here is expected to promote and accelerate the discovery and characterization of electrochemically active microbes. Copyright © 2010 Elsevier B.V. All rights reserved.
Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit
2008-01-01
The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429
Improved Cathode Structure for a Direct Methanol Fuel Cell
NASA Technical Reports Server (NTRS)
Valdez, Thomas; Narayanan, Sekharipuram
2005-01-01
An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.
NASA Astrophysics Data System (ADS)
Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun
2017-10-01
Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.
Development of an embeddable reference electrode for reinforced concrete structures.
DOT National Transportation Integrated Search
1998-01-01
There is a concern that none of the existing concrete-embeddable reference electrodes that are being used as a convenient means for monitoring the condition of the reinforcing steel in concrete bridges or the operation of cathodic protection systems ...
Effect of cathodic protection on epoxy-coated rebar.
DOT National Transportation Integrated Search
1998-06-01
Epoxy coating is widely used to mitigate the access of chloride ions to the surface of a rebar. However, corrosion at the point of physical defects in the coating necessitates rehabilitation. Based on its effectiveness in mitigating corrosion of unco...
NASA Astrophysics Data System (ADS)
Richard, M. N.; Dahn, J. R.
An accelerating rate calorimeter (ARC) is used to measure the thermal stability of de-intercalated Li 1+ xMn 2- xO 4 in LiPF 6 EC:DEC (33:67) electrolyte. Self-heating is detected well after the 80°C onset of self-heating measured for lithium intercalated mesocarbon microbead (MCMB) electrodes in LiPF 6 EC:DEC (33:67) electrolyte. As a result, the initial self-heating measured in a practical carbon/Li 1+ xMn 2- xO 4 lithium-ion cell is caused by reactions at the anode. In previous work, we have proposed a model for the reactions that cause self-heating in MCMB electrodes in electrolyte. By assuming that a cell self-heats only because reactions occur at the anode, the model can be used to predict the power generated by the amount of MCMB in practical cells with an inert cathode. The calculated chemically generated power can be combined with power loss measurements, due to the transfer of heat to the environment, to predict the short-circuit behaviour and the oven exposure behaviour for a cell containing an MCMB anode and an inert cathode. The results agree qualitatively with short-circuit and oven exposure results measured on NEC Moli energy 18650 cells containing an Li 1+ xMn 2- xO 4 cathode.
NASA Astrophysics Data System (ADS)
Jiang, Yanfeng; Zhang, Changnian; Zhang, Xiaobo
2005-02-01
In this paper, a novel method for fabricating a static induction thyristor has been put forward, using silicon direct bonding instead of traditional epitaxy during the construction of a cathode. Thus, an obvious improvement of the breakdown value of gate-cathode junction has been observed and consequently the gate controllability on anode voltage has been enhanced. The bonded interface has been studied. Some adjustments in technology have been adopted to enhance the bonding quality. A way to guarantee the consistency of the breakdown voltage of gate junction with respect to the cathode has been advanced. Some measurements of I-V characteristic of SDB-SITH have been carried out and the practical result is also listed. A comparison between the SDB-SITH and epitaxial SITH has been made, mainly on I-V and the switching time.
Shop fabricated corrosion-resistant underground storage tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geyer, W.B.; Stellmach, W.A.
1995-12-31
Integral corrosion resistance has long been incorporated into shop fabricated steel underground storage tank design. Since 1969, an industry standard has been the sti-P{sub 3}{reg_sign} (P3) tank. However, the past decade has seen the development of several alternative corrosion resistant and secondary containment technologies. Fiberglass-coated steel composite tanks, and jacketed tanks utilizing various materials as a secondary wall, provide corrosion resistance without the cathodic protection monitoring requirements mandated by the EPA for single-wall P3 tanks. On the other hand, the P3 tank is the only tank technology commonly marketed today with an integral ability to verify its corrosion resistance overmore » the life of the tank. Many existing USTs remain to be replaced or upgraded with corrosion resistance (and other requirements) by the end of 1998. Steel tanks built and installed prior to the advent of pre-engineered, factory-supplied protection against corrosion can be retrofitted with cathodic protection or can be internally lined. Specific installation standards developed by the steel tank industry and the petroleum industry must be followed so as to assure the integrity of the various corrosion resistant technologies developed by the Steel Tank Institute. The technologies describes in this paper will ensure compliance with the corrosion protection requirements of new storage tanks.« less
Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay
2017-05-23
Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.
Protective coatings for metal alloys and methods incorporating the same
Seabaugh, Matthew M.; Ibanez, Sergio; Swartz, Scott L.
2015-06-09
An electrochemical device having one or more solid oxide fuel cells (SOFCs), each of the SOFCs including a cathode, an anode, and an electrolyte layer positioned between the cathode and anode; and at least one additional component comprising a metallic substrate having an electronically conductive, chromium-free perovskite coating deposited directly thereon. The perovskite coating has the formula ABO.sub.3, wherein A is a lanthanide element or Y, and B is a mixture of two or more transition elements, with the A site undoped by any alkaline earth element, and the perovskite coating exhibits limited or no ionic transport of oxygen.
49 CFR 193.2707 - Operations and maintenance.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (c) Corrosion control procedures under § 193.2605(b), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in corrosion control technology. ...
49 CFR 193.2707 - Operations and maintenance.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (c) Corrosion control procedures under § 193.2605(b), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in corrosion control technology. ...
Simple-to-prepare multipoint field emitter
NASA Astrophysics Data System (ADS)
Sominskii, G. G.; Taradaev, E. P.; Tumareva, T. A.; Mishin, M. V.; Kornishin, S. Yu.
2015-07-01
We investigate multitip field emitters prepared by electroerosion treatment of the surface of molybdenum samples. Their characteristics are determined for operation with a protecting activated fullerene coating. Our experiments indicate that such cathodes are promising for high-voltage electron devices operating in technical vacuum.
Evaluation of sprayed-on metalizing for precast prestressed concrete I-beams
DOT National Transportation Integrated Search
2002-04-01
Cathodic protection has been used as an effective means of arresting corrosion in reinforced concrete. A galvanic system typically consists of a sacrificial anode, some form of adhesive or fastening system to secure the anode to the concrete, and an ...
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
Patel, Rajankumar L.; Jiang, Ying-Bing; Choudhury, Amitava; Liang, Xinhua
2016-01-01
Atomic layer deposition (ALD) has evolved as an important technique to coat conformal protective thin films on cathode and anode particles of lithium ion batteries to enhance their electrochemical performance. Coating a conformal, conductive and optimal ultrathin film on cathode particles has significantly increased the capacity retention and cycle life as demonstrated in our previous work. In this work, we have unearthed the synergetic effect of electrochemically active iron oxide films coating and partial doping of iron on LiMn1.5Ni0.5O4 (LMNO) particles. The ionic Fe penetrates into the lattice structure of LMNO during the ALD process. After the structural defects were saturated, the iron started participating in formation of ultrathin oxide films on LMNO particle surface. Owing to the conductive nature of iron oxide films, with an optimal film thickness of ~0.6 nm, the initial capacity improved by ~25% at room temperature and by ~26% at an elevated temperature of 55 °C at a 1C cycling rate. The synergy of doping of LMNO with iron combined with the conductive and protective nature of the optimal iron oxide film led to a high capacity retention (~93% at room temperature and ~91% at 55 °C) even after 1,000 cycles at a 1C cycling rate. PMID:27142704
Khetan, Abhishek; Krishnamurthy, Dilip; Viswanathan, Venkatasubramanian
2018-03-20
One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium-oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium-oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode-electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li[Formula: see text]O[Formula: see text], and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte-electrode formulations is needed to realize a practical Li-O[Formula: see text] battery.
Chemical Shuttle Additives in Lithium Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Mary
2013-03-31
The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont,more » Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.« less
NASA Astrophysics Data System (ADS)
Chou, Ping-Yi; Ciou, Chun-Jing; Lee, Yu-Chen; Hung, I.-Ming
2012-01-01
This study investigates the interface reactivity between La0.1Sr0.9Co0.5Mn0.5O3-δ (LSCM) protective coating layer and Crofer22H interconnects. Additionally, we report the mechanism of Cr poisoning of the La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) cathode's electrochemical properties. The phase, chemical composition, and element distribution of compounds formed at the LSCM-Crofer22H interface are analyzed by X-ray diffraction (XRD) and electron dispersive microscopy (EDS). After heat treatment at 800 °C for 100 h, the LSCM/Crofer22H sample contains SrCrO3, a compound with good conductivity; the area specific resistance (ASR) for the LSCM/Crofer22H interconnect is approximately 17-40 mΩ cm2. We found that the amount of (Mn0.98Fe0.02)(Mn0.02Fe0.48Cr1.5)O4, Cr3O4, and (Fe,Cr)2O3 oxides form in LSCF/LSCM/Crofer22H is significantly less than that in LSCF/Crofer22H. LSCF conductivity after heating at 800 °C for 100 h, is notably higher when in contact with LSCM/Crofer22H than it is when in contact with Crofer22H. These results demonstrate that the LSCM protective coating prevents LSCF cathode poisoning by Cr evaporated from the Corfer22H interconnects.
NASA Astrophysics Data System (ADS)
Zhang, Shiming; Tang, Tian; Ma, Zhihua; Gu, Haitao; Du, Wubing; Gao, Mingxia; Liu, Yongfeng; Jian, Dechao; Pan, Hongge
2018-03-01
The poor cycling stability of Li- and Mn-rich layered oxide cathodes used in lithium-ion batteries (LIBs) has severely limited their practical application. Unfortunately, current strategies to improve their lifecycle sacrifice initial capacity. In this paper, we firstly report the synergistic improvement of the electrochemical performance of a Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) cathode material, including gains for capacity, cycling stability, and rate capability, by the partial substitution of Li+ ions by Mg2+ ions. Electrochemical performance is evaluated by a galvanostatic charge and discharge test and electrochemical impedance spectroscopy (EIS). Structure and morphology are characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Compared with the substitution of transition metal (TM) ions with Mg2+ ions reported previously, the substitution of Li+ ions by Mg2+ ions not only drastically ameliorates the capacity retention and rate performance challenges of LNCMO cathodes but also markedly suppresses their voltage fading, due to the inhibition of the migration of TM ions during cycling, while also increasing the capacity of the cathode due to an increased abundance of the Li2MO3 phase.
Zhang, Yu; Huang, Yanshan; Yang, Guanhui; Bu, Fanxing; Li, Ke; Shakir, Imran; Xu, Yuxi
2017-05-10
Polymer cathode materials are promising alternatives to inorganic counterparts for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high theoretical capacity, adjustable molecular structure, and strong adaptability to different counterions in batteries, etc. However, they suffer from poor practical capacity and low rate capability because of their intrinsically poor conductivity. Herein, we report the synthesis of self-assembled graphene/poly(anthraquinonyl sufide) (PAQS) composite aerogel (GPA) with efficient integration of a three-dimensional (3D) graphene framework with electroactive PAQS particles via a novel dispersion-assembly strategy which can be used as a free-standing flexible cathode upon mechanical pressing. The entire GPA cathode can deliver the highest capacity of 156 mAh g -1 at 0.1 C (1 C = 225 mAh g -1 ) with an ultrahigh utilization (94.9%) of PAQS and exhibits an excellent rate performance with 102 mAh g -1 at 20 C in LIBs. Furthermore, the flexible GPA film was also tested as cathode for SIBs and demonstrated a high-rate capability with 72 mAh g -1 at 5 C and an ultralong cycling stability (71.4% capacity retention after 1000 cycles at 0.5 C) which has rarely been achieved before. Such excellent electrochemical performance of GPA as cathode for both LIBs and SIBs could be ascribed to the fast redox kinetics and electron transportation within GPA, resulting from the interconnected conductive framework of graphene and the intimate interaction between graphene and PAQS through an efficient wrapping structure. This approach opens a universal way to develop cathode materials for powerful batteries with different metal-based counter electrodes.
DOT National Transportation Integrated Search
2009-12-03
While the mechanical properties of composite repairs for pipelines have been investigated extensively, the performance of the entire metal-composite system has not been addressed with regard to corrosion of the substrate, water intrusion at the compo...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
Pilot applications of electrochemical chloride extraction on concrete bridge decks in Virginia.
DOT National Transportation Integrated Search
1996-01-01
A recent SHRP study confirmed that applying an electrical field between the surface of a concrete structure and the rebars (like cathodic protection, except with 50 to 500 times more current) can expel the chloride ions from salt-contaminated reinfor...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
Cathodic protection of culverts-field application and expert system : technical summary.
DOT National Transportation Integrated Search
1999-06-01
Louisiana used metal culverts throughout the state for drainage purposes. Culverts made of concrete were also used, but large concrete culverts were more expensive and the foundation had to be able to bear their weight. However, the use of metal culv...
Cathodic protection of culverts : field application and expert system
DOT National Transportation Integrated Search
1999-06-01
Coated metal culverts are used throughout the state of Louisiana. These culverts are susceptible to both internal and external corrosion once they are placed in the ground. It is simply a matter of time before all of the culverts in the state corrode...
Possibility of High Phosphorus Pig Iron as Sacrificial Anode
NASA Astrophysics Data System (ADS)
Prasad, Nisheeth Kr.; Pathak, A. S.; Kundu, S.; Mondal, K.
2018-05-01
Cathodic protection is an effective method to control the corrosion of underground pipelines and submerged structures. In the present work, high phosphorus containing pig iron was utilized as sacrificial anode for cathodic protection of underground mild steel plates and the results were compared with that of a commercially pure magnesium sacrificial anode. Driving potential and current between the galvanically coupled sacrificial anodes and mild steel plates were continuously monitored in real time for one month. Microstructure and morphology of the corrosion products formed on the surface of pig iron, magnesium sacrificial anodes and mild steel plates were observed with the help of optical microscope and scanning electron microscopy, and phase identification were performed using x-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The distribution of phosphorus in the pig iron matrix and soluble rust formation on the surface of pig iron under buried condition were critical from the point of sacrificial effect, indicating the possible scientific reasons for high phosphorous pig iron to be used as sacrificial anode.
K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang
K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less
K-Ion Batteries Based on a P2-Type K 0.6CoO 2 Cathode
Kim, Haegyeom; Kim, Jae Chul; Bo, Shou-Hang; ...
2017-05-02
K-ion batteries are a potentially exciting and new energy storage technology that can combine high specific energy, cycle life, and good power capability, all while using abundant potassium resources. The discovery of novel cathodes is a critical step toward realizing K-ion batteries (KIBs). In this work, a layered P2-type K 0.6CoO 2 cathode is developed and highly reversible K ion intercalation is demonstrated. In situ X-ray diffraction combined with electrochemical titration reveals that P2-type K 0.6CoO 2 can store and release a considerable amount of K ions via a topotactic reaction. Despite the large amount of phase transitions as functionmore » of K content, the cathode operates highly reversibly and with good rate capability. The practical feasibility of KIBs is further demonstrated by constructing full cells with a graphite anode. This work highlights the potential of KIBs as viable alternatives for Li-ion and Na-ion batteries and provides new insights and directions for the development of next-generation energy storage systems.« less
Control Valve Trajectories for SOFC Hybrid System Startup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorrell, Megan; Banta, Larry; Rosen, William
2012-07-01
Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valvesmore » and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method.« less
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Soulas, George C.
2016-01-01
The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.
Wu, Zhongzhen; Ji, Shunping; Liu, Tongchao; Duan, Yandong; Xiao, Shu; Lin, Yuan; Xu, Kang; Pan, Feng
2016-10-12
Layered transition-metal oxides (Li[Ni x Mn y Co z ]O 2 , NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO 4 (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(Ni x Mn y Co z )O 2 @LiFePO 4 . Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li + tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.
Improved Rare-Earth Emitter Hollow Cathode
NASA Technical Reports Server (NTRS)
Goebel, Dan M.
2011-01-01
An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out the back. This configuration replaces the previous sheathed heater design that limited the cycling-life of the cathode.
Study on AN Intermediate Temperature Planar Sofc
NASA Astrophysics Data System (ADS)
Wang, Shaorong; Cao, Jiadi; Chen, Wenxia; Lu, Zhiyi; Wang, Daqian; Wen, Ting-Lian
An ITSOFC consisted of Ni/YSZ anode supported YSZ composite thin film and La0.6Sr0.4CoO3 (LSCO) cathode combined with a Ce0.8Sm0.2O1.9 (CSO) interlayer was studied. Tape cast method was applied to prepare green sheets of Ni/YSZ anode supported YSZ composite thin film. After isostatic pressing and cosintering, the YSZ film on the Ni/YSZ anode was gas-tight dense, and 15-30μm thick. The area of the composite film was over 100 cm2. A CSO interlayer was sintered on to the YSZ electrolyte film to protect LSCO cathode from reaction with YSZ at high temperatures. The LSCO cathode layer was screen printed onto the CSO interlayer and sintered at 1200°C for 3h to form a single cell. The obtained single cell was operated with H2 as fuel and O2 as oxidant. The cell performance and impedance were measured and discussed relating with the component contributions.
NASA Astrophysics Data System (ADS)
Shaigan, Nima; Qu, Wei; Ivey, Douglas G.; Chen, Weixing
Ferritic stainless steels have become the standard material for solid oxide fuel cell (SOFC) interconnect applications. The use of commercially available ferritic stainless steels, not specifically designed for interconnect application, however, presents serious issues leading to premature degradation of the fuel cell stack, particularly on the cathode side. These problems include rapidly increasing contact resistance and volatilization of Cr from the oxide scales, resulting in cathode chromium poisoning and cell malfunction. To overcome these issues, a variety of conductive/protective coatings, surface treatments and modifications as well as alloy development have been suggested and studied over the past several years. This paper critically reviews the attempts performed thus far to mitigate the issues associated with the use of ferritic stainless steels on the cathode side. Different approaches are categorized and summarized and examples for each case are provided. Finally, directions and recommendations for the future studies are presented.
