Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yumak, Mehmet; Mergen, Ayhan; Qureshi, Anjum; Singh, N. L.
2015-03-01
Pyrochlore general formula of A2B2X7 where A and B are cations and X is an anion Pyrochlore compounds exhibit semiconductor, metallic or ionic conduction properties, depending on the doping, compositions/ substituting variety of cations and oxygen partial pressure. Ion beam irradiation can induce the structural disordering by mixing the cation and anion sublattices, therefore we aim to inevestigate effects of irradiation in pyrochlore compounds. In this study, Eu and Yb-doped Bi1.5Zn0.92Nb1.5O6.92 (Eu-BZN, Yb-BZN) Doping effect and single phase formation of Eu-BZN, Yb-BZN was characterized by X-ray diffraction technique (XRD). Radiation-induced effect of 85 MeV C6+ ions on Eu-BZN, Yb-BZN was studied by XRD, scanning electron microscopy (SEM) and temperature dependent dielectric measurements at different fluences. XRD results revealed that the ion beam-induced structural amorphization processes in Eu-BZN and Yb-BZN structures. Our results suggested that the ion beam irradiation induced the significant change in the temprature depndent dielectric properties of Eu-BZN and Yb-BZN pyrochlores due to the increased oxygen vacancies as a result of cation and anion disordering. Department of Metallurgical and Materials Eng., Marmara University, Istanbul-81040, Turkey.
Gudjonsdottir, Solrun; van der Stam, Ward; Kirkwood, Nicholas; Evers, Wiel H; Houtepen, Arjan J
2018-05-16
Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li + and Na + the onset is at significantly less negative potentials. For larger ions (K + , quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li + and Na + . Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies.
2018-01-01
Control over the charge density is very important for implementation of colloidal semiconductor nanocrystals into various optoelectronic applications. A promising approach to dope nanocrystal assemblies is charge injection by electrochemistry, in which the charge compensating electrolyte ions can be regarded as external dopant ions. To gain insight into the doping mechanism and the role of the external dopant ions, we investigate charge injection in ZnO nanocrystal assemblies for a large series of charge compensating electrolyte ions with spectroelectrochemical and electrochemical transistor measurements. We show that charge injection is limited by the diffusion of cations in the nanocrystal films as their diffusion coefficient are found to be ∼7 orders of magnitude lower than those of electrons. We further show that the rate of charge injection depends strongly on the cation size and cation concentration. Strikingly, the onset of electron injection varies up to 0.4 V, depending on the size of the electrolyte cation. For the small ions Li+ and Na+ the onset is at significantly less negative potentials. For larger ions (K+, quaternary ammonium ions) the onset is always at the same, more negative potential, suggesting that intercalation may take place for Li+ and Na+. Finally, we show that the nature of the charge compensating cation does not affect the source-drain electronic conductivity and mobility, indicating that shallow donor levels from intercalating ions fully hybridize with the quantum confined energy levels and that the reorganization energy due to intercalating ions does not strongly affect electron transport in these nanocrystal assemblies. PMID:29718666
Chen, Wei; Zhou, Yecheng; Wang, Linjing; Wu, Yinghui; Tu, Bao; Yu, Binbin; Liu, Fangzhou; Tam, Ho-Won; Wang, Gan; Djurišić, Aleksandra B; Huang, Li; He, Zhubing
2018-05-01
Both conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiO x hole transport layer (HTL) is realized successfully by 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ). Determined by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, the Fermi level (E F ) of NiO x HTLs is increased from -4.63 to -5.07 eV and valence band maximum (VBM)-E F declines from 0.58 to 0.29 eV after F6TCNNQ doping. The energy level offset between the VBMs of NiO x and perovskites declines from 0.18 to 0.04 eV. Combining with first-principle calculations, electrostatic force microscopy is applied for the first time to verify direct electron transfer from NiO x to F6TCNNQ. The average power conversion efficiency of CsFAMA mixed cation PSCs is boosted by ≈8% depending on F6TCNNQ-doped NiOx HTLs. Strikingly, the champion cell conversion efficiency of CsFAMA mixed cations and MAPbI 3 -based devices gets to 20.86% and 19.75%, respectively. Different from passivation effect, the results offer an extremely promising molecular doping method for inorganic CTLs in PSCs. This methodology definitely paves a novel way to modulate the doping in hybrid electronics more than perovskite and organic solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water
Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko
2013-08-13
Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.
Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov
Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesiummore » oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.« less
High capacity nickel battery material doped with alkali metal cations
Jackovitz, John F.; Pantier, Earl A.
1982-05-18
A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.
NASA Astrophysics Data System (ADS)
Tang, G. D.; Han, Q. J.; Xu, J.; Ji, D. H.; Qi, W. H.; Li, Z. Z.; Shang, Z. F.; Zhang, X. Y.
2014-04-01
Ferrite powder samples of CrxFe3-xO4 (0.0≤x≤1.0) were prepared by chemical co-precipitation, and calcined in a tube furnace with argon-flow at 1723 K for 2 h. X-ray diffraction patterns indicated that all the samples had an (A)[B]2O4 single phase cubic spinel structure with a Fd3barm space group. Magnetic measurements indicated that the magnetization of the samples decreased with the Cr doping level. A new model for the magnetic ordering in these samples was employed to explain the dependence of the magnetization and cation distribution on the Cr doping level; namely, taking into consideration constraints arising from Hund's rules and from the spin direction of the itinerant 3d electrons, the directions of the Cr2+ and Cr3+ cation magnetic moments were taken to lie antiparallel to the moments of the Fe cations within the same sub-lattice (A or B sub-lattice).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Asar; Gajbhiye, Namdeo S., E-mail: nsg@iitk.ac.i
Cuprous oxide (Cu{sub 2}O) flower-like nanostructures doped with various metal ions i.e. Fe, Co, Ni and Mn have been synthesized by an organic phase solution method. The powder X-ray diffraction study clearly reveals them as single phase simple cubic cuprite lattice. Study of their magnetic properties have shown that these doped samples are ferromagnetic in nature; however, no such property was observed for the undoped Cu{sub 2}O sample. The magnitude of the ferromagnetic behavior was found to be dependent on the dopant metal ions amount, which increased consistently with its increase. As total magnetic moment contribution of the doped metalmore » ions calculated was insignificant, it is believed to have originated from the induced magnetic moments at cation deficiency sites in the material, created possibly due to the disturbance of the crystal lattice by the dopant ions. The existence of the defects has been supported by photoluminescence spectra of the doped samples. -- Graphical abstract: Room temperature ferromagnetic behavior was observed in the Cu{sub 2}O nanoflowers doped with Fe, Co, Ni and Mn ions. Cation deficiencies formed due to dopant ions were possibly responsible for ferromagnetism. Display Omitted« less
NASA Astrophysics Data System (ADS)
Hassanpour, A.; Guo, P.; Shen, S.; Bianucci, P.
2017-10-01
Undoped and C-doped (C: Mg2+, Ni2+, Mn2+, Co2+, Cu2+, Cr3+) ZnO nanorods were synthesized by a hydrothermal method at temperatures as low as 60 °C. The effect of doping on the morphology of the ZnO nanorods was visualized by taking their cross section and top SEM images. The results show that the size of nanorods was increased in both height and diameter by cation doping. The crystallinity change of the ZnO nanorods due to each doping element was thoroughly investigated by an x-ray diffraction (XRD). The XRD patterns show that the wurtzite crystal structure of ZnO nanorods was maintained after cation addition. The optical Raman-active modes of undoped and cation-doped nanorods were measured with a micro-Raman setup at room temperature. The surface chemistry of samples was investigated by x-ray photoelectron spectroscopy and energy-dispersive x-ray spectroscopy. Finally, the effect of each cation dopant on band-gap shift of the ZnO nanorods was investigated by a photoluminescence setup at room temperature. Although the amount of dopants (Mg2+, Ni2+, and Co2+) was smaller than the amount of Mn2+, Cu2+, and Cr3+ in the nanorods, their effect on the band structure of the ZnO nanorods was profound. The highest band-gap shift was achieved for a Co-doped sample, and the best crystal orientation was for Mn-doped ZnO nanorods. Our results can be used as a comprehensive reference for engineering of the morphological, structural and optical properties of cation-doped ZnO nanorods by using a low-temperature synthesis as an economical mass-production approach.
NASA Astrophysics Data System (ADS)
Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao
2017-11-01
We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.
NASA Astrophysics Data System (ADS)
Zhang, X. Y.; Xu, J.; Li, Z. Z.; Qi, W. H.; Tang, G. D.; Shang, Z. F.; Ji, D. H.; Lang, L. L.
2014-08-01
(A)[B]2O4 spinel ferrite samples with the composition Cux1Crx2Fe3-x1-x2O4 (0.0≤x1≤0.284 and 1.04≥x2≥0.656) were prepared by a chemical co-precipitation method. X-ray diffraction patterns indicated that the samples had a single-phase cubic spinel structure. It is interesting that the saturation magnetization of the samples increased when Cu2+ or Cu3+ (with 1 or 2μB of magnetic moment) substituted for Cr2+ or Cr3+ (with 4 or 3μB), which cannot be obviously explained if the magnetic moments of Cr2+ and Cr3+ cations are assumed to be parallel to those of the Fe and Cu cations. However, with the assumption that the magnetic moments of Cr2+ and Cr3+ cations are antiparallel to the Fe and Cu cation moments in spinel ferrites, the dependence on the Cu doping level of the sample magnetic moments at 10 K was fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. Using the cation distributions obtained in the fitting process, the experimental observation that the magnetic moment of the samples increased with increasing Cu doping level was explained. This work therefore provides experimental evidence that the magnetic moments of the Cr2+ and Cr3+ cations are antiparallel to those of the Fe and Cu cations in spinel ferrites.
Renaudin, Guillaume; Gomes, Sandrine; Nedelec, Jean-Marie
2017-01-01
Doped calcium phosphate bioceramics are promising materials for bone repair surgery because of their chemical resemblance to the mineral constituent of bone. Among these materials, BCP samples composed of hydroxyapatite (Ca10(PO4)6(OH)2) and β-TCP (Ca3(PO4)2) present a mineral analogy with the nano-multi-substituted hydroxyapatite bio-mineral part of bones. At the same time, doping can be used to tune the biological properties of these ceramics. This paper presents a general overview of the doping mechanisms of BCP samples using cations from the first-row transition metals (from manganese to zinc), with respect to the applied sintering temperature. The results enable the preparation of doped synthetic BCP that can be used to tailor biological properties, in particular by tuning the release amounts upon interaction with biological fluids. Intermediate sintering temperatures stabilize the doping elements in the more soluble β-TCP phase, which favors quick and easy release upon integration in the biological environment, whereas higher sintering temperatures locate the doping elements in the weakly soluble HAp phase, enabling a slow and continuous supply of the bio-inspired properties. An interstitial doping mechanism in the HAp hexagonal channel is observed for the six investigated cations (Mn2+, Fe3+, Co2+, Ni2+, Cu2+ and Zn2+) with specific characteristics involving a shift away from the center of the hexagonal channel (Fe3+, Co2+), cationic oxidation (Mn3+, Co3+), and also cationic reduction (Cu+). The complete crystallochemical study highlights a complex HAp doping mechanism, mainly realized by an interstitial process combined with calcium substitution for the larger cations of the series leading to potentially calcium deficient HAp. PMID:28772452
Temperature Dependence Discontinuity in the Stability of Manganese doped Ceria Nanocrystals
Wu, Longjia; Dholabhai, Pratik; Uberuaga, Blas P.; ...
2017-01-05
CeO 2 has strong potential for chemical-looping water splitting. It has been shown that manganese doping decreases interface energies of CeO 2, allowing increased stability of high surface areas in this oxygen carrier oxide. The phenomenon is related to the segregation of Mn3+ at interfaces, which causes a measurable decrease in excess energy. Here in the present work, it is shown that, despite the stability of nanocrystals of manganese-doped CeO 2 with relation to undoped CeO 2, the effect is strongly dependent on the oxidation state of manganese, i.e., on the temperature. At temperatures below 800 °C, Mn is inmore » the 3+ valence state, and coarsening is hindered by the reduced interface energetics, showing smaller crystal sizes with increasing Mn content. At temperatures above 800 °C, Mn is reduced to its 2+ valence state, and coarsening is enhanced with increasing Mn content. Atomistic simulations show the segregation of Mn to grain boundaries is relatively insensitive to the charge state of the dopant. However, point defect modeling finds that the reduced state causes a decrease in cation vacancy concentration and an increase in cation interstitials, reducing drag forces for grain boundary mobility and increasing growth rates.« less
NASA Astrophysics Data System (ADS)
Todorov, Yanko M.; Hideshima, Yasufumi; Noguchi, Hideyuki; Yoshio, Masaki
The theoretical capacity and cation vacancy of metal ion (M)-doped LiMn 2- xM xO 4 spinel compounds serving as positive electrodes in a 4-V lithium ion batteries are calculated. The capacity depends strongly on the mole fraction of doped metal ion and vacancies. The theoretical capacity increases with increasing oxidation number of the doped metal ion in the 16d site of LiMn 2O 4 at the same doping fraction. The validity of the proposed equation for calculation of the capacity has been initially confirmed using a metal ion with well-known valence, such as the Al ion. The oxidation state of Co, Ni and Cr ions in the spinel structure is found to be trivalent, divalent and trivalent, respectively. Analysis shows that metal ion-doped spinel compounds with low vacancy content promote high capacity.
Kobayashi, Atsushi; Suzuki, Yui; Ohba, Tadashi; Ogawa, Tomohiro; Matsumoto, Takeshi; Noro, Shin-ichiro; Chang, Ho-Chol; Kato, Masako
2015-03-16
A series of flexible porous coordination polymers (PCPs) RE-Co, composed of a Co(III)-metalloligand [Co(dcbpy)3](3-) (Co; H2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and lanthanide cations (RE(3+) = La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+)), was systematically synthesized. X-ray crystallographic analysis revealed that the six carboxylates at the top of each coordination octahedron of Co(III)-metalloligand were commonly bound to RE(3+) cations to form a rock-salt-type porous coordination framework. When RE-Co contains a smaller and heavier RE(3+) cation than Nd(3+), the RE-Co crystallized in the cubic Fm-3m space group, whereas the other three RE-Co with larger RE(3+) crystallized in the lower symmetrical orthorhombic Fddd space group, owing to the asymmetric 10-coordinated bicapped square antiprism structure of the larger RE(3+) cation. Powder X-ray diffraction and vapor-adsorption isotherm measurements revealed that all synthesized RE-Co PCPs show reversible amorphous-crystalline transitions, triggered by water-vapor-adsorption/desorption. This transition behavior strongly depends on the kind of RE(3+); the transition of orthorhombic RE-Co was hardly observed under exposure to CH3OH vapor, but the RE-Co with smaller cations such as Gd(3+) showed the transition under exposure to CH3OH vapors. Further tuning of vapor-adsorption property was examined by doping of Ru(II)-metalloligands, [Ru(dcbpy)3](4-), [Ru(dcbpy)2Cl2](4-), [Ru(dcbpy)(tpy)Cl](-), and [Ru(dcbpy)(dctpy)](3-) (abbreviated as RuA, RuB, RuC, and RuD, respectively; tpy = 2,2':6',2″-terpyridine, H2dctpy = 4,4″-dicarboxy-2,2':6',2″-terpyridine), into the Co(III)-metalloligand site of Gd-Co to form the Ru(II)-doped PCP RuX@Gd-Co (X = A, B, C, or D). Three Ru(II)-metalloligands, RuA, RuB, and RuD dopants, were found to be uniformly incorporated into the Gd-Co framework by replacing the original Co(III)-metalloligand, whereas the doping of RuC failed probably because of the less number of coordination sites. In addition, we found that the RuA doping into the Gd-Co PCP had a large effect on vapor-adsorption due to the electrostatic interaction originating from the negatively charged RuA sites in the framework and the charge-compensating Li(+) cations in the porous channel.
NASA Astrophysics Data System (ADS)
Amano, Fumiaki; Tosaki, Ryosuke; Sato, Kyosuke; Higuchi, Yamato
2018-02-01
Crystalline defects of photocatalyst particles may be considered to be the recombination center of photoexcited electrons and holes. In this study, we investigated the photocatalytic activity of cation-doped rutile TiO2 photocatalysts for O2 evolution from an aqueous silver nitrate solution under ultraviolet light irradiation. The photocatalytic activity of rutile TiO2 was enhanced by donor doping of Ta5+ and Nb5+ with a valence higher than that of Ti4+, regardless of increased density of electrons and Ti3+ species (an electron trapped in Ti4+ sites). Conversely, acceptor doping of lower valence cations such as In3+ and Ga3+ decreased photocatalytic activity for O2 evolution by water oxidation. The doping of equal valence cations such as Sn4+ and Ge4+ hardly changed the activity of non-doped TiO2. This study demonstrates that Ti3+ species, which is a crystalline defect, enhanced the photocatalytic activity of semiconductor oxides, for example rutile TiO2 with large crystalline size.
Magnetic properties of M0.3Fe2.7O4 (M = Fe, Zn and Mn) ferrites nanoparticles
NASA Astrophysics Data System (ADS)
Modaresi, Nahid; Afzalzadeh, Reza; Aslibeiki, Bagher; Kameli, Parviz
2018-06-01
In the present article a comparative study on the structural and magnetic properties of nano-sized M0.3Fe0.7Fe2O4 (M = Fe, Zn and Mn) ferrites have been reported. The X-ray diffraction (XRD) patterns show that the crystallite size depends on the cation distribution. The Rietveld refinement of XRD patterns using MAUD software determines the distribution of cations and unit cell dimensions. The magnetic measurements show that the maximum and minimum value of saturation magnetization is obtained for Zn and Mn doped samples, respectively. The peak temperature of AC magnetic susceptibility of Zn and Fe doped samples below 300 K shows the superparamagnetic behavior in these samples at room temperature. the AC susceptibility results confirm the presence of strong interactions between the nanoparticles which leads to a superspin glass state in the samples at low temperatures.
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
Selection Rule of Preferred Doping Site for n-Type Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Li, J.; Li, S. S.
2012-06-25
Using first-principles calculations and analysis, we show that to create shallow n-type dopants in oxides, anion site doping is preferred for more covalent oxides such as SnO{sub 2} and cation site doping is preferred for more ionic oxides such as ZnO. This is because for more ionic oxides, the conduction band minimum (CBM) state actually contains a considerable amount of O 3s orbitals, thus anion site doping can cause large perturbation on the CBM and consequently produces deeper donor levels. We also show that whether it is cation site doping or anion site doping, the oxygen-poor condition should always bemore » used.« less
NASA Astrophysics Data System (ADS)
Caracciolo, G.; Pozzi, D.; Caminiti, R.; Congiu Castellano, A.
2003-04-01
We investigated, for the first time, by using Energy Dispersive X-ray Diffraction, the structure of a new ternary cationic liposome formulated with dioleoyl trimethylammonium propane (DOTAP), 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE) and cholesterol (Chol) (DDC) which has been recently found to have a selective high gene transfer ability in ovarian cancer cells. Our structural results provide a further experimental support to the widely accepted statement that there is not a simple and direct correlation between structure and transfection efficiency and that the factors controlling cationic lipid/DNA (CL-DNA) complexes-mediated gene transfer depend not only on the formulations of the cationic liposomes and their thermodynamic phase, but also significantly on the cell properties.
DOTAP cationic liposomes prefer relaxed over supercoiled plasmids.
Even-Chen, S; Barenholz, Y
2000-12-20
Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the supercoiled form. This preference is much more pronounced when the cationic liposome formulation is based on the monocationic lipid DOTAP than on the polycationic lipid DOSPA. The preference of DOTAP formulations to bind to the relaxed DNA plasmid suggests that the binding of supercoiled DNA is weaker and easier to dissociate from the complex.
Narrow Band Gap Conjugated Polyelectrolytes.
Cui, Qiuhong; Bazan, Guillermo C
2018-01-16
Two essential structural elements define a class of materials called conjugated polyelectrolytes (CPEs). The first is a polymer framework with an electronically delocalized, π-conjugated structure. This component allows one to adjust desirable optical and electronic properties, for example the range of wavelengths absorbed, emission quantum yields, electron affinity, and ionization potential. The second defining feature is the presence of ionic functionalities, which are usually linked via tethers that can modulate the distance of the charged groups relative to the backbone. These ionic groups render CPEs distinct relative to their neutral conjugated polymer counterparts. Solubility in polar solvents, including aqueous media, is an immediately obvious difference. This feature has enabled the development of optically amplified biosensor protocols and the fabrication of multilayer organic semiconductor devices through deposition techniques using solvents with orthogonal properties. Important but less obvious potential advantages must also be considered. For example, CPE layers have been used to introduce interfacial dipoles and thus modify the effective work function of adjacent electrodes. One can thereby modulate the barriers for charge injection into semiconductor layers and improve the device efficiencies of organic light-emitting diodes and solar cells. With a hydrophobic backbone and hydrophilic ionic sites, CPEs can also be used as dispersants for insoluble materials. Narrow band gap CPEs (NBGCPEs) have been studied only recently. They contain backbones that comprise electron-rich and electron-poor fragments, a combination that leads to intramolecular charge transfer excited states and enables facile oxidation and reduction. One particularly interesting combination is NBGCPEs with anionic sulfonate side groups, for which spontaneous self-doping in aqueous media is observed. That no such doping is observed with cationic NBGCPEs indicates that the interplay between electrostatic forces and the redox chemistry of the organic semiconducting chain is essential for stabilizing the polaronic states and increasing the conductivity of the bulk. Capitalizing upon the properties of NBGCPEs has resulted in a range of new applications. When doped, they can be introduced as interlayers in organic and perovskite solar cells. Single-walled carbon nanotubes can be n- or p-doped with NBGCPEs, depending on whether the same backbone contains attached cationic or anionic side groups, respectively. The resulting dispersions can be used to fabricate flexible thermoelectric devices in which the n- and p-semiconductor legs are nearly identical in terms of chemical composition. Electrostatic interactions with negatively charged cell walls, in combination with the long-wavelength absorption and high photothermal efficiencies, have been used to create effective agents for photothermal killing of bacteria. Additionally, recent results have shown that cationic NBGCPEs can effectively n-dope graphene and that this doping is temperature-dependent. The preferential charge carriers can therefore be chosen to be electrons or holes depending on the applied temperature.
Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO
NASA Astrophysics Data System (ADS)
Korhonen, E.; Prozheeva, V.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.; Liu, H.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2015-02-01
We present positron annihilation results on Sb-doped SnO2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO2 the concentrations appear too low to cause significant compensation.
Effect of palladium doping on the stability and fragmentation patterns of cationic gold clusters
NASA Astrophysics Data System (ADS)
Ferrari, P.; Hussein, H. A.; Heard, C. J.; Vanbuel, J.; Johnston, R. L.; Lievens, P.; Janssens, E.
2018-05-01
We analyze in detail how the interplay between electronic structure and cluster geometry determines the stability and the fragmentation channels of single Pd-doped cationic Au clusters, PdA uN-1+ (N =2 -20 ). For this purpose, a combination of photofragmentation experiments and density functional theory calculations was employed. A remarkable agreement between the experiment and the calculations is obtained. Pd doping is found to modify the structure of the Au clusters, in particular altering the two-dimensional to three-dimensional transition size, with direct consequences on the stability of the clusters. Analysis of the electronic density of states of the clusters shows that depending on cluster size, Pd delocalizes one 4 d electron, giving an enhanced stability to PdA u6 + , or remains with all 4 d10 electrons localized, closing an electronic shell in PdA u9 + . Furthermore, it is observed that for most clusters, Au evaporation is the lowest-energy decay channel, although for some sizes Pd evaporation competes. In particular, PdA u7 + and PdA u9 + decay by Pd evaporation due to the high stability of the A u7 + and A u9 + fragmentation products.
Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD
NASA Astrophysics Data System (ADS)
Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko
2018-02-01
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
Min, Kyoungmin; Seo, Seung-Woo; Song, You Young; Lee, Hyo Sug; Cho, Eunseog
2017-01-18
First-principles calculations have been used to investigate the effects of Al and Mg doping on the prevention of degradation phenomena in Li(Ni 0.8 Co 0.1 Mn 0.1 )O 2 cathode materials. Specifically, we have examined the effects of dopants on the suppression of oxygen evolution and cation disordering, as well as their correlation. It is found that Al doping can suppress the formation of oxygen vacancies effectively, while Mg doping prevents the cation disordering behaviors, i.e., excess Ni and Li/Ni exchange, and Ni migration. This study also demonstrates that formation of oxygen vacancies can facilitate the construction of the cation disordering, and vice versa. Delithiation can increase the probabilities of formation of all defect types, especially oxygen vacancies. When oxygen vacancies are present, Ni can migrate to the Li site during delithiation. However, Al and Mg doping can inhibit Ni migration, even in structures with preformed oxygen defects. The analysis of atomic charge variations during delithiation demonstrates that the degree of oxidation behavior in oxygen atoms is alleviated in the case of Al doping, indicating the enhanced oxygen stability in this structure. In addition, changes in the lattice parameters during delithiation are suppressed in the Mg-doped structure, which suggests that Mg doping may improve the lattice stability.
NASA Astrophysics Data System (ADS)
Keeble, D. J.; Singh, S.; Mackie, R. A.; Morozov, M.; McGuire, S.; Damjanovic, D.
2007-10-01
Positron annihilation lifetime spectroscopy measurements identify A - and B -site cation vacancies in ferroelectric perovskite oxides (ABO3) . Crystal PbTiO3 and ceramic lead zirconium titanate (PZT) were studied and gave consistent values for the lifetime resulting from positron localization at lead vacancies VPb . Positron trapping to B -site vacancies was inferred in PZT. Temperature dependent studies showed that the defect specific trapping rate was higher for VB compared to VPb , consistent with the larger negative charge. Doping PZT with Fe increased the fraction positron trapping to VB compared to VPb -type defects.
McColl, Kit; Johnson, Ian; Corà, Furio
2018-05-25
A systematic study of the location and energetics of cation dopants in α-V2O5 has been conducted using pair-potential methods, supplemented by first-principles calculations. The consequences of doping on intrinsic defect equilibria have been discussed and the effects of selected dopants on Li+ and Mg2+ diffusion energy barriers have been investigated.
Influence of Oxygen Stoichiometry Variations on the Properties of CaMnO3 thin films
NASA Astrophysics Data System (ADS)
Goehringer, Tyler; Yong, Grace; Otouloumougoye, Brenda; Keshavarz, Camron; Sharma, Prahash; Tanyi, E. Kevin; Schaefer, David; Kolagani, Rajeswari
2013-03-01
The family of alkaline-earth doped rare earth manganese oxides RE1-xAExMnO3 exhibit a rich variety of electronic phases depending on the cation stoichiometry. In thin films of these materials, the oxygen stoichiometry is also a variable, and together with cation stoichiometry is known to play a key role in determining the equilibrium phase. The cation and oxygen stoichiometry variations influence electrical and magnetic properties through changes in the mixed valence state of Mn, i.e. the ratio of Mn3+ to Mn4+ ions. CaMnO3 is one of the end members of this family with x =1. Stoichiometric CaMnO3 is a canted antiferromagnetic insulator with the Mn ion in the Mn4+ valence state. We will present our results on the effects of oxygen content variation on the structural, electrical, and magnetoresistive properties CaMnO3 thin films grown by Pulsed Laser Deposition. These results will be compared to the effects of oxygen stoichiometry variation in thin films of its doped counter-part La1-xCaxMnO3. We will also discuss surface morphology changes associated with variation in oxygen stoichiometry which may be associated with different surface terminations. We acknowledge support from the NSF grant ECCS 1128586 at Towson University.
Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.
Khan, Asif Ali; Baig, Umair; Khalid, Mohd
2011-02-28
In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.
Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm
NASA Astrophysics Data System (ADS)
Martin, M.; Schulz, O.
Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A- and the B-sublattice and anion vacancies as well.
Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles.
Pal, Bappaditya; Giri, P K
2011-10-01
Structural, optical and magnetic studies have been carried out for the Co-doped ZnO nanoparticles (NPs). ZnO NPs are doped with 3% and 5% Co using ball milling and ferromagnetism (FM) is studied at room temperature and above. A high Curie temperature (Tc) has been observed from the Co doped ZnO NPs. X-ray diffraction and high resolution transmission electron microscopy analysis confirm the absence of metallic Co clusters or any other phase different from würtzite-type ZnO. UV-visible absorption and photoluminescence studies on the doped samples show change in band structure and oxygen vacancy defects, respectively. Micro-Raman studies of doped samples shows defect related additional strong bands at 547 and 574 cm(-1) confirming the presence of oxygen vacancy defects in ZnO lattice. The field dependence of magnetization (M-H curve) measured at room temperature exhibits the clear M-H loop with saturation magnetization and coercive field of the order of 4-6 emu/g and 260 G, respectively. Temperature dependence of magnetization measurement shows sharp ferromagnetic to paramagnetic transition with a high Tc = 791 K for 3% Co doped ZnO NPs. Ferromagnetic ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. We show that the observed FM data fits well with the BMP model involving localised carriers and magnetic cations.
Emission spectroscopy of divalent-cation-doped GaN photocatalysts
NASA Astrophysics Data System (ADS)
Hirai, Takeshi; Harada, Takashi; Ikeda, Shigeru; Matsumura, Michio; Saito, Nobuo; Nishiyama, Hiroshi; Inoue, Yasunobu; Harada, Yoshiyuki; Ohno, Nobuhito; Maeda, Kazuhiko; Kubota, Jun; Domen, Kazunari
2011-12-01
Photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra of GaN particles doped with divalent cations (Mg2+, Zn2+, and Be2+), which promote photocatalytic overall water splitting, were investigated. The PL and TRPL spectra were mainly attributed to donor-acceptor pair recombination between the divalent cation dopants and divalent anion impurities (O2- and S2-) unintentionally introduced from raw materials, which form acceptor and donor levels, respectively. These levels are likely to provide holes and electrons required for photocatalytic reactions, contributing to the photocatalytic activity of the GaN-based photocatalysts for overall water splitting.
Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water
NASA Astrophysics Data System (ADS)
Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang
2016-10-01
Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.
Effect of vanadium doping on structural and magnetic properties of defective nano-nickel ferrite
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Almalowi, M. I.
2018-04-01
Nano-nickel ferrites defected by vanadium doping (NiV x Fe2-1.67 x O4, 0 ≤ x ≤ 0.25) were prepared using a simple sol gel method. Rietveld analysis revealed a nonmonotonic change in lattice parameter, oxygen parameter and magnetization upon doping with vanadium. Cation distributions suggested from either Rietveld analysis or from experimental magnetic moments were in a good agreement. For low doping values ( x = 0.05), vanadium was residing mainly in octahedral sites, while for samples with vanadium content ( x ≥ 0.1) a significant part of vanadium ions resided at tetrahedral sites; a result which has been confirmed by the analysis of Fourier-transform infrared (FTIR) spectrums obtained for the samples. The transmission electron microscope (TEM) image showed fine spherical particles with size of ˜ 11 nm. All samples showed a superparamagnetic nature with a nonmonotonic change of either magnetization ( M S) or coercivity (H C) with the content of nonmagnetic V5+. The cation occupancies indicated presence of an enormous number of vacancies through doping with high valence cation V5+, making present samples potential electrodes for Li- or Na-ion batteries.
Effective doping of low energy ions into superfluid helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Chen, Lei; Freund, William M.
2015-08-21
We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measuredmore » using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.« less
NASA Astrophysics Data System (ADS)
Furutani, Sho; Okada, Susumu
2017-06-01
Electronic properties of electron-doped chemically decorated C60 fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and silylmethylfullerene (SIMEF), by a planar electrode were studied using density functional theory combined with the effective screening medium method to simulate the heterointerface between the chemically decorated C60 and cationic counter materials. We find that the distribution of accumulated electrons and induced electric field depend on the molecular arrangement with respect to the external electric field of the electrode. We also show that the quantum capacitance of the molecule is sensitive to molecular arrangement owing to the asymmetric distribution of the accumulated electrons.
Atomistic modeling of La3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia.
Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H R; Faller, Roland
2018-05-16
The effect of La3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations. The simulation revealed the segregation of La3+ at eight tilt grain boundary (GB) structures and predicted an average grain boundary (GB) energy decrease of 0.25 J m-2, which is close to the experimental values reported in the literature. Cation stabilization was found to be the main reason for the GB energy decrease, and energy fluctuations near the grain boundary are smoothed out with La3+ segregation. Both dynamic and energetic analysis on the Σ13(510)/[001] GB structure revealed La3+ doping hinders O2- diffusion in the GB region, where the diffusion coefficient monotonically decreases with increasing La3+ doping concentration. The effect was attributed to the increase in the site-dependent migration barriers for O2- hopping caused by segregated La3+, which also leads to anisotropic diffusion at the GB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T.
1994-12-31
The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relationmore » between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.« less
NASA Technical Reports Server (NTRS)
Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.
1995-01-01
The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.
NASA Astrophysics Data System (ADS)
Amer, M.; Boutinaud, P.
2018-02-01
The energy corresponding to the excitation edge in Eu2+-doped phosphate phosphors of the type AIBIIPO4 (AI = monovalent cation, BII = divalent cation) is calculated from the knowledge of two crystal-structure-related factors he(X(i)) and Fc(X(i)) which are connected respectively to the crystal field splitting (CFS) and the centroid energy (Ec) of the excited 4f65d1 electron configuration of Eu2+. The calculation is carried out for each cation site X(i) available for Eu2+ in 25 different compositions of AIBIIPO4 including NaZnPO4-Eu2+ for which the luminescence is firstly reported. Our results indicate (1) that is it possible to identify the nature of the cation site that contributes to the excitation edge of Eu2+ in AIBIIPO4 within an accuracy of±1000 cm-1 and (2) that the method can be used as a tool for the predictive design of AIBIIPO4 - Eu2+ phosphors applicable in solid state LED-based lighting.
Meffert, Matthias; Störmer, Heike; Gerthsen, Dagmar
2016-02-01
(Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) is a promising material with mixed ionic and electronic conductivity which is considered for oxygen separation membranes. Selective improvement of material properties, e.g. oxygen diffusivity or suppression of secondary phase formation, can be achieved by B-site doping. This study is concerned with the formation of Co-oxide precipitates in undoped BSCF at typical homogenization temperatures of 1,000°C, which act as undesirable nucleation sites for other secondary phases in the application-relevant temperature range. Y-doping successfully suppresses Co-oxide formation, whereas only minor improvements are achieved by Sc-doping. To understand the reason for the different behavior of Y and Sc, the lattice sites of dopant cations in BSCF were experimentally determined in this work. Energy-dispersive X-ray spectroscopy in a transmission electron microscope was applied to locate dopant sites exploiting the atom location by channeling enhanced microanalysis technique. It is shown that Sc exclusively occupies B-cation sites, whereas Y is detected on A- and B-cation sites in Y-doped BSCF, although solely B-site doping was intended. A model is presented for the suppression of Co-oxide formation in Y-doped BSCF based on Y double-site occupancy.
The effect of cation doping on spinel LiMn 2O 4: a first-principles investigation
NASA Astrophysics Data System (ADS)
Shi, Siqi; Ouyang, Chuying; Wang, Ding-sheng; Chen, Liquan; Huang, Xuejie
2003-05-01
The effect of the cation doping on the electronic structure of spinel LiM yMn 2- yO 4 (M=Cr, Mn, Fe, Co and Ni) has been calculated by first-principles. Our calculation shows that new M-3d bands emerge in the density of states compared with that in LiMn 2O 4. Simultaneously, the new O-2p bands appear accordingly in almost the same energy range around the Fermi energy owing to the M-3d/O-2p interaction. It is found that the appearance of new O-2p bands in the lower energy position results in a higher intercalation voltage. Consequently, the origin of higher intercalation voltage in LiM yMn 2- yO 4 can be ascribed to the lower O-2p level introduced by the doping cation M.
Gap state charge induced spin-dependent negative differential resistance in tunnel junctions
NASA Astrophysics Data System (ADS)
Jiang, Jun; Zhang, X.-G.; Han, X. F.
2016-04-01
We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaida, Satoshi; Shimokawa, Yohei; Asaka, Toru
2015-07-15
Highlights: • Eu{sup 3+}-doped CaZrO{sub 3}-based compounds were synthesized by the solid state reaction. • PL emission intensity at 614 nm was changed by the second dopant cations. • The site substituted by Eu{sup 3+} cations was investigated by using XRD and ALCHEMI technique. • The dominant Eu{sup 3+} substitution site was found as the B site (Zr{sup 4+}) in the CaZrO{sub {sup 3}}. • The dominant Eu{sup 3+} substitution site could be strongly influenced by the co-dopants. - Abstract: Eu{sup 3+}-doped CaZrO{sub 3}, SrZrO{sub 3}, and Mg{sup 2+}- or Sr{sup 2+}-co-doped CaZrO{sub 3} were synthesized by conventional solid statemore » reaction and their photoluminescence (PL) properties were characterized. The Eu{sup 3+}-doped CaZrO{sub 3}-based compounds exhibited characteristic emissions of Eu{sup 3+} (f–f transition). The intensity of the main PL emission peak at 614 nm increased with Mg{sup 2+} co-doping, while it decreased with the amount of co-doped Sr{sup 2+}. The site substituted by Eu{sup 3+} cations in the CaZrO{sub 3}-based compounds was investigated by X-ray diffraction analysis and energy-dispersive X-ray analysis based on the electron channeling effects in transmission electron microscopy. The Eu{sup 3+} cations were determined to occupy mainly the B site (Zr{sup 4+}) in CaZrO{sub 3}. The dominant Eu{sup 3+} substitution site was also strongly influenced by the co-dopant, and the ionic radius of the co-dopant was identified as an important factor that determines the dominant Eu{sup 3+} substitution site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter
2016-06-10
Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the filmmore » and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.« less
Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; ...
2016-06-10
Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behavior, large changes in metal-insulator transition temperatures, or enhanced catalytic activity. Here in this paper, we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In 2O 3 films grown on ionically conducting Y 2O 3-stabilized ZrO 2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygenmore » vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behavior is dependent on interface properties and is attained without cation doping or changes in the gas environment.« less
NASA Astrophysics Data System (ADS)
Sui, Yu; Wang, Xianjie; Cheng, Jinguang; Liu, Zhiguo; Miao, Jipeng; Huang, Xiqiang; Lu, Zhe; Qian, Zhengnan; Su, Wenhui; Tang, Jinke; Ong, C. K.
2005-09-01
The structural, magnetic, and magnetoresistance properties of the double-perovskite series Sr2Fe1-xAlxMoO6 (0<=x<=0.30) were systematically investigated in order to clarify the influence of nonmagnetic Al ions on the magnetoresistance. The structural refinements of these samples show that the degree of cationic order increases gradually from 88.5% for x=0 to 92% for x=0.30 without any change in the crystal structure. The magnetization measurements reveal that the substitution of nonmagnetic Al ion for Fe ion enhances the magnetic moment per Fe ion significantly. In addition, the magnetic-field dependence of magnetization and magnetoresistance of these Sr2Fe1-xAlxMoO6 samples were all fitted excellently by taking into account the contributions from ferromagnetic-coupled Fe-O-Mo region and nonferromagnetic-coupled regions. The fitting results indicate that the low-field magnetoresistance can be greatly enhanced due to the separation of the cationic-ordered Fe-O-Mo regions by the paramagnetic Mo-O-Al-O-Mo chains introduced through Al doping. Furthermore, doping nonmagnetic Al ions also suppress the formation of antiferromagnetic Fe-O-Fe antiphase boundaries, and then lead to the improvement of cation ordering and the reduction of magnetoresistance under high field.
Das, Debashish; Ghosh, Subhradip
2017-02-08
Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic [Formula: see text] indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in [Formula: see text] system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides [Formula: see text] in presence of cation disorder.
Singh, Manish; Bajaj, Avinash
2014-09-28
We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.
Shen, Xiang; Yan, Bing
2016-04-15
A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarantopoulos, A.; Ferreiro-Vila, E.; Pardo, V.; Magén, C.; Aguirre, M. H.; Rivadulla, F.
2015-10-01
We report thermoelectric power experiments in e -doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e -doped STO thin films, is similar to that observed in LaAlO3 /STO interfaces and magnetic STO quantum wells.
NASA Astrophysics Data System (ADS)
Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.
2018-05-01
Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.
NASA Astrophysics Data System (ADS)
Titus, Jitto; Thakur, Mrinal
2006-03-01
As recently reported, the electrical conductivity of the nonconjugated polymer, poly(beta-pinene) increases by more than ten orders of magnitude upon doping with iodine [1]. The FTIR, optical absorption and EPR measurements have shown that radical cations are formed upon doping and charge-transfer involving the isolated double-bond in poly(beta-pinene). In this report, exceptionally large two-photon absorption in iodine-doped poly(beta-pinene) will be discussed. The linear absorption spectrum of medium-doped poly(beta-pinene) have peaks at about 4 eV and 3.1 eV. The first peak is due to the radical cation and the second due to the charge-transfer between the double bond and the dopant. The two-photon absorption of the medium-doped polymer has been measured at 730-860 nm using open-aperture z-scan with 150 femtosecond pulses from a Ti:Sapphire laser. A two-photon peak at about 1.5 eV with a magnitude of more than 1 cm/MW has been observed. The large magnitude of the two-photon absorption coefficient which is proportional to the imaginary part of the third order susceptibility has been attributed to the special structure of the radical cation and the confinement within a sub-nanometer dimension. [1] Vippa, Rajagopalan and Thakur, J. Poly. Sci. Part B: Poly. Phys., 43, 3695 (2005).
Defect phase diagram for doping of Ga2O3
NASA Astrophysics Data System (ADS)
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.
Energy levels scheme simulation of divalent cobalt doped bismuth germanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com; Petkova, Petya; Avram, Nicolae M.
The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of dopedmore » BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.« less
Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.
V, Lakshmi Prasanna; Vijayaraghavan, Rajagopalan
2017-08-01
Pure and doped ZnO (cation and anion doping) compositions have been designed in order to manipulate oxygen vacancy and antibacterial activity of ZnO. In this connection, we have synthesized and characterized micron sized ZnO, N doped micron sized ZnO, nano ZnO, nano Na and La doped ZnO. The intrinsic vacancies in pure ZnO and the vacancies created by N and Na doping in ZnO have been confirmed by X-ray Photoelectron Spectroscopy(XPS) and Photoluminiscence Spectroscopy(PL). Reactive oxygen species (ROS) such as hydroxyl radicals, superoxide radicals and H 2 O 2 responsible for antibacterial activity have been estimated by PL, UV-Vis spectroscopy and KMnO 4 titrations respectively. It was found that nano Na doped ZnO releases highest amount of ROS followed by nano ZnO, micron N doped ZnO while micron ZnO releases the least amount of ROS. The concentration of vacancies follows the same sequence. This illustrates directly the correlation between ROS and oxygen vacancy in well designed pure and doped ZnO. For the first time, material design in terms of cation doping and anion doping to tune oxygen vacancies has been carried out. Interaction energy (E g ), between the bacteria and nanoparticles has been calculated based on Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory and is correlated with antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Ji-Min; Ying, Rong-Jian; Han, Chun-Xiang; Hu, Qi-Tu; Xu, Hui-Min; Li, Jian-Hui; Wang, Qiang; Zhang, Wei
2018-03-12
Herein, we report the synthesis and characterization of Ce(iii)-doped UiO-66 nanocrystals, revealing their potential to efficiently remove organic dyes such as methylene blue (MB), methyl orange (MO), Congo red (CR), and acid chrome blue K (AC) from aqueous solutions. Specifically, the room-temperature adsorption capacities of Ce(iii)-doped UiO-66 equaled 145.3 (MB), 639.6 (MO), and 826.7 (CR) mg g -1 , exceeding those reported for pristine UiO-66 by 490, 270, and 70%, respectively. The above behavior was rationalized based on zeta potential and adsorption isotherm investigations, which revealed that Ce(iii) doping increases the number of adsorption sites and promotes π-π interactions between the adsorbent and the adsorbate, thus improving the adsorption capacity for cationic and anionic dyes and overriding the effect of electrostatic interactions. The obtained results shed light on the mechanism of organic dye adsorption on metal-organic frameworks, additionally revealing that the synergetic interplay of electrostatic, π-π, and hydrophobic interactions results in the operation of two distinct adsorption regimes depending on adsorbate concentration.
Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration
NASA Astrophysics Data System (ADS)
Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki
2018-04-01
The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emin, David, E-mail: emin@unm.edu; Akhtari, Massoud; Ellingson, B. M.
We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.
Collins, Sean M; Fernandez-Garcia, Susana; Calvino, José J; Midgley, Paul A
2017-07-14
Surface chemical composition, electronic structure, and bonding characteristics determine catalytic activity but are not resolved for individual catalyst particles by conventional spectroscopy. In particular, the nano-scale three-dimensional distribution of aliovalent lanthanide dopants in ceria catalysts and their effect on the surface electronic structure remains unclear. Here, we reveal the surface segregation of dopant cations and oxygen vacancies and observe bonding changes in lanthanum-doped ceria catalyst particle aggregates with sub-nanometer precision using a new model-based spectroscopic tomography approach. These findings refine our understanding of the spatially varying electronic structure and bonding in ceria-based nanoparticle aggregates with aliovalent cation concentrations and identify new strategies for advancing high efficiency doped ceria nano-catalysts.
Study of cation magnetic moment directions in Cr (Co) doped nickel ferrites
NASA Astrophysics Data System (ADS)
Lang, L. L.; Xu, J.; Qi, W. H.; Li, Z. Z.; Tang, G. D.; Shang, Z. F.; Zhang, X. Y.; Wu, L. Q.; Xue, L. C.
2014-09-01
Powder samples of the ferrites MxNi1-xFe2O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) were prepared using a chemical co-precipitation method. X-ray diffraction analysis showed that the two series of samples had a single-phase cubic spinel structure. It was found that the magnetic moments (μexp) per formula of samples measured at 10 K decreased when Cr substituted for Ni, but increased when Co substituted for Ni, in spite of the fact that the magnetic moments of Cr2+ (4 μB) and Co2+ (3 μB) are higher than that of Ni2+ (2 μB). With the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the Fe, Co, and Ni cations in the same sublattices of spinel ferrites, the dependences on the Cr (Co) doping level of the sample magnetic moments at 10 K were fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. For the two series of samples, the fitted magnetic moments are close to the experimental results.
Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui
2016-04-18
The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei
2015-01-01
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K. PMID:26233132
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lei; Zhang, Jie; Freund, William M.
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature,more » the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.« less
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.
Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei
2015-07-28
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.
NASA Astrophysics Data System (ADS)
Taldenkov, A. N.; Snegirev, V. V.; Babushkina, N. A.; Kalitka, V. S.; Kaul', A. R.
2018-03-01
The oxygen isotope effect in PrBaMn2 16-18 O5.97 manganite with an ordered cation arrangement is studied. The field dependences of magnetic susceptibility and magnetization are measured in the temperature range 100-270 K and magnetic fields up to 32 T. A significant increase in the temperature of the spin-reorientation antiferromagnet-ferromagnet phase transition is detected in samples enriched in heavy oxygen 18O (negative isotope effect). The transition temperature and the isotope effect depend strongly on the magnetic field. An H-T phase diagram is plotted for samples with various isotope compositions. An analysis of the experimental results demonstrates that the detected negative isotope effect and the giant positive isotope effect revealed earlier in doped manganites have the same nature. The mechanisms of appearance of isotope effects are discussed in terms of the double exchange model under a polaron narrowing of the free carrier band.
Exploring Redox States, Doping and Ordering of Electroactive Star-Shaped Oligo(aniline)s.
Mills, Benjamin M; Fey, Natalie; Marszalek, Tomasz; Pisula, Wojciech; Rannou, Patrice; Faul, Charl F J
2016-11-14
We have prepared a simple star-shaped oligo(aniline) (TDPB) and characterised it in detail by MALDI-TOF MS, UV/Vis/NIR spectroscopy, time-dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π-conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid-doped TDPB shows behaviour similar to discotic liquid crystals, with X-ray scattering investigations revealing columnar self-assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star-shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Sarantopoulos, A; Ferreiro-Vila, E; Pardo, V; Magén, C; Aguirre, M H; Rivadulla, F
2015-10-16
We report thermoelectric power experiments in e-doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e-doped STO thin films, is similar to that observed in LaAlO3/STO interfaces and magnetic STO quantum wells.
Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites.
Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae
2017-06-28
In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn 2 O 5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution.
Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites
Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae
2017-01-01
In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn2O5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution. PMID:28656965
Alkali slurry ozonation to produce a high capacity nickel battery material
Jackovitz, John F.; Pantier, Earl A.
1984-11-06
A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.
Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr
2014-11-05
Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less
Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics
NASA Technical Reports Server (NTRS)
Good, Brian
2013-01-01
Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.
NASA Astrophysics Data System (ADS)
Gore, Shyam K.; Jadhav, Santosh S.; Tumberphale, Umakant B.; Shaikh, Shoyeb M.; Naushad, Mu; Mane, Rajaram S.
2017-12-01
The phase transition of bismuth-substituted nickel ferrite, synthesized by using a simple sol-gel autocombustion method, from cubic to perovskite is confirmed from the X-ray diffraction spectrums. The changes in isomer shift, hyperfine field and cation distribution are obtained from the Mossbauer spectroscopy analysis. The cation distribution demonstrates Ni2+ cations occupy tetrahedral sites, while Fe3+ and Bi3+ occupy both tetrahedral as well as octahedral sites. For higher concentrations of bismuth, saturation magnetization is increased whereas, coercivity is decreased which is related to phase change. The variations of dielectric constant, tangent loss and conductivity (ac) with frequency (10 Hz-5 MHz) have been explored with Bi3+-doping i.e. 'x'. According to Maxwell-Wagener model, there is an involvement of electron hopping kinetics as both dielectric constant and tangent loss are decreased with increasing frequency. Increase of conductivity with frequency (measured at room temperature, 27 °C) is attributed to increase of number of carriers and mobility.
NASA Astrophysics Data System (ADS)
Carey, John J.; Nolan, Michael
2017-10-01
Modification of metal oxides with dopants that have a stable oxidation in their parent oxides which is higher than the host system is expected to introduce extra electrons into the material to improve carrier mobility. This is essential for applications in catalysis, SOFCs and solar energy materials. Density functional theory calculations are used to investigate the change in electronic and geometric structure of chromium (III) oxide by higher valence dopants, namely; Ce, Ti, V and Zr. For single metal doping, we find that the dopants with variable oxidation states, Ce, Ti and V, adopt a valence state of +3, while Zr dopant has a +4 oxidation state and reduces a neighbouring Cr cation. Chromium vacancy formation is greatly enhanced for all dopants, and favoured over oxygen vacancy formation. The Cr vacancies generate holes which oxidise Ce, Ti and V from +3 to +4, while also oxidising lattice oxygen sites. For Zr doping, the generated holes oxidise the reduced Cr2+ cation back to Cr3+ and also two lattice oxygen atoms. Three metal atoms in the bulk lattice facilitate spontaneous Cr vacancy from charge compensation. A non-classical compensation mechanism is observed for Ce, Ti and V; all three metals are oxidised from +3 to +4, which explains experimental observations that these metals have a +4 oxidation state in Cr2O3. Charge compensation of the three Zr metals proceeds by a classical higher valence doping mechanism; the three dopants reduce three Cr cations, which are subsequently charge compensated by a Cr vacancy oxidising three Cr2+ to Cr3+. The compensated structures are the correct ground state electronic structure for these doped systems, and used as a platform to investigate cation/anion vacancy formation. Unlike the single metal doped bulks, preference is now given for oxygen vacancy formation over Cr vacancy formation, indicating that the dopants increase the reducibility of Cr2O3 with Ce doping showing the strongest enhancement. The importance of the correct ground state in determining the formation of defects is emphasised.
NASA Astrophysics Data System (ADS)
Das, Debashish; Ghosh, Subhradip
2017-02-01
Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in \\text{Co}{{≤ft(\\text{C}{{\\text{r}}1-x}\\text{M}{{\\text{n}}x}\\right)}2}{{\\text{O}}4} system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides A{{≤ft({{B}1-x}{{C}x}\\right)}2}{{\\text{O}}4} in presence of cation disorder.
Defect phase diagram for doping of Ga 2O 3
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Defect phase diagram for doping of Ga 2O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Structures and stability of metal-doped Ge nM (n = 9, 10) clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua
The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Structures and stability of metal-doped Ge nM (n = 9, 10) clusters
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...
2015-06-26
The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge 9 and Ge 10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge n clusters. However, the neutral and cationic FeGe 9,10,MnGe 9,10 and Ge 10Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge n clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge 9,10Fe and Ge 9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Structures and stability of metal-doped GenM (n = 9, 10) clusters
NASA Astrophysics Data System (ADS)
Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.
2015-06-01
The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chichibu, S. F., E-mail: chichibulab@yahoo.co.jp; Ishikawa, Y.; Furusawa, K.
2015-09-21
Appropriate-amount Si-doping in the well layers significantly improved the luminescence efficiency of Al{sub 0.68}Ga{sub 0.32}N/Al{sub 0.77}Ga{sub 0.23}N multiple quantum wells. To understand the mechanisms, spatio-time-resolved cathodoluminescence measurements and self-consistent Schrödinger-Poisson calculations were carried out. The increase in the luminescence lifetime at room temperature, which reflects the decrease in the concentration of nonradiative recombination centers (NRCs), was correlated with increased terrace width of Si-doped wells. The results suggest the importance of H{sub 3}SiNH{sub 2} doping-reactant formation that gives rise to enhanced decomposition of NH{sub 3} and provides wetting conditions by surface Si-N bonds, which reduce the total energy and concentration ofmore » NRCs composed of cation vacancies.« less
Electronic structure of graphene nanoribbons doped with nitrogen atoms: a theoretical insight.
Torres, A E; Fomine, S
2015-04-28
The electronic structure of graphene nanoribbons doped with a graphitic type of nitrogen atoms has been studied using B3LYP, B2PLYP and CAS methods. In all but one case the restricted B3LYP solutions were unstable and the CAS calculations provided evidence for the multiconfigurational nature of the ground state with contributions from two dominant configurations. The relative stability of the doped nanoribbons depends mostly on the mutual position of the dopant atoms and notably less on the position of nitrogen atoms within the nanoribbon. N-graphitic doping affects cationic states much more than anionic ones due the participation of the nitrogen atoms in the stabilization of the positive charge, resulting in a drop in ionization energies (IPs) for N-graphitic doped systems. Nitrogen atoms do not participate in the negative charge stabilization of anionic species and, therefore, the doping does not affect the electron affinities (EAs). The unrestricted B3LYP method is the method of choice for the calculation of IPs and EAs. Restricted B3LYP and B2PLYP produces unreliable results for both IPs and EAs while CAS strongly underestimates the electron affinities. This is also true for the reorganization energies where restricted B3LYP produces qualitatively incorrect results. Doping changes the reorganization energy of the nanoribbons; the hole reorganization energy is generally higher than the corresponding electron reorganization energy due to the participation of nitrogen atoms in the stabilization of the positive charge.
Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)
NASA Astrophysics Data System (ADS)
Zhang, Lei; Navrotsky, Alexandra
2015-10-01
Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.
Cornu, Lucile; Gaudon, Manuel; Veber, Philippe; Villesuzanne, Antoine; Pechev, Stanilas; Garcia, Alain; Jubera, Véronique
2015-03-23
Ce-doped Rb2 KInF6 elpasolite has the potential for tunable luminescence due to an unusual reversible redox process between the cerium and indium cations. Coupled with a deep understanding of the luminescence properties, XRD analysis and DFT calculations are used to locate the doping elements in the host lattice. The origin explanation of the charge-transfer mechanism that causes a decrease or increase in the blue-green cerium emission in opposition to the red indium emission is discussed regarding the crystallographic structure, the connection of the metallic cations and their equilibrium valence. Still detectable after nineteen years, the optical contrast created under irradiation makes this material a good candidate as photosensor for data storage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compositional engineering of perovskite oxides for highly efficient oxygen reduction reactions.
Chen, Dengjie; Chen, Chi; Zhang, Zhenbao; Baiyee, Zarah Medina; Ciucci, Francesco; Shao, Zongping
2015-04-29
Mixed conducting perovskite oxides are promising catalysts for high-temperature oxygen reduction reaction. Pristine SrCoO(3-δ) is a widely used parent oxide for the development of highly active mixed conductors. Doping a small amount of redox-inactive cation into the B site (Co site) of SrCoO(3-δ) has been applied as an effective way to improve physicochemical properties and electrochemical performance. Most findings however are obtained only from experimental observations, and no universal guidelines have been proposed. In this article, combined experimental and theoretical studies are conducted to obtain fundamental understanding of the effect of B-site doping concentration with redox-inactive cation (Sc) on the properties and performance of the perovskite oxides. The phase structure, electronic conductivity, defect chemistry, oxygen reduction kinetics, oxygen ion transport, and electrochemical reactivity are experimentally characterized. In-depth analysis of doping level effect is also undertaken by first-principles calculations. Among the compositions, SrCo0.95Sc0.05O(3-δ) shows the best oxygen kinetics and corresponds to the minimum fraction of Sc for stabilization of the oxygen-vacancy-disordered structure. The results strongly support that B-site doping of SrCoO(3-δ) with a small amount of redox-inactive cation is an effective strategy toward the development of highly active mixed conducting perovskites for efficient solid oxide fuel cells and oxygen transport membranes.
Enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 films
NASA Astrophysics Data System (ADS)
Moyer, J. A.; Vaz, C. A. F.; Kumah, D. P.; Arena, D. A.; Henrich, V. E.
2012-11-01
The effect of film thickness on the magnetic properties of ultrathin Fe-doped cobalt ferrite (Co1-xFe2+xO4) grown on MgO (001) substrates is investigated by superconducting quantum interference device magnetometry and x-ray magnetic linear dichroism, while the distribution of the Co2+ cations between the octahedral and tetrahedral lattice sites is studied with x-ray absorption spectroscopy. For films thinner than 10 nm, there is a large enhancement of the magnetic moment; conversely, the remanent magnetization and coercive fields both decrease, while the magnetic spin axes of all the cations become less aligned with the [001] crystal direction. In particular, at 300 K the coercive fields of the thinnest films vanish. The spectroscopy data show that no changes occur in the cation distribution as a function of film thickness, ruling this out as the origin of the enhanced magnetic moment. However, the magnetic measurements all support the possibility that these ultrathin Fe-doped CoFe2O4 films are transitioning into a superparamagnetic state, as has been seen in ultrathin Fe3O4. A weakening of the magnetic interactions at the antiphase boundaries, leading to magnetically independent domains within the film, could explain the enhanced magnetic moment in ultrathin Fe-doped CoFe2O4 and the onset of superparamagnetism at room temperature.
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.
2014-03-01
For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing ability as laser active components. Such a single infrared-emitting-perovskite nanomaterial replaced, for the first time, the need for a polymeric ligand, which was a routine approach in such an application. Also, it avoided the complicated synthesis of organic-inorganic hybrids, prevented wide spectral-range emissions usually produced by polymers, facilitated obtaining near-infrared emission spectra within certain limits of wavelengths, and is considered as a new approach for fabricating a standalone perovskite nanomaterial for phosphorescent optoelectronic components and military uses.
NASA Astrophysics Data System (ADS)
Buzby, Scott Edward
Nanosized titanium dioxide has a variety of important applications in everyday life including a photocatalyst for pollution remediation, photovoltaic devices, sunscreen, etc. This study focuses on the various properties of titanium dioxide nanoparticles doped with various cation and anion species. Samples were produced by various methods including metalorganic chemical vapor deposition (MOCVD), plasma assisted metalorganic chemical vapor deposition (PA-MOCVD) and sol-gel. Numerous techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy both scanning (SEM) and transmission (TEM) were used for physical characterization. Photocatalytic properties were determined by the oxidation of methylene blue dye and 2-chlorophenol in water as well as gaseous formic acid with results analyzed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and ultra violet - visible spectroscopy (UV-VIS). For the purpose of enhancement of the photocatalytic activity of titanium dioxide nanoparticles, the effect of anion doping and the anatase-rutile phase ratio were studied. Although anatase, rutile and mixed crystallite phases all show some degree of activity in photocatalytic reactions, these results show that anatase is better suited for the degradation of organic compounds in an aqueous medium any advantage in photocatalytic activity gained through the enhancement in optical response from the smaller band gap by addition of rutile was overcome by the negatives associated with the rutile phase. Furthermore substitutional nitrogen doping showed significant improvement in UV photocatalysis as well as allowing for visible light activation of the catalyst. Further studies on the phase transitions in titanium dioxide nanoparticles were carried out by synthesizing various cation doped samples by sol-gel. Analysis of the phases by XRD showed an inverse relationship between dopant size and rutile percentage. Dopant ions with larger radii than titanium stress the crystal lattice promoting anatase formation, since it has a larger c/a ratio than rutile does. The cation dopants were also found to decrease the average particle size of the titanium dioxide nanoparticles. The defect sites caused by the doping prevent the nucleation and retard particle growth of titanium dioxide particles. Cation doping of titanium dioxide nanoparticles affect other properties of the nanoparticles besides the phase transitions. For example titanium dioxide doped with magnetic materials such as Fe, Ni, Co or Cr has been shown to display room temperature ferromagnetism which are currently being studied for use in spintronic devices. The antibacterial studies of silver doped titanium dioxide nanoparticles were carried out against Escherichia coli, both in nutrient solution and on agar-plates. Both studies show that while pure titanium dioxide has no antibacterial effect, when doped with as little as 0.72 atomic % silver becomes more effective than pure silver nanoparticles of similar size. It has been observed that with concentrations as low as 25mug/cm 2 of silver doped titanium dioxide, completely antibacterial surfaces may be synthesized.
Current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazizov, I. M., E-mail: gazizov@isotop.dubna.ru; Zaletin, V. M.; Kukushkin, V. M.
2011-05-15
The current response of a TlBr detector to {sup 137}Cs {gamma}-ray radiation has been studied in the dose-rate range 0.033-3.84 Gy/min and within the voltage range 1-300 V; the detectors are based on pure and doped TlBr crystals grown from the melt by the Bridgman-Stockbarger method. The mass fraction of Pb or Ca introduced into the TlBr crystals was 1-10 ppm for Pb and 150 ppm for Ca. The current response of nominally undoped TlBr samples was nearly linear over two decades of studied dose rates. Deep hole levels associated with cationic vacancies V{sub c}{sup -} determine the dependence ofmore » the current response on the voltage in the high electric fields. The parameters of the carriers' transport {mu}{tau} are determined. The TlBr crystals grown in vacuum and in the bromine vapor exhibit a large mobility-lifetime product of 4.3 Multiplication-Sign 10{sup -4} and 6.4 Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1}, respectively. The value of {mu}{tau} is in the range (4-9) Multiplication-Sign 10{sup -5} cm{sup 2}V{sup -1} for crystals doped with a divalent cation.« less
Huittinen, Nina; Arinicheva, Yulia; Schmidt, Moritz; Neumeier, Stefan; Stumpf, Thorsten
2016-12-01
In the present study, we have investigated the luminescent properties of Eu(3+) as a dopant in a series of synthetic lanthanide phosphates from the monazite group. Systematic trends in the spectroscopic properties of Eu(3+) depending on the size of the host cation and the dopant to ligand distance have been observed. Our results show that the increasing match between host and dopant radii when going from Eu(3+)-doped LaPO4 toward the smaller GdPO4 monazite decreases both the full width at half maximum of the Eu(3+) excitation peak, as well as the (7)F2/(7)F1 emission band intensity ratio. The decreasing Ln⋯O bond distance within the LnPO4 series causes a systematic bathochromic shift of the Eu(3+) excitation peak, showing a linear dependence of both the host cation size and the Ln⋯O distance. The linear relationship can be used to predict the energy band gap for Eu(3+)-doped monazites for which no Eu(3+) luminescent data is available. Finally, mechanisms for metal-metal energy transfer between host and dopant lanthanides have been explored based on recorded luminescence lifetime data. Luminescence lifetime data for Eu(3+) incorporated in the various monazite hosts clearly indicated that the energy band gap between the guest ion emission transition and the host ion absorption transition can be correlated to the degree of quenching observed in these materials with otherwise identical geometries and chemistries. Copyright © 2016 Elsevier Inc. All rights reserved.
Microwave-Assisted Synthesis, Microstructure, and Magnetic Properties of Rare-Earth Cobaltites.
Gutiérrez Seijas, Julia; Prado-Gonjal, Jesús; Ávila Brande, David; Terry, Ian; Morán, Emilio; Schmidt, Rainer
2017-01-03
The series of perovskite rare-earth (RE) doped cobaltites (RE)CoO 3 (RE = La-Dy) was prepared by microwave-assisted synthesis. The crystal structure undergoes a change of symmetry depending on the size of the RE cation. LaCoO 3 is rhombohedral, S.G. R3̅c (No. 167), while, for the rest of the RE series (Pr-Dy), the symmetry is orthorhombic, S.G. Pnma (No. 62). The crystal structure obtained by X-ray diffraction was confirmed by high-resolution transmission electron microscopy, which yielded a good match between experimental and simulated images. It is further shown that the well-known magnetism in LaCoO 3 , which involves a thermally induced Co 3+ (d 6 ) low spin to intermediate or high spin state transition, is strongly modified by the RE cation, and a rich variety of magnetic order has been detected across the series.
Cation distribution and optical properties of Cr-doped MgGa2O4 nanocrystals
NASA Astrophysics Data System (ADS)
Duan, Xiulan; Liu, Jian; Wang, Xinqiang; Jiang, Huaidong
2014-11-01
The distribution of cations in the spinel-type MgCr2yGa2-2yO4 (y = 0-0.6) nanocrystals and their optical properties as a function of annealing temperature and chromium content were investigated by using X-ray photoelectron spectroscopy (XPS) in combination with absorption spectroscopy. The cations in MgCr2yGa2-2yO4 nanocrystals are disorderly distributed with mixing of divalent and trivalent cations occupying the tetrahedral and octahedral sites. With the increase of annealing temperature, the inversion parameter (the fraction of Mg2+ ions in octahedral sites) decreases, which has the same varying tendency with the proportion of tetrahedral Ga3+ or Cr3+ ions. The inversion parameter increases with increasing Cr3+ concentration. The absorption spectra indicate that Cr3+ ions are located in the octahedral sites as well as in the tetrahedral sites. The fraction of tetrahedral Cr3+ decreases with Cr-enrichment. The optical absorption properties of Cr-doped MgGa2O4 nanocrystals may be tuned by varying the preparation temperature or Cr concentration.
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.
Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C
2013-12-02
PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
Wu, Ting; Mukherjee, Rupam; Ovchinnikova, Olga S.; ...
2017-11-17
Hybrid perovskites, as emerging multifunctional semiconductors, have demonstrated dual electronic/ionic conduction properties. Here, we report a metal/ion interaction induced p-i-n junction across slightly n-type doped MAPbI 3 single crystals with Au/MAPbI 3/Ag configuration based on interface dependent Seebeck effect, Hall effect and time-of-flight secondary ion mass spectrometry analysis. The organic cations (MA +) interact with Au atoms, forming positively charged coordination complexes at Au/MAPbI 3 interface, whereas iodine anions (I –) can react with Ag contacts, leading to interfacial ionic polarization. Such metal/ion interactions establish a p-doped region near the Au/MAPbI 3 interface due to the formation of MA +more » vacancies, and an n-doped region near the Ag/MAPbI 3 interface due to formation of I – vacancies, consequently forming a p-i-n junction across the crystal in Au/MAPbI 3/Ag configuration. Therefore, the metal/ion interaction plays a role in determining the surface electronic structure and semiconducting properties of hybrid perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, A.K.; Eriksson, S.-G.; Khan, Abdullah
2006-05-15
Polycrystalline Sr{sub 2-x}Nd{sub x}FeMoO{sub 6} (x=0.0, 0.1, 0.2, 0.4) materials have been synthesized by a citrate co-precipitation method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature-dependent NPD data shows that the compounds (x=0.0, 0.1, 0.2) crystallize in the tetragonal symmetry in the range 10-400K and converts to cubic symmetry above 450K. The unit cell volume increases with increasing Nd{sup 3+} concentration, which is an electronic effect in order to change the valence state of the B-site cations. Antisite defects at the Fe-Mo sublattice increases with the Nd{sup 3+} doping. The Curie temperature wasmore » increased from 430K for x=0 to 443K for x=0.4. The magnetic moment of the Fe-site decreases while the Mo-site moment increases with electron doping. The antiferromagnetic arrangement causes the system to show a net ferrimagnetic moment.« less
Parvizi, Paria; Jubeli, Emile; Raju, Liji; Khalique, Nada Abdul; Almeer, Ahmed; Allam, Hebatalla; Manaa, Maryem Al; Larsen, Helge; Nicholson, David; Pungente, Michael D; Fyles, Thomas M
2014-01-30
This study seeks correlations between the molecular structures of cationic and neutral lipids, the lipid phase behavior of the mixed-lipid lipoplexes they form with plasmid DNA, and the transfection efficacy of the lipoplexes. Synthetic cationic pyridinium lipids were co-formulated (1:1) with the cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and these lipids were co-formulated (3:2) with the neutral lipids 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol. All lipoplex formulations exhibited plasmid DNA binding and a level of protection from DNase I degradation. Composition-dependent transfection (beta-galactosidase and GFP) and cytotoxicity was observed in Chinese hamster ovarian-K1 cells. The most active formulations containing the pyridinium lipids were less cytotoxic but of comparable activity to a Lipofectamine 2000™ control. Molecular structure parameters and partition coefficients were calculated for all lipids using fragment additive methods. The derived shape parameter values correctly correlated with observed hexagonal lipid phase behavior of lipoplexes as derived from small-angle X-ray scattering experiments. A transfection index applicable to hexagonal phase lipoplexes derived from calculated parameters of the lipid mixture (partition coefficient, shape parameter, lipoplex packing) produced a direct correlation with transfection efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, L. C.; Lang, L. L.; Xu, J.; Li, Z. Z.; Qi, W. H.; Tang, G. D.; Wu, L. Q.
2015-09-01
Powder samples of the spinel ferrites MxNi0.7-xFe2.3O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) and CrxNi0.7Fe2.3-xO4 (0.0 ≤ x ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μexp) per formula both at 10 K and 300 K increased with Co substitution, while the values of μexp decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μexp, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.
Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wei, E-mail: qinw@qdu.edu.cn; Xia, Lin-Hua; Zhao, Li-Zhen
The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like withmore » the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less
Effect of DOPE and cholesterol on the protein adsorption onto lipid nanoparticles
NASA Astrophysics Data System (ADS)
Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; Cavaliere, Chiara; Laganà, Aldo
2013-03-01
Upon administration, nanoparticles (NPs) are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a "protein corona". NP-protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here, we have investigated the effect of neutral dioleoylphosphatidylethanolamine (DOPE) and cholesterol on the adsorption of human plasma proteins onto the surface of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based cationic liposomes of 100 nm in diameter. Quantitative analysis of the protein corona revealed that replacing cationic DOTAP lipids with neutral lipids, being indifferently DOPE or cholesterol, reduces the affinity of fibrinogen, prothrombin, vitamin K, and vitronectin for the lipid surface. On the other side, DOPE specifically promotes the adsorption of apolipoproteins and serum albumin, while cholesterol induces the preferential binding of immunoglobulins and complement proteins. The results of this study will help to explain why NPs of different lipid compositions have a dramatic difference in their in vivo transfection efficiency and will be useful for design of lipid NPs with optimal circulation profiles.
Influence of Lanthanum Doping on the Structural and Optical Properties of Hematite Nanopowders
NASA Astrophysics Data System (ADS)
Justus, J. Sharmila; Dharma Roy, S. Dawn; Raj, A. Moses Ezhil
2016-10-01
Rare-earth elements are an attractive class of dopant elements, as they give easily trivalent cations that possibly altering the structure and other properties of the parent nanoparticles and creating multifunctional materials because of their f-electronic configurations. Herein, experimental evidence has been given for a better understanding of the factors that dictate the interactions of La doping on the structure and optical properties of iron oxide nanoparticles. For that, lanthanum doped hematite (α-Fe2O3) nanoparticles were prepared by a facile solution method using iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. As-prepared powders were subsequently calcined in air for 3 hr at 800 °C. Xray diffraction (XRD) technique was used to study the nanocrystal formation of α-Fe2O3 and Fourier Transform Raman (FT-Raman) spectral information identified the chemical bond structure of the nanoparticles. Morphology study of the nanoparticles was identified using Scanning Electron Microscope (SEM) and the incorporated La content was recognized from the Energy Dispersive X-ray Spectroscopy (EDS) analysis. The optical absorption spectrum was recorded in the wavelength range of 200-2000 nm and the optical parameters such as absorption coefficient and optical band gap energy of pure and doped Fe2O3 nanoparticles were determined. Obtained results are interpreted by considering the impregnation of trivalent La cations that replaced Fe cations of the host structure.
Effect of silicon, tantalum, and tungsten doping and polarization on bioactivity of hydroxyapatite
NASA Astrophysics Data System (ADS)
Dhal, Jharana
Hydroxyapatite (HAp) ceramics has important applications as bone graft because of the structural and compositional similarities with bone tissue. However, inferior osteogenic capacity to bone and poor mechanical properties have been identified to be major disadvantages of synthetic HAp compared to the living bone tissue. The objective of the current study is to evaluate the effect of doping with higher valent cations (Tungsten, tantalum, and silicon) and polarization or combination of both on change in property of doped HAp and subsequent impact its bioactivity. In vitro study with human osteoblast cells was used to investigate the influences of doping and polarization on bone cell-materials interactions. The bioactivity of doped HAp was compared with pure HAp. Effect of doping and polarization on the change in HAp was investigated by monitoring change in mineral phases, stored charge, and activation energy of HAp. Activation energy of depolarization was used to explain the possible mechanism of polarization in doped samples. Bioactivity of HAp increased when doped with tantalum and tungsten. Polarization further increased the bioactivity of tungsten- and tantalum-doped samples. Increase in bioactivity on polarized and doped samples was attributed to increase in surface energy and increase in surface wettability. Whereas, an increase in bioactivity on doped unpolarized surface was attributed to change in microstructure. Polarized charge calculated from TSDC indicates that polarized charge decreases on tantalum- and tungsten-doped HAp. The decrease in polarized charge was attributed to the presence of significant amount of different phases that may hinder the ionic motion in doped samples. However, for silicon-doped HAp, TSDC study showed no difference in the mechanism of polarization between doped and undoped samples. Increase in silicon doping decreased the grain size though mechanism is not affected by grain size. Total stored charge decreased with increase in dopant concentration at a particular sintering temperature. Results of this study provide further evidence for use of higher valence cations to improve biological performance of HAp ceramics and to advance our understanding on mechanism of polarization in doped samples.
pH-sensitive liposomes: characterization and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, J.
1986-01-01
It has been demonstrated that liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoylhomocysteine (PHC) have the ability to fuse with adjacent membranes upon exposure to mildly acid pH. The ability of liposomes to fuse is absolutely dependent on the presence of DOPE and a weakly acidic amphiphile. The acid induced fusion event is a leaky process, but the leakage can be reduced by 50%, with only a small loss of fusion ability, by the inclusion of 40 mole percent cholesterol. Using an established monoclonal antibody targeting system. pH-sensitive immunoliposomes were prepared which successfully delivered entrapped calcein to the cytoplasm of targetmore » cells. The addition of chloroquine, which raises the internal pH of cellular vacuoles, blocks the cytoplasmic delivery of the pH-sensitive immunoliposomes. pH-insensitive immunoliposomes delivered calcein only to the endosome/lysosome system and not the cytoplasm. /sup 31/P-NMR and light scattering of DOPE:OA liposomes under acidic conditions demonstrate that the effect of the protons and the divalent cations is to force the DOPE to revert to the hexagonal II configuration. In vivo experiments with DOPE:OA immunoliposomes indicate that the liposomes rapidly aggregate and release their contents upon exposure to plasma. These results indicate that pH-sensitive immunoliposomes are an effective tool for in vitro cytoplasmic delivery but are ineffective for in vivo delivery at this point in development.« less
Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.; ...
2017-06-25
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
Compensating vacancy defects in Sn- and Mg-doped In2O3
NASA Astrophysics Data System (ADS)
Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; Galazka, Z.
2014-12-01
MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3 , however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.
Contat-Rodrigo, Laura; Pérez-Fuster, Clara; Lidón-Roger, José Vicente; Bonfiglio, Annalisa; García-Breijo, Eduardo
2016-09-28
A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene) doped with polysterene sulfonate (PEDOT:PSS). Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS) solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B). The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag). The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na⁺ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl - counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.
Zhu, Jianbo; Xu, Youlong; Wang, Jie; Lin, Jun; Sun, Xiaofei; Mao, Shengchun
2015-11-21
In this work, polypyrrole/graphene doped by p-toluenesulfonic is prepared as an active material for supercapacitors, and its capacitance performance is investigated in various aqueous electrolytes including HCl, LiCl, NaCl, and KCl with a concentration of 3 M, respectively. A rising trend of capacitance is observed according to the cationic mobility (Li(+) < Na(+) < K(+) < H(+)), which is due to its effect on the ionic conductivity, efficient ion/charge diffusion/exchange and relaxation time. On the other hand, long-term cycling stability is in the following order: KCl < NaCl < LiCl < HCl, corresponding to the decreasing tendency of cation size (K(+) > Na(+) > Li(+) > H(+)). The reason can be attributed to the fact that the insertion/de-insertion of large size cation brings a significant doping level decrease and an over-oxidation increase during the charging-discharging cycles. Hence, we not only obtain good capacitance performance (280.3 F g(-1) at 5 mV s(-1)), superior rate capability (225.8 F g(-1) at 500 mV s(-1)) and high cycling stability (92.0% capacitance retention after 10,000 cycles at 1 A g(-1)) by employing 3 M HCl as an electrolyte, but also reveal that the electrolyte cations have a significant effect on the supercapacitors' electrochemical performance.
1983-03-01
PLZT ceramics. Low temperature studies on pure and doped PZTs have given the first clear indi- cation of the intrinsic (averaged) single domain...8217 11 4.0 PYROELECTRIC MATERIALS 27 4.1 Micro Composites 27 4.2 ’ Doped ’ Tungsten Bronze and TGS Structure Single Crystals 28 5.0 FERROELECTRIC...differences in piezo- electric activity, coupling constant and permittivity between differently doped PZTs are extrinsic and freeze out at 4°K. Extending
Redox doping behaviour of poly(3,4-ethylenedithiothiophene) - The counterion effect
NASA Astrophysics Data System (ADS)
Domagala, Wojciech; Palutkiewicz, Dawid; Cortizo-Lacalle, Diego; Kanibolotsky, Alexander L.; Skabara, Peter J.
2011-07-01
Poly(3,4-ethylenedithiothiophene) - PEDTT, an alkylene sulphur derivative of PEDOT, presents itself as an interesting polymer with a number of disparate redox and chromic properties compared to its close analogue - PEDOT. In this study we present the results of an investigation into the electrochemical doping process of PEDTT, using four different electrolyte solutions, differing in anion content of the chosen salt. The results show that the anion identity plays a key role in the redox reactions accompanying these processes in what could be interpreted as anion ionochromism. In situ UV-Vis spectroelectrochemical experiments reveal an intriguing double electrochromic transition of PEDTT films during their oxidative doping, going from golden-yellow through green to pomegranate - a quality not so common within the family of electroactive conjugated polymers. The evolution of each UV-Vis spectrum over a potential range indicates that different redox states of the polymer are responsible for the chromatic changes. In the reduction half-cycle, the dedoping process of PEDTT appears to follow a path dissimilar to the p-doping one, featuring only one, direct electrochromic transition of the film's colour, bypassing the green state, and a distinct two-step bleaching process of doping-induced charge carrier bands. The observed electrochemical and spectral phenomena have been accredited to the specific redox behaviour of doping-induced radical cation and cationic defect states interacting with the dithioalkylene sulphur atom.
Reconditioning perovskite films in vapor environments through repeated cation doping
NASA Astrophysics Data System (ADS)
Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn
2018-06-01
Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.
NASA Astrophysics Data System (ADS)
Litvinova, Man Nen; Syuy, Alexander V.; Krishtop, Victor V.; Pogodina, Veronika A.; Ponomarchuk, Yulia V.; Sidorov, Nikolay V.; Gabain, Aleksei A.; Palatnikov, Mikhail N.; Litvinov, Vladimir A.
2016-11-01
The conversion of broadband IR radiation when the noncritical phase matching condition is fulfilled in lithium niobate (LiNbO3) single crystals with stoichiometric (R = Li/Nb = 1) and congruent (R = 0.946) compositions, as well as in congruent single crystals doped with zinc has been investigated. It is shown that the spectrum parameters of converted radiation, such as the conversion efficiency, spectral width and position of maximum, depend on the ordering degree of structural units of the cation sublattice along the polar axis of crystal.
A receptor-targeted nanocomplex vector system optimized for respiratory gene transfer.
Tagalakis, Aristides D; McAnulty, Robin J; Devaney, James; Bottoms, Stephen E; Wong, John B; Elbs, Martin; Writer, Michele J; Hailes, Helen C; Tabor, Alethea B; O'Callaghan, Christopher; Jaffe, Adam; Hart, Stephen L
2008-05-01
Synthetic vectors for cystic fibrosis (CF) gene therapy are required that efficiently and safely transfect airway epithelial cells, rather than alveolar epithelial cells or macrophages, and that are nonimmunogenic, thus allowing for repeated delivery. We have compared several vector systems against these criteria including GL67, polyethylenimine (PEI) 22 and 25 kd and two new, synthetic vector formulations, comprising a cationic, receptor-targeting peptide K(16)GACSERSMNFCG (E), and the cationic liposomes (L) DHDTMA/DOPE or DOSEP3/DOPE. The lipid and peptide formulations self assemble into receptor-targeted nanocomplexes (RTNs) LED-1 and LED-2, respectively, on mixing with plasmid (D). LED-1 transfected airway epithelium efficiently, while LED-2 and GL67 preferentially transfected alveolar cells. PEI transfected airway epithelial cells with high efficiency, but was more toxic to the mice than the other formulations. On repeat dosing, LED-1 was equally as effective as the single dose, while GL67 was 30% less effective and PEI 22 kd displayed a 90% reduction of efficiency on repeated delivery. LED-1 thus was the only formulation that fulfilled the criteria for a CF gene therapy vector while GL67 and LED-2 may be appropriate for other respiratory diseases. Opportunities for PEI depend on a solution to its toxicity problems. LED-1 formulations were stable to nebulization, the most appropriate delivery method for CF.
Cationic liposome-mediated gene transfer to tumor cells in vitro and in vivo.
Son, K; Sorgi, F; Gao, X; Huang, L
1997-01-01
Development of safe and effective technology for delivering functional DNA into cells in an intact organism is crucial to broad applications of gene therapy to human disease. Both viral and nonviral vectors have been developed. Of the technologies currently being studied, liposomal delivery system is particularly attractive. Cationic liposome-mediated gene transfection (lipofection), a relatively new technique pioneered by Felgner and coworkers (1), was highly efficient for transfecting cells in culture. The liposomes were composed of an equimolar mixture of a synthetic cationic lipid N-[1-(2,3,-dioleyloxy)propyl]-N,N,N,-trimethylammonium chloride (DOTMA) and a helper lipid dioleoyl-phosphatidylethanolamine (DOPE) Fig. 1). The DOTMA/DOPE mixture (Lipofectin) forms complexes with DNA by charge interaction upon mixing at room temperature. Other catronic lipids are DOTAP, LipofectAMINE, Lipofectam, and DC-chol. The DOTAP is a diester analog of DOTMA and commercially available. LipofectAMINE and Lipofectam are polycationic lipids with a spermine head group that show increased frequency and activity of eukaryotic cell transfection (2,3). 3β-[N-(N',N'-dimethyaminoaminoethane) carbamoyl] cholesterol (DC-chol) (Fig. 1), a cationic cholesterol derivative, was introduced by Gao and Huang (4) and is routinely used in our laboratory. The DC-chol is now commercially available but can be easily synthesized with a single-step reaction from N,N-dimethylethylenediamine and cholesterol chloroformate (4), and improves the efficiency of transfection with minimal toxicity.Liposomes prepared with DC-chol and DOPE (3∶2 molar ratio) are stable at 4°C for at least 1 yr (unpublished data).
NASA Astrophysics Data System (ADS)
Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.
1997-03-01
We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.
Origins of n -type doping difficulties in perovskite stannates
NASA Astrophysics Data System (ADS)
Weston, L.; Bjaalie, L.; Krishnaswamy, K.; Van de Walle, C. G.
2018-02-01
The perovskite stannates (A SnO3 ; A = Ba, Sr, Ca) are promising for oxide electronics, but control of n -type doping has proved challenging. Using first-principles hybrid density functional calculations, we investigate La dopants and explore the formation of compensating acceptor defects. We find that La on the A site always behaves as a shallow donor, but incorporation of La on the Sn site can lead to self-compensation. At low La concentrations and in O-poor conditions, oxygen vacancies form in BaSnO3. A -site cation vacancies are found to be dominant among the native compensating centers. Compared to BaSnO3, charge compensation is a larger problem for the wider-band-gap stannates, SrSnO3 and CaSnO3, a trend we can explain based on conduction-band alignments. The formation of compensating acceptor defects can be inhibited by choosing oxygen-poor (cation-rich) growth or annealing conditions, thus providing a pathway for improved n -type doping.
Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)
NASA Astrophysics Data System (ADS)
Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.
2014-02-01
In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.
First-principles prediction of a promising p-type transparent conductive material CsGeCl3
NASA Astrophysics Data System (ADS)
Huang, Dan; Zhao, Yu-Jun; Ju, Zhi-Ping; Gan, Li-Yong; Chen, Xin-Man; Li, Chang-Sheng; Yao, Chun-mei; Guo, Jin
2014-04-01
Most reported p-type transparent conductive materials are Cu-based compounds such as CuAlO2 and CuCrO2. Here, we report that compounds based on ns2 cations with low binding energy can also possess high valence band maximum, which is crucial for the p-type doping according to the doping limit rules. In particular, CsGeCl3, a compound with valence band maximum from ns2 cations, is predicted as a promising p-type transparent conductive material by first-principles calculations. Our results show that the p-type defect Ge vacancy dominates its intrinsic defects with a shallow transition level, and the calculated hole effective masses are low in CsGeCl3.
Electronic and optical properties of Cr-, B-doped, and (Cr, B)-codoped SrTiO3
NASA Astrophysics Data System (ADS)
Wu, Jiao; Huang, Wei-Qing; Yang, Ke; Wei, Zeng-Xi; Peng, P.; Huang, Gui-Fang
2017-04-01
Energy band engineering of semiconductors plays a crucial role in exploring high-efficiency visible-light response photocatalysts. Herein, we systematically study the electronic properties and optical response of Cr-, B-doped SrTiO3, and (Cr, B)-codoped SrTiO3 by using first-principles calculations to explore the mechanism for its superior photocatalytic activities in the visible light region. Special emphasis is placed on uncovering the synergy effects of nonmetal B dopant with metal Cr dopant at different cation sites. It is found that the electronic properties and optical absorption of SrTiO3 can be dramatically engineered by mono- or co-doping. In particular, the intermediate levels lying in the bandgap of the codoped SrTiO3 relay on the Cr impurity doped at Sr or Ti cation sites. Moreover, the (Cr@Sr, B@O)-SrTiO3 retains the charge balancing without the generation of unexpected oxygen vacancies, and is more desirable for solar light harvesting due to its higher absorption than others in the entire visible light. The findings can rationalize the available experimental results and are helpful in designing SrTiO3-based photocatalysts with high-efficiency performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, M. B., E-mail: begonia@ubu.es; Vega, A.; Balbás, L. C.
2014-05-07
Recently, Ar physisorption was used as a structural probe for the location of the Ti dopant atom in aluminium cluster cations, Al{sub n}Ti{sup +} [Lang et al., J. Am. Soc. Mass Spectrom. 22, 1508 (2011)]. As an experiment result, the lack of Ar complexes for n > n{sub c} determines the cluster size for which the Ti atom is located inside of an Al cage. To elucidate the decisive factors for the formation of endohedrally Al{sub n}Ti{sup +}, experimentalists proposed detailed computational studies as indispensable. In this work, we investigated, using the density functional theory, the structural and electronic propertiesmore » of singly titanium doped cationic clusters, Al{sub n}Ti{sup +} (n = 16–21) as well as the adsorption of an Ar atom on them. The first endohedral doped cluster, with Ti encapsulated in a fcc-like cage skeleton, appears at n{sub c} = 21, which is the critical number consistent with the exohedral-endohedral transition experimentally observed. At this critical size the non-crystalline icosahedral growth pattern, related to the pure aluminium clusters, with the Ti atom in the surface, changes into a endohedral fcc-like pattern. The map of structural isomers, relative energy differences, second energy differences, and structural parameters were determined and analyzed. Moreover, we show the critical size depends on the net charge of the cluster, being different for the cationic clusters (n{sub c} = 21) and their neutral counterparts (n{sub c} = 20). For the Al {sub n} Ti {sup +} · Ar complexes, and for n < 21, the preferred Ar adsorption site is on top of the exohedral Ti atom, with adsorption energy in very good agreement with the experimental value. Instead, for n = 21, the Ar adsorption occurs on the top an Al atom with very low absorption energy. For all sizes the geometry of the Al{sub n}Ti{sup +} clusters keeps unaltered in the Ar-cluster complexes. This fact indicates that Ar adsorption does not influence the cluster structure, providing support to the experimental technique used. For n{sub c} = 21, the smallest size of endohedral Ti doped cationic clusters, the Ar binding energy decreases drastically, whereas the Ar-cluster distance increases substantially, point to Ar physisorption, as assumed by the experimentalists. Calculated Ar adsorption energies agree well with available experimental binding energies.« less
Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).
Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim
2015-07-01
Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stampfl, C.; Van de Walle, Chris G.
1998-01-01
N-type AlxGa1-xN exhibits a dramatic decrease in the free-carrier concentration for x⩾0.40. Based on first-principles calculations, we propose that two effects are responsible for this behavior: (i) in the case of doping with oxygen (the most common unintentional donor), a DX transition occurs, which converts the shallow donor into a deep level; and (ii) compensation by the cation vacancy (VGa or VAl), a triple acceptor, increases with alloy composition x. For p-type doping, the calculations indicate that the doping efficiency decreases due to compensation by the nitrogen vacancy. In addition, an increase in the acceptor ionization energy is found with increasing x.
NASA Astrophysics Data System (ADS)
Xi, Guoxi; Zhao, Tingting; Wang, Lu; Dun, Changwei; Zhang, Ye
2018-04-01
Recovering spent Li-ion batteries is beneficial to the economy and environment. Therefore, this study synthesized nanoparticles of cobalt ferrite doped with different rare earth ions (Nd, Ce, and Pr) by a sol-gel auto-combustion method using spent Li-ion batteries. The effect of the different doping elements on grain sizes, structure, magnetic and magnetostrictive properties, and strain derivative were confirmed by X-ray diffraction, scanning election microscopy, vibrating sample magnetometer, and a magnetostrictive coefficient measuring system. Substitution of a small amount of Fe3+ with RE3+ in CoRExFe2-xO4 (x = 0.025, 0.05, and 0.1) had a large effect on magnetostrictive properties and strain derivative, which was improved compared with pure cobalt ferrite at low magnetic field. The maximum strain derivative (dλ/dH = -1.49 × 10-9 A-1 m at 18 kA m-1) was obtained for Nd, x = 0.05. Changes in the magnetostriction coefficients and strain derivatives were correlated with changes in cation distribution, microstructure, and magnetic anisotropy, which depended strongly on RE3+ substitution and distribution in the spinel structure.
Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Zhu, Dongming; Eslamloo-Grami, Maryam
2006-01-01
Pyrochlore oxides of general composition, A2B2O7, where A is a 3(+) cation (La to Lu) and B is a 4(+) cation (Zr, Hf, Ti, etc.) have high melting point, relatively high coefficient of thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings. The effect of doping at the A site on the thermal conductivity of a pyrochlore oxide La2Zr2O7, has been investigated. Oxide powders of various compositions La2Zr2O7, La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 were synthesized by the citric acid sol-gel method. These powders were hot pressed into discs and used for thermal conductivity measurements using a steady-state laser heat flux test technique. The rare earth oxide doped pyrochlores La(1.7)Gd(0.3)Zr2O7, La(1.7)Yb(0.3)Zr2O7 and La(1.7)Gd(0.15)Yb(0.15)Zr2O7 had lower thermal conductivity than the un-doped La2Zr2O7. The Gd2O3 and Yb2O3 co-doped composition showed the lowest thermal conductivity.
Electron doped layered nickelates: Spanning the phase diagram of the cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botana, Antia S.; Pardo, Victor; Norman, Michael R.
2017-07-01
Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.
Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride
NASA Astrophysics Data System (ADS)
Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.
1996-03-01
LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.
NASA Astrophysics Data System (ADS)
Borodin, Oleg
2010-03-01
Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.
Self-doped microphase separated block copolymer electrolyte
Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying
2002-01-01
A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
Positron annihilation studies of zirconia doped with metal cations of different valence
NASA Astrophysics Data System (ADS)
Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.
2013-06-01
New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Abul K., E-mail: aka7@st-andrews.ac.uk; Khan, Abdullah; Eriksson, Sten-G.
2009-12-15
Polycrystalline Sr{sub 2}Fe{sub 1-x}Ga{sub x}MoO{sub 6} (0 {<=} x {<=} 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperaturemore » decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.« less
NASA Astrophysics Data System (ADS)
Baniecki, J. D.; Ishii, M.; Aso, H.; Kobayashi, K.; Kurihara, K.; Yamanaka, K.; Vailionis, A.; Schafranek, R.
2011-12-01
Above room temperature electronic transport properties of SrxTiyO3-δ films with cation A/B = (La + Sr/Nb + Ti) ratios of 0.9 to 1.2 are compared to STO single crystals with combined Hall carrier densities of 3 × 1016 cm-3 ≤ nH ≤ 1022 cm-3. In contrast to Hall mobility which is single crystal-like (μH ≈ 6 cm2/Vs) only near A/B = 1, the Seebeck coefficient (S) is single crystal-like over a range of nonstoichiometry. For nH < 1020 cm-3, S is well described by nondegenerate band-like transport with a constant effective mass m∗/mo ≈ 5-8. For nH > 1021 cm-3, S is metallic-like with m∗/mo ˜ 8. No marked increase in m∗ with decreasing nH owing to a carrier filling dependence is observed.
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Mohamed, Mohamed Bakr; Ahmed, S. I.
2017-11-01
Nanoparticles cobalt ferrite, vacancies defective through vanadium substitution for iron, were synthesized by a sol-gel method. Two systems CoFe2-xVxO4 (0.0 ≤ x ≤ 0.25) and CoFe2-1.67xVxO4 (x = 0.1, 0.2) were prepared. The crystal structure, microstructure and magnetic properties were investigated using XRD, SEM and VSM magnetometer. The occupancy of tetrahedral and octahedral sites by different cations was determined by Rietveld analysis and correlated with magnetic measurements. Vanadium resides at octahedral sites up to x = 0.10, while for higher values it resides mainly at octahedral sites with a lesser amount at the tetrahedrons. Upon increasing the vanadium content, the cell parameter decreases and the bond lengths of the tetrahedral and octahedral sites change opposite to each other. The change in the coercivity and saturation magnetization is correlated with cation distribution. For the same amount of doping x, the iron deficient samples CoFe2-1.67xVxO4 have saturation magnetization obviously reduced than the corresponding samples in CoFe2-xVxO4. The spin canting between cations in A- and B- sites was discussed in details based on Yafet-Kittel triangular arrangement model.
Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng
2017-07-06
Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.
Kim, Hyun-sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-il; Kim, Sung Wng
2017-01-01
Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi2Te3-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi0.48Sb1.52Te3. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi0.48-xPbxSb1.52Te3 due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14–22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye–Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction. PMID:28773118
NASA Astrophysics Data System (ADS)
Driscoll, L. L.; Kendrick, E.; Knight, K. S.; Wright, A. J.; Slater, P. R.
2018-02-01
In this paper we report an investigation into the phases formed on dehydration of Na2M(SO4)2-x(SeO4)x·2H2O (0 ≤ x ≤ 1; M = Mn, Fe, Co and Ni). For the Fe series, all attempts to dehydrate the samples doped with selenate resulted in amorphous products, and it is suspected that a side redox reaction involving the Fe and selenate may be occurring leading to phase decomposition and hence the lack of a crystalline product on dehydration. For M = Mn, Co, Ni, the structure observed was shown to depend upon the transition metal cation and level of selenate doping. An alluaudite phase, Na3M1.5(SO4)3-1.5x(SeO4)1.5x, was observed for the selenate doped compositions, with this phase forming as a single phase for x ≥ 0.5 M = Co, and x = 1.0 M = Ni. For M = Mn, the alluaudite structure is obtained across the series, albeit with small impurities for lower selenate content samples. Although the alluaudite-type phases Na2+2y(Mn/Co)2-y(SO4)3 have recently been reported [1,2], doping with selenate appears to increase the maximum sodium content within the structure. Moreover, the selenate doped Ni based samples reported here are the first examples of a Ni sulfate/selenate containing system exhibiting the alluaudite structure.
The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.
Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S
2015-07-01
Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, L. C.; Lang, L. L.; Li, Z. Z.
2015-09-15
Powder samples of the spinel ferrites M{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (M = Cr, Co and 0.0 ≤ x ≤ 0.3) and Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0 ≤ x ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μ{sub exp}) per formula both at 10 K and 300 K increased with Co substitution, while the values of μ{sub exp} decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr{sup 2+} and Cr{sup 3+} lie antiparallel tomore » those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μ{sub exp}, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.« less
Low energy ion-solid interactions and chemistry effects in a series of pyrochlores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liyuan; Li, Yuhong; Devanathan, Ram
The effect of chemistry on low energy recoil events was investigated at 10 K for each type of atom in pyrochlores using molecular dynamics simulation. Contour plots of the threshold displacement energy (Ed) in Gd2Zr2O7 have been produced along more than 80 directions for each individual species. The Ed surface for each type of atom in Gd2Zr2O7 is highly anisotropic; Ed of Zr exhibits the largest degree of anisotropy, while that of O8b exhibits the smallest. The recommended values of Ed in Gd2Zr2O7 based on the observed minima are 56, 94 and 25 eV, respectively for Gd, Zr and O.more » The influence of cation radius on Ed in pyrochlores A2B2O7 (with A-site ranging from Lu3+ to La3+ and B-site ranging from Ti4+ to Ce4+) was also investigated along three directions [100], [110] and [111]. The Ed in pyrochlores strongly depended on the atom type, atom mass, knock-on direction, and lattice position. The defects produced after low energy displacement events included cation antisite defects, cation Frenkel pairs, anion Frenkel pairs, various vacancies and interstitials. Ce doping in pyrochlores may affect the radiation response, because it resulted in drastic changes in cation and anion displacement energies and formation of an unusual type of anti-site defect. This work demonstrates links between Ed and amorphization resistance.« less
Electronic structure and vacancy formation in La(1 - x) B(x) CoO3 (B=Mg,Ca,Ba and x=0.125)
NASA Astrophysics Data System (ADS)
Salawu, Omotayo; Gan, Liyong; Schwingenschlogl, Udo
2015-03-01
The LaCoO3 class of materials is of interest for cathodes of solid oxide fuel cells. Spin-polarized density functional theory is applied to cubic La0.75(Mg/Ca/Ba)0.125CoO3. The effect of this cation doping on the electronic and magnetic properties as well as oxygen vacancy formation energy is studied. Oxygen vacancies with proximity to the dopant are energetically favourable in most cases. We discuss the effect of distortions of the CoO6 octahedron on the electronic structure and the formation energy of oxygen vacancies. The order of formation oxygen is found to be Mg > Ca > Ba. Cation doping incorporates holes to the Co-O network which enhances the oxygen vacancy formation.