The anode power supply for the ECRH system on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Donghui, XIA; Fangtai, CUI; Changhai, LIU; Zhenxiong, YU; Yikun, JIN; Zhijiang, WANG; J-TEXT, Team1
2018-01-01
The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. The results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.
Structural studies of enzyme-based microfluidic biofuel cells
NASA Astrophysics Data System (ADS)
Togo, Makoto; Takamura, Akimasa; Asai, Tatsuya; Kaji, Hirokazu; Nishizawa, Matsuhiko
An enzyme-based glucose/O 2 biofuel cell was constructed within a microfluidic channel to study the influence of electrode configuration and fluidic channel height on cell performance. The cell was composed of a bilirubin oxidase (BOD)-adsorbed O 2 cathode and a glucose anode prepared by co-immobilization of glucose dehydrogenase (GDH), diaphorase (Dp) and VK 3-pendant poly- L-lysine. The consumption of O 2 at the upstream cathode protected the downstream anode from interfering O 2 molecules, and consequently improved the cell performance (maximum cell current) ca. 10% for the present cell. The cell performance was also affected by the channel height. The output current and power of a 0.1 mm-height cell was significantly less than those of a 1 mm-height cell because of the depletion of O 2, as determined by the shape of the E- I curve at the cathode. On the other hand, the volume density of current and power was several times higher for the narrower cell.
Backus, J.G.
1957-12-24
This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.
Guo, Jin-Zhi; Wang, Peng-Fei; Wu, Xing-Long; Zhang, Xiao-Hua; Yan, Qingyu; Chen, Hong; Zhang, Jing-Ping; Guo, Yu-Guo
2017-09-01
Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na 3 V 2 (PO 4 ) 2 O 2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na + /Na with a specific capacity of 127.8 mA h g -1 . The energy density of NVPF-NTP reaches up to 486 W h kg -1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
Evaluation of corrosion and corrosion control on interstate 89 bridge #30 and #31.
DOT National Transportation Integrated Search
2015-06-01
This report summarizes the evaluation of the performance of cathodic protection installed on I-89 bridges over : Gile Pond Road (NH Route 114) during a rehabilitation project in 1987. : Control bridges of I-89 over Hominy Pot Road, approximately 1.5 ...
49 CFR 195.452 - Pipeline integrity management in high consequence areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; or (D) Other technology that the operator demonstrates can provide an equivalent understanding of the... information, coating type and condition, and seam type; (iii) Leak history, repair history and cathodic protection history; (iv) Product transported; (v) Operating stress level; (vi) Existing or projected...
Piao, Jun-Yu; Liu, Xiao-Chan; Wu, Jinpeng; Yang, Wanli; Wei, Zengxi; Ma, Jianmin; Duan, Shu-Yi; Lin, Xi-Jie; Xu, Yan-Song; Cao, An-Min; Wan, Li-Jun
2018-06-28
Surface cobalt doping is an effective and economic way to improve the electrochemical performance of cathode materials. Herein, by tuning the precipitation kinetics of Co 2+ , we demonstrate an aqueous-based protocol to grow uniform basic cobaltous carbonate coating layer onto different substrates, and the thickness of the coating layer can be adjusted precisely in nanometer accuracy. Accordingly, by sintering the cobalt-coated LiNi 0.5 Mn 1.5 O 4 cathode materials, an epitaxial cobalt-doped surface layer will be formed, which will act as a protective layer without hindering charge transfer. Consequently, improved battery performance is obtained because of the suppression of interfacial degradation.
Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
Bates, John B.
1994-01-01
A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.
NASA Astrophysics Data System (ADS)
Park, Jang-Hoon; Kim, Ju-Myung; Lee, Chang Kee; Lee, Sang-Young
2014-10-01
Understanding and control of interfacial phenomena between electrode material and liquid electrolytes are of major scientific importance for boosting development of high-performance lithium ion batteries with reliable electrochemical/safety attributes. Here, as an innovative surface engineering approach to address the interfacial issues, a new concept of mixed ion/electron-conductive soft nanomatter-based conformal surface modification of the cathode material is presented. The soft nanomatter is comprised of an electron conductive carbonaceous (C) substance embedded in an ion conductive polyimide (PI) nanothin compliant film. In addition to its structural uniqueness, the newly proposed surface modification benefits from a simple fabrication process. The PI/carbon soft nanomatter is directly synthesized on LiCoO2 surface via one-pot thermal treatment of polyamic acid (=PI precursor) and sucrose (=carbon source) mixture, where the LiCoO2 powders are chosen as a model system to explore the feasibility of this surface engineering strategy. The resulting PI/carbon coating layer facilitates electronic conduction and also suppresses unwanted side reactions arising from the cathode material-liquid electrolyte interface. These synergistic coating effects of the multifunctional PI/carbon soft nanomatter significantly improve high-voltage cell performance and also mitigate interfacial exothermic reaction between cathode material and liquid electrolyte.
CoxFe1-x oxide coatings on metallic interconnects for solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Shen, Fengyu; Lu, Kathy
2016-10-01
In order to improve the performance of Cr-containing steel as an interconnect material for solid oxide fuel cells, CoFe alloy coatings with Co:Fe ratios of 9:1, 8:2, 7:3, 6:4, and 5:5 are deposited by electrodeposition and then oxidized to CoxFe1-x oxide coatings with a thickness of ∼6 μm as protective layers on the interconnect. The area specific resistance of the coated interconnect increases with the Fe content. Higher Co content oxide coatings are more effective in limiting the growth of the chromia scale while all coatings are effective in inhibiting Cr diffusion and evaporation. With the Co0.8Fe0.2 oxide coated interconnect, the electrochemical performance of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode is improved. Only 1.54 atomic percentage of Cr is detected on the surface of the Sm0.5Sr0.5Co0.2Fe0.8O3 cathode while no Cr is detected 0.66 μm or more into the cathode. CoxFe1-x oxide coatings are promising candidates for solid oxide fuel cell interconnects with the advantage of using existing cathode species for compatibility and performance enhancement.
Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.
Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi
2014-05-27
Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.
A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors
NASA Astrophysics Data System (ADS)
Tang, W.; Hou, Y. Y.; Wang, X. J.; Bai, Y.; Zhu, Y. S.; Sun, H.; Yue, Y. B.; Wu, Y. P.; Zhu, K.; Holze, R.
2012-01-01
A hybrid of MnO2-nanowires and MWCNTs to be used as cathode in a supercapacitor with good electrochemical performance was prepared by a facile hydrothermal method. In this hybrid the α-MnO2 nanowires are well entangled with MWCNTs. The MWCNTs provide a network for fast electron transport whereas MnO2 nanowires show a fast redox response. Since gain/loss of both electrons and ions can be realized very rapidly at the same time, the hybrid has an excellent rate capability and delivers an energy density of 17.8 Wh kg-1 at 400 W kg-1, which is maintained almost constant even at 3340 W kg-1 in 0.5 M Li2SO4 aqueous electrolyte. The cycling behavior is very good even in the presence of oxygen. The data present great promise for the hybrid as a practical cathode material for aqueous supercapacitor.
Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai
2016-02-10
Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.
Guo, Liming; Shu, Ting; Li, Zhiqiang; Ju, Jinchuan; Fang, Xiaoting
2017-02-01
Among high power microwave (HPM) generators without guiding magnetic field, Cerenkov-type oscillator is expected to achieve a relatively high efficiency, which has already been realized in X-band in our previous simulation work. This paper presents the preliminary experimental investigations into an X-band Cerenkov-type HPM oscillator without guiding magnetic field. Based on the previous simulation structure, some modifications regarding diode structure were made. Different cathode structures and materials were tested in the experiments. By using a ring-shaped graphite cathode, microwave of about one hundred megawatt level was generated with a pure center frequency of 9.14 GHz, and an efficiency of about 1.3%. As analyzed in the paper, some practical issues reduce the efficiency in experiments, such as real features of the electron beam, probable breakdown regions on the cathode surface which can damage the diode, and so forth.
Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun
2015-03-02
Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.
Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun
2015-01-01
Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910
Kim, Jeonghyun; Song, Taeseup; Park, Hyunjung; Yuh, Junhan; Paik, Ungyu
2014-10-01
The Li2MnSiO4 is a promising candidate as a cathode for lithium ion batteries due to its large theoretical capacity of 330 mA h g(-1) and high thermal stability. However, the problems related to low electronic conductivity and large irreversible capacity at the first cycle limits its practical use as a Li-ion cathode material. We have developed a carbon coated Li2MnSiO4-graphene composite electrode to overcome these problems. Our designed electrode exhibits high reversible capacity of 301 mA h g(-1), with a high initial coulombic efficiency, and a discharge capacity at current rate of 0.5 C, that is double value of carbon coated Li2MnSiO4-carbon black composite electrode. These significant improvements are attributed to fast electron transport along the graphene sheet.
Light Aircraft Piston Engine Carburetor Ice Detector/Warning Device Sensitivity/Effectiveness.
1982-06-01
10kHz max), converting raw data into engineering units as established by operator, displaying eight different parameters on cathode ray tube (CRT) and...TN No. 1790, February 1949. f. icing - Protection Requirements for Reciprocating Engine Induction Systems, NCA Technical Report No. 982, June 1949. q
DOT National Transportation Integrated Search
1999-07-01
Many of the major highway crossings over coastal waters in the Hampton area of Virginia are supported by prestressed concrete piles, some of which are showing signs of reinforcement corrosion. Grout jacketing alone is an inadequate protection against...
2011-12-01
UCMR) data Hockley County, TX (s)Improper Cathodic Protection Elevated Storage Tank 32 TX Lone Star Army Ammunition Plant Texarkana ...River Army Depot Texarkana , TX Propellant Handling Monitoring Well 80 UT Alliant Tech Systems Magna, UT Rocket Manufacturing Public Water Supply Well
Chemical overcharge protection of lithium and lithium-ion secondary batteries
Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.
1999-01-01
This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).
Chemical overcharge protection of lithium and lithium-ion secondary batteries
Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.
1999-01-12
This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.
Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Ya; Yu, Xi -Qian; Yin, Ya -Xia
Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less
Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries
You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...
2014-10-27
Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less
Zhong, Lei; Yang, Kai; Guan, Ruiteng; Wang, Liangbin; Wang, Shuanjin; Han, Dongmei; Xiao, Min; Meng, Yuezhong
2017-12-20
Rechargeable lithium-sulfur (Li-S) batteries have been expected for new-generation electrical energy storages, which are attributed to their high theoretical energy density, cost effectiveness, and eco-friendliness. But Li-S batteries still have some problems for practical application, such as low sulfur utilization and dissatisfactory capacity retention. Herein, we designed and fabricated a foldable and compositionally heterogeneous three-dimensional sulfur cathode with integrated sandwich structure. The electrical conductivity of the cathode is facilitated by three different dimension carbons, in which short-distance and long-distance pathways for electrons are provided by zero-dimensional ketjen black (KB), one-dimensional activated carbon fiber (ACF) and two-dimensional graphene (G). The resultant three-dimensional sulfur cathode (T-AKG/KB@S) with an areal sulfur loading of 2 mg cm -2 exhibits a high initial specific capacity, superior rate performance and a reversible discharge capacity of up to 726 mAh g -1 at 3.6 mA cm -2 with an inappreciable capacity fading rate of 0.0044% per cycle after 500 cycles. Moreover, the cathode with a high areal sulfur loading of 8 mg cm -2 also delivers a reversible discharge capacity of 938 mAh g -1 at 0.71 mA cm -2 with a capacity fading rate of 0.15% per cycle and a Coulombic efficiency of almost 100% after 50 cycles.
He, Jiarui; Chen, Yuanfu; Lv, Weiqiang; Wen, Kechun; Xu, Chen; Zhang, Wanli; Li, Yanrong; Qin, Wu; He, Weidong
2016-12-27
Owing to the high theoretical specific capacity (1166 mAh g -1 ), lithium sulfide (Li 2 S) has been considered as a promising cathode material for Li-S batteries. However, the polysulfide dissolution and low electronic conductivity of Li 2 S limit its further application in next-generation Li-S batteries. In this report, a nanoporous Li 2 S@C-Co-N cathode is synthesized by liquid infiltration-evaporation of ultrafine Li 2 S nanoparticles into graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) derived from metal-organic frameworks. The obtained Li 2 S@C-Co-N architecture remarkably immobilizes Li 2 S within the cathode structure through physical and chemical molecular interactions. Owing to the synergistic interactions between C-Co-N and Li 2 S nanoparticles, the Li 2 S@C-Co-N composite delivers a reversible capacity of 1155.3 (99.1% of theoretical value) at the initial cycle and 929.6 mAh g -1 after 300 cycles, with nearly 100% Coulombic efficiency and a capacity fading of 0.06% per cycle. It exhibits excellent rate capacities of 950.6, 898.8, and 604.1 mAh g -1 at 1C, 2C, and 4C, respectively. Such a cathode structure is promising for practical applications in high-performance Li-S batteries.
Luo, Xiaohu; Zhong, Jiawen; Zhou, Qiulan; Du, Shuo; Yuan, Song; Liu, Yali
2018-05-30
The design and preparation of an excellent corrosion protection coating is still a grand challenge and is essential for large-scale practical application. Herein, a novel cationic reduced graphene oxide (denoted as RGO-ID + )-based epoxy coating was fabricated for corrosion protection. RGO-ID + was synthesized by in situ synthesis and salification reaction, which is stable dispersion in water and epoxy latex, and the self-aligned RGO-ID + -reinforced cathodic electrophoretic epoxy nanocomposite coating (denoted as RGO-ID + coating) at the surface of metal was prepared by electrodeposition. The self-alignment of RGO-ID + in the coatings is mainly attributed to the electric field force. The significantly enhanced anticorrosion performance of RGO-ID + coating is proved by a series of electrochemical measurements in different concentrated NaCl solutions and salt spray tests. This superior anticorrosion property benefits from the self-aligned RGO-ID + nanosheets and the quaternary-N groups present in the RGO-ID + nanocomposite coating. Interestingly, the RGO-ID + also exhibits a high antibacterial activity toward Escherichia coli with 83.4 ± 1.3% antibacterial efficiency, which is attributed to the synergetic effects of RGO-ID + and the electrostatic attraction and hydrogen bonding between RGO-ID + and E. coli. This work offers new opportunities for the successful development of effective corrosion protection and self-antibacterial coatings.
2014-09-01
corrosion: coatings and cathodic protection (CP). Coatings consist of paints, epoxies, enamels , metalizing, and other coatings. CP is a chem- ical means...environmental factors such as water quality and resistivity. One of the major problems associated with lock gates is structural cracking in the...One of the problems described by Mr. Davis is fatigue crack growth resulting from the poor welding usually associated with stress risers and
Sun, Li; Wang, Datao; Luo, Yufeng; Wang, Ke; Kong, Weibang; Wu, Yang; Zhang, Lina; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan
2016-01-26
Sulfur-porous carbon nanotube (S-PCNT) composites are proposed as cathode materials for advanced lithium-sulfur (Li-S) batteries. Abundant mesopores are introduced to superaligned carbon nanotubes (SACNTs) through controlled oxidation in air to obtain porous carbon nanotubes (PCNTs). Compared to original SACNTs, improved dispersive behavior, enhanced conductivity, and higher mechanical strength are demonstrated in PCNTs. Meanwhile, high flexibility and sufficient intertube interaction are preserved in PCNTs to support binder-free and flexible electrodes. Additionally, several attractive features, including high surface area and abundant adsorption points on tubes, are introduced, which allow high sulfur loading, provide dual protection to sulfur cathode materials, and consequently alleviate the capacity fade especially during slow charge/discharge processes. When used as cathodes for Li-S batteries, a high sulfur loading of 60 wt % is achieved, with excellent reversible capacities of 866 and 526 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at a slow charge/discharge rate of 0.1C, revealing efficient suppression of polysulfide dissolution. Even with a high sulfur loading of 70 wt %, the S-PCNT composite maintains capacities of 760 and 528 mAh g(-1) based on the weights of sulfur and electrode, respectively, after 100 cycles at 0.1C, outperforming the current state-of-the-art sulfur cathodes. Improved high-rate capability is also delivered by the S-PCNT composites, revealing their potentials as high-performance carbon-sulfur composite cathodes for Li-S batteries.
Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries.
Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo
2016-09-07
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications.