Electronic, magnetic, and optical properties of Semiconducting Spinel Fe2CrO4
NASA Astrophysics Data System (ADS)
Droubay, Tim; Kaspar, Tiffany; Nayyar, Iffat; Keavney, David; Sushko, Peter; Chambers, Scott
Transition metal oxides offer significant flexibility in tailoring functional properties by virtue of the high degree of solid solubility of different cations within the host lattice. For instance, the electronic properties of magnetite (Fe3O4) , a ferrimagnetic half metal, can be substantially changed by substituting one third of the Fe cations with Mn, Ni, Co, Zn or Mg. The actual magnetic properties of any given ferrite depend critically on whether the dopant occupies the tetrahedral (A) or octahedral (B) sites, or a mix of the two. Doping magnetite to produce a ferromagnetic semiconductor would be of considerable interest for spintronics and photocatalysis, particularly if the bandgap remains small. The detailed functional properties depend on the local structure, which is dictated in large measure by the cation sublattice(s) the dopants occupy, the valence(s) they exhibit, and the relative energy scales of competing effects, including short-range disorder, that determine the overall electronic structure. We have investigated Cr as the dopant in Fe3O4 by carrying out epitaxial film growth by molecular beam epitaxy and characterization, along with first principles modeling to explore new model materials. We find that replacing 1/3 of the Fe atoms with Cr atoms results in a low-gap, thermally robust ferrimagnetic semiconductor that is photoconductive in the visible, whereas replacing 2/3 of the Fe with Cr produces an insulator with no net magnetization. PNNL work supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering.
Liang, Wuu-Jyh; Chen, Ying-Pin; Wu, Chien-Pang; Kuo, Ping-Lin
2005-12-29
The chemical-covalent polyether-siloxane hybrids (EDS) doped with various amounts of LiClO4 salt were characterized by FT-IR, DSC, TGA, and solid-state NMR spectra as well as impedance measurements. These observations indicate that different types of complexes by the interactions of Li+ and ClO4- ions are formed within the hybrid host, and the formation of transient cross-links between Li+ ions and ether oxygens results in the increase in T(g) of polyether segments and the decrease in thermal stability of hybrid electrolyte. Initially a cation complexation dominated by the oxirane-cleaved cross-link site and PEO block is present, and after the salt-doped level of O/Li+ = 20, the complexation through the PPO block becomes more prominent. Moreover, a significant degree of ionic association is examined in the polymer-salt complexes at higher salt uptakes. A VTF-like temperature dependence of ionic conductivity is observed in all of the investigated salt concentrations, implying that the diffusion of charge carrier is assisted by the segmental motions of the polymer chains. The behavior of ion transport in these hybrid electrolytes is further correlated with the interactions between ions and polymer host.
Enhanced supercapacitor performances using C-doped porous TiO2 electrodes
NASA Astrophysics Data System (ADS)
Chen, Juanrong; Qiu, Fengxian; Zhang, Ying; Liang, Jianzheng; Zhu, Huijun; Cao, Shunsheng
2015-11-01
Considerable efforts have been paid to develop electrochemical capacitors with energy storage capability in order to meet the demands of multifunctional electronics. Here we report a facile method to fabricate C-doped porous anatase TiO2. This technique involves the preparation of monodisperse cationic polystyrene nanoparticles (CPN), following sequential deposition of tetrabutylorthotitanate (TBT), and directly carbonizing of CPN. Interestingly, during the process of carbonizing CPN, a phase transition of TiO2 will be happened and whist C-doped porous anatase TiO2 is in situ formed. When this porous C-doped TiO2 is used as electrode material to prepare electrochemical capacitor, it manifests a higher capacitance than the commercial P25, effectively broadening it potential for many practical applications.
Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.
Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Grätzel, Michael; Friend, Richard H
2017-03-19
Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with similar ionic radii to Pb 2+ , including Cu + , Na + , and Ag + . A shift in the Fermi level and a remarkable decrease of sub-bandgap optical absorption, along with a lower energetic disorder in the perovskite, was achieved. An order-of-magnitude enhancement in the bulk hole mobility and a significant reduction of transport activation energy within an additive-based perovskite device was attained. The confluence of the aforementioned improved properties in the presence of these cations led to an enhancement in the photovoltaic parameters of the perovskite solar cell. An increase of 70 mV in open circuit voltage for AgI and a 2 mA/cm 2 improvement in photocurrent density for NaI- and CuBr-based solar cells were achieved compared to the pristine device. Our work paves the way for further improvements in the optoelectronic quality of CH3NH3PbI3 perovskite and subsequent devices. It highlights a new avenue for investigations on the role of dopant impurities in crystallization and controls the electronic defect density in perovskite structures.
Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells
Abdi-Jalebi, Mojtaba; Dar, M. Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P.; Grätzel, Michael; Friend, Richard H.
2017-01-01
Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with similar ionic radii to Pb2+, including Cu+, Na+, and Ag+. A shift in the Fermi level and a remarkable decrease of sub-bandgap optical absorption, along with a lower energetic disorder in the perovskite, was achieved. An order-of-magnitude enhancement in the bulk hole mobility and a significant reduction of transport activation energy within an additive-based perovskite device was attained. The confluence of the aforementioned improved properties in the presence of these cations led to an enhancement in the photovoltaic parameters of the perovskite solar cell. An increase of 70 mV in open circuit voltage for AgI and a 2 mA/cm2 improvement in photocurrent density for NaI- and CuBr-based solar cells were achieved compared to the pristine device. Our work paves the way for further improvements in the optoelectronic quality of CH3NH3PbI3 perovskite and subsequent devices. It highlights a new avenue for investigations on the role of dopant impurities in crystallization and controls the electronic defect density in perovskite structures. PMID:28362369
NASA Astrophysics Data System (ADS)
Yoo, Changhyeon
In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.
Barrán-Berdón, Ana L; Yélamos, Belén; Malfois, Marc; Aicart, Emilio; Junquera, Elena
2014-10-07
Several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering, gene transfection, fluorescence microscopy, flow cytometry, and cell viability/cytotoxicity assays, have been used to analyze the potential of anionic lipids (AL) as effective nontoxic and nonviral DNA vectors, assisted by divalent cations. The lipoplexes studied are those comprised of the green fluorescent protein-encoding plasmid DNA pEGFP-C3, an anionic lipid as 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS), and a zwitterionic lipid, the 1,2-dioleoyl-sn -glycero-3-phosphatidylethanolamine (DOPE, not charged at physiological pH). The studies have been carried on at different liposome and lipoplex compositions and in the presence of a variety of [Ca2+]. Electrochemical experiments reveal that DOPG/DOPE and DOPS/DOPE anionic liposomes may compact more effectively pDNA at low molar fractions (with an excess of DOPE) and at AL/pDNA ratios ≈20. Calcium concentrations around 15-20 mM are needed to yield lipoplexes neutral or slightly positive. From a structural standpoint, DOPG/DOPE-Ca2+-pDNA lipoplexes are self-assembled into a HIIc phase (inverted cylindrical micelles in hexagonal ordering with plasmid supercoils inside the cylinders), while DOPS/DOPE-Ca2+-pDNA lipoplexes show two phases in coexistence: one classical HIIc phase which contains pDNA supercoils and one Lα phase without pDNA among the lamellae, i.e., a lamellar stack of lipidic bilayers held together by Ca2+ bridges. Transfection and cell viability studies were done with HEK293T and HeLa cells in the presence of serum. Lipoplexes herein studied show moderate-to-low transfection levels combined with moderate-to-high cell viability, comparable to those yield by Lipofectamine2000*, which is a cationic lipid (CL) standard formulation, but none of them improve the output of typical CL gen vectors, mostly if they are gemini or dendritic. This fact would be indicating that, nowadays, lipofection via anionic lipids and divalent cations as mediators still needs to enhance transfection levels in order to be considered as a real and plausible alternative to lipofection through improved CLs-based lipoplexes.
Effect of Eu-doping on optical, structural and morphological properties of BaI2·nH2O powders
NASA Astrophysics Data System (ADS)
Salamakha, T.; Buryi, M.; Tratsiak, Y.
2018-04-01
The two-step approach to the Eu2+ doped BaI2·nH2O powders synthesis in Ar atmosphere from precursors containing different concentration of Eu3+ ions is reported. According to X-ray diffraction analysis the powders mainly consist of BaI2·2H2O phase. Their morphological, structural and luminescent properties depend on the Eu-ions concentration. The luminescence spectra are composed of broad and strong emission band peaking at 420 nm, which was related to the Eu2+ 5d-4f transition. Its intensity reaches maximum in the 2 at. % Eu2+ doped sample. Detailed analysis of the measured electron paramagnetic resonance spectra in the samples with different doping level confirms them belong to the Eu2+ ions substituting for the regular Ba2+ site in the BaI2 lattice. A sample exposed to the 330 nm UV irradiation exhibited an increase of the Eu2+ spectral intensity occurred exclusively due to the Eu3+ to Eu2+ transformation. No other signals either prior to or after the irradiation which might be attributed to the ions resided in e.g., interstitial positions or in any secondary phases were observed. Possible mechanisms of the Eu3+ stabilization in the host lattice with only divalent cation sites during the synthesis without additional treatment in reducing atmosphere are discussed as well.
NASA Astrophysics Data System (ADS)
Ren, Ping; Zhang, Kan; Du, Suxuan; Meng, Qingnan; He, Xin; Wang, Shuo; Wen, Mao; Zheng, Weitao
2017-06-01
Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag2O groups on the films surfaces through self-oxidation, because Ag cations (Ag+) in Ag2O are the filled-shell (4d105S0) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag2O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.
Ytterbium-doped borate fluoride laser crystals and lasers
Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.
1997-01-01
A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.
NASA Astrophysics Data System (ADS)
Oudrhiri, Noufissa; Vigneron, Jean-Pierre; Peuchmaur, Michel; Leclerc, Tony; Lehn, Jean-Marie; Lehn, Pierre
1997-03-01
Synthetic vectors represent an attractive alternative approach to viral vectors for gene transfer, in particular into airway epithelial cells for lung-directed gene therapy for cystic fibrosis. Having recently found that guanidinium-cholesterol cationic lipids are efficient reagents for gene transfer into mammalian cell lines in vitro, we have investigated their use for gene delivery into primary airway epithelial cells in vitro and in vivo. The results obtained indicate that the lipid bis (guanidinium)-tren-cholesterol (BGTC) can be used to transfer a reporter gene into primary human airway epithelial cells in culture. Furthermore, liposomes composed of BGTC and dioleoyl phosphatidylethanolamine (DOPE) are efficient for gene delivery to the mouse airway epithelium in vivo. Transfected cells were detected both in the surface epithelium and in submucosal glands. In addition, the transfection efficiency of BGTC/DOPE liposomes in vivo was quantitatively assessed by using the luciferase reporter gene system.
Self-doped molecular composite battery electrolytes
Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.
2003-04-08
This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.
Xu, Yun; Wen, Yi; Grote, Rob; Amoroso, Jake; Shuller Nickles, Lindsay; Brinkman, Kyle S.
2016-01-01
The hollandite structure is a promising crystalline host for Cs immobilization. A series of Ga-doped hollandite BaxCsyGa2x+yTi8−2x−yO16 (x = 0, 0.667, 1.04, 1.33; y = 1.33, 0.667, 0.24, 0) was synthesized through a solid oxide reaction method resulting in a tetragonal hollandite structure (space group I4/m). The lattice parameter associated with the tunnel dimension was found to increases as Cs substitution in the tunnel increased. A direct investigation of cation mobility in tunnels using electrochemical impedance spectroscopy was conducted to evaluate the ability of the hollandite structure to immobilize cations over a wide compositional range. Hollandite with the largest tunnel size and highest aspect ratio grain morphology resulting in rod-like microstructural features exhibited the highest ionic conductivity. The results indicate that grain size and optimized Cs stoichiometry control cation motion and by extension, the propensity for Cs release from hollandite. PMID:27273791
Increasing the thermopower of crown-ether-bridged anthraquinones.
Ismael, Ali K; Grace, Iain; Lambert, Colin J
2015-11-07
We investigate strategies for increasing the thermopower of crown-ether-bridged anthraquinones. The novel design feature of these molecules is the presence of either () crown-ether or () diaza-crown-ether bridges attached to the side of the current-carrying anthraquinone wire. The crown-ether side groups selectively bind alkali-metal cations and when combined with TCNE or TTF dopants, provide a large phase-space for optimising thermoelectric properties. We find that the optimum combination of cations and dopants depends on the temperature range of interest. The thermopowers of both and are negative and at room temperature are optimised by binding with TTF alone, achieving thermpowers of -600 μV K(-1) and -285 μV K(-1) respectively. At much lower temperatures, which are relevant to cascade coolers, we find that for , a combination of TTF and Na(+) yields a maximum thermopower of -710 μV K(-1) at 70 K, whereas a combination of TTF and Li(+) yields a maximum thermopower of -600 μV K(-1) at 90 K. For , we find that TTF doping yields a maximum thermopower of -800 μV K(-1) at 90 K, whereas at 50 K, the largest thermopower (of -600 μV K(-1)) is obtain by a combination TTF and K(+) doping. At room temperature, we obtain power factors of 73 μW m(-1) K(-2) for (in combination with TTF and Na(+)) and 90 μW m(-1) K(-2) for (with TTF). These are higher or comparable with reported power factors of other organic materials.
Dopant-induced ignition of helium nanoplasmas—a mechanistic study
NASA Astrophysics Data System (ADS)
Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel
2017-12-01
Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.
Co/Cr co-doped MgGa{sub 2}O{sub 4} nanoparticles: Microstructure and optical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Xiulan, E-mail: xlduan@sdu.edu.cn; Liu, Jian; Yu, Fapeng
2016-01-15
Graphical abstract: The Ga 2p{sub 3/2} spectra consist of two peaks, corresponding to Ga{sup 3+} ions placed at octahedral and tetrahedral sites, respectively. The fraction of tetrahedral Ga{sup 3+} ions (∼1117 eV) increases with increasing doping concentration. - Highlights: • Structural and properties of Co{sup 2+}/Cr{sup 3+}: MgGa{sub 2}O{sub 4} nanoparticles were characterized. • The distribution of cations was studied using XPS. • The inversion degree increased with increasing content of doping ions. • The doping concentration has also effect on absorption and emission properties. • Optical properties of nanoparticles were discussed based on the structural results. - Abstract: MgGa{submore » 2}O{sub 4} nanoparticles co-doped with Co{sup 2+}/Cr{sup 3+} ions were prepared by a citrate sol–gel method. Their microstructure and optical properties were studied using X-ray powder diffraction (XRD), infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), absorption and fluorescence spectroscopy. MgGa{sub 2}O{sub 4} nanoparticles with the size of 10–30 nm were obtained when the precursor was annealed at 800 °C. Results indicated that Ga{sup 3+} and Mg{sup 2+} cations occupied the octahedral sites as well as the tetrahedral sites in samples. The inversion degree of Ga or Mg increased with increasing content of doping ions. Absorption spectra indicated that Co{sup 2+} and Cr{sup 3+} ions entered both the tetrahedral and octahedral sites of spinel structure by substituting Mg{sup 2+} and Ga{sup 3+} ions, respectively. Emission spectra of the co-doped MgGa{sub 2}O{sub 4} showed a broad emission band peaking at 700 and 680 nm, relevant to the emission characteristic of octahedral Cr{sup 3+} and tetrahedral Co{sup 2+} ions.« less
Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Stephen Dongmin; Pöhls, Jan-Hendrik; Aydemir, Umut
Superionic thermoelectric materials have been shown to have high figure-of-merits, leading to expectations for efficient high-temperature thermoelectric generators. These compounds exhibit extremely high cation diffusivity, comparable to that of a liquid, which is believed to be associated with the low thermal conductivity that makes superionic materials good for thermoelectrics. However, the superionic behavior causes cation migration that leads to device deterioration, being the main obstacle for practical applications. It has been reported that lithium doping in superionic Cu2-xSe leads to suppression of the Cu ion diffusivity, but whether the material will retain the promising thermoelectric properties had not yet beenmore » investigated. Here, we report a maximum zT>1.4 from Li0.09Cu1.9Se, which is higher than what we find in the undoped samples. The high temperature effective weighted mobility of the doped sample is found higher than Cu2-xSe, while the lattice thermal conductivity remains similar. We find signatures of suppressed bipolar conduction due to an enlarged band gap. Our findings set forth a possible route for tuning the stability of superionic thermoelectric materials.« less
Synthesis and characterization of nanosized lithium manganate and its derivatives
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Javed; Zahoor, Sabia
Spinel lithium manganese oxide, LiMn 2O 4 and its derivatives are prepared by the sol-gel method. The lattice constant of the pure material is calculated as 8.23 Å. Different transition metal cations of chromium, iron, cobalt, nickel, copper and zinc (0.05 and 0.15 M) are doped in place of manganese in the LiMn 2O 4. X-ray powder diffraction data show that the spinel framework preserved its integrity upon doping. Formation of a single phase and the purity of the samples are confirmed by X-ray powder diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The crystallite size of the samples is calculated by use of the Scherrer formula and is found to be within a range of 43-66 nm. The electrical conductivity of the samples is determined over a temperature range of 200-300 K by means of four-point probe method. An increasing trend of conductivity with increase in temperature is noted for all the samples. The parent compound LiMn 2O 4 has a conductivity value of 3.47 × 10 -4 ohm -1 cm -1 at room temperature. This value increases on doping with the above-mentioned transition metal cations.
Grain-Boundary Engineering for Aging and Slow-Crack-Growth Resistant Zirconia.
Zhang, F; Chevalier, J; Olagnon, C; Batuk, M; Hadermann, J; Van Meerbeek, B; Vleugels, J
2017-07-01
Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La 2 O 3 ) and aluminum oxide (Al 2 O 3 ) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La 2 O 3 and Al 2 O 3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.
NASA Astrophysics Data System (ADS)
Papan, Jelena; Jovanović, Dragana J.; Vuković, Katarina; Smits, Krisjanis; Đorđević, Vesna; Dramićanin, Miroslav
2016-11-01
The detailed analyses of structure and luminescence of europium(III)-doped A2Hf2O7 (A = Y, Gd, Lu) nanoparticles is presented. Samples were prepared by time and cost effective combustion method that utilize polyethylene glycol both as a chelating agent and as a fuel, with different europium(III) concentrations (from 1 to 12 at.%), annealed at temperatures ranging from 800 to 1400 °C, and with alternating A3+ cation in the A2Hf2O7 host. Then, structural variations between materials were analysed by X-ray diffraction and structural refinement, while the changes in the luminescence were assessed from the Judd-Ofelt analyses of emission spectra. Nanoparticles prepared at the lowest temperature (800 °C) had the smallest particle size of ∼6 nm and showed the highest quantum efficiency when doped with 1 and 2 at.% of europium(III). Radiative transition rate and quantum efficiency of emission showed Lu2Hf2O7 > Gd2Hf2O7 > Y2Hf2O7 trend.
NASA Astrophysics Data System (ADS)
Jang, Jung-tak; Bae, Seongtae
2017-10-01
The effects of Mg doping on the magnetic and AC self-heating temperature rising characteristics of γ-Fe2O3 superparamagnetic nanoparticles (SPNPs) were investigated for hyperthermia applications in biomedicine. The doping concentration of nonmagnetic Mg2+ cation was systematically controlled from 0 to 0.15 at. % in Mgx-γFe2O3 SPNPs during chemically and thermally modified one-pot thermal decomposition synthesis under bubbling O2/Ar gas mixture. It was empirically observed that the saturation magnetization (Ms) and the out-of-phase magnetic susceptibility ( χm″)of Mgx-γFe2O3 SPNPs were increased by increasing the Mg2+ cation doping concentration from 0.05 to 0.13 at. %. Correspondingly, the AC magnetically induced self-heating temperature (Tac,max) in solid state and the intrinsic loss power in water were increased up to 184 °C and 14.2 nH m2 kg-1 (Mgx-γFe2O3, x = 0.13), respectively, at the biologically and physiologically safe range of AC magnetic field (Happl × fappl = 1.2 × 109 A m-1 s-1). All the chemically and physically analyzed results confirmed that the dramatically improved AC magnetic induction heating characteristics and the magnetic properties of Mgx-γFe2O3 SPNPs (x = 0.13) are primarily due to the significantly enhanced magnetic susceptibility (particularly, χm″) and the improved AC/DC magnetic softness (lower AC/DC magnetic anisotropy) resulting from the systematically controlled nonmagnetic Mg2+ cation concentrations and distributions (occupation ratio) in the Fe vacancy sites of γ-Fe2O3 (approximately 12% vacancy), instead of typically well-known Fe3O4 (no vacancy) SPNPs. The cell viability and biocompatibility with U87 MG cell lines demonstrated that Mgx-γFe2O3 SPNPs (x = 0.13) has promising bio-feasibility for hyperthermia agent applications.
Development of High Efficiency Four-Terminal Perovskite-Silicon Tandems
NASA Astrophysics Data System (ADS)
Duong, The Duc
This thesis is concerned with the development of high efficiency four-terminal perovskite-silicon tandem solar cells with the potential to reduce the cost of solar energy. The work focuses on perovskite top cells and can be divided into three main parts: developing low parasitic absorption and efficient semi-transparent perovskite cells, doping perovskite materials with rubidium, and optimizing perovskite material's bandgap with quadruple-cation and mixed-halide. A further section investigates the light stability of optimized bandgap perovskite cells. In a four-terminal mechanically stacked tandem, the perovskite top cell requires two transparent contacts at both the front and rear sides. Through detailed optical and electrical power loss analysis of the tandem efficiency due to non-ideal properties of the two transparent contacts, optimal contact parameters in term of sheet resistance and transparency are identified. Indium doped tin oxide by sputtering is used for both two transparent contacts and their deposition parameters are optimized separately. The semi-transparent perovskite cell using MAPbI3 has an efficiency of more than 12% with less than 12% parasitic absorption and up to 80% transparency in the long wavelength region. Using a textured foil as anti-reflection coating, an outstanding average transparency of 84% in the long wavelength is obtained. The low parasitic absorption allows an opaque version of the semi-transparent perovskite cell to operate efficiently in a filterless spectrum splitting perovskite-silicon tandem configuration. To further enhance the performance of perovskite cells, it is essential to improve the quality of perovskite films. This can be achieved with mixed-perovskite FAPbI3/MAPbBr3. However, mixed-perovskite films normally contain small a small amount of a non-perovskite phase, which is detrimental for the cell performance. Rb-doping is found to eliminate the formation of the non-perovskite phase and enhance the crystallinity of the films. Rb-doping is studied under different excess PbI2 concentrations and the optimal condition is found to be 5% Rb-doping and 15% excess PbI2 concentration. The addition of more than 10% Rb results in the formation of an unwanted Rb-rich phase due to the significant lattice mismatch between Rb and FA/MA cations. An efficiency of 18.8% is achieved for the champion cell as compared to 16% with control cells. Importantly, Rb-doping improves the light, moisture and thermal stability of perovskite cells. The optimal bandgap of the perovskite top cell in perovskite-silicon tandems is between 1.7 eV and 1.8 eV. A quadruple-cation Rb/Cs/FA/MA mixed-halide I/Br perovskite composition is explored to obtain high quality perovskite films with a bandgap of 1.73 eV. The ratio between Cs/FA/MA cations is critical to the morphology, crystal orientation and electronic properties of perovskite films. Furthermore, 5% Rb-doping enhances the crystallinity and suppresses defect migration in the films. Semi-transparent cells with efficiencies up to 16% and negligible hysteresis are achieved using this material. With excellent transparency and optimal bandgap of the semi-transparent perovskite cell, a record four-terminal mechanically stacked perovskite-silicon tandem efficiency of 26.4% is achieved.
Optimization of ionic conductivity in doped ceria
Andersson, David A.; Simak, Sergei I.; Skorodumova, Natalia V.; Abrikosov, Igor A.; Johansson, Börje
2006-01-01
Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy–dopant interactions, represented by association (binding) energies of vacancy–dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately. PMID:16478802
Optimization of ionic conductivity in doped ceria.
Andersson, David A; Simak, Sergei I; Skorodumova, Natalia V; Abrikosov, Igor A; Johansson, Börje
2006-03-07
Oxides with the cubic fluorite structure, e.g., ceria (CeO2), are known to be good solid electrolytes when they are doped with cations of lower valence than the host cations. The high ionic conductivity of doped ceria makes it an attractive electrolyte for solid oxide fuel cells, whose prospects as an environmentally friendly power source are very promising. In these electrolytes, the current is carried by oxygen ions that are transported by oxygen vacancies, present to compensate for the lower charge of the dopant cations. Ionic conductivity in ceria is closely related to oxygen-vacancy formation and migration properties. A clear physical picture of the connection between the choice of a dopant and the improvement of ionic conductivity in ceria is still lacking. Here we present a quantum-mechanical first-principles study of the influence of different trivalent impurities on these properties. Our results reveal a remarkable correspondence between vacancy properties at the atomic level and the macroscopic ionic conductivity. The key parameters comprise migration barriers for bulk diffusion and vacancy-dopant interactions, represented by association (binding) energies of vacancy-dopant clusters. The interactions can be divided into repulsive elastic and attractive electronic parts. In the optimal electrolyte, these parts should balance. This finding offers a simple and clear way to narrow the search for superior dopants and combinations of dopants. The ideal dopant should have an effective atomic number between 61 (Pm) and 62 (Sm), and we elaborate that combinations of Nd/Sm and Pr/Gd show enhanced ionic conductivity, as compared with that for each element separately.
Acid and alkali doped PBI electrolyte in electrochemical system
NASA Astrophysics Data System (ADS)
Xing, Baozhong
In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism was established. In solution the cations and OH- all participate in the transport of current. It is the OH- that breaks the bonds between PBI molecules and enables the cations pass through the membrane. The performance of alkali doped PBI (doped under optimum conditions) in fuel cell as PEM is as good as NafionRTM.
Influence of cation choice on magnetic behavior of III-N dilute magnetic semiconductors
NASA Astrophysics Data System (ADS)
Frazier, Rachel Marian
With the increasing interest in spintronics, many attempts have been made at incorporating spin-based functionality into existing semiconductor technology. One approach, utilizing dilute magnetic semiconductors (DMS) formed via introduction of transition metal ions into III-Nitride hosts, would allow for integration of spin based phenomena into current wide bandgap device technology. To accomplish such device structures, it is necessary to achieve single phase transition metal doped GaN and AlN which exhibit room temperature magnetic behavior. Ion implantation is an effective survey method for introduction of various transition metals into AlN. In ion implanted AlN, the Co and Cr doped films showed hysteresis at 300K while the Mn doped material did not. However, it is not a technique which will allow for the development of advanced spin based devices. Such devices will require epitaxial methods of the sort currently used for synthesis of III-Nitride optoelectronics. One such technique, Gas Source Molecular Beam Epitaxy (GSMBE), has been used to synthesize AlN films doped with Cr and Mn. Room temperature ferromagnetism has been observed for AlMnN and AlCrN grown by GSMBE. In both cases, the magnetic signal was found to depend on the flux of the dopant. The magnetization of the AlCrN was found to be an order of magnitude greater than in the AlMnN. The temperature dependent magnetic behavior of AlCrN was also superior to AlMnN; however, the AlCrN was not resistant to thermal degradation. An all-semiconductor tunneling magnetoresistive device (TMR) was grown with GaMnN as a spin injector and AlMnN as a spin filter. The resistance of the device should change with applied magnetic field depending on the magnetization of the injector and filter. However, due to the impurity bands found in the AlMnN, the resistance was found to change very little with magnetic field. To overcome such obstacles as found in the transition metal doped AlN, another dopant must be used. One viable dopant is Gd, which due to the low concentration incorporated in the semiconductor matrix should provide a single impurity level within the DMS instead of an impurity band. The incorporation of Gd into GaN and AlN may be the ultimate dopant for these III-N based DMS.
NASA Astrophysics Data System (ADS)
Varley, Joel; Kweon, Kyoung; Mehta, Prateek; Shea, Patrick; Heo, Tae Wook; Stavila, Vitalie; Udovic, Terrence; Wood, Brandon
Polyborane salts based on B12H122- , B10H102- , and their carboborane counterparts CB11H12- and CB9H10- demonstrate extraordinary Li and Na superionic conductivity that make them attractive as electrolytes in all-solid-state batteries. Their rich chemical and structural diversity creates a versatile design space that could be used to optimize materials with even higher conductivity at lower temperatures; however, many mechanistic details remain enigmatic, including reasons why certain modifications lead to improved performance. Here, we use extensive ab initio molecular dynamics simulations to broadly explore the dependence of ionic conductivity on cation/anion pair combinations for Li and Na polyborane salts. Further simulations based on Li2B12H12 as a model system are used to probe the additional influence of local perturbations, including modifications to chemistry, stoichiometry, and composition. Carbon doping, anion alloying, and cation off-stoichiometry are found to be favorable because they introduce intrinsic disorder, which facilitates local deviations from the expected cation population. Anion reorientations are also discovered to be critical for conduction, with benefits associated with lattice expansion traceable to the facilitation of anion rotation at larger volumes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z
2018-04-11
The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.
Structural analysis of emerging ferrite: Doped nickel zinc ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj
2015-08-28
Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.
Ytterbium-doped borate fluoride laser crystals and lasers
Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.
1997-10-14
A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.
NASA Astrophysics Data System (ADS)
Tan Pham, Minh; Van Nguyen, Thi; Thi, Thuy Duong Vu; Nghiem Thi, Ha Lien; Thuan Tong, Kim; Thuy Tran, Thanh; Chu, Viet Ha; Brochon, Jean-Claude; Nhung Tran, Hong
2012-12-01
Organically modified silicate (ORMOSIL) nanoparticles (NPs) doped with rhodamine 6G and rhodamine B (RB) dyes were synthesized by Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). The NPs are surface functionalized by cationic amino groups. The optical characterization of dye-doped ORMOSIL NPs was studied in comparison with that of free dye in solution. The synthesized NPs were used for labeling bacteria E. coli O157:H7. The number of bacteria have been counted using the fluorescent spectra and microscope images of labeled bacteria. The results show the ability of NPs to work as biomarkers.
Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.
Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao
2016-05-01
A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange
2013-01-01
For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940
NASA Astrophysics Data System (ADS)
Zhang, Jiatao
2016-10-01
Abstract: Including the shape and size effect, the controllable doping, hetero-composite and surface/interface are the prerequisite of colloidal nanocrystals for exploring their optoelectronic properties, such as fluorescence, plasmon-exciton coupling, efficient electron/hole separation, and enhanced photocatalysis applications. By controlling soft acid-base coordination reactions between cation molecular complexes and colloidal nanocrystals, we showed that chemical thermodynamics could drive nanoscale monocrystalline growth of the semiconductor shell on metal nano-substrates and the substitutional heterovalent doping in semiconductor nanocrystals. We have demonstrated evolution of relative position of Au and II-VI semiconductor in Au-Semi from symmetric to asymmetric configuration, different phosphines initiated morphology engineering, oriented attachment of quantum dots into micrometer nanosheets with synergistic control of surface/interface and doing, which can further lead to fine tuning of plasmon-exciton coupling. Therefore, different hydrogen photocatalytic performance, Plasmon enhanced photocatalysis properties have been achieved further which lead to the fine tuning of plasmon-exciton coupling. Substitutional heterovalent doping here enables the tailoring of optical, electronic properties and photocatalysis applications of semiconductor nanocrystals because of electronic impurities (p-, n-type doping) control. References: (1) J. Gui, J. Zhang*, et al. Angew. Chem. Int. Ed. 2015, 54, 3683. (2) Q. Zhao, J. Zhang*, etc., Adv. Mater. 2014, 26, 1387. (3) J. Liu, Q. Zhao, S. G. Wang*, J. Zhang*, etc., Adv. Mater. 2015, 27-2753-2761. (4) H. Qian, J. Zhang*, etc., NPG Asia Mater. (2015) 7, e152. (5) M. Ji, M. Xu, etc., J. Zhang*, Adv. Mater. 2016, in proof. (6) S. Yu, J. T. Zhang, Y. Tang, M. Ouyang*, Nano Lett. 2015, 15, 6282-6288. (7) J. Zhang, Y. Tang, K. Lee and M. Ouyang*, Science 2010, 327, 1634. (8) J. Zhang, Y. Tang, K. Lee, M. Ouyang*, Nature 2010, 466, 91.
Cationic ionene as an n-dopant agent of poly(3,4-ethylenedioxythiophene).
Saborío, Maricruz G; Bertran, Oscar; Lanzalaco, Sonia; Häring, Marleen; Díaz Díaz, David; Estrany, Francesc; Alemán, Carlos
2018-04-18
We report the reduction of poly(3,4-ethylenedioxythiophene) (PEDOT) films with a cationic 1,4-diazabicyclo[2.2.2]octane-based ionene bearing N,N'-(meta-phenylene)dibenzamide linkages (mPI). Our main goal is to obtain n-doped PEDOT using a polymeric dopant agent rather than small conventional tetramethylammonium (TMA), as is usual. This has been achieved using a three-step process, which has been individually optimized: (1) preparation of p-doped (oxidized) PEDOT at a constant potential of +1.40 V in acetonitrile with LiClO4 as the electrolyte; (2) dedoping of oxidized PEDOT using a fixed potential of -1.30 V in water; and (3) redoping of dedoped PEDOT applying a reduction potential of -1.10 V in water with mPI. The resulting films display the globular appearance typically observed for PEDOT, with mPI being structured in separated phases forming nanospheres or ultrathin sheets. This organization, which has been supported by atomistic molecular dynamics simulations, resembles the nanosegregated phase distribution observed for PEDOT p-doped with poly(styrenesulfonate). Furthermore, the doping level achieved using mPI as the doping agent is comparable to that achieved using TMA, even though ionene provides distinctive properties to the conducting polymer. For example, films redoped with mPI exhibit much more hydrophilicity than the oxidized ones, whereas films redoped with TMA are hydrophobic. Similarly, films redoped with mPI exhibit the highest thermal stability, while those redoped with TMA show thermal stability that is intermediate between those of the latter and the dedoped PEDOT. Overall, the incorporation of an mPI polycation as the n-dopant into PEDOT has important advantages for modulating the properties of this emblematic conducting polymer.
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
NASA Astrophysics Data System (ADS)
Belkhedkar, M. R.; Ubale, A. U.
2018-05-01
Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.
NASA Astrophysics Data System (ADS)
Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg
2016-09-01
The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.
Buannic, Lucienne; Blanc, Frédéric; Middlemiss, Derek S; Grey, Clare P
2012-09-05
Hydrated BaSn(1-x)Y(x)O(3-x/2) is a protonic conductor that, unlike many other related perovskites, shows high conductivity even at high substitution levels. A joint multinuclear NMR spectroscopy and density functional theory (total energy and GIPAW NMR calculations) investigation of BaSn(1-x)Y(x)O(3-x/2) (0.10 ≤ x ≤ 0.50) was performed to investigate cation ordering and the location of the oxygen vacancies in the dry material. The DFT energetics show that Y doping on the Sn site is favored over doping on the Ba site. The (119)Sn chemical shifts are sensitive to the number of neighboring Sn and Y cations, an experimental observation that is supported by the GIPAW calculations and that allows clustering to be monitored: Y substitution on the Sn sublattice is close to random up to x = 0.20, while at higher substitution levels, Y-O-Y linkages are avoided, leading, at x = 0.50, to strict Y-O-Sn alternation of B-site cations. These results are confirmed by the absence of a "Y-O-Y" (17)O resonance and supported by the (17)O NMR shift calculations. Although resonances due to six-coordinate Y cations were observed by (89)Y NMR, the agreement between the experimental and calculated shifts was poor. Five-coordinate Sn and Y sites (i.e., sites next to the vacancy) were observed by (119)Sn and (89)Y NMR, respectively, these sites disappearing on hydration. More five-coordinated Sn than five-coordinated Y sites are seen, even at x = 0.50, which is ascribed to the presence of residual Sn-O-Sn defects in the cation-ordered material and their ability to accommodate O vacancies. High-temperature (119)Sn NMR reveals that the O ions are mobile above 400 °C, oxygen mobility being required to hydrate these materials. The high protonic mobility, even in the high Y-content materials, is ascribed to the Y-O-Sn cation ordering, which prevents proton trapping on the more basic Y-O-Y sites.
Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi
2014-04-01
Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.
High-K (Ba0.8Bi0.2)(Zn0.1Ti0.9)O3 ceramics for high-temperature capacitor applications.
Raengthon, Natthaphon; Cann, David P
2011-09-01
Solid solutions of BaTiO(3)-Bi(Zn(1/2)Ti(1/2))O(3) were investigated for high-temperature capacitor applications. Compositions close to 0.8BaTiO(3)-0.2Bi(Zn(1/2)Ti(1/2))O(3) revealed pseudo-cubic symmetry and showed a linear dielectric response. The existence of a nearly flat temperature dependence of the relative permittivity over the temperature range of 100 to 350°C was also obtained. In this study, the effects of cation non-stoichiometry and doping were investigated in an attempt to optimize the insulation resistance for high-temperature applications. The dielectric response of (Ba(0.8)-xBi(0.2))(Zn(0.1)Ti(0.9)) O(3) ceramics where 0 ≤ X ≤ 0.08, as well as ZrO2- and Mn(2)O(3)-doped ceramics were studied. The optimum compositions exhibited a relative permittivity in excess of 1150 with a low loss tangent (tan δ < 0.05) that persisted up to a temperature of 460δC. The temperature dependence of resistivity also revealed the improved insulation resistance of Ba-deficient compositions. Additionally, we suggest that an ionic conduction mechanism is responsible for the degradation of resistivity at high temperatures. The temperature coefficient of permittivity ((τ)K) and the RC time constant were also investigated.
A Post-synthetic Modification of II–VI Nanoparticles to Create Tb3+ and Eu3+ Luminophores
Mukherjee, Prasun; Sloan, Robin F.; Shade, Chad M.; Waldeck, David H.; Petoud, Stéphane
2013-01-01
We describe a novel method for creating luminescent lanthanide-containing nanoparticles in which the lanthanide cations are sensitized by the semiconductor nanoparticle’s electronic excitation. In contrast to previous strategies, this new approach creates such materials by addition of external salt to a solution of fully formed nanoparticles. We demonstrate this post-synthetic modification for the lanthanide luminescence sensitization of two visible emitting lanthanides (Ln), Tb3+ and Eu3+ ions, through ZnS nanoparticles in which the cations were added post-synthetically as external Ln(NO3)3·xH2O salt to solutions of ZnS nanoparticles. The post-synthetically treated ZnS nanoparticle systems display Tb3+ and Eu3+ luminescence intensities that are comparable to those of doped Zn(Ln)S nanoparticles, which we reported previously (J. Phys. Chem. A, 2011, 115, 4031–4041). A comparison with the synthetically doped systems is used to contrast the spatial distribution of the lanthanide ions, bulk versus surface localized. The post-synthetic strategy described in this work is fundamentally different from the synthetic incorporation (doping) approach and offers a rapid and less synthetically demanding protocol for Tb3+:ZnS and Eu3+:ZnS luminophores, thereby facilitating their use in a broad range of applications. PMID:23997842
NASA Astrophysics Data System (ADS)
Haycock, Barry; Lewis, James P.
2014-03-01
A group of materials that shows promise in optoelectronic applications is the family of oxide materials (delafossites), of the form ABO2, where the A site is a monovalent cation (e . g . , Cu, Ag, or Au) and the B site is a trivalent cation (e . g ., Ga, Y, Al, or In). The bandgap of some delafossites can be tailored for specific purposes, such as in photocatalysis applications, with B-site doping. We report on our recent investigations of the properties of CuGaO2, CuInO2, CuAlO2 and NaInO2 and predict the relative disorder of Fe impurities by comparing crystallographic metrics resulting from Fe doping. We performed approximately 10K calculations, in parallel on the Titan platform (Oak Ridge Leadership Computing Facility), of possible Fe-impurity permutations to determine the most-likely configurations of Fe impurities relative to each another. Our computational approach allows us to study large supercells, consisting of 432 atoms, which enable us to examine the properties of these materials in increments of 1% for the B-site doping of Fe. We will present results from our energetically-preferred supercells and discuss further applications of our techniques applied for characterization of new reconstructions via derived metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Farooq, Saima
2011-05-15
Research highlights: {yields} Strontium-barium hexaferrites (Sr{sub 0.5}Ba{sub 0.5}Fe{sub 12}O{sub 19}) in single magnetoplumbite phase solid structure are synthesized by the co-precipitation method. {yields} Structural and electrical properties of Nd-Ni substituted ferrites are investigated. {yields} These ferrite materials possess high electrical resistivity (108 {Omega} cm) that is essential to curb the eddy current loss, which is pre-requisite for surface mount devices. -- Abstract: Cationic substitution in M-type hexaferrites is considered to be an important tool for modification of their electrical properties. This work is part of our comprehensive study on the synthesis and characterization of Nd-Ni doped strontium-barium hexaferrite nanomaterials ofmore » nominal composition Sr{sub 0.5}Ba{sub 0.5-x}Nd{sub x}Fe{sub 12-y}Ni{sub y}O{sub 19} (x = 0.00-0.10; y = 0.00-1.00). Doping with this binary mixture modulates the physical and electrical properties of strontium-barium hexaferrite nanoparticles. Structural and electrical properties of the co-precipitated ferrites are investigated using state-of-the-art techniques. The results of X-ray diffraction analysis reveal that the lattice parameters and cell volume are inversely related to the dopant content. Temperature dependent DC-electrical resistivity measurements infer that resistivity of strontium-barium hexaferrites decreases from 1.8 x 10{sup 10} to 2.0 x 10{sup 8} {Omega} cm whereas the drift mobility, dielectric constant and dielectric loss tangent are directly related to the Nd-Ni content. The results of the study demonstrate a relationship between the modulation of electrical properties of substituted ferrites and nature of cations and their lattice site occupancy.« less
Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures
NASA Astrophysics Data System (ADS)
Kajdos, Adam Paul
Two-dimensional electron gases (2DEGs) in SrTiO3 have attracted considerable attention for exhibiting a variety of interesting physical phenomena, such as superconductivity and magnetism. So far, most of the literature has focused on interfaces between nonpolar SrTiO3 and polar perovskite oxides (e.g. LaAlO3 or rare-earth titanates), where high carrier density 2DEGs (˜3 x 1014 cm-2) are generated by polar discontinuity. Modulation doping is an alternative approach to generating a 2DEG that has been explored extensively in III-V semiconductors but has not heretofore been explored in complex oxides. This approach involves interfacing an undoped semiconductor with a doped semiconductor whose conduction band edge lies at a higher energy, which results in electrons diffusing into the undoped semiconductor transport channel, where scattering from ionized dopants is minimized. Realizing a high-mobility modulation-doped structure with a SrTiO3 transport channel therefore requires both the optimization of the transport channel by minimizing native defects as well as the development of a perovskite oxide which has a suitable band offset with SrTiO3 and can be electron-doped. The growth of high electron mobility SrTiO3 as a suitable transport channel material was previously demonstrated using the hybrid molecular beam epitaxy (MBE) approach, where Sr is delivered via a solid source and Ti is delivered using a metal-organic precursor, titanium (IV) tetra-isopropoxide (TTIP). Expanding on this, in-situ reflection high-energy electron diffraction (RHEED) is used to track the surface and resulting film cation stoichiometry of homoepitaxial SrTiO3 (001) thin films grown by hybrid MBE. It is shown that films with lattice parameters identical to bulk single-crystal substrates within the detection limit of high-resolution X-ray diffraction (XRD) measurements exhibit an evolution in surface reconstruction with increasing TTIP beam-equivalent pressure. The change in the observed surface reconstruction from (1x1) to (2x1) to c(4x4) is correlated with a change from mixed SrO/TiO2 to pure TiO2 surface termination. It is argued that optimal cation stoichiometry is achieved for growth conditions within the XRD-defined growth window that result in a c(4x4) surface lattice. The development of a doped perovskite oxide semiconductor with a suitable conduction band offset is then discussed as the next necessary step towards realizing modulation-doped heterostructures. The SrTixZr1-x O3 solid solution is investigated for this purpose, with a focus on optimizing cation stoichiometry to allow for controlled doping. In particular, the hybrid MBE growth of SrTixZr1-xO3 thin films is explored using a metal-organic precursor for Zr, zirconium tert-butoxide (ZTB). The successful generation of 2DEGs by modulation doping of SrTiO3 is then demonstrated in SrTiO3/La:SrTi0.95Zr0.05O 3 heterostructures, and the electronic structure is studied by Shubnikov-de Haas analysis using multiple-subband models.
Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films
NASA Astrophysics Data System (ADS)
Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat
2017-11-01
Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.
NASA Astrophysics Data System (ADS)
Peng, Han; Yao, Linxiao; Zhang, Ming
2018-06-01
The pristine Li1.20[Mn0.52Ni0.20Co0.08]O2 and Ce3+-doped Li1.20[Mn0.50Ni0.20Co0.08Ce0.02]O2 cathode materials have been synthesized by using the typical sol-gel method. The XRD, SEM, ICP-OES and galvanostatic charge-discharge tests were carried out to study the influence of Ce3+ doping on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The XRD result revealed the Ce3+ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed that the sample after Ce3+ doping demonstrated the smaller irreversible capacity loss, more stable cyclic performance and better rate capacity than those of the pristine one.
NASA Astrophysics Data System (ADS)
Narayanan, Ananthakrishnan
In this research, structural, electrical and nonlinear optical characteristics of: (a) single crystal films involving a noncentrosymmetric molecule DAST and a laser dye IR125 and (b) specific nonconjugated conducting polymers including poly(beta-pinene) and polynorbornene have been studied. 4'-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) is a well known second order nonlinear optical material. This material has exceptionally high electro-optic coefficients, high thermal stability and ultrafast response time. In this work single crystal films involving a combination of DAST and IR125 have been prepared using modified shear method and the films have been characterized using polarized optical microscopy, X-ray diffraction, polarization dependent optical absorption and photoluminescence spectroscopy. The electro-optic coefficient of these films measured at 633nm was found to be 300pm/V. Since IR-125 has a strong absorption band from 500nm to 800nm, these films are promising for various applications in nonlinear optics at longer wavelength and for light emission. Nonconjugated conducting polymers are a class of polymers that have at least one double bond in their repeat units. 1,4-cis polyisoprene, polyalloocimene, styrene butadiene rubber, poly(ethylenepyrrolediyl) derivatives, and poly(beta-pinene) are some of the well known examples of nonconjugated conducting polymers. In this work, polynorborne, a new addition to the class of nonconjugated conducting polymers is discussed. Like other polymers in this class, polynorbornene exhibits increase in electrical conductivity by many orders of magnitude upon doping with iodine. The maximum electrical conductivity of this material is 0.01 S/cm. As shown by using FTIR microscopy, the C=C bonds are transformed into cation radicals when polynorborne is doped. This is due to the charge-transfer from the double bond to the dopant (iodine). These materials like other nonconjugated conducting polymers have significant applications in electro-optics and photonics. Electron paramagnetic resonance measurements on poly(beta-pinene) before and after doping with iodine are reported in this work. The EPR signal of this polymer increases proportionally with the iodine concentration due to the formation of cation radicals upon doping and charge-transfer. The results agree well with the doping mechanism of nonconjugated conducting polymers discussed earlier in literature. Hyperfine splitting in heavily doped polymers is observed due to the reduced distance between the cation radical and the iodine anion. Off-resonant electro-optic measurements in doped poly(beta-pinene) at 790nm, 800nm, 810nm and 1.55microm using field-induced birefringence technique have been studied. The results show that this material exhibits the highest cubic nonlinearities of all known materials. The Kerr coefficient measured at 1.55microm is 1.6x10-10 m/V2 which is about 30 times higher than that of conjugated polymers. Results of two photon measurements in this doped polymer using pump-probe technique with a pulsed, mode-locked (150 fs pulses) beam from a Ti-Sapphire laser are reported. The measured value of alpha2 at 790 nm and 795 nm were found to be 2.28+/-0.1 cm/MW and 2.5+/-0.1 cm/MW respectively. The data confirms that the nonlinearity in this material is ultrafast and electronic in nature. Such large nonlinearities in these materials are attributed the charge confinement in these materials in a sub-nanometer domain (upon doping) resulting in a metal-like quantum dot structure. Photovoltaic measurements in a composite involving poly(beta-pinene) and C60 are discussed. This is the first time a nonconjugated conducting polymer based photovoltaic cell has been fabricated. A composite involving 4% C60 by weight produced a photovoltage of 280mV for an incident light intensity of 6mW/sq.cm. These low cost devices have applications in solar cells, photodetectors etc. A nonlinear optical waveguide was prepared by casting a thin film of poly(beta-pinene) on bare multi-mode optical fiber and doping it with iodine. The doped fibers were of excellent optical quality. Two-photon absorption experiments were conducted using these waveguides and large changes in transmission upto 28% was observed in 15cm long fiber. More work needs to be done to confirm this result. This is a significant step in the direction of making these materials a viable choice for ultrafast (femtosecond time-scale) optical devices. To summarize, these works included detailed investigations of structural, electrical and nonlinear optical characteristics of specific molecular crystal films and nonconjugated conducting polymers.
Jubeli, Emile; Maginty, Amanda B; Abdul Khalique, Nada; Raju, Liji; Abdulhai, Mohamad; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D
2015-10-01
Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Min; Che, Yinsheng; Niu, Chao; Dang, Mingyan; Dong, Duo
2013-11-15
Eu-B co-doped BiVO4 visible-light-driven photocatalysts have been synthesized using the sol-gel method. The resulting materials were characterized by a series of joint techniques, including XPS, XRD, SEM, BET, and UV-vis DRS analyses. Compared with BiVO4 and B-BiVO4 photocatalysts, the Eu-B-BiVO4 photocatalysts exhibited much higher photocatalytic activity for methyl orange (MO) degradation under visible light irradiation. The optimal Eu doping content is 0.8 mol%. It was revealed that boron and europium were doped into the lattice of BiVO4 and this led to more surface oxygen vacancies, high specific surface areas, small crystallite size, a narrower band gap and intense light absorbance in the visible region. The doped Eu(III) cations can help in the separation of photogenerated electrons. The synergistic effects of boron and europium in doped BiVO4 were the main reason for improving visible light photocatalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.
Enhanced scintillation of Ba3In(B3O6)3 based on nitrogen doping
NASA Astrophysics Data System (ADS)
Wang, Z. X.; Pei, H.; Tao, X. M.; Cai, G. M.; Mao, R. H.; Jin, Z. P.