Ju, Yanming; Meng, Yuan; Wei, Yingjin; Bian, Xiaofei; Pang, Qiang; Gao, Yu; Du, Fei; Liu, Bingbing; Chen, Gang
2016-12-12
The demand for large-scale and safe energy storage is increasing rapidly due to the strong push for smartphones and electric vehicles. As a result, Li + /Mg 2+ hybrid-ion batteries (LMIBs) combining a dendrite-free deposition of Mg anode and Li + intercalation cathode have attracted considerable attention. Here, a LMIB with hydrothermal-prepared MoS 2 nano flowers as cathode material was prepared. The battery showed remarkable electrochemical properties with a large discharge capacity (243 mAh g -1 at the 0.1 C rate), excellent rate capability (108 mAh g -1 at the 5 C rate), and long cycle life (87.2 % capacity retention after 2300 cycles). Electrochemical analysis showed that the reactions occurring in the battery cell involved Mg stripping/plating at the anode side and Li + intercalation at the cathode side with a small contribution from Mg 2+ adsorption. The excellent electrochemical performance and extremely safe cell system show promise for its use in practical applications. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries
Jin, Lu; Huang, Xiaopeng; Zeng, Guobo; Wu, Hua; Morbidelli, Massimo
2016-01-01
As a promising cathode inheritor for lithium-ion batteries, the sulfur cathode exhibits very high theoretical volumetric capacity and energy density. In its practical applications, one has to solve the insulating properties of sulfur and the shuttle effect that deteriorates cycling stability. The state-of-the-art approaches are to confine sulfur in a conductive matrix. In this work, we utilize monodisperse polystyrene nanoparticles as sacrificial templates to build polypyrrole (PPy) framework of an inverse opal structure to accommodate (encapsulate) sulfur through a combined in situ polymerization and melting infiltration approach. In the design, the interconnected conductive PPy provides open channels for sulfur infiltration, improves electrical and ionic conductivity of the embedded sulfur, and reduces polysulfide dissolution in the electrolyte through physical and chemical adsorption. The flexibility of PPy and partial filling of the inverse opal structure endure possible expansion and deformation during long-term cycling. It is found that the long cycling stability of the cells using the prepared material as the cathode can be substantially improved. The result demonstrates the possibility of constructing a pure conductive polymer framework to accommodate insulate sulfur in ion battery applications. PMID:27600885
Tian, Shichao; Li, Yibing; Zeng, Huabin; Guan, Wei; Wang, Yan; Zhao, Xu
2016-11-15
Cyanide is widely present in electroplating wastewater or metallurgical effluents. In the present study, the electrochemical destruction of cyanide with various anode and cathode compositions under alkaline conditions was investigated. The results indicated that the electrochemical system using RuO2/Ti as anode and activated carbon fiber (ACF) as cathode in the presence of sodium chloride was efficient for the cyanide removal. In this system, in situ generation of HClO by anodic oxidation of Cl(-) at RuO2/Ti anode occurred with the H2O2 generation by O2 reduction at ACF cathode. As confirmed by the electron spin resonance technique, the reaction between HClO and H2O2 led to the generation of singlet oxygen, which was responsible for the cyanide removal. Further experiment indicated that the cyanide removal efficiency increased with the increase of the current density or the sodium chloride concentration. Cyanate was identified as main product in the system. Besides, the system exhibited good stability for the cyanide removal, which was beneficial to its practical application. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Staniszewska, Agnieszka; Jastrzębska, Magdalena; Ziemiński, Krzysztof
2017-10-01
This paper presents investigation results of the influence of gas microbes on the biocorrosion rate of the materials used for gas pipelines construction in the Lodz Province. Samples of two types of carbon steel and cast iron were stored in the laboratory pipeline model reflecting the real conditions of working natural gas pipelines were. In the next step the influence of cathodic protection with parameters recommended for protection of underground structures was tested. Analyses of biological corrosion products generated on the test surface were carried out using a scanning electron microscope with an X-ray analyzer. The level of ATP was measured to confirm presence of the adsorbed microorganisms on the observed structures. Corrosion rates were determined by gravimetric methods. In the course of the study it was revealed that the rate of biocorrosion of steel is lower than that for cast iron. Our results also proved that the weight corrosion rate depends on the number of adhered microorganisms. In addition, it has been found that application of the carbon steel cathodic protection decreases its weight corrosion rate. The information obtained will help to increase the knowledge on the rate of biological corrosion causing losses/pits inside gas pipline.
Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Yoon, Wonseok; Huang, Xinyu; Fazzino, Paul; Reifsnider, Kenneth L.; Akkaoui, Michael A.
Metallic bipolar plates for polymer electrolyte membrane (PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance, good mechanical robustness, low material and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrates by electroplating and physical vapor deposition (PVD) methods. The coatings are screened with an electrochemical polarization test for corrosion resistance; then the contact resistance test was performed on selected coatings. The coating investigated include Gold with various thicknesses (2 nm, 10 nm, and 1 μm), Titanium, Zirconium, Zirconium Nitride (ZrN), Zirconium Niobium (ZrNb), and Zirconium Nitride with a Gold top layer (ZrNAu). The substrates include three types of stainless steel: 304, 310, and 316. The results show that Zr-coated samples satisfy the DOE target for corrosion resistance at both anode and cathode sides in typical PEM fuel cell environments in the short-term, but they do not meet the DOE contact resistance goal. Very thin gold coating (2 nm) can significantly decrease the electrical contact resistance, however a relatively thick gold coating (>10 nm) with our deposition method is necessary for adequate corrosion resistance, particularly for the cathode side of the bipolar plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yan; Yu, Jianqiang, E-mail: jianqyu@qdu.edu.cn; Sun, Kai
Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel bymore » In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.« less
Hybrid-PIC Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster
NASA Technical Reports Server (NTRS)
Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.
2017-01-01
Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for AEPS thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
49 CFR 192.941 - What is a low stress reassessment?
Code of Federal Regulations, 2014 CFR
2014-10-01
... Management § 192.941 What is a low stress reassessment? (a) General. An operator of a transmission line that... 49 Transportation 3 2014-10-01 2014-10-01 false What is a low stress reassessment? 192.941 Section... actions to address external corrosion on the low stress covered segment. (1) Cathodically protected pipe...
49 CFR 192.941 - What is a low stress reassessment?
Code of Federal Regulations, 2011 CFR
2011-10-01
... Management § 192.941 What is a low stress reassessment? (a) General. An operator of a transmission line that... 49 Transportation 3 2011-10-01 2011-10-01 false What is a low stress reassessment? 192.941 Section... actions to address external corrosion on the low stress covered segment. (1) Cathodically protected pipe...
49 CFR 192.941 - What is a low stress reassessment?
Code of Federal Regulations, 2012 CFR
2012-10-01
... Management § 192.941 What is a low stress reassessment? (a) General. An operator of a transmission line that... 49 Transportation 3 2012-10-01 2012-10-01 false What is a low stress reassessment? 192.941 Section... actions to address external corrosion on the low stress covered segment. (1) Cathodically protected pipe...
49 CFR 192.941 - What is a low stress reassessment?
Code of Federal Regulations, 2013 CFR
2013-10-01
... Management § 192.941 What is a low stress reassessment? (a) General. An operator of a transmission line that... 49 Transportation 3 2013-10-01 2013-10-01 false What is a low stress reassessment? 192.941 Section... actions to address external corrosion on the low stress covered segment. (1) Cathodically protected pipe...
30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF...., cathodic protection systems; jacket design; pile foundations; drilling, production, and pipeline risers and... design or analysis of the platform. Examples of relevant data include information on waves, wind, current...
Isolation of Protective Antigen from Anthrax Toxin by Preparative Isotachophoresis
1982-06-14
caosule of polymerized D-olutamic acid which inhibits phago- cytosis and allows the bacillus to establish an infectious focus and elaborate a tripartite...The terminating buffer Tris-c- aminocaproate (Tris-EACA), pH 8.4, was used in the upper electrode (cathode) chamber and in the column. fteen ml of toxin
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This military-developed text contains the final section of a four-part course to train environmental support specialists. Covered in the individual course blocks are maintenance of water and waste processing system components (external corrosion control, cathodic protection, drive equipment, pipelines and valves, meters and recorders, chemical…
Improvements in safety testing of lithium cells
NASA Astrophysics Data System (ADS)
Stinebring, R. C.; Krehl, P.
1985-07-01
A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.
Improvements in safety testing of lithium cells
NASA Technical Reports Server (NTRS)
Stinebring, R. C.; Krehl, P.
1985-01-01
A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.
NASA Astrophysics Data System (ADS)
Kim, Yong-Sang; Ko, Sang-Jin; Lee, Sangkyu; Kim, Jung-Gu
2018-03-01
An interpretation of the relation between the electric field and the applied current for cathodic protection is investigated using a boundary element method simulation. Also, a conductivity-difference environment is set for the interface influence. The variation of the potential distribution is increased with the increase of the applied current and the conductivity difference due to the rejection of the current at the interface. In the case of the electric field, the tendencies of the increasing rate and the applied currents are similar, but the interface influence is different according to the directional component and field type (decrease of E z and increases of E x and E y) due to the directional difference between the electric fields. Also, the change tendencies of the electric fields versus the applied current plots are affected by the polarization curve tendency regarding the polarization type (activation and concentration polarizations in the oxygen-reduction and hydrogen-reduction reactions). This study shows that the underwater electric signature is determined by the polarization behavior of the materials.
Boundary element analysis of corrosion problems for pumps and pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyasaka, M.; Amaya, K.; Kishimoto, K.
1995-12-31
Three-dimensional (3D) and axi-symmetric boundary element methods (BEM) were developed to quantitatively estimate cathodic protection and macro-cell corrosion. For 3D analysis, a multiple-region method (MRM) was developed in addition to a single-region method (SRM). The validity and usefulness of the BEMs were demonstrated by comparing numerical results with experimental data from galvanic corrosion systems of a cylindrical model and a seawater pipe, and from a cathodic protection system of an actual seawater pump. It was shown that a highly accurate analysis could be performed for fluid machines handling seawater with complex 3D fields (e.g. seawater pump) by taking account ofmore » flow rate and time dependencies of polarization curve. Compared to the 3D BEM, the axi-symmetric BEM permitted large reductions in numbers of elements and nodes, which greatly simplified analysis of axi-symmetric fields such as pipes. Computational accuracy and CPU time were compared between analyses using two approximation methods for polarization curves: a logarithmic-approximation method and a linear-approximation method.« less
Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E
2014-11-01
Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.
Direct electron injection into an oxide insulator using a cathode buffer layer
Lee, Eungkyu; Lee, Jinwon; Kim, Ji-Hoon; Lim, Keon-Hee; Seok Byun, Jun; Ko, Jieun; Dong Kim, Young; Park, Yongsup; Kim, Youn Sang
2015-01-01
Injecting charge carriers into the mobile bands of an inorganic oxide insulator (for example, SiO2, HfO2) is a highly complicated task, or even impossible without external energy sources such as photons. This is because oxide insulators exhibit very low electron affinity and high ionization energy levels. Here we show that a ZnO layer acting as a cathode buffer layer permits direct electron injection into the conduction bands of various oxide insulators (for example, SiO2, Ta2O5, HfO2, Al2O3) from a metal cathode. Studies of current–voltage characteristics reveal that the current ohmically passes through the ZnO/oxide-insulator interface. Our findings suggests that the oxide insulators could be used for simply fabricated, transparent and highly stable electronic valves. With this strategy, we demonstrate an electrostatic discharging diode that uses 100-nm SiO2 as an active layer exhibiting an on/off ratio of ∼107, and protects the ZnO thin-film transistors from high electrical stresses. PMID:25864642
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel
NASA Astrophysics Data System (ADS)
Seo, Bosung; Song, Kuk Hyun; Park, Kwangsuk
2018-05-01
Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.
Wang, Xinran; Gu, Wentian; Lee, Jung Tae; Nitta, Naoki; Benson, Jim; Magasinski, Alexandre; Schauer, Mark W; Yushin, Gleb
2015-10-01
Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near-theoretical, 550mAhgCoF2-1) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx -based materials in batteries with load-bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g(-1) and over 50% after 10 000 cycles at the current density of 1000 mA g(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Hao; Ge, Wujie; Li, Wen; Wang, Feng; Liu, Wenjing; Qu, Mei-Zhen; Peng, Gongchang
2016-07-20
Dealing with the water molecule on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode and hydrogen fluoride in the electrolyte is one of the most difficult challenges in Li-ion battery research. In this paper, the surface polymerization of tetraethyl orthosilicate (TEOS) on NCM to generate ethoxy-functional polysiloxane (EPS) wrapped NCM (E-NCM) cathode under mild conditions and without any additions is utilized to solve this intractable problem. The differential scanning calorimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy results show that the formed amorphous coating can provide a protective shell to improve the NCM thermal stability, suppress the thickening of the solid electrolyte interphase (SEI) layer, and scavenge HF in the electrolyte. The E-NCM composite with 2 mol % EPS delivers a high discharge capacity retention of 84.9% after 100 cycles at a 1 C discharge rate in the 2.8-4.3 V potential range at 55 °C. Moreover, electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature. Therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery.
A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries.
Bhargav, Amruth; Bell, Michaela Elaine; Karty, Jonathan; Cui, Yi; Fu, Yongzhu
2018-06-27
Sulfur-based cathodes are promising to enable high-energy-density lithium-sulfur batteries; however, elemental sulfur as active material faces several challenges, including undesirable volume change (∼80%) when completely reduced and high dependence on liquid electrolyte wherein an electrolyte/sulfur ratio >10 μL mg -1 is required for high material utilization. These limit the attainable energy densities of these batteries. Herein, we introduce a new class of phenyl polysulfides C 6 H 5 S x C 6 H 5 (4 ≤ x ≤ 6) as liquid cathode materials synthesized in a facile and scalable route to mitigate these setbacks. These polysulfides possess sufficiently high theoretical specific capacities, specific energies, and energy densities. Spectroscopic techniques verify their chemical composition and computation shows that the volume change when reduced is about 37%. Lithium half-cell testing shows that phenyl hexasulfide (C 6 H 5 S 6 C 6 H 5 ) can provide a specific capacity of 650 mAh g -1 and capacity retention of 80% through 500 cycles at 1 C rate along with superlative performance up to 10 C. Furthermore, 1302 Wh kg -1 and 1720 Wh L -1 are achievable at a low electrolyte/active material ratio, i.e., 3 μL mg -1 . This work adds new members to the cathode family for Li-S batteries, reduces the gap between the theoretical and practical energy densities of batteries, and provides a new direction for the development of alternative high-capacity cathode materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgos, Juan C.; Balbuena, Perla B.; Montoya, Javier A.
We report lithium-sulfur batteries are promising non-conventional sources of energy due to their high theoretical capacity and energy density. However, the successful implementation of this technology has been hindered due to the low cycling life of the battery, caused by long chain polysulfide shuttling between electrodes during charge/discharge, among other issues. Quantum chemical calculations are used to study the reactivity of sulfur in the porous cathode of lithium-sulfur batteries, and the retention capabilities of porous carbon materials to avoid long chain polysulfide diffusion. Ab initio molecular dynamics (AIMD) simulations are initially employed to evaluate sulfur reduction mechanisms and kinetics, andmore » to identify main reduction products. A porous cathode architecture is modeled through parallel graphene layers with elemental sulfur rings in the interlayer, and filled with 1,3-dioxolane (DOL) organic solvent and lithium ions. AIMD simulations showed fast reduction of elemental sulfur and formation of short chain polysulfide. Furthermore, the effect of dangling carbon bonds of graphene on the reactivity of the cathode was confirmed. Adsorption calculations through density functional theory (DFT) proved the capacity of small pores to retain long polysulfide chains. An analysis of the effect of the specific current on the chemical behavior of sulfur reveals an influence of current on the amount of sulfur utilization and practical specific capacity of the battery. In conclusion, this work illustrates the physical-chemical behavior of the sulfur/polysulfide in the porous cathode system at atomistic level.« less
Burgos, Juan C.; Balbuena, Perla B.; Montoya, Javier A.
2017-08-17
We report lithium-sulfur batteries are promising non-conventional sources of energy due to their high theoretical capacity and energy density. However, the successful implementation of this technology has been hindered due to the low cycling life of the battery, caused by long chain polysulfide shuttling between electrodes during charge/discharge, among other issues. Quantum chemical calculations are used to study the reactivity of sulfur in the porous cathode of lithium-sulfur batteries, and the retention capabilities of porous carbon materials to avoid long chain polysulfide diffusion. Ab initio molecular dynamics (AIMD) simulations are initially employed to evaluate sulfur reduction mechanisms and kinetics, andmore » to identify main reduction products. A porous cathode architecture is modeled through parallel graphene layers with elemental sulfur rings in the interlayer, and filled with 1,3-dioxolane (DOL) organic solvent and lithium ions. AIMD simulations showed fast reduction of elemental sulfur and formation of short chain polysulfide. Furthermore, the effect of dangling carbon bonds of graphene on the reactivity of the cathode was confirmed. Adsorption calculations through density functional theory (DFT) proved the capacity of small pores to retain long polysulfide chains. An analysis of the effect of the specific current on the chemical behavior of sulfur reveals an influence of current on the amount of sulfur utilization and practical specific capacity of the battery. In conclusion, this work illustrates the physical-chemical behavior of the sulfur/polysulfide in the porous cathode system at atomistic level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Cui; F.J. Presuel-Moreno; R.G. Kelly
2005-10-13
The ability of a SS316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, I{sub net}, supplied at the repassivation potential E{sub rp} (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl{sup -}]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (i{sub o,c}) and Tafel slope ({beta}{sub c}) of oxygen reduction, the anodic passive current density (i{submore » p}) (on the cathodic surface), and E{sub rp} were studied as well using three-level full factorial designs of [Cl{sup -}] and Lc with a fixed WL of 25 {micro}m. The study found that all the three parameters WL, [Cl{sup -}] and Lc as well as the interactions of Lc x WL and Lc x [Cl{sup -}] had significant impact on I{sub net}. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on I{sub net} were found upon varying either i{sub o,c}, {beta}{sub c}, or E{sub rp}, whereas i{sub p} in the studied range was found to have little impact. It was observed that I{sub net} asymptotically approached maximum values (I{sub max}) when Lc increased to critical minimum values. I{sub max} can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.« less
Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun
2016-12-01
SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.
Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong
2015-06-17
Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less
Ternary metal fluorides as high-energy cathodes with low cycling hysteresis
Wang, Feng; Kim, Sung-Wook; Seo, Dong-Hwa; Kang, Kisuk; Wang, Liping; Su, Dong; Vajo, John J.; Wang, John; Graetz, Jason
2015-01-01
Transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2=Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. Although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries. PMID:25808876
Kalhoff, Julian; Bresser, Dominic; Bolloli, Marco; Alloin, Fannie; Sanchez, Jean-Yves; Passerini, Stefano
2014-10-01
In this Full Paper we show that the use of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as conducting salt in commercial lithium-ion batteries is made possible by introducing fluorinated linear carbonates as electrolyte (co)solvents. Electrolyte compositions based on LiTFSI and fluorinated carbonates were characterized regarding their ionic conductivity and electrochemical stability towards oxidation and with respect to their ability to form a protective film of aluminum fluoride on the aluminum surface. Moreover, the investigation of the electrochemical performance of standard lithium-ion anodes (graphite) and cathodes (Li[Ni1/3 Mn1/3 Co1/3 ]O2 , NMC) in half-cell configuration showed stable cycle life and good rate capability. Finally, an NMC/graphite full-cell confirmed the suitability of such electrolyte compositions for practical lithium-ion cells, thus enabling the complete replacement of LiPF6 and allowing the realization of substantially safer lithium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
..., an instrument building, cathodic protection for all piping and equipment. Natural also states that it... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-431-000] Natural Gas... that on May 14, 2010, Natural Gas Pipeline Company of America LLC (Natural), 3250 Lacey Road, Suite 700...
Fan, Chao-Ying; Xiao, Pin; Li, Huan-Huan; Wang, Hai-Feng; Zhang, Lin-Lin; Sun, Hai-Zhu; Wu, Xing-Long; Xie, Hai-Ming; Zhang, Jing-Ping
2015-12-23
In this work, the chemical interaction of cathode and lithium polysulfides (LiPSs), which is a more targeted approach for completely preventing the shuttle of LiPSs in lithium-sulfur (Li-S) batteries, has been established on the electrode level. Through simply posttreating the ordinary sulfur cathode in atmospheric environment just for several minutes, the Au nanoparticles (Au NPs) were well-decorated on/in the surface and pores of the electrode composed of commercial acetylene black (CB) and sulfur powder. The Au NPs can covalently stabilize the sulfur/LiPSs, which is advantageous for restricting the shuttle effect. Moreover, the LiPSs reservoirs of Au NPs with high conductivity can significantly control the deposition of the trapped LiPSs, contributing to the uniform distribution of sulfur species upon charging/discharging. The slight modification of the cathode with <3 wt % Au NPs has favorably prospered the cycle capacity and stability of Li-S batteries. Moreover, this cathode exhibited an excellent anti-self-discharge ability. The slight decoration for the ordinary electrode, which can be easily accessed in the industrial process, provides a facile strategy for improving the performance of commercial carbon-based Li-S batteries toward practical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ji; Byrd, Ian; Jin, Congrui
V 2O 5 is deemed as one of the most promising cathode materials for next-generation high-capacity lithium-ion batteries (LIBs). It possesses a theoretical capacity of 294 mAh g -1, which is much higher than conventional cathodes. But, there are many issues to be solved before its practical use, including poor cycle life and unsatisfactory rate performance, mainly owing to its low electronic conductivity and ionic diffusivity, as well as structural instability. Our work reports three types of V 2O 5 asymmetric membranes synthesized by using an adapted reverse-osmosis membrane technology combined with sol-gel chemistry, aiming to stabilize the cyclability andmore » improve the rate performance. V 2O 5 asymmetric membrane cathodes prepared using graphene as the conductive additives have a specific capacity of approximately 160 mAh g -1 at a current density of 100 mA g -1 with no capacity degradation after 380 cycles. It is also found that the annealing temperature and the choice of conductive additives can affect the morphology of V 2O 5 nanoparticles and the overall electrode cyclability. Furthermore, we find that a lower annealing temperature (300 vs. 400 °C) and the addition of graphene are beneficial to long-term cycling performance.« less
Wu, Ji; Byrd, Ian; Jin, Congrui; ...
2017-02-27
V 2O 5 is deemed as one of the most promising cathode materials for next-generation high-capacity lithium-ion batteries (LIBs). It possesses a theoretical capacity of 294 mAh g -1, which is much higher than conventional cathodes. But, there are many issues to be solved before its practical use, including poor cycle life and unsatisfactory rate performance, mainly owing to its low electronic conductivity and ionic diffusivity, as well as structural instability. Our work reports three types of V 2O 5 asymmetric membranes synthesized by using an adapted reverse-osmosis membrane technology combined with sol-gel chemistry, aiming to stabilize the cyclability andmore » improve the rate performance. V 2O 5 asymmetric membrane cathodes prepared using graphene as the conductive additives have a specific capacity of approximately 160 mAh g -1 at a current density of 100 mA g -1 with no capacity degradation after 380 cycles. It is also found that the annealing temperature and the choice of conductive additives can affect the morphology of V 2O 5 nanoparticles and the overall electrode cyclability. Furthermore, we find that a lower annealing temperature (300 vs. 400 °C) and the addition of graphene are beneficial to long-term cycling performance.« less
NASA Technical Reports Server (NTRS)
Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.
2018-01-01
Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, T. L.; DiMonte, N.; Nassiri, A.
A new S-band Photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the guns internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results ofmore » RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.« less
NASA Astrophysics Data System (ADS)
Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.
2018-04-01
To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
2000-01-01
A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular cathode/electron gun assembly consists of four subassemblies the cathode, the focus electrode, the header (including the electrical feedthroughs), and the gun envelope (including the anode) a diagram of which is shown. The modular construction offers a number of significant advantages, including flexibility of design, interchangeability of parts, and a drop-in final assembly procedure for quick and accurate alignment. The gun can accommodate cathodes ranging in size from 0.050 to 0.250-in. in diameter and is applicable to TWT's over a broad range of sizes and operating parameters, requiring the substitution of only a few parts: that is, the cathode, focus electrode, and anode. The die-pressed cathode pellets can be made with either flat or concave (Pierce gun design) emitting surfaces. The gun can be either gridded (pulse operation) or ungridded (continuous operation). Important factors contributing to low cost are the greater use of CRT materials and parts, the standardization of processes (welding and mechanical capture), and tooling amenable to automated production. Examples are the use of simple shapes, drawn or stamped metal parts, and parts joined by welding or mechanical capture. Feasibility was successfully demonstrated in the retrofit and testing of a commercial Kaband (22-GHz) TWT. The modular cathode/electron gun assembly was computer modeled to replicate the performance of the original electron gun and fabricated largely from existing CRT parts. Significant test results included demonstration of low heater power (1.5-W, 1010 C brightness temperature for a 0.085-in.-diameter cathode), mechanical ruggedness (100g shock and vibration tests in accordance with military specifications (MIL specs)), and a very fast warmup. The results of these tests indicate that the low-cost CRT manufacturing approach can be used without sacrificing performance and reliability.
Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)
2002-01-01
The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.
The Au Cathode in the System Li2CO3-CO2-CO at 800 to 900 C
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H.
1991-01-01
Gold is one of several metals being evaluated at NASA Lewis Research Center as positive electrode catalysts for an alkali metal/molten alkali metal carbonate/carbon dioxide electrochemical cell. Such a cell is proposed for CO2-rich planetary atmospheres such as those of Mars and Venus. Its application could be as a primary power supply, as a secondary power supply recharged either 'chemically' by replenishment of the alkali metal or electrochemically from a central station power source, or as a converter of carbon dioxide to oxygen via a complete electrochemical cycle. For the work being reported, lithium was assumed to be the alkali metal of choice for the negative electrode of the cell, and therefore molten lithium carbonate was the electrolyte used in the Au electrode experiments. Cathodic linear sweep voltammetry (LSV) was the primary analytical technique for evaluating the performance of the Au cathode. interest comprised the cell temperature and the total pressure and composition of the reactant gas. In the absence of operational difficulties, the effect of bubbling the reactant gas through the melt was also determined. On the basis of the variation of electrode performance with changes in these parameters, inferences have been made concerning the electrochemical and chemical processes at and near the electrode. The results of post-test micrographic analyses of the Au cathode are also presented. An attempt is then made to project from the experimental results to some relevant conclusions pertaining to a gold cathode in a practical alkali metal - carbon dioxide cell.
Cathodic Corrosion of a Bulk Wire to Nonaggregated Functional Nanocrystals and Nanoalloys
2018-01-01
A key enabling step in leveraging the properties of nanoparticles (NPs) is to explore new, simple, controllable, and scalable nanotechnologies for their syntheses. Among “wet” methods, cathodic corrosion has been used to synthesize catalytic aggregates with some control over their size and preferential faceting. Here, we report on a modification of the cathodic corrosion method for producing a range of nonaggregated nanocrystals (Pt, Pd, Au, Ag, Cu, Rh, Ir, and Ni) and nanoalloys (Pt50Au50, Pd50Au50, and AgxAu100–x) with potential for scaling up the production rate. The method employs poly(vinylpyrrolidone) (PVP) as a stabilizer in an electrolyte solution containing nonreducible cations (Na+, Ca2+), and cathodic corrosion of the corresponding wires takes place in the electrolyte under ultrasonication. The ultrasonication not only promotes particle–PVP interactions (enhancing NP dispersion and diluting locally high NP concentration) but also increases the production rate by a factor of ca. 5. Further increase in the production rate can be achieved through parallelization of electrodes to construct comb electrodes. With respect to applications, carbon-supported Pt NPs prepared by the new method exhibit catalytic activity and durability for methanol oxidation comparable or better than the commercial benchmark catalyst. A variety of AgxAu100–x nanoalloys are characterized by ultraviolet–visible absorption spectroscopy and high-resolution transmission electron microscopy. The protocol for NP synthesis by cathodic corrosion should be a step toward its further use in academic research as well as in its practical upscaling. PMID:29446912
Comments on cathode contaminants and the LBNL test stand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniosek, F.; Baca, D.; Greenway, W.
This report collects information on cathode contaminants we have gathered in the process of operating the LBNL DARHT cathode test stand. Information on contaminants is compiled from several sources. The attachment, ''Practical Aspects of Modern Dispenser Cathodes'', is from Heat Wave Corp. (TB-134) and was originally published in Microwave Journal, September 1979. Cathode contamination depends on both material choices and residual gases. Table 1 of TB-134 lists materials that can poison dispenser cathodes. These include reactive residual gases or vapors such as oxygen, water vapor, benzene, chlorine, fluorine, sulfur, silicon, and most metals other than molybdenum, rhenium, tungsten, and copper.more » The metals interact with the cathode surface through their vapor pressure. A paper by Nexsen and Turner, J. Appl. Phys. 68, 298-303 (1990) shows the threshold effects of some common residual gases or vapors on cathode performance. The book by Walter H. Kohl, Handbook of Materials and Techniques for Vacuum Devices, also contains useful information on cathodes and poisoning agents. A plot of the vapor pressures and poisoning effect of certain metals (from Kohl) is shown below. Note that the vapor pressure of zinc is 1.1 x 10{sup -8} Torr at 400 K = 127 C, and 2.7 x 10{sup -5} at 500 K = 227 C. By contrast iron reaches a vapor pressure 1 x 10{sup -8} between 800 and 900 C. Therefore it is important to eliminate any brass parts that could exceed a temperature of 100 C. Many structural components of the cathode assembly contain steel. At 500-600 C in an oxygen atmosphere chromium oxide may outgas from the steel. [Cho, et.al., J. Vac. Sci. Technol. A 19, p. 998 (2001)]. Steel may also contain silicon, and sulfur at low concentrations. Therefore use of steel should be limited or avoided at high temperature near the cathode. Materials that should be avoided in the vicinity of the cathode include brass, silver, zinc, non-OFHC copper, silicates, and sulfur-containing lubricants such molybdenum disulfide. Macor is an aluminosilicate-based insulator that is not stable at high temperature. Macor near the cathode should be replaced by a high-temperature insulator such as alumina ceramic. Other insulating materials that contain silicates, such as fiber insulating sleeves, should be avoided. Copper that is not OFHC contains oxygen and other impurities and should be avoided. Lubricating screw coatings should be chosen carefully to have no sulfur content. Common sources of contamination that can cause low emission include water, saliva, silicates such as glass dust, etc. Cathodes should be handled in near clean-room conditions to minimize the amount of water vapor on the cathode surface from breathing, etc. Cathodes should also be stored in such as a way as to avoid contact with materials such as glass dust and water vapor. Attached are plots of SEM data for several test pieces that were taken from the LBNL test stand after activation of the 311x scandate DARHT cathode. Several copper pieces in the anode region were tested, showing the presence of zinc. Two stainless steel nuts coated with a contaminant were also tested. The SEM data indicates the presence of zinc and some sulfur. The zinc has been traced to a brass piece, and the sulfur to the possible use of molybdenum disulfide lubricant on a nut in the system. Finally a swipe of contaminant on the vacuum vessel wall analyzed by a commercial testing laboratory shows again the presence of zinc. In order to improve system cleanliness, we have implemented the following modifications to the test stand: replaced the brass piece with copper-tungsten; replaced Macor insulators with alumina ceramic; used boron nitride lubricant; replaced copper beam stop with OFHC copper; and replaced steel pieces near the cathode where possible with copper or copper-tungsten. A clean fire of high-temperature components and a high-current filament test have shown no evidence to date for contaminants since the modifications.« less
Protective Behavior of Poly(m-aminophenol) and Polypyrrole Coatings on Mild Steel
NASA Astrophysics Data System (ADS)
Yahaya, Sabrina M.; Harun, M. K.; Rosmamuhamadani, R.; Bonnia, N. N.; Ratim, S.
2018-01-01
Electrodeposition of polypyrrole (PPy) and poly (m-aminophenol) (PMAP) films on mild steel (MS) substrate was achieved in 0.3M oxalic acid solution and 0.3M NaOH, water:ethanol (70:30) solvent respectively using cyclic voltammetry technique. The morphology of the films constructed was determined by scanning electron microscope (SEM) while energy dispersive X-Ray analyzer (EDX) was used to establish the presence of organic PMAP and PPy film coating and its compositions. The corrosion performance of MS coated with both polymer films were investigated after 0.5 hours immersed in 0.5M NaCl aqueous solution by using polarization curves. It was found that PPy coating provides anodic protection while PMAP coating provides cathodic protection towards corrosion protection of mild steel substrate.
Lai, Chun-Han; Ashby, David S.; Lin, Terri C.; ...
2018-03-01
Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Chun-Han; Ashby, David S.; Lin, Terri C.
Poly (3-hexylthiophene-2,5-diyl) (P3HT), a conducting polymer studied extensively for its optoelectronic devices, offers a number of advantageous properties when used as a conductive binder for lithium-ion battery cathode materials. By mixing with carbon nanotubes (CNT), P3HTCNT serves as a surface coating for the cathode material LiNi 0.8Co 0.15Al 0.05O 2 (NCA). Oxidation of the P3HT enables high electronic and ionic conductivity to be achieved over the potential range where the NCA is electrochemically active. In addition to the conductivity benefits from electrochemical doping, the P3HT-CNT coating suppresses electrolyte breakdown, thus inhibiting growth of the solid electrolyte interphase (SEI) layer andmore » preventing intergranular cracking in the NCA particles. In conclusion, The use of the P3HT-CNT binder system leads to improved cycling for NCA at high power density with capacities of 80 mAh g -1 obtained after 1000 cycles at 16C, a value that is 4 times greater than what is achieved in the control electrode.« less
A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium
NASA Astrophysics Data System (ADS)
Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng
2018-05-01
NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.
A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium
NASA Astrophysics Data System (ADS)
Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng
2018-04-01
NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.
Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen
2018-02-28
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Binghong; Key, Baris; Lapidus, Saul H.
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
Han, Binghong; Key, Baris; Lapidus, Saul H.; ...
2017-11-01
Surface alumina coatings have been shown to be an effective way to improve the stability and cyclability of cathode materials. However, a detailed understanding of the relationship between the surface coatings and the bulk layered oxides is needed to better define the critical cathode–electrolyte interface. In this work, we systematically studied the effect of the composition of Ni-rich LiNi xMn yCo 1–x–yO 2 (NMC) on the surface alumina coatings. Changing cathode composition from LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) to LiNi 0.6Mn 0.2Co 0.2O 2 (NMC622) and LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) was found to facilitate the diffusion ofmore » surface alumina into the bulk after high-temperature annealing. By use of a variety of spectroscopic techniques, Al was seen to have a high bulk compatibility with higher Ni/Co content, and low bulk compatibility was associated with Mn in the transition metal layer. It was also noted that the cathode composition affected the observed morphology and surface chemistry of the coated material, which has an effect on electrochemical cycling. The presence of a high surface Li concentration and strong alumina diffusion into the bulk led to a smoother surface coating on NMC811 with no excess alumina aggregated on the surface. Structural characterization of pristine NMC particles also suggests surface Co segregation, which may act to mediate the diffusion of the Al from the surface to the bulk. The diffusion of Al into the bulk was found to be detrimental to the protection function of surface coatings leading to poor overall cyclability, indicating the importance of compatibility between surface coatings and bulk oxides on the electrochemical performance of coated cathode materials.In conclusion, these results are important in developing a better coating method for synthesis of next-generation cathode materials for lithium-ion batteries.« less
NASA Astrophysics Data System (ADS)
Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten
2015-11-01
The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing ;standard; conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.
Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
Wang, Kai-Xue; Zhu, Qian-Cheng; Chen, Jie-Sheng
2018-05-11
Rechargeable aprotic lithium (Li)-O 2 batteries with high theoretical energy densities are regarded as promising next-generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round-trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li-O 2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high-performance cathode catalysts for stable Li-O 2 batteries. Perspectives on enhancing the overall electrochemical performance of Li-O 2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high-performance lithium-O 2 batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion
NASA Astrophysics Data System (ADS)
Sommerer, Timothy J.
2014-05-01
We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
NASA Astrophysics Data System (ADS)
Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming
One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.
State of the art in protection of erosion-corrosion on vertical axis tidal current turbine
NASA Astrophysics Data System (ADS)
Musabikha, Siti; Utama, I. Ketut Aria Pria; Mukhtasor
2018-05-01
Vertical axis tidal current turbine is main part of ocean energy devices which converts the tidal current energy into electricity. Its development is arising too due to increased interest research topic concerning climate change mitigation. Due to its rotating movement, it will be induced mechanical forces, such as shear stress and/or particle impact. Because of its natural operations, vertical axis turbine is also being exposed to harsh and corroding marine environment itself. In order to secure the vertical tidal turbine devices from mechanical wear and corrosion effects which is lead to a material loss, an appropriate erosion-corrosion protection needs to be defined. Its protection actionscan be derived such as design factors, material selections, inhibitors usage, cathodic protections, and coatings. This paper aims to analyze protection method which is necessary to control erosion-corrosion phenomenon that appears to the vertical axis tidal current turbine.