2018-02-01
Scintillating materials, as a class of luminescent materials, are highly demanded for practical use in the high-energy detection. However, the applications are often hampered by their low light yield (LY) or long decay time for many traditional scintillators. In this work, upon nitrogen anion doping, scintillation performance in layered borate Ba3In(B3O6)3 (BIB) has been excellently enhanced with high XEL intensity of ~3 times as large as that of commercial Bi4Ge3O12 (BGO) and ultra-fast fluorescent decay time of ~1.25 ns. To shed light on origins of the intrinsic violet-blue emission, we measured the in-situ vacuum ultraviolet excited (VUV) emission spectra of N-BIB ceramic. Combined with experiments and first principles calculations, the band-gap reduction and donor-acceptor density increasing by nitrogen (N) doping is responsible for the enhancement of scintillation performance for N-doped Ba3In(B3O6)3. Moreover, nitrogen anion doping rather than conventional cation doping is found to be also applicable to other intrinsic luminescent materials for enhancing performance.
Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.
Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex
2012-06-01
This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.
Studies of doped LaMnO3 samples prepared by citrate combustion process
NASA Astrophysics Data System (ADS)
Dimri, M. Chandra; Khanduri, H.; Mere, A.; Stern, R.
2018-04-01
La0.95A0.05MnO3 (where A=Na, Sr, Er, Dy and Ce) powder samples were synthesized by chemical solution route and the magnetic and structural properties are reported in this paper. The pervoskite structure was confirmed from X-ray diffraction patterns and Raman spectra at room temperature in all of these doped samples. Curie transition temperatures in doped LaMnO3 bulk samples were around 250K, which are much higher than the ideal value (˜140 K) in undoped samples. The increase in the magnetic transition temperatures can be related to non-stoichiometry and cation vacancies created due to higher valence substitutions for the univalent La1+ ions.
Magnetic and dipole moments in indium doped barium hexaferrites
NASA Astrophysics Data System (ADS)
Trukhanov, S. V.; Trukhanov, A. V.; Turchenko, V. A.; Trukhanov, An. V.; Tishkevich, D. I.; Trukhanova, E. L.; Zubar, T. I.; Karpinsky, D. V.; Kostishyn, V. G.; Panina, L. V.; Vinnik, D. A.; Gudkova, S. A.; Trofimov, E. A.; Thakur, P.; Thakur, A.; Yang, Y.
2018-07-01
Crystal and magnetic structure of the doped BaFe12-xInxO19 samples were refined by the results of investigations using high resolution neutron powder diffraction and vibration sample magnetometry at different temperatures. The refinements were realized in frame of two space groups. The P63/mmc (No 194) centrosymmetric nonpolar and P63mc (No 186) noncentrosymmetric polar space groups were used. The unit cell parameters, ionic coordinates, thermal isotropic factors, occupation positions, bond lengths and bond angles, microstrain values were established. The magnetic and dipole moments were also defined. It is established that the In3+ cations may be located only in the Fe1 - 2a and Fe2 - 2b crystallographic positions with equal probability for the sample with lowest substitution level x = 0.1. At the x = 1.2 substitution level about half of the In3+ cations occupies the Fe5 - 12 k positions. For the last sample the remaining half of the In3+ cations is equiprobably located in the Fe1 - 2a and Fe2 - 2b positions. The spontaneous polarization was established for these compositions at 300 K. It is studied the influence of the type of substitutive cation and structural parameters on the Fe3+(i) - O2- - Fe3+(j) (i, j = 1, 2, 3, 4, 5) indirect superexchange interactions with temperature. With substitution level increase the superexchange interactions between the magnetic positions inside and outside the sublattices are broken which leads to a decrease in the value of their magnetic moments.
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia
2004-01-01
The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Anand; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 453331; Rajpoot, Rambabu
2016-05-23
Transition metal Cu{sup 2+} doped Mg-Zn ferrite [Mg{sub 0.5}Zn{sub 0.5-x}Cu{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} is found to be ~29.8 nm and is found to increase with Cu{sup 2+} doping. Progressive reduction in lattice parameter of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference inmore » ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu{sup 2+}.« less
Misra, Santosh K; Moitra, Parikshit; Kondaiah, Paturu; Bhattacharya, Santanu
2016-06-01
Selective gene transfection could be strategy of interest for reducing off-target gene expression and toxicity. In this respect, sigma receptors are found to be over-expressed in many human tumors and liposomal formulations with ability to target these sigma receptors may improve the transfection efficiency to a significant level. To this direction, six novel lipids have been synthesized with different hydrophobic segments such as a long hydrophobic chain or a cholesteryl group and L-tryptophan as the head group. Three of them, Lipid 1, 3 and 5 possessed cationic Me3N(+) moiety at the distal end. In contrast each of the other three Lipid 2, 4 and 6 possessed sigma receptor targeting anisamide group with no cationic charge. Mixing of cationic and anisamide counterparts of the same lipid in a molar ratio of 1:1 produced co-liposomes L-M-1 (Lipid 1+2), L-M-2 (Lipid 3+4) and L-M-3 (Lipid 5+6). These co-liposomes, while keeping the sigma targeting anisamide tag intact, showed good DNA binding and release which were optimized from EB intercalation and gel electrophoresis assays. Inclusion of a zwitterionic, fusogenic natural lipid, DOPE, into the co-liposomes further improved the binding efficiencies of the lipid mixtures with DNA. These co-liposomes having cationic and anisamide lipids and DOPE were highly selective toward sigma positive HEK293 and HEK293T cells compared to the sigma negative HeLa cells. As evidenced from both FACS and luciferase assay, a lipid mixture comprising Lipid 3, 4 and DOPE in a molar ratio of 1:1:1 (L-M-2D1) was the best for transfection of reporter pEGFP-C3 and functional pCEP4-p53 gene plasmids. Anisamide mediated sigma receptor selectivity was further probed by pre-incubating the transfecting cells with lipids possessing anisamide and by quantification of the un-transfected plasmid DNA. Also each formulation was highly non-toxic in the cell lines examined. Copyright © 2016. Published by Elsevier B.V.
Structure and size of ions electrochemically doped in conducting polymer
NASA Astrophysics Data System (ADS)
Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito
2018-05-01
Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.
Gao, Xiang; Liu, Shaojun; Zhang, Yang; Luo, Zhongyang; Cen, Kefa
2011-04-15
Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N(2) adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO(2) and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO(2) removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH(3), which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO(2) and NO removal, just like V and Cu. Copyright © 2011 Elsevier B.V. All rights reserved.
Water-soluble cationic conjugated polymers: response to electron-rich bioanalytes.
Rochat, Sébastien; Swager, Timothy M
2013-11-27
We report the concise synthesis of a symmetrical monomer that provides a head-to-head pyridine building block for the preparation of cationic conjugated polymers. The obtained poly(pyridinium-phenylene) polymers display appealing properties such as high electron affinity, charge-transport upon n-doping, and optical response to electron-donating analytes. A simple assay for the optical detection of low micromolar amounts of a variety of analytes in aqueous solution was developed. In particular, caffeine could be measured at a 25 μM detection limit. The reported polymers are also suitable for layer-by-layer film formation.
How do biological systems discriminate among physically similar ions?
Diamond, J M
1975-10-01
This paper reviews the history of understanding how biological systems can discriminate so strikingly among physically similar ions, especially alkali cations. Appreciation of qualitative regularities ("permitted sequences") and quantitative regularities ("selectivity isotherms") in ion selectivity grew first from studies of ion exchangers and glass electrodes, then of biological systems such as enzymes and cell membranes, and most recently of lipid bilayers doped with model pores and carriers. Discrimination of ions depends on both electrostatic and steric forces. "Black-box" studies on intact biological membranes have in some cases yielded molecular clues to the structure of the actual biological pores and carriers. Major current problems involve the extraction of these molecules; how to do it, what to do when it is achieved, and how (and if) it is relevant to the central problems of membrane function. Further advances are expected soon from studies of rate barriers within membranes, of voltage-dependent ("excitable") conducting channels, and of increasingly complex model systems and biological membranes.
Efficacy of heat generation in CTAB coated Mn doped ZnFe2O4 nanoparticles for magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Raland, R. D.; Borah, J. P.
2017-01-01
Manganese doped Zinc ferrite (Mn-ZnFe2O4, where Mn = 0%, 3%, 5% and 7%) nanoparticles were synthesized by a simple co-precipitation method. CTAB (cetyltrimethylammonium bromide) was used as a surfactant to inhibitgrowth and agglomeration. In this work, we have discussed on the influence of CTAB and Mn doping in tailoring the structural and magnetic properties of Mn-ZnFe2O4 nanoparticles for the effective application of magnetic hyperthermia. X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure of Mn-ZnFe2O4 nanoparticles. Lattice parameter and x-ray densities were obtained from the Rietveld refinement of the XRD pattern. The presence of CTAB as a stabilizing layer adsorbed on the surface of the nanoparticles were confirmed by transmission electron microscope (TEM) and Raman vibrational spectrum. The saturation magnetization showsan increasing trend with Mn addition owing to cationic re-distribution and an increase super-exchange interaction between the two sub-lattices. Superparamagnetic behaviorof Mn-ZnFe2O4 nanoparticles were confirmed by temperature-dependent zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves. The efficiency of induction heating measured by its specific absorption rate (SAR) and intrinsic loss power (ILP) value varies as a function of saturation magnetization. It has been hypothesized that the maximum generation of heat arises from Neel relaxation mechanism. The optimum generation of heat of Mn-ZnFe2O4 nanoparticle is determined by the higher frequency (f = 337 kHz) range and maximum concentration of Mn doping.
Structural, magnetic and Mössbauer studies of Nd-doped Mg-Mn ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Somnath; Sharma, Indu; Kotnala, R. K.; Singh, M.; Kumar, Arun; Dhiman, Pooja; Singh, Virender Pratap; Verma, Kartikey; Kumar, Gagan
2017-12-01
The present work is focused on the replacement of Fe3+ ions by rare-earth Nd3+ ions and their influence on the cations distribution, structural, magnetic and Mössbauer properties of Mg-Mn nanoferrites. Nanosized Nd-doped Mg-Mn nanoferrites, Mg0.9Mn0.1NdxFe2-xO4, where x = 0.1, 0.2 & 0.3, were successfully synthesized for the first time through solution combustion technique. X-ray diffraction studies confirmed the formation of single phase nature of the synthesized nanoferrites. Williamsons-Hall plots were used to obtain the particle size and strain while the lattice parameter was obtained from Nelson-Riley plots. The particle size was observed to decrease (19.2-13.5 nm) while lattice parameter was observed to increase (8.373-8.391 Å) with the incorporation of Nd3+ ions. Cation distribution between the tetrahedral (A-site) and octahedral (B-site) was estimated by using the X-ray diffraction method & magnetization technique. The estimated cation distribution was used to investigate the detailed structural parameters. Room temperature M-H study revealed a decrease of saturation magnetization (10.15-1.83 emu/g) and an increase in coercivity (22.86-27.19 Oe) with the increasing substitution of Nd3+ ions. Magnetic results obtained in the present study indicated that the synthesized nanoferrites can be a useful candidate for electromagnet applications.
NASA Astrophysics Data System (ADS)
Fornacelli, Cristina; Ceglia, Andrea; Bracci, Susanna; Vilarigues, Marcia
2018-01-01
In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co2 + ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na2O-CaO-SiO2) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530 nm region interact to determine the resulting absorbance spectrum.
NASA Astrophysics Data System (ADS)
Zaki, H. M.; Al-Heniti, S.; Al Shehri, N.
2014-03-01
MgAlxFe2-xO4 (x=0.0 up to 1 step 0.2) was prepared using co-precipitation method. The value of lattice constant is found to decrease with increasing Al3+ concentration. The particle size of the samples calculated using the Sherrer formula was obtained in the range of 15-28 nm. The two main bands corresponding to tetrahedral and octahedral sites were observed to be around 600 cm-1 and 450 cm-1, respectively. These bands are shifted to high frequencies with more doping of Al3+ ions which may be attributed to the decrease in the mean radius of the tetrahedral and octahedral sites. The threshold frequency (νth) for the electronic transition decreases with increasing the Al3+content. The tetrahedral force constant (KT) increases continuously with Al3+ concentration.The bandwidth of the tetrahedral site is found to increase gradually with the Al3+ content. The validity of the proposed cation distribution is confirmed by considering the X-ray intensity ratios of diffraction lines sensitive to the tetrahedral and octahedral sites. DC conductivity measurements exhibited metallic and semiconductor-like behavior with temperature for all compositions. The decrease of Curie temperature with the increase of non-magnetic ions of aluminum indicates their preference to the octahedral sites as well and confirms the validity of the cation distribution.
Defect engineering of complex semiconductor alloys: Cu2-2xMxO1-yXy
NASA Astrophysics Data System (ADS)
Lany, Stephan; Stevanovic, Vladan
2013-03-01
The electrical properties of semiconductors are generally controlled via doping, i.e., the incorporation of dilute concentrations of aliovalent impurity atoms, whereas the band structure properties (gap, effective masses, optical properties) are manipulated by alloying, i.e., the incorporation of much larger amounts of isovalent elements. Theoretical approaches usually address either doping or alloying, but rarely both problems at the same time. By combining defect supercell calculations, GW quasi-particle energy calculation, and thermodynamic modeling, we study the range of electrical and band structure properties accessible by alloying aliovalent cations (M = Mg, Zn, Cd) and isovalent anions (X = S, Se) in Cu2O. In order to extend dilute defect models to higher concentrations, we take into account the association/dissociation of defect pairs and complexes, as well as the composition dependence of the band gap and the band edge energies. Considering a composition window for the Cu2-2xMxO1-yXy alloys of 0 <= (x,y) <= 0.2, we predict a wide range of possible band gaps from 1.7 to 2.6 eV, and net doping concentrations between p = 1019 cm-3 and n = 1017cm-3, notably achieving type conversion from p- to n-type at Zn or Cd compositions around x = 0.1. This work is supported as part of the SunShot initiative by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC36-08GO28308 to NREL.
NASA Astrophysics Data System (ADS)
Carreira, Santiago J.; Aguirre, Myriam H.; Briatico, Javier; Weschke, Eugen; Steren, Laura B.
2018-01-01
The possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers.
Electrical compensation by Ga vacancies in Ga2O3 thin films
NASA Astrophysics Data System (ADS)
Korhonen, E.; Tuomisto, F.; Gogova, D.; Wagner, G.; Baldini, M.; Galazka, Z.; Schewski, R.; Albrecht, M.
2015-06-01
The authors have applied positron annihilation spectroscopy to study the vacancy defects in undoped and Si-doped Ga2O3 thin films. The results show that Ga vacancies are formed efficiently during metal-organic vapor phase epitaxy growth of Ga2O3 thin films. Their concentrations are high enough to fully account for the electrical compensation of Si doping. This is in clear contrast to another n-type transparent semiconducting oxide In2O3, where recent results show that n-type conductivity is not limited by cation vacancies but by other intrinsic defects such as Oi.
Bulk oxides: asymmetry between p-and n-type transport properties
NASA Astrophysics Data System (ADS)
Maignan, Antioine
2015-03-01
The thermoelectric power (TEP) of transition metal oxides shows large difference depending on the sign of the charge carriers. In electron-doped oxides, the best TEs in terms of the figure of merit are heavily doped transparent conductors (as doped ZnO). The physics is very similar to that of semiconductors, though the defects chemistry differs: the existence of planar defects created by the doping elements, is far from the random distribution in semiconductors. In contrast the best p-types are layered cobaltites (CdI2 -type layers with edge-shared CoO6 octahedras). The Co cations adopt a low spin state. Both electronic correlations and spin entropy have to be considered to explain the S(T) curve for T <150K, whereas for T>150K, the spin/orbital configurations and the doping level in the generalized Heikes formula are dominating. This description supported by the results obtained for perovskite ruthenates was recently unvalidated for the quadruple perovskite ACu3Ru4O12, showing very different S(T) without S saturation up to ~ 900K. Their Pauli paramagnetism enlights the role of the spins upon thermopower. Similarly, searching for other n-types, interesting TE properties have been found in Ba1.2Mn8O16: the S(T) evidences a charge/orbital ordering in this manganite (vMn = 3.7) coupled to an abrupt change in the unit-cell volume. Ba1.2Mn8O16, although of n-type, exhibits a cst. | S | ~ 92 μV.K-1 for T>400K, explained by the generalized Heikes formula rather used for p-type. This difference with other n-type oxides is related to the Mn3+/Mn4+ magnetism and the contribution of eg orbitals for the transport properties. In this presentation, the richness of the TE properties of metal transition oxides will be emphasized focusing on the important role of the spins.
Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Yuki; Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712; Oshiyama, Atsushi
2015-11-07
We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ionmore » battery.« less
Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2
NASA Astrophysics Data System (ADS)
Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid
2016-08-01
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.
Comparative study of Ni and Cu doped ZnO nanoparticles: Structural and optical properties
NASA Astrophysics Data System (ADS)
Thakur, Shaveta; Thakur, Samita; Sharma, Jyoti; Kumar, Sanjay
2018-05-01
Nanoparticles of undoped and doped (0.1 M Ni2+ and Cu2+) ZnO are synthesized using chemical precipitation method. The crystallite size, morphology, chemical bonding and optical properties of as prepared nanoparticles are determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV-visible spectra. XRD analysis shows that the prepared samples are single phase and have hexagonal wurtzite structure. The crystallite size of the doped and undoped nanoparticles is determined using Scherrer method. The crystallite size is found to be increased with concentration of nickel and copper. All stretching and vibrational bands are observed at their specific positions through FTIR. The increase in band gap can be attributed to the different chemical nature of dopant and host cation.
Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.
Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho
2013-04-21
The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.
Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; ...
2011-12-15
Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn 1/3Nb 2/3)O₃ and Pb(Mg 1/3Nb 2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies canmore » have a significant impact on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less
Effects of cation contaminants in conductive TiO2 ceramics
NASA Astrophysics Data System (ADS)
Yan, M. F.; Rhodes, W. W.
1982-12-01
Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.
NASA Astrophysics Data System (ADS)
Cesaria, Maura; Caricato, Anna Paola; Leggieri, Gilberto; Luches, Armando; Martino, Maurizio; Maruccio, Giuseppe; Catalano, Massimo; Grazia Manera, Maria; Rella, Roberto; Taurino, Antonietta
2011-09-01
In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.
Strain induced atomic structure at the Ir-doped LaAlO3/SrTiO3 interface.
Lee, M; Arras, R; Warot-Fonrose, B; Hungria, T; Lippmaa, M; Daimon, H; Casanove, M J
2017-11-01
The structure of Ir-doped LaAlO 3 /SrTiO 3 (001) interfaces was investigated on the atomic scale using probe-corrected transmission electron microscopy in high-angle annular dark-field scanning mode (HAADF-STEM) and electron energy loss spectroscopy (EELS), combined with first-principles calculations. We report the evolution of the strain state experimentally measured in a 5 unit-cell thick LaAlO 3 film as a function of the Ir concentration in the topmost SrTiO 3 layer. It is shown that the LaAlO 3 layers remain fully elastically strained up to 3% of Ir doping, whereas a higher doping level seems to promote strain relaxation through enhanced cationic interdiffusion. The observed differences between the energy loss near edge structure (ELNES) of Ti-L 2,3 and O-K edges at non-doped and Ir-doped interfaces are consistent with the location of the Ir dopants at the interface, up to 3% of Ir doping. These findings, supported by the results of density functional theory (DFT) calculations, provide strong evidence that the effect of dopant concentrations on the properties of this kind of interface should not be analyzed without obtaining essential information from the fine structural and chemical analysis of the grown structures.
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-02-03
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In 3+ ) and smaller (Ga 3+ ) than the host Zn 2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.
NASA Astrophysics Data System (ADS)
Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.
2017-01-01
The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.
NASA Astrophysics Data System (ADS)
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-02-01
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.
Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.
2017-01-01
The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility. PMID:28045082
NASA Astrophysics Data System (ADS)
Benjwal, Poonam; De, Bibekananda; Kar, Kamal K.
2018-01-01
Morphology and electronic bandgap of titania (TiO2) are considered to be the primary factors for determining the photocatalytic efficiency, as they determine the number of active sites for the photocatalytic reactions. In the present study, two different morphologies of TiO2 (nanosphere and nanorod) with varying Zn and Mn co-doping were synthesized by solvothermal and hydrothermal methods to examine their photocatalytic efficiency by methylene blue degradation. The co-doped photocatalysts were characterized by XRD, XPS, SEM, TEM, Raman, FTIR and UV-vis DRS. Further, a comparison has been made with co-doped TiO2 nanospheres and TiO2 nanorods, where Zn, Mn co-doped TiO2 nanorods show higher photocatalytic activity compared to nanospheres. This higher photocatalytic activity of co-doped TiO2 is attributed to its polymorphic phases, as they act as heterojunctions for TiO2. Further, being 1-D nanostructure, the TiO2 nanorods exhibit the straight diffusion path for charge carriers, which reduces the recombination possibilities. The obtained results suggest that the photocatalysis efficiency of TiO2 can be significantly enhanced by tailoring the shape and co-doping concentration, which enforce a new concept for developing the new nanostructures of TiO2.
Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek
2015-02-01
Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.
Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations
Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan
2016-01-01
Abstract CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations. PMID:27877870
Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations
NASA Astrophysics Data System (ADS)
Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan
2016-01-01
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at 405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations.
Liu, Yin; Gong, Yuxuan; Mellott, Nathan P; Wang, Bu; Ye, Haitao; Wu, Yiquan
2016-01-01
CuAlO 2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO 2 :Eu 3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO 2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO 2 and the f-f transition of the Eu 3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO 2 :Eu 3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.
Deformation processes in forging ceramics
NASA Technical Reports Server (NTRS)
Cannon, R. M.; Rhodes, W. H.
1973-01-01
The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.
Gawryś, Olga; Baranowska, Iwona; Gawarecka, Katarzyna; Świeżewska, Ewa; Dyniewicz, Jolanta; Olszyński, Krzysztof H; Masnyk, Marek; Chmielewski, Marek; Kompanowska-Jezierska, Elżbieta
2018-04-01
Novel lipid-based carriers, composed of cationic derivatives of polyisoprenoid alcohols (amino-prenols, APrens) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), were designed. The carriers, which were previously shown to be nontoxic to living organisms, were now tested if suitable for administration of candesartan, an antihypertensive drug. Spontaneously hypertensive rats (SHR) received injections of candesartan (0.1 mg/kg body weight per day; s.c.) in freshly prepared carriers for two weeks. The rats' arterial pressure was measured by telemetry. Urine and blood collection were performed in metabolic cages. In a separate group of SHR, the pharmacokinetics of the new formulation was evaluated after a single subcutaneous injection. The antihypertensive activity of candesartan administered in DOPE dispersions containing APrens was distinctly greater than that of candesartan dispersions composed of DOPE only or administered in the classic solvent (sodium carbonate). The pharmacokinetic parameters clearly demonstrated that candesartan in APren carriers reached the bloodstream more rapidly and in much greater concentration (almost throughout the whole observation) than the same drug administered in dispersions of DOPE only or in solvent. Serum creatinine (P Cr ) decreased significantly only in the group receiving candesartan in carriers with APrens (from 0.80 ± 0.04 to 0.66 ± 0.09 mg/dl; p < 0.05), whereas in the other groups P Cr remained at the same level after treatment. Moreover, the new derivatives increased the loading capacity of the carriers, which is a valuable feature for any drug delivery system. Taken together, our findings led us to conclude that APrens are potentially valuable components of lipid-based drug carriers.
Doping enhanced barrier lowering in graphene-silicon junctions
NASA Astrophysics Data System (ADS)
Zhang, Xintong; Zhang, Lining; Chan, Mansun
2016-06-01
Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.
Ju, Jia; Huan, Meng-Lei; Wan, Ning; Hou, Yi-Lin; Ma, Xi-Xi; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2016-05-15
Cholesterol derivatives M1-M6 as synthetic cationic lipids were designed and the biological evaluation of the cationic liposomes based on them as non-viral gene delivery vectors were described. Plasmid pEGFP-N1, used as model gene, was transferred into 293T cells by cationic liposomes formed with M1-M6 and transfection efficiency and GFP expression were tested. Cationic liposomes prepared with cationic lipids M1-M6 exhibited good transfection activity, and the transfection activity was parallel (M2 and M4) or superior (M1 and M6) to that of DC-Chol derived from the same backbone. Among them, the transfection efficiency of cationic lipid M6 was parallel to that of the commercially available Lipofectamine2000. The optimal formulation of M1 and M6 were found to be at a mol ratio of 1:0.5 for cationic lipid/DOPE, and at a N/P charge mol ratio of 3:1 for liposome/DNA. Under optimized conditions, the efficiency of M1 and M6 is greater than that of all the tested commercial liposomes DC-Chol and Lipofectamine2000, even in the presence of serum. The results indicated that M1 and M6 exhibited low cytotoxicity, good serum compatibility and efficient transfection performance, having the potential of being excellent non-viral vectors for gene delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oxygen diffusion in Gd-doped mixed oxides
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...
2017-10-23
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
Oxygen diffusion in Gd-doped mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.
Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less
NASA Astrophysics Data System (ADS)
Kadari, Ramaswamy; Velchuri, Radha; Sreenu, K.; Ravi, Gundeboina; Munirathnam, Nagegownivari R.; Vithal, Muga
2016-11-01
We have successfully prepared visible light active tin/copper-nitrogen co-doped honeycomb ordered P2-Na2Ni2TeO6 photocatalysts by solid state/ion exchange methods. Powder XRD, TG analysis, SEM, surface area, O-N-H analysis, ICP-OES, FT-IR and UV-DRS measurements are employed to characterize all the samples. All the doped compositions adopted hexagonal lattice with space group P63/mcm. The photocatalytic activity of all the samples was studied against the degradation of methyl violet (MV) and methylene blue (MB) under visible light irradiation. The variation of the photocatalytic activity due to the substitution of cation, anion and co-doping in Na2Ni2TeO6 is investigated. Co-doped samples have exhibited higher activity compared to rest of the materials. The role of reactive intermediate species in the photocatalytic degradation of dyes is also studied using appropriate scavengers.
Li, Guogang; Lin, Chun Che; Wei, Yi; Quan, Zewei; Tian, Ying; Zhao, Yun; Chan, Ting-Shan; Lin, Jun
2016-05-31
By cosubstituting [Ca(2+)-P(5+)] for [La(3+)-Si(4+)] in the Eu-doped Ca(2→8)La(8→2)(SiO4)6-x(PO4)xO2 (0 ≤ x ≤ 6) system, Eu(3+) ions are controllably and gradually transformed to Eu(2+). Thus, the emission colors consecutively changed from red to blue/green light. Furthermore, excellent warm-white lights with the low correlated color temperature (CCT) range of 3500-3800 K and a high color rendering index (Ra) (88.4-93.2) have been achieved by mixing the as-prepared phosphors at different cation cosubstitution ratios.
NASA Astrophysics Data System (ADS)
Cochard, Charlotte; Guennou, Mael; Spielmann, Thiemo; van Hoof, Niels; Halpin, Alexei; Granzow, Torsten
2018-04-01
Optical damage limits the application range of congruent LiNbO3. This problem is commonly overcome by adding optical-damage-resistant cations. Here, the influence of doping with optical-damage-resistant Mg and Zn on the ionic and piezoelectric contributions to the dielectric permittivity is investigated in a broad frequency range (1 mHz-2 THz). It is shown that the two dopants have radically different influences on the variation of ionic permittivity with doping, in spite of their similarities with respect to the crystallographic structure. Raman spectroscopy reveals that the difference in permittivity can be traced to the effect of Mg and Zn doping on the susceptibility of the phonon modes. Both observations point to differences in the defect incorporation mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. G., E-mail: wang2006@mail.ustc.edu.cn; Wang, L., E-mail: sqtb@mail.ustc.edu.cn; Liu, J., E-mail: jingliu@mail.ustc.edu.cn
2014-03-31
Band structures of PbTe can be abnormally bended via dual-doping on both the cationic and anionic sites to form camel-back multivalley energy band structures near the band edge. As a result, additional carrier pockets and strong intervalley scattering of carriers are introduced. Boltzmann transport calculations indicate that their contradictory effects yield remarkably enhanced power factor due to the improved thermopower and almost unchanged electrical conductivity in low temperature and high carrier concentration ranges. These findings prove dual-doping-induced band bending as an effective approach to improve the thermoelectric properties of PbTe and other similar materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkova, P., E-mail: Petya232@abv.bg; Vasilev, P.; Mustafa, M.
2016-04-21
In this work, the absorption spectra of the undoped and doped with 0.1% and 0.2% CuO{sub 2} glasses with the composition (80-x)Sb{sub 2}O{sub 3}-20Li{sub 2}O-xMoO{sub 3} are measured in the spectral region 1300-1800 nm. The optical structure of Cu{sup 2+} is investigated and the energies of the electron transitions in this metal cation are determined. The spin-orbit interaction, Lattice Compatibility Theory (LCT) analyses and the influence of molybdenum are also discussed.
NASA Technical Reports Server (NTRS)
Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)
1999-01-01
The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).
Liu, Yulu; Su, Yiguo; Han, Hui; Wang, Xiaojing
2013-02-01
Effects of copper cations doping into wide band gap semiconductor photocatalysts of tantalate on morphology, visible light response, and photocatalytic performance were studied. A series of Cu-doped NaTaO3 catalysts were prepared by hydrothermal method. XRD and XPS results suggested that copper were successfully doped into the NaTaO3 nanocrystal in the Cu2+ state. TEM studies showed the formation of the cube shape nanoparticles of NaTaO3 as well as Cu-doped NaTaO3. UV-Vis diffuse reflectance spectra clearly indicated the red-shift in the series of copper doped NaTaO3 catalysts, resulting in a decrease in the band gap of NaTaO3. The trend of red shift was increased with an increase of copper doping concentration, whereas the photo-degradation methylene blue (MB) is not improved by the doping of copper ions. The simulation of energy band structure by density functional theory unfolded that the substitution of Ta5+ ions by Cu2+ ions results in forming an intermediate band (IB) upper the top of the valence band (VB), which is mainly attributed to the state of Cu 3d. The intermediate band is responsible for the red-shift caused by the doping of Cu ions. Meanwhile Cu species can become the recombination centers of photoinduced electrons and holes. Thus, the quickly recombination of e(-)h(+) pairs is one of the most significant factors which deteriorate the photoactivity of Cu-doped NaTaO3.
NASA Astrophysics Data System (ADS)
Tan, Hengxin; Takenaka, Hiroyuki; Xu, Changsong; Duan, Wenhui; Grinberg, Ilya; Rappe, Andrew M.
2018-05-01
We have investigated the effect of transition-metal dopants on the local structure of the prototypical 0.75 Pb (Mg1 /3Nb2 /3) O3-0.25 PbTiO3 relaxor ferroelectric. We find that these dopants give rise to very different local structure and other physical properties. For example, when Mg is partially substituted by Cu or Zn, the displacement of Cu or Zn is much larger than that of Mg and is even comparable to that of Nb. The polarization of these systems is also increased, especially for the Cu-doped solution, due to the large polarizability of Cu and Zn. As a result, the predicted maximum dielectric constant temperatures Tm are increased. On the other hand, the replacement of a Ti atom with a Mo or Tc atom dramatically decreases the displacements of the cations and the polarization, and thus, the Tm values are also substantially decreased. The higher Tm cannot be explained by the conventional argument based on the ionic radii of the cations. Furthermore, we find that Cu, Mo, or Tc doping increases the cation displacement disorder. The effect of the dopants on the temperature dispersion Δ Tm , which is the change in Tm for different frequencies, is also discussed. Our findings lay the foundation for further investigations of unexplored dopants.
Fornacelli, Cristina; Ceglia, Andrea; Bracci, Susanna; Vilarigues, Marcia
2018-01-05
In the last decades the speciation of the cobalt complex in a glass matrix has been extensively studied. Bivalent cobalt ions in glasses of different composition commonly adopt a tetrahedral coordination, though hexa- or penta-coordinated species are also possible. Changes in the absorbance spectrum of Co-doped glasses were attested in previous studies according to the introduction of different modifying cations. A shifting of the first sub-band characterizing the typical triplets of tetrahedral Co 2+ ions in both the visible and near infrared regions was observed, but discrepancies in literature suggested a relevant role of glass composition on the definition of the optical signature of cobalt. Co-doped glasses with different composition (soda-lime, potash-lime, mixed alkali and ZnO-Na 2 O-CaO-SiO 2 ) were studied via Fiber Optic Reflectance Spectroscopy (FORS). Pseudo-Voigt functions were used for the deconvolution of the absorbance spectra and the features of the bands characteristic of each cobalt complex were investigated. The structural role played by each modifying cation and the fundamental implications of glass basicity on the speciation of different Co-complexes were stressed. Changes in glass structure resulted in different equilibria between the three absorbing species whose specific optical signatures in the 480-530nm region interact to determine the resulting absorbance spectrum. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Xu; You, Ming-Hao; Lou, Tao; Yu, Miao; Zhang, Jun-Cheng; Gong, Mao-Gang; Lv, Fu-Yan; Huang, Yuan-Yuan; Long, Yun-Ze
2016-12-01
Colorful nanofibrous membranes have attracted much attention for their visual varieties and various functionalities. In this article, a colored solution electrospinning process was used to fabricate colorful hydrophobic poly(vinyl butyral) (PVB)/cationic dye nanofibrous membranes (NFMs) successfully. The color and morphology of these as-spun nanofibrous membranes have been analyzed by colorimetry, spectroscopy, and scanning electron microscopy (SEM). It is shown that the as-spun colorful PVB-based membranes exhibit excellent level-dyeing property and color stability. Furthermore, the doping of cationic dye and the increase of dye concentration can decrease the diameter of the as-spun colored fibers, which results in better level-dyeing property and higher water contact angle more than 140°. The stained PVB fibrous membranes with excellent level-dyeing property and hydrophobicity are promising in some applications such as textiles, wallpapers, and anticorrosive coating/painting.
Kakinuma, Shohei; Shirota, Hideaki
2018-05-25
In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.
Chlorine Incorporation in the CH3NH3PbI3 Perovskite: Small Concentration, Big Effect.
Quarti, Claudio; Mosconi, Edoardo; Umari, Paolo; De Angelis, Filippo
2017-01-03
The role of chlorine doping in CH 3 NH 3 PbI 3 represents an important open issue in the use of hybrid perovskites for photovoltaic applications. In particular, even if a positive role of chlorine doping on perovskite film formation and on material morphology has been demonstrated, an inherent positive effect on the electronic and photovoltaic properties cannot be excluded. Here we carried out periodic density functional theory and Car-Parrinello molecular dynamics simulations, going down to ∼1% doping, to investigate the effect of chlorine on CH 3 NH 3 PbI 3 . We found that such a small doping has important effects on the dynamics of the crystalline structure, both with respect to the inorganic framework and with respect to the cation libration motion. Together, we observe a dynamic spatial localization of the valence and conduction states in separated spatial material regions, which takes place in the 10 -1 ps time scale and which could be the key to ease of exciton dissociation and, likely, to small charge recombination in hybrid perovskites. Moreover, such localization is enhanced by chlorine doping, demonstrating an inherent positive role of chlorine doping on the electronic properties of this class of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Pankaj; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ty.ru123@gmail.com
2016-05-23
A series of Cr doped Mn-Zn ferrites with compositional formula Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α–Fe{sub 2}O{sub 3}. Slight variation in the lattice parameter of Cr doped Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectricmore » constant ~10{sup 4} is observed for parent Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} which is found to decrease with increase in Cr{sup 2+} doping. Low dielectric loss is observed for Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and improves with Cr{sup 2+} doping at Zn{sup 2+} site.« less
Chen, Yan; Sun, Ji; Lu, Ying; Tao, Chun; Huang, Jingbin; Zhang, He; Yu, Yuan; Zou, Hao; Gao, Jing; Zhong, Yanqiang
2013-01-01
pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N',N'-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidyl ethanolamine (DOPE) liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA) transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3) liposomes/pH-sensitive PEGylated (1%) liposome complexes with a charge ratio of 1:1 (m/m [+/-]) showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy.
Chen, Yan; Sun, Ji; Lu, Ying; Tao, Chun; Huang, Jingbin; Zhang, He; Yu, Yuan; Zou, Hao; Gao, Jing; Zhong, Yanqiang
2013-01-01
pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N′,N′-dimethylaminoethane) carbamoyl] cholesterol (DC-Chol) and dioleoylphosphatidyl ethanolamine (DOPE) liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS) and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA) transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3) liposomes/pH-sensitive PEGylated (1%) liposome complexes with a charge ratio of 1:1 (m/m [+/−]) showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy. PMID:23637529
Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho
2017-01-01
We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications. PMID:28155879
Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi
2018-02-01
N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite
NASA Astrophysics Data System (ADS)
Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan
2016-07-01
Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng,D.; Cabana, J.; Breger, J.
2007-01-01
Several members of the compositional series Li[NixMnxCo(1-2x)]O2 (0.01 = x = 1/3) were synthesized and characterized. X-ray diffraction results confirm the presence of the layered a-NaFeO2-type structure, while X-ray absorption near-edge spectroscopy experiments verify the presence of Ni2+, Mn4+, and Co3+. Their local environment and short-range ordering were investigated by using a combination of 6Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and neutron pair distribution function (PDF) analysis, associated with reverse Monte Carlo (RMC) calculations. The 6Li MAS NMR spectra of compounds with low Ni/Mn contents (x = 0.10) show several well-resolved resonances, which start to mergemore » when the amount of Ni and Mn increases, finally forming a broad resonance at high Ni/Mn contents. Analysis of the 6Li MAS NMR 6Li[Ni0.02Mn0.02Co0.96]O2 spectrum, is consistent with the formation of Ni2+ and Mn4+ clusters within the transition-metal layers, even at these low-doping levels. The oxidation state of Ni in this high Co content sample strongly depends upon the Li/transition metal ratio of the starting materials. Neutron PDF analysis of the highest Ni/Mn content sample Li[Ni1/3Mn1/3Co1/3]O2 shows a tendency for Ni cations to be close to Mn cations in the first coordination shell; however, the Co3+ ions are randomly distributed. Analysis of the intensity of the 'LiCoO2' resonance, arising from Li surrounded by Co3+ in its first two cation coordination shells, for the whole series provides further evidence for a nonrandom distribution of the transition-metal cations. The presence of the insulator-to-metal transition seen in the electrochemical profiles of these materials upon charging correlates strongly with the concentration of the 'LiCoO2' resonance.« less
NASA Astrophysics Data System (ADS)
Raeliarijaona, Aldo; Fu, Huaxiang
2017-10-01
Using density-functional calculations we investigate the possibility and underlying mechanism of generating ferromagnetism (FM) in ferroelectric BaTiO3 by native vacancies. For the same vacancy species but different charge states (e.g., VO0 vs VO2 +), our paper reveals a marked difference in magnetic behaviors. For instance, while VO0 is ferromagnetic, VO2 + is not. This sensitive dependence, which has often been overlooked, highlights the critical importance of taking into account different charge states. Furthermore, while oxygen vacancies have been often used in experiments to explain the vacancy-induced FM, our calculation demonstrates that Ti vacancies, in particular VTi3 - and VTi2 - with low formation energies, generate even stronger ferromagnetism in BaTiO3, with a magnetic moment which is 400% larger than that of VO0. Interestingly, this strong FM of VTi can be further enhanced by hole doping. Although both cation vacancies (VTiq) and anion vacancies (VO0) induce FM, their mechanisms differ drastically. FM of anion vacancies originates from the spin-polarized electrons at Ti sites, but FM of cation vacancies stems from the spin-polarized holes at O sites. This paper also sheds light on vacancy-induced FM by discovering that the spin densities of all three considered vacancy species are highly extended in real space, distributed far away from the vacancy. Moreover, we predict that the ferromagnetism caused by VTi3 - is able to survive at high temperatures, which is promising for room-temperature spintronic or multiferroic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winarsih, Suci; Kurniawan, Budhy, E-mail: bkuru07@gmail.com; Manaf, Azwar
2016-06-17
In this paper, we explored structural and electrical properties of La{sub 0.7}(Ba{sub 1-x}Ca{sub x}){sub 0.3}MnO{sub 3} (x = 0; 0.03; and 0.05) compounds. The general structure of perovskite manganites is AMnO{sub 3} (A= trivalent rare earth with divalent ion-doped). Average A-site cation size, external pressure, and the variance of the cation size σ{sup 2} are one of many factors that affected to magneto-transport properties of manganites as reported by others. In this work we focus only on the electrical properties in La{sub 0.7}Ba{sub 0.3}MnO{sub 3} Ca-doped compound which may influence crystal structure resulting resistivity phenomena under magnetic field influence. Allmore » samples were synthesized by sol-gel method from which fine powders were obtained. The X-ray powder diffraction pattern of powder materials shows that all samples are fully crystalline with a rhombohedral structure. Rietveld refinement shows that the presence of calcium has changed some crystal structural parameters such lattice parameter, Mn–O bond length, and Mn–O–Mn angles. The electrical resistivity of all synthesized materials investigated by four point probe method using Cryogenic Magnet in the temperature range of 50-300 K under influence a magnetic field shows resistivity temperature dependent. In fact presence of calcium has reduced the resistivity. It might occure because it has made an enhancement in the mobility of hopping electrons. The magnetic external field causes the resistivity decreased for all samples because host spin align by delocalizing the charge carries so electron itinerant through the lattice suggested by other authors. Both calcium dopant concentration and the applied external magnetic field shows strong correlation in reduction of resistivity.« less
Majima, Yutaka; Ogawa, Daisuke; Iwamoto, Masachika; Azuma, Yasuo; Tsurumaki, Eiji; Osuka, Atsuhiro
2013-09-25
Tribenzosubporphyrins are boron(III)-chelated triangular bowl-shaped ring-contracted porphyrins that possess a 14π-aromatic circuit. Their flat molecular shapes and discrete molecular orbital diagrams make them ideal for observation by scanning tunneling microscopy (STM). Expanding their applications toward single molecule-based devices requires a fundamental knowledge of single molecular conductance between tribenzosubporphines and the STM metal tip. We utilized a tungsten (W) STM tip to investigate the electronic properties of B-(5-mercaptopentoxy)tribenzosubporphine 1 at the single molecular level. B-(5-mercaptopentoxy)-tribenzosubporphine 1 was anchored to the Au(111) surface via reaction with 1-heptanethiol linkers that were preorganized as a self-assembled monolayer (C7S SAM) on the Au(111) substrate. This arrangement ensured that 1 was electronically decoupled from the metal surface. Differential conductance (dI/dV - V) measurements with the bare W tip exhibited a broad gap region of low conductance and three distinct responses at 2.4,-1.3, and -2.1 V. Bias-voltage-dependent STM imaging of 1 at 65 K displayed a triangle shape at -2.1 < V < -1.3 V and a circle shape at V < -2.1 V, reflecting its HOMO and HOMO-1, respectively. In addition, different conductance behaviors were reproducibly observed, which has been ascribed to the adsorption of a tribenzosubporphine-cation on the W tip. When using a W tip doped with preadsorbed tribenzosubporphine-cation, negative differential resistance (NDR) phenomena were clearly observed in a reproducible manner with a peak-to-valley ratio of 2.6, a value confirmed by spatial mapping conductance measurements. Collectively, the observed NDR phenomena have been attributed to effective molecular resonant tunneling between a neutral tribenzosubporphine anchored to the metal surface and a tribenzosubporphine cation adsorbed on a W tip.
Diffusion doping in quantum dots: bond strength and diffusivity.
Saha, Avijit; Makkar, Mahima; Shetty, Amitha; Gahlot, Kushagra; A R, Pavan; Viswanatha, Ranjani
2017-02-23
Semiconducting materials uniformly doped with optical or magnetic impurities have been useful in a number of potential applications. However, clustering or phase separation during synthesis has made this job challenging. Recently the "inside out" diffusion doping was proposed to be successful in obtaining large sized quantum dots (QDs) uniformly doped with a dilute percentage of dopant atoms. Herein, we demonstrate the use of basic physical chemistry of diffusion to control the size and concentration of the dopants within the QDs for a given transition metal ion. We have studied three parameters; the bond strength of the core molecules and the diffusion coefficient of the diffusing metal ion are found to be important while the ease of cation exchange was not highly influential in the control of size and concentration of the single domain dilute magnetic semiconductor quantum dots (DMSQDs) with diverse dopant ions M 2+ (Fe 2+ , Ni 2+ , Co 2+ , Mn 2+ ). Steady state optical emission spectra reveal that the dopants are incorporated inside the semiconducting CdS and the emission can be tuned during shell growth. We have shown that this method enables control over doping percentage and the QDs show a superior ferromagnetic response at room temperature as compared to previously reported systems.
NASA Astrophysics Data System (ADS)
Liu, Shiyuan; Wang, Lijun; Chou, Kuochih
2018-03-01
Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.
Thermoelectric properties of hole-doped SrTiO3 thin films
NASA Astrophysics Data System (ADS)
Ferreiro-Vila, Elias; Sarantopoulos, Alexandros; Leboran, Victor; Bui, Cong-Tinh; Rivadulla, Francisco; Condense matter Chemistry Group Team
2014-03-01
Two dimensional conductors are expected to show an improved thermoelectric performance due the positive effect of quantum confinement on the thermoelectric power, and the decrease of thermal conductivity by interface boundary scattering. The recent report of a large increase of the thermoelectric power in quantum wells of Nb-doped SrTiO3 (STO) seems to be in agreement with this hypothesis. However, extrinsic effects like the existence of oxygen vacancies that propagate away from the interface cannot be ruled out, and the results are far from clear. Here we will show the thermoelectric properties (electrical conductivity, Seebeck coefficient, and Hall effect), of epitaxial thin-films of (La,Nb)-doped STO. The films have been deposited by PLD on different substrates (STO, LAO...) to study the effect of tensile/compressive stress on the thermoelectric properties of the system. The oxygen pressure during the deposition was carefully controlled to tune the amount of oxygen vacancies and to compare with the cation doping. We have performed a systematic study of the transport properties as a function of thickness and doping, which along with the effect of stress, allows to understand the effect of charge density and dimensionality in an oxide system with promising thermoelectric properties.
NASA Astrophysics Data System (ADS)
Ke, Haochen; van der Linde, Christian; Lisy, James M.
2014-06-01
Alkali metal cations play vital roles in chemical and biochemical systems. Lithium is widely used in psychiatric treatment of manic states and bipolar disorder; Sodium and potassium are essential elements, having major biological roles as electrolytes, balancing osmotic pressure on body cells and assisting the electroneurographic signal transmission; Rubidium has seen increasing usage as a supplementation for manic depression and depression treatment; Cesium doped compounds are used as essential catalysts in chemical production and organic synthesis. Since hydrated alkali metal cations are ubiquitous and the basic form of the alkali metal cations in chemical and biochemical systems, their structural and thermodynamic properties serve as the foundation for modeling more complex chemical and biochemical processes, such as ion transport and ion size-selectivity of ionophores and protein channels. By combining mass spectrometry and infrared photodissociation spectroscopy, we have characterized the structures and thermodynamic properties of the hydrated alkali metal cations, i.e. M+(H2O)nAr, (M = Li, Na, K, Rb and Cs, n = 3-5). Ab initio calculations and RRKM-EE (evaporative ensemble) calculations were used to assist in the spectral assignments and thermodynamic analysis. Results showed that the structures of hydrated alkali metal cations were determined predominantly by the competition between non-covalent interactions, i.e. the water---water hydrogen bonding interactions and the water---cation electrostatic interactions. This balance, however, is very delicate and small changes, i.e. different cations, different levels of hydration and different effective temperatures clearly impact the balance.
XAS study of TiO2-based nanomaterials
NASA Astrophysics Data System (ADS)
Schneider, K.; Zajac, D.; Sikora, M.; Kapusta, Cz.; Michalow-Mauke, K.; Graule, Th.; Rekas, M.
2015-07-01
X-Ray Absorption Spectroscopy studies of the W (0-1 at% W) and Mo-doped TiO2 (0-1 at% Mo) nanoparticle specimens at the K edges of titanium and molybdenum as well as at the L2 L3 edges of tungsten are presented. The materials were prepared with Flame Spray Synthesis process by oxidation of metal-organic precursors. The Ti:K edge spectra in the XANES range show pre-edge and post-edge features characteristic for anatase. A decrease of the amplitude of the EXAFS function with doping is observed and attributed to a softening of the crystal lattice. The Mo EXAFS functions show a considerable decrease of the second-neighbour-shell peak with increasing Mo content, which is attributed to an increased number of cation vacancies. For tungsten a less pronounced effect is observed. The Mo and W XANES spectra do not show noticeable changes with doping level, which indicates their unchanged oxidation states.
Enhanced thermoelectric properties of Hg-doped Cu2Se
NASA Astrophysics Data System (ADS)
Li, Erying; Wang, Siqi; Zhu, Zheng; Cao, Ruijuan; Hu, Xing; Song, Hongzhang
2018-03-01
The Cu2-xHgxSe (x = 0, 0.05, 0.10 and 0.15) nanopowders were fabricated using the hydrothermal synthesis, and then hot-pressed into bulk alloys. The effects of Hg doping on the thermoelectric (TE) properties of Cu2Se were investigated. The electrical resistivities of all the doped samples are lower than that of the nondoped sample due to the induced cation vacancies. For the x = 0.10 and x = 0.15 samples, Seebeck coefficients increase slightly compared with the nondoped sample at higher temperature. Except for the sample of x = 0.05, the thermal conductivities of x = 0.10 and x = 0.15 samples are substantially lower than that of the x = 0.00 sample. As an overall result, the maximum value of ZT, which is the dimensionless TE figure of merit, reaches 1.50 at 600∘C for the x = 0.10 sample.
Efficient n-type doping of zinc-blende III-V semiconductor nanowires
NASA Astrophysics Data System (ADS)
Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.
2014-03-01
We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.
NASA Astrophysics Data System (ADS)
Patle, L. B.; Huse, V. R.; Chaudhari, A. L.
2017-10-01
Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.
The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding tomore » the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.« less
Ni doped Fe3O4 magnetic nanoparticles.