Yang, Guangming; Zhou, Wei; Liu, Meilin; Shao, Zongping
2016-12-28
The successful development of low-cost, durable electrocatalysts for oxygen reduction reaction (ORR) at intermediate temperatures is critical for broad commercialization of solid oxide fuel cells. Here, we report our findings in design, fabrication, and characterization of a cobalt-free SrFe 0.85 Ti 0.1 Ni 0.05 O 3-δ cathode decorated with NiO nanoparticles. Exsolved from and well bonded to the parent electrode under well-controlled conditions, the NiO nanoparticles uniformly distributed on the surface of the parent electrode greatly enhance cathode performance, demonstrating ORR activity better than that of the benchmark cobalt-based Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ . Further, a process for regeneration of the NiO nanoparticles was also developed to mitigate potential performance degradation due to coarsening of NiO particles under practical operating conditions. As a general approach, this exsolution-dissolution of electrocatalytically active nanoparticles on an electrode surface may be applicable to the development of other high-performance cobalt-free cathodes for fuel cells and other electrochemical systems.
A half millimeter thick coplanar flexible battery with wireless recharging capability.
Kim, Joo-Seong; Ko, Dongah; Yoo, Dong-Joo; Jung, Dae Soo; Yavuz, Cafer T; Kim, Nam-In; Choi, In-Suk; Song, Jae Yong; Choi, Jang Wook
2015-04-08
Most of the existing flexible lithium ion batteries (LIBs) adopt the conventional cofacial cell configuration where anode, separator, and cathode are sequentially stacked and so have difficulty in the integration with emerging thin LIB applications, such as smart cards and medical patches. In order to overcome this shortcoming, herein, we report a coplanar cell structure in which anodes and cathodes are interdigitatedly positioned on the same plane. The coplanar electrode design brings advantages of enhanced bending tolerance and capability of increasing the cell voltage by in series-connection of multiple single-cells in addition to its suitability for the thickness reduction. On the basis of these structural benefits, we develop a coplanar flexible LIB that delivers 7.4 V with an entire cell thickness below 0.5 mm while preserving stable electrochemical performance throughout 5000 (un)bending cycles (bending radius = 5 mm). Also, even the pouch case serves as barriers between anodes and cathodes to prevent Li dendrite growth and short-circuit formation while saving the thickness. Furthermore, for convenient practical use wireless charging via inductive electromagnetic energy transfer and solar cell integration is demonstrated.
NASA Astrophysics Data System (ADS)
Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung
2014-09-01
We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.
Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao
2017-03-08
High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g -1 ). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li + ion transport tunnels. Such a novel structure enables fast Li + ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g -1 with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.
Ternary metal fluorides as high-energy cathodes with low cycling hysteresis
Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; ...
2015-03-26
In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M 1 yM 2 1-yF x: M 1, M 2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution Cu yFe 1-yF 2, reversible Cu and Fe redox reactionsmore » are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu + dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.« less
Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Ganbe, Yoshiyuki; Tomai, Takaaki; Honma, Itaru
2014-01-01
Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets have been synthesized by a one-pot supercritical fluid (SCF) processing. The effect of different amines and their roles on the morphology-control has been investigated in detail. It was found that amine having long alkyl chain such as hexamethylenediamine played important roles to manipulate the shape of the nanocrystals by selective adsorption on the specific {010} facets. More importantly, the nanorods and nanoplates showed better electrochemical performance than that of nanoparticles which was attributed to their unique crystallographic orientation with short Li ion diffusion path. The present study emphasizes the importance of crystallographic orientation in improving the electrochemical performance of the high voltage LiCoPO4 cathode materials for Li-ion batteries. PMID:24496051
Zhang, Fuping; Ji, Ming; Xu, Quan; Yang, Li; Bi, Shuping
2005-09-01
The biological effects of aluminum (Al) have received much attention in recent years. Al is of basic relevance as concern with its reactivity and bioavailability. In this paper, the electrochemical behaviors of norepinephrine (NE) in the absence and presence of Al(III) at the hanging mercury drop electrode have been studied and applied to the practical analysis. Highly selective catalytic cathodic peak of NE is yielded by linear scan voltammetry (LSV) at -1.32 V (vs. SCE). A linear relationship holds between the cathodic peak current and the Al(III) concentration. It has been successfully applied to the determination of Al(III) in real waters and synthetic biological samples with satisfying results, which are in accordance with those obtained by ICP-AES method. The electrochemical properties and the mechanisms of the peaks in the presence and absence of Al(III) have been explored. The results show that they are irreversible adsorptive hydrogen catalytic waves. These studies not only enrich the methods of determining Al, but also lay foundations of further understanding of the mechanisms of neurodementia.
Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon
n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less
NASA Astrophysics Data System (ADS)
Wang, Meng; Jiang, Chunlei; Zhang, Songquan; Song, Xiaohe; Tang, Yongbing; Cheng, Hui-Ming
2018-06-01
Calcium-ion batteries (CIBs) are attractive candidates for energy storage because Ca2+ has low polarization and a reduction potential (-2.87 V versus standard hydrogen electrode, SHE) close to that of Li+ (-3.04 V versus SHE), promising a wide voltage window for a full battery. However, their development is limited by difficulties such as the lack of proper cathode/anode materials for reversible Ca2+ intercalation/de-intercalation, low working voltages (<2 V), low cycling stability, and especially poor room-temperature performance. Here, we report a CIB that can work stably at room temperature in a new cell configuration using graphite as the cathode and tin foils as the anode as well as the current collector. This CIB operates on a highly reversible electrochemical reaction that combines hexafluorophosphate intercalation/de-intercalation at the cathode and a Ca-involved alloying/de-alloying reaction at the anode. An optimized CIB exhibits a working voltage of up to 4.45 V with capacity retention of 95% after 350 cycles.
Three-Dimensional Fibrous Network of Na0.21 MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors.
Karikalan, Natarajan; Karuppiah, Chelladurai; Chen, Shen-Ming; Velmurugan, Murugan; Gnanaprakasam, Periyasami
2017-02-16
Sodium-ion hybrid supercapacitors are potential energy-storage devices and have recently received enormous interest. However, the development of cathode materials and the use of nonaqueous electrolyte remain a great challenge. Hence, aqueous Na-ion hybrid supercapacitors based on a three-dimensional network of NaMnO 2 were developed. The cathode material was synthesized by the electro-oxidation of potassium manganese hexacyanoferrate nanocubes. The oxidized compound was confirmed to be Na 0.21 MnO 2 by various physical characterization methods. Manganese dioxide is a well-characterized material for aqueous asymmetric pseudocapacitors, but its usage at high operating voltages is limited due to the electrochemical stability of water. Nevertheless, high-potential and high-performance aqueous supercapacitors exhibiting a cell potential of 2.7 V were developed. Further, the practical applicability of an asymmetric supercapacitor based on NaMnO 2 (cathode) and reduced graphene oxide (anode) was demonstrated by powering a 2.1 V red LED. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solution-Processed n-Type Graphene Doping for Cathode in Inverted Polymer Light-Emitting Diodes
Kwon, Sung-Joo; Han, Tae-Hee; Kim, Young-Hoon; ...
2018-01-11
n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ~0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathodemore » doped with N-DMBI radical showed dramatically improved device efficiency (~13.8 cd/A) than did inverted PLEDs with pristine graphene (~2.74 cd/A). Finally, N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.« less
Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries.
Shu, Chaozhu; Li, Bo; Zhang, Bingsen; Su, Dangsheng
2015-12-07
The lithium-oxygen (Li-O2 ) battery is a very appealing candidate for advanced high energy applications owing to its exceptionally high specific energy. However, its poor energy efficiency, rate capability, and cyclability remain key barriers to its practical application. In this work, using a rationally designed cathode based on a bimodal mesoporous nitrogen-doped graphene/carbon nanotube (NGC) composite, we have developed a Li-O2 battery demonstrating enhanced round-trip efficiency (ca. 85 %) and excellent cyclability over 400 cycles under a high current rate of 500 mA g(-1) . The excellent cyclability and rate capability are attributed to improved stability of the aggressive LiO2 intermediate on the nitrogen-doped carbon surface in addition to the favorable hierarchical architecture of NGC. These results demonstrate a valuable research direction to achieve highly stable and reversible Li-O2 batteries through tuning the surface chemistry of the cathode in addition to finding a stable electrolyte solvent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kuklja, M M; Kotomin, E A; Merkle, R; Mastrikov, Yu A; Maier, J
2013-04-21
Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980's as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot's cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.
Electron gun for a multiple beam klystron with magnetic compression of the electron beams
Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael
2013-10-01
A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.
Intense Electrochemical Oxidation on Graphitized Carbon Electrodes in the Presence of Ozone
NASA Astrophysics Data System (ADS)
Klochikhin, V. L.; Potapova, G. F.; Putilov, A. V.
2018-06-01
A new intense oxidation process for water treatment in which oxidation with ozone is coupled to electrochemical processes is described, and the results from its application to water purification are presented along with the discussion of its practical implementation. The use of graphitized carbon materials for this process is explained and tested experimentally. The use of glassy carbon for the anode enables us to achieve very high (up to 25 vol %) concentrations of ozone in the generated ozone-oxygen mixture. The material used for the cathode—graphitized carbon cloth (GCC) reinforced with Ni allows different electrocatalytic processes to proceed on its developed surface, and combines the high sorption capacity of this cathode and potentialcontrolled selectivity of cathodic electrochemical processes.
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, A.J.; Hutchings, R.B.; Turnbull, A.
1993-09-01
The enhanced corrosion fatigue crack growth rates of low alloy steels cathodically protected in marine environments results from absorbed hydrogen atoms. Hydrogen atoms are generated at the crack tip, crack walls and the external surface of the specimen (bulk charging). In previous work, Turnbull and Saenz de Santa Maria developed a model to predict the rate of generation of hydrogen atoms at the tips of fatigue cracks for steels cathodically polarized in marine environments. The main prediction from this work was that the external surface of the specimen can be the dominant source of hydrogen atoms at potentials more negativemore » than about [minus]900 mV (SCE), at a cyclic frequency of 0.1 Hz and a stress ratio of 0.5. The relative importance of bulk charging depends on the specific test conditions and is influenced by the applied potential, bulk chemistry, cyclic frequency, specimen thickness, temperature and use of coatings. Since laboratory test times are usually short in relation to the time required for hydrogen transport measured crack growth rates may be lower than those occurring in practice, for which there is sufficient time for full hydrogen charging. The purpose of this study is to verify experimentally the importance of bulk charging. Since the sensitivity of cracking to variations in hydrogen concentration will be material dependent a high strength steel was selected in this initial study because of its sensitivity to hydrogen. This will enable validation of the basic premise that bulk charging can be important, prior to more extensive studies using lower strength alloys.« less
Visual Performance of Contact Lens-Corrected Ametropic Aviators with the M-43 Protective Mask
1990-05-01
the HDU consists of a miniature cathode ray tube (CRT) located at the end of an optical relay tube attached to the side of the aviator’s helmet...14.6 =1441 Corneal thickness (mm) CL group_ Premask_ Postmask NCL group_ Premask Postmask (Subject O[_D OSj 1C D OS [Subject OID 0S_ _D OS 0001 .506
Corrosion Activities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Heidersbach, Robert H.
2002-01-01
This report documents summer faculty fellow efforts in the corrosion test bed at the NASA Kennedy Space Center. During the summer of 2002 efforts were concentrated on three activities: a short course on corrosion control for KSC personnel, evaluation of commercial wash additives used for corrosion control on Army aircraft, and improvements in the testing of a new cathodic protection system under development at KSC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norsworthy, R.
A rating system was developed for several coating types used for underground pipeline systems. Consideration included soil stress, adhesion, surface preparation, cathodic protection (CP) shielding, CP requirements, handling and construction, repair, field joint system, bends and other components, and the application process. Polyethylene- and polyvinyl chloride-backed tapes, woven polyolefin geotextile fabric (WGF)-backed tapes, hot-applied tapes, petrolatum- and wax-based tapes, and shrink sleeves were evaluated. WGF-backed tapes had the highest rating.
Corrosion Prevention and Control Planning Guidebook for Military Systems and Equipment
2014-04-02
corrosion to applying advanced materials, coatings, inhibitors, and cathodic protection for corrosion control over many years, well before the DoD...requiring the delivery of the Contractor CPCP. Further, MIL-HDBK-1568 is for aerospace systems. Consider this when tailoring your Contract Data...Corrosion personnel from the user command; o Information Analysis Center personnel, such as Advanced Materials, Manufacturing, and Testing Information
Diamondlike carbon protective coatings for optical windows
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.
1989-01-01
Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.
NASA Astrophysics Data System (ADS)
Standler, Ronald B.
1989-09-01
To protect electronic systems from the effects of electromagnetic pulse (EMP) form nuclear weapons and high-power microwave (HPM) weapons, it is desirable to have fast responding protection components. The gas-filled spark gap appears to be an attractive protection component, except that it can be slow to conduct under certain conditions. This report reviews the literature and presents ideas for construction of a spark gap that will conduct in less than one nanosecond. The key concept to making a fast-responding spark gap is to produce a large number of free electrons quickly. Seven different mechanisms for production of free electrons are reviewed, and several that are relevant to miniature spark gaps for protective applications are discussed in detail. These mechanisms include: inclusion of radioactive materials, photoelectric effect, secondary electrode emission from the anode, and field emission from the cathode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hyun Deog; Han, Sang-Don; Bolotin, Igor L.
The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety,stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteriesmore » with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl 2. Hence, ethereal solutions of Mg(TFSI) 2 salt with MgCl 2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm -2 and an areal capacity of ~0.4 mAh cm -2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI - anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.« less
Yoo, Hyun Deog; Han, Sang-Don; Bolotin, Igor L.; ...
2017-06-21
The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety,stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteriesmore » with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl 2. Hence, ethereal solutions of Mg(TFSI) 2 salt with MgCl 2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm -2 and an areal capacity of ~0.4 mAh cm -2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI - anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.« less
Cathodic Protection Measurement Through Inline Inspection Technology Uses and Observations
NASA Astrophysics Data System (ADS)
Ferguson, Briana Ley
This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit concepts, and attenuation principles in order to match the results of the ILI sample data by varying parameters of the model (i.e., values for over potential and coating resistivity). This research has not been conducted previously in order to determine if the protected potential range can be achieved with respect to the predicted current density from the CP ILI device. Kirchhoff's method was explored, but certain principals could not be used in the model as manual measurements were required. This research was based on circuit concepts which indirectly affected electrochemical processes. Through Ohm's law, the results show that a constant current density is possible in the protected potential range; therefore, indicates polarization of the pipeline, which leads to calcareous deposit development with respect to electrochemistry. Calcareous deposit is desirable in industry since it increases the resistance of the pipeline coating and lowers current, thus slowing the oxygen diffusion process. This research conveys that an alternative method for CP evaluation from inside of the pipeline is possible where the pipe-to-soil potential can be estimated (as required by regulations) from the ILI tool's current density measurement.
Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou
2017-01-25
The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm -2 ) present superior cycling stability (727.4 mAh g -1 after 500 cycles at 0.2 C) and high rate capability (814 mAh g -1 at 2 C) and power density (∼10 mW cm -2 ), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm -2 ) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.
Song, Jiangxuan; Gordin, Mikhail L; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai
2015-03-27
Despite the high theoretical capacity of lithium-sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g(-1) after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm(-2)) with a high sulfur loading of approximately 5 mg cm(-2), which is ideal for practical applications of the lithium-sulfur batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of activated carbon adsorbent for fuel cell cathode air filtration
NASA Astrophysics Data System (ADS)
Ma, Xiaowei; Yang, Daijun; Zhou, Wei; Zhang, Cunman; Pan, Xiangmin; Xu, Lin; Wu, Minzhong; Ma, Jianxin
The effectiveness of a commercial activated carbon modified by KOH (KMAC) was evaluated as adsorbent for purifying NO x and SO 2, which are the major contaminants in fuel cell cathode air stream. The N 2 adsorption-desorption isotherms of KMAC samples showed that the surface structure of the activated carbon was changed significantly by KOH impregnation. The sample of KMAC with a loading of 10.1% KOH by weight presented the highest adsorption capacities for both NO x and SO 2, which were 96 mg g -1 and 255 mg g -1, respectively. A pre-exposure of KMAC to CO 2 caused neither effect on the adsorption of NO x nor on the adsorption of SO 2. KMAC could fully protect a 250 W proton exchange membrane fuel cell (PEMFC) stack from 1100 ppb of NO x and 250 ppb of SO 2 for about 130 h.
Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery
NASA Astrophysics Data System (ADS)
Law, Markas; Ramar, Vishwanathan; Balaya, Palani
2017-08-01
Here we report a polyanion-based cathode material for sodium-ion batteries, Na2MnSiO4, registering impressive sodium storage performances with discharge capacity of 210 mAh g-1 at an average voltage of 3 V at 0.1 C, along with excellent long-term cycling stability (500 cycles at 1 C). Insertion/extraction of ∼1.5 mol of sodium ion per formula unit of the silicate-based compound is reported and the utilisation of Mn2+ ⇋ Mn4+ redox couple is also demonstrated by ex-situ XPS. Besides, this study involves a systematic investigation of influence of the electrolyte additive (with different content) on the sodium storage performance of Na2MnSiO4. The electrolyte additive forms an optimum protective passivation film on the electrode surface, successfully reducing manganese dissolution.