Larumbe, S; Gómez-Polo, C; Pérez-Landazábal, J I; García-Prieto, A; Alonso, J; Fdez-Gubieda, M L; Cordero, D; Gómez, J
2012-03-01
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aruta, Carmela; Han, Chu; Zhou, Si
Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO 3 grown by pulsed lased deposition on NdGaO 3. Our study shows that our BaZr 0.8Y 0.2O 3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba 2+, and that these substitutional defects agglomerate forming columnarmore » regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.« less
Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves
2011-10-15
In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.
Haskins, Justin B; Bauschlicher, Charles W; Lawson, John W
2015-11-19
Density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Li(+) on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Li(+) solvation shell through DFT computations of [Li(Anion)n]((n-1)-) clusters, DFT-MD simulations of isolated Li(+) in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having two to three anions are seen in both [pyr14][TFSI] and [pyr13][FSI], whereas solvation shells with four anions dominate in [EMIM][BF4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of four anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion)n]((n-1)-) clusters shows that our proposed structures are consistent with experiment. We then compute the ion diffusion coefficients and find measures from small-cell DFT-MD simulations to be the correct order of magnitude, but influenced by small system size and short simulation length. Correcting for these errors with complementary PFF-MD simulations, we find DFT-MD measures to be in close agreement with experiment. Finally, we compute electrochemical windows from DFT computations on isolated ions, interacting cation/anion pairs, and liquid-phase systems with Li-doping. For the molecular-level computations, we generally find the difference between ionization energy and electron affinity from isolated ions and interacting cation/anion pairs to provide upper and lower bounds, respectively, to experiment. In the liquid phase, we find the difference between the lowest unoccupied and highest occupied electronic levels in pure and hybrid functionals to provide lower and upper bounds, respectively, to experiment. Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems.
NASA Astrophysics Data System (ADS)
Onuma, T.; Uedono, A.; Asamizu, H.; Sato, H.; Kaeding, J. F.; Iza, M.; DenBaars, S. P.; Nakamura, S.; Chichibu, S. F.
2010-03-01
The influences of enhanced stacking fault (SF) formation, which is peculiar to nitrogen-(N-) polarity growth and lattice-mismatched semipolar heteroepitaxy, on the electrical properties of (101¯1¯) Mg-doped GaN (GaN:Mg) epilayers were investigated. Although the residual donor concentration was higher than (0001) GaN because of N-polar growth, comparatively low Mg doping (3×1019 cm-3) gave a hole concentration approximately 1.5×1018 cm-3, which was an order of magnitude higher than (0001) GaN:Mg. As the acceptor ionization energy estimated from low temperature photoluminescence was quite similar for (101¯1¯) and (0001) GaN:Mg, the high Mg activation seems to result with the aid of high density SFs. Because the Doppler broadening S parameter for the positron annihilation measurement, which reflects the concentration or size of negatively charged cation vacancies, of (101¯1¯) GaN:Mg was smaller than (0001) case, (101¯1¯) orientation is well suited to Mg-doping.
Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate
NASA Astrophysics Data System (ADS)
Kanwal, Kiran; Ismail, Bushra; Rajani, K. S.; Kissinger, N. J. Suthan; Zeb, Aurang
2017-07-01
Cobalt-doped nanosized magnesium aluminate (Mg1-xCoxAl2O4) samples having different compositions ( x = 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by a chemical co-precipitation method. All samples were characterized by means of x-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy, photoluminescence and diffused reflectance spectroscopy. The results of XRD revealed that the samples were spinel single phase cubic close packed crystalline materials. The lattice constant and x-ray density were found to be affected by the ionic radii of the doped metal cations. Using the Debye-Scherrer formula, the calculated crystalline size was found to be Co2+ ion concentration-dependent and varied between 32 nm and 40 nm. Nano-dimensions and phase of the Mg1-xCoxAl2O4 samples were analyzed and the replacement of Mg2+ ions with Co2+ ions was confirmed by elemental analysis. Three strong absorption bands at 540 nm, 580 nm and 630 nm were observed for the doped samples which are attributed to the three spin-allowed 4T1g (4F) → 4T2g, 4A2g, 4T1g (4P) electronic transitions of Co2+ at tetrahedral lattice sites. Nanophosphors have optical properties different from bulk because of spatial confinement and non-radiative relaxation. Decreases in particle size can increase the surface area and the defects, which can in turn increase the luminescent efficiency to make it very useful for tunable laser operations, persistent phosphorescence, color centers, photoconductivity and luminescence for display technology. MgAl2O4 was doped with Co2+ ions using a co-precipitation method and the optical absorption studies revealed that there is a decrease of band gap due to the increase of Co2+ content. The emission intensity of this phosphor is observed at 449 nm with a sharp peak attributed to the smaller size of the particles and the homogeneity of the powder.
Licona-Sánchez, T de J; Alvarez-Romero, G A; Mendoza-Huizar, L H; Galán-Vidal, C A; Palomar-Pardavé, M; Romero-Romo, M; Herrera-Hernández, H; Uruchurtu, J; Juárez-García, J M
2010-08-05
A kinetic study for the electrosynthesis of polypyrrole (Ppy) doped with SO(4)(2-) ions is presented. Ppy films were electrochemically polymerized onto a graphite-epoxy resin electrode. Experimental current density transients (j-t) were obtained for three different potentiometric behaviors: anionic, cationic, and a combination. Theoretical models were used to fit the experimental j-t data to determine the nucleation and growth processes controlling the polymer synthesis. It was encountered that, in all cases, pyrrole electropolimerization involves two concomitant processes, namely, a Ppy diffusion limited multiple 3D nucleation and growth and pyrrole electro-oxidation on the growing surface of the Ppy nuclei. SEM analysis of the electrodes surfaces reveals that Ppy deposition occurred over most of the electrode surface by multiple nucleation of hemispheres, as the theoretical model used for the analysis of the current transients required. Hemispherical particles formed the polymeric film displaying different sizes. The order for the particle size was as follows: anionic > anionic-cationic > cationic. These results are congruent with those obtained by theoretical analysis of the corresponding current transients. Analysis of the impedance measurements recorded on the anionic Ppy film, immersed in an aqueous solution with different sulfate ion concentrations evidenced that SO(4)(2-) ions diffuse through the Ppy film provoking a decrease of its electrical resistance and an increase of its dielectric constant. From the Warburg impedance coefficient, the sulfate coefficient of diffusion in the Ppy film was 1.38 x 10(-9) cm(2) s(-1).
Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang
2015-09-02
The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Corradini, Dario; Body, Monique
2015-06-24
Doping is generally used to tune and enhance the properties of metal oxides. However, their chemical composition cannot be readily modified beyond low dopant amounts without disrupting the crystalline atomic structure. In the case of anatase TiO 2, we introduce a new solution-based chemical route allowing the composition to be significantly modified, substituting the divalent O 2- anions by monovalent F- and OH- anions resulting in the formation of cationic Ti 4+ vacancies (square) whose concentration can be controlled by the reaction temperature. The resulting polyanionic anatase has the general composition Ti 1-x-y square x+yO 2-4(x+y)F 4x(OH) 4y, reaching vacancymore » concentrations of up to 22%, i.e., Ti 0.78 square 0.22O 1.12F 0.4(OH) 0.48. Solid-state F-19 NMR spectroscopy reveals that fluoride ions can accommodate up to three different environments, depending on Ti and vacancies (i.e. Ti 3-F, Ti- 2 square 1-F, and Ti- 1 square 2-F), with a preferential location close to vacancies. DFT calculations further confirm the fluoride/vacancy ordering. When its characteristics were evaluated as an electrode for reversible Li-ion storage, the material shows a modified lithium reaction mechanism, which has been rationalized by the occurrence of cationic vacancies acting as additional lithium hosting sites within the anatase framework. Finally, the material shows a fast discharging/charging behavior, compared to TiO 2, highlighting the benefits of the structural modifications and paving the way for the design of advanced electrode materials, based on a defect mediated mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkar, Hitesh; Kumar, Ashok, E-mail: ashok553@nplindia.org
2016-05-23
Choice of proper dopants at A or B-site of ABO{sub 3} perovskite structure can modify the morphotropic phase boundary (MPB), and hence functional properties of polar systems. The chemical nature of donor or acceptor will significantly influence the fundamental properties. Lead-free ferroelectrics have vast potential to replace the lead-based ceramics. The (Na{sub 0.5}Bi{sub 0.5}){sub 1-x}Ba{sub x}TiO{sub 3} (NBT-BT) (at x=0.08) near MPB with small substitution of trivalent cations (Al{sup 3+}) has been synthesized by solid state reaction route. The aim to choose the trivalent cations (Al{sup 3+}) was its relatively smaller radii than that of Bi{sup 3+} cations to developmore » the antipolar phases in the ferroelectric ceramic. Structural, morphological and elemental compositional analyses were studied by X-ray diffraction (XRD), Secondary electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDAX), respectively. Ferroelectric studies were carried out on various compositions of (Na{sub 0.46}Bi{sub 0.46-x}Al{sub x}Ba{sub 0.08})TiO{sub 3} (NBAT-BT) (x=0, 0.05, 0.07, 0.10) electroceramics. It was observed that with increase in concentration of Al the ferroelectricity state changes from soft to hard. Temperature dependent dielectric spectroscopy shows broad dielectric dispersion. The Al doping diminishes the relaxor behavior of NBT-BT ceramics. Impedance spectroscopy shows that electrical resistivity and relaxation frequency decreases with increase in Al-concentration. Modulus spectra indicate that Al significantly change the bulk capacitance of NBT-BT.« less
[Doping: health risks and relation to addictive behaviors].
Siri, Françoise; Roques, Bernard P
2003-11-01
The paper presents the health hazards of the major doping substances and raises some questions about the relationship between doping and addictive behavior. Current definitions of doping and addictive behavior are examined. The paper's goal is: 1- to assess the risks of neurotoxicity and overall toxicity of doping substances: stimulants, narcotics (seldom used as doping substances), and hormones, and assess their addictive potential; 2- to present available data on drug-dependent patients with a record of early prolonged and intensive physical activity or athletic practice. Some doping substances present high risks for health at large doses, but usually low addictive potential and neurotoxicity. Dependency on doping substances and drift towards dependency to addictive drugs, if any, are therefore determined by genetic and environmental factors. A significant susceptibility to drug dependence has been observed in some cases of very intensive and competitive practice. Over-representation of intensive and competitive athletic antecedents among some drug-dependent patients could be accounted for in either of two ways. On the first account, the causal factor is a sensation-seeking character trait, with a likely genetic component, which predisposes the individual to the use of drugs or doping substances, as the opportunities arise. On the second account, the sudden interruption of intensive practice, and of the associated organic stress and hypersensitization of the hedonic pathway, creates a weaning syndrome and leads to the search for relief through drugs. Further exploration of this hypothesis is called for.
NASA Astrophysics Data System (ADS)
Hoang, Khang
2017-12-01
We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.
Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K
2017-10-19
We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.
NASA Astrophysics Data System (ADS)
Buyukkilic, Salih
Solid oxide fuel cells (SOFCs) have potential to convert chemical energy directly to electrical energy with high efficiency, with only water vapor as a by-product. However, the requirement of extremely high operating temperatures (~1000 °C) limits the use of SOFCs to only in large scale stationary applications. In order to make SOFCs a viable energy solution, enormous effort has been focused on lowering the operating temperatures below 700 °C. A low temperature operation would reduce manufacturing costs by slowing component degradation, lessening thermal mismatch problems, and sharply reducing costs of operation. In order to optimize SOFC applications, it is critical to understand the thermodynamic stabilities of electrolytes since they directly influence device stability, sustainability and performance. Rare-earth doped ceria electrolytes have emerged as promising materials for SOFC applications due to their high ionic conductivity at the intermediate temperatures (500--700 °C). However there is a fundamental lack of understanding regarding their structure, thermodynamic stability and properties. Therefore, the enthalpies of formation from constituent oxides and ionic conductivities were determined to investigate a relationship between the stability, composition, structural defects and ionic conductivity in rare earth doped ceria systems. For singly doped ceria electrolytes, we investigated the solid solution phase of bulk Ce1-xLnxO2-0.5x where Ln = Sm and Nd (0 ≤ x ≤ 0.30) and analyzed their enthalpies of formation, mixing and association, and bulk ionic conductivities while considering cation size mismatch and defect associations. It was shown that for ambient temperatures in the dilute dopant region, the positive heat of formation reaches a maximum as the system becomes increasingly less stable due to size mismatch. In concentrated region, stabilization to a certain solubility limit was observed probably due to the defect association of trivalent cations with charge-balancing oxygen vacancies. At higher temperatures near 700 °C, maximum enthalpy of formation shifts toward higher dopant concentrations, as a result of defect disordering. This concentration coincides with that of maximum ionic conductivity, extending the correlation seen previously near room temperature. It is also possible to co-dope these systems with Sm and Nd to further enhance ionic conductivity. For doubly doped ceria electrolytes, the solid solution phase of Ce1-xSm0.5xNd0.5xO2-0.5x (0 ≤ x ≤ 0.30) was investigated. It has been shown that for doubly doped ceria, the maximum enthalpy of formation occurs towards higher dopant concentration than that of singly doped counterparts, with less exothermic association enthalpies. These studies provide insight into the structure-composition-property-stability relations and aid in the rational design of the future SOFCs electrolytes.
NASA Astrophysics Data System (ADS)
Wang, Jia-Wei; Chen, Ya; Chen, Bai-Zhen
2014-11-01
δ-MnO2 materials doped with transition-metal cations (Zn, Co, and Ag) were successfully synthesized using a hydrothermal technique. The structures and morphologies of the obtained oxides were analyzed using X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller measurements. Additionally, the electrochemical properties were evaluated through cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic cycling measurements. The results indicate that the pure and doped samples crystallize in the δ form with a layered structure and that the Mn/Zn, Mn/Co and Mn/Ag molar ratios are all approximately 1:0.09. Both the Zn-doped and pure MnO2 materials exhibit a petal-like morphology; however, the former has a higher specific surface area of up to 98.97m2 g-1. Furthermore, the Zn-doped MnO2 exhibits a near-rectangular cyclic voltammetry (CV) curve with broad quasi-reversible redox peaks and a specific capacitance of 182.9 F g-1 at a CV scan rate of 2 mV s-1. The Co-doped material exhibits a distinct spiny-fiber morphology, and the electrochemical performance of this material is significantly worse than that of pure MnO2. The average attenuation rate of the Ag-doped material is only 0.028% after 1000 cycles, which is lower than that of pure MnO2.
El Rouby, W M A; Farghali, A A; Hamdedein, A
2016-11-01
Cerium (IV) oxide (CeO 2 ), samarium (Sm) and gadolinium (Gd) doped CeO 2 nanoparticles were prepared using microwave technique. The effect of microwave irradiation time, microwave power and pH of the starting solution on the structure and crystallite size were investigated. The prepared nanoparticles were characterized using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscope. The photocatalytic activity of the as-prepared CeO 2 , Sm and Gd doped CeO 2 toward degradation of methylene blue (MB) dye was investigated under UV light irradiation. The effect of pH, the amount of catalyst and the dye concentration on the degradation extent were studied. The photocatalytic activity of CeO 2 was kinetically enhanced by trivalent cation (Gd and Sm) doping. The results revealed that Gd doped CeO 2 nanoparticles exhibit the best catalytic degradation activity on MB under UV irradiation. For clarifying the environmental safety of the by products produced from the degradation process, the pathways of MB degradation were followed using liquid chromatography/mass spectroscopy (LC/MS). The total organic carbon content measurements confirmed the results obtained by LC/MS. Compared to the same nanoparticles prepared by another method, it was found that Gd doped CeO 2 prepared by hydrothermal process was able to mineralize MB dye completely under UV light irradiation.
Influence of Bi(3+)-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite.
Gore, Shyam K; Mane, Rajaram S; Naushad, Mu; Jadhav, Santosh S; Zate, Manohar K; Alothman, Z A; Hui, Biz K N
2015-04-14
The influence of Bi(3+)-doping on the magnetic and Mössbauer properties of cobalt ferrite (CoFe2O4), wherein the Fe(3+) ions are replaced by the Bi(3+) ions to form CoBixFe2-xO4 ferrites, where x = 0.0, 0.05, 0.1, 0.15 or 0.2, has been investigated. The structural and morphological properties of undoped and doped ferrites, synthesized chemically through a self-igniting sol-gel method, are initially screened using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The changes in magnetic moment of ions, their coupling with neighboring ions and cation exchange interactions are confirmed from the Mössbauer spectroscopy analysis. The effect of Bi(3+)-doping on the magnetic properties of CoFe2O4 ferrite is examined from the vibrating sample magnetometry spectra. Saturation magnetization and coercivity values are increased initially and then decreased, as result of Bi(3+)-doping. The obtained results with improved saturation magnetization (from 26.36 to 44.96 emu g(-1)), coercivity (from 1457 to 1863 Oe) and remanence magnetization (from 14.48 to 24.63 emu g(-1)) on 0.1-0.15 mol Bi(3+)-doping of CoBixFe2-xO4 demonstrate the usefulness for magnetic recording and memory devices.
Wang, Lijie; Fan, Jiajie; Cao, Zetan; Zheng, Yichao; Yao, Zhiqiang; Shao, Guosheng; Hu, Junhua
2014-07-01
The chemical state of a transition-metal dopant in TiO(2) can intrinsically determine the performance of the doped material in applications such as photocatalysis and photovoltaics. In this study, manganese-doped TiO2 is fabricated by a near-equilibrium process, in which the TiO(2) precursor powder precipitates from a hydrothermally obtained transparent mother solution. The doping level and subsequent thermal treatment influence the morphology and crystallization of the TiO(2) samples. FTIR spectroscopy and X-ray photoelectron spectroscopy analyses indicate that the manganese dopant is substitutionally incorporated by replacing Ti(4+) cations. The absorption band edge can be gradually shifted to 1.8 eV by increasing the nominal manganese content to 10 at %. Manganese atoms doped into the titanium lattice are associated with the dominant 4+ valence oxidation state, which introduces two curved, intermediate bands within the band gap and results in a significant enhancement in photoabsorption and the quantity of photogenerated hydroxyl radicals. Additionally, the high photocatalytic performance of manganese-doped TiO(2) is also attributed to the low oxygen content, owing to the equilibrium fabrication conditions. This work provides an important strategy to control the chemical and defect states of dopants by using an equilibrium fabrication process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing the binding of cationic lipids with dendrimers.
Mandeville, J S; Bourassa, P; Tajmir-Riahi, H A
2013-01-14
Polycationic polymers are used extensively in biology to disrupt cell membranes and thus enhance the transport of materials into the cell. We report the bindings of several lipids cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane(DOTAP), dioctadecyldimethylammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) to dendrimers of different compositions such as mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) under physiological conditions. FTIR, UV-visible spectroscopic, methods and molecular modeling were used to analyze the lipid binding mode, the binding constant, and the effects of lipid complexation on the dendrimer structure. The structural analysis showed that lipids bind dendrimers through both hydrophilic and hydrophobic contacts with overall binding constants of K(chol-mPEG-G3) = 1.7 × 10(3) M(-1), K(chol-mPEG-PAMAM-G4) = 2.7 × 10(3) M(-1), K(chol-PAMAM-G4) = 1.0 × 10(3) M(-1), K(DOPE-mPEG-G3) = 1.5 × 10(3) M(-1), K(DOPE-mPEG-PAMAM-G4) = 1.6 × 10(3) M(-1), K(DOPE-PAMAM-G4) = 5.3 × 10(2) M(-1), K(DDAB-mPEG-G3) = 1.5 × 10(3) M(-1), K(DDAB-mPEG-PAMAM-G4) = 1.9 × 10(2) M(-1), K(DDAB-PAMAM-G4) = 7.0 × 10(2) M(-1), K(DOTAP-mPEG-G3) = 1.9 × 10(3) M(-1), K(DOTAP-mPEG-PAMAM-G4) = 1.5 × 10(3) M(-1), and K(DOTAP-PAMAM-G4) = 5.7 × 10(2) M(-1). Weaker interaction was observed as dendrimer cationic charges increased. The free binding energies from docking were -5.15 (cholesterol), -5.79 (DDAB), and -5.36 kcal/mol (DOTAP) with the order of stability DDAB-PAMAM-G-4 > DOTAP-PAMAM-G4 > cholesterol-PAMAM-G4, consistent with the spectroscopic results. Dendrimers might act as carriers to transport lipids in vitro.
Hole transport in pure and doped hematite
NASA Astrophysics Data System (ADS)
Liao, Peilin; Carter, Emily A.
2012-07-01
Hematite (α-Fe2O3) is a promising candidate for use in photovoltaic (PV) and photoelectrochemical devices. Its poor conductivity is one major drawback. Doping hematite either p-type or n-type greatly enhances its measured conductivity and is required for potential p-n junctions in PVs. Here, we study hole transport in pure and doped hematite using an electrostatically embedded cluster model with ab initio quantum mechanics (unrestricted Hartree-Fock theory). Consistent with previous work, the model suggests that hole hopping is via oxygen anions for pure hematite. The activation energy for hole mobility is predicted to be at least 0.1 eV higher than the activation energy for electron mobility, consistent with the trend observed in experiments. We examine four dopants—magnesium(II), nickel(II), copper(II), and manganese(II/III) in direct cation substitution sites—to gain insight into the mechanism by which conductivity is improved. The activation energies are used to assess qualitative effects of different dopants. The hole carriers are predicted to be attracted to O anions near the dopants. The magnitude of the trapping effect is similar among the four dopants in their +2 oxidation states. The multivalent character of Mn doping facilitates local hole transport around Mn centers via a low-barrier O-Mn-O pathway, which suggests that higher hole mobility can be achieved with increasing Mn doping concentration, especially when a network of these low-barrier pathways is produced. Our results suggest that the experimentally observed conductivity increase in Mg-, Ni-, and Cu-doped p-type hematite is mostly due to an increase in hole carriers rather than improved mobility, and that Mg-, Ni-, and Cu-doping perform similarly, while the conductivity of Mn-doped hematite might be significantly improved in the high doping concentration limit.
Doped Y.sub.2O.sub.3 buffer layers for laminated conductors
Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA
2007-08-21
A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the metallic substrate, the biaxially textured buffer layer comprising Y.sub.2O.sub.3 and a dopant for blocking cation diffusion through the Y.sub.2O.sub.3, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.
NASA Astrophysics Data System (ADS)
Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.
2016-03-01
The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
Zhao, Lei; Gao, Jing; Liu, Qing; Zhang, Shujun; Li, Jing-Feng
2018-01-10
Lead-free dielectric ceramics with high recoverable energy density are highly desired to sustainably meet the future energy demand. AgNbO 3 -based lead-free antiferroelectric ceramics with double ferroelectric hysteresis loops have been proved to be potential candidates for energy storage applications. Enhanced energy storage performance with recoverable energy density of 3.3 J/cm 3 and high thermal stability with minimal energy density variation (<10%) over a temperature range of 20-120 °C have been achieved in W-modified AgNbO 3 ceramics. It is revealed that the W 6+ cations substitute the B-site Nb 5+ and reduce the polarizability of B-site cations, leading to the enhanced antiferroelectricity, which is confirmed by the polarization hysteresis and dielectric tunability. It is believed that the polarizability of B-site cations plays a dominant role in stabilizing the antiferroelectricity in AgNbO 3 system, in addition to the tolerance factor, which opens up a new design approach to achieve stable antiferroelectric materials.
Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S
Hao, Shiqiang; Dravid, Vinayak P.; Kanatzidis, Mercouri G.; ...
2016-10-17
Direct conversion between thermal and electrical energy can be achieved by thermoelectric materials, which provide a viable route for power generation and solid state refrigeration. Here, we use a combination of energetic, electronic, and vibrational first-principles based results to predict the figure of merit performance in hole doped single crystals of SnS and (Pb,Sn)S. We find high ZT values for both materials, specifically for (Pb,Sn)S along the b-axis. Both SnS and (Pb,Sn)S have excellent power factors when doped, due to a combination of increased electrical conductivity (due to doping) and a significantly enhanced Seebeck coefficient obtained by a doping-induced multibandmore » effect. Anharmonic phonon calculations combined with a Debye-Calloway model show that the lattice thermal conductivity of both compounds is low, due to intrinsic anharmonicity, and is lowered further by the random, solid solution nature of the cation sublattice of (Pb,Sn)S. (Pb,Sn)S exhibits a high ZT plateau ranging from 1.3 at 300 K to 1.9 at 800 K. Finally, the overall ZT of the hole doped (Pb,Sn)S crystals is predicted to outperform most of the current state-of-the-art thermoelectric sulfide materials.« less
Hoven, Corey V; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C
2010-03-01
Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.
Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation
NASA Astrophysics Data System (ADS)
Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.
2010-03-01
Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.
Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Shiqiang; Dravid, Vinayak P.; Kanatzidis, Mercouri G.
Direct conversion between thermal and electrical energy can be achieved by thermoelectric materials, which provide a viable route for power generation and solid state refrigeration. Here, we use a combination of energetic, electronic, and vibrational first-principles based results to predict the figure of merit performance in hole doped single crystals of SnS and (Pb,Sn)S. We find high ZT values for both materials, specifically for (Pb,Sn)S along the b-axis. Both SnS and (Pb,Sn)S have excellent power factors when doped, due to a combination of increased electrical conductivity (due to doping) and a significantly enhanced Seebeck coefficient obtained by a doping-induced multibandmore » effect. Anharmonic phonon calculations combined with a Debye-Calloway model show that the lattice thermal conductivity of both compounds is low, due to intrinsic anharmonicity, and is lowered further by the random, solid solution nature of the cation sublattice of (Pb,Sn)S. (Pb,Sn)S exhibits a high ZT plateau ranging from 1.3 at 300 K to 1.9 at 800 K. Finally, the overall ZT of the hole doped (Pb,Sn)S crystals is predicted to outperform most of the current state-of-the-art thermoelectric sulfide materials.« less
The In-Situ Structure of Cationic Lipid/DNA Complexes in Animal Cells: Applications to Gene Therapy
NASA Astrophysics Data System (ADS)
Lin, Alison J.; Slack, Nelle L.; Idziak, S. H. J.; George, C. X.; Samuel, C. E.; Safinya, C. R.
1997-03-01
Gene therapy has been the focus of many recent investigations. One promising technique is to use cationic lipids as vectors for DNA transfection. However, the exact mechanism of DNA uptake is unknown, due to a lack of knowledge regarding interactions and structures of DNA and cationic lipids. We are developing x-ray and optical microscopy techniques to directly image the temporal and spatial distribution of cationic lipid/DNA complexes (CL-DNA) during the various stages of transfection in mouse L-cells. The structure of these complexes in water have been shown by x-ray studies to consist of alternating lipid bilayers and DNA monolayers.(J. Radler, I. Koltover, T. Salditt, C. R. Safinya, Science (January 1997)) We demonstrate the feasibility of in-situ x-ray diffraction studies of CL-DNA complexes in L-cells. The x-ray data implies that complexes are taken up by endocytosis and DOPE destabilizes the endosomal membrane. Results from optical microscopy studies and X-Gal staining of transfected cells support the x-ray data. Funded in part by NSF grant DMR-9624091, PRF (No. 31352-AC7), Los Alamos CULAR grant No. STB/UC: 96-118.
Size Dependent Cation Channel in Nanoporous Prussian Blue Lattice
NASA Astrophysics Data System (ADS)
Moritomo, Yutaka; Igarashi, Kazuhiro; Kim, Jungeun; Tanaka, Hiroshi
2009-08-01
Cation and/or molecule transfer within nanoporous materials can be utilized in, for example, electrochromic devices, hydrogen storage, molecular sensors, and molecular filters. Here, we investigated the mobilities of cations, Na+, K+, and Rb+, in vacancy-controlled Prussian blue film, NaxCo[Fe(CN)6]1-vzH2O (v is vacancy concentration) with a jungle gym structure. We found that only the smallest Na+ ions pass through the cubic planes of the lattice, while the larger cations, i.e., K+ and Rb+, take a detour channel along the [Fe(CN)6] vacancy. The size-dependent cation channel is well understood in terms of the potential curve derived by an ab initio total energy calculation.
Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy
Wu, J.; Bozovic, I.
2015-04-06
Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.
Ye, Tao; Petrović, Miloš; Peng, Shengjie; Yoong, Jeremy Lee Kong; Vijila, Chellappan; Ramakrishna, Seeram
2017-01-25
PbI 2 -enriched mixed perovskite film [FA 0.81 MA 0.15 Pb(I 0.836 Br 0.15 ) 3 ] has been widely studied due to its great potential in perovskite solar cell (PSC) applications. Herein, a FA 0.81 MA 0.15 Pb(I 0.836 Br 0.15 ) 3 film has been fabricated with the temperature-dependent optical absorption spectra utilized to determine its exciton binding energy. A ∼13 meV exciton binding energy is estimated, and a near-unity fraction of free carriers out of the total photoexcitons has been obtained in the solar cell operating regime at equilibrium state. PSCs are fabricated with this mixed perovskite film, but a significant electron transport barrier at the TiO 2 -perovskite interface limited their performance. Cs 2 CO 3 and CsI are then utilized as functional enhancers with which to substantially balance the electron and hole transport and increase the carriers (both electrons and holes) mobilities in PSCs, resulting in much-improved solar-cell performance. The modified PSCs exhibit reproducible power conversion efficiency (PCE) values with little hysteresis effect in the J-V curves, achieving PCEs up to 19.5% for the Cs 2 CO 3 -modified PSC and 20.6% when subsequently further doped with CsI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit
Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitablymore » influencing the dielectric loss while invariably upholding the CP value.« less
NASA Astrophysics Data System (ADS)
Lei, Yanhua; Ohtsuka, Toshiaki; Sheng, Nan
2015-12-01
Polypyrrole (PPy) films were synthesized on copper in solution of sodium di-hydrogen phosphate and phytate for corrosion protection. The protection properties of PPy films were comparatively investigated in NaCl solution. During two months immersion, the PPy film doped with phytate anions, working as a cationic perm-selective membrane, inhibited the dissolution of copper to 1% of bare copper. Differently, the PPy film doped with di-hydrogen phosphate anions, possessing anionic perm-selectivity, was gradually reduced, and inhibited the dissolution to 7.8% of bare copper. Degradation of the PPy films was studied by comparing the electrochemical impedance spectroscopy change at different immersion time and Raman spectra change after immersion.
Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes
NASA Astrophysics Data System (ADS)
Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.
2004-08-01
We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.
Bennekou, P; Kristensen, B I; Christophersen, P
2003-09-01
The activation/deactivation kinetics of the human erythrocyte voltage-dependent cation channel was characterized at the single-channel level using inside-out patches. It was found that the time dependence for voltage activation after steps to positive membrane potentials was slow ( t(1/2) about 30 s), whereas the deactivation was fast ( t(1/2) about 15 ms). Both activation and deactivation of this channel were also demonstrated in intact red cells in suspension. At very positive membrane potentials generated by suspension in extracellular low Cl(-) concentrations, the cation conductance switched on with a time constant of about 2 min. Deactivation of the cation channel was clearly demonstrated during transient activation of the Gárdos channel elicited by Ca(2+) influx via the cation channel and ensuing efflux via the Ca(2+) pump. Thus, the voltage-dependent cation channel, the Gárdos channel and the Ca(2+) pump constitute a coupled feedback-regulated system that may become operative under physiological conditions.
AB INITIO Investigations of the Magnetism in Diluted Magnetic Semiconductor Fe-DOPED GaN
NASA Astrophysics Data System (ADS)
Cheng, Jie; Zhou, Jing; Xu, Wei; Dong, Peng
2014-01-01
In this paper, we present a first principle investigation on Fe-doped GaN with wurtzite and zinc-blend structure using full potential density functional calculations. Data point out that the magnetic behavior of Fe-doped GaN system is strongly dependent on Fe doping configurations. In agreement with the experimental reports, and independently by doping, antiferromagnetism occurs in the zinc-blend structure, while in the wurtzite structure ferromagnetism depends on the Fe doping configurations. Detailed analyses combined with density of state calculations support the assignment that the ferromagnetism is closely related to the impurity band at the origin of the hybridization of Fe 3d and N 2p states in the Fe-doped GaN of wurtzite phase.
Thermal Stability of RNA Structures with Bulky Cations in Mixed Aqueous Solutions.
Nakano, Shu-Ichi; Tanino, Yuichi; Hirayama, Hidenobu; Sugimoto, Naoki
2016-10-04
Bulky cations are used to develop nucleic-acid-based technologies for medical and technological applications in which nucleic acids function under nonaqueous conditions. In this study, the thermal stability of RNA structures was measured in the presence of various bulky cations in aqueous mixtures with organic solvents or polymer additives. The stability of oligonucleotide, transfer RNA, and polynucleotide structures was decreased in the presence of salts of tetrabutylammonium and tetrapentylammonium ions, and the stability and salt concentration dependences were dependent on cation sizes. The degree to which stability was dependent on salt concentration was correlated with reciprocals of the dielectric constants of mixed solutions, regardless of interactions between the cosolutes and RNA. Our results show that organic solvents affect the strength of electrostatic interactions between RNA and cations. Analysis of ion binding to RNA indicated greater enhancement of cation binding to RNA single strands than to duplexes in media with low dielectric constants. Furthermore, background bulky ions changed the dependence of RNA duplex stability on the concentration of metal ion salts. These unique properties of large tetraalkylammonium ions are useful for controlling the stability of RNA structures and its sensitivity to metal ion salts. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A dual-colored bio-marker made of doped ZnO nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.
2008-08-01
Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.
Structure and bulk modulus of Ln-doped UO2 (Ln = La, Nd) at high pressure
NASA Astrophysics Data System (ADS)
Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; Zhang, Lei; Palomares, Raul I.; Lang, Maik; Navrotsky, Alexandra; Mao, Wendy L.; Ewing, Rodney C.
2017-07-01
The structure of lanthanide-doped uranium dioxide, LnxU1-xO2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ∼50-55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ∼ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ∼ 0.25-0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both the ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. This trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO2, such as Young's modulus.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
NASA Astrophysics Data System (ADS)
Petkova, P.; Andreici, E.-L.; Avram, N. M.
2014-11-01
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.
Tetravalent chromium doped laser materials and NIR tunable lasers
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)
2008-01-01
A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0
First-principles study of bandgap tuning in Ge1-xPbxSe
NASA Astrophysics Data System (ADS)
Lohani, Himanshu
2018-03-01
Narrow bandgap and its tuning are important aspects of materials for their technological applications. In this context group IV-VI semiconductors are one of the interesting candidates. In this paper, we explore the possibility of bandgap tuning in one of the family member of this family GeSe by using isoelectronic Pb doping. Our study is first-principles based electronic structure calculations of Ge1-xPbxSe. This study reveals that the Ge-p and Se-p states are strongly hybridized in GeSe and shows a gap in the DOS at Ef in GeSe. This gap reduces systematically with simultaneous enhancement of the states in the near Ef region as a function of Pb doping. This leads tuning of the indirect bandgap in GeSe via Pb doping. The results of the indirect bandgap decrement are consistent with the experimental findings. We propose a mechanism where the electrostatic effect of dopant Pb cation could be responsible for these changes in the electronic structure of GeSe.
Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses
NASA Astrophysics Data System (ADS)
Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar
2017-06-01
A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less
An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan.
Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit
2016-06-01
In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure and bulk modulus of Ln-doped UO 2 (Ln = La, Nd) at high pressure
Rittman, Dylan R.; Park, Sulgiye; Tracy, Cameron L.; ...
2017-04-10
The structure of lanthanide-doped uranium dioxide, Ln xU 1-xO 2-0.5x+y (Ln = La, Nd), was investigated at pressures up to ~50–55 GPa. Samples were synthesized with different lanthanides at different concentrations (x ~ 0.2 and 0.5), and all were slightly hyperstoichiometric (y ~ 0.25–0.4). In situ high-pressure synchrotron X-ray diffraction was used to investigate their high-pressure phase behavior and determine their bulk moduli. All samples underwent a fluorite-to-cotunnite phase transformation with increasing pressure. The pressure of the phase transformation increased with increasing hyperstoichiometry, which is consistent with results from previous computational simulations. Bulk moduli are inversely proportional to both themore » ionic radius of the lanthanide and its concentration, as quantified using a weighted cationic radius ratio. As a result, this trend was found to be consistent with the behavior of other elastic properties measured for Ln-doped UO 2, such as Young's modulus.« less
Jo, Hongil; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min
2014-08-14
Y(3+)-doped noncentrosymmetric (NCS) bismuth tellurite materials, Bi(2-x)Y(x)TeO5 (x = 0, 0.1, and 0.2), have been synthesized through standard solid-state reactions and structurally characterized by powder neutron diffraction. The reported NCS materials crystallize in the orthorhombic space group Abm2 (no. 39), and exhibit pseudo-three-dimensional frameworks that are composed of BiO3, BiO5, and TeO3 polyhedra. Detailed diffraction studies show that the cell volume of Bi(2-x)Y(x)TeO5 decreases with an increasing amount of Y(3+)on the Bi(3+) sites. However, no ordering between Bi(3+) and Y(3+) was observed in the Bi(2-x)Y(x)TeO5. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that Bi2TeO5, Bi(1.9)Y(0.1)TeO5, and Bi(1.8)Y(0.2)TeO5 exhibit SHG efficiencies of approximately 300, 200, and 60 times that of α-SiO2, respectively. The reduction in SHG for Y(3+)-doped materials is consistent with the lack of net moment originating from polyhedra with a polarizable Bi(3+) cation.
NASA Astrophysics Data System (ADS)
Guerra-López, José R.; Echeverría, Gustavo A.; Güida, Jorge A.; Viña, Raúl; Punte, Graciela
2015-06-01
Calcium hydroxyapatite (CaHap) formation when different amounts of Zn(II) are present in the mother solution has been investigated by atomic absorption, infrared and Raman spectroscopies, X-ray diffraction and thermal analysis (DTA and TG). The studied samples have been synthesized at T=95 °C and pH 9 in air. The analysis of the results have shown that the pure CaHap sample crystallizes in the monoclinic form P21/b. Concentrations up to 20% of Zn(II) in the mother solution, equivalent to smaller concentrations in solid (up to 9.1% in wt), favor the formation of the hexagonal apatite, P63/m, while Zn(II) concentrations higher than 20% in solution help an amorphous phase development where vibrational spectra indicated coexistence of two phases: an apatite and ZnNH4PO4·H2O. Infrared data of thermal treated samples endorse that HPO42- ion had not been incorporated in Zn(II) doped samples during the synthesis process. Present results also allow to conclude that Zn(II) cation exhibits a preference to occupy the Ca2 site of the apatite structure and induces water adsorption and a small quantity of CO32- cation incorporation, leading to formation of a less crystalline Ca deficient apatite.
Nilius, Bernd; Vennekens, Rudi; Prenen, Jean; Hoenderop, Joost G J; Bindels, René J M; Droogmans, Guy
2000-01-01
This study describes properties of monovalent cation currents through ECaC, a recently cloned epithelial Ca2+-permeable channel from rabbit. The kinetics of currents through ECaC was strongly modulated by divalent cations. Currents were inhibited in the presence of extracellular Ca2+. They showed an initial voltage-dependent decay in the presence of 1 mm Mg2+ at hyperpolarizing steps in Ca2+-free solutions, which represents a voltage-dependent Mg2+ block through binding of Mg2+ to a site localized in the electrical field of the membrane (δ = 0.31) and a voltage-dependent binding constant (at 0 mV 3.1 mm Ca2+, obtained from a Woodhull type analysis). Currents were only stable in the absence of divalent cations and showed under these conditions a small time- and voltage-dependent component of activation. Single channel currents in cell-attached and inside-out patches had a conductance of 77.5 ± 4.9 pS (n = 11) and reversed at +14.8 ± 1.6 mV (n = 9) in the absence of divalent cations. The permeation sequence for monovalent cations through ECaC was Na+ > Li+ > K+ > Cs+ > NMDG+ which is identical to the Eisenmann sequence X for a strong field-strength binding site. It is concluded that the permeation profile of ECaC for monovalent cations suggests a strong field-strength binding site that may be involved in Ca2+ permeation and Mg2+ block. PMID:10970426
Synthesis, Characterization and Photocatalytic Activity of Ag+ - and Sn2+ -Doped KTi0.5 Te1.5 O6.
Guje, Ravinder; Gundeboina, Ravi; Reddy, Jitta Raju; Veldurthi, Naveen Kumar; Kurra, Sreenu; Vithal, Muga
2016-03-01
In this study, the photocatalytic dye degradation efficiency of KTi 0.5 Te 1.5 O 6 synthesized through solid-state method was enhanced by cation (Ag + /Sn +2 ) doping at potassium site via ion exchange method. As prepared materials were characterized by XRD, SEM-EDS, IR, TGA and UV-Vis Diffuse reflectance spectroscopic (DRS) techniques. All the compounds were crystallized in cubic lattice with Fd3¯m space group. The bandgap energies of parent, Ag + - and Sn +2 -doped KTi 0.5 Te 1.5 O 6 materials obtained from DRS profiles were found to be 2.96, 2.55 and 2.40 eV, respectively. Photocatalytic efficiency of parent, Ag + - and Sn +2 -doped materials was evaluated against the degradation of methylene blue (MB) and methyl violet (MV) dyes under visible light irradiation. The Sn +2 -doped KTi 0.5 Te 1.5 O 6 showed higher activity toward the degradation of both MB and MV dyes and its higher activity is ascribed to the lower bandgap energy compared to the parent and Ag + -doped KTi 0.5 Te 1.5 O 6 . The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of Sn 2+ -doped KTi 0.5 Te 1.5 O 6 . Quenching experiments were performed to know the participation of holes, super oxide and hydroxyl radicals in the dye degradation process. The stability and reusability of the catalysts were studied. © 2015 The American Society of Photobiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezdrogina, M. M., E-mail: Margaret.m@mail.ioffe.ru; Vinogradov, A. Ya.; Kuzmin, R. V.
For ZnO films, nanorods, and bulk single crystals doped with Er{sup +} ions, it is shown that the effect of codopants introduced into the cation and ion sublattices and the observation of a high-intensity emission band at the wavelength λ{sub max} = 1535 nm are defined by the local environment of the Er{sup +} ion. Doping of the films and single crystals with Er{sup +} ions by diffusion brings about an infrared (IR) emission band with a low intensity because of an inadequate concentration of impurity ions. The emission intensity of this band can be raised by introducing additional Ag,more » Au, or N{sup +} impurities into the ZnO films. The UV-emission intensity of the Er-doped films and single crystals at λ{sub max} = 368–372 nm is identical to that of the undoped films. ZnO nanorods doped with Er only or together with Al or Ga codopants exhibit only one IR band (at λ{sub max} = 1535 nm), whose intensity decreases upon the introduction of codopants. Doping of the nanorods with the N{sup +} gaseous impurity during growth (930 < T < 960°C) and then with the Er{sup +} impurity by diffusion does not yield a substantial increase in the IR-emission intensity compared to the that of the corresponding band for nanorods not doped with the N{sup +} impurity. In the Er-doped nanorods, whose photoluminescence spectra exhibit a high-intensity band at λ{sub max} = 1535 nm, the UV emission band at λ{sub max} = 372 nm is practically lacking.« less
Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance
Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; Aslam, M.
2016-01-01
Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04–1.51 eV with high optical-absorption coefficients (~104 cm−1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales. PMID:27748406
Structural transition in Mg-doped LiMn 2O 4: a comparison with other M-doped Li-Mn spinels
NASA Astrophysics Data System (ADS)
Capsoni, Doretta; Bini, Marcella; Chiodelli, Gaetano; Massarotti, Vincenzo; Mozzati, Maria Cristina; Azzoni, Carlo B.
2003-01-01
The charge distribution in the Mg-doped lithium manganese spinel Li 1.02Mg xMn 1.98- xO 4 with 0.00< x≤0.20 is discussed and compared to those pertinent to other M-doped samples (M=Ni 2+, Co 3+, Cr 3+, Al 3+ and Ga 3+). EPR spectra, low temperature X-ray diffraction and conductivity data are related to the cooperative Jahn-Teller (J-T) transition occurring at about 280 K in the undoped sample. The sensitivity of the cationic sublattice in displaying electronic and magnetic changes after substitution is remarked. The inhibition of the J-T transition is related to the ratio r=|Mn 4+|/|Mn 3+| as deduced from the charge distribution model [Li 1- xt+Mg xt2+] tetr[Li y+ xt+Mg xo2+Mn 1-3 y-2 x3+Mn 1+2 y+ x4+] octa where x= xo+ xt. For y=0.02 and x=0.02, a value r=1.177 is obtained, very close to rlim=1.18, the limit value beyond which the transition is inhibited.
Ce3+-Doped garnet phosphors: composition modification, luminescence properties and applications.
Xia, Zhiguo; Meijerink, Andries
2017-01-03
Garnets have the general formula of A 3 B 2 C 3 O 12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce 3+ -doped garnet phosphors have a long history and are widely applied, ranging from flying spot cameras, lasers and phosphors in fluorescent tubes to more recent applications in white light LEDs, as afterglow materials and scintillators for medical imaging. Garnet phosphors are unique in their tunability of the luminescence properties through variations in the {A}, [B] and (C) cation sublattice. The flexibility in phosphor composition and the tunable luminescence properties rely on design and synthesis strategies for new garnet compositions with tailor-made luminescence properties. It is the aim of this review to discuss the variation in luminescence properties of Ce 3+ -doped garnet materials in relation to the applications. This review will provide insight into the relation between crystal chemistry and luminescence for the important class of Ce 3+ -doped garnet phosphors. It will summarize previous research on the structural design and optical properties of garnet phosphors and also discuss future research opportunities in this field.
Poly-beta-pinene, a Novel Nonconjugated Conductive Polymer
NASA Astrophysics Data System (ADS)
Thakur, Mrinal; Vippa, Prakash; Rajagopalan, Harish
2004-03-01
Electrical conductivity in a novel nonconjugated conductive polymer, poly-beta-pinene, has been measured as a function of iodine doping. The conductivity increases about ten orders of magnitude to a maximum value ˜ 0.01 S/cm. The molar concentration of iodine corresponding to saturation is ˜ 0.8. The optical absorption measurements after light doping have shown two peaks: one at 4.1 eV and the other at 3.1 eV. The first peak is due to the radical cation and the second due the charge-transfer between the double bond and the dopant. As observed in other nonconjugated conductive polymers, the second peak becomes broader and undergoes a red-shift upon higher doping [1,2]. The FTIR spectroscopic studies have shown that the C=C stretching vibration at 1610 cm-1 and the =C-H bending vibration band at 728 cm-1 decrease upon doping as observed in other nonconjugated conductive polymers. Preliminary measurements have shown large quadratic electro-optic effects in this material. 1. M. Thakur, J. Macromol. Sci.-PAC,2001,A38(12),1337. 2. M. Thakur, S. Khatavkar and E.J. Parish, J. Macromol. Sci.-PAC,2003,A40(12),1397.
Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.
Law, Pi-Cheng; Dragic, Peter D
2010-08-30
Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534 nm and 1064 nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes' shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.
Continuum modelling of silicon diffusion in indium gallium arsenide
NASA Astrophysics Data System (ADS)
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point defect diffusion model and activation limit model were subsequently developed in FLOOPS with outputs in good agreement with experimental results.
Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites
NASA Astrophysics Data System (ADS)
Barkhade, Tejal; Banerjee, Indrani
2018-05-01
The unique properties of titanium dioxide (TiO2) such as high photo catalytic activity, high chemical stability and low toxicity have made it a suitable photocatalyst in recent decades. The effect of modification of TiO2 with doping of iron on its characteristics and photo catalytic efficiency was studied. The change in band gap energy of TiO2 nanoparticles after doping with Fe has been studied. Significant enhancement in photo catalytic property of TiO2 after Fe doping under light exposure conditions has been investigated. Acute exposure to non-biodegradable Rhodamine B resulted in many health problems like burning of eyes, skin irritation, nasal burning, and chest pain etc. Therefore, degradation of this dye is needed to save environment and animals. Considering the similar radius of Fe3+ and Ti4+ ions (respectively 0.64 Å and 0.68 Å), titanium position in the lattice of TiO2 can be replaced by iron cations easily. The undoped and Fe doped TiO2 nano composites were synthesized by sol-gel method, in which 1.0M% of Fe was doped with TiO2 and then the samples were characterized by using FE-SEM, UV-Visible diffuse spectroscopy, Raman Spectroscopy, and FTIR. Photo catalytic degradation of Rhodamine B dye experiment was carried out in visible light range. After 90 min time duration pink colour of dye turned colourless, indicating significant degradation rate with time.
Optical, electrical, and photovoltaic properties of PbS thin films by anionic and cationic dopants
NASA Astrophysics Data System (ADS)
Cheraghizade, Mohsen; Jamali-Sheini, Farid; Yousefi, Ramin
2017-06-01
Lead sulfide (PbS) thin films were deposited by CVD method to examine the effects of anionic and cationic dopants on optical and electrical properties for photovoltaic applications. XRD diffractograms verified the formation of cubic phase of multicrystalline PbS thin films. FESEM images showed surface morphologies in nano-dimensions (rods and flowers). UV-Vis-NIR spectrum revealed absorbance in the visible and NIR regions for all samples, in which dopants decreased the intensity of absorbance. Se as an anionic dopant for PbS thin films increased electrical resistance, acceptor concentrations, and crystallite defects, and decreased flat-band voltage and depletion width. Finally, photovoltaic measurements indicated that Zn-doped PbS thin film, as a photovoltaic cell, exhibited higher conversion efficiency and external quantum efficiency (EQE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.
2015-09-28
We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means ofmore » their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2+} cations. No qualitative difference with monovalent cations was found in what solvation is concerned, which suggests that no enhanced reduction of the mobility of these cations and their complexes in ILs respective to those of monovalent cations is to be expected.« less
NASA Astrophysics Data System (ADS)
Barr, Timothy J.
Interfacial electron transfer reactions facilitate charge separation and recombination in dye-sensitized solar cells (DSSCs). Understanding what controls these electron transfer reactions is necessary to develop efficient DSSCs. Gerischer proposed a theory for interfacial electron transfer where the rate constant was related to the energetic overlap between the donor and acceptor states. The present work focuses on understanding how the composition of the CH3CN electrolyte influenced this overlap. It was found that the identity of the electrolyte cation tuned the energetic position of TiO2 electron acceptor states, similar to how pH influences the flatband potential of bulk semiconductors in aqueous electrolytes. For example, the onset for absorption changes, that were attributed to electrons in the TiO2 thin film, were 0.5 V more positive in Mg2+ containing electrolyte than TBA+, where TBA+ is tetrabutylammonium. Similar studies performed on mesoporous, nanocrystalline SnO2 thin films reported a similar cation dependence, but also found evidence for electrons that did not absorb in the visible region that were termed ‘phantom electrons.’. Electron injection is known to generate surface electric fields on the order of 2 MV/cm. The rearrangement of cations in response to surface electric fields, termed screening, was investigated. It was found that magnitude of the electric field and the screening dynamics were dependent on the identity of the electrolyte cation. The rate of charge recombination to the anionic iodide/triiodide redox mediator correlated with the screening ability of the cation, and was initially thought to control charge recombination. However, it was difficult to determine whether electron diffusion or driving force were also cation dependent. Therefore, a in-lab built apparatus, termed STRiVE, was constructed that could disentangle the influence electron diffusion, driving force, and electric fields had on charge recombination. It was found that electron diffusion was independent of the electrolyte cation. Furthermore, charge recombination displayed the same cation-sensitivity using both anionic and cationic redox mediators, indicating electric fields did not cause the cation-dependence of charge recombination. Instead, it was found that the electrolyte cation tuned the energetic position of the TiO2 acceptor states and modulated the driving force for charge recombination.
Signature and Pathophysiology of Non-canonical Pores in Voltage-Dependent Cation Channels.
Held, Katharina; Voets, Thomas; Vriens, Joris
2016-01-01
Opening and closing of voltage-gated cation channels allows the regulated flow of cations such as Na(+), K(+), and Ca(2+) across cell membranes, which steers essential physiological processes including shaping of action potentials and triggering Ca(2+)-dependent processes. Classical textbooks describe the voltage-gated cation channels as membrane proteins with a single, central aqueous pore. In recent years, however, evidence has accumulated for the existence of additional ion permeation pathways in this group of cation channels, distinct from the central pore, which here we collectively name non-canonical pores. Whereas the first non-canonical pores were unveiled only after making specific point mutations in the voltage-sensor region of voltage-gated Na(+) and K(+) channels, recent evidence indicates that they may also be functional in non-mutated channels. Moreover, several channelopathies have been linked to mutations that cause the appearance of a non-canonical ion permeation pathway as a new pathological mechanism. This review provides an integrated overview of the biophysical properties of non-canonical pores described in voltage-dependent cation channels (KV, NaV, Cav, Hv1, and TRPM3) and of the (patho)physiological impact of opening of such pores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konabe, Satoru
2016-08-15
This work theoretically investigated the mechanism of valley polarization relaxation in monolayers of transition metal dichalcogenides, focusing on the exchange interactions between electrons and holes. In particular, we elucidated the effects of screening resulting from carrier doping on valley depolarization dynamics. The results show that the valley relaxation time is highly dependent on the extent of carrier doping. In addition, a finite degree of doping is predicted to induce additional valley relaxation temperature dependence at low temperatures, an effect that is absent at zero doping. Our calculation results suggest the possibility of increasing the valley relaxation time by tuning carriermore » doping, which could present a means of manipulating the valley degrees of freedom.« less
Zinc oxide wide band gap semiconductor for optoelectronic devices
NASA Astrophysics Data System (ADS)
Choopun, Supab
The main objective of this dissertation is to study the key aspects of ZnO-based materials for fabrication of wide band gap optoelectronic devices. ZnO has received attention due to its direct band gap, alloying and doping capabilities. It has similar properties to that of GaN, a material system that has become very important for the fabrication of blue light emitting diodes, laser diodes, detectors, etc. In this study, ZnO and related materials were grown in thin film form on c-plane sapphire substrates by pulsed laser deposition and then, these films were mainly studied in terms of their structural, optical and electrical properties. The studied key aspects include growth and optimization of device quality ZnO films, band gap tailoring of ZnO films by alloying, fabrication of quantum well structures, and impurity doping for n-type and p-type ZnO films. The growth and optimization of ZnO films have been studied as a function of substrate temperature and oxygen background pressure. By tuning the growth temperature and oxygen pressure during the initial and final stages of growth, it was possible to control desirable surface, interface chemistry structure, crystalline quality, and optoelectronic properties of the films while maintaining high quality epitaxy. Band gap tailoring has been studied by alloying of ZnO with MgO. MgZnO alloy films exhibit two phases, hexagonal and cubic, depending on the Mg concentration in the MgZnO lattice. The band gap energy of MgZnO alloys can be varied in a wide range from 3.3 eV to 4.0 eV for hexagonal structured films and 4.0 to 7.6 eV for cubic structured films. Studies both n-type as well as p-type doping and activation in ZnO films are reported. It was found that In-doped ZnO films with high optical transparency and high electrical conductivity can be grown at temperature below 300°C. P-type ZnO films have been studied by using a cationic-codoping method. Weak p-type conductivity in ZnO films was obtained from Cu and Al codoping. A hole concentration of 1.4 x 1015 cm-3 in all-cationic codoped ZnO film was realized for the first time. In addition, some novel technological applications of ZnO films have also been realized. ZnO film was used as a buffer layer for the growth of III--V nitrides. Moreover, the wider band gap of MgZnO alloy film was used to fabricate single quantum well heterostructures of MgZnO/ZnO/MgZnO. We have also studied the optical lasing effect in ZnO films. Finally, possible future studies and applications on ZnO and related alloys are discussed.
Experimental and Theoretical Investigations on Intermediate Band in Doped Nano-SnS2
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Mohamed, Mohamed Bakr; Abdel Kader, M. H.
2018-03-01
Nano-SnS2 and Sn0.75 X 0.25S2 (X = Cr, Fe, Y) have been prepared by thermolysis method. Phase analysis of x-ray diffraction data confirmed the single-phase nature of all prepared samples, with some residual carbon contributing to the background. Rietveld refinement revealed high anisotropy in crystallite size, signifying a cylindrical structure for the particle shape, as confirmed by transmission electron microscopy. The refined occupancies obtained for the doped cations were found to be smaller than the nominal target doping ratio (25%). Fourier-transform infrared spectra showed presence of Sn-S bond in all samples. The energy was found to be 3.42 eV, 3.33 eV, 2.1 eV and 3.14 eV, and 3.62 eV for undoped SnS2 and when doped with Cr, Fe, and Y, respectively. Density functional theory calculations illustrated that Fe-doped SnS2 has two bandgaps [normal and intermediate (IB) bands]. Meanwhile, Sn0.75Fe0.25S2 sample showed anti-Stokes and an extra photoluminescence peak related to the newly created intermediate band (IB) inside the energy gap. On the other hand, pure SnS2 and Sn0.75 X 0.25S2 (X = Cr, Y) samples emitted four photoluminescence subspectra in ultraviolet, violet, and blue regions.
NASA Astrophysics Data System (ADS)
Chai, M. N.; Isa, M. I. N.
2016-06-01
The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.
Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B
2015-08-01
Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation.
Ion formation upon electron collisions with valine embedded in helium nanodroplets
NASA Astrophysics Data System (ADS)
Weinberger, Nikolaus; Ralser, Stefan; Renzler, Michael; Harnisch, Martina; Kaiser, Alexander; Denifl, Stefan; Böhme, Diethard K.; Scheier, Paul
2016-04-01
We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 atoms that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. Ion efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of ion formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by collisions with electrons or He*- and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Direct Imaging of Gene-Carrier Complexes in Animal Cells
NASA Astrophysics Data System (ADS)
Lin, Alison J.; Slack, Nelle L.; Ahmad, Ayesha; Matsumoto, Brian; Safinya, Cyrus R.
1998-03-01
Cationic lipids are promising gene carriers for DNA transfection. Establishing the correlations between structures of cationic lipid/DNA complexes (CL-DNA) and pathways of transfection will greatly aid us in achieving the optimal CL-DNA transfections. Our first step is to determine the uptake mechanism of DNA by studying the interactions and structures of DNA and cationic lipids. X-ray diffraction shows that the CL-DNA undergoes structural phase transitions from lamellar( J. Raedler, I. Koltover, T. Salditt, C. R. Safinya, Science 275, 810 (1997).) to inverted hexagonal self-assemblies as we change the lipid composition. X-ray diffraction and optical microscopy techniques are used to directly image the progress of the CL-DNA in mouse L-cells and unravel the complex structure in-situ. Fluorescence and confocal optical microscopy techniques allow us to monitor the interactions between the complexes and different organelles in the cell cytoplasm. Current results indicate that once inside cells, complexes containing DOPE follow a different pathway from those containing DOPC. This research is funded by NSF-DMR-9624091, PRF-31352-AC7, and Los Alamos-STB/UC:96-108.
The infrared signature of water associated with trivalent cations in olivine
NASA Astrophysics Data System (ADS)
Berry, Andrew J.; O'Neill, Hugh St. C.; Hermann, Jörg; Scott, Dean R.
2007-09-01
Forsterite crystals were synthesised under water saturated conditions at 1400 °C and 1.5 GPa doped with trace amounts of either B, Al, Sc, Ti, V, Cr, Mn, Fe, Co, Ga, Y, Zr, In, Sm, Gd, Dy, Tm, or Lu. The common and intense hydroxyl stretching bands in the infrared spectra of spinel peridotite olivine, at 3572 and 3525 cm -1, were only reproduced in the presence of Ti. Those samples where the trace element substitutes as the trivalent cation on the Mg 2+ site were identified from a systematic variation in concentration with the trivalent ionic radius. The hydroxyl region of all samples is essentially identical except for between 3300 and 3400 cm -1. This region is characterised by one or more bands, with the energy of the most intense feature being correlated with the ionic radius of the trivalent cation. The integrated intensity of these hydroxyl bands also correlates with the concentration of the trivalent cation. These correlations provide unambiguous evidence that bands, or peaks, in this region correspond to water at defect sites associated with trivalent cations. "Trivalent peaks" are sometimes observed in samples of mantle olivine and most likely indicate water associated with Fe 3+. The water at this site is not incorporated under normal mantle conditions and should not be included in estimates of the water capacity of mantle olivine. These results emphasise the importance of identifying the infrared signature of different water substitution mechanisms.
Kudsiova, Laila; Welser, Katharina; Campbell, Frederick; Mohammadi, Atefeh; Dawson, Natalie; Cui, Lili; Hailes, Helen C; Lawrence, M Jayne; Tabor, Alethea B
2016-03-01
Ternary nanocomplexes, composed of bifunctional cationic peptides, lipids and siRNA, as delivery vehicles for siRNA have been investigated. The study is the first to determine the optimal sequence and architecture of the bifunctional cationic peptide used for siRNA packaging and delivery using lipopolyplexes. Specifically three series of cationic peptides of differing sequence, degrees of branching and cell-targeting sequences were co-formulated with siRNA and vesicles prepared from a 1 : 1 molar ratio of the cationic lipid DOTMA and the helper lipid, DOPE. The level of siRNA knockdown achieved in the human alveolar cell line, A549-luc cells, in both reduced serum and in serum supplemented media was evaluated, and the results correlated to the nanocomplex structure (established using a range of physico-chemical tools, namely small angle neutron scattering, transmission electron microscopy, dynamic light scattering and zeta potential measurement); the conformational properties of each component (circular dichroism); the degree of protection of the siRNA in the lipopolyplex (using gel shift assays) and to the cellular uptake, localisation and toxicity of the nanocomplexes (confocal microscopy). Although the size, charge, structure and stability of the various lipopolyplexes were broadly similar, it was clear that lipopolyplexes formulated from branched peptides containing His-Lys sequences perform best as siRNA delivery agents in serum, with protection of the siRNA in serum balanced against efficient release of the siRNA into the cytoplasm of the cell.
Thermoelectric properties of the yttrium-doped ceramic oxide SrTiO3
NASA Astrophysics Data System (ADS)
Khan, Tamal Tahsin; Ur, Soon-Chul
2017-01-01
The doping dependence of the thermoelectric figure of merit, ZT, of the ceramic oxide SrTiO3 at high temperature has been studied. In this study, yttrium was used as the doping element. A conventional solid-state reaction method was used for the preparation of Y-doped SrTiO3. The doping level in SrTiO3 was controlled to be in the doping range of 2 - 10 mole%. Almost all the yttrium atoms incorporated into the SrTiO3 provided charge carriers, as was observed by using X-ray diffraction pattern. The relative densities of all the samples varied from 98.53% to 99.45%. The thermoelectric properties, including the electrical conductivity σ, Seebeck coefficient S, thermal conductivity k, and the figure of merit, ZT, were investigated at medium temperatures. The ZT value showed an obvious doping level dependence, in which a value as high as 0.18 is realized at 773 K for a doping of 8 mole%.
Understanding the effects of cationic dopants on α-MnO 2 oxygen reduction reaction electrocatalysis
Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; ...
2017-01-09
Nickel-doped α-MnO 2 nanowires (Ni–α-MnO 2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO 2 or Cu–α-MnO 2 is provided. In general, Ni-α-MnO 2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s –1), and lower charge transfer resistance (R CT = 2264 Ω at half-wave) values than MnO 2 (n = 3.0, k = 0.006 cm s –1, R CT = 6104 Ω at half-wave) or Cu–α-MnO 2 (Cu-2.9%,more » n = 3.5, k = 0.015 cm s –1, R CT = 3412 Ω at half-wave), and the overall activity for Ni–α-MnO 2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu–α-MnO 2, the increase in ORR activity correlates with the amount of Mn 3+ at the surface of the Ni–α-MnO 2 nanowire. Examining the activity for both Ni–α-MnO 2 and Cu–α-MnO 2 materials indicates that the Mn 3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO 2, 16 of Cu–α-MnO 2-2.9%, and 16 of Ni–α-MnO 2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO 2. As a result, the data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire.« less
Khan, Karim; Khan Tareen, Ayesha; Elshahat, Sayed; Yadav, Ashish; Khan, Usman; Yang, Minghui; Bibbò, Luigi; Ouyang, Zhengbiao
2018-03-12
One of the greatest challenges in the enhancement of the electrical properties of conductive mayenite [Ca 24 Al 28 O 64 ] 4+ (4e - ) (hereinafter C12A7:e - ) is the design of a more suitable/simple synthesis strategy that can be employed to obtain the required properties such as excellent stable electrical conductivity, a high electron concentration, outstanding mobility, and an exceptionally large surface area. Therefore, to synthesize C12A7:e - in the metallic state, we proposed a facile, direct synthesis strategy based on an optimized sol-gel combustion method under a nitrogen gas environment using the low-cost precursors Ca(NO 3 ) 2 ·4H 2 O and Al(NO 3 ) 3 ·9H 2 O. Using this developed strategy, we successfully synthesized moderately conductive nanoscale C12A7:e - powder, but with unexpected carbon components (reduced graphene oxide (rGO) and/or graphene oxide (GO)). The synthesized C12A7:e - composite at room temperature has an electrical conductivity of about 21 S cm -1 , a high electron concentration of approximately 1.5 × 10 21 cm -3 , and a maximum specific surface area of 265 m 2 g -1 . Probably, the synthesized rGO was coated on nanocage C12A7:e - particles. In general, the C12A7:e - electride is sensitive to the environment (especially to oxygen and moisture) and protected by an rGO coating on C12A7:e - particles, which also enhances the mobility and keeps the conductivity of C12A7:e - electride stable over a long period. Doped mayenite electride exhibits a conductivity that is strongly dependent on the substitution level. The conductivity of gallium-doped mayenite electride increases with the doping level and has a maximum value of 270 S cm -1 , which for the first time has been reported for the stable C12A7:e - electride. In the case of Si-substituted calcium aluminate, the conductivity has a maximum value of 222 S cm -1 at room temperature.
Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide
NASA Astrophysics Data System (ADS)
Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan
2018-05-01
Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.
NASA Astrophysics Data System (ADS)
Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin
2018-04-01
The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 (x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.
NASA Astrophysics Data System (ADS)
Yang, Li; Ren, Fengzhagn; Feng, Qigao; Xu, Guangri; Li, Xiaobo; Li, Yuanchao; Zhao, Erqing; Ma, Jignjign; Fan, Shumin
2018-07-01
The structural and electrochemical performance of Cu-doped, Li[Ni1/3-xCo1/3 Mn1/3Cux]O2 ( x = 0-0.1) cathode materials obtained by means of the sol-gel method are discussed; we used critic acid as gels and spent mixed batteries as the raw materials. The effects of the sintering time, sintering temperature, and Cu doping ratio on the phase structure, morphology, and element composition and the behavior in a galvanostatical charge/discharge test have been systemically studied. The results show that the Cu-doped material exhibits better galvanostatic charge/discharge cycling performance. At 0.2 C, its original discharge specific capacity is 180.4 mAh g-1 and its Coulomb efficiency is 90.3%. The Cu-doped material demonstrate an outstanding specific capacity at 0.2 C, 0.5 C, and 2.0 C. In comparison with the original capacities of 178 mAh g-1, 159.5 mAh g-1, and 119.4 mAh g-1, the discharge capacity after 50 cycles is 160.8 mAh g-1, 143.4 mAh g-1, and 90.1 mAh g-1, respectively. This obvious improvement relative to bare Li[Ni1/3Co1/3Mn1/3]O2 cathode materials arises from an enlarged Li layer spacing and a reduced degree of cation mixing. Therefore, Cu-doped cathode materials have obvious advantages in the field of lithium-ion batteries and their applications.
Effects of rare earth doping on multi-core iron oxide nanoparticles properties
NASA Astrophysics Data System (ADS)
Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica
2018-01-01
New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.
NASA Astrophysics Data System (ADS)
Avdeev, Vasilii I.; Bedilo, Alexander F.
2018-03-01
The electronic nature of sites over Fe-ferrierite zeolite stabilizing active α-oxygen is analyzed by the periodic DFT + U approach. It is shown that two antiferromagnetically coupled Fe2+ cations with bridging OH-bonds form a stable bi-nuclear site of the [Fe2+<2OH>Fe2+] doped FER complex. Frontier orbitals of this complex populated by two electrons with minority spins are localized in the bandgap. As a result, [Fe2+<2OH>Fe2+] unit acquires the properties of a binuclear Lewis acid dipolarophile for 1,3-dipole N2O. First reaction step of N2O decomposition follows the Huisgen‧s concept of the 1,3-dipolar cycloaddition concept followed by the formation of reactive oxygen species Fesbnd O.
Inductive crystal field control in layered metal oxides with correlated electrons
Balachandran, P. V.; Cammarata, A.; Nelson-Cheeseman, B. B.; ...
2014-07-25
Here, we show that the NiO 6 crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A) NiO 4 Ruddlesden-Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO] 1+ and neutral [AO] 0 planes to inductively tune the Ni-O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO 4 and LaBaNiO 4 with distortions favoring enhanced Ni e g orbital polarization, and find local electronicmore » structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.« less
Yanochko, Gina M.; Yool, Andrea J.
2004-01-01
Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca2+ and Ba2+ but not by Mg2+ in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu274) and aspartate (Asp253) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu71) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu71 to Asp introduced a new sensitivity to block by extracellular Mg2+; substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca2+, suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination. PMID:14990474
Structural and optical study of γ –BIMEVOX; ME: Ba{sup 2+} and Sr{sup 2+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Sakshi, E-mail: Sakshi.gupta@thapar.edu; Singh, K., E-mail: kusingh@thapar.edu
2015-05-15
Bismuth oxide based compounds, such as Bi{sub 4}V{sub 2}O{sub 11-δ} (BIVOX), exhibit Aurivillus type of interleaving arrangement of (Bi{sub 2}O{sub 2}){sup 2+} and (VO{sub 3}□{sub 0.5}){sup 2-} (□: oxygen vacancies). Bi{sub 4}V{sub 2}O{sub 11-δ,} is known to have three kinds of temperature dependent interconvertible polymorphs α (monoclinic), β (orthorhombic) and γ (tetragonal). Out of all the three phases, the γ – phase is highly disordered and hence, is the most conductive one which can be stabilized by proper lower valence cation (ME) doping at V site. Bi{sub 4}V{sub 1.90}ME{sub 0.20}O{sub 11-δ} (ME: Ba{sup 2+} and Sr{sup 2+}) were prepared viamore » splat quenching technique. The required compositions were melted at 1250 °C in an electric furnace. The as quenched samples were sintered at 800 °C for 12 hours (h). The formed phases were analyzed using X-ray diffraction on quenched and sintered samples, the peak at 32{sup °} is found to be singlet in all the samples which confirms the presence of γ-phase. Hence, the stabilization of γ-phase with tetragonal structure was found to have taken place with doping and quenching. These samples are also studied by FT-IR and UV/vis spectroscopy to investigate the effect of dopants on structure and band gaps respectively.« less
2016-05-31
www.MaterialsViews.com Synthesis of the Gold Nanoparticles : The Au nanospheres were prepared according to previously reported procedure using the...Au Nanoparticles Using Specifi c Silicone : The synthesis of the functional silicone was previously reported as well as the surface modifi cation of...types of gold nanoparticles (AuNPs) are prepared and polished to high optical quality. Their photophysical properties are investigated. The glass
Magnetic and dielectric study of Fe-doped CdSe nanoparticles
NASA Astrophysics Data System (ADS)
Das, Sayantani; Banerjee, Sourish; Bandyopadhyay, Sudipta; Sinha, Tripurari Prasad
2018-01-01
Nanoparticles of cadmium selenide (CdSe) and Fe (5% and 10%) doped CdSe have been synthesized by soft chemical route and found to have cubic structure. The magnetic field dependent magnetization measurement of the doped samples indicates the presence of anti-ferromagnetic order. The temperature dependent magnetization (M-T) measurement under zero field cooled and field cooled conditions has also ruled out the presence of ferromagnetic component in the samples at room temperature as well as low temperature. In order to estimate the anti-ferromagnetic coupling among the doped Fe atoms, an M-T measurement at 500 Oe has been carried out, and the Curie-Weiss temperature θ of the samples has been estimated from the inverse of susceptibility versus temperature plots. The dielectric relaxation peaks are observed in the spectra of imaginary part of dielectric constant. The temperature dependent relaxation time is found to obey the Arrhenius law having activation energy 0.4 eV for Fe doped samples. The frequency dependent conductivity spectra are found to obey the power law. [Figure not available: see fulltext.
Tanatar, M. A.; Ni, N.; Thaler, A.; ...
2011-07-27
Temperature-dependent interplane resistivity ρ c(T) was measured systematically as a function of transition-metal substitution in the iron-arsenide superconductors Ba(Fe 1-xM x)₂As₂, M=Ni, Pd, Rh. The data are compared with the behavior found in Ba(Fe 1-xCo x)₂As₂, revealing resistive signatures of pseudogap. In all compounds we find resistivity crossover at a characteristic pseudogap temperature T* from nonmetallic to metallic temperature dependence on cooling. Suppression of T* proceeds very similarly in cases of Ni and Pd doping and much faster than in similar cases of Co and Rh doping. In cases of Co and Rh doping an additional minimum in the temperature-dependentmore » ρ c emerges for high dopings, when superconductivity is completely suppressed. These features are consistent with the existence of a charge gap covering part of the Fermi surface. The part of the Fermi surface affected by this gap is notably larger for Ni- and Pd-doped compositions than in Co- and Rh-doped compounds.« less
Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors.
Ekdal, E; Garcia Guinea, J; Karabulut, Y; Canimoglu, A; Harmansah, C; Jorge, A; Karali, T; Can, N
2015-09-01
In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of (1)D2→(3)H6,(1)D2→(3)F4 and (1)G4→(3)H6 suggest the presence of Tm(3+) ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Yi; Zhang, Fu Chun; Han, Jeong In
2016-11-01
LiFePO4 was doped by metallic cation in Fe sites via ball milling by a solid-state reaction method synthesis, and with very low-level doping of these samples, such as Li0.95T0.05FePO4 (where T = Mn2+, Co2+, La3+, Ce4+). The effects of doping were studied by X-ray diffraction pattern, Raman shift, scanning electronic microscopy and energy-dispersive X-ray spectroscopy as sample characterizations. The results indicate that these dopants have no significant effect on the structure of the material, but considerably improve its electrochemical behavior. First-principles calculations were used to obtain the migration pathway of Li ions along the one-dimensional (010) direction in LiFePO4, and molecular dynamics simulation was used to investigate the lithium-ion diffusion coefficients ( D Li) inside LiFePO4, which were derived from the slope of the mean square displacement versus time plots. The evolution of the structure during the simulation was analyzed by the radial distribution function to obtain the data, and radial distribution functions and mean square displacements were used to confirm the formation of crystalline units and the evolution of structure.
Characterization of ceria electrolyte in solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Milliken, Christopher Edward
The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).
Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3
NASA Astrophysics Data System (ADS)
Shimizu, Yuhei; Ueda, Kazushige
2016-10-01
Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.
Jubeli, Emile; Maginty, Amanda B; Khalique, Nada Abdul; Raju, Liji; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D
2017-01-05
In this communication we describe the construction of four succinic-based cationic lipids, their formulation with plasmid DNA (pDNA), and an evaluation of their in vitro gene delivery into Chinese hamster ovarian (CHO-K1) cells. The cationic lipids employed in this work possess either a dimethylamine or trimethylamine headgroup, and a macrocyclic or an acyclic hydrophobic domain composed of, or derived from two 16-atom, succinic-based acyl chains. The synthesized lipids and a co-lipid of neutral charge, either cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were formulated in an overall 3:2 cationic-to-neutral lipid molar ratio, then complexed with plasmid DNA (pDNA). The relative transfection performance was evaluated via a comparison between matched versus mismatched formulations defined by the rigidity relationship between the lipids employed. Gel electrophoresis was used to characterize the binding of the lipid formulations with plasmid DNA and the relative degree of plasmid degradation using a DNase I degradation assay. Small angle X-ray diffraction (SAXD) was employed to characterize the packing morphology of the lipid-DNA complexes. In general, the succinic unit embedded within the hydrophobic domain of the cationic lipids was found to improve lipid hydration. The transfection assays revealed a general trend in which mismatched formulations that employed a rigid lipid combined with a non-rigid (or flexible) lipid, outperformed the matched formulations. The results from this work suggest that the design of the cationic lipid structure and the composition of the lipoplex formulation play key roles in governing the transfection performance of nonviral gene delivery agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Self-Illuminating 64Cu-Doped CdSe/ZnS Nanocrystals for in Vivo Tumor Imaging
2015-01-01
Construction of self-illuminating semiconducting nanocrystals, also called quantum dots (QDs), has attracted much attention recently due to their potential as highly sensitive optical probes for biological imaging applications. Here we prepared a self-illuminating QD system by doping positron-emitting radionuclide 64Cu into CdSe/ZnS core/shell QDs via a cation-exchange reaction. The 64Cu-doped CdSe/ZnS QDs exhibit efficient Cerenkov resonance energy transfer (CRET). The signal of 64Cu can accurately reflect the biodistribution of the QDs during circulation with no dissociation of 64Cu from the nanoparticles. We also explored this system for in vivo tumor imaging. This nanoprobe showed high tumor-targeting ability in a U87MG glioblastoma xenograft model (12.7% ID/g at 17 h time point) and feasibility for in vivo luminescence imaging of tumor in the absence of excitation light. The availability of these self-illuminating integrated QDs provides an accurate and convenient tool for in vivo tumor imaging and detection. PMID:24401138
Chen, Yan; Liu, Kuiren
2017-02-15
Eliminating antibiotic remnants in aquatic environment has become one of the hottest topics among current research works. Thus, we prepared Ce, N co-doped TiO 2 /diatomite granule (CNTD-G) catalyst to provide a new method. As one typical antibiotics, oxytetracycline (OTC) was selected as the target pollutant to be degradated under visible light irradiation. The carrier diatomite helped the spread of TiO 2 nanoparticles onto its surface, and inhibited their agglomeration. The synergy of Ce and N dopants highly improved the visible-light-driven photoactivity of TiO 2 . The optimal doping amount and degradation conditions were determined. Besides, the effects of impurity ions were also investigated, including cations: Ca 2+ , Mg 2+ ; or anions: NO 3 - , SO 4 2- and PO 4 3- . The intermediates generated during degradation process were studied, and the mechanism of the photodegradation process was proposed. CNTD-G could be easily collected from the reactor, and showed excellent recyclability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lohn, Andrew J.; Cormia, Robert D.; Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Kobayashi, Nobuhiko P.
2012-11-01
Physical properties of semiconductor nanowires are tied intimately to their specific morphologies such as length and diameter. We studied the growth of silicon nanowires and found their lengths and diameters to vary over orders of magnitude in different doping environments. In all cases we examined, doping resulted in increased diameters. In addition, boron doping was found to accelerate volume growth rate while arsenic and antimony both appeared to slow it down. We further studied the formation of the native oxides that cover the nanowires. X-ray photoelectron spectroscopy indicated that properties of the native oxides are also dependent on doping environment and correlated to doping-dependent shifts in apparent binding energy of the Si 2p3/2 peak illustrating that the electronic contribution is the dominant mechanism for the oxide growth.
NASA Astrophysics Data System (ADS)
Fortes, A. Dominic; Browning, Frank; Wood, Ian G.
2012-05-01
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4-H2O system. Lower hydrates in the MgSO4-H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20-30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an `intermediate' phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/ c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.
Dynamics of photoexcited Ba+ cations in 4He nanodroplets
NASA Astrophysics Data System (ADS)
Leal, Antonio; Zhang, Xiaohang; Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo; Drabbels, Marcel; Pi, Martí
2016-03-01
We present a joint experimental and theoretical study on the desolvation of Ba+ cations in 4He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba+ cations and Ba+Hen exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba+ Hen exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba+. In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba+ cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba+ cations or exciplexes, even when relaxation pathways to lower lying states are included.
Curie-Weiss behavior of Y1-xSrxMnO3 (x = 0 and 0.03)
NASA Astrophysics Data System (ADS)
Thakur, Rajesh K.; Thakur, Rasna; Gaur, N. K.; Bharathi, A.; Kaurav, N.; Okram, G. S.
2015-06-01
The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO3 manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y1-xSrxMnO3 (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P63cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (TN), however from the magnetic measurements at 1000Oe a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.
Energetics and Defect Interactions of Complex Oxides for Energy Applications
NASA Astrophysics Data System (ADS)
Solomon, Jonathan Michael
The goal of this dissertation is to employ computational methods to gain greater insights into the energetics and defect interactions of complex oxides that are relevant for today's energy challenges. To achieve this goal, the development of novel computational methodologies are required to handle complex systems, including systems containing nearly 650 ions and systems with tens of thousands of possible atomic configurations. The systems that are investigated in this dissertation are aliovalently doped lanthanum orthophosphate (LaPO4) due to its potential application as a proton conducting electrolyte for intermediate temperature fuel cells, and aliovalently doped uranium dioxide (UO2) due to its importance in nuclear fuel performance and disposal. First we undertake density-functional-theory (DFT) calculations on the relative energetics of pyrophosphate defects and protons in LaPO4, including their binding with divalent dopant cations. In particular, for supercell calculations with 1.85 mol% Sr doping, we investigate the dopant-binding energies for pyrophosphate defects to be 0.37 eV, which is comparable to the value of 0.34 eV calculated for proton-dopant binding energies in the same system. These results establish that dopant-defect interactions further stabilize proton incorporation, with the hydration enthalpies when the dopants are nearest and furthest from the protons and pyrophosphate defects being -1.66 eV and -1.37 eV, respectively. Even though our calculations show that dopant binding enhances the enthalpic favorability of proton incorporation, they also suggest that such binding is likely to substantially lower the kinetic rate of hydrolysis of pyrophosphate defects. We then shift our focus to solid solutions of fluorite-structured UO 2 with trivalent rare earth fission product cations (M3+=Y, La) using a combination of ionic pair potential and DFT based methods. Calculated enthalpies of formation with respect to constituent oxides show higher energetic stability for La solid solutions than for Y. Additionally, calculations performed for different atomic configurations show a preference for reduced (increased) oxygen vacancy coordination around La (Y) dopants. The current results are shown to be qualitatively consistent with related calculations and calorimetric measurements of heats of formation in other trivalent doped fluorite oxides, which show a tendency for increasing stability and increasing preference for higher oxygen coordination with increasing size of the trivalent impurity. We expand this investigation by considering a series of trivalent rare earth fission product cations, specifically, Y3+ (1.02 A, Shannon radius with eightfold coordination), Dy3+ (1.03 A), Gd 3+ (1.05 A), Eu3+ (1.07 A), Sm3+ (1.08 A), Pm3+ (1.09 A), Nd3+ (1.11 A), Pr3+ (1.13 A), Ce3+ (1.14 A) and La3+ (1.16 A). Compounds with ionic radius of the M3+ species smaller or larger than 1.09 A are found to have energetically preferred defect ordering arrangements. Systems with preferred defect ordering arrangements are suggestive of defect clustering in short range ordered solid solutions, which is expected to limit oxygen ion mobility and therefore the rate of oxidation of spent nuclear fuel. Finally, the energetics of rare earth substituted (M3+= La, Y, and Nd) UO2 solid solutions are investigated by employing a combination of calorimetric measurements and DFT based computations. The calorimetric studies are performed by Lei Zhang and Professor Alexandra Navrotsky at the University of Calfornia, Davis, as part of a joint computational/ experimental collaborative effort supported through the Materials Science of Actinides Energy Frontier Research Center. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides. A consistent trend towards increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of M cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors compositions with higher oxygen-to-metal ratios where charge compensation occurs through the formation of uranium cations with higher oxidation states.
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1986-01-01
The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.
Neutron and X-ray studies in suppressing orbital order in FeV2 O4 with Cr doping
NASA Astrophysics Data System (ADS)
Reig-I-Plessis, Dalmau; Wen, Zhangsu; Thaler, Alexander; Garlea, Vasile O.; Zhou, Haidong; Ruff, Jacob; MacDougall, Gregory
2015-03-01
FeV2O4 is a spinel compound with an orbitally active V3+ cation on a frustrated pyrochlore sublattice and Jahn-Teller active Fe3+ on a diamond sublattice. Previous studies show that this material has three structural and two magnetic transitions, and that orbital order leads to coupling between the spin and lattice degrees-of-freedom. The opposite end of the doping series is the multiferroic, FeCr2O4, which has spin, but no orbital degree of freedom on the Cr3+ and only two structural transitions. Although both materials show a higher temperature collinear ferrimagnetic state and a non-collinear phase at lower temperature, the physics must be different since the canting transition in FeV2O4 is associated with the orbital order at the lowest structural transition. In this talk, I will present the results of synchrotron X-ray and neutron powder diffraction studies of the structural and magnetic transitions in the doping series FeV2-xCrxO4. Specifically, I will comment on the doping-temperature phase diagram we extract from these measurements, and the region of co-existence between distinct non-collinear spin orders which exist at finite doping. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-FG02-07ER46453.
Kim, Hee-Kwon; Wei, Huiling; Kulkarni, Aditya; Pogranichniy, Roman M.; Thompson, David H.
2012-01-01
The efficient delivery of plasmids encoding antigenic determinants into dendritic cells (DCs) that control immune response is a promising strategy for rapid development of new vaccines. In this study, we prepared a series of targeted cationic lipoplex based on two synthetic lipid components, mannose-poly(ethylene glycol, MW3000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (Mannose-PEG3000-DSPE) and O-(2R-1,2-di-O-(1'Z,9'Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate (BCAT), that were formulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) for evaluation as non-viral vectors for transgene expression in DCs. First, we optimized the N:P ratio for maximum transfection and then screened the effects of mannose targeting for further enhancement of transfection levels. Our results indicate that efficient delivery of gWIZ GFP plasmid into DCs was observed for mannose compositions of ~10%, whereas low transfection efficiencies were observed with non-targeted formulations. Mannose-targeted lipofectamine complexes also showed high GFP expression levels in DCs relative to non-targeted lipofectamine controls. The best transfection performance was observed using 10 mol % Mannose-PEG3000-DSPE, 60 mol% BCAT, and 30 mol % DOPE, indicating that the most efficient delivery into DCs occurs via synergistic interaction between mannose targeting and acid-labile, fusogenic BCAT:DOPE formulations. Our data suggest that mannose-PEG3000-DSPE:BCAT:DOPE formulations may be effective gene delivery vehicles for the development of DC-based vaccines. PMID:22229467
Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng
2017-10-15
Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.
Sahoo, Chittaranjan; Gupta, Ashok K
2015-01-01
Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.
Doping-dependent anisotropic superconducting gap in Na1-δ(Fe1-xCox)As from London penetration depth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kyuil; Tanatar, Makariy A.; Spyrison, Nicholas
2012-07-30
The London penetration depth was measured in single crystals of self-doped Na1-δFeAs (from under doping to optimal doping, Tc from 14 to 27 K) and electron-doped Na(Fe1-xCox)As with x ranging from undoped, x=0, to overdoped, x=0.1. In all samples, the low-temperature variation of the penetration depth exhibits a power-law dependence, Δλ(T)=ATn, with the exponent that varies in a domelike fashion from n˜1.1 in the underdoped, reaching a maximum of n˜1.9 in the optimally doped, and decreasing again to n˜1.3 on the overdoped side. While the anisotropy of the gap structure follows a universal domelike evolution, the exponent at optimal doping,more » n˜1.9, is lower than in other charge-doped Fe-based superconductors (FeSCs). The full-temperature range superfluid density, ρs(T)=λ(0)/λ(T)2, at optimal doping is also distinctly different from other charge-doped FeSCs but is similar to isovalently substituted BaFe2(As1-xPx)2, believed to be a nodal pnictide at optimal doping. These results suggest that the superconducting gap in Na(Fe1-xCox)As is highly anisotropic even at optimal doping.« less
NASA Astrophysics Data System (ADS)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; Shirota, Hideaki
2018-05-01
In this study, we investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3-200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]- salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations' constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.
Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs
Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...
2016-06-13
We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less
Epithelial organic cation transporters ensure pH-dependent drug absorption in the airway.
Horvath, Gabor; Schmid, Nathalie; Fragoso, Miryam A; Schmid, Andreas; Conner, Gregory E; Salathe, Matthias; Wanner, Adam
2007-01-01
Most inhaled beta(2)-adrenergic agonist and anticholinergic bronchodilators have low lipid solubility because of their transient or permanent positive net charge at physiologic pH. Airway absorption of these cationic drugs is incompletely understood. We examined carrier-mediated mechanisms of cationic drug uptake by human airway epithelia. Airway tissues and epithelial cells, obtained from lung donors without preexisting lung disease, were evaluated for organic cation transporter expression by quantitative RT-PCR and immunofluorescence. For in vitro functional studies on primary airway epithelial cells, uptake of the cationic fluorophore 4-[4-(dimethylamino)-styryl]-N-methylpyridinium (ASP+) was characterized. Quantitative RT-PCR analysis demonstrated high mRNA levels for two polyspecific organic cation/carnitine transporters, OCTN1 and OCTN2, in human airway epithelia. Immunofluorescence of human airway sections confirmed OCTN1/2 protein expression, with a predominant localization to the apical portion of epithelial cells. Primary airway epithelial cells showed a carrier-mediated, temperature-sensitive and saturable uptake of ASP(+). Seventy-five to eighty percent of ASP(+) uptake was inhibited by L-carnitine, an OCTN2-carried zwitterion. The uptake was pH dependent, with approximately 3-fold lower rates at acidic (pH 5.7) than at alkaline (pH 8.2) extracellular pH. Albuterol and formoterol inhibited ASP(+) uptake, suggesting that all these molecules are carried by the same transport mechanism. These findings demonstrate the existence and functional role of a pH-dependent organic cation uptake machinery, namely OCTN1 and OCTN2, in human airway epithelia. We suggest that epithelial OCTN1/2 are involved in the delivery of inhaled cationic bronchodilators to the airway tissue.
Systematic study of doping dependence on linear magnetoresistance in p-PbTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.
2014-10-20
We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linearmore » magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.« less
Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Kim, C. H.; Jang, Y. H.; Seo, S. J.; Song, C. H.; Son, J. Y.; Yang, Y. S.; Cho, J. H.
2012-06-01
We report dielectric properties and dielectric relaxation behaviors of Mn-substituted CaCu3Ti4O12 (CCTO) on Cu sites. While CCTO exhibits the giant dielectric constant and low dielectric loss in a wide temperature range, drastic suppression of the dielectric constant in Mn-doped CCTO (CCMTO) samples have been observed in temperature and frequency dependencies of dielectric properties with two possible origins as Mn doping increases. The observed suppression of dielectric response in the low Mn doping differs from the heavy doping of Mn in CCMTO samples. The low-Mn-doped CCMTO samples (x=0.01 and 0.02) show that the relaxation time and the activation energy Ea were slightly reduced due to a decreased contribution from the density of the dipolar effect. However, in heavily doped CCMTO samples (x=0.03, 0.04, and 0.05), the dielectric response, relaxation time, and Ea were significantly decreased, suggesting Mn doping plays a significant role in the destruction of the intrinsic dipolar effect.
Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.
Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B
2013-09-28
The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.
Novel pH-Sensitive Cationic Lipids with Linear Ortho Ester Linkers for Gene Delivery
Chen, Haigang; Zhang, Huizhen; Thor, Der; Rahimian, Roshanak; Guo, Xin
2012-01-01
In an effort to develop pH-sensitive lipoplexes for efficient gene delivery, we report three novel cationic lipids containing a linear ortho ester linker that conjugates either the headgroup (Type I) or one hydrocarbon chain (Type II) with the rest of the lipid molecule. The cationic lipids carry either an iodide or a chloride counterion. Compared to our previously reported cyclic ortho ester linker, the linear ortho ester linker facilitated the construction of cationic liposomes and lipoplexes with different helper lipids. The chloride counterion not only facilitated the hydration of the lipid films during liposome construction, but also enhanced the hydrolysis of the ortho ester linker in the lipoplexes. After incubation at endosomal pH 5.5, the Type I lipoplexes aggregated and destabilized the endosome-mimicking model liposomes, but not the Type II lipoplexes. The helper lipids (DOPE or cholesterol) of the lipoplexes enhanced the pH-sensitivity of the Type I lipoplexes. In CV-1 cells (monkey kidney fibroblast), the Type I ortho ester-based lipoplexes, especially those with the chloride counterion, significantly improved the gene transfection efficiency, in some cases by more than 100 fold, compared to their pH-insensitive counterparts consisting of DOTAP. The gene transfection efficiency of the ortho ester-based lipoplexes was well correlated with their rate of aggregation and membrane destabilization in response to the endosomal pH 5.5. PMID:22480493
Marzouk, M A; ElBatal, F H; Abdelghany, A M
2013-10-01
The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand
2018-06-01
Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.
NASA Astrophysics Data System (ADS)
Chaix, L.; Huang, E. W.; Gerber, S.; Lu, X.; Jia, C.; Huang, Y.; McNally, D. E.; Wang, Y.; Vernay, F. H.; Keren, A.; Shi, M.; Moritz, B.; Shen, Z.-X.; Schmitt, T.; Devereaux, T. P.; Lee, W.-S.
2018-04-01
We investigated the doping dependence of magnetic excitations in the lightly doped cuprate La2 -xSrxCuO4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L3 edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations that possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and they are consistent with a bimagnon dispersion that is renormalized by the magnon-magnon interaction at the zone center.
A multi-frequency EPR and ENDOR study of Rh and Ir complexes in alkali and silver halides
NASA Astrophysics Data System (ADS)
Callens, F.; Vrielinck, H.; Matthys, P.
2003-01-01
Aliovalent Rh and Ir cations have been frequently used to influence the photographic properties of silver halide emulsions. The doping introduces several types of related defects with distinct trapping and recombination properties. EPR and ENDOR are, in principle, ideally suited for the determination of the microscopic structure of the individual centres but it will be demonstrated that well-chosen, sometimes sophisticated multi-frequency experiments are necessary in order to (partially) reach this goal. Model studies on single crystals of AgCl and NaCl also appeared indispensable for the unravelling of the spectra. In the review of Rh-centres in NaCl and AgCl special attention is paid to methods that allow to detect cation vacancies near Rh2+ complexes. An alternative explanation for the high temperature behaviour of the [RhCl6](4-) complexes in AgCl is presented.
SAXS Study of Sterically Stabilized Lipid Nanocarriers Functionalized by DNA
NASA Astrophysics Data System (ADS)
Angelov, Borislav; Angelova, Angelina; Filippov, Sergey; Karlsson, Göran; Terrill, Nick; Lesieur, Sylviane; Štěpánek, Petr
2012-03-01
The structure of novel spontaneously self-assembled plasmid DNA/lipid complexes is investigated by means of synchrotron radiation small-angle X-ray scattering (SAXS) and Cryo-TEM imaging. Liquid crystalline (LC) hydrated lipid systems are prepared using the non-ionic lipids monoolein and DOPE-PEG2000 and the cationic amphiphile CTAB. The employed plasmid DNA (pDNA) is encoding for the human protein brain-derived neurotrophic factor (BDNF). A coexistence of nanoparticulate objects with different LC inner organizations is established. A transition from bicontinuous membrane sponges, cubosome intermediates and unilamelar liposomes to multilamellar vesicles, functionalized by pDNA, is favoured upon binding and compaction of pBDNF onto the cationic PEGylated lipid nanocarriers. The obtained sterically stabilized multicompartment nanoobjects, with confined supercoiled plasmid DNA (pBDNF), are important in the context of multicompartment lipid nanocarriers of interest for gene therapy of neurodegenerative diseases.
NASA Astrophysics Data System (ADS)
Yin, Hui; Kwon, Kideok D.; Lee, Jin-Yong; Shen, Yi; Zhao, Huaiyan; Wang, Xiaoming; Liu, Fan; Zhang, Jing; Feng, Xionghan
2017-07-01
Hexagonal turbostratic birnessite, one of the most reactive Mn oxide minerals, is ubiquitous throughout the ocean floor to the surface environment. During its crystallization, birnessite may coexist with Al3+, which is the third most abundant crustal element. However, interactions of Al3+ with birnessite compared to the transition metal (TM) ions have rarely been explored thus far. This study examines the structure and properties of Al3+-doped hexagonal turbostratic birnessite to obtain insights into the interaction of metal cations with birnessite-like minerals in natural environments. For Al3+-incorporated birnessite, the crystal chemistry of Al3+, as well as alteration in the mineral structure, physicochemical properties, and reactivity toward the sorption of Pb2+/Zn2+ is investigated by powder X-ray diffraction, chemical analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Electronic structure calculations based on density functional theory (DFT) are further combined to aid in the experimental interpretation of Al3+ incorporation. As a comparative system, Fe3+-coprecipitated birnessite is also examined. Under the experimental conditions used, only a small amount of Al3+ is incorporated into birnessite, with a final Al/(Al + Mn) molar ratio of ∼0.07, whereas Fe3+ is incorporated into birnessite with a final Fe/(Fe + Mn) molar ratio of up to ∼0.21. Irrespective of metal type, the incorporation of a metal cation significantly alters the physicochemical properties of birnessite, such as decrease in the thickness of crystals along the c∗ axis and coherent scattering domain sizes in the a-b plane and the Mn average oxidation state, increase in the specific surface area and the total amount of hydroxyl groups, in which the contents of hydroxyl groups around vacancies are decreased. The lattice parameters in the a-b plane tend to decrease in Al-incorporated birnessites but first significantly decrease and then increase in Fe-incorporated birnessites. In Fe-incorporated birnessites, ∼32-50% of the total Fe3+ is located inside the Mn octahedral sheets (INC species). In Al-incorporated birnessites, the edge- and corner-sharing Mn-Mn distances gradually decrease. Density function theory (DFT) computation results support that the dominant species in Al-birnessite is a triple-corner-sharing complex on vacancies. The DFT geometry optimization further demonstrates that the in-plane cell size experimentally observed for these birnessites depends on not only the metal type but also its position in the mineral. The Al- or Fe-birnessites exhibit significantly increased adsorption capacities for Pb2+ but reduced capacities for Zn2+. The metal incorporation effects on the chemical reactivity are discussed with the observed changes in the particle size and available vacancy sites.
NASA Astrophysics Data System (ADS)
Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin
2018-06-01
Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.
Doping-dependent charge order correlations in electron-doped cuprates
da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea
2016-01-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726
Doping-dependent charge order correlations in electron-doped cuprates.
da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea
2016-08-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.