Hao, Youchen; Xiong, Dongbin; Liu, Wen; Fan, Linlin; Li, Dejun; Li, Xifei
2017-11-22
An interlayer has been regarded as a promising mediator to prolong the life span of lithium sulfur batteries because its excellent absorbability to soluble polysulfide efficiently hinders the shuttle effect. Herein, we designed various interlayers and understand the working mechanism of an interlayer for lithium sulfur batteries in detail. It was found that the electrochemical performance of a S electrode for an interlayer located in cathode side is superior to the pristine one without interlayers. Surprisingly, the performance of the S electrode for an interlayer located in anode side is poorer than that of pristine one. For comparison, glass fibers were also studied as a nonconductive interlayer for lithium sulfur batteries. Unlike the two interlayers above, these nonconductive interlayer did displays significant capacity fading because polysulfides were adsorbed onto insulated interlayer. Thus, the nonconductive interlayer function as a "dead zone" upon cycling. Based on our findings, it was for the first time proposed that a controllably optimized interlayer, with electrical conductivity as well as the absorbability of polysulfides, may function as a "vice-electrode" of the anode or cathode upon cycling. Therefore, the cathodic conductive interlayer can enhance lithium sulfur battery performance, and the anodic conductive interlayer may be helpful for the rational design of 3D networks for the protection of lithium metal.
NASA Astrophysics Data System (ADS)
Ho, N. A. D.; Babel, S.
2017-06-01
Silver has valuable features and limited availability, and thus recovery from wastewater or aqueous solutions plays an important role in environmental protection and economic profits. In this study, silver recovery along with power generation and COD removal were investigated in a bio-electrochemical system (BES). The BES comprised of an anode and a cathode chamber which were separated by a cation exchange membrane to prevent the cross-over of electrolytes. During the biological oxidation of acetate as an electron donor in the anode chamber, the reduction of ammonia chelated silver ions as electron acceptors in the cathode side occurred spontaneously. Results showed that a silver recovery of 99% and COD removal efficiency of 60% were achieved at the initial silver concentration of 1,000 mg/L after 48 hours of operation. The power generation improved 4.66%, from 3,618 to 3,795 mW/m3, by adding NaNO3 of 850 mg/L to the catholyte containing 2,000 mg/L of silver ions. Deposits on the cathode surface were characterized using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Metallic silver with dendritic structures and high purity were detected. This study demonstrated that BES technology can be employed to recover silver from complex chelating solution, produce electricity, and treat wastewater.
Qin, CanCan; Cao, JiaLi; Chen, Jun; Dai, GaoLe; Wu, TongFu; Chen, Yanbin; Tang, YueFeng; Li, AiDong; Chen, Yanfeng
2016-06-21
LiNi0.6Co0.2Mn0.2O2 cathode material has been surface-modified by coating with ultrathin TiO2via atomic layer deposition (ALD) technology to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathodes for lithium ion batteries. Within the cut-off voltage of 2.5-4.3 V, the coated sample delivers an initial discharge capacity of 187.7 mA h g(-1) at 0.1 C and with a capacity retention about 85.9% after 100 cycles at 1 C, which provides a significant improvement in terms of discharge capacity and cyclability, as compared with those of the bare one. Such enhanced electrochemical performance of the coated sample is ascribed to its high-quality ultrathin coating of amorphous TiO2, which can protect the active material from HF attack, withstand the dissolution of metal ions in the electrode and favor the lithium diffusion of oxide as proved by electrochemical impedance spectroscopy (EIS) tests. TiO2 coating via the ALD process provides a potential approach for battery factories to surface-modify Ni-rich electrode materials so as to realize improvements in electrochemical performance.
NASA Astrophysics Data System (ADS)
Menzler, Norbert H.; Sebold, Doris; Guillon, Olivier
2018-01-01
A four-layer solid oxide fuel cell stack with planar anode-supported cells was operated galvanostatically at 700 °C and 0.5Acm-2 for nearly 35,000 h. One of the four planes started to degrade more rapidly after ∼28,000 h and finally more progressively after ∼33,000 h. The stack was then shut down and a post-test analysis was carefully performed. The cell was characterized with respect to cathodic impurities and clarification of the reason(s) for failure. Wet chemical analysis revealed very low chromium incorporation into the cathode. However, SEM and TEM observations on polished and fractured surfaces showed catastrophic failure in the degraded layer. The cathode-barrier-electrolyte cell layer system delaminated from the entire cell over large areas. The source of delamination was the formation of a porous, sponge-like secondary phase consisting of zirconia, yttria and manganese (oxide). Large secondary phase islands grew from the electrolyte-anode interface towards the anode and cracked the bonding between both layers. The manganese originated from the contact or protection layers used on the air side. This stack result shows that volatile species - in this case manganese - should be avoided, especially when long-term applications are envisaged.
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang
2015-08-01
Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.
Some Recent Sensor-Related Army Critical Technology Events
2013-02-01
Excalibur (XM982), US Army 2010 Weapon Systems, prepared by OASA (ALT), 92. 15 HAudraH Colloway, “Picatinney’s GPS-guided Excalibur artillery round deemed...liquid phase epitaxy (LPE) and molecular-organo-chemical vapor deposition (MOCVD). There was also an effort in platinum silicide (PtSi) infrared...protective interphasial chemistry not only on transition metal oxide cathodes at high voltage, but also on graphitic graphite at low voltage making
Research on Inhibition for Corrosion Fatigue of High Strength Alloys
1978-12-15
considered is the study of the mechanism of’inhfbitio:u by *aking use of cathodic protection as a tool to investigate the capacity if adsorbed films to prevent...and Industria t 1, ARAWRUNTUE Experiment Station, Gainesville, FL 32611 and Project # - 2306 Boeing Aerospace Group, P.O. Box 3999, Seattle, Task...Electrochemical studies , inhibitor screening tests and certain fracture toughness tests were performed at University of Florida. Initial
NASA Astrophysics Data System (ADS)
Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool
2016-01-01
The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.
Effects of some cryopreservation procedures on recalcitrant zygotic embryos of Ammocharis coranica.
Nomali, Z; Ngobese; Sershen; Berjak, P; Pammenter, N W
2014-01-01
Cryopreservation, the most promising method for the long-term conservation of recalcitrant (desiccation-sensitive) seed germplasm, is often associated with high viability losses. Cryo-procedures involve a sequence of steps which must be optimised to reduce the impact of the stresses. This study reports on the effects of some of the steps of cryopreservation on the recalcitrant zygotic embryos of the amaryllid, Ammocharis coranica. Embryos were subjected to cryoprotection with glycerol and/or DMSO, rapid (flash) drying, and rapid (>100 degree C s(-1)) or slow (1 degree C s(-1)) cooling. Rapid dehydration (from c. 2.7 to 0.9 g g(-1) over 60 min) and cooling had a detrimental effect on the viability of the embryos, which was exacerbated when these steps were applied sequentially. After cooling, seedling production (30%) was obtained only from embryos that had been cryoprotected with glycerol prior to drying and rapid cooling, while 30% of non-treated embryos and 70% of those that had undergone cathodic protection during flash drying produced callus. Noting that no post-cryo survival of A. coranica embryos had previously been obtained, this study identified cryoprotection with glycerol and the incorporation of cathodic protection during flash drying as promising intervention points for future studies.
NASA Astrophysics Data System (ADS)
Raj, X. Joseph
2017-07-01
The effect of corrosion protection performance of epoxy coatings containing ZnO nanoparticle on mild steel in 3.5% NaCl solution was analyzed using scanning electrochemical microscopy and electrochemical impedance spectroscopy (EIS). Line profile and topographic image analysis were measured by applying -0.70 and +0.60 V as the tip potential for the cathodic and anodic reactions, respectively. The tip current at -0.70 V for the epoxy-coated sample with ZnO nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were taken in 3.5% NaCl after wet and dry cyclic corrosion test. The increase in the film resistance ( R f) and charge transfer resistance ( R ct) values was confirmed by the addition of ZnO nanoparticles in the epoxy coating. SEM/EDX analysis showed that complex oxide layer of zinc was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale complex oxide layer of Zn in the rust of the steel that had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.
Corrosion potential analysis system
NASA Astrophysics Data System (ADS)
Kiefer, Karl F.
1998-03-01
Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately determine the corrosion risk in a local area. The system has virtually no installation costs and can operate on battery power for at least two years.
Amorphous-diamond electron emitter
Falabella, Steven
2001-01-01
An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.
Modification of W surfaces by exposure to hollow cathode plasmas
NASA Astrophysics Data System (ADS)
Stancu, C.; Stokker-Cheregi, F.; Moldovan, A.; Dinescu, M.; Grisolia, C.; Dinescu, G.
2017-10-01
In this work, we assess the surface modifications induced on W samples following exposure to He and He/H2 radiofrequency plasmas in hollow cathode discharge configuration. Our study addresses issues that relate to the use of W in next-generation fusion reactors and, therefore, the investigation of W surface degradation following exposure and heating by plasmas to temperatures above 1000 °C is of practical importance. For these experiments, we used commercially available tungsten samples having areas of 30 × 15 mm and 0.1 mm thickness. The hollow cathode plasma was produced using a radiofrequency (RF) generator (13.56 MHz) between parallel plate electrodes. The W samples were mounted as one of the electrodes. The He and He/H2 plasma discharges had a combined effect of heating and bombardment of the W surfaces. The surface modifications were studied for discharge powers between 200 and 300 W, which resulted in the heating of the samples to temperatures between 950 and 1230 °C, respectively. The samples were weighed prior and after plasma exposure, and loss of mass was measured following plasma exposure times up to 90 min. The analysis of changes in surface morphology was carried out by optical microscopy, scanning electron microscopy and atomic force microscopy. Additionally, optical emission spectra of the respective plasmas were recorded from the region localized inside the hollow cathode gap. We discuss the influence of experimental parameters on the changes in surface morphology.
A Spinel-integrated P2-type Layered Composite: High-rate Cathode for Sodium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
2016-01-14
Sodium-ion batteries (SIB) are being intensively investigated, owing to the natural abundance and low cost of Na resources. However, the SIBs still suffer from poor rate capability due to the large ionic radius of Na+ ion and the significant kinetic barrier to Na+-ion transport. Here, we present an Fd-3m spinel-integrated P2-type layered composite (P2 + Fd-3m) material as a high-rate cathode for SIBs. The P2 + Fd-3m composite material Na0.50Ni1/6Co1/6Mn2/3O2 shows significantly enhanced discharge capacity, energy density, and rate capability as compared to the pure P2-type counterpart. The composite delivers a high capacity of 85 mA h g-1 when dischargingmore » at a very high current density of 1500 mA g-1 (10C rate) between 2.0 and 4.5 V, validating it as a promising cathode candidate for high-power SIBs. The superior performance is ascribed to the improved kinetics in the presence of the integrated-spinel phase, which facilitates fast electron transport to coordinate with the timely Na+-ion insertion/extraction. The findings of this work also shed light on the importance of developing lattice doping, surface coating, and electrolyte additives to further improve the structural and interfacial stability of P2-type cathode materials and fully realize their practical applications in sodium-ion batteries.« less
NASA Astrophysics Data System (ADS)
Li, Yonghu; Chang, Xingping; Xu, Qunjie; Lai, Chunyan; Liu, Xinnuan; Yuan, Xiaolei; Liu, Haimei; Min, Yulin
2018-02-01
In an attempt to overcome the irreversible capacity loss occurred during the first cycle and stabilize the surface structure, an alumina coating layer has been triumphantly prepared on the surface of 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 cathode material with different amounts (1, 2, and 3 wt%) through a simple hydrolysis reaction, followed by an annealing process. The results reveal that the coated materials have a higher crystallinity and the particles are evenly distributed. As a cathode material for lithium-ion batteries, the 2-wt% coated sample delivers initial discharge specific capacity of 211.7 mAh g-1 at a rate of 1 C between 2.0 and 4.8 V with an initial columbic efficiency of 73.2%. Meanwhile, it exhibits the highest discharge specific capacity of 206.2 mAh g-1 with 97.4% capacity retention after 100 cycles at and much elevated rate capability compared to uncoated material. The excellent cycling stability and more superior rate property can be ascribed to alumina coating layer, which has a surface stabilization effect on these cathode materials, lessening the dissolution of metal ions. The electrochemical impedance and cyclic voltammetry studies indicate that coated by alumina improved the kinetic performance for lithium-rich layered materials, showing a prospect for practical lithium battery application.
NASA Astrophysics Data System (ADS)
Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.
2012-07-01
The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.
Hwa, Yoon; Zhao, Juan; Cairns, Elton J
2015-05-13
In recent years, lithium/sulfur (Li/S) cells have attracted great attention as a candidate for the next generation of rechargeable batteries due to their high theoretical specific energy of 2600 W·h kg(-1), which is much higher than that of Li ion cells (400-600 W·h kg(-1)). However, problems of the S cathode such as highly soluble intermediate species (polysulfides Li2Sn, n = 4-8) and the insulating nature of S cause poor cycle life and low utilization of S, which prevents the practical use of Li/S cells. Here, a high-rate and long-life Li/S cell is proposed, which has a cathode material with a core-shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell. The conformal carbon coating is easily obtained by a unique CVD coating process using a lab-designed rotating furnace without any repetitive steps. The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g(-1) of Li2S (corresponding to the 942 mA·h g(-1) of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate.
Cathode power distribution system and method of using the same for power distribution
Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J
2014-11-11
Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.
"Electroless" E-Coating for Magnesium Alloys
NASA Astrophysics Data System (ADS)
Song, Guang-Ling
By utilizing the unique electrochemistry of Mg, a thin organic film can rapidly be deposited on the surface of a Mg alloy by dipping the Mg alloy in a cathodic E-coating bath solution without applying a current or potential. The self-deposited coating is selectively formed on Mg alloy surfaces. Although the "electroless" E-coating pre-film is relatively thin, it can offer sufficient corrosion protection for Mg alloys in a chloride-containing environment. The stability of the film can be significantly improved after curing. The corrosion resistance of the substrate Mg alloy has an important effect on the corrosion protection performance of the coating. The coating is more protective on a corrosion resistant Mg alloy than on a non-corrosion resistant Mg substrate. The coating protection performance is also influenced by the substrate surface condition or pre-treatment process. Wet cleaning + heat-treatment may be a cost-effective surface preparation/treatment for the "electroless" E-coating in industrial applications.
Miniaturized cathodic arc plasma source
Anders, Andre; MacGill, Robert A.
2003-04-15
A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.
DARHT Axis II Cathode 16 (S/N 22) History as Recorded in the Historian and Shot Data Databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H. Vernon; Barraza, Juan; Harrison, James F.
2014-01-10
Long DARHT II injector cathode operating lifetimes are desirable for flash radiography of hydrodynamic tests at the dual-axis radiographic hydrotest facility (DARHT). The specification for cathode operating lifetime given to Spectra-Mat in the purchase orders for the 311X-M cathodes is ≥ 1000 hours at full operating temperature (~1120 oC). Of the five most-recent cathodes operated on DARHT II, only two have met this specification. It is desirable to have cathodes lifetimes considerably longer than the specified 1000 hours. In this report we present the thermal and vacuum history of cathode 16 (serial no. [S/N] 22), a 311X-M cathode, as recordedmore » in the historian database and the shot data database. The hope is that by examining this history we can identify the parameter (or parameters) that are limiting the DARHT II 311X-M cathode lifetimes. This is the fifth in a series of 5 DARHT Tech Notes in which recent cathode thermal and vacuum histories are examined. The other tech notes in this series are DARHT Tech Notes Nos. 501 (cathode 12, S/N 15), 502 (cathode 13, S/N 19), 503 (cathode 14, S/N 20), and 504 (cathode 15, S/N 21). In DARHT Tech Note No. 506 we will compare the recorded thermal and vacuum histories of cathodes 12-16 and attempt to understand the cathode lifetime limitations based on the stored cathode data presented in DARHT Tech Notes 501-505 and other relevant information.« less
Advanced electrorefiner design
Miller, W.E.; Gay, E.C.; Tomczuk, Z.
1996-07-02
A combination anode and cathode is described for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl{sub 3} to UCl{sub 3} ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode. 6 figs.
Advanced electrorefiner design
Miller, William E.; Gay, Eddie C.; Tomczuk, Zygmunt
1996-01-01
A combination anode and cathode for an electrorefiner which includes a hollow cathode and an anode positioned inside the hollow cathode such that a portion of the anode is near the cathode. A retaining member is positioned at the bottom of the cathode. Mechanism is included for providing relative movement between the anode and the cathode during deposition of metal on the inside surface of the cathode during operation of the electrorefiner to refine spent nuclear fuel. A method is also disclosed which includes electrical power means selectively connectable to the anode and the hollow cathode for providing electrical power to the cell components, electrically transferring uranium values and plutonium values from the anode to the electrolyte, and electrolytically depositing substantially pure uranium on the hollow cathode. Uranium and plutonium are deposited at a liquid cathode together after the PuCl.sub.3 to UCl.sub.3 ratio is greater than 2:1. Slots in the hollow cathode provides close anode access for the liquid pool in the liquid cathode.
Scenario for Hollow Cathode End-Of-Life
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.
2000-01-01
Recent successful hollow cathode life tests have demonstrated that lifetimes can meet the requirements of several space applications. However, there are no methods for assessing cathode lifetime short of demonstrating the requirement. Previous attempts to estimate or predict cathode lifetime were based on relatively simple chemical depletion models derived from the dispenser cathode community. To address this lack of predicative capability, a scenario for hollow cathode lifetime under steady-state operating conditions is proposed. This scenario has been derived primarily from the operating behavior and post-test condition of a hollow cathode that was operated for 28,000 hours. In this scenario, the insert chemistry evolves through three relatively distinct phases over the course of the cathode lifetime. These phases are believed to correspond to demonstrable changes in cathode operation. The implications for cathode lifetime limits resulting from this scenario are examined, including methods to assess cathode lifetime without operating to End-of- Life and methods to extend the cathode lifetime.
Ultraviolet and Optical Line Profile Variations in the Spectrum of epsilon Persei
1999-11-01
hollow cathode tube via two optical Ðbers that place the comparison spec- trum above and below the stellar spectra on each exposure. An additional...of adding a new sinus- oid can be determined by the size of the decrease between AIC(N) and AIC(N ] 1). In practice, however, statistical criteria are
Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui
2013-03-01
Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.