Zhang, Yi-Mei; Chang, De-Chun; Zhang, Ji; Liu, Yan-Hong; Yu, Xiao-Qi
2015-09-01
The gene transfection efficiency (TE) of cationic lipids is largely influenced by the lipid structure. Six novel 1, 4, 7, 10-tetraazacyclododecane (cyclen)-based cationic lipids L1-L6, which contain double oleyl as hydrophobic tails, were designed and synthesized. The difference between these lipids is their diverse backbone. Liposomes prepared by the lipids and DOPE showed good DNA affinity, and full DNA condensation could be achieved at N/P of 4 to form lipoplexes with proper size and zeta-potentials for gene transfection. Structure-activity relationship of these lipids as non-viral gene delivery vectors was investigated. It was found that minor backbone structural variations, including linking group and the structural symmetry would affect the TE. The diethylenetriamine derived lipid L4 containing amide linking bonds gave the best TE, which was several times higher than commercially available transfection reagent lipofectamine 2000. Besides, these lipids exhibited low cytotoxicity, suggesting their good biocompatibility. Results reveal that such type of cationic lipids might be promising non-viral gene vectors, and also afford us clues for the design of novel vectors with higher TE and biocompatibility. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Qu, Long; Li, Mingtao; Tian, Xiaolu; Liu, Pei; Yi, Yikun; Yang, Bolun
2018-03-01
Currently, the cycle performance at low rate is one of the most critical factor for realizing practical applications of Li2FeSiO4/C as a cathode of the lithium-ion batteries. To meet this challenge, calcium (Ca)-doped Li2FeSiO4/C is prepared by using the sol-gel method with soluble Li, Fe, Si and Ca sources. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy measurements are carried out to determine the crystal structures, morphologies, particle sizes and chemical valence states of the resulting products. Rietveld refinement confirms that Ca-doped Li2FeSiO4 has a monoclinic P21/n structure and that a Ca cation occupies the Fe site in the Li2FeSiO4 lattice. The grain size of Ca-doped Li2FeSiO4 is approximately 20 nm and the nanoparticles are interconnected tightly with amorphous carbon layer. As a cathode material for the lithium-ion batteries, Li2Fe0.97Ca0.03SiO4/C delivers a high discharge capacity of 186 mAh g-1 at a 0.5 C rate. Its capacity retention after the 100th cycle reaches 87%, which increases by 25 percentage points compared with Li2FeSiO4/C. The Li2Fe0.97Ca0.03SiO4/C cathode exhibits good rate performance, with corresponding discharge capacities of 170, 157, 144 and 117 mAh g-1 at 1 C, 2 C, 5 C and 10 C rates, respectively. In summary, the improvement of the electrochemical performance can be attributed to a coefficient of the strengthened crystal structure stability during Li+ deintercalation-intercalation and restrained side reactions between electrode and electrolyte.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl; Gągor, Anna; Hermanowicz, Krzysztof
2016-05-15
We have incorporated Cr(III) into [(CH{sub 3}){sub 2}NH{sub 2}][Mn(HCOO){sub 3}] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA{sup +}) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework.more » This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content. - Graphical abstract: Incorporation of Cr(III) into [(CH3)2NH2[Mn(HCOO)3] framework increases the magnetization. - Highlights: • Chromium(III) substitutes for Mn(II) in the studied MOF. • Charge neutrality is maintained by replacing DMA{sup +} cations by neutral HCOOH molecules. • Compounds with 8.2 and 15.9% of Cr(III) show no phase transition above 100 K. • Doping with Cr(III) increases magnetization.« less
NASA Astrophysics Data System (ADS)
Furukawa, Kazuki; Yamamoto, Norifumi; Hino, Kazuyuki; Sekiya, Hiroshi
2016-01-01
The effect of intermolecular interaction on excited-state intramolecular proton transfer (ESIPT) in 4‧-N,N-dimethylamino-3-hydroxyflavone (DMHF) doped in acetonitrile crystals was investigated by measuring the temperature dependence of fluorescence excitation and fluorescence spectra. A solid/solid phase transition of DMHF-doped acetonitrile crystals occurred in the temperature between 210 and 218 K. Significant differences in the spectral profiles and shifts in the fluorescence spectra were observed in the low- and high-temperature regions of the phase transition. The temperature dependence of the ESIPT potential of DMHF is discussed.
Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.
Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi
2013-12-05
: The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.
NASA Astrophysics Data System (ADS)
Li, G.; Hauser, N.; Jagadish, C.; Antoszewski, J.; Xu, W.
1996-06-01
Si δ-doped GaAs grown by metal organic vapor phase epitaxy (MOVPE) is characterized using magnetotransport measurements in tilted magnetic fields. Angular dependence of the longitudinal magnetoresistance (Rxx) vs the magnetic field (B) traces in tilted magnetic fields is used to examine the existence of a quasi-two-dimensional electron gas. The subband electron densities (ni) are obtained applying fast Fourier transform (FFT) analysis to the Rxx vs B trace and using mobility spectrum (MS) analysis of the magnetic field dependent Hall data. Our results show that (1) the subband electron densities remain roughly constant when the tilted magnetic field with an angle <30° measured from the Si δ-doped plane normal is ramped up to 13 T; (2) FFT analysis of the Rxx vs B trace and MS analysis of the magnetic field dependent Hall data both give the comparable results on subband electron densities of Si δ-doped GaAs with low δ-doping concentration, however, for Si δ-doped GaAs with very high δ-doping concentration, the occupation of the lowest subbands cannot be well resolved in the MS analysis; (3) the highest subband electron mobility reported to date of 45 282 cm2/s V is observed in Si δ-doped GaAs at 77 K in the dark; and (4) the subband electron densities of Si δ-doped GaAs grown by MOVPE at 700 °C are comparable to those grown by MBE at temperatures below 600 °C. A detailed study of magnetotransport properties of Si δ-doped GaAs in the parallel magnetic fields is then carried out to further confirm the subband electronic structures revealed by FFT and MS analysis. Our results are compared to theoretical calculation previously reported in literature. In addition, influence of different cap layer structures on subband electronic structures of Si δ-doped GaAs is observed and also discussed.
Sundaramurthy, Anandhakumar; Sundramoorthy, Ashok K
2018-02-01
In recent years, the design of stimuli-responsive hollow polymeric capsules is of tremendous interest for the scientific community because of the broad application of these capsules in the biomedical field. The use of weak polyelectrolytes as layer components for capsule fabrication is especially interesting as it results in hollow capsules that show unique release characteristics under physiological conditions. In this work, a methodology to prepare sub-micron sized alginate doped calcium carbonate (CaCO 3 ) particles through controlled precipitation in the presence of alginate is reported. Hollow capsules obtained by Layer-by-Layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) are showing an interconnected alginate matrix in the interior of the capsules. Investigations showed that the presence of alginate matrix enhances the encapsulation of cationic molecules (e.g. doxorubicin hydrochloride) manifold by charge controlled attraction mechanism. Capsule permeability investigated by confocal laser scanning microscopy revealed that the transformation from an open state to closed state is accompanied by an intermediate state where capsules are neither open nor closed. Furthermore, time dependent study indicated that the encapsulation process is linear as a function of time. The cell viability experiments demonstrated excellent biocompatibility of hollow capsules with mouse embryonic fibroblast cells. Anticancer investigations showed that DOX loaded capsules have significant anti-proliferative characteristics against HeLa cells. Such capsules have high potential for use as drug carrier for cationic drugs in cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
The cooling rate dependence of cation distributions in CoFe2O4
NASA Technical Reports Server (NTRS)
De Guire, Mark R.; O'Handley, Robert C.; Kalonji, Gretchen
1989-01-01
The room-temperature cation distributions in bulk CoFe2O4 samples, cooled at rates between less than 0.01 and about 1000 C/sec, have been determined using Mossbauer spectroscopy in an 80-kOe magnetic field. With increasing cooling rate, the quenched structure departs increasingly from the mostly ordered cation distribution ordinarily observed at room temperature. However, the cation disorder appears to saturate just short of a random distribution at very high cooling rates. These results are interpreted in terms of a simple relaxation model of cation redistribution kinetics. The disordered cation distributions should lead to increased magnetization and decreased coercivity in CoFe2O4.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Zhiming; Chemistry and Chemical Engineering College, Ocean University of China, Qingdao 266003; Wei Zhixiang
2005-03-01
Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with {alpha}-naphthalene sulfonic acid ({alpha}-NSA), {beta}-naphthalene sulfonic acid ({beta}-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO{sub 3}H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act inmore » a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including {pi}-{pi} interactions, hydrogen and ionic bonds.« less
Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4
NASA Astrophysics Data System (ADS)
Liu, Guoqiang; Park, Kyu-Sung; Song, Jie; Goodenough, John B.
2013-12-01
The oxygen-stoichiometric spinel Li[Ni0.5Mn1.5]O4 is an insulator with ordered Ni(II) and Mn(IV). Although it delivers 4.7 V versus Li, the ordered phase gives poor performance as the cathode of a Li-ion battery. Here we demonstrate control of the degree of cation order by adjusting the oxygen stoichiometry with thermal history of the synthesis rather than by doping 2M(III) for Ni(II) + Mn(IV) (M = Cr, Mn, Fe, Co, Al, Ga). We report retention of capacity near 100 mAh g-1 at room temperature at 10C/10C charge/discharge rate with little capacity fade; at 55 °C, a capacity fade occurs as a result of reaction with the electrolyte, but it is reduced to a level comparable to that obtained by doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Cimang, E-mail: cimang@adam.t.u-tokyo.ac.jp; Lee, Choong Hyun; Zhang, Wenfeng
2014-11-07
A systematic investigation was carried out on the material and electrical properties of metal oxide doped germanium dioxide (M-GeO{sub 2}) on Ge. We propose two criteria on the selection of desirable M-GeO{sub 2} for gate stack formation on Ge. First, metal oxides with larger cation radii show stronger ability in modifying GeO{sub 2} network, benefiting the thermal stability and water resistance in M-GeO{sub 2}/Ge stacks. Second, metal oxides with a positive Gibbs free energy for germanidation are required for good interface properties of M-GeO{sub 2}/Ge stacks in terms of preventing the Ge-M metallic bond formation. Aggressive equivalent oxide thickness scalingmore » to 0.5 nm is also demonstrated based on these understandings.« less
NASA Astrophysics Data System (ADS)
Mączka, M.; Hermanowicz, K.; Pietraszko, A.; Yordanova, A.; Koseva, I.
2014-01-01
Pure and Cr3+ doped nanosized Al2-xScx(WO4)3 solid solutions were prepared by co-precipitation method as well as Al2-xScx(WO4)3 single crystals were grown by high-temperature flux method. The obtained samples were characterized by X-ray, Raman, IR, absorption and luminescence methods. Single crystal X-ray diffraction showed that AlSc(WO4)3 is orthorhombic at room temperature with space group Pnca and trivalent cations are statistically distributed. Raman and IR studies showed that Al2-xScx(WO4)3 solid solutions show "two mode" behavior. They also showed that vibrational properties of nanosized samples have been weakly modified in comparison with the bulk materials. The luminescence and absorption spectra revealed that chromium ions occupy two sites of weak and strong crystal field strength.
Curie-Weiss behavior of Y{sub 1-x}Sr{sub x}MnO{sub 3} (x = 0 and 0.03)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Rajesh K., E-mail: thakur.rajesh2009@gmail.com; Thakur, Rasna; Gaur, N. K.
2015-06-24
The effect of bivalent cation Sr-doping on magnetic properties in multiferroic YMnO{sub 3} manganites was systemically studied by DC magnetic measurements. Both of the reported samples were prepared by solid-state reaction method with composition Y{sub 1−x}Sr{sub x}MnO{sub 3} (x = 0.00 and 0.03). The X-ray diffraction (XRD) results show that the compounds are synthesized in hexagonal crystal structure with space group P6{sub 3}cm (JCPDS: 25-1079) and slight increase in the lattice parameter is observed with strontium doping. The magnetisation versus temperature curve shows no clear anomaly near the antiferromagnetic transition temperature (T{sub N}), however from the magnetic measurements at 1000Oemore » a slight increase in the magnetisation is clearly witnessed with increasing Stront ium content to the Y-site.« less
PAC characterization of Gd and Y doped nanostructured zirconia solid solutions
NASA Astrophysics Data System (ADS)
Caracoche, María C.; Martínez, Jorge A.; Pasquevich, Alberto F.; Rivas, Patricia C.; Djurado, Elizabeth; Boulc'h, Florence
2007-02-01
A perturbed angular correlation (PAC) study as a function of temperature has been carried out on spray pyrolysis-derived powders and compacts of 2.5 mol% Y 2O 3-ZrO 2 and 2 mol% Gd 2O 3-ZrO 2 nanostructured tetragonal zirconias. The powders undergo the ordinary thermal transformation between the two known defective t‧- and regular t-tetragonal forms and also a partial and irreversible change to an ordered cubic configuration. The dynamical nature of the t‧-form leads to an activation energy of about 0.15 eV for the oxygen vacancies movement. The as-obtained compacts do not exhibit any known cubic nanostructure but some additional contributions. In both of them a hyperfine component assigned to the orthorhombic phase is determined. In the smaller cation Y doped ceramic a small amount of monoclinic phase reflects an incomplete stabilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less
Controlled cobalt doping in biogenic magnetite nanoparticles
Byrne, J. M.; Coker, V. S.; Moise, S.; Wincott, P. L.; Vaughan, D. J.; Tuna, F.; Arenholz, E.; van der Laan, G.; Pattrick, R. A. D.; Lloyd, J. R.; Telling, N. D.
2013-01-01
Cobalt-doped magnetite (CoxFe3 −xO4) nanoparticles have been produced through the microbial reduction of cobalt–iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe2+ site with Co2+, with up to 17 per cent Co substituted into tetrahedral sites. PMID:23594814
Controlled cobalt doping in biogenic magnetite nanoparticles.
Byrne, J M; Coker, V S; Moise, S; Wincott, P L; Vaughan, D J; Tuna, F; Arenholz, E; van der Laan, G; Pattrick, R A D; Lloyd, J R; Telling, N D
2013-06-06
Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.
Conversion of broadband thermal radiation in lithium niobate crystals of various compositions
NASA Astrophysics Data System (ADS)
Syuy, A. V.; Litvinova, M. N.; Goncharova, P. S.; Sidorov, N. V.; Palatnikov, M. N.; Krishtop, V. V.; Likhtin, V. V.
2013-05-01
The conversion of the broadband thermal radiation in stoichiometric ( R = 1) lithium niobate single crystals that are grown from melt with 58.6 mol % of LiO2, congruent ( R = Li/Nb = 0.946) melt with the K2O flux admixture (4.5 and 6.0 wt %), and congruent melt and in congruent single crystals doped with the Zn2+, Gd3+, and Er3+ cations is studied. It is demonstrated that the conversion efficiency of the stoichiometric crystal that is grown from the melt with 58.6 mol % of LiO2 is less than the conversion efficiency of congruent crystal. In addition, the stoichiometric and almost stoichiometric crystals and the doped congruent crystals exhibit the blue shift of the peak conversion intensity in comparison with a nominally pure congruent crystal. For the congruent crystals, the conversion intensities peak at 520 and 495 nm, respectively.
Room temperature ferromagnetism in Mn-doped NiO nanoparticles
NASA Astrophysics Data System (ADS)
Layek, Samar; Verma, H. C.
2016-01-01
Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.
NASA Astrophysics Data System (ADS)
Zhang, Huafu; Wu, Zhiming; Niu, Ruihua; Wu, Xuefei; he, Qiong; Jiang, Yadong
2015-03-01
Silicon-doped and un-doped vanadium dioxide (VO2) films were synthesized on high-purity single-crystal silicon substrates by means of reactive direct current magnetron sputtering followed by thermal annealing. The structure, morphology and metal-insulator transition properties of silicon-doped VO2 films at terahertz range were measured and compared to those of un-doped VO2 films. X-ray diffraction and scanning electron microscopy indicated that doping the films with silicon significantly affects the preferred crystallographic orientation and surface morphologies (grain size, pores and characteristics of grain boundaries). The temperature dependence of terahertz transmission shows that the transition temperature, hysteresis width and transition sharpness greatly depend on the silicon contents while the transition amplitude was relatively insensitive to the silicon contents. Interestingly, the VO2 film doped with a silicon content of 4.6 at.% shows excellent terahertz switching characteristics, namely a small hysteresis width of 4.5 °C, a giant transmission modulation ratio of about 82% and a relatively low transition temperature of 56.1 °C upon heating. This work experimentally indicates that silicon doping can effectively control not only the surface morphology but also the metal-insulator transition characteristics of VO2 films at terahertz range.
Side effects of the strain-doping approach to develop optical materials based on Ge
NASA Astrophysics Data System (ADS)
Escalante, Jose M.
2018-05-01
Following the strain-doping approach for development of Ge based optical gain material, we have studied the impact of doping and strain on the optical properties of Germanium. Emphasizing the importance of the bandgap narrowing effect due to doping on the emission wavelength, we have computed a strain-doping-energy maps, which provide the strain and doping windows that can be considered in order to achieve a specific value of the Γ bandgap. Finally, we discuss the polarization of the emitted light, and its dependence on strains.
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.; Crane, Daniel
1990-01-01
Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.
Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina
NASA Astrophysics Data System (ADS)
Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya
Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.
Effect of Doping on Surface Reactivity and Conduction Mechanism in Sm-doped CeO2 Thin Films
Yang, Nan; Belianinov, Alex; Strelcov, Evgheni; ...
2014-11-21
Scanning probe microscopy measurements show irreversible surface electrochemistry in Sm-doped CeO2 thin films, which depends on humidity, temperature and doping concentration. A systematic study by electrochemical strain microscopy (ESM) in samples with two different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in water adsorption and splitting with subsequent proton liberation. We measure the behavior of the hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first order reversal curve (FORC) method. Complementing our study with spectroscopic measurements by hard x-ray photoemission spectroscopy we find that watermore » incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity and conduction mechanism clearly emerges from all of our experimental results. We find that at lower Sm concentration proton conduction is prevalent, featured by lower activation energy and higher mobility. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.« less
Molecular Dynamics Simulations of Ion-Doped Microphase Separated Diblock Copolymers
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Brown, Jonathan R.; Hall, Lisa M.
The effects of ion doping on microphase separated block copolymers are crucial to understand for transport applications such as battery electrolytes or fuel cell membranes. Prior experiments and theories have observed interesting trends, e.g. ions generally increase effective χ, broaden the domain interface at high loadings, and significantly change the order-to-disorder transition point. To provide a molecular level understanding of these trends and further information about ion dynamics, in this study, we perform molecular dynamics (MD) simulations using a generic coarse-grained model. We capture the selective ion solvation in one polymer microphase by adding an 1/r4 term to the intermolecular potential to account for the charge induced dipole effect between cations and A monomers. The model was validated by comparing with experimental domain spacing and density profile results. We find that as ions are added, the lamellar interface becomes sharper at first, then broadens with further ion loading, and finally forms a cylindrical morphology. We also observe that the interfacial broadening is retarded as the associative interaction between cations and A monomers or the ion-ion interaction strength is increased. These observations are compared to the results from fluids density functional theory (fDFT) which uses a similar model. We analyze ion dynamics in the model systems and discuss the impacts of ion selectivity and other variables on transport. This material is based upon work supported by the National Science Foundation under Grant 1454343.
Enhanced charge ordering transition in doped CaFeO3 through steric templating
NASA Astrophysics Data System (ADS)
Jiang, Lai; Saldana-Greco, Diomedes; Schick, Joseph T.; Rappe, Andrew M.
2014-06-01
We report a density functional theory investigation of B-site doped CaFeO3, a prototypical charge ordered perovskite. At 290 K, CaFeO3 undergoes a metal-insulator transition and a charge disproportionation reaction 2Fe4+→Fe5++Fe3+. We observe that when Zr dopants occupy a (001) layer, the band gap of the resulting solid solution increases to 0.93 eV due to a two-dimensional Jahn-Teller-type distortion, where FeO6 cages on the xy plane elongate along x and y alternatively between neighboring Fe sites. Furthermore, we show that the rock-salt ordering of the Fe5+ and Fe3+ cations can be enhanced when the B-site dopants are arranged in a (111) plane due to a collective steric effect that facilitates the size discrepancy between the Fe5+O6 and Fe3+O6 octahedra and therefore gives rise to a larger band gap. The enhanced charge disproportionation in these solid solutions is verified by rigorously calculating the oxidation states of the Fe cations with different octahedral cage sizes. We therefore predict that the corresponding transition temperature will increase due to the enhanced charge ordering and larger band gap. The compositional, structural, and electrical relationships exploited in this paper can be extended to a variety of perovskites and nonperovskite oxides, providing guidance in the structural manipulation of electrical properties of functional materials.
Li, Huifeng; Huang, Yunhua; Zhang, Qi; Qiao, Yi; Gu, Yousong; Liu, Jing; Zhang, Yue
2011-02-01
In this article, Co/Mn-codoped ZnO nanowires (NWs) were successfully synthesized on a silicon substrate by the thermal evaporation method with Au catalyst. The X-ray diffraction pattern indicated that the Co/Mn-codoped ZnO NWs are a hexagonal wurtzite structure without a second phase, and energy dispersive X-ray spectroscopy revealed that the Co and Mn ions were introduced into the ZnO NWs with the content of ∼0.8 at% and ∼1.2 at%, respectively. Photoluminescence spectra and Raman spectra showed that the Co/Mn were doped into the NWs and resulted in the shift of the near-band-edge emission. Moreover, the novel Raman peak at 519.3 cm(-1) has suggested that the two kinds of cations via doping could affect the local polarizability. Compared with the undoped ZnO NW, the electrical measurement showed that the Co/Mn-codoping enhanced the conductivity by an order of magnitude due to the presence of Co, Mn cations. The electron mobility and carrier concentration of a fabricated field effect transistor (FET) device is 679 cm2 V(-1) s(-1) and 2×10(18) cm(-3), respectively. Furthermore, the M-H curve demonstrated that the Co/Mn-codoped ZnO NWs have obvious ferromagnetic characteristics at room temperature. Our study enhances the understanding of the novel performances of transition-metal codoped ZnO NWs and also provides a potential way to fabricate optoelectronic devices.
Mendiola-Alvarez, Sandra Yadira; Guzmán-Mar, Jorge Luis; Turnes-Palomino, Gemma; Maya-Alejandro, Fernando; Caballero-Quintero, Adolfo; Hernández-Ramírez, Aracely; Hinojosa-Reyes, Laura
2017-09-28
Cr 3+ -doped TiO 2 nanoparticles (Ti-Cr) were synthesized by microwave-assisted sol-gel method. The Ti-Cr catalyst was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, N 2 adsorption-desorption analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy (XPS) and zetametry. The anatase mesoporous Ti-Cr material exhibited a specific surface area of 54.5 m 2 /g. XPS analysis confirmed the proper substitution of Ti 4+ cations by Cr 3+ cations in the TiO 2 matrix. The particle size was of average size of 17 nm for the undoped TiO 2 but only 9.5 nm for Ti-Cr. The Cr atoms promoted the formation of hydroxyl radicals and modified the surface adsorptive properties of TiO 2 due to the increase in surface acidity of the material. The photocatalytic evaluation demonstrated that the Ti-Cr catalyst completely degraded (4-chloro-2-methylphenoxy) acetic acid under visible light irradiation, while undoped TiO 2 and P25 allowed 45.7% and 31.1%, respectively. The rate of degradation remained 52% after three cycles of catalyst reuse. The higher visible light photocatalytic activity of Ti-Cr was attributed to the beneficial effect of Cr 3+ ions on the TiO 2 surface creating defects within the TiO 2 crystal lattice, which can act as charge-trapping sites, reducing the electron-hole recombination process.
NASA Astrophysics Data System (ADS)
Hossain, Aslam; Ghosh, Debamalya; Dutta, Uma; Walke, Pravin S.; Mordvinova, Natalia E.; Lebedev, Oleg I.; Sinha, Bhavesh; Pal, Kamalesh; Gayen, Arup; Kundu, Asish K.; Seikh, Md. Motin
2017-12-01
The effect of hole doping on magnetic properties of LaFe0.5Mn0.5O3 have been investigated. All the ceramics samples La1-xAxFe0.5Mn0.5O3 (A = Ca, Sr and Pb; x = 0 & 0.25) were synthesized at 500 °C by sol-gel method and the particles size were found to be in nanodimension. The samples were characterized by X-ray and electron diffraction, HRTEM and both dc and ac-magnetization measurements. The X-ray and electron diffraction patterns were indexed by cubic Pm-3m space group. The particle size of the LaFe0.5Mn0.5O3 is ∼100 nm, whereas the Pb-doped sample is ∼50 nm and for Ca or Sr doped samples the size is ∼10-30 nm. Both dc and ac-susceptibility measurements suggest that the effect of hole doping and A-site cationic radius in LaFe0.5Mn0.5O3 have no significant role on magnetic properties. However, the particle size plays an important role on magnetic property due to the development of surface ferromagnetic cluster at nanoscale. The competing interactions lead to magnetic phase separation where local ferromagnetic clusters coexist within the antiferromagentic matrix in all the samples.
Rudnitskaya, Alisa; Evtuguin, Dmitry V; Costa, Luis C; Graça, M Pedro F; Fernandes, António J S; Correia, M Rosario P; Gomes, M Teresa S R; Oliveira, J A B P
2013-01-21
Hardwood and softwood lignins obtained from industrial sulphite and kraft and laboratory oxygen-organosolv pulping processes were employed in co-polymerization with tolylene 2,4-diisocyanate terminated poly(propylene glycol). The obtained lignin-based polyurethanes were doped with 0.72 w/w% of multiwall carbon nanotubes (MWCNTs) with the aim of increasing their electrical conductivity to the levels suitable for sensor applications. Effects of the polymer doping with MWCNTs were assessed using electrical impedance (EIS) and UV-Resonance Raman (UV-RR) spectroscopy. Potentiometric sensors were prepared by drop casting of liquid polymer on the surface of carbon glass or platinum electrodes. Lignin-based sensors displayed a very low or no sensitivity to all alkali, alkali-earth and transition metal cations ions except Cr(VI) at pH 2. Response to Cr(VI) values of 39, 50 and 53 mV pX(-1) for the sensors based on kraft, organosolv and lignosulphonate lignins, respectively, were observed. Redox sensitivity values close to the theoretical values of 20 and 21 mV pX(-1) for organosolv and lignosulphonate based sensors respectively were detected in the Cr(III)/Cr(VI) solutions while a very low response was observed in the solutions containing Fe(CN)(6)(3-/4-). Conducting composite lignin-based polyurethanes doped with MWCNTs were suggested as being promising materials for Cr(VI)-sensitive potentiometric sensors.
Cation-dependent nutrient transport in shrimp digestive tract.
Simmons, Tamla; Mozo, Julie; Wilson, Jennifer; Ahearn, Gregory A
2012-02-01
Purified epithelial brush border membrane vesicles (BBMV) were produced from the hepatopancreas of the Atlantic White shrimp, Litopeneaus setiferus, using standard methods originally developed for mammalian tissues and previously applied to other crustacean and echinoderm epithelia. These vesicles were used to study the cation dependency of sugar and amino acid transport across luminal membranes of hepatopancreatic epithelial cells. (3)H-D: -glucose uptake by BBMV against transient sugar concentration gradients occurred when either transmembrane sodium or potassium gradients were the only driving forces for sugar accumulation, suggesting the presence of a possible coupled transport system capable of using either cation. (3)H-L: -histidine transport was only stimulated by a transmembrane potassium gradient, while (3)H-L: -leucine uptake was enhanced by either a sodium or potassium gradient. These responses suggest the possible presence of a potassium-dependent transporter that accommodates either amino acid and a sodium-dependent system restricted only to L: -leucine. Uptake of (3)H-L: -leucine was significantly stimulated (P < 0.05) by several metallic cations (e.g., Zn(2+), Cu(2+), Mn(2+), Cd(2+), or Co(2+)) at external pH values of 7.0 or 5.0 (internal pH 7.0), suggesting a potential synergistic role of the cations in the transmembrane transfer of amino acids. (3)H-L: -histidine influxes (15 suptakes) were hyperbolic functions of external [zinc] or [manganese], following Michaelis-Menten kinetics. The apparent affinity constant (e.g., K (m)) for manganese was an order of magnitude smaller (K (m) = 0.22 μM Mn) than that for zinc (K (m) = 1.80 μM Zn), while no significant difference (P > 0.05) occurred between their maximal transport velocities (e.g., J (max)). These results suggest that a number of cation-dependent nutrient transport systems occur on the shrimp brush border membrane and aid in the absorption of these important dietary elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaix, L.; Huang, E. W.; Gerber, S.
Here, we investigated the doping dependence of magnetic excitations in the lightly doped cuprate La 2-xSr xCuO 4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L 3 edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations that possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and they are consistent with a bimagnonmore » dispersion that is renormalized by the magnon-magnon interaction at the zone center.« less
Metal-to-insulator crossover in YBa2Cu3Oy probed by low-temperature quasiparticle heat transport.
Sun, X F; Segawa, Kouji; Ando, Yoichi
2004-09-03
It was recently demonstrated that in La2-xSrxCuO4 the magnetic-field (H) dependence of the low-temperature thermal conductivity kappa up to 16 T reflects whether the normal state under high magnetic field is a metal or an insulator. We measure the H dependence of kappa in YBa(2)Cu(3)O(y) (YBCO) at subkelvin temperatures for a wide doping range, and find that at low doping the kappa(H) behavior signifies the change in the ground state in this system as well. Surprisingly, the critical doping is found to be located deeply inside the underdoped region, about the hole doping of 0.07 hole/Cu; this critical doping is apparently related to the stripe correlations as revealed by the in-plane resistivity anisotropy.
Chaix, L.; Huang, E. W.; Gerber, S.; ...
2018-04-20
Here, we investigated the doping dependence of magnetic excitations in the lightly doped cuprate La 2-xSr xCuO 4 via combined studies of resonant inelastic x-ray scattering (RIXS) at the Cu L 3 edge and theoretical calculations. With increasing doping, the magnon dispersion is found to be essentially unchanged, but the spectral width broadens and the spectral weight varies differently at different momenta. Near the Brillouin zone center, we directly observe bimagnon excitations that possess the same energy scale and doping dependence as previously observed by Raman spectroscopy. They disperse weakly in energy-momentum space, and they are consistent with a bimagnonmore » dispersion that is renormalized by the magnon-magnon interaction at the zone center.« less
High-energy electron-induced damage production at room temperature in aluminum-doped silicon
NASA Technical Reports Server (NTRS)
Corbett, J. W.; Cheng, L. J.; Jaworowski, A.; Karins, J. P.; Lee, Y. H.; Lindstroem, L.; Mooney, P. M.; Oehrlen, G.; Wang, K. L.
1979-01-01
DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented.
Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu
2014-03-28
We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.
Exploring routes to tailor the physical and chemical properties of oxides via doping: an STM study
NASA Astrophysics Data System (ADS)
Nilius, Niklas
2015-08-01
Doping opens fascinating possibilities for tailoring the electronic, optical, magnetic, and chemical properties of oxides. The dopants perturb the intrinsic behavior of the material by generating charge centers for electron transfer into adsorbates, by inducing new energy levels for electronic and optical excitations, and by altering the surface morphology and hence the adsorption and reactivity pattern. Despite a vivid scientific interest, knowledge on doped oxides is limited when compared to semiconductors, which reflects the higher complexity and the insulating nature of many oxides. In fact, atomic-scale studies, aiming at a mechanistic understanding of dopant-related processes, are still scarce. In this article, we review our scanning tunneling microscopy (STM) experiments on thin, crystalline oxide films with a defined doping level. We demonstrate how the impurities alter the surface morphology and produce cationic/anionic vacancies in order to keep the system charge neutral. We discuss how individual dopants can be visualized in the lattice, even if they reside in subsurface layers. By means of STM-conductance and x-ray photoelectron spectroscopy, we determine the electronic impact of dopants, including the energies of their eigen states and local band-bending effects in the host oxide. Electronic transitions between dopant-induced gap states give rise to new optical modes, as detected with STM luminescence spectroscopy. From a chemical perspective, dopants are introduced to improve the redox potential of oxide materials. Electron transfer from Mo-donors, for example, alters the growth behavior of gold and activates O2 molecules on a wide-gap CaO surface. Such results demonstrate the enormous potential of doped oxides in heterogeneous catalysis. Our experiments address the issue of doping from a fundamental viewpoint, posing questions on the lattice position, charge state, and electron-transfer potential of the impurity ions. Whether doped oxides are suitable to catalyze surface reactions needs to be explored in more applied studies in the future.
Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs
NASA Astrophysics Data System (ADS)
Wang, Jingyang; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette
2017-01-01
In0.53Ga0.47As, a III-V compound semiconductor with high electron mobility, is expected to bring better performance than silicon in next-generation n-type MOSFET devices. However, one major challenge to its wide scale adoption is the difficulty of obtaining high enough dopant activation. For Si-doped InGaAs, the best current experimental result, involving 10 min of furnace annealing at temperatures above 700 °C, yields a free electron concentration of 1.4 ×1019 cm-3, a value that still falls short of requirement for practical applications. In this paper, we investigate the origin of low dopant activation in InGaAs by calculating formation energies for a wide variety of single point defects (Si substutionals, Si tetrahedral interstitials, vacancies, and antisites) in Si-doped In0.5Ga0.5As in a CuAu-I type crystal structure. We find that (1) a high electron concentration can only be achieved under In/Ga-poor growth conditions, while As-poor conditions inhibit n-type doping; and (2) in heavily n-doped samples, cation vacancies VIn/Ga-3 contribute the most to the compensation of excess Si donors via the Si III - VIII mechanism (III = In/Ga), thus becoming the limiting factor to higher dopant activation. Under the most favorable growth conditions for n-doping, we find the maximum carrier concentration to be 5.2 ×1018 cm-3 under thermal equilibrium, within an order of magnitude of the best experimental value.
Okura, Takashi; Higuchi, Kei; Kitamura, Atsushi; Deguchi, Yoshiharu
2014-01-01
R(-)-Apomorphine is a dopamine agonist used for rescue management of motor function impairment associated with levodopa therapy in Parkinson's disease patients. The aim of this study was to examine the role of proton-coupled organic cation antiporter in uptake of R(-)-apomorphine and its S-enantiomer in human brain, using human endothelial cell line hCMEC/D3 as a model. Uptake of R(-)- or S(+)-apomorphine into hCMEC/D3 cells was measured under various conditions to evaluate its time-, concentration-, energy- and ion-dependency. Inhibition by selected organic cations was also examined. Uptakes of both R(-)- and S(+)-apomorphine increased with time. The initial uptake velocities of R(-)- and S(+)-apomorphine were concentration-dependent, with similar Km and Vmax values. The cell-to-medium (C/M) ratio of R(-)-apomorphine was significantly reduced by pretreatment with sodium azide, but was not affected by replacement of extracellular sodium ion with N-methylglucamine or potassium. Intracellular alkalization markedly reduced the uptake, while intracellular acidification increased it, suggesting that the uptake is driven by an oppositely directed proton gradient. The C/M ratio was significantly decreased by amantadine, verapamil, pyrilamine and diphenhydramine (substrates or inhibitors of proton-coupled organic cation antiporter), while tetraethylammonium (substrate of organic cation transporters (OCTs)) and carnitine (substrate of carnitine/organic cation transporter 2; (OCTN2)) had no effect. R(-)-Apomorphine uptake was competitively inhibited by diphenhydramine. Our results indicate that R(-)-apomorphine transport in human blood-brain barrier (BBB) model cells is similar to S(+)-apomorphine uptake. The transport was dependent on an oppositely directed proton gradient, but was sodium- or membrane potential-independent. The transport characteristics were consistent with involvement of the previously reported proton-coupled organic cation antiporter.
Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.
2010-01-01
Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468
Effects of shape, size, and pyrene doping on electronic properties of graphene nanoflakes.
Kuamit, Thanawit; Ratanasak, Manussada; Rungnim, Chompoonut; Parasuk, Vudhichai
2017-11-25
Effects of size, shape, and pyrene doping on electronic properties of graphene nanoflakes (GNFs) were theoretically investigated using density functional theory method with PBE, B3PW91, and M06-2X functionals and cc-pVDZ basis set. Two shapes of zigzag GNFs, hexagonal (HGN) and rhomboidal (RGN), were considered. The energy band gap of GNF depends on shape and decreases with size. The HGN has larger band gap energy (1.23-3.96 eV) than the RGN (0.13-2.12 eV). The doping of pyrene and pyrene derivatives on both HGN and RGN was also studied. The adsorption energy of pyrene and pyrene derivatives on GNF does not depend on the shape of GNFs with energies between 21 and 27 kcal mol -1 . The substituent on pyrene enhances the binding to GNF but the strength does not depend on electron withdrawing or donating capability. The doping by pyrene and pyrene derivatives also shifts the HOMO and LUMO energies of GNFs. Both positive (destabilizing) and negative (stabilizing) shifts on HOMO and LUMO of GNFs were seen. The direction and magnitude of the shift do not follow the electron withdrawing and donating capability of pyrene substituents. However, only a slight shift was observed for doped RGN. A shift of 0.19 eV was noticed for HOMO of HGN doped with 1-aminopyrene (pyNH 2 ) and of 0.04 eV for LUMO of HGN doped with 1-pyrenecarboxylic acid (pyCOOH). Graphical Abstract HOMO and LUMO Energies of pyrene/pyrene derivatives doped Graphene Nanoflakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jin-Peng, E-mail: yangjp@yzu.edu.cn, E-mail: uenon@faculty.chiba-u.jp; Wang, Wen-Qing; Cheng, Li-Wen
The doping mechanism in organic-semiconductor films has been quantitatively studied via ultrahigh-sensitivity ultraviolet photoelectron spectroscopy of N,N-bis(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4,4-diamine (α-NPD) films doped with hexaazatriphenylene-hexacarbonitrile [HAT(CN){sub 6}]. We observed that HOMO of α-NPD shifts to the Fermi level (E{sub F}) in two different rates with the doping concentration of HAT(CN){sub 6}, but HOMO distributions of both pristine and doped amorphous α-NPD films are excellently approximated with a same Gaussian distribution without exponential tail states over ∼5 × 10{sup 18} cm{sup −3} eV{sup −1}. From the theoretical simulation of the HAT(CN){sub 6}-concentration dependence of the HOMO in doped films, we show that the passivation of Gaussian-distributedmore » hole traps, which peak at 1.1 eV above the HOMO onset, occurs at ultralow doping [HAT(CN){sub 6} molecular ratio (MR) < 0.01], leading to a strong HOMO shift of ∼0.40 eV towards E{sub F}, and MR dependence of HOMO changes abruptly at MR ∼ 0.01 to a weaker dependence for MR > 0.01 due to future of the dopant acceptor level.« less
Synthesis of Core-shell Lanthanide-doped Upconversion Nanocrystals for Cellular Applications.
Ai, Xiangzhao; Lyu, Linna; Mu, Jing; Hu, Ming; Wang, Zhimin; Xing, Bengang
2017-11-10
Lanthanide-doped upconversion nanocrystals (UCNs) have attracted much attention in recent years based on their promising and controllable optical properties, which allow for the absorption of near-infrared (NIR) light and can subsequently convert it into multiplexed emissions that span over a broad range of regions from the UV to the visible to the NIR. This article presents detailed experimental procedures for high-temperature co-precipitation synthesis of core-shell UCNs that incorporate different lanthanide ions into nanocrystals for efficiently converting deep-tissue penetrable NIR excitation (808 nm) into a strong blue emission at 480 nm. By controlling the surface modification with biocompatible polymer (polyacrylic acid, PAA), the as-prepared UCNs acquires great solubility in buffer solutions. The hydrophilic nanocrystals are further functionalized with specific ligands (dibenzyl cyclooctyne, DBCO) for localization on the cell membrane. Upon NIR light (808 nm) irradiation, the upconverted blue emission can effectively activate the light-gated channel protein on the cell membrane and specifically regulate the cation (e.g., Ca 2+ ) influx in the cytoplasm. This protocol provides a feasible methodology for the synthesis of core-shell lanthanide-doped UCNs and subsequent biocompatible surface modification for further cellular applications.
Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules
NASA Astrophysics Data System (ADS)
Panigrahi, P.; Naqvi, S. R.; Hankel, M.; Ahuja, R.; Hussain, T.
2018-06-01
In a quest to find optimum materials for efficient storage of clean energy, we have performed first principles calculations to study the structural and energy storage properties of one-dimensional carbon nanotubes (CNTs) functionalized with polylithiated molecules (PLMs). Van der Waals corrected calculations disclosed that various PLMs like CLi, CLi2, CLi3, OLi, OLi2, OLi3, bind strongly to CNTs even at high doping concentrations ensuring a uniform distribution of dopants without forming clusters. Bader charge analysis reveals that each Li in all the PLMs attains a partial positive charge and transform into Li+ cations. This situation allows multiple H2 molecules adsorbed with each Li+ through the polarization of incident H2 molecules via electrostatic and van der Waals type of interaction. With a maximum doping concentration, that is 3CLi2/3CLi3 and 3OLi2/3OLi3 a maximum of 36 H2 molecules could be adsorbed that corresponds to a reasonably high H2 storage capacity with the adsorption energies in the range of -0.33 to -0.15 eV/H2. This suits the ambient condition applications.
Effect of Fe-ion implantation doping on structural and optical properties of CdS thin films
NASA Astrophysics Data System (ADS)
Chandramohan, S.; Kanjilal, A.; Sarangi, S. N.; Majumder, S.; Sathyamoorthy, R.; Som, T.
2010-06-01
We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room temperature for a wide range of fluences from 0.1×1016 to 3.6×1016 ions cm-2 (corresponding to 0.38-12.03 at.% of Fe). Glancing angle X-ray diffraction analysis revealed that the implanted Fe atoms tend to supersaturate by occupying the substitutional cationic sites rather than forming metallic clusters or secondary phase precipitates. In addition, Fe doping does not lead to any structural phase transformation although it induces structural disorder and lattice contraction. Optical absorption studies show a reduction in the optical band gap from 2.39 to 2.17 eV with increasing Fe concentration. This is attributed to disorder-induced band tailing in semiconductors and ion-beam-induced grain growth. The strain associated with a lattice contraction is deduced from micro-Raman scattering measurements and is found that size and shape fluctuations of grains, at higher fluences, give rise to inhomogeneity in strain.
Lan, Tian; Soavi, Francesca; Marcaccio, Massimo; Brunner, Pierre-Louis; Sayago, Jonathan; Santato, Clara
2018-05-24
The n-type organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM), a soluble fullerene derivative well investigated for organic solar cells and transistors, can undergo several successive reversible, diffusion-controlled, one-electron reduction processes. We exploited such processes to shed light on the correlation between electron transfer properties, ionic and electronic transport as well as device performance in ionic liquid (IL)-gated transistors. Two ILs were considered, based on bis(trifluoromethylsulfonyl)imide [TFSI] as the anion and 1-ethyl-3-methylimidazolium [EMIM] or 1-butyl-1-methylpyrrolidinium [PYR14] as the cation. The aromatic structure of [EMIM] and its lower steric hindrance with respect to [PYR14] favor a 3D (bulk) electrochemical doping. As opposed to this, for [PYR14] the doping seems to be 2D (surface-confined). If the n-doping of the PCBM is pursued beyond the first electrochemical process, the transistor current vs. gate-source voltage plots in [PYR14][TFSI] feature a maximum that points to the presence of finite windows of high conductivity in IL-gated PCBM transistors.
Hydrogen depassivation of the magnesium acceptor by beryllium in p-type GaN
NASA Astrophysics Data System (ADS)
Wang, Chihsiang; Wang, Xiao; Zhang, Qiming
2010-05-01
Under nitrogen-rich growth conditions, the present ab initio study predicts that hydrogen passivation is more effective on the acceptor Be instead of Mg in a co-doped p-type GaN. The formation energy is 0.24 eV for (H-Be Ga) complex, and 0.46 eV for (H-Mg Ga) complex. Congruently, the binding energy is 1.40 eV for (H-Be Ga), and 0.60 eV for (H-Mg Ga). Owing to the lower binding energy, (H-Mg Ga) is not thermally stable. As Be is incorporated in Mg-doped GaN, a (H-Mg Ga) may release a H + cation at relatively elevated temperatures. Consequently, the H + diffuses swiftly away from a Mg -Ga, across a barrier of 1.17 eV, towards a Be -Ga and forms a stable (H-Be Ga) with it. The activation of Mg acceptors can be thus facilitated. In this view, the process of hydrogen depassivation of the Mg acceptor by Be can convert the as-grown high-resistivity Mg-doped GaN into a p-conducting material, as observed in the experiments.
Chen, Fu; Wang, Xian; Nie, Yan; Li, Qifan; Ouyang, Jun; Feng, Zekun; Chen, Yajie; Harris, Vincent G.
2016-01-01
In recent years, multifunctional materials contained simultaneous ferroelectric and ferromagnetic ordering have been realized. Here, a real time room temperature adaptive materials system, which demonstrates an RF magnetodielectric (MD) response, i.e., CexY3−xFe5O12 (x = 0, 0.05, 0.1, 0.15, 0.2), is reported. The magnetic and dielectric properties of Ce-doped YIG microwave ferrites processed by a traditional ceramic route have been measured over a frequency range of 4–8 GHz (C-band). The substitution of Ce not only enhances the microwave electromagnetic properties of the YIG, but also modulates the magnetodielectric response. The maximum magnetodielectric response in Ce-doped YIG sample ranges in magnitude from approximately +5% to −5% under an applied field of 1.78 kOe. This effect was attributed to electron fluctuations on the Fe cation sites. Furthermore, the magnitude of the MD response was shown to be enhanced by the cerium content. It is believed that research of the magnetodielectric effect in YIG ferrites is of great importance to the development of next generation multifunctional adaptive microwave materials, devices and integrated circuits. PMID:27320039
Chen, Fu; Wang, Xian; Nie, Yan; Li, Qifan; Ouyang, Jun; Feng, Zekun; Chen, Yajie; Harris, Vincent G
2016-06-20
In recent years, multifunctional materials contained simultaneous ferroelectric and ferromagnetic ordering have been realized. Here, a real time room temperature adaptive materials system, which demonstrates an RF magnetodielectric (MD) response, i.e., CexY3-xFe5O12 (x = 0, 0.05, 0.1, 0.15, 0.2), is reported. The magnetic and dielectric properties of Ce-doped YIG microwave ferrites processed by a traditional ceramic route have been measured over a frequency range of 4-8 GHz (C-band). The substitution of Ce not only enhances the microwave electromagnetic properties of the YIG, but also modulates the magnetodielectric response. The maximum magnetodielectric response in Ce-doped YIG sample ranges in magnitude from approximately +5% to -5% under an applied field of 1.78 kOe. This effect was attributed to electron fluctuations on the Fe cation sites. Furthermore, the magnitude of the MD response was shown to be enhanced by the cerium content. It is believed that research of the magnetodielectric effect in YIG ferrites is of great importance to the development of next generation multifunctional adaptive microwave materials, devices and integrated circuits.
Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material
NASA Astrophysics Data System (ADS)
Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong
2013-04-01
The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.
Rau, Julietta V; Wu, Victoria M; Graziani, Valerio; Fadeeva, Inna V; Fomin, Alexander S; Fosca, Marco; Uskoković, Vuk
2017-10-01
A blue calcium phosphate cement with optimal self-hardening properties was synthesized by doping whitlockite (β-TCP) with copper ions. The mechanism and the kinetics of the cement solidification process were studied using energy dispersive X-ray diffraction and it was found out that hardening was accompanied by the phase transition from TCP to brushite. Reduced lattice parameters in all crystallographic directions resulting from the rather low (1:180) substitution rate of copper for calcium was consistent with the higher ionic radius of the latter. The lower cationic hydration resulting from the partial Ca→Cu substitution facilitated the release of constitutive hydroxyls and lowered the energy of formation of TCP from the apatite precursor at elevated temperatures. Addition of copper thus effectively inhibited the formation of apatite as the secondary phase. The copper-doped cement exhibited an antibacterial effect, though exclusively against Gram-negative bacteria, including E. coli, P. aeruginosa and S. enteritidis. This antibacterial effect was due to copper ions, as demonstrated by an almost negligible antibacterial effect of the pure, copper-free cement. Also, the antibacterial activity of the copper-containing cement was significantly higher than that of its precursor powder. Since there was no significant difference between the kinetics of the release of copper from the precursor TCP powder and from the final, brushite phase of the hardened cement, this has suggested that the antibacterial effect was not solely due to copper ions, but due to the synergy between cationic copper and a particular phase and aggregation state of calcium phosphate. Though inhibitory to bacteria, the copper-doped cement increased the viability of human glial E297 cells, murine osteoblastic K7M2 cells and especially human primary lung fibroblasts. That this effect was also due to copper ions was evidenced by the null effect on viability increase exhibited by the copper-free cements. The difference in the mechanism of protection of dehydratases in prokaryotes and eukaryotes was used as a rationale for explaining the hereby evidenced selectivity in biological response. It presents the basis for the consideration of copper as a dually effective ion when synergized with calcium phosphates: toxic for bacteria and beneficial for the healthy cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A
2013-11-07
Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.
Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels
Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.
2008-01-01
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455
NASA Astrophysics Data System (ADS)
Nepal, Neeraj
Deep ultraviolet (UV) photoluminescence (PL) spectroscopy has been employed to study optical properties of AlGaN alloys, undoped and doped AlN epilayers and nanostructure AlN photonics crystals (PCs). Using a deep UV laser system with an excitation wave length at 197 nm, continuous wave PL, temperature dependent, and time-resolved PL have been carried out on these AlGaN and AlN epilayers and nanostructures. We have measured the compositional and temperature dependence of the energy bandgap of AlxGa1-xN alloys covering the entire alloy range of x, 0 ≤ x ≤ 1 and fitted with the Varshni equation. Varshni coefficients, alpha and beta, in AlGaN alloys have a parabolic dependence with alloy concentration x. Based on the experimental data, an empirical relation was thus obtained for the energy gap of AlGaN alloys for the entire alloy concentration and at any temperature below 800 K. The exciton localization energy in AlxGa1-xN alloys the entire composition range (0 ≤ x ≤ 1) has been measured by fitting the band edge emission peak energy with the Varshni equation. Deviations of the excitonic emission peak energy from the Varshni equation at low temperatures provide directly the exciton localization energies, ELoc in AlGaN alloys. It was found that ELoc increases with x for x ≤ 0.7, and decreases with x for x ≥ 0.8. The relations between the exciton localization energy, the activation energy, and the emission linewidth have been established. It thus provides three different and independent methods to determine the exciton localization energies in AlGaN alloys. Impurity transitions in AlGaN alloys have also been investigated. Continuous wave (CW) PL spectra of Si and undoped AlGaN alloys reveals groups of impurity transitions that have been assigned to the recombination between shallow donors and an isolated triply charged cation-vacancy (VIII)3-, a doubly charged cation-vacancy-complex (VIII-complex)2- , and a singly charged cation-vacancy-complex (VIII-complex) -1. The energy levels of these deep acceptors in AlxGa 1-xN (0 ≤ x ≤ 1) alloys are pinned to a common energy level in the vacuum. AlGaN alloys predominantly exhibiting the bandedge and (V III-complex)1- transitions possess improved conductivities over those emitting predominantly (VIII)3- and (V III-complex)2- related transitions. These results thus answer the very basic question of high resistivity in Al-rich AlGaN alloys. Acceptor doped AlGaN alloys have been studied by deep UV PL. A PL emission line at 6.02 eV has been observed at 10 K in Mg-doped AlN. It is due to the recombination of an exciton bound to the neutral Mg acceptor (I1) with a binding energy, Ebx of 40 meV, which indicates large activation energy of the Mg acceptor. The observed large binding energy of the acceptor-bound exciton is consistent with relatively large binding energy of the Mg acceptor in AlN. With the energy level of 0.51 eV for Mg dopants in AlN, it is interesting and important to study other suitable acceptor dopants for AlN. Growth and optical studies of Zn-doped AlN epilayers has been carried out. The PL spectra of Zn-doped AlN epilayers exhibited two impurity emission lines at 5.40 and 4.50 eV, which were absent in undoped epilayers. They are assigned respectively, to the transitions of free electrons and electrons bound to triply positively charged nitrogen vacancies (0.90 eV deep) to the Zn0 acceptors. It was deduced that the Zn energy level is about 0.74 eV above the valence band edge, which is about 0.23 eV deeper than the Mg energy level in AlN. Nitrogen vacancies are the compensating defects in acceptor doped AlGaN alloys. A nitrogen vacancy (VN) related emission line was also observed in ion-implanted AlN at 5.87 eV and the energy level of singly charged VN1+ is found at 260 meV below the conduction band. As a consequence of large binding energy of VN 1+ as well as high formation energy, VN1+ in AlN cannot contribute significant n-type conductivity, which is consistent with experimental observation. The temperature dependent PL study of the bandedge emissions in GaN and AlN epilayers up to 800 K has been carried out, which reveals two distinctive activation processes. The first process occurring below Tt = 325 K (Tt = 500 K) for GaN (AlN) is due to the activation of free excitons to free carriers, whereas the second occurring above Tt with an activation energy of 0.29 eV (0.3 eV) for GaN (AlN) is believed to be associated with a higher lying conduction band (Gamma3) at about 0.3 eV above the conduction band minimum (Gamma1). These higher lying bands could affect device performance of GaN and AlN at elevated temperatures. Two-dimensional nanostructured AlN photonic crystals (PCs) with a varying periodicity/diameter down to 150 nm/75 nm have also been studied by deep UV PL. With PCs formation, a 20-fold enhancement in the band edge emission intensity at 208 nm over unpatterned AlN epilayer has been observed. The emission intensity increases with the decrease in the lattice constant of the AlN PCs. AlN PCs represent photonic crystals with highest (shortest) bandgap (wavelength) semiconductors, which open up new opportunities for exploring novel physical phenomena in the artificially structured photonic band gap material systems and their applications, particularly in the area of deep UV as well as nano-photonics.