Yang, Zehui; Nakashima, Naotoshi
2015-07-20
The development of a durable and methanol tolerant electrocatalyst with a high oxygen reduction reaction activity is highly important for the cathode side of direct methanol fuel cells. Here, we describe a simple and novel methodology to fabricate a practically applicable electrocatalyst with a high methanol tolerance based on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole]-wrapped multi-walled carbon nanotubes, on which Pt nanoparticles have been deposited, then coated with poly(vinylphosphonic acid) (PVPA). The polymer coated electrocatalyst showed an ~3.3 times higher oxygen reduction reaction activity compared to that of the commercial CB/Pt and methanol tolerance in the presence of methanol to the electrolyte due to a 50% decreased methanol adsorption on the Pt after coating with the PVPA. Meanwhile, the peroxide generation of the PVPA coated electrocatalyst was as low as 0.8% with 2 M methanol added to the electrolyte, which was much lower than those of the non-PVPA-coated electrocatalyst (7.5%) and conventional CB/Pt (20.5%). Such a high methanol tolerance is very important for the design of a direct methanol fuel cell cathode electrocatalyst with a high performance.
Mohan, S Venkata; Chandrasekhar, K
2011-07-01
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho
2018-02-07
Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.
Kerr, John B.; Tian, Minmin
2000-01-01
A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte, and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula (in an uncharged state): ##STR1## where R.sub.1 is selected from the group consisting of H, OCH.sub.3, OCH.sub.2 CH.sub.3, and OCH.sub.2 phenyl, and R.sub.2 is selected from the group consisting of OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 phenyl, and O.sup.- Li.sup.+ ; and (b) a di-anisole compound having the general formula (in an uncharged state): ##STR2## where R is selected from the group consisting of -OCH.sub.3 and -CH.sub.3, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH.sub.3 (methoxy) or its lithium salt --O.sup.- Li.sup.+. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.
Improved materials and processes of dispenser cathodes
NASA Astrophysics Data System (ADS)
Longo, R. T.; Sundquist, W. F.; Adler, E. A.
1984-08-01
Several process variables affecting the final electron emission properties of impregnated dispenser cathodes were investigated. In particular, the influence of billet porosity, impregnant composition and purity, and osmium-ruthenium coating were studied. Work function and cathode evaporation data were used to evaluate cathode performance and to formulate a model of cathode activation and emission. Results showed that sorted tungsten powder can be reproducibly fabricated into cathode billets. Billet porosity was observed to have the least effect on cathode performance. Use of the 4:1:1 aluminate mixture resulted in lower work functions than did use of the 5:3:2 mixture. Under similar drawout conditions, the coated cathodes showed superior emission relative to uncoated cathodes. In actual Pierce gun structures under accelerated life test, the influence of impregnated sulfur is clearly shown to reduce cathode performance.
Remote control for anode-cathode adjustment
Roose, Lars D.
1991-01-01
An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.
Cathodic Protection of Hot Water Tanks at Fort Sill
2007-06-01
should be flat against the material. Bent rivets will fail under stress . Especially note condition of Dee Ring rivets and Dee Ring metal wear pads...free fall distance. Also, to be stressed are the importance of inspections prior to use, the limitations of the equipment, and unique conditions at...devices during the force test; d. Caution statements on critical use limitations; e. Application limits; f. Proper hook -up, anchoring and tie-off
Synthesis of Ultrathin ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas
2001-04-01
system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film properties have been investigated with respect to...Diamondlike films are characterized by an outstanding combination of advantageous properties : they can be very hard, tough, super-smooth, chemically...5 nm) hard carbon films are being used as protective overcoats on hard disks and read-write heads. The tribological properties of the head-disk
AC-Induced Bias Potential Effect on Corrosion of Steels
2009-02-05
induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models AC Simulated Corrosion testing Stainless steel pipe and coating Cathodic protection Experimental Setup Preliminary
Methods and apparatus for using gas and liquid phase cathodic depolarizers
NASA Technical Reports Server (NTRS)
Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)
1998-01-01
The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.
Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo
2018-01-01
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620
Wu, Allan D.; Samra, Jasmine K.
2017-01-01
The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872369
Shimizu, Renee E; Wu, Allan D; Samra, Jasmine K; Knowlton, Barbara J
2017-01-05
The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Falce, Louis R [San Jose, CA; Ives, R Lawrence [Saratoga, CA
2009-06-09
A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.
Mizuguchi, Nobuaki; Katayama, Takashi; Kanosue, Kazuyuki
2018-02-10
The effect of cerebellar transcranial direct current stimulation (tDCS) on motor performance remains controversial. Some studies suggest that the effect of tDCS depends upon task-difficulty and individual level of task performance. Here, we investigated whether the effect of cerebellar tDCS on the motor performance depends upon the individual's level of performance. Twenty-four naïve participants practiced dart throwing while receiving a 2-mA cerebellar tDCS for 20 min under three stimulus conditions (anodal-, cathodal-, and sham-tDCS) on separate days with a double-blind, counter-balanced cross-over design. Task performance was assessed by measuring the distance between the center of the bull's eye and the dart's position. Although task performance tended to improve throughout the practice under all stimulus conditions, improvement within a given day was not significant as compared to the first no-stimulus block. In addition, improvement did not differ among stimulation conditions. However, the magnitude of improvement was associated with an individual's level of task performance only under cathodal tDCS condition (p < 0.05). This resulted in a significant performance improvement only for the sub-group of participants with lower performance levels as compared to that with sham-tDCS (p < 0.05). These findings suggest that the facilitation effect of cerebellar cathodal tDCS on motor skill learning of complex whole-body movements depends on the level of an individual's task performance. Thus, cerebellar tDCS would facilitate learning of a complex motor skill task only in a subset of individuals. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Use of MgF2 and LiF photocathodes in the extreme ultraviolet.
NASA Technical Reports Server (NTRS)
Lapson, L. B.; Timothy, J. G.
1973-01-01
The photoelectric yields of 2000-A thick samples of MgF2 and LiF have been measured at wavelengths in the range from 1216 to 461 A. Peak values of 43 and 34%, respectively, were obtained at wavelengths around 550 A at 45 deg incidence. Coating the cathode of a channel electron multiplier with 3000 A of MgF2 produced no significant deterioration in the electrical properties and increased the sensitivity by factors of 1.62, 2.76, and 2.60 at wavelengths of 742, 584, and 461 A, respectively. Since the stability of response of the MgF2 photocathodes appears to be equal to that of conventional metallic and semiconducting cathodes, it is concluded that MgF2 would be a practical, high-efficiency photocathode for use in the extreme ultraviolet.
NASA Astrophysics Data System (ADS)
Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun
2018-03-01
Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.
One-dimensional conduction through supporting electrolytes: two-scale cathodic Debye layer.
Almog, Yaniv; Yariv, Ehud
2011-10-01
Supporting-electrolyte solutions comprise chemically inert cations and anions, produced by salt dissolution, together with a reactive ionic species that may be consumed and generated on bounding ion-selective surfaces (e.g., electrodes or membranes). Upon application of an external voltage, a Faraday current is thereby established. It is natural to analyze this ternary-system process through a one-dimensional transport problem, employing the thin Debye-layer limit. Using a simple model of ideal ion-selective membranes, we have recently addressed this problem for moderate voltages [Yariv and Almog, Phys. Rev. Lett. 105, 176101 (2010)], predicting currents that scale as a fractional power of Debye thickness. We address herein the complementary problem of moderate currents. We employ matched asymptotic expansions, separately analyzing the two inner thin Debye layers adjacent to the ion-selective surfaces and the outer electroneutral region outside them. A straightforward calculation following comparable singular-perturbation analyses of binary systems is frustrated by the prediction of negative ionic concentrations near the cathode. Accompanying numerical simulations, performed for small values of Debye thickness, indicate a number unconventional features occurring at that region, such as inert-cation concentration amplification and electric-field intensification. The current-voltage correlation data of the electrochemical cell, obtained from compilation of these simulations, does not approach a limit as the Debye thickness vanishes. Resolution of these puzzles reveals a transformation of the asymptotic structure of the cathodic Debye layer. This reflects the emergence of an internal boundary layer, adjacent to the cathode, wherein field and concentration scaling differs from those of the Gouy-Chapman theory. The two-scale feature of the cathodic Debye layer is manifested through a logarithmic voltage scaling with Debye thickness. Accounting for this scaling, the complied current-voltage data collapses upon a single curve. This curve practically coincides with an asymptotically calculated universal current-voltage relation.
Sun, Liqi; Xie, Yingying; Liao, Xiao-Zhen; Wang, Hong; Tan, Guoqiang; Chen, Zonghai; Ren, Yang; Gim, Jihyeon; Tang, Wan; He, Yu-Shi; Amine, Khalil; Ma, Zi-Feng
2018-04-18
O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na + diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na 1- x Ca x /2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na 1- x Ca x /2 NFM samples show single α-NaFeO 2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na 0.9 Ca 0.05 Ni 1/3 Fe 1/3 Mn 1/3 O 2 (Na 0.9 Ca 0.05 NFM) cathode delivers a capacity of 116.3 mAh g -1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na 0.9 Ca 0.05 NFM cathode during cycling. Compared to NaNMF, the Na 0.9 Ca 0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na 0.9 Ca 0.05 NFM makes it a promising material for practical applications in sodium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory, Investigation and Stability of Cathode Electrocatalytic Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Dong; Liu, Mingfei; Lai, Samson
2012-09-30
The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less
Development program on a cold cathode electron gun
NASA Technical Reports Server (NTRS)
Spindt, C. A.; Holland, C. E.
1985-01-01
During this phase of the cathode development program, SRI improved the multiple electron beam exposure system used to print hole patterns for the cathode arrays, studied anisotropic etch processes, conducted cathode investigations using an emission microscope, reviewed possible alternate materials for cathode fabrication, studied cathode storage techniques, conducted high power operation experiments, and demonstrated high-current-density operation with small arrays of tips.
NASA Astrophysics Data System (ADS)
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.
2016-10-01
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.
Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...
2016-08-15
This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less
Song, Ji-Yoon; Lee, Hyeon-Haeng; Hong, Won Gi; Huh, Yun Suk; Lee, Yun Sung; Kim, Hae Jin; Jun, Young-Si
2018-01-01
For practical application of lithium–sulfur batteries (LSBs), it is crucial to develop sulfur cathodes with high areal capacity and cycle stability in a simple and inexpensive manner. In this study, a carbon cloth infiltrated with a sulfur-containing electrolyte solution (CC-S) was utilized as an additive-free, flexible, high-sulfur-loading cathode. A freestanding carbon cloth performed double duty as a current collector and a sulfur-supporting/trapping material. The active material in the form of Li2S6 dissolved in a 1 M LiTFSI-DOL/DME solution was simply infiltrated into the carbon cloth (CC) during cell fabrication, and its optimal loading amount was found to be in a range between 2 and 10 mg/cm2 via electrochemical characterization. It was found that the interwoven carbon microfibers retained structural integrity against volume expansion/contraction and that the embedded uniform micropores enabled a high loading and an efficient trapping of sulfur species during cycling. The LSB coin cell employing the CC-S electrode with an areal sulfur loading of 6 mg/cm2 exhibited a high areal capacity of 4.3 and 3.2 mAh/cm2 at C/10 for 145 cycles and C/3 for 200 cycles, respectively, with minor capacity loss (<0.03%/cycle). More importantly, such high performance could also be realized in flexible pouch cells with dimensions of 2 cm × 6 cm before and after 300 bending cycles. Simple and inexpensive preparation of sulfur cathodes using CC-S electrodes, therefore, has great potential for the manufacture of high-performance flexible LSBs. PMID:29414863
Song, Ji-Yoon; Lee, Hyeon-Haeng; Hong, Won Gi; Huh, Yun Suk; Lee, Yun Sung; Kim, Hae Jin; Jun, Young-Si
2018-02-07
For practical application of lithium-sulfur batteries (LSBs), it is crucial to develop sulfur cathodes with high areal capacity and cycle stability in a simple and inexpensive manner. In this study, a carbon cloth infiltrated with a sulfur-containing electrolyte solution (CC-S) was utilized as an additive-free, flexible, high-sulfur-loading cathode. A freestanding carbon cloth performed double duty as a current collector and a sulfur-supporting/trapping material. The active material in the form of Li₂S₆ dissolved in a 1 M LiTFSI-DOL/DME solution was simply infiltrated into the carbon cloth (CC) during cell fabrication, and its optimal loading amount was found to be in a range between 2 and 10 mg/cm² via electrochemical characterization. It was found that the interwoven carbon microfibers retained structural integrity against volume expansion/contraction and that the embedded uniform micropores enabled a high loading and an efficient trapping of sulfur species during cycling. The LSB coin cell employing the CC-S electrode with an areal sulfur loading of 6 mg/cm² exhibited a high areal capacity of 4.3 and 3.2 mAh/cm² at C/10 for 145 cycles and C/3 for 200 cycles, respectively, with minor capacity loss (<0.03%/cycle). More importantly, such high performance could also be realized in flexible pouch cells with dimensions of 2 cm × 6 cm before and after 300 bending cycles. Simple and inexpensive preparation of sulfur cathodes using CC-S electrodes, therefore, has great potential for the manufacture of high-performance flexible LSBs.
Chen, Shuru; Gao, Yue; Yu, Zhaoxin; ...
2016-11-30
We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuru; Gao, Yue; Yu, Zhaoxin
We present that lithium-sulfur (Li-S) battery is a promising energy storage technology to replace lithium ion batteries for higher energy density and lower cost. Dissolution of lithium polysulfide intermediates in conventional Li-S electrolytes is known as one of the key technical barriers to the development of Li-S, because it promotes redistribution and irreversible deposition of Li 2S, and also forces large amounts of electrolyte to be used, shortening cycling life and driving down cell energy density. Recently, dimethyl disulfide as a functional co-solvent has been demonstrated to show an alternate electrochemical reaction pathway for sulfur cathodes by the formation ofmore » dimethyl polysulfides and lithium organosulfides as intermediates and reduction products. In this work, comprehensive studies show that this new pathway not only provides high capacity but also enables excellent capacity retention through a built-in automatic discharge shutoff mechanism by tuning carbon/sulfur ratio in sulfur cathodes to reduce unfavorable Li 2S formation. Furthermore, this new electrolyte system is also found to enable high capacity of high-sulfur-loading cathodes with low electrolyte/sulfur (E/S) ratios, such as a stable specific capacity of around 1000 mAh g -1 using a low electrolyte amount (i.e, E/S ratio of 5 mL g -1) and highsulfur-loading (4 mg cm -2) cathodes. This electrolyte system almost doubles the capacity obtained with conventional electrolytes under the same harsh conditions. In conclusion, these results highlight the practical potential of this electrolyte system to enable high-energy-density Li-S batteries.« less
Prototype of a scaled‐up microbial fuel cell for copper recovery
Rodenas Motos, Pau; Molina, Gonzalo; Sleutels, Tom; Saakes, Michel; Buisman, Cees
2017-01-01
Abstract Background Bioelectrochemical systems (BESs) enable recovery of electrical energy through oxidation of a wide range of substrates at an anode and simultaneous recovery of metals at a cathode. Scale‐up of BESs from the laboratory to pilot scale is a challenging step in the development of the process, and there are only a few successful experiences to build on. This paper presents a prototype BES for the recovery of copper. Results The cell design presented here had removable electrodes, similar to those in electroplating baths. The anode and cathode in this design could be replaced independently. The prototype bioelectrochemical cell consisted of an 835 cm2 bioanode fed with acetate, and a 700 cm2 cathode fed with copper. A current density of 1.2 A/−2 was achieved with 48 mW m−2 of power production. The contribution of each component (anode, electrolytes, cathode and membrane) was evaluated through the analysis of the internal resistance distribution. This revealed that major losses occurred at the anode, and that the design with removable electrodes results in higher internal resistance compared with other systems. To further assess the practical applicability of BES for copper recovery, an economic evaluation was performed. Conclusion Analysis shows that the internal resistance of several lab‐scale BESs is already sufficiently low to make the system economic, while the internal resistance for scaled‐up systems still needs to be improved considerably to become economically applicable.© 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29104342
Microbial fuel cells: From fundamentals to applications. A review.
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-15
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
You, Ya; Celio, Hugo; Li, Jianyu; Dolocan, Andrei; Manthiram, Arumugam
2018-03-30
High-Ni layered oxides are promising next-generation cathodes for lithium-ion batteries owing to their high capacity and lower cost. However, as the Ni content increases over 70 %, they have a high dynamic affinity towards moisture and CO 2 in ambient air, primarily reacting to form LiOH, Li 2 CO 3 , and LiHCO 3 on the surface, which is commonly termed "residual lithium". Air exposure occurs after synthesis as it is common practice to handle and store them under ambient conditions. The air exposure leads to significant performance losses, and hampers the electrode fabrication, impeding their practical viability. Herein, we show that substituting a small amount of Al for Ni in the crystal lattice notably improves the chemical stability against air by limiting the formation of LiOH, Li 2 CO 3 , LiHCO 3 , and NiO in the near-surface region. The Al-doped high-Ni oxides display a high capacity retention with excellent rate capability and cycling stability after being exposed to air for 30 days. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microbial fuel cells: From fundamentals to applications. A review
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-01
In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.
Extended test of a xenon hollow cathode for a space plasma contactor
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.
1994-01-01
Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 4700 hours with small changes in operating parameters. The discharge experienced 4 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was reignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1A) xenon hollow cathode reported to date.
Continuing life test of a xenon hollow cathode for a space plasma contactor
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.