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-07-01
We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.
Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212
2013-01-01
The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening. PMID:24314035
Cation mobility and the sorption of chloroform in zeolite NaY: molecular dynamics study.
Ramsahye, Naseem A; Bell, Robert G
2005-03-17
Molecular dynamics simulations at temperatures of 270, 330, and 390 K have been carried out to address the question of cation migration upon chloroform sorption in sodium zeolite Y. The results show that sodium cations located in different sites exhibit different types of mobility. These may be summarized as follows: (1) SII cations migrate toward the center of the supercage upon sorption, due to interactions with the polar sorbate molecules. (2) SI' cations hop from the sodalite cage into the supercage to fill vacant SII sites. (3) SI' cations migrate to other SI' sites within the same sodalite cage. (4) SI cations hop out of the double six-rings into SI' sites. In some instances, concerted motion of cations is observed. Furthermore, former SI' and SI cations, having crossed to SII sites, may then further migrate within the supercage, as in (1). The cation motion is dependent on the level of sorbate loading, with 10 molecules per unit cell not being enough to induce significant cation displacements, whereas the sorption of 40 molecules per unit cell results in a number of cations being displaced from their original positions. Further rearrangement of the cation positions is observed upon evacuation of the simulation cell, with some cations reverting back to sites normally occupied in bare NaY.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusrat, H; Pang, G; Ahmad, S
2015-06-15
Purpose: This research seeks to develop a portable, clinically-suitable linear energy transfer (LET) detector. In radiotherapy, absorbed dose is commonly used to measure the amount of delivered radiation, though, it is not a good indicator of actual biological damage. LET is the energy absorbed per unit length by a medium along charged particle’s pathway; studies have shown that LET correlates well with relative biological effectiveness (RBE). Methods: According to Birks’ law, light output of plastic scintillators is stopping-power dependent. This dependency can be varied through doping by various high-Z elements. By measuring light output signals of differently doped plastic scintillatorsmore » (represented by column vector S, where each row corresponds to different scintillator material), the fluence of charged particles of a given LET (represented by column vector Φ, where each row corresponds to different LET bins) can be unfolded by S=R*Φ where R is system response matrix (each row represents a different scintillator, each column corresponds to different electron LET). Monte Carlo (MC) GEANT4.10.1 was used to evaluate ideal detector response of BC408 scintillating material doped with various concentrations of several high Z dopants. Measurements were performed to validate MC. Results: Signal for 1%-lead doped BC408 and the non-doped scintillator was measured experimentally by guiding light emitted by the scintillator (via in-house made taper, fiber system) to a PMT and then an electrometer. Simulations of 1%Pb-doped scintillator to non-doped scintillator revealed 9.3% reduction in light output for 6 MeV electrons which compared well (within uncertainty) with measurements showing 10% reduction (6MeV electrons). Conclusion: Measurements were used to validate MC simulation of light output from doped scintillators. The doping of scintillators is a viable technique to induce LET dependence. Our goal is to use this effect to resolve the LET spectrum of an incident beam.« less
Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao
2013-01-01
Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections.
Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao
2013-01-01
Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections. PMID:23847417
Laser ablation of PMMA doped with benzyl
NASA Astrophysics Data System (ADS)
Wang, Jun; Niino, Hiroyuki; Yabe, Akira
1998-08-01
KrF-laser ablation of poly(methylmethacrylate) (PMMA) doped with benzil was studied from the viewpoint of nonlinear absorption of the PMMA film during the laser irradiation. After measuring the relationship between the transmission and incident laser intensity, we developed a novel method to obtain absorption coefficient depending on laser intensity. Using the nonlinear absorption coefficient of PMMA doped with benzil, we succeeded in fitting the relationship of etch depth and laser intensity. The dependence of concentration of benzil in PMMA film and the difference between benzil and pyrene were also discussed.
Theory of nitrogen doping of carbon nanoribbons: Edge effects
Jiang, Jie; Turnbull, Joseph; Lu, Wenchang; ...
2012-01-01
Nitrogen doping of a carbon nanoribbon is profoundly affected by its one-dimensional character, symmetry, and interaction with edge states. Using state-of-the-art ab initio calculations, including hybrid exact-exchange density functional theory, we find that, for N-doped zigzag ribbons, the electronic properties are strongly dependent upon sublattice effects due to the non-equivalence of the two sublattices. For armchair ribbons, N-doping effects are different depending upon the ribbon family: for families 2 and 0, the N-induced levels are in the conduction band, while for family 1 the N levels are in the gap. In zigzag nanoribbons, nitrogen close to the edge is amore » deep center, while in armchair nanoribbons its behavior is close to an effective-mass-like donor with the ionization energy dependent on the value of the band gap. In chiral nanoribbons, we find strong dependence of the impurity level and formation energy upon the edge position of the dopant, while such site-specificity is not manifested in the magnitude of the magnetization.« less
Méndez-Morales, Trinidad; Carrete, Jesús; Bouzón-Capelo, Silvia; Pérez-Rodríguez, Martín; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M
2013-03-21
Structural and dynamical properties of room-temperature ionic liquids containing the cation 1-butyl-3-methylimidazolium ([BMIM](+)) and three different anions (hexafluorophosphate, [PF6](-), tetrafluoroborate, [BF4](-), and bis(trifluoromethylsulfonyl)imide, [NTf2](-)) doped with several molar fractions of lithium salts with a common anion at 298.15 K and 1 atm were investigated by means of molecular dynamics simulations. The effect of the size of the salt cation was also analyzed by comparing these results with those for mixtures of [BMIM][PF6] with NaPF6. Lithium/sodium solvation and ionic mobilities were analyzed via the study of radial distribution functions, coordination numbers, cage autocorrelation functions, mean-square displacements (including the analysis of both ballistic and diffusive regimes), self-diffusion coefficients of all the ionic species, velocity and current autocorrelation functions, and ionic conductivity in all the ionic liquid/salt systems. We found that lithium and sodium cations are strongly coordinated in two different positions with the anion present in the mixture. Moreover, [Li](+) and [Na](+) cations were found to form bonded-like, long-lived aggregates with the anions in their first solvation shell, which act as very stable kinetic entities within which a marked rattling motion of salt ions takes place. With very long MD simulation runs, this phenomenon is proved to be on the basis of the decrease of self-diffusion coefficients and ionic conductivities previously reported in experimental and computational results.
Graph-Theoretic Analysis of Monomethyl Phosphate Clustering in Ionic Solutions.
Han, Kyungreem; Venable, Richard M; Bryant, Anne-Marie; Legacy, Christopher J; Shen, Rong; Li, Hui; Roux, Benoît; Gericke, Arne; Pastor, Richard W
2018-02-01
All-atom molecular dynamics simulations combined with graph-theoretic analysis reveal that clustering of monomethyl phosphate dianion (MMP 2- ) is strongly influenced by the types and combinations of cations in the aqueous solution. Although Ca 2+ promotes the formation of stable and large MMP 2- clusters, K + alone does not. Nonetheless, clusters are larger and their link lifetimes are longer in mixtures of K + and Ca 2+ . This "synergistic" effect depends sensitively on the Lennard-Jones interaction parameters between Ca 2+ and the phosphorus oxygen and correlates with the hydration of the clusters. The pronounced MMP 2- clustering effect of Ca 2+ in the presence of K + is confirmed by Fourier transform infrared spectroscopy. The characterization of the cation-dependent clustering of MMP 2- provides a starting point for understanding cation-dependent clustering of phosphoinositides in cell membranes.
Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study
NASA Astrophysics Data System (ADS)
Dai, G. H.; Yan, Q. J.; Wang, Y.; Liu, Q. S.
1991-08-01
Magnesium oxides intentionally doped with lithium (with a maximum Li content of 40 tool%) for use as catalysts for oxidative coupling of methane were characterized by means of positron annihilation. The positron lifetime spectra, which could be reasonably well interpreted within the framework of the well-known trapping model, depend on the amount of Li doping of the MgO suggesting that positrons are trapped at dispersed small Li 2CO 3 precipitates. Very similar dependencies on lithium doping of the C 2 selectivity and the positron trapping rate ϰ imply an intimate relationship between the concentration of [Li] 0-centers (also referred to as [Li +O -] centers) and the selective activity of Li/MgO during catalytic reactions.
NASA Astrophysics Data System (ADS)
Kole, A. K.; Tiwary, C. S.; Kumbhakar, P.
2013-03-01
Mn2+ doped (0-50.0 molar %) ZnS d-dots have been synthesized in water medium by using an environment friendly low cost chemical technique. Tunable dual emission in UV and yellow-orange regions is achieved by tailoring the Mn2+ doping concentration in the host ZnS nanocrystal. The optimum doping concentration for achieving efficient photoluminescence (PL) emission is determined to be ˜1.10 (at. %) corresponding to 40.0 (molar %) of Mn2+ doping concentration used during synthesis. The mechanism of charge transfer from the host to the dopant leading to the intensity modulated tunable (594-610 nm) yellow-orange PL emission is straightforwardly understood as no capping agent is used. The temperature dependent PL emission measurements are carried out, viz., in 1.10 at. % Mn2+ doped sample and the experimental results are explained by using a theoretical PL emission model. It is found that the ratio of non-radiative to radiative recombination rates is temperature dependent and this phenomenon has not been reported, so far, in Mn2+ doped ZnS system. The colour tuning of the emitted light from the samples are evident from the calculated chromaticity coordinates. UV light irradiation for 150 min in 40.0 (molar %) Mn2+ doped sample shows an enhancement of 33% in PL emission intensity.
On the feasibility of p-type Ga2O3
NASA Astrophysics Data System (ADS)
Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico
2018-01-01
We investigate the various cation substitutional dopants in Ga2O3 for the possibility of p-type conductivity using density functional theory. Our calculations include both standard density functional theory and hybrid functional calculations. We demonstrate that all the investigated dopants result in deep acceptor levels, not able to contribute to the p-type conductivity of Ga2O3. In light of these results, we compare our findings with other wide bandgap oxides and reexamine previous experiments on zinc doping in Ga2O3.
Charoongchit, Pimchanok; Suksiriworapong, Jiraphong; Sripha, Kittisak; Mao, Shirui; Sapin-Minet, Anne; Maincent, Philippe; Junyaprasert, Varaporn Buraphacheep
2017-03-01
Cationic copolymers have been attractive to investigate due to their potential to complexation with anionic drugs and expected to use in the pharmaceutical application. In this study, the modified poly(ε-caprolactone) 2 -co-poly(ethylene glycol) copolymers (P(CL) 2 -PEG) were successfully synthesized by click reaction. The amount of small molecular cationic ligand, propargyltrimethyl ammonium iodide, was varied and grafted onto various mole ratios of P(CL) to PEG. The effects of P(CL) chain length and amount of the grafting cationic ligand on physicochemical properties of polymers and particles were studied. The number-average molecular weights of the copolymers grafted with cationic ligand were found ranging between 10,000 and 23,000g/mol as investigated by NMR. From DSC study, the results showed that the grafting ligand affected thermal behaviors of the copolymers by increasing the glass transition temperature and decreasing the melting temperature of the copolymers. Furthermore, these cationic copolymers could self-aggregate with their critical aggregation concentration depending on mole ratios of hydrophilic to hydrophobic portions. The particles containing higher amounts of the cationic ligand tended to aggregate in both acidic and basic pH environment and at high salt concentration. Additionally, particle size, size distribution (PdI), and morphology of self-assembling particles varied depending on P(CL) chain length and the amount of the grafting cationic ligand. The synthesized cationic copolymer showed a capability to encapsulate a high negatively charged drug, enoxaparin, with an encapsulation efficiency of 87%. After drug incorporation, the particles substantially changed in size, shape, PdI, and zeta potential to become more suitable for drug delivery. These cationic copolymers with flexible properties will be the candidate for further development as carriers for the delivery of negatively charged drugs. Copyright © 2016. Published by Elsevier B.V.
Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene
NASA Astrophysics Data System (ADS)
Mohammadi, Yawar; Moradian, Rostam; Shirzadi Tabar, Farzad
2014-09-01
We calculate the static polarization of AAA-stacked trilayer graphene (TLG) and study its screening properties within the random phase approximation (RPA) in all undoped, doped and biased regimes. We find that the static polarization of undoped AAA-stacked TLG is a combination of the doped and undoped single-layer graphene static polarization. This leads to an enhancement of the dielectric background constant along a Thomas-Fermi screening with the Thomas-Fermi wave vector which is independent of carrier concentrations and a 1/r3 power law decay for the long-distance behavior of the screened Coulomb potential. We show that effects of a bias voltage can be taken into account by a renormalization of the interlayer hopping energy to a new bias-voltage-dependent value, indicating screening properties of AAA-stacked TLG can be tuned electrically. We also find that screening properties of doped AAA-stacked TLG, when μ exceeds √{2}γ, are similar to that of doped SLG only depending on doping. While for μ<√{2}γ, its screening properties are combination of SLG and AA-stacked bilayer graphene screening properties and they are determined by doping and the interlayer hopping energy.
Magnetic moment evolution and spin freezing in doped BaFe2As2
Pelliciari, Jonathan; Huang, Yaobo; Ishii, Kenji; ...
2017-08-14
Fe-K β X-ray emission spectroscopy measurements reveal an asymmetric doping dependence of the magnetic moments μ bare in electron- and hole-doped BaFe 2As 2. At low temperature, μ bare is nearly constant in hole-doped samples, whereas it decreases upon electron doping. Increasing temperature substantially enhances μ bare in the hole-doped region, which is naturally explained by the theoretically predicted crossover into a spin-frozen state. Our measurements demonstrate the importance of Hund’s-coupling and electronic correlations, especially for hole-doped BaFe 2As 2, as well as the inadequacy of a fully localized or fully itinerant description of the 122 family of Fe pnictides.
NASA Astrophysics Data System (ADS)
Afzali, R.; Alizadeh, A.
2017-12-01
The behavior of non-interacting and interacting polarization under influence of fluctuations of the superconducting gap with D-wave symmetry and under consideration of the gap dependence on nano- grain size is obtained in terms of the frequency, temperature and the size at zero and finite temperatures for rectangular cuprate nano-superconducting grains. By using Eliashberg equations and applying the relations of the fermionic dispersion for the hole-doped and electron-doped cuprates, we numerically compute the real part of size-dependent polarization for both types of cuprates. We show that the peak of real part of polarization moves to higher frequency by including the additional fluctuating part of gap (or the nano-size effect). Also, we obtain the temperatures for different frequencies, in which the effect of gap fluctuations fades. In the case of size-dependent gap, there is a critical frequency; for frequencies lower (higher) than the critical frequency, the nano-effect weakens (improves) the superconducting state. Moreover, it is concluded that the real part of polarization for hole- doped cuprates in terms of the grain size has more significant amount in comparison with electron-doped ones.
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.; ...
2018-05-21
We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakinuma, Shohei; Ramati, Sharon; Wishart, James F.
We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
UV absorption spectrum of allene radical cations in solid argon
NASA Astrophysics Data System (ADS)
Chin, Chih-Hao; Lin, Meng-Yeh; Huang, Tzu-Ping; Wu, Yu-Jong
2018-05-01
Electron bombardment during deposition of an Ar matrix containing a small proportion of allene generated allene cations. Further irradiation of the matrix sample at 385 nm destroyed the allene cations and formed propyne cations in solid Ar. Both cations were identified according to previously reported IR absorption bands. Using a similar technique, we recorded the ultraviolet absorption spectrum of allene cations in solid Ar. The vibrationally resolved progression recorded in the range of 266-237 nm with intervals of about 800 cm-1 was assigned to the A2E ← X2E transition of allene cations, and the broad continuum absorption recorded in the region of 229-214 nm was assigned to their B2A1 ← X2E transition. These assignments were made based on the observed photolytic behavior of the progressions and the vertical excitation energies and oscillator strengths calculated using time-dependent density functional theory.
Evolution of structural, electronic and magneto-transport properties of Sr2Ir1-xTixO4 5d based oxide
NASA Astrophysics Data System (ADS)
Bhatti, Imtiaz Noor; Pramanik, A. K.
2018-05-01
To investigate the effect of chemical doping on structural and transport properties in Sr2IrO4, in this study we have doped Ti4+ (3d0) at Ir4+ (5d5) site. Thus Ti doping introduces hole in the electronic band moreover, it also weaken the spin orbital coupling (SOC) and enhance electronic correlation (U). We have prepared the polycrystalline samples of Sr2Ir1-xTixO4 with x = 0.0 0.05 and 0.10 with solid state reaction method. Single phase and chemically pure samples were obtained. All samples crystalizes in tetragonal structure and I41/acd symmetry. The structural analysis shows the evolution of lattice parameter with doping. The temperature dependent resistivity is measured using four probe technique down in the temperature range 5 K-300 K. The resistivity increases with Ti doping. Temperature dependency of resistivity is explained by thermal activated 2-dimensional Mott Variable Hopping range model. To further understand the transport behavior both temperature and field dependent magneto-resistance is also studied. Negative magneto-resistance (MR) has been observed for all samples at 50 K. The MR shows quadratic field dependence at high field, implies a relevance of a quantum interference effect in this spin orbital coupled insulator.
NASA Astrophysics Data System (ADS)
Li, Fei; Zhou, Xiaodong; Feng, Wanxiang; Fu, Botao; Yao, Yugui
2018-04-01
Recently, two-dimensional (2D) GaS and GaSe nanosheets were successfully fabricated and the measured electronic, mechanical, and optoelectronic properties are excellent. Here, using the first-principles density functional theory, we investigate the magnetic, optical, and magneto-optical (MO) Kerr and Faraday effects in hole-doped GaS and GaSe multilayers. GaS and GaSe monolayers (MLs) manifest ferromagnetic ground states by introducing even a small amount of hole doping, whereas the magnetism in GaS and GaSe multilayers are significantly different under hole doping. Our results show that ferromagnetic states can be easily established in GaS bilayers and trilayers under proper hole doping, however, most of GaSe multilayers are more favorable to nonmagnetic states. The magnetic moments in GaS multilayers are weakened remarkably with the increasing of thin film thickness and are negligible more than three MLs. This leads to the thickness dependence of MO Kerr and Faraday effects. Furthermore, the MO effects strongly depend on the doping concentration and therefore are electrically controllable by adjusting the number of holes via gate voltage. The substrate effects on the MO properties are also discussed. Combining the unique MO and other interesting physical properties make GaS and GaSe a superior 2D material platform for semiconductor MO and spintronic nanodevices.
Clay-catalyzed reactions of coagulant polymers during water chlorination
Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.
2004-01-01
The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.
Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elimelech, Orian; Liu, Jing; Plonka, Anna M.
Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sizedmore » NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.« less
Doping He droplets by laser ablation with a pulsed supersonic jet source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzy, R.; Singer, M.; Izadnia, S.
Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions).more » In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.« less
NASA Astrophysics Data System (ADS)
Xiong, Fei; Zhang, Hui; Yang, Sheng'an; Li, Dongqi; Zhang, Zheng; Chen, Qingming
2015-08-01
Large laser-induced thermoelectric voltages (LITVs) are measured in the electron-doped Nd2- x Ce x CuO4 thin films grown on the vicinal-cut SrTiO3 substrates by pulsed laser deposition. The dependence of LITV signals upon the doping carrier density is investigated by changing the Ce content of the films. The optimum Ce dopant corresponding to the largest voltage is found and is attributed to the two-dimensional transport behaviors of the localized electrons. The shorter laser irradiation always induces the larger voltage signals in samples with richer Ce content, suggesting the optimum dopant level is sensitive to the wavelength of excitation source. Thus, the behaviors of LITV signals are resulted from both effects of the anisotropic thermoelectric transport and the optical properties of the thin films. The doping dependence related with an anisotropic charge transport may come from the change in carrier density and the modification in energy band configuration.
Yu, Hai-Ling; Wang, Wen-Yong; Hong, Bo; Zong, Ying; Si, Yan-Ling; Hu, Zhong-Qiang
2016-09-29
Crown ethers, as a kind of heterocycle, have been the subject of great interest over recent decades due to their selective capability to bind to metal cations. The use of a constant crown ether, such as naphtho-15-crown-5 (N15C5), and varied metal cations (Li + , Na + , K + , Be 2+ , Mg 2+ , Ca 2+ , Co 2+ , Ni 2+ , Cu 2+ ) makes it possible to determine the contributions of the metal cations to nonlinear optical (NLO) responses and to design an appropriate NLO-based cation detector. N15C5 and its metal cation derivatives have been systematically investigated by density functional theory. It is found that the dependency of the first hyperpolarizability relies on the metal cation, especially for transition metals. The decrease of the first hyperpolarizabilities for alkali metal cation derivatives is due to their relatively low oscillator strengths, whereas the significant increase of the first hyperpolarizabilities for transition metal cation derivatives can be further illustrated by their low transition energies, large amplitudes and separate distributions of first hyperpolarizability density. Thus, the alkali metal and transition metal cations are distinguishable and the transition metal cations are easier to detect by utilizing the variations in NLO responses.
The influence of aliovalent impurities on the oxidation kinetics of nickel at high temperatures
NASA Astrophysics Data System (ADS)
Mrowec, S.; Grzesik, Z.; Rajchel, B.; Gil, A.; Dabek, J.
2005-01-01
The influence of chromium and sodium on the nickel oxidation kinetics has been studied as a function of temperature (1373-1673 K) and oxygen activity (10-105 Pa O2), using microthermogravimetric techniques. It has been shown that the oxidation of Ni-Cr and Ni-Na alloys, like that of pure nickel, follows strictly the parabolic rate law being thus diffusion controlled. In agreement with the defect model of Ni1-yO, it has been found that the oxidation rate of the Ni-Cr alloy is higher than that of pure nickel, the reaction rate is pressure independent and the activation energy of this process is lower. This implies that the concentration of double ionized cation vacancies in a Ni1-yO-Cr2O3 solid solution is fixed on a constant level by trivalent chromium ions, substitutionally incorporated into the cation sublattice of this oxide. In the case of the Ni-Na alloy, on the other hand, the oxidation rate is lower than that of pure nickel, the activation energy is higher and the oxidation rate increases more rapidly with oxygen pressure. These results can again be explained in terms of the doping effect, by assuming that univalent sodium ions dissolve substitutionally in the cation sublattice of nickel oxide.
The fundamental science of nitrogen-doping of niobium superconducting cavities
NASA Astrophysics Data System (ADS)
Gonnella, Daniel Alfred
Doping of niobium superconducting RF cavities with impurities has been demonstrated to have the ability to significantly improve the cryogenic efficiency of the accelerating structures. Doping SRF cavities with nitrogen is a relatively simple additional step to cavity preparation that can make drastic improvements in a cavity's intrinsic quality factor, Q0. Nitrogen-doping consists of treating SRF cavities at high temperatures in a low nitrogen-atmosphere. This leads to two important effects: an improvement in Q0 at low fields, and the presence of an "anti-Q slope" in which the cryogenic efficiency of doped cavities actually improves at higher fields. After its initial discovery, nitrogen-doping showed real promise but many fundamental scientific questions remained about the process. Nitrogen-doped cavities consistently quenched at lower fields than un-doped cavities, cooling the cavities through their critical temperature slowly led to poor performance, and the mechanism behind the Q0 improvement was not well understood. This dissertation focuses on addressing these issues. Single-cell 1.3 GHz cavities were prepared with different nitrogen-dopings and their effects studied systematically. It was found that nitrogen-doping drastically lowers the mean free path of the RF penetration layer of the niobium, leading to a lowering of the temperature-dependent BCS resistance, RBCS, at low fields. Theoretical work to predict the anti-Q slope was compared with experimental results to more fundamentally understand the nature of the field dependence of RBCS. Nitrogen-doped cavities were found to have a much larger sensitivity of residual resistance from trapped magnetic flux than un-doped cavities. Fast cool downs with large spatial temperature gradients through Tc were found to more efficiently expel magnetic flux. The full dependence of this sensitivity to trapped magnetic flux was studied as a function of changing mean free path and found to be in good agreement with theoretical predictions. The nature of the low-field quench in nitrogen-doped cavities was also studied with high power pulsed measurements and found to be related to a lowering of the lower critical field, Bc1 due to lowering of the mean free path. Finally, five cryomodule tests were carried out on nitrogen-doped 9-cell cavities to understand how the cryomodule environment affects the performance of doped cavities. This is the first demonstration that environmental factors can be controlled to achieve high Q0 of more than 2.7x10 10 at 16 MV/m and 2.0 K in a cryomodule, meeting and exceeding the specification for LCLS-II. The work presented here represents a significant leap forward in the understanding of the underlying science behind nitrogen-doped cavities and demonstrates their readiness for use in future particle accelerators.
Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin
2010-09-21
In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.
N-Doped TiO₂-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities.
Luster, Enbal; Avisar, Dror; Horovitz, Inna; Lozzi, Luca; Baker, Mark A; Grilli, Rossana; Mamane, Hadas
2017-07-31
The photocatalytic degradation of the model pollutant carbamazepine (CBZ) was investigated under simulated solar irradiation with an N-doped TiO₂-coated Al₂O₃ photocatalytic membrane, using different water types. The photocatalytic membrane combines photocatalysis and membrane filtration in a single step. The impact of each individual constituent such as acidity, alkalinity, dissolved organic matter (DOM), divalent cations (Mg 2+ and Ca 2+ ), and Cl - on the degradation of CBZ was examined. CBZ in water was efficiently degraded by an N-doped TiO₂-coated Al₂O₃ membrane. However, elements added to the water, which simulate the constituents of natural water, had an impact on the CBZ degradation. Water alkalinity inhibited CBZ degradation mostly due to increase in pH while radical scavenging by carbonate was more dominant at higher values (>200 mg/L as CaCO₃). A negative effect of Ca 2+ addition on photocatalytic degradation was found only in combination with phosphate buffer, probably caused by deposition of CaHPO₄ or CaHPO₄·2H₂O on the catalyst surface. The presence of Cl - and Mg 2+ ions had no effect on CBZ degradation. DOM significantly inhibited CBZ degradation for all tested background organic compounds. The photocatalytic activity of N-doped TiO₂-coated Al₂O₃ membranes gradually decreased after continuous use; however, it was successfully regenerated by 0.1% HCl chemical cleaning. Nevertheless, dissolution of metals like Al and Ti should be monitored following acid cleaning.
NASA Astrophysics Data System (ADS)
Basavaraj, R. B.; Nagabhushana, H.; Lingaraju, K.; Prasad, B. Daruka
2017-05-01
In this paper we report for the first time Dy3+ (1-7 mol %) doped CdSiO3 nanophosphors prepared via facile ultrasound supported sonochemical route using EGCG (epigallocatechin gallate). The final product was well characterized by PXRD, FTIR, SEM, TEM and PL. The powder X-ray diffraction (PXRD) profiles showed monoclinic phase with highly crystalline nature. The sonication time, concentration of the surfactant play vital role in tuning the morphology. The crystallite size was calculated from PXRD patterns as well as by TEM image and it was found to 20-30 nm. The Fourier transform infrared spectroscopy (FTIR) results confirmed the presence of Si-O-Si and Si-O stretching vibrations in CdSiO3. Photoluminescence properties of Dy3+ (1-7 mol %) doped CdSiO3 excited under near ultra violet wavelength (350 nm) was studied in order to investigate the possibility of its use in white light emitting diode applications. The emission spectra consists of intra 4f transitions of Dy3+, namely 4F9/2 → 6H15/2 (480 nm), and 4F9/2 → 6H13/2 (574 nm) respectively. The 3 mol% Dy3+ doped phosphor showed maximum intensity. The Commission Internationale de I'Eclairage (CIE) and correlated color temperature (CCT) was evaluated. Further, the quantum efficiency and color purity results of the product showed high efficiency and it was highly useful in white light emitting diodes (wLEDs) applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.
Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less
Thomas, A; Solymos, E; Schänzer, W; Baume, N; Saugy, M; Dellanna, F; Thevis, M
2011-11-30
The anti-diuretic neurohypophysial hormone Vasopressin (Vp) and its synthetic analogue Desmopressin (Dp, 1-desamino-vasopressin) have received considerable attention from doping control authorities due to their impact on physiological blood parameters. Accordingly, the illicit use of Desmopressin in elite sport is sanctioned by the World Anti-Doping Agency (WADA) and the drug is classified as masking agent. Vp and Dp are small (8-9 amino acids) peptides administered orally as well as intranasally. Within the present study a method to determine Dp and Vp in urinary doping control samples by means of liquid chromatography coupled to quadrupole high resolution time-of-flight mass spectrometry was developed. After addition of Lys-Vasopressin as internal standard and efficient sample clean up with a mixed mode solid phase extraction (weak cation exchange), the samples were directly injected into the LC-MS system. The method was validated considering the parameters specificity, linearity, recovery (80-100%), accuracy, robustness, limit of detection/quantification (20/50 pg mL(-1)), precision (inter/intra-day<10%), ion suppression and stability. The analysis of administration study urine samples collected after a single intranasal or oral application of Dp yielded in detection windows for the unchanged target analyte for up to 20 h at concentrations between 50 and 600 pg mL(-1). Endogenous Vp was detected in concentrations of approximately 20-200 pg mL(-1) in spontaneous urine samples obtained from healthy volunteers. The general requirements of the developed method provide the characteristics for an easy transfer to other anti-doping laboratories and support closing another potential gap for cheating athletes. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pravinraj, S.; Vijayakumar, M.; Marimuthu, K.
2017-03-01
Effect on structural and spectroscopic behaviour caused by the replacement of lead cations with the aluminium cations in the Eu3+ doped heavy metal oxide borophosphate glasses have been studied with the chemical composition (55B2O3+19.5TeO2+10K2O+(15-x)PbO+xAl2O3+0.5Eu2O3 (where x=0, 2.5, 5, 7.5, 10, 12.5 and 15 in wt%) prepared by melt quenching technique. The FTIR and Raman spectral studies reveal the presence of various fundamental vibrational units and are used to identify the phonon energy of the title glasses. The positive values of bonding parameter (δ) indicate the formation of covalent bonds between the dopant (Eu3+) and the anions (O2-). Luminescence spectra of all the titled glasses exhibit five emission bands due to the electronic transitions of the trivalent europium ions. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratio (βR) of the various emission transitions of the Eu3+ ions have been estimated using Judd-Ofelt (JO) theory. The characteristic emission was identified through CIE 1931 color chromaticity diagram and McCamy's formula have been used to estimate the correlated color temperature (CCT) using (x,y) chromaticity coordinates. The luminescence decay profile pertaining to the 5D0 metastable state of the Eu3+ ions exhibits single exponential behaviour uniformly for all the titled glasses and the experimental lifetime values were obtained following the curve fitting method.
The intercalation chemistry of layered iron chalcogenide superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu
The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the rolemore » of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.« less
NASA Astrophysics Data System (ADS)
Akhtar, Shaheen; Alay-e-Abbas, Syed Muhammad; Abbas, Syed Muhammad Ghulam; Arshad, Muhammad Imran; Batool, Javaria; Amin, Nasir
2018-04-01
In this paper, we report first-principles spin-polarized density functional theory calculations for exploring the effect of aliovalent Mo and C dopants on the electronic properties and photocatalysis potential of doped modifications of wide-bandgap cubic perovskite oxide BaHfO3 for water splitting. The structural and thermodynamic properties are computed by using the generalized gradient approximation, whereas the modified Becke-Johnson local density approximation is used to calculate the electronic structures of pristine, cation (Mo), and anion (C) monodoped and cation-anion (Mo, C) codoped BaHfO3. The spin-polarized calculations reveal that substitutional dopants CO and MoHf in the BaHfO3 lattice are thermodynamically stable. The incorporation of C in the O site reduces the bandgap of BaHfO3 and acts as a double-acceptor system, whereas a metallic character is obtained when Mo is doped into the Hf site giving rise to a double-donor system. We show that the acceptor and donor states of the C- and Mo-monodoped BaHfO3 can be passivated by (Mo, C) codoping at nearest-neighbor Hf and O sites of the BaHfO3 lattice, respectively. Analysis of the calculated electronic structure and optical absorption of (Mo, C) codoped BaHfO3 with reference to the H2O oxidation and reduction potentials reveals that this system is a suitable candidate for efficient splitting of water through photocatalysis in the visible region of the electromagnetic spectrum.
The adsorption of helium atoms on small cationic gold clusters.
Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M
2018-04-04
Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.
Negative pressure driven phase transformation in Sr doped SmCoO₃.
Arshad Farhan, M; Javed Akhtar, M
2010-02-24
Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.
Ferreira da Silva, F; Ptasińska, S; Denifl, S; Gschliesser, D; Postler, J; Matias, C; Märk, T D; Limão-Vieira, P; Scheier, P
2011-11-07
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).
Growth of electronically distinct manganite thin films by modulating cation stoichiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sangkyun; Lee, Joonhyuk; Ahn, Eunyoung
Nd 1-xSr xMnO 3 (NSMO) is a well-known manganite due to close connection between structure, transport, magnetism, and chemistry. Thus, it would be an ideal system to study modification of physical properties by external stimuli including control of stoichiometry in growth. In this work, we show that abrupt change of electronic and magnetic properties can be achieved by subtle change of oxygen partial pressure in pulsed laser deposition. Interestingly, the pressure indeed modulates cation stoichiometry. We clearly observed that the films grown at 150 mTorr and higher showed clear insulator to metal transition and stronger magnetism, commonly found in lessmore » hole doping, while the films grown at 130 mTorr and lower showed insulating behavior and weak magnetism. From soft x-ray spectroscopic methods, we clearly observed the compositional difference in those thin films. This result is further supported by scattering of lighter elements in high oxygen partial pressure but not by anion deficiency in growth.« less
Growth of electronically distinct manganite thin films by modulating cation stoichiometry
Ryu, Sangkyun; Lee, Joonhyuk; Ahn, Eunyoung; ...
2017-06-26
Nd 1-xSr xMnO 3 (NSMO) is a well-known manganite due to close connection between structure, transport, magnetism, and chemistry. Thus, it would be an ideal system to study modification of physical properties by external stimuli including control of stoichiometry in growth. In this work, we show that abrupt change of electronic and magnetic properties can be achieved by subtle change of oxygen partial pressure in pulsed laser deposition. Interestingly, the pressure indeed modulates cation stoichiometry. We clearly observed that the films grown at 150 mTorr and higher showed clear insulator to metal transition and stronger magnetism, commonly found in lessmore » hole doping, while the films grown at 130 mTorr and lower showed insulating behavior and weak magnetism. From soft x-ray spectroscopic methods, we clearly observed the compositional difference in those thin films. This result is further supported by scattering of lighter elements in high oxygen partial pressure but not by anion deficiency in growth.« less
Vibrational characterisation of a crystallised oligoaniline: a model compound of polyaniline
NASA Astrophysics Data System (ADS)
Quillard, Sophie; Corraze, Benoı̂t; Boyer, Marie Isabelle; Fayad, Elias; Louarn, Guy; Froyer, Gérard
2001-09-01
We present a detailed study on the vibrational properties of N,N‧-diphenyl-1,4-phenylenediamine in different crystalline forms. A new triclinic form of the molecule has been obtained through appropriate recrystallization procedure. This polymorphism of the crystalline state was associated to different vibrational features. These results are discussed with regards to the possible conformations of the molecule. In order to complete the study, thin solid films of these materials were also elaborated by vacuum sublimation of the molecule, upon selected conditions of rate, deposition and thickness. Spectroscopic measurements of these layers are showed and compared to those obtained on the crystalline solid forms. We performed convenient oxidation processes of this neutral N,N‧-diphenyl-1,4-phenylenediamine (powder and thin solid film) leading to the formation of the correspondent radical cation species. A comparison with radical cation generated in solution by electrochemical oxidative method is done. Vibrational characterisations of this doped oligomer were achieved in each case and finally, the observed differences are discussed in terms of conformation.
Lehtinen, Julia; Hyvönen, Zanna; Subrizi, Astrid; Bunjes, Heike; Urtti, Arto
2008-10-21
Cationic polymers are efficient gene delivery vectors in in vitro conditions, but these carriers can fail in vivo due to interactions with extracellular polyanions, i.e. glycosaminoglycans (GAG). The aim of this study was to develop a stable gene delivery vector that is activated at the acidic endosomal pH. Cationic DNA/PEI complexes were coated by 1,2-dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) (3:2 mol/mol) using two coating methods: detergent removal and mixing with liposomes prepared by ethanol injection. Only detergent removal produced lipid-coated DNA complexes that were stable against GAGs, but were membrane active at low pH towards endosome mimicking liposomes. In relation to the low cellular uptake of the coated complexes, their transfection efficacy was relatively high. PEGylation of the coated complexes increased their cellular uptake but reduced the pH-sensitivity. Detergent removal was thus a superior method for the production of stable, but acid activatable, lipid-coated DNA complexes.
Stamplecoskie, Kevin G; Ju, Ling; Farvid, Shokouh S; Radovanovic, Pavle V
2008-09-01
We report the first synthesis and characterization of cobalt- and chromium-doped GaN nanowires (NWs), and compare them to manganese-doped GaN NWs. Samples were synthesized by chemical vapor deposition method, using cobalt(II) chloride and chromium(III) chloride as dopant precursors. For all three impurity dopants hexagonal, triangular, and rectangular NWs were observed. The fraction of NWs having a particular morphology depends on the initial concentration of the dopant precursors. While all three dopant ions have the identical effect on GaN NW growth and faceting, Co and Cr are incorporated at much lower concentrations than Mn. These findings suggest that the doping mechanism involves binding of the transition-metal intermediates to specific NW facets, inhibiting their growth and causing a change in the NW morphology. We discuss the doping concentrations of Mn, Co, and Cr in terms of differences in their crystal-field stabilization energies (DeltaCFSE) in their gas-phase intermediates and in substitutionally doped GaN NWs. Using iron(III) chloride and cobalt(II) acetate as dopant precursors we show that the doping concentration dependence on DeltaCFSE allows for the prediction of achievable doping concentrations for different dopant ions in GaN NWs, and for a rational choice of a suitable dopant-ion precursor. This work further demonstrates a general and rational control of GaN NW growth using transition-metal impurities.
NASA Astrophysics Data System (ADS)
Rupp, Jonathan A. J.; Querré, Madec; Kindsmüller, Andreas; Besland, Marie-Paule; Janod, Etienne; Dittmann, Regina; Waser, Rainer; Wouters, Dirk J.
2018-01-01
This study investigates resistive switching in amorphous undoped and Cr-doped vanadium oxide thin films synthesized by sputtering deposition at low oxygen partial pressure. Two different volatile threshold switching characteristics can occur as well as a non-volatile bipolar switching mechanism, depending on device stack symmetry and Cr-doping. The two threshold switching types are associated with different crystalline phases in the conduction filament created during an initial forming step. The first kind of threshold switching, observed for undoped vanadium oxide films, was, by its temperature dependence, proven to be associated with a thermally triggered insulator-to-metal transition in a crystalline VO2 phase, whereas the threshold switch observed in chromium doped films is stable up to 90 °C and shows characteristics of an electronically induced Mott transition. This different behaviour for undoped versus doped films has been attributed to an increased stability of V3+ due to the Cr3+ doping (as evidenced by X-ray photoelectron spectroscopy analysis), probably favouring the creation of a crystalline Cr-doped V2O3 phase (rather than a Cr-doped VO2 phase) during the energetic forming step. The symmetric Pt/a-(VCr)Ox/Pt device showing high temperature stable threshold switching may find interesting applications as a possible new selector device for resistive switching memory (ReRAM) crossbar arrays.
Influence of lithium cations on prolyl peptide bonds.
Kunz, Claudia; Jahreis, Günther; Günther, Robert; Berger, Stefan; Fischer, Gunter; Hofmann, Hans-Jörg
2012-06-01
The influence of lithium cations on the cis/trans isomerization of prolyl peptide bonds was investigated in a quantitative manner in trifluoroethanol (TFE) and acetonitrile, employing NMR techniques. The focus was on various environmental and structural aspects, such as lithium cation and water concentrations, the type of the partner amino acid in the prolyl peptide bond, and the peptide sequence length. Comparison of the thermodynamic parameters of the isomerization in LiCl/TFE and TFE shows a lithium cation concentration dependence of the cis/trans ratio, which saturates at cation concentrations >200 mM. A pronounced increase in the cis isomer content in the presence of lithium cations occurs with the exception of peptides with Gly-Pro and Asp-Pro moieties. The cation effect appears already at the dipeptide level. The salt concentration can considerably be reduced in solvents with a lower number of nucleophilic centers like acetonitrile. The lithium cation effect decreases with small amounts of water and disappears at a water concentration of about 5%. The isomerization kinetics under the influence of lithium cations suggests a weak cation interaction with the carbonyl oxygen of the peptide bond. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.
Chen, Ting-Hao; Yang, Cheng-Hsien; Su, Ching-Yuan; Lee, Tai-Chou; Dong, Quan-Feng; Chang, Jeng-Kuei
2017-09-22
Various types of electrolyte cations as well as binary cations are used to optimize the capacitive performance of activated carbon (AC) with different pore structures. The high-rate capability of micropore-rich AC, governed by the mobility of desolvated cations, can outperform that of mesopore-rich AC, which essentially depends on the electrolyte conductivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Benhabib, S.; Gu, G. D.; Gallais, Y.; ...
2015-10-06
We explore by electronic Raman scattering the superconducting state of the Bi 2Sr 2CaCu 2O 8+δ (Bi-2212) crystal by performing a fine-tuned doping study. We find three distinct energy scales in A 1g, B 1g, and B 2g symmetries which show three distinct doping dependencies. Above p=0.22, the three energies merge; below p=0.12, the A 1g scale is no longer detectable, while the B 1g and B 2g scales become constant in energy. In between, the A 1g and B 1g scales increase monotonically with underdoping, while the B 2g one exhibits a maximum at p=0.16. The three superconducting energymore » scales appear to be a universal feature of hole-doped cuprates. Furthermore, we propose that the nontrivial doping dependencies of the three scales originate from the Fermi-surface changes and reveal competing orders inside the superconducting dome.« less
Thermally stimulated currents in molecularly doped polymers
NASA Astrophysics Data System (ADS)
Stasiak, James W.; Storch, Teresa J.
1997-10-01
Thermally stimulated currents (TSC) were measured in molecularly doped polymers consisting of the hole transport molecule p-diethylaminobenzaldehyde diphenyihydrazone (DEH) and the polymer binder bisphenol A polycarbonate (PC) at two different doping concentrations. The TSC spectrum, which consisted of a single, well resolved peak, was found to be dependent on the applied electric field, the heating rate and the dopant concentration. The peak maxima were located between 170K and 250K. The spectra were analyzed within the theoretical framework of Zielinski and Samoc which provided a procedure to extract the hopping activation energy for each concentration. The principle observations of this study are: (1) the TSC peak is unambiguously associated with charge transport, (2) the magnitude of the activation energies were found to be larger than values obtained from isothermal transient photocurrent measurements and (3) the activation energies obtained from analysis of the TSC spectra were found to be dependent on the doping concentration. This last observation is inconsistent with previous isothermal transient photocurrent measurements of doped polymer systems containing DEH.
Transient carrier dynamics in a Mott insulator with antiferromagnetic order
NASA Astrophysics Data System (ADS)
Iyoda, Eiki; Ishihara, Sumio
2014-03-01
We study transient dynamics of hole carriers injected into a Mott insulator with antiferromagnetic long-range order. This "dynamical hole doping" contrasts with chemical hole doping. The theoretical framework for the transient carrier dynamics is presented based on the two-dimensional t-J model. The time dependencies of the optical conductivity spectra, as well as the one-particle excitation spectra, are calculated based on the Keldysh Green's function formalism at zero temperature combined with the self-consistent Born approximation. In the early stage after dynamical hole doping, the Drude component appears, and then incoherent components originating from hole-magnon scattering start to grow. Fast oscillatory behavior owing to coherent magnon and slow relaxation dynamics are confirmed in the spectra. The time profiles are interpreted as doped bare holes being dressed by magnon clouds and relaxed into spin polaron quasiparticle states. The characteristic relaxation times for Drude and incoherent peaks strongly depend on the momentum of the dynamically doped hole and the exchange constant. Implications for recent pump-probe experiments are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, F.; Zhao, G. Q.; Escanhoela, Jr., C. A.
We investigate doping- and pressure-induced changes in the electronic state of Mn 3d and As 4p orbitals in II-II-V based diluted magnetic semiconductor (Ba 1-x,K x)(Zn 1-y,Mn y) 2As 2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c = 230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption and dichroism) show that the emergence, and further enhancement of ferromagnetic interactions with increased hole doping into the As 4p band is accompanied by a decrease in local 3d spin density at Mn sites. This is amore » result of increasing Mn 3d - As 4p hybridization with hole doping which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4p states. On the contrary, application of pressure suppresses exchange interactions. While Mn Kβ emission spectra show a weak response of 3d state to pressure, clear As 4p band broadening (hole delocalization) is observed under pressure ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4p and Mn 3d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnAs 4 tetrahedral units, which we probed with X-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. As a result, the instability of ferromagnetism and semiconducting state against pressure is mainly dictated by delocalization of anion p states.« less
Sun, F.; Zhao, G. Q.; Escanhoela, Jr., C. A.; ...
2017-03-13
We investigate doping- and pressure-induced changes in the electronic state of Mn 3d and As 4p orbitals in II-II-V based diluted magnetic semiconductor (Ba 1-x,K x)(Zn 1-y,Mn y) 2As 2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c = 230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption and dichroism) show that the emergence, and further enhancement of ferromagnetic interactions with increased hole doping into the As 4p band is accompanied by a decrease in local 3d spin density at Mn sites. This is amore » result of increasing Mn 3d - As 4p hybridization with hole doping which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4p states. On the contrary, application of pressure suppresses exchange interactions. While Mn Kβ emission spectra show a weak response of 3d state to pressure, clear As 4p band broadening (hole delocalization) is observed under pressure ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4p and Mn 3d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnAs 4 tetrahedral units, which we probed with X-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. As a result, the instability of ferromagnetism and semiconducting state against pressure is mainly dictated by delocalization of anion p states.« less
NASA Astrophysics Data System (ADS)
Sun, F.; Zhao, G. Q.; Escanhoela, C. A.; Chen, B. J.; Kou, R. H.; Wang, Y. G.; Xiao, Y. M.; Chow, P.; Mao, H. K.; Haskel, D.; Yang, W. G.; Jin, C. Q.
2017-03-01
We investigate doping- and pressure-induced changes in the electronic state of Mn 3 d and As 4 p orbitals in II-II-V-based diluted magnetic semiconductor (B a1 -xKx ) (Zn1-yM ny ) 2A s2 to shed light into the mechanism of indirect exchange interactions leading to high ferromagnetic ordering temperature (T c =230 K in optimally doped samples). A suite of x-ray spectroscopy experiments (emission, absorption, and dichroism) show that the emergence and further enhancement of ferromagnetic interactions with increased hole doping into the As 4 p band is accompanied by a decrease in local 3 d spin density at Mn sites. This is a result of increasing Mn 3 d -As 4 p hybridization with hole doping, which enhances indirect exchange interactions between Mn dopants and gives rise to induced magnetic polarization in As 4 p states. On the contrary, application of pressure suppresses exchange interactions. While Mn K β emission spectra show a weak response of 3 d states to pressure, clear As 4 p band broadening (hole delocalization) is observed under pressure, ultimately leading to loss of ferromagnetism concomitant with a semiconductor to metal transition. The pressure response of As 4 p and Mn 3 d states is intimately connected with the evolution of the As-As interlayer distance and the geometry of the MnA s4 tetrahedral units, which we probed with x-ray diffraction. Our results indicate that hole doping increases the degree of covalency between the anion (As) p states and cation (Mn) d states in the MnA s4 tetrahedron, a crucial ingredient to promote indirect exchange interactions between Mn dopants and high T c ferromagnetism. The instability of ferromagnetism and semiconducting states against pressure is mainly dictated by delocalization of anion p states.
Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.
Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi
2011-04-14
The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.
NASA Astrophysics Data System (ADS)
Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi
2015-12-01
Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.
Doping dependence of charge order in electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Mou, Yingping; Feng, Shiping
2017-12-01
In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.