1994-01-01
Implementation of a hollow cathode plasma contactor for charge control on the Space Station has required validation of long-life hollow cathodes. A test series of hollow cathodes and hollow cathode plasma contactors was initiated as part of the plasma contactor development program. An on-going wear-test of a hollow cathode has demonstrated cathode operation in excess of 10,000 hours with small changes in operating parameters. The discharge has experienced 10 shutdowns during the test, all of which were due to test facility failures or expellant replenishment. In all cases, the cathode was re-ignited at approximately 42 volts and resumed typical operation. This test represents the longest demonstrated stable operation of a high current (greater than 1 A) xenon hollow cathode reported to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaodong; Zhou, Yi, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn; Song, Bo, E-mail: yizhou@suda.edu.cn, E-mail: songbo@suda.edu.cn, E-mail: liyf@iccas.ac.cn
2015-08-10
Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH{sub 3}NH{sub 3}PbI{sub 3−X}Cl{sub X}. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than thatmore » of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (J{sub sc}). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.« less
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
NASA Astrophysics Data System (ADS)
Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; Hu, Peng; Wang, Changhao; Wang, Ruzhi; Miao, Naihua
2018-05-01
The Scandia doped thermionic cathodes have received great attention owing to their high electron emission density in past two decades. Here, Scandia doped Re3W matrix scandate (RS) cathodes are fabricated by using Sc2O3 doped Re3W powders that prepared by spray drying method. The micromorphology, surface composition and chemical states of RS cathode are investigated with various modern technologies. It reveals that the reduction temperature of RS powders is dramatically increased by Sc2O3. On the surface of RS cathode, a certain amount of Sc2O3 nanoparticles and barium salt submicron particles are observed. According to the in situ Auger electron spectroscopy analysis, the concentration ratio of Ba:Sc:O is determined to be 2.9:1.1:2.7. The X-ray photoelectron spectroscopy data indicates that low oxidation state of Sc is clearly observed in scandate cathodes. The high atomic ratio of Ba on RS cathode surface is suggested due to the high adsorption of Re3W to Ba. Moreover, RS cathode shows better adsorption to Sc by comparison with conventional tungsten matrix scandate cathode. For RS cathode, the main depletion of Sc is suggested to -OSc desorbing from RS cathode surface. RS cathode is expected to be an impressive thermionic cathode with good emission properties and ion anti-bombarding insensitivity.
2013-06-01
vicinity of new patches. Fiber -reinforced polymer (FRP) composite wrapping systems have been evolving over the last 20 years and are now a viable...material is a woven glass fiber pre-impregnated with moisture-activated resins that cure underwater after being put in place. Figure 4. ICPW...wrap system The FRP composite wrap material that was selected is Aqua Wrap Type G- 05, a woven glass fiber pre-impregnated with moisture-activated
[Effect of various anions on the rate of microbe-induced corrosion].
Piliashenko-Novokhatnyĭ, A I; Asaulenko, L G
2002-01-01
Experimental corroboration of correctness of theoretical thermodynamic calculations of e.m.f. of corrosion reactions induced by soil microorganisms is obtained in the work. A hypothesis is put forward on possible mechanism for stimulation of microbe-induced corrosion by chloride ions. The results obtained permit revealing the reasons of low efficiency conditions of cathode protection in cases of active involvement of soil microorganisms into corrosion processes which are used for maintenance of underground constructions.
The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers
NASA Technical Reports Server (NTRS)
Danford, M. D.; Mendrek, M. J.; Walsh, D. W.
1995-01-01
The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.
NASA Astrophysics Data System (ADS)
Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert
2017-09-01
Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T < 1050 °C). This transformation is connected to an oxygen incorporation which occurs at regions facing high oxygen partial pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.
The corrosion protection of 2219-T87 aluminum by organic and inorganic zinc-rich primers
NASA Technical Reports Server (NTRS)
Danford, M. D.; Mendrek, M. J.; Walsh, D. W.
1995-01-01
The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electro-chemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. the galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 micro A/cm(exp 2) and 23.7 micro A/cm(exp 2) for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, P.
1984-02-01
This paper presents test data, evaluation and recommendations resulting from an investigative cathodic protection and coating integrity survey of a twenty year old, onshore crude oil pipeline. The pipeline discussed is 20 inches (508 mm) in diameter, 233 kilometers long and originates at a pumping facility in an inland oil field. The pipeline runs through mountainous terrain, low lying marshland and terminates at a twin 16 inch submarine crossing. The pipeline is located in Southern Kalimantan, Indonesia and is part of the Pertamina Unit IV installation. The field testing was performed by Norton Corrosion Limited (NCL) during the months ofmore » March and April, 1983 and was done concurrently with river crossing profile work by Sterling Energy and Resource Technologies, Limited. The purpose of the survey was to determine the condition of the pipeline and the condition and effectiveness of existing corrosion control measures. The pipeline had experienced an increasing number of leaks in recent years and it was necessary to know the physical condition of the line and what could be done to extend its useful life. The present and future integrity of the pipeline was critical to the clients' planning in that this particular line is the only onshore connection between the field and new refinery which was nearing completion.« less
The corrosion protection of AISI(TM) 1010 steel by organic and inorganic zinc-rich primers
NASA Technical Reports Server (NTRS)
Danford, M. D.; Mendrek, M. J.
1995-01-01
The behavior of zinc-rich primer-coated AISI 1010 steel in 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR), were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electromechanical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 1010 steel cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high current between the steel cathode and both zinc-rich primer anodes (38.8 and 135.2 microns A/sq cm for the organic and inorganic primers, respectively). The results of corrosion rate determinations demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. EIS equivalent circuit parameters confirmed this conclusion. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application on solid rocket booster steel hardware.
Low temperature aluminum reduction cell using hollow cathode
Brown, Craig W.; Frizzle, Patrick B.
2002-08-20
A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. A plurality of non-consumable anodes are disposed substantially vertically in the electrolyte along with a plurality of monolithic hollow cathodes. Each cathode has a top and bottom and the cathodes are disposed vertically in the electrolyte and the anodes and the cathodes are arranged in alternating relationship. Each of the cathodes is comprised of a first side facing a first opposing anode and a second side facing a second opposing anode. The first and second sides are joined by ends to form a reservoir in the hollow cathode for collecting aluminum therein deposited at the cathode.
Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress
NASA Astrophysics Data System (ADS)
Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng
2014-02-01
In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.
Physical model and experimental results of cathode erosion related to power supply ripple
NASA Technical Reports Server (NTRS)
Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.
1992-01-01
This paper discusses the physical effects of power supply ripple on cathode erosion and cathode arc attachment in a water-cooled, 30 kW nitrogen arcjet. Experimental results are presented for 2 percent thoriated tungsten, which show that the long-term cathode erosion rate is a decreasing function of current ripple over the range 1-13 percent. Above this range, the cathode discharge becomes unstable, and the erosion rate rapidly increases. A qualitative model of this effect is given in terms of a magnetically induced radial motion of the arc column, and an overall increase in the cathode spot radius due to the higher peak current associated with higher ripple. The most important effect of power supply ripple is therefore shown to be its ability to collectively drive the cathode attachment away from the cathode center. This leads to an increase in the cathode attachment area, and a subsequent decrease in the cathode erosion rate.
Emission current control system for multiple hollow cathode devices
NASA Technical Reports Server (NTRS)
Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)
1988-01-01
An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.
Atmospheric pressure arc discharge with ablating graphite anode
NASA Astrophysics Data System (ADS)
Nemchinsky, V. A.; Raitses, Y.
2015-06-01
The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.
Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen
2017-01-01
Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527
Preliminary study on aluminum-air battery applying disposable soft drink cans and Arabic gum polymer
NASA Astrophysics Data System (ADS)
Alva, S.; Sundari, R.; Wijaya, H. F.; Majlan, E. H.; Sudaryanto; Arwati, I. G. A.; Sebayang, D.
2017-09-01
This study is in relation to preliminary investigation of aluminium-air battery using disposable soft drink cans as aluminium source for anode. The cathode uses commercial porous carbon sheet to trap oxygen from air. This work applies a commercial cashing to place carbon cathode, electrolyte, Arabic gum polymer, and aluminium anode in a sandwich-like arrangement to form the aluminium-air battery. The Arabic gum as electrolyte polymer membrane protects anode surface from corrosion due to aluminium oxide formation. The study result shows that the battery discharge test using constant current loading of 0.25 mA yields battery capacity of 0.437 mAh with over 100 minute battery life times at 4M NaOH electrolyte and 20 % Arabic gum polymer as the best performance in this investigation. This study gives significant advantage in association with beneficiation of disposable soft drink cans from municipal solid waste as aluminium source for battery anode.
NASA Astrophysics Data System (ADS)
Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen
2017-06-01
Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.
Interfacial reactions in lithium batteries
NASA Astrophysics Data System (ADS)
Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil
2017-08-01
The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.
NEXIS Reservoir Cathode 2000 Hour Life Test
NASA Technical Reports Server (NTRS)
Vaughn, Jason; Schneider, Todd; Polk, Jay; Goebel, Dan; Ohlinger, Wayne; Hill, D. Norm
2004-01-01
The current design of the Nuclear Electric Xenon Ion System (NEXIS) employs a reservoir cathode as both the discharge and neutralizer cathode to meet the 10 yr thruster design life. The main difference between a reservoir cathode and a conventional discharge cathode is the source material (barium-containing compound) is contained within a reservoir instead of in an impregnated insert in the hollow tube. However, reservoir cathodes do not have much life test history associated with them. In order to demonstrate the feasibility of using a reservoir cathode as an integral part of the NEXIS ion thruster, a 2000 hr life test was performed. Several proof-of-concept (POC) reservoir cathodes were built early in the NEXIS program to conduct performance testing as well as life tests. One of the POC cathodes was sent to Marshall Space Flight Center (MSFC) where it was tested for 2000 hrs in a vacuum chamber. The cathode was operated at the NEXIS design point of 25 A discharge current and a xenon flow rate of 5.5 sccm during the 2000 hr test. The cathode performance parameters, including discharge current, discharge voltage, keeper current; keeper voltage, and flow rate were monitored throughout test. Also, the temperature upstream of cathode heater, the temperature downstream of the cathode heater, and the temperature of the orifice plate were monitored throughout the life of the test. The results of the 2000 hr test will be described in this paper. Included in the results will be time history of discharge current, discharge voltage, and flow rate. Also, a time history of the cathode temperature will be provided.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas
2014-01-01
The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.
High current density cathode for electrorefining in molten electrolyte
Li, Shelly X.
2010-06-29
A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.
Rotating cathode device for molten salt bath
NASA Astrophysics Data System (ADS)
1983-11-01
The invention relates to a rotating cathode device for molten salt baths used to prepare metallic titanium or aluminum and the like by electrolysis of molten salts. The rotating cathode device is described. It is a cyclindrical cathode mounted on a rotating spindle, made of a lightweight material and mounted in such a way as to avoid thermal strain between the rotational shaft and the cylindrical cathode. At least one of the upper and lower ends of the cylindrical cathode are closed by a cap and a seal consisting of an inorganic fiber composite in the area between the cap and the cathode.
Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2001-01-01
The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.
NASA Technical Reports Server (NTRS)
Sparks, S. D.
1973-01-01
The Varian cup and slat dynode chain was modified to have a flat cathode. These modifications were incorporated in an all-electrostatic photomultiplier tube having a rise time of 0.25 n sec. The tube delivered under the contract had a flat S-20 opaque cathode with a useful diameter of 5 mm. The design of the tube is such that a III to V cathode support is mounted in place of the existing cathode substrate. This cathode support is designed to accept a transferred III to V cathode and maintain the cathode surface in the same position as the S-20 photocathode.
Diagnostics of cathode material loss in cutting plasma torch
NASA Astrophysics Data System (ADS)
Gruber, J.; Šonský, J.; Hlína, J.
2014-07-01
A cutting plasma torch was observed in several ways by a high-speed camera with a focus on the cathode area. In the first experiment, the plasma arc between the nozzle tip and anode was recorded in a series of duty cycles ranging from new unworn cathodes to cathode failure due to wear and material loss. In the second experiment, we used a specially modified nozzle to observe the inside area between the cathode and the nozzle exit through a fused silica window. Finally, using tilted view, we observed a pool of molten hafnium at the cathode tip during the plasma torch operation. The process of cathode material melting, droplet formation, their expulsion and rate of cathode material loss was examined.
Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor); Hofer, Richard R. (Inventor)
2012-01-01
An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.
Hollow Cathode Studies for the Next Generation Ion Engines in JAXA
NASA Astrophysics Data System (ADS)
Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi
The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.
Apparatus and method for treating a cathode material provided on a thin-film substrate
Hanson, Eric J.; Kooyer, Richard L.
2001-01-01
An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.
Apparatus and method for treating a cathode material provided on a thin-film substrate
Hanson, Eric J.; Kooyer, Richard L.
2003-01-01
An apparatus and method for treating a cathode material provided on a surface of a continuous thin-film substrate and a treated thin-film cathode having increased smoothness are disclosed. A web of untreated cathode material is moved between a feed mechanism and a take-up mechanism, and passed through a treatment station. The web of cathode material typically includes areas having surface defects, such as prominences extending from the surface of the cathode material. The surface of the cathode material is treated with an abrasive material to reduce the height of the prominences so as to increase an 85 degree gloss value of the cathode material surface by at least approximately 10. The web of cathode material may be subjected to a subsequent abrasive treatment at the same or other treatment station. Burnishing or lapping film is employed at a treatment station to process the cathode material. An abrasive roller may alternatively be used to process the web of cathode material. The apparatus and method of the present invention may also be employed to treat the surface of a lithium anode foil so as to cleanse and reduce the roughness of the anode foil surface.
NASA Astrophysics Data System (ADS)
Aizpurietis, P.; Vanags, M.; Kleperis, J.; Bajars, G.
2013-04-01
Hydrogen can be a good alternative to fossil fuels under the conditions of world's crisis as an effective energy carrier derived from renewable resources. Among all the known methods of hydrogen production, water electrolysis gives the ecologically purest hydrogen, so it is of importance to maximize the efficiency of this process. The authors consider the influence of plasma sprayed Ni-Al protective coating of 316L steel anode-cathode electrodes in DC electrolysis. In a long-term (24 h) process the anode corrodes strongly, losing Cr and Ni ions which are transferred to the electrolyte, while only minor corrosion of the cathode occurs. At the same time, the composition of anode and cathode electrodes protected by Ni-Al coating changes only slightly during a prolonged electrolysis. As the voltammetry and Tafel plots evidence, the Ni-Al coating protects both the anode and cathode from the corrosion and reduces the potential of hydrogen evolution. The results obtained show that such a coating works best in the case of steel electrodes. Darbā pētīts, kā līdzstrāvas elektrolīzē tērauda 316L elektrodus (anods un katods) ietekmē ar plazmas izputināšanas metodi iegūts Ni-Al pārklājums. Tikko uznestam pārklājumam ir mikrostrukturēta virsma, kas kodināšanas laikā mainās, gan pēc reljefa, gan elementu sastāva. Veicot ilgstošu (24 stundas elektrolīzi), atrasts, ka tikai tērauda elektrods anoda lomā intensīvi korodē un zaudē hroma un niķeļa jonus, kas pāriet elektrolītā, turpretī katods mainās relatīvi maz. Pārklājums Ni-Al pēc uznešanas tiek kodināts karstā sārmā, kad tiek izšķīdināta daļa sastāvā esošo elementu (Al, Si, Cd), bet ilgstošas elektrolīzes laikā pārklājuma sastāvs mainās maz gan anodam, gan katodam. Elektrodu elektroķīmiskie raksturlielumi noteikti ar voltamperometrijas un Tāfeļa līkņu analīzes metodēm. Atrasts, ka Ni-Al pārklājums aizsargā gan anodu, gan katodu no korozijas un samazina ūdeņraža izdalīšanās potenciālu, lai gan ilgstošas elektrolīzes laikā katoda pārklājumā parādās plaisas. No iegūtajiem rezultātiem ieteikts reālai elektrolīzes šūnai par anodu un katodu izmantot tēraudu, kas pārklāts ar plazmas izputināšanas metodē iegūtu Ni-Al aizsargpārklājumu.
Chung, Sheng-Heng; Manthiram, Arumugam
2018-02-01
The primary challenge with lithium-sulfur battery research is the design of sulfur cathodes that exhibit high electrochemical efficiency and stability while keeping the sulfur content and loading high and the electrolyte/sulfur ratio low. With a systematic investigation, a novel graphene/cotton-carbon cathode is presented here that enables sulfur loading and content as high as 46 mg cm -2 and 70 wt% with an electrolyte/sulfur ratio of as low as only 5. The graphene/cotton-carbon cathodes deliver peak capacities of 926 and 765 mA h g -1 , respectively, at C/10 and C/5 rates, which translate into high areal, gravimetric, and volumetric capacities of, respectively, 43 and 35 mA h cm -2 , 648 and 536 mA h g -1 , and 1067 and 881 mA h cm -3 with a stable cyclability. They also exhibit superior cell-storage capability with 95% capacity-retention, a low self-discharge constant of just 0.0012 per day, and stable poststorage cyclability after storing over a long period of six months. This work demonstrates a viable approach to develop lithium-sulfur batteries with practical energy densities exceeding that of lithium-ion batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vtorushina, A. N.; Nikonova, E. D.
2016-02-01
This paper deals with the urgent issue of the search of new drugs based on plant raw materials that have an influence on various stages of oxidation processes occurring in the human body. The aim of this paper is to determine the antioxidant activity of the bilberry extracts that are used in the medicine practice by a cathodic voltammetry method. We consider the influence of water and alcohol bilberry extracts on the process of oxygen electroreduction. From these extracts the most activity relation to the process of cathodic oxygen reduction showed alcohol (40%) bilberry extract. It was also stated that the alcohol extract of bilberry has a greater antioxidant activity than other known antioxidants such as ascorbic acid, glucose, dihydroquercetin. Thus, after consideration of a number of plant objects, we showed the possibility of applying the method of cathodic voltammetry for the determination of total antioxidant activity of plant material and identifying and highlighting the most perspective sources of biologically active substances (BAS), as well as the ability of identifying extractants that fully extract BAS from plant raw materials. The activity data of extracts of plant raw materials gives an opportunity of establishing an effective yield phytopreparation based on bilberry that has an antioxidant effect